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Abstract—We characterize the fairess of decentralized In this paper we observe that in regular 1D (one-
medium access control protocols based on CSMA/CA, in large dimensional) or 2D (two-dimensional) networks, the unfair
multi-hop wireless networks. In particular, we show that the ness of this idealized CSMA/CA protocol is due border
widely observed unfairness of these protocols in small network ff The bord ff iallv | | eff - th
topologies does not always persist in large topologies. effects The border e efCts are essentially local e ('_"Cts' the
In regular networks, this unfairess is essentially due to the Nnodes at the boundaries of the network get an increased
unfair advantage of nodes at the border of the network, which access to the channel, because they have fewer neighbars tha
have a restricted neighborhood and thus a higher probability to nodes in the center. We expect therefore these border effect
access the communication channel. In large 1D lattice networks to rapidly become negligible in large network topologies.

these border effects do not propagate inside the network, and L oY .
nodes sufficiently far away from the border have equal access to Contrary to our initial intuition, we will show that CSMA/CA

the channel: as a result the protocol is long-term fair. In 2D lattice Protocols may cause these local effects to actually prdpaga
networks, we observe a phase transition. If the access intensity throughout the whole network, creating a global effect. The

of the protocol is small, the border effects remain local and network topology and the access intensity of the protocol

the protoc.ol behaves similarly as in one-dimensional networks. play a key role in the propagation of these border effects.
However, if the access intensity of the protocol is large enough, In Secti Y, h that in | 1D latti twork
the border effects persist independently of the size of the netwio n ection W? S ow tha ) In afge attice Networks
and the protocol is strongly unfair. (lines) and for all finite access intensities, the border effects do

In irregular networks, the topology is inherently unfair. This not propagate inside the network. In contrast, we demaestra
unfaimess increases with the access intensity of the protocol, that in large 2D lattice topologieg(ids), a phase transition
b”i 'grESmUCh smoother way than in regular two-dimensional  occyrs. Under a certain access intensity, border effeds fa
rI;(ien\a:\\llly, iﬁ situations where the protocol is long-term fair, we away, whereas above a certain access IntenSIFy.they priepaga
provide a characterization of its short-term fairness. throughout the network, no matter how large it is. The proof
techniques presented in this paper come from the area of
statistical physics, and to the best of our knowledge, are fo
the first time applied in the context of multi-hop wireless
networks.

|. INTRODUCTION Border effects play a key role in the fairness of the protocol

The goal of a medium access control protocol is to regula@n the one handwhen the border effects vanisthe links

the access of the network nodes to a shared resource, the c@igide the network get an equal access to the channel, and
munication channel. In large multi-hop networks, prov@inasymptotically, as the size of the network goes to infirtig
an efficient and fair access to the channel is a challengipgbtocol is long-term fair On the other handyhen the border
task. Indeed the most commonly used medium access contfiécts persistthe protocol is never long-term faand only a
protocol, IEEE 802.11, is known to be highly unfair. Theubset of the network links gets a good access to the channel.
tendency of IEEE 802.11 to starve some of the network |in|§ettings where the protocol is long-term fair may not gu@n
while giving a good access to the others has been obseryegh be short term fair, and we examine the latter properties
experimentally on small testbed topologies [2]. It has alsa Section V. We evaluate by simulation the time needed for
been investigated analytically in several papers [3], [B], the idealized CSMA/CA protocol to reach a given (high) level
[6]. In particular, [3] and [6] show that even adealized of fairness. Taking the viewpoint of a given network link, we
CSMAJCA protocothat retains only the essential features adlso compute how long on average the link waits to get access
IEEE 802.11 and does not suffer from different imperfectiono the channel and how long it keeps the access to the channel
of the real protocol, such as overheads and collisions dggce it has access.
to the RTS/CTS exchanges, exhibits this unfairness prablem
We elaborate on the related work in Section Il and detail the
idealized CSMA/CA protocol in Section lll.

Index Terms—Ad hoc Networks, Multi-hop, Medium Access
Control, Performance Analysis
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CSMA/CA protocols on large two-dimensional topologies, whas anexclusion sethat contains all the links that cannot be
have to resort to a more elaborate version of this argumeattive at the same time as itself. We assume that the relation
We adapt some of the techniques of [11], [12] to achieve thi§ exclusion is symmetric, i.e., that if a linkhas link 7 in
goal. its exclusion set, then link is also in link j’'s exclusion set.

To model the network, we use the Markov chain formalisrA link sees the communication channel as idle if and only if
of [3] and [6]. This formalism was first proposed by [13]none of the links in its exclusion set is active.
[14] to model the CSMA protocol and later extended to an In addition, we assume that each link maintainbagkoff
idealized CSMA/CA protocol by [3]. The strength of thistimer, which is initialized to a random value chosen according
model is to preserve the dependence between nodes, whighan exponentiabackoff distributionwith mean A\—!. The
is typical of CSMA protocols. This model has also strongmer of a link runs when the link sees the channel as idle;
connections with Kelly's work [15] on loss networks as thevhen the link senses the channel busy, it temporarily freeze
stationary distribution of its Markov chain has the samaerfor its timer. A link becomes active when its backoff timer reash
Using this model, which is also known as the hard core modegro, which is only possible if all the links in its exclusieat
in statistical physics, [3] is probably the first to predictda are idle. It stays active for an exponentially distributadet
explain the starvation phenomenon in multi-hop topologiewith mean;~!. After each transmission, the link resets its
[6] extends the results of [3] and provides a closed forimackoff timer to a new random value.
expression for the spatial reuse of CSMA/CA protocols in This mechanism slightly differs from IEEE 802.11. In IEEE
large one-dimensional networks. [16] extends the results 802.11 each node maintains a unique backoff timer for all its
ther to consider the effect of the receiving and carrier iSgns |inks instead of a separate backoff timer per link. In addii
ranges on the model. Using Mean Field techniques, [17] alg@ make two assumptions. First, we assume that nodes can
obtains asymptotically exact results in some scenariof Wiorrectly assess the channel state. Second, we assume a con-
adaptive backoffs. Variations of the loss network modelduséinuous backoff distribution, instead of the discreteritisttion
in this paper have also been recently adopted to develpgplemented in the actual protocol, so that two timers have
optimal distributed CSMA schemes making use solely of local zero probability to expire at the same time. These two
information (such as the node backlogs, etc) [18], [19]].[20assumptions imply that the idealized CSMA/CA protocol is

Other recent models of CSMA/CA networks include [21]collision-free.
[22], [4], [23], and [5]. These models incorporate more fea- We call transmission patterrihe set of active links in the
tures of the real protocols than the model used in this papstwork at a given time. A transmission pattern must respect
and typically lead to large systems of equations that must §f constraint specified by the exclusion set of active links
numerically solved. As a consequence, these models affer liwe say that a transmission patternnigximal (for a given
ited insight into the behavior of CSMA/CA protocols in largeetwork) if there is no other transmission pattern with ankig
multi-hop networks. However, some of these works do obserd@mber of active links.
the starvation phenomenon. In particular, [4] attribueé t  The dynamics of this idealized protocol can be described by
unfaimess of CSMA/CA protocols to a coordination problerg continuous time Markov chain, whose state space is the set
inherent to carrier sensing protocols, while [5] conceBBa of | possible transmission patterns in the network [6]isTh

on the role played by the minimum contention window in thgyarkoy chain has a unique stationary distribution given by
starvation phenomenon.

Techniques from statistical physics have been applied first pn(®)
in [24] to analyze large-scale distributed resource skarin m(z) = 7 @)
mechanisms. More recently, several works [25], [26], [27]
showed the existence of a phase transition phenomenonsin l9§erex denotes a transmission patterr(x) is the number
networks or hard core models. However, these papers offfyactive links inz, p = A/u is the access intensity, and
consider networks with relatively simple structures (iree £ = >_, p"¥) is a normalizing constant.
or bipartite networks) and consequently their proof tegnes  In this paper, we consider essentially two different networ
cannot be used in our setting. settings: a line network composed of a sequence of equally
spaced (by one space unit) nodes on a line where each pair of
neighboring nodes is connected by a link, and a grid network
where nodes are located on the vertices of a square lattice. |
We consider an idealized CSMA/CA protocol in order tdoth networks, we assume that the exclusion set of a link
capture the essential features of CSMA/CA systems, an@ le@ontains all the links having an end-node connected to at
aside the effects due to the imperfections of the real pobtodeast one of the link's end-nodes. A more convenient way to
(we refer the reader to [28] for an overview of those effectgpresent the exclusion set constraints is to associatado e
in IEEE 802.11). This model has already been used in [3] astive link a domainthe exclusion domajrthat corresponds
well as in [6] and [16]. to the space occupied by an active link in the center of a
We model the network using a graph where the verticesaximal pattern. In the line network (Figure 1), the exabusi
represent the nodes and the edges represent the links. A lifsknain of a link is a line segment of length= 3 while in
can be in two states, active or idle. A link is active if ther¢he grid network (Figure 2) it is an hexagon of area four. A
is a data transmission between its two end-nodes. Each linknsmission pattern on the grid (resp., line) network issth
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Fig. 1. Maximal pattern on the line network, the exclusion dionud a link 0 T T
is a line segment of length three. (a) 5 nodes line network

(b) 500 node line network

Fig. 3. Border effects on line networkp, = 155. The line network is
represented on the x-axis. To each of its links, we assoaiatgtical bar that
corresponds to the link access probability in the simulation

verify from (1) that the measure conditioned on the state of

. _ _ _ _ __vertices in0B is
(a) A maximal pattern with horizon- (b) A maximal pattern with vertical

tal active links active links - "B [(zp,
Vv finite B, w(zplzep) = P ( ,B7 aB)a (2
Fig. 2. Maximal pattern on the grid network, the exclusion diontd a link Z
is an hexagon of area four. where Z’ is an appropriate normalizing constant, and where

I(zp,zop) = 1 if no adjacent vertices inp and xyp are
equivalent to a collection of non-overlapping hexagonsgre both in statel and(zp,z9p) = 0 otherwise. The advantage
line segments) on the 2D (resp., 1D) lattice. of (2) over (1) is that it can be used to define a measure over
an infinite network. Indeed, (2) only refers to finite subsets
whereas (1) addresses the whole graph, leading to an infinite
normalization constant if the graph is infinite.

In this section we look at the long-term fairness propeuties | et us now consider a measure over the space of all
CSMAJCA protocaols in large networks. The long-term fairmespossible transmission patterns that fulfills (2). A staddar
of a protocol is the level of fairness achieved by the pratocgroplem in statistical physics is to tell whether such a raems
after having run for a very long (in theory infinite) time.s unique. Essentially if there are several measures canply
To assess this fairness, as the chain is ergodic, we lookyafh (2), it means that the network can stabilize in several
the marginal stationary probabilities of individual links be  gistinct stationary regimes, potentially with unfair distition
active, and we check whether they are all equal. of link activities. This phenomenon corresponds to a phase

To do so, we need to study the structure of the stationapynsition of the Markov random field. On the other hand, if
measurer. We use the concept afontention graphwhose the measure is unique, as the equations in (2) are translatio
vertices represent the links of the network and edges mutygld reflection invariant, this measure cannot favor any link
exclusion of links. In other words, there is an edge betwegRer the others. In this case, the network is long-term fair.
two vertices if their corresponding links are in one andther |n the next two subsections, we look into the particular sase
exclusion set. Note that this graph is different from thepbra of the line and grid networks, as defined in Section IIl. In

representing the network itself. We say that a vertex state  addition, we give a few general results on irregular network
1 if the corresponding link is active, arslate Ootherwise. In 5t the end of the section.

this new graph, the exclusion rule implies that two adjacent

vertices cannot be in staté simultaneously. A (maximal)

transmission pattern on the original network topology itech

a (maximal) independent set on the corresponding contentio We start with a few simulation resuftsto give some insight

graph. into the behavior of the network. Figure 3(a) illustrates th
A central property of the stationary measurés that it is a Stationary marginal probabilities of the links in a smalurfo

Markov field! on this graph. We describe briefly the propertieink topology. We observe that border effects can severely

of Markov fields which we need in the sections below. Fdmpact the fairness of the protocol. Yet in large networks

more details, we refer the reader to [7]. The main property Bprder effects do not propagate inside the network, as shown

Markov fields is that for each finite subsBt of vertices, the in Figure 3(b).

conditional distribution of the states insidgiven the state of ~ Theorem 1:Consider anL-link line network. WhenL —

all vertices outside3 only depends on the state of the verticego and for all finite values op, the probabilities of links in

in B, wheredB denotes all the vertices outside that are the center of the network to be active are asymptotically all

adjacent to a vertex i8. More specifically, ifzp € {0,1}/3/ equal and independent of the border condition.

is a pattern inB andzs € {0, 1}19B| a pattern ord B, where Proof: We start by addind — 1 additional links at each

x5 andzpp do not violate the exclusion rule, one can easilgxtremity of ourL-link network. These links form thborder
of our network. In the following, aorder conditionis the

1The term “Markov” here refers to the spatial structure of theasure. It
has nothing to do with the fact that is originally the stationary measure of 2All the simulations in this paper were performed using a deditavent
a Markov chain (over time). driven simulator for the idealized CSMA/CA protocol (codeable at [29])

IV. LONG-TERM FAIRNESS

A. The line network
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Fig. 4. lllustration of the proof of Theorem 1 fér= 3. The L links are
represented by black dots, and white dots the additionaddsoinks. Two
possible border conditions are illustrated below: The phility of link ¢
under the first one is clearly equal to the probability of lihk- 1 under
the second one (solid ellipse). And yet, the probability inkli under any
border condition remains asymptotically the same wheg i < L (dashed 03
ellipse). Thus, the probabilities of linksand: 4 1 are asymptotically equal.
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o
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all the border links to idle is equivalent to not adding barde 0 02 08 1
links at all; this corresponds to the usual border condition
The contention graph of the line network consists in

activity pattern prescribed to th&[ — 1) border links. Setting O'll_ﬂm

0.4 0.6
probability to be active

(a) Border effects. Fraction of links with a given channel
access probability in two simulations, one with= 50

L + 2(1 — 1) vertices representing the links (including the and one withp = 155. For p = 50 all links have
border links). An edge connects verticesand j whenever Sifr?ilf'ﬂr access probabfilitieS: the protocc|>|| fhaS_a hi?hhlevel
li — j| < 1 — 1. Let us define a site percolation process of fairess. However, fop = 155, a small fraction of the

. . . links monopolize the access to the channel; the protocol
on this graph by declaring each vertex “open” with prob- has a low level of fairness.

ability p/(1 4+ p) and “closed” with probabilityl/(1 + p),
independently of each other. Aspen pathis a sequence of
connected open vertices that are distinct. Let us consider t
open verticeg and 7, and divide the interval between them
into ||« — j|/1] segments of length (ignoring the remainder
of the division). The probability that there is an open path
betweeni andj is less than the probability that each of these
segments contains at least one open vertex. We have thus

1 1 LHIHJ 02|
P(iowg) < |1-— P a—

1
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This probability tends to zero when the distance betwgen p
andj increases. (b) Long-term fairness of the idealized CSMA/CA protocol.

Consider now two different border conditions and look at ~ Observe the sharp drop in the faimess of the protocol faresl
. N . . of p betweer60 and90, from values close to 1 to values slightly

the probability that a link is active under each border ctodi above 1/8.
Corollary 1 in [10] states that the difference between the tw
probabilities is less than the probability of finding an opeﬁ'g' 5
path from the given link (or more exactly the corresponding
vertex in the contention graph) to a border link. As we hav@nit when the number of links goes to infinitthe idealized
shown in the previous paragraph, this latter probabilitydee CSMA/CA protocol is long-term fair and all links have the
to zero as the size of the network goes to infinity. same probability to access the channel

We have thus proved that asymptotically, the probabiligt th
a link be active, does not depend on the border condition. To
finish the proof, we need to prove that these probabilities a'?"
also asymptotically equal to each other. Figure 4 illusgat We start again with illustrative simulation results: indar
this last part of the proof. Consider two border conditidres, grids we observe that for low values pthe protocol provides
two activity patterns prescribed to ti¥! — 1) border links, a fair access to the links inside the network, but not fordarg
the second one being equal to the first one shifted by one unilues ofp.
According to the above result, the probability of a centirat | Figure 5(a) shows the histogram of the link access probabil-
to be active under both border conditions are asymptoyicalties for two values op. At p = 50 all links have a very similar
equal. However, by translation, the probability of lihkko be access probability to the channel. In contrasty at 155, two
active under the first border condition is exactly equal ® trcategories of links clearly appear: approximatgj8 of the
probability of link 7 + 1 to be active under the second bordelinks have a very high channel access probability, whereas
condition. Therefore we can conclude that for dng i < L, the remaining7/8 of the links have almost no access to the
links i andi+ 1 have asymptotically equal probabilities undechannel.
any border condition. ] In this section we show that in a grid network, the idealized

Theorem 1 implies that if we move sufficiently far awayCSMA/CA protocol exhibits a phase transition. Indeed we
from the border of the network, border effects ultimatelghow that for low values ob, the protocol becomes long-term
disappear, as illustrated by Figure 3(b). Consequentlyhén fair as the number of links goes to infinity. It has therefore a

Fairness on 84x34 node grid network

The grid network



similar behavior as on the line network. In contrast, fogé&ar In particular, this theorem implies that for sufficientlyda
values ofp, the effects of the border always propagate insidalues of p, the fairness index remains uniformly bounded
the network independently of its size, and the protocol is naway from 1 whenl tends to infinity. Loosely speaking, the

long-term fair. theorem means that the border effects rdi vanish in the
To assess the fairness of the protocol we da&ig’s Fairness center of the network.
Index [30]. To prove the theorem, we use Peierls’ argument [7]. Peierls

Definition 1: [Jain’s Fairness Index] Denote hy(j) the introduced this argument in936 to show that the two-
probability that a linkj is active. The link fairness index Fl dimensional Ising model exhibits a phase transition. low m

of the protocol is classical argument in statistical physics. The remainfi¢nie
2 section is devoted to this proof, and is structured as falow
(Zj p(j)) we start with a few definitions; next, we present the outlifie o
Fl = W ®B)  peierls’ argument; finally, we present the main steps nacgss

) ) ] ] to apply the method of [12] to our setting.
The maximum fairness index is B 1. It corresponds to a i) Contours and their properties

network where all links access the channel equally. Yenlyo |, an infinite grid network, there are eight maximal trans-
k links have an equal access to the channel and the remainiigsion patterns (or equivalently eight maximal independe
links have no access to the channel, the fairness indexis sets in the contention graph), four with horizontal activexs
Figure 5(b) illustrates the phase transition using Jaingq four with vertical active links. The four horizontal ¢
fairness index. . vertical) transmission patterns can be obtained from ettwr 0
1) Sub-critical regime: _ _ by translation. Each hexagon or Ithkelongs to exactly one of
Theorem 2:Consider anL-link grid network. There is asq eight patterns, hereafter called phaseof the hexagon.

somec; > 0 such that wherp < ¢, and L — oo, the  pgjans argument relies on the notion adntour For the

probabilities of links in the center of the network to be @t ¢, 15ing definition it is helpful to consider the example of

are asymptotically all equal and independent of the bord'g(gure 6(a).

condition. . . . Definition 2: Consider an arbitrary transmission pattern
Proof. This theorem is proved in the same way a

) a.e., a set of non-overlapping hexagons). An element (of
Theorem 1. We denote b the contention graph of the contour) is either an area not covered by hexagons, or a

Lommon edge of two hexagons of two different phases. Two
elements are connected if they share at least one vertex. A

ontour is a set of connected elements, which is maximal.
Let C be a contourC' is delimited by an outer polygon and

vertex open with probability/(1+p) independently. This site
percolation process is less trivial than in one dimension:
Theorem 1.33 in [31], we know that it admits a percolation

thresholdp.(G) that is finite and strictly positive. Thus, if . . R

'_ ) . possibly several inner polygons (for example, in Figure) 6(a
p Thpc(G)/(lt,_ pe(G)) = e, tthe Froﬂt:abtljlltydto ﬁr;dtr?n optent ere are two inner polygons). All edges of the outer polygon
path connecting a given vertex 1o the border of the€ netwop cessarily belong to hexagons of the same phase, called

tends to zero when the border moves away from the vert & phase of the contou€’. The interior of C' is the area
Therefore the same argument as in Theorem 1 can be useq t

Rtained inside its outer polygon. Thi tiletth wi
conclude that ifp < ¢;, the probability of a link to be active oritained inside its outer polygon Is area can be tiled wi

. . . o hexagons of the phase ¢t (Figure 6(b)). If the interior of
is asymptotically independent of the border condition. such an hexagon intersects a contour element, we say that thi

totl'?:azlil se:on:l stre(ft;avt\;_elfgsow_rtgaéoa(:La:er; I'nrlfsTr;]iV;eansqy%kagonbeIongsto the contour or that the contogontains
ically equal p Hues. IS, as | ]the hexagon. The length of a contour is defined as the number

we consider different border conditions that are equi\talegf hexagons belonging to the contour and is denoted (gy)
through a transformation (shift or rotation) of the network Lemma 1: The number of contours of length containiné

This allows to shqw that links that are equivalent thro.ug@' tha given hexagon is upper bounded &y with g — 15 - 215,
same transformation have asymptotically equal probagslit
: . . Proof: See [1] u
The details of this step are omitted for lack of space. ®m Bef beain with Peierls’ ¢ d last
As a consequence of this theorempif< ¢;, the fairness clore we begin wi €leris argument we need one 1as

index of the network tends tb as I, — oo notion, the notion oiC-inner contour.
2) Super-critical regime: ' Definition 3: A C-inner contour is a contour insidé but

Theorem 3:Consider anL-link grid network. For anyL, not _inside any cher contour. o )
any pair of adjacent links and j, and anys < 1, there exists Figure 7(a) gives an example of a transmission pattern with

¢y < oo such that ifp > ¢, the following two statements & contourC’ and twoC-inner contours.
hold: i) Outline of Peierls’ argument
o there exist two distinct border conditions such that thgonS'd?r two a_djacent_ linksand,j and _denote byd the phas_,(_a
of link j. As adjacent links cannot be in the same phase,ilink

ggffr:eg];rzg: ir;?lgi;?obna?sll|It;er;eorftlr|]r;l;to be active under is not in phased. Now assume that the border of the network

. there exists a border condition under which the differend2 fully packed with hexagons of phask Under this border
between the probabilities of linkand link ; to be active 3As each link corresponds to one hexagon and vice-versa, wente-

is larger thary. changeably link and hexagon



(a) Transmission pattern with a single contour(b) The interior of the contour is tiled with (c) Contour removal operation. The number of
C. The contourC' corresponds to the white area hexagons in the phase 6f. The contour contains additional hexagons (compared to the original
on the figure but also contains the two encircledL(C') = 33 of these hexagons. transmission pattern in (a)) is 16.

edges.

Fig. 6. Removal of a single contodr.

condition, any pattern where linkis active contains at leastclaim of the theorem. The first claim can be verified similarly
one contour around An upper bound to the probability thatby considering the border condition where all hexagons are
1 is active is thus the probability of finding an outer contoun the same phase as link say B: we get a lower bound
(i.e., a contour that is not inside another contour and thpéi|B) > 1 — f(p) and the first claim follows.
necessarily in phasd) around links. iif) Upper bound onP(C)

Let y denote an arbitrary transmission pattern on thEhe main difficulty of the proof is to obtain the upper
network that is compatible with the border condition. Theound (5) on the probability?(C) of a given outer contour

probability of a given contou€' is C. In principle, the idea is quite simple. Let denote an
n(y) arbitrary transmission pattern with contodf, Equation (4)
> cp™ ;
P(C) = %19771(), (4) can be rewritten as

2y P @)
wherey > C denotes a patterp that contains contou€'. P(C) = w~
Assume that we can find an upper bound BC) of the 4
form If to eachy we can map another transmission pattgtmwvith

P(C) < p O (5) €L(C) more hexagons and if this mapping is one to one, then,

) ] N . toeach term in the numerator we have associated a term in the
yvhere_e > 0. Denoting byp(z|A)_ Fhe _probablllty that linki  4enominator such that(y') — n(y) = eL(C). Since reducing
is active under our border condition in phasewe can then he number of terms at the denominator can only increase the
write fraction, we have

p(ilA) =D P(C) <Y p =MD <N 1P p = f(p) >, @ >, @ )
Coi C3i l P(C) < Z ) pn(y/) = Z* pn(g)+€L(C) =p )
where C' > i is a contour that surrounds wherel? is an L ! ! .
upper bound on the number of possible starting hexagons Ygpich is exactly the upper bound (5) W'th,: c
a) Contour removal and transformationfhe challenge

a contour of lengtti, and hence wherg¢' is an upper bound h find th o ' Th S
on the number of contour§' of lengthi surrounding link:. is thus to find the one-to-one mappifig- y'. The mapping is

We observe thaf () decreases to when p — oo. the simplest when the original transmission pat@gincludes
This upper bound actually holds for the probability of an nly_the outer COﬂtOL{C.and noC-lr!ner con_tour. F|gures_ 6(2)

link that isnotin phaseA. In particular, we can apply it to the for y) and 6(c) (fory’) illustrate this mapping. To O?ta'”. the

20 links that contend with linkj (link  being one of them). '€sulting pattern’, we start fromg, and we fill the interior

Applying a union bound, we find that the probability that the§?f C' with hexagons ,Of phasel, which Is the phase.o.f the
are all inactive is at least — 20f(p), and thus outer contourC. In g, the contourC' is no longer visible,

this is why the mapping betweep and y’ is often called a
p(jlA) > (1 — Qof(p))i_ contour removal It is easy to see that the number of additional
L+p hexagons iny’ is proportional toL(C) and is at least equal
The above lower bound is an increasing functiop ahd tends to eL(C') wheree is a lower bound on the average uncovered
to one wherp tends to infinity. Therefore, there is a valug area per unit of contour length.
such that the upper bound aii|A) and the lower bound on  In general, however, the contodf containsC-inner con-
p(j]A) are separated by more thanwhich proves the secondtours (Figure 7(a)), which can be divided in three categorie




(a) A transmission pattern with a conta@ir(white  (b) Transformation of theC-inner contours: the (c) Once theC-inner contours are transformed
area) and twaC-inner contours (dashed areas) C-inner contour in the horizontal phase (top) isinto contours in the phase af', the contourC'

translated, whereas the one in the vertical phasis removed.

(bottom) is reflected in the diagonal axis.The out-

side polygon of the transformed contours together

with the translation direction and the reflexion axis

used to obtain them are represented by thick gray

lines.

Fig. 7. ContourC with two C-inner contours. The tw@'-inner contours are transformed and the contGuis removed.

(we assume without loss of generality that the phas€' aé of all the other contours ifl") is thus filled with hexagons of

horizontal): phaseA, whereas the interior of the transformed contours is
1) C-inner contours in the same phadeas C left unchanged (see Figure 7(c)).
2) C-inner contours in a horizontal phase different from  b) Enumeration of the contours to be removed: the
the phased of C case where the sét of contours to remove contains at least
3) C-inner contours in a vertical phase. one C-inner contour, the mapping betwegnandy’ may no

To obtainy’ from g, we firsttransformthe C-inner contours 0Nger be one to one, unless we specify the ‘Betndeed,
into contours of phasel. The C-inner contours in the first ©OM ¥' it is possible to reverse the mapping and recover the
category are already in phasé and thus do not need to C-inner contours of; that have been transformed but not the
be transformed. The'-inner contours in the second categor€S that have been removed. We have therefore

are translated to become contours of phas& Finally, to

transform theC-inner contours in the third category into P(C) < > p=HD) (6)
contours of phased we reflect them in a diagonal axis of T>C

the grid®. Figure 7(b) illustrates the details of this mappi”thereL(T) is the sum of the lengths of the contours in set
on a small example.

Unfortunately, the reflected contours might totithe con- 1y the jterative process of [12], the only contour initially
tour C'. The contours touching’ are removed together Wlthin the setT is the outer contouC. C-inner contours are

C. Figure 8 gives an example of such a situation. MOreovefen added td” if and only if their reflection (or their joint

the reflected contours might touch each other, in which caggjection) touches a contour already’in To obtain an upper
thgy are reflected in a common axis, but their joint reflectiofy, ;nd of the type (5), we need to enumerate all possible sets
might also touchC, in which case the contours need 10 b§ e do not go into the details of this lengthy and rather

removed, and so on. _complicated enumeration which can be found in [12]. Here we

Heilmann [12] describes an iterative process to determipgstrict ourselves to the enumeration of the SBts T with
which contours should be removed and which contours shout\llgo contours: the outer contod and aC-inner contour of

be transformed: the same process can be applied in ourgsettjggih; whose reflection touches at a specific contact point.
The result of this process is a skt of contours to transform Tyis is sufficient to put our setting in gear with the recugsiv

and a sefl” of contours to remove. To obtaj from, we first  orqcequre in [12]: Using the contribution of the $Btto the

transform all the c/:ontogrs il and we then remove all the sy, in (6) as an initial seed for this recursive proceduré wil
contours inT'. In ¢, the interior ofC' (as well as the interior 46w us to directly apply the bound of [12] fdP(C).

4We always choose the shortest possible translation, ifette two Before we start to enymeratg the sétswe need tO. make
possibilities, we favor moving up the notion of contact point precise. Let us cBllthe C-inner

5The reflection axis is the (top-left-bottom-right) diagortaét splits the contour in7'. The contourC' (resp.,D) is contained inL(C)
interior of the contour in two areas as equal as possiblee(iémal reflection (resp. inL(D) _ k) hexagons in the phase af (resp. of
axis satisfy the above condition, we favor the upper most.one) ! .. .

SWe say that two contours touch each other if two of their heragone D). A necessary condition for contodr and the reflection of
belonging to each contour) overlap or share a common edge. D to touch each other is that two of their hexagons touch each



(a) A transmission pattern with a conta@ir(white  (b) Transformation of the”-inner contours. The (c) The resulting transmission pattern. The hori-
area) and twoC-inner contours (dashed areas).reflection of the verticaC-inner touches the con- zontal C-inner contour has been transformed and
The C-inner contour in the vertical phase containstour C. the vertical C-inner contour has been removed
one more hexagon than in Figure 7(a). together with the outer contour'.

Fig. 8. ContourC with two C-inner contours. On€-inner contour is transformed while the other one is removed.

other (i.e., overlap or share a common edge). A contact point 3
between a contouf’ and a contouD can thus be specified as o -
two hexagons (one fror@' and one from the reflection dd)
that touch each other. Given the first hexagon, there ardlgxac
33 possible relative positions for a second hexagon. Toeef
per hexagon ofC, or equivalently per unit of length of’,
there are 33 possible points of contact with another contour
The enumeration method in [12] requires that there is only
one contact point per unit of contour length. To satisfy this 300
constraint, we redefine the length of a contour as 33 times the
number of its hexagons. We use a symbol prime to denote this
new length, e.g.L’(C) = 33L(C).

Using Lemma 1, we find that an upper bound on the number

50000 |

40000

20000 =

of contours of lengthk’ touching C' at a specific contact i +
point is ¢*/33 and their contribution toP(C) is less than
k//33 0 I l 1 1

(ap™°)

We then use the same recursion as in [12] to compute the
contribution of all setd". Adapting relations (3.27) and (3.28)
of [12], we finally obtain that fon = 2= (elog p—logq) > fo
where f; is a constant

0 10000 20000 30000 40000 50000 60000

Fig. 9. Example of a grid topology with perturbations

P(C) <p—L(C)(e—33B(1ogp)*166*") _ _ _

. . o petwork nodes is not possible, the network topology is often
with B = 5=(1 + F)' For p large enoughg = € — jrregular.
33B(log p)166~" is positive. Consequently, we can use Figyre 10(a) shows simulation results on the fairness index
this upper bound or’(C) to conclude Peierls’ argument asof various irregular topologies. The topology of the threstfi
presented in the outline. simulations have been obtained by perturbing the alignment

As a result, in t_hesuper-critical regime thg ideal?zed of the nodes in a grid network (see Figure 9). The last
CSMAJ/CA protocol is not long-term fair even if the size qhpology was obtained by scatteriig00 nodes uniformly
the network goes to infinityThe effects of the border do noty 5 square area. For the simulations, we considered only the

disappear, and a positive fraction of the links get betteess |argest connected component of nodes (which contains about

to the channel. 600 nodes). Figure 10(b) illustrates the histogram of the link
access probabilities in the last case.
C. Irregular networks In contrast to the grid, irregular topologies are intriadig

Up to now we only considered regular topologies. In praemnfair, as the number of contending links varies not onhhat t
tice, these topologies prevail when the position of the petw boundary but everywhere in the network. Let us first evaluate
nodes can be controlled and is fixed. This is typically theecakow the irregularity of the topology affects the fairnesddr
for indoor networks or more generally for sensor network&l (3) whenp is very small. More precisely, let us consider
However, in situations where a careful deployment of the connected contention graph of L nodes (corresponding



becauseV (1, j) = 1 as there is only one transmission pattern
having only;j as active link.

Plugging (8) in (3) yields, after a few manipulations and
keeping only terms up to the second ordempin

FI(p) =

0.8 T

0.6 [

Fl

2

9 L L
1= 5 [LYN*@4) — | oN@D) | | +06°).

0.4 |

Mildly perturbed grid 62, = 0.182) 2
02 r Perturbed grid(rg =1.737) % Y ] L
Strongly perturbed grid:t?f: 8.292) ke
Random topology&é = 407.72) e . H
0 ‘ ‘ ‘ ‘ ‘ Now, N(2,5) = L —1—§,, because any pattern containifg
0.001 0.01 0.1 1 10 100 1000 . . - .
p as active link can only have another link among the 1 —§;
(a) Faimess Index computed at the end of a very long simulation  1INKS that are not in the exclusion domain ¢f Replacing
of the idealized CSMA/CA protocol in irregular networks. N(2,j) by L — 1 —4; in this expression leads to (7). =
Lemma 2 shows that for small values pf the variability
1 . . .
T o1 of the node degree of the contention graph is responsibla for
0.9 I p=100 “topological” unfairness. Whep increases, the coupling effect

o
L

between contending nodes adds another source of unfagirness
like in regular topologies, but the effect is smoother bseau

of the irregularity of the graph. The maximal independent
sets are clearly much more difficult to compute in irregular
topologies, and they will no longer have the same isomorphic
properties as in the 2D regular lattice. It is therefore clifi

to dissociate the unfairness due to the topology, from the

o o
Q=

o
=

fraction of links
o
(61

o
w

0.2

o | additional unfairness enforced by the combined effects of
iﬁﬂﬂﬂhﬁ backoff and carrier sense mechanisms. In addition, phase
% 0.2 o4 06 08 1 transitions on hard core models in general topologies may be
robabil 0 be active . . .
o : Y _ _ . _ quite complex and non monotonic with respect to parameter
(b) This figure represents the fraction of links with a given [32]
channel access probability in two simulations on the random p ’
topology, one withp = 1 and one withp = 100. We can however compute a range of low values of the

access intensity that ensure the network to be in the sub-
critical regime. Indeed, we can observe that the first part of
the proof of Theorem 2 only requires the contention gréph

therefore to a topo|ogy of. links as before)_ Leﬁj denote tO be countable, locally finite and connected. Therefore, fo
the degree of Nodg on this graph (i.e., the number of linksany network whose contention graph fulfills these propsytie

in the exclusion domain of link), and let we can conclude that jf < p.(G)/(1 - p.(G)), wherep.(G)
is the independent site percolation probability of the brap

1 & 1 & G, the link probabilities are asymptotically independenthef
2 2 . e

ol == 0 > o] - border conditions.

j=1 j=1 We note that the “topological” unfairness, which is absent
5 i from regular topologies, depends on a local feature of the
We note thgbG is the sample variance of the node degree @fniention graplG (the variances2 of the node degree) at
the content|02n grapki=. The following lemma shows how Fl yery small values op, whereas the range of access intensities
depends o, and thus on the irregularity of the topologyshat safely avoid the onset of the long range unfair effeats d

for very small values op. _ the “coupling” mechanisms, depends on a global featur@ of
Lemma 2:1f the contention graphtx is countable, locally (the site percolation threshole.(G))

finite and connected, then

Fig. 10. Fairness of the idealized CSMA/CA protocol in imkg networks.

2

]l
il

V. SHORT-TERM FAIRNESS

In the previous section, we saw that in many cases,

Proof: Let N (3, j) be the number of transmission pattern€SMA/CA protocols give an equal share of the channel to each
(i.e., independent sets aH), which contain exactly active link in the center of the network on the long term. However,
links (node ofG), among which linkj (nodej in G). The this does not guarantee that certain links are not starved fo

probability p(j) that link j is active is simply given by long periods (and then keep the channel for an equally long

summing (1) on all patterns that containi as active links, period, preventing the neighboring links to be activated).

which we can write as In this section we attempt to characterize the short-term

fairness of these protocols in settings where they are long-

L L
. 1 NN K fair. Short-term fairness is important for delay sevesi
p() =Y NG == (p+ > N(j)p' | (8 Ermiar . iportant y
) z ; ) 4 ( ; (6.4) > applications such as real-time audio and video. Severdiestu

FI(p) =1—0&p” +0(p*). )
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200 hole
(a) Hole before the jump

I

X |

(b) The link (marked by a cross) next to the hole (of Figure &mjtches
from the active to the idle state (the corresponding linemssg is
unpacked)

I

1500

1000

hole ‘

(c) Hole after the jump
500

short-term fairness horizon

Fig. 12. Transmission pattern on the line network with a hole succession
of the 3 figures represent the jump of a holelby 3 space units (event (ii)).

10 17 protocol is still long-term fair but one has to wait a very don
P time to have a fair channel access among the network links.
(a) 2000 node line network.

x 10" B. Average link access and waiting times

We now characterize the short-term fairness of CSMA/CA
systems from a link-centric viewpoint. Our goal is to answer
15 1 two questions: (i) How long on average does a link wait to
get access to the channel, and (ii) How long on average does
a link keep the access to the channel? Note that we say that
a link has access to the channel if it is active or if it does not
see the channel as busy.

05 ] In the case of the line network, when the access intensity
is finite but sufficiently large, the link access and waitimge
can be estimated by describing the dynamichaks where

short-term fairness horizon
[

0 1‘01 1‘02 a hole is defined as a unit space not covered by a line segment
o (of length) corresponding to an active link (see Figure 12).

(b) 34x34 node grid network. The value of the short-term lees geparate I!nks in different pha;es and.are the exaet on
faimess horizon explodes just before the phase transition dimensional equivalents of contours in the grid network. Whe
threshold L — oo the density of holes is [6]:

Fig. 11. Short-term fairness horizon of the idealized CS®Aprotocol. We 1

measure the average time needed by the protocol to reach as&imdex 77(p ~N 1 9)

of 0.9. The average exchange time ! is equal tol time unit (and thus 1+ lpyl

=) . .-
P=2 wherey; is the real root ofl —y — py' closest to the origin.

(see for example [33]) also show that the lack of short-term The following proposition gives analytical expressions fo

fairess at the MAC layer can severely impact the performan® @verage link access and waiting time based on the dynamic
of a reliable transport protocol such as TCP. motion of holes along the line. Although these expressions

We consider two measures of short-term faimess. 'ly On several approximations, Figure 13 shows an extrgmel
network-wide measure, where we evaluate the time necess@@pd fit with the simulation results. .
for the protocol to reach a high level of fairness, and a link- Proposition 1: COﬂS'der a”_L"'“k line network with p
centric measure, where we compute how long on averagd2fge. Whenl — oo, a link waits to get access to the channel
link has to wait to get access to the channel. for on average

1 ! 1— n(ﬂ))
—(—-1 14+ ——= 10
A. Short-term Fairness Horizon n <1 —n(p) ) < * In(p) (10)

We begin our study of CSMA/CA short-term fairness by @me units, and keeps the access to the channel for on average
few illustrative simulation results. We consider only ttqmes 1 1= n(p)
where the idealized protocol is long-term fair. Figure }1(a — (1 + W) (11)
shows how long on average we need to operate the idealized K 1n(p)
CSMA/CA protocol to reach a fairness index of 0.9 in a largéme units.
line network. As expected, this time, which is also called Derivation of formulae (10) and (11)n this computation,
the short-term fairness horizof83] of the protocol, increaseswe assume thap is large so that the density of holes in the
progressively with the value of. Figure 11(b) shows that in network is small. Moreover, we assume a fixed density of holes
the grid network the short-term fairness horizon of thegeot equal ton(p). We can describe the dynamics of the network
increases progressively withand suddenly diverges at a finiteby the motion of the holes along the line.
value of p, which marks the phase transition described in the A link switches from active to idle state at rate When a
previous section. Indeed, above the critical valueppfthe link next to a hole becomes idle (Figure 12(b)), two equally
protocol is not fair anymore. Close below the threshold, tHiely events may occur: (i) the same link becomes activéraga
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VI. CONCLUSION

The combination of the random backoff and carrier sens-
ing mechanisms, two key features of CSMA/CA protocols,
creates a coupling between nodes, which prompts a maximal
transmission pattern to spontaneously emerge in the nietwor
but at the cost of the starvation of links that do not belong to
this maximal pattern. In regular topologies, only nodeshat t
border are favored and yet their advantage can affect thesnod
inside the network, to an extent that depends on the parasnete
of the protocol (which determine the strength of the couglin
‘ ‘ and on the dimension of the network. In some cases (grid
10' 10° when the access intensity is large enough), we have shown tha

_ _ _ _ these border effects propagate arbitrarily far inside #tevark
Fig. 13. Average time a link waits to get access (resp. keepsitoess) to . L .
the channel in 2000 node line network withp = 1. Comparison between without vanishing; this leads to the complete starvation of
the simulation results obtained for the idealized CSMA/CAtpeol and the Some links in the network. In other cases (line; grid when the
values predicted by formulee (10) and (11). access intensity is small enough), the protocol is longiter
fair far from the border, but the short-term fairness hamizo
strongly depends on the channel access intensity.

N N . Inirregular topologies, the topological inequalities @@t
(we are back to the pattern in Figure 12(a)) o (ii) anothek | restricted to the border of the network, and the level of

becomes active (Figure 12(c)). In terms of holes, eyent @ mpetition to access the channel varies from link to link.

means that the hole does not move, whereas event (ii) MEH%s adds a topological component to the unfairness already

_that the hole jumps by space units; we call the latteruseful present in regular topologies. As a result, CSMA/CA protsco

jump A hole makes thereforg a useful Jump atraje, where are typically very unfair in irregular topologies at all vak

the factorl/2 is the probability of event (ii). of the access intensity, even though their unfairness issmor
Denote byn = L(1 — n(p))/l the number of active links pronounced at high values.

and byk = Ln(p) the number of holes in the network. The

small number of holes makes it reasonable to assume that ACKNOWLEDGMENT

they move independently of each other at raté.e., ;1/2 in . . .

a given direction). In particular, a hole which is next t(f'dnm _We W_OUId like tq tha’nk Nicolas Macris (EPFL) for helpful

hole might jump above it. We call this one space unit jumgISCUSSIOnS on Peierls’ argument.

event (iii). Event (iii), similarly to event (i), does not ahge

the transmission pattern.

The k holes make a jump at a total rate b,fl,. However [1] M. Durvy, O. Dousse, and P. Thiran, “Border Effects, Rags, and
. . . ' Phase Transition in Large Wireless Networks,TNFOCOM, Phoenix
only events of type (i), holes which make a useful jump over 505

an active link, modify the transmission pattern, as we jagL s [2] C. Chaudet, D. Dhoutaut, and I. G. Lassous, “ExperimetitSame

—— Average access time, simulation
—eo— Average waiting time, simulation
- - -Formulee (10) and (11)

average access/waiting time
B =
e a

g
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