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On the Fairness of Large CSMA Networks
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Abstract—We characterize the fairness of decentralized
medium access control protocols based on CSMA/CA, in large
multi-hop wireless networks. In particular, we show that the
widely observed unfairness of these protocols in small network
topologies does not always persist in large topologies.
In regular networks, this unfairness is essentially due to the
unfair advantage of nodes at the border of the network, which
have a restricted neighborhood and thus a higher probability to
access the communication channel. In large 1D lattice networks
these border effects do not propagate inside the network, and
nodes sufficiently far away from the border have equal access to
the channel; as a result the protocol is long-term fair. In 2D lattice
networks, we observe a phase transition. If the access intensity
of the protocol is small, the border effects remain local and
the protocol behaves similarly as in one-dimensional networks.
However, if the access intensity of the protocol is large enough,
the border effects persist independently of the size of the network
and the protocol is strongly unfair.
In irregular networks, the topology is inherently unfair. This
unfairness increases with the access intensity of the protocol,
but in a much smoother way than in regular two-dimensional
networks.
Finally, in situations where the protocol is long-term fair, we
provide a characterization of its short-term fairness.

Index Terms—Ad hoc Networks, Multi-hop, Medium Access
Control, Performance Analysis

I. I NTRODUCTION

The goal of a medium access control protocol is to regulate
the access of the network nodes to a shared resource, the com-
munication channel. In large multi-hop networks, providing
an efficient and fair access to the channel is a challenging
task. Indeed the most commonly used medium access control
protocol, IEEE 802.11, is known to be highly unfair. The
tendency of IEEE 802.11 to starve some of the network links
while giving a good access to the others has been observed
experimentally on small testbed topologies [2]. It has also
been investigated analytically in several papers [3], [4],[5],
[6]. In particular, [3] and [6] show that even anidealized
CSMA/CA protocolthat retains only the essential features of
IEEE 802.11 and does not suffer from different imperfections
of the real protocol, such as overheads and collisions due
to the RTS/CTS exchanges, exhibits this unfairness problem.
We elaborate on the related work in Section II and detail the
idealized CSMA/CA protocol in Section III.
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In this paper we observe that in regular 1D (one-
dimensional) or 2D (two-dimensional) networks, the unfair-
ness of this idealized CSMA/CA protocol is due toborder
effects. The border effects are essentially local effects: the
nodes at the boundaries of the network get an increased
access to the channel, because they have fewer neighbors than
nodes in the center. We expect therefore these border effects
to rapidly become negligible in large network topologies.
Contrary to our initial intuition, we will show that CSMA/CA
protocols may cause these local effects to actually propagate
throughout the whole network, creating a global effect. The
network topology and the access intensity of the protocol
play a key role in the propagation of these border effects.
In Section IV we show that in large 1D lattice networks
(lines) and for all finite access intensities, the border effects do
not propagate inside the network. In contrast, we demonstrate
that in large 2D lattice topologies (grids), a phase transition
occurs. Under a certain access intensity, border effects fade
away, whereas above a certain access intensity they propagate
throughout the network, no matter how large it is. The proof
techniques presented in this paper come from the area of
statistical physics, and to the best of our knowledge, are for
the first time applied in the context of multi-hop wireless
networks.

Border effects play a key role in the fairness of the protocol.
On the one hand,when the border effects vanish, the links
inside the network get an equal access to the channel, and
asymptotically, as the size of the network goes to infinity,the
protocol is long-term fair. On the other hand,when the border
effects persist, the protocol is never long-term fairand only a
subset of the network links gets a good access to the channel.
Settings where the protocol is long-term fair may not guarantee
it to be short term fair, and we examine the latter properties
in Section V. We evaluate by simulation the time needed for
the idealized CSMA/CA protocol to reach a given (high) level
of fairness. Taking the viewpoint of a given network link, we
also compute how long on average the link waits to get access
to the channel and how long it keeps the access to the channel
once it has access.

II. RELATED WORK

The work presented in this paper borrows tools from statis-
tical physics. More precisely, it uses results from the theory
of Markov random fields (for an introduction, see e.g. [7]
or [8]). In particular, we apply two types of arguments: A
percolation argument [9], [10] to prove that CSMA/CA based
protocols can be long-term fair in large network topologies
and the so-calledPeierls argumentto prove that this is not
always the case. The simplest version of Peierls’ argument can
be found in [7]. Unfortunately, to characterize the behavior of
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CSMA/CA protocols on large two-dimensional topologies, we
have to resort to a more elaborate version of this argument.
We adapt some of the techniques of [11], [12] to achieve this
goal.

To model the network, we use the Markov chain formalism
of [3] and [6]. This formalism was first proposed by [13],
[14] to model the CSMA protocol and later extended to an
idealized CSMA/CA protocol by [3]. The strength of this
model is to preserve the dependence between nodes, which
is typical of CSMA protocols. This model has also strong
connections with Kelly’s work [15] on loss networks as the
stationary distribution of its Markov chain has the same form.
Using this model, which is also known as the hard core model
in statistical physics, [3] is probably the first to predict and
explain the starvation phenomenon in multi-hop topologies.
[6] extends the results of [3] and provides a closed form
expression for the spatial reuse of CSMA/CA protocols in
large one-dimensional networks. [16] extends the results fur-
ther to consider the effect of the receiving and carrier sensing
ranges on the model. Using Mean Field techniques, [17] also
obtains asymptotically exact results in some scenarios with
adaptive backoffs. Variations of the loss network model used
in this paper have also been recently adopted to develop
optimal distributed CSMA schemes making use solely of local
information (such as the node backlogs, etc) [18], [19], [20].

Other recent models of CSMA/CA networks include [21],
[22], [4], [23], and [5]. These models incorporate more fea-
tures of the real protocols than the model used in this paper
and typically lead to large systems of equations that must be
numerically solved. As a consequence, these models offer lim-
ited insight into the behavior of CSMA/CA protocols in large
multi-hop networks. However, some of these works do observe
the starvation phenomenon. In particular, [4] attributes the
unfairness of CSMA/CA protocols to a coordination problem
inherent to carrier sensing protocols, while [5] concentrates
on the role played by the minimum contention window in the
starvation phenomenon.

Techniques from statistical physics have been applied first
in [24] to analyze large-scale distributed resource sharing
mechanisms. More recently, several works [25], [26], [27]
showed the existence of a phase transition phenomenon in loss
networks or hard core models. However, these papers only
consider networks with relatively simple structures (i.e.tree
or bipartite networks) and consequently their proof techniques
cannot be used in our setting.

III. M ODEL

We consider an idealized CSMA/CA protocol in order to
capture the essential features of CSMA/CA systems, and leave
aside the effects due to the imperfections of the real protocol
(we refer the reader to [28] for an overview of those effects
in IEEE 802.11). This model has already been used in [3] as
well as in [6] and [16].

We model the network using a graph where the vertices
represent the nodes and the edges represent the links. A link
can be in two states, active or idle. A link is active if there
is a data transmission between its two end-nodes. Each link

has anexclusion setthat contains all the links that cannot be
active at the same time as itself. We assume that the relation
of exclusion is symmetric, i.e., that if a linki has link j in
its exclusion set, then linki is also in link j’s exclusion set.
A link sees the communication channel as idle if and only if
none of the links in its exclusion set is active.

In addition, we assume that each link maintains abackoff
timer, which is initialized to a random value chosen according
to an exponentialbackoff distributionwith meanλ−1. The
timer of a link runs when the link sees the channel as idle;
when the link senses the channel busy, it temporarily freezes
its timer. A link becomes active when its backoff timer reaches
zero, which is only possible if all the links in its exclusionset
are idle. It stays active for an exponentially distributed time
with meanµ−1. After each transmission, the link resets its
backoff timer to a new random value.

This mechanism slightly differs from IEEE 802.11. In IEEE
802.11 each node maintains a unique backoff timer for all its
links instead of a separate backoff timer per link. In addition,
we make two assumptions. First, we assume that nodes can
correctly assess the channel state. Second, we assume a con-
tinuous backoff distribution, instead of the discrete distribution
implemented in the actual protocol, so that two timers have
a zero probability to expire at the same time. These two
assumptions imply that the idealized CSMA/CA protocol is
collision-free.

We call transmission patternthe set of active links in the
network at a given time. A transmission pattern must respect
the constraint specified by the exclusion set of active links.
We say that a transmission pattern ismaximal (for a given
network) if there is no other transmission pattern with a higher
number of active links.

The dynamics of this idealized protocol can be described by
a continuous time Markov chain, whose state space is the set
of all possible transmission patterns in the network [6]. This
Markov chain has a unique stationary distribution given by

π(x) =
ρn(x)

Z
(1)

wherex denotes a transmission pattern,n(x) is the number
of active links in x, ρ = λ/µ is the access intensity, and
Z =

∑

y ρn(y) is a normalizing constant.
In this paper, we consider essentially two different network

settings: a line network composed of a sequence of equally
spaced (by one space unit) nodes on a line where each pair of
neighboring nodes is connected by a link, and a grid network
where nodes are located on the vertices of a square lattice. In
both networks, we assume that the exclusion set of a link
contains all the links having an end-node connected to at
least one of the link’s end-nodes. A more convenient way to
represent the exclusion set constraints is to associate to each
active link a domain,the exclusion domain, that corresponds
to the space occupied by an active link in the center of a
maximal pattern. In the line network (Figure 1), the exclusion
domain of a link is a line segment of lengthl = 3 while in
the grid network (Figure 2) it is an hexagon of area four. A
transmission pattern on the grid (resp., line) network is thus
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 line segment of lengthl = 3

Fig. 1. Maximal pattern on the line network, the exclusion domain of a link
is a line segment of length three.

(a) A maximal pattern with horizon-
tal active links

(b) A maximal pattern with vertical
active links

Fig. 2. Maximal pattern on the grid network, the exclusion domain of a link
is an hexagon of area four.

equivalent to a collection of non-overlapping hexagons (resp.,
line segments) on the 2D (resp., 1D) lattice.

IV. L ONG-TERM FAIRNESS

In this section we look at the long-term fairness propertiesof
CSMA/CA protocols in large networks. The long-term fairness
of a protocol is the level of fairness achieved by the protocol
after having run for a very long (in theory infinite) time.
To assess this fairness, as the chain is ergodic, we look at
the marginal stationary probabilities of individual linksto be
active, and we check whether they are all equal.

To do so, we need to study the structure of the stationary
measureπ. We use the concept ofcontention graph, whose
vertices represent the links of the network and edges mutual
exclusion of links. In other words, there is an edge between
two vertices if their corresponding links are in one another’s
exclusion set. Note that this graph is different from the graph
representing the network itself. We say that a vertex is instate
1 if the corresponding link is active, andstate 0otherwise. In
this new graph, the exclusion rule implies that two adjacent
vertices cannot be in state1 simultaneously. A (maximal)
transmission pattern on the original network topology is called
a (maximal) independent set on the corresponding contention
graph.

A central property of the stationary measureπ is that it is a
Markov field1 on this graph. We describe briefly the properties
of Markov fields which we need in the sections below. For
more details, we refer the reader to [7]. The main property of
Markov fields is that for each finite subsetB of vertices, the
conditional distribution of the states insideB given the state of
all vertices outsideB only depends on the state of the vertices
in ∂B, where∂B denotes all the vertices outsideB that are
adjacent to a vertex inB. More specifically, ifxB ∈ {0, 1}|B|

is a pattern inB andx∂B ∈ {0, 1}|∂B| a pattern on∂B, where
xB andx∂B do not violate the exclusion rule, one can easily

1The term “Markov” here refers to the spatial structure of themeasure. It
has nothing to do with the fact thatπ is originally the stationary measure of
a Markov chain (over time).
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(a) 5 nodes line network

0
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(b) 500 node line network

Fig. 3. Border effects on line networks,ρ = 155. The line network is
represented on the x-axis. To each of its links, we associatea vertical bar that
corresponds to the link access probability in the simulation.

verify from (1) that the measure conditioned on the state of
vertices in∂B is

∀ finite B, π(xB|x∂B) =
ρn(xB)I(xB, x∂B)

Z ′
, (2)

whereZ ′ is an appropriate normalizing constant, and where
I(xB, x∂B) = 1 if no adjacent vertices inxB and x∂B are
both in state1 andI(xB , x∂B) = 0 otherwise. The advantage
of (2) over (1) is that it can be used to define a measure over
an infinite network. Indeed, (2) only refers to finite subsetsB,
whereas (1) addresses the whole graph, leading to an infinite
normalization constantZ if the graph is infinite.

Let us now consider a measureπ over the space of all
possible transmission patterns that fulfills (2). A standard
problem in statistical physics is to tell whether such a measure
is unique. Essentially if there are several measures complying
with (2), it means that the network can stabilize in several
distinct stationary regimes, potentially with unfair distribution
of link activities. This phenomenon corresponds to a phase
transition of the Markov random field. On the other hand, if
the measure is unique, as the equations in (2) are translation
and reflection invariant, this measure cannot favor any link
over the others. In this case, the network is long-term fair.

In the next two subsections, we look into the particular cases
of the line and grid networks, as defined in Section III. In
addition, we give a few general results on irregular networks
at the end of the section.

A. The line network

We start with a few simulation results2, to give some insight
into the behavior of the network. Figure 3(a) illustrates the
stationary marginal probabilities of the links in a small four
link topology. We observe that border effects can severely
impact the fairness of the protocol. Yet in large networks
border effects do not propagate inside the network, as shown
in Figure 3(b).

Theorem 1:Consider anL-link line network. WhenL →
∞ and for all finite values ofρ, the probabilities of links in
the center of the network to be active are asymptotically all
equal and independent of the border condition.

Proof: We start by addingl − 1 additional links at each
extremity of ourL-link network. These links form theborder
of our network. In the following, aborder conditionis the

2All the simulations in this paper were performed using a dedicated event
driven simulator for the idealized CSMA/CA protocol (code available at [29])
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Fig. 4. Illustration of the proof of Theorem 1 forl = 3. The L links are
represented by black dots, and white dots the additional border links. Two
possible border conditions are illustrated below: The probability of link i
under the first one is clearly equal to the probability of linki + 1 under
the second one (solid ellipse). And yet, the probability of link i under any
border condition remains asymptotically the same when1 ≪ i ≪ L (dashed
ellipse). Thus, the probabilities of linksi andi + 1 are asymptotically equal.

activity pattern prescribed to the2(l−1) border links. Setting
all the border links to idle is equivalent to not adding border
links at all; this corresponds to the usual border condition.

The contention graph of the line network consists in
L + 2(l − 1) vertices representing the links (including the
border links). An edge connects verticesi and j whenever
|i − j| ≤ l − 1. Let us define a site percolation process
on this graph by declaring each vertex “open” with prob-
ability ρ/(1 + ρ) and “closed” with probability1/(1 + ρ),
independently of each other. Anopen pathis a sequence of
connected open vertices that are distinct. Let us consider two
open verticesi and j, and divide the interval between them
into ⌊|i − j|/l⌋ segments of lengthl (ignoring the remainder
of the division). The probability that there is an open path
betweeni andj is less than the probability that each of these
segments contains at least one open vertex. We have thus

P (i ! j) ≤

[

1 −

(

1

1 + ρ

)l
]⌊

|i−j|
l

⌋

This probability tends to zero when the distance betweeni
and j increases.

Consider now two different border conditions and look at
the probability that a link is active under each border condition.
Corollary 1 in [10] states that the difference between the two
probabilities is less than the probability of finding an open
path from the given link (or more exactly the corresponding
vertex in the contention graph) to a border link. As we have
shown in the previous paragraph, this latter probability tends
to zero as the size of the network goes to infinity.

We have thus proved that asymptotically, the probability that
a link be active, does not depend on the border condition. To
finish the proof, we need to prove that these probabilities are
also asymptotically equal to each other. Figure 4 illustrates
this last part of the proof. Consider two border conditions,i.e.
two activity patterns prescribed to the2(l − 1) border links,
the second one being equal to the first one shifted by one unit.
According to the above result, the probability of a central link i
to be active under both border conditions are asymptotically
equal. However, by translation, the probability of linki to be
active under the first border condition is exactly equal to the
probability of link i + 1 to be active under the second border
condition. Therefore we can conclude that for any1 ≪ i ≪ L,
links i andi+1 have asymptotically equal probabilities under
any border condition.

Theorem 1 implies that if we move sufficiently far away
from the border of the network, border effects ultimately
disappear, as illustrated by Figure 3(b). Consequently, inthe
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(a) Border effects. Fraction of links with a given channel
access probability in two simulations, one withρ = 50
and one withρ = 155. For ρ = 50 all links have
similar access probabilities; the protocol has a high level
of fairness. However, forρ = 155, a small fraction of the
links monopolize the access to the channel; the protocol
has a low level of fairness.
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(b) Long-term fairness of the idealized CSMA/CA protocol.
Observe the sharp drop in the fairness of the protocol for values
of ρ between60 and90, from values close to 1 to values slightly
above 1/8.

Fig. 5. Fairness on a34x34 node grid network

limit when the number of links goes to infinity,the idealized
CSMA/CA protocol is long-term fair and all links have the
same probability to access the channel.

B. The grid network

We start again with illustrative simulation results: in large
grids we observe that for low values ofρ the protocol provides
a fair access to the links inside the network, but not for large
values ofρ.

Figure 5(a) shows the histogram of the link access probabil-
ities for two values ofρ. At ρ = 50 all links have a very similar
access probability to the channel. In contrast, atρ = 155, two
categories of links clearly appear: approximately1/8 of the
links have a very high channel access probability, whereas
the remaining7/8 of the links have almost no access to the
channel.

In this section we show that in a grid network, the idealized
CSMA/CA protocol exhibits a phase transition. Indeed we
show that for low values ofρ, the protocol becomes long-term
fair as the number of links goes to infinity. It has therefore a
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similar behavior as on the line network. In contrast, for large
values ofρ, the effects of the border always propagate inside
the network independently of its size, and the protocol is not
long-term fair.

To assess the fairness of the protocol we useJain’s Fairness
Index [30].

Definition 1: [Jain’s Fairness Index] Denote byp(j) the
probability that a linkj is active. The link fairness index FI
of the protocol is

FI =

(

∑

j p(j)
)2

L
∑

j p(j)2
. (3)

The maximum fairness index is FI= 1. It corresponds to a
network where all links access the channel equally. Yet, if only
k links have an equal access to the channel and the remaining
links have no access to the channel, the fairness index isk/L.

Figure 5(b) illustrates the phase transition using Jain’s
fairness index.

1) Sub-critical regime:
Theorem 2:Consider anL-link grid network. There is

some c1 > 0 such that whenρ < c1 and L → ∞, the
probabilities of links in the center of the network to be active
are asymptotically all equal and independent of the border
condition.

Proof: This theorem is proved in the same way as
Theorem 1. We denote byG the contention graph of the
network and define a site percolation process by declaring each
vertex open with probabilityρ/(1+ρ) independently. This site
percolation process is less trivial than in one dimension: By
Theorem 1.33 in [31], we know that it admits a percolation
thresholdpc(G) that is finite and strictly positive. Thus, if
ρ < pc(G)/(1− pc(G)) := c1, the probability to find an open
path connecting a given vertex to the border of the network
tends to zero when the border moves away from the vertex.
Therefore the same argument as in Theorem 1 can be used to
conclude that ifρ < c1, the probability of a link to be active
is asymptotically independent of the border condition.

In a second step, we show that adjacent links have asymp-
totically equal probabilities. To do this, as in Theorem 1,
we consider different border conditions that are equivalent
through a transformation (shift or rotation) of the network.
This allows to show that links that are equivalent through the
same transformation have asymptotically equal probabilities.
The details of this step are omitted for lack of space.

As a consequence of this theorem, ifρ < c1, the fairness
index of the network tends to1 asL → ∞.

2) Super-critical regime:
Theorem 3:Consider anL-link grid network. For anyL,

any pair of adjacent linksi andj, and anyδ < 1, there exists
c2 < ∞ such that ifρ > c2, the following two statements
hold:

• there exist two distinct border conditions such that the
difference of the probabilities of linki to be active under
each border condition is larger thanδ,

• there exists a border condition under which the difference
between the probabilities of linki and link j to be active
is larger thanδ.

In particular, this theorem implies that for sufficiently large
values of ρ, the fairness index remains uniformly bounded
away from 1 whenL tends to infinity. Loosely speaking, the
theorem means that the border effects donot vanish in the
center of the network.

To prove the theorem, we use Peierls’ argument [7]. Peierls
introduced this argument in1936 to show that the two-
dimensional Ising model exhibits a phase transition. It is now a
classical argument in statistical physics. The remainder of this
section is devoted to this proof, and is structured as follows:
we start with a few definitions; next, we present the outline of
Peierls’ argument; finally, we present the main steps necessary
to apply the method of [12] to our setting.
i) Contours and their properties
In an infinite grid network, there are eight maximal trans-
mission patterns (or equivalently eight maximal independent
sets in the contention graph), four with horizontal active links
and four with vertical active links. The four horizontal (resp.
vertical) transmission patterns can be obtained from each other
by translation. Each hexagon or link3 belongs to exactly one of
these eight patterns, hereafter called thephaseof the hexagon.

Peierls’ argument relies on the notion ofcontour. For the
following definition it is helpful to consider the example of
Figure 6(a).

Definition 2: Consider an arbitrary transmission pattern
(i.e., a set of non-overlapping hexagons). An element (of
contour) is either an area not covered by hexagons, or a
common edge of two hexagons of two different phases. Two
elements are connected if they share at least one vertex. A
contour is a set of connected elements, which is maximal.

Let C be a contour.C is delimited by an outer polygon and
possibly several inner polygons (for example, in Figure 6(a)
there are two inner polygons). All edges of the outer polygon
necessarily belong to hexagons of the same phase, called
the phase of the contourC. The interior of C is the area
contained inside its outer polygon. This area can be tiled with
hexagons of the phase ofC (Figure 6(b)). If the interior of
such an hexagon intersects a contour element, we say that this
hexagonbelongsto the contour or that the contourcontains
the hexagon. The length of a contour is defined as the number
of hexagons belonging to the contour and is denoted byL(C).

Lemma 1:The number of contours of lengthk containing
a given hexagon is upper bounded byqk, with q = 15 · 216.

Proof: See [1]
Before we begin with Peierls’ argument we need one last

notion, the notion ofC-inner contour.
Definition 3: A C-inner contour is a contour insideC but

not inside any other contour.
Figure 7(a) gives an example of a transmission pattern with

a contourC and twoC-inner contours.
ii) Outline of Peierls’ argument
Consider two adjacent linksi andj and denote byA the phase
of link j. As adjacent links cannot be in the same phase, linki
is not in phaseA. Now assume that the border of the network
is fully packed with hexagons of phaseA. Under this border

3As each link corresponds to one hexagon and vice-versa, we use inter-
changeably link and hexagon
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(a) Transmission pattern with a single contour
C. The contourC corresponds to the white area
on the figure but also contains the two encircled
edges.
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(b) The interior of the contour is tiled with
hexagons in the phase ofC. The contour contains
L(C) = 33 of these hexagons.
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(c) Contour removal operation. The number of
additional hexagons (compared to the original
transmission pattern in (a)) is 16.

Fig. 6. Removal of a single contourC.

condition, any pattern where linki is active contains at least
one contour aroundi. An upper bound to the probability that
i is active is thus the probability of finding an outer contour
(i.e., a contour that is not inside another contour and thus
necessarily in phaseA) around linki.

Let y denote an arbitrary transmission pattern on the
network that is compatible with the border condition. The
probability of a given contourC is

P (C) =

∑

y∋C ρn(y)

∑

y ρn(y)
, (4)

where y ∋ C denotes a patterny that contains contourC.
Assume that we can find an upper bound onP (C) of the
form

P (C) < ρ−εL(C) (5)

whereε > 0. Denoting byp(i|A) the probability that linki
is active under our border condition in phaseA, we can then
write

p(i|A) =
∑

C∋i

P (C) <
∑

C∋i

ρ−εL(C) <
∑

l

l2qlρ−εl := f(ρ)

where C ∋ i is a contour that surroundsi, where l2 is an
upper bound on the number of possible starting hexagons for
a contour of lengthl, and hence wherel2ql is an upper bound
on the number of contoursC of length l surrounding linki.
We observe thatf(ρ) decreases to0 whenρ → ∞.

This upper bound actually holds for the probability of any
link that isnot in phaseA. In particular, we can apply it to the
20 links that contend with linkj (link i being one of them).
Applying a union bound, we find that the probability that they
are all inactive is at least1 − 20f(ρ), and thus

p(j|A) ≥ (1 − 20f(ρ))
ρ

1 + ρ
.

The above lower bound is an increasing function ofρ and tends
to one whenρ tends to infinity. Therefore, there is a valuec2

such that the upper bound onp(i|A) and the lower bound on
p(j|A) are separated by more thanδ, which proves the second

claim of the theorem. The first claim can be verified similarly
by considering the border condition where all hexagons are
in the same phase as linki, say B: we get a lower bound
p(i|B) ≥ 1 − f(ρ) and the first claim follows.
iii) Upper bound onP (C)
The main difficulty of the proof is to obtain the upper
bound (5) on the probabilityP (C) of a given outer contour
C. In principle, the idea is quite simple. Let̄y denote an
arbitrary transmission pattern with contourC, Equation (4)
can be rewritten as

P (C) =

∑

ȳ ρn(ȳ)

∑

y ρn(y)
.

If to eachȳ we can map another transmission patterny′ with
ǫL(C) more hexagons and if this mapping is one to one, then,
to each term in the numerator we have associated a term in the
denominator such thatn(y′)−n(ȳ) = ǫL(C). Since reducing
the number of terms at the denominator can only increase the
fraction, we have

P (C) <

∑

ȳ ρn(ȳ)

∑

y′ ρn(y′)
=

∑

ȳ ρn(ȳ)

∑

ȳ ρn(ȳ)+ǫL(C)
= ρ−ǫL(C),

which is exactly the upper bound (5) withε = ǫ.
a) Contour removal and transformation:The challenge

is thus to find the one-to-one mappingȳ ↔ y′. The mapping is
the simplest when the original transmission patternȳ includes
only the outer contourC and noC-inner contour. Figures 6(a)
(for ȳ) and 6(c) (fory′) illustrate this mapping. To obtain the
resulting patterny′, we start fromȳ, and we fill the interior
of C with hexagons of phaseA, which is the phase of the
outer contourC. In y′, the contourC is no longer visible;
this is why the mapping between̄y and y′ is often called a
contour removal. It is easy to see that the number of additional
hexagons iny′ is proportional toL(C) and is at least equal
to ǫL(C) whereǫ is a lower bound on the average uncovered
area per unit of contour length.

In general, however, the contourC containsC-inner con-
tours (Figure 7(a)), which can be divided in three categories
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(a) A transmission pattern with a contourC (white
area) and twoC-inner contours (dashed areas)
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(b) Transformation of theC-inner contours: the
C-inner contour in the horizontal phase (top) is
translated, whereas the one in the vertical phase
(bottom) is reflected in the diagonal axis.The out-
side polygon of the transformed contours together
with the translation direction and the reflexion axis
used to obtain them are represented by thick gray
lines.
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(c) Once theC-inner contours are transformed
into contours in the phase ofC, the contourC
is removed.

Fig. 7. ContourC with two C-inner contours. The twoC-inner contours are transformed and the contourC is removed.

(we assume without loss of generality that the phase ofC is
horizontal):

1) C-inner contours in the same phaseA asC
2) C-inner contours in a horizontal phase different from

the phaseA of C
3) C-inner contours in a vertical phase.

To obtainy′ from ȳ, we first transform the C-inner contours
into contours of phaseA. The C-inner contours in the first
category are already in phaseA and thus do not need to
be transformed. TheC-inner contours in the second category
are translated to become contours of phaseA.4 Finally, to
transform theC-inner contours in the third category into
contours of phaseA we reflect them in a diagonal axis of
the grid 5. Figure 7(b) illustrates the details of this mapping
on a small example.

Unfortunately, the reflected contours might touch6 the con-
tour C. The contours touchingC are removed together with
C. Figure 8 gives an example of such a situation. Moreover,
the reflected contours might touch each other, in which case
they are reflected in a common axis, but their joint reflection
might also touchC, in which case the contours need to be
removed, and so on.

Heilmann [12] describes an iterative process to determine
which contours should be removed and which contours should
be transformed: the same process can be applied in our setting.
The result of this process is a setK of contours to transform
and a setT of contours to remove. To obtainy′ from ȳ, we first
transform all the contours inK and we then remove all the
contours inT . In y′, the interior ofC (as well as the interior

4We always choose the shortest possible translation, if there are two
possibilities, we favor moving up

5The reflection axis is the (top-left-bottom-right) diagonalthat splits the
interior of the contour in two areas as equal as possible (if several reflection
axis satisfy the above condition, we favor the upper most one).

6We say that two contours touch each other if two of their hexagons (one
belonging to each contour) overlap or share a common edge.

of all the other contours inT ) is thus filled with hexagons of
phaseA, whereas the interior of the transformed contours is
left unchanged (see Figure 7(c)).

b) Enumeration of the contours to be removed:In the
case where the setT of contours to remove contains at least
one C-inner contour, the mapping betweenȳ and y′ may no
longer be one to one, unless we specify the setT . Indeed,
from y′ it is possible to reverse the mapping and recover the
C-inner contours of̄y that have been transformed but not the
ones that have been removed. We have therefore

P (C) <
∑

T∋C

ρ−ǫL(T ) (6)

whereL(T ) is the sum of the lengths of the contours in set
T .

In the iterative process of [12], the only contour initially
in the setT is the outer contourC. C-inner contours are
then added toT if and only if their reflection (or their joint
reflection) touches a contour already inT . To obtain an upper
bound of the type (5), we need to enumerate all possible sets
T . We do not go into the details of this lengthy and rather
complicated enumeration which can be found in [12]. Here we
restrict ourselves to the enumeration of the setsT̃ ⊆ T with
two contours: the outer contourC and aC-inner contour of
lengthk whose reflection touchesC at a specific contact point.
This is sufficient to put our setting in gear with the recursive
procedure in [12]: Using the contribution of the setT̃ to the
sum in (6) as an initial seed for this recursive procedure will
allow us to directly apply the bound of [12] forP (C).

Before we start to enumerate the setsT̃ , we need to make
the notion of contact point precise. Let us callD the C-inner
contour inT̃ . The contourC (resp.,D) is contained inL(C)
(resp., inL(D) = k) hexagons in the phase ofC (resp., of
D). A necessary condition for contourC and the reflection of
D to touch each other is that two of their hexagons touch each
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(a) A transmission pattern with a contourC (white
area) and twoC-inner contours (dashed areas).
TheC-inner contour in the vertical phase contains
one more hexagon than in Figure 7(a).
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(b) Transformation of theC-inner contours. The
reflection of the verticalC-inner touches the con-
tour C.
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(c) The resulting transmission pattern. The hori-
zontal C-inner contour has been transformed and
the vertical C-inner contour has been removed
together with the outer contourC.

Fig. 8. ContourC with two C-inner contours. OneC-inner contour is transformed while the other one is removed.

other (i.e., overlap or share a common edge). A contact point
between a contourC and a contourD can thus be specified as
two hexagons (one fromC and one from the reflection ofD)
that touch each other. Given the first hexagon, there are exactly
33 possible relative positions for a second hexagon. Therefore,
per hexagon ofC, or equivalently per unit of length ofC,
there are 33 possible points of contact with another contour.
The enumeration method in [12] requires that there is only
one contact point per unit of contour length. To satisfy this
constraint, we redefine the length of a contour as 33 times the
number of its hexagons. We use a symbol prime to denote this
new length, e.g.,L′(C) = 33L(C).

Using Lemma 1, we find that an upper bound on the number
of contours of lengthk′ touching C at a specific contact
point is qk′/33 and their contribution toP (C) is less than
(qρ−ǫ)k′/33.

We then use the same recursion as in [12] to compute the
contribution of all setsT . Adapting relations (3.27) and (3.28)
of [12], we finally obtain that forn = 1

33 (ǫ log ρ− log q) > f0

wheref0 is a constant

P (C) < ρ−L(C)(ǫ−33B(log ρ)−166−n)

with B = 1
256 (1 + 66

f0−1 ). For ρ large enough,ε = ǫ −

33B(log ρ)−166−n is positive. Consequently, we can use
this upper bound onP (C) to conclude Peierls’ argument as
presented in the outline.

As a result, in thesuper-critical regime the idealized
CSMA/CA protocol is not long-term fair even if the size of
the network goes to infinity. The effects of the border do not
disappear, and a positive fraction of the links get better access
to the channel.

C. Irregular networks

Up to now we only considered regular topologies. In prac-
tice, these topologies prevail when the position of the network
nodes can be controlled and is fixed. This is typically the case
for indoor networks or more generally for sensor networks.
However, in situations where a careful deployment of the

Fig. 9. Example of a grid topology with perturbations

network nodes is not possible, the network topology is often
irregular.

Figure 10(a) shows simulation results on the fairness index
of various irregular topologies. The topology of the three first
simulations have been obtained by perturbing the alignment
of the nodes in a grid network (see Figure 9). The last
topology was obtained by scattering1000 nodes uniformly
on a square area. For the simulations, we considered only the
largest connected component of nodes (which contains about
600 nodes). Figure 10(b) illustrates the histogram of the link
access probabilities in the last case.

In contrast to the grid, irregular topologies are intrinsically
unfair, as the number of contending links varies not only at the
boundary but everywhere in the network. Let us first evaluate
how the irregularity of the topology affects the fairness index
FI (3) whenρ is very small. More precisely, let us consider
a connected contention graphG of L nodes (corresponding
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Fig. 10. Fairness of the idealized CSMA/CA protocol in irregular networks.

therefore to a topology ofL links as before). Letδj denote
the degree of Nodej on this graph (i.e., the number of links
in the exclusion domain of linkj), and let

σ2
G =

1

L

L
∑

j=1

δ2
j −





1

L

L
∑

j=1

δj





2

.

We note thatσ2
G is the sample variance of the node degree of

the contention graphG. The following lemma shows how FI
depends onσ2

G, and thus on the irregularity of the topology,
for very small values ofρ.

Lemma 2: If the contention graphG is countable, locally
finite and connected, then

FI(ρ) = 1 − σ2
Gρ2 + O(ρ3). (7)

Proof: Let N(i, j) be the number of transmission patterns
(i.e., independent sets onG), which contain exactlyi active
links (node ofG), among which linkj (node j in G). The
probability p(j) that link j is active is simply given by
summing (1) on all patternsx that containi as active links,
which we can write as

p(j) =
1

Z

L
∑

i=1

N(i, j)ρi =
1

Z

(

ρ +

L
∑

i=2

N(i, j)ρi

)

(8)

becauseN(1, j) = 1 as there is only one transmission pattern
having onlyj as active link.

Plugging (8) in (3) yields, after a few manipulations and
keeping only terms up to the second order inρ,

FI(ρ) =

1 −
ρ2

L2






L

L
∑

j=1

N2(2, j) −





L
∑

j=1

N(2, j)





2





+ O(ρ3).

Now, N(2, j) = L− 1− δj , because any pattern containingj
as active link can only have another link among theL−1−δj

links that are not in the exclusion domain ofj. Replacing
N(2, j) by L − 1 − δj in this expression leads to (7).

Lemma 2 shows that for small values ofρ, the variability
of the node degree of the contention graph is responsible fora
“topological” unfairness. Whenρ increases, the coupling effect
between contending nodes adds another source of unfairness,
like in regular topologies, but the effect is smoother because
of the irregularity of the graph. The maximal independent
sets are clearly much more difficult to compute in irregular
topologies, and they will no longer have the same isomorphic
properties as in the 2D regular lattice. It is therefore difficult
to dissociate the unfairness due to the topology, from the
additional unfairness enforced by the combined effects of
backoff and carrier sense mechanisms. In addition, phase
transitions on hard core models in general topologies may be
quite complex and non monotonic with respect to parameter
ρ [32].

We can however compute a range of low values of the
access intensity that ensure the network to be in the sub-
critical regime. Indeed, we can observe that the first part of
the proof of Theorem 2 only requires the contention graphG
to be countable, locally finite and connected. Therefore, for
any network whose contention graph fulfills these properties,
we can conclude that ifρ < pc(G)/(1−pc(G)), wherepc(G)
is the independent site percolation probability of the graph
G, the link probabilities are asymptotically independent ofthe
border conditions.

We note that the “topological” unfairness, which is absent
from regular topologies, depends on a local feature of the
contention graphG (the varianceσ2

G of the node degree) at
very small values ofρ, whereas the range of access intensities
that safely avoid the onset of the long range unfair effects due
the “coupling” mechanisms, depends on a global feature ofG
(the site percolation thresholdpc(G)).

V. SHORT-TERM FAIRNESS

In the previous section, we saw that in many cases,
CSMA/CA protocols give an equal share of the channel to each
link in the center of the network on the long term. However,
this does not guarantee that certain links are not starved for
long periods (and then keep the channel for an equally long
period, preventing the neighboring links to be activated).

In this section we attempt to characterize the short-term
fairness of these protocols in settings where they are long-
term fair. Short-term fairness is important for delay sensitive
applications such as real-time audio and video. Several studies



10

10
1

10
2

0

500

1000

1500

2000

ρ

sh
or

t−
te

rm
 fa

irn
es

s 
ho

riz
on

(a) 2000 node line network.

10
1

10
2

0

0.5

1

1.5

2
x 10

4

ρ

sh
or

t−
te

rm
 fa

irn
es

s 
ho

riz
on

(b) 34x34 node grid network. The value of the short-term
fairness horizon explodes just before the phase transition
threshold

Fig. 11. Short-term fairness horizon of the idealized CSMA/CA protocol. We
measure the average time needed by the protocol to reach a fairness index
of 0.9. The average exchange timeµ−1 is equal to1 time unit (and thus
ρ = λ).

(see for example [33]) also show that the lack of short-term
fairness at the MAC layer can severely impact the performance
of a reliable transport protocol such as TCP.

We consider two measures of short-term fairness. A
network-wide measure, where we evaluate the time necessary
for the protocol to reach a high level of fairness, and a link-
centric measure, where we compute how long on average a
link has to wait to get access to the channel.

A. Short-term Fairness Horizon

We begin our study of CSMA/CA short-term fairness by a
few illustrative simulation results. We consider only topologies
where the idealized protocol is long-term fair. Figure 11(a)
shows how long on average we need to operate the idealized
CSMA/CA protocol to reach a fairness index of 0.9 in a large
line network. As expected, this time, which is also called
the short-term fairness horizon[33] of the protocol, increases
progressively with the value ofρ. Figure 11(b) shows that in
the grid network the short-term fairness horizon of the protocol
increases progressively withρ and suddenly diverges at a finite
value ofρ, which marks the phase transition described in the
previous section. Indeed, above the critical value ofρ, the
protocol is not fair anymore. Close below the threshold, the

hole
(a) Hole before the jump

(b) The link (marked by a cross) next to the hole (of Figure (a))switches
from the active to the idle state (the corresponding line segment is
unpacked)

hole
(c) Hole after the jump

Fig. 12. Transmission pattern on the line network with a hole.The succession
of the 3 figures represent the jump of a hole byl = 3 space units (event (ii)).

protocol is still long-term fair but one has to wait a very long
time to have a fair channel access among the network links.

B. Average link access and waiting times

We now characterize the short-term fairness of CSMA/CA
systems from a link-centric viewpoint. Our goal is to answer
two questions: (i) How long on average does a link wait to
get access to the channel, and (ii) How long on average does
a link keep the access to the channel? Note that we say that
a link has access to the channel if it is active or if it does not
see the channel as busy.

In the case of the line network, when the access intensityρ
is finite but sufficiently large, the link access and waiting time
can be estimated by describing the dynamics ofholes, where
a hole is defined as a unit space not covered by a line segment
(of length l) corresponding to an active link (see Figure 12).
Holes separate links in different phases and are the exact one-
dimensional equivalents of contours in the grid network. When
L → ∞ the density of holes is [6]:

η(ρ) ∼
1

1 + lρyl−1
1

(9)

wherey1 is the real root of1 − y − ρyl closest to the origin.
The following proposition gives analytical expressions for

the average link access and waiting time based on the dynamic
motion of holes along the line. Although these expressions
rely on several approximations, Figure 13 shows an extremely
good fit with the simulation results.

Proposition 1: Consider anL-link line network with ρ
large. WhenL → ∞, a link waits to get access to the channel
for on average

1

µ

(

l

1 − η(ρ)
− 1

)(

1 +
1 − η(ρ)

lη(ρ)

)

(10)

time units, and keeps the access to the channel for on average

1

µ

(

1 +
1 − η(ρ)

lη(ρ)

)

(11)

time units.
Derivation of formulae (10) and (11):In this computation,

we assume thatρ is large so that the density of holes in the
network is small. Moreover, we assume a fixed density of holes
equal toη(ρ). We can describe the dynamics of the network
by the motion of the holes along the line.

A link switches from active to idle state at rateµ. When a
link next to a hole becomes idle (Figure 12(b)), two equally
likely events may occur: (i) the same link becomes active again
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Fig. 13. Average time a link waits to get access (resp. keeps the access) to
the channel in a2000 node line network withµ = 1. Comparison between
the simulation results obtained for the idealized CSMA/CA protocol and the
values predicted by formulæ (10) and (11).

(we are back to the pattern in Figure 12(a)) or (ii) another link
becomes active (Figure 12(c)). In terms of holes, event (i)
means that the hole does not move, whereas event (ii) means
that the hole jumps byl space units; we call the latter auseful
jump. A hole makes therefore a useful jump at rateµ/2, where
the factor1/2 is the probability of event (ii).

Denote byn = L(1 − η(ρ))/l the number of active links
and byk = Lη(ρ) the number of holes in the network. The
small number of holes makes it reasonable to assume that
they move independently of each other at rateµ (i.e., µ/2 in
a given direction). In particular, a hole which is next to another
hole might jump above it. We call this one space unit jump
event (iii). Event (iii), similarly to event (i), does not change
the transmission pattern.

The k holes make a jump at a total rate ofkµ. However,
only events of type (ii), holes which make a useful jump over
an active link, modify the transmission pattern, as we just saw.
The probability of a useful jump is the ratiop = n/(k−1+n),7

and consequently useful jumps happen at ratekµp.

Given that we haven active links in the network, the rate
of useful jump per active link is thuskµp/n. This implies that
a link gets access to the channel for on averagen/(kµp) time
units. Replacingn by L(1 − η(ρ))/l and k by Lη(ρ) gives
(11).

Similarly, the rate of useful jumps per inactive link is
(kµp)/(k + n(l − 1)), from which we easily get (10). �

This reasoning, however, does not apply to the grid network:
as we have seen in the previous section, phases are delimited
by contours, not by holes. The dynamics of contours is too
complicated to allow a simple method as the one above to
give reasonable approximations of the waiting times. In any
case, such a characterization would not make sense in the
super-critical regime where we have two categories of links
with very different access and waiting times.

7This ratio stems from the fact that a useful jump happens when the hole
jumps over an active link andnot over another hole, since you haven active
links andk − 1 other holes you obtainn/((k − 1) + n).

VI. CONCLUSION

The combination of the random backoff and carrier sens-
ing mechanisms, two key features of CSMA/CA protocols,
creates a coupling between nodes, which prompts a maximal
transmission pattern to spontaneously emerge in the network,
but at the cost of the starvation of links that do not belong to
this maximal pattern. In regular topologies, only nodes at the
border are favored and yet their advantage can affect the nodes
inside the network, to an extent that depends on the parameters
of the protocol (which determine the strength of the coupling)
and on the dimension of the network. In some cases (grid
when the access intensity is large enough), we have shown that
these border effects propagate arbitrarily far inside the network
without vanishing; this leads to the complete starvation of
some links in the network. In other cases (line; grid when the
access intensity is small enough), the protocol is long-term
fair far from the border, but the short-term fairness horizon
strongly depends on the channel access intensity.

In irregular topologies, the topological inequalities arenot
restricted to the border of the network, and the level of
competition to access the channel varies from link to link.
This adds a topological component to the unfairness already
present in regular topologies. As a result, CSMA/CA protocols
are typically very unfair in irregular topologies at all values
of the access intensity, even though their unfairness is more
pronounced at high values.
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