
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. J.-P. Hubaux, président du jury
Prof. A. Lenstra, Prof. W. Meier, directeurs de thèse

Prof. A. Canteaut, rapporteur
Prof. A. Joux, rapporteur

Prof. S. Vaudenay, rapporteur

Neutrality-Based Symmetric Cryptanalysis

THÈSE NO 4755 (2010)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 3 SEPTEMBRE 2010

À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS

LABORATOIRE DE CRYPTOLOGIE ALGORITHMIQUE

PROGRAMME DOCTORAL EN INFORMATIQUE, COMMUNICATIONS ET INFORMATION

Suisse
2010

PAR

Shahram KHAZAEI

ii

Abstract

Cryptographic primitives are the basic components of any cryptographic

tool. Block ciphers, stream ciphers and hash functions are the fundamental

primitives of symmetric cryptography. In symmetric cryptography, the com-

municating parties perform essentially the same operation and use the same

key, if any. This thesis concerns cryptanalysis of stream ciphers and hash

functions. The main contribution of this work is introducing the concept of

probabilistic neutrality for the arguments of a function, a generalization of

the definition of neutrality. An input argument of a given function is called

neutral if it does not affect the output of the function. This simple idea has

already been implicitly used in key recovery cryptanalysis of block ciphers

and stream ciphers. However, in 2004, Biham and Chen explicitly used the

idea of neutrality to speed up collision finding algorithms for hash functions.

We call an input argument of a function probabilistic neutral if it does not

have a “significant” influence on the output of the function. Simply stated,

it means that if the input argument is changed, the output of the function

stays the same with a probability “close” to one. We will exploit the idea

of probabilistic neutrality to assess the security of several stream ciphers

and hash functions. Interestingly, all our cryptanalyses rely on neutrality

and/or probabilistic neutrality. In other words, these concepts will appear

as a common ingredient in all of our cryptanalytic algorithms. To the best

of our knowledge, this is the first time that the probabilistic neutrality has

found diverse applications in cryptanalysis.

Keywords: cryptanalysis, cryptography, hash function, stream cipher.

Résumé

Les primitives cryptographiques sont les composants de base de tous les out-

ils cryptographiques. Les Chiffrements par bloc, les chiffrements par flot et

les fonctions de hachage sont les primitives fondamentales de la cryptogra-

phie symétrique. En cryptographie symétrique, chaque participant effectue

essentiellement la même opération et emploie la même clef, s’il y en a. Cette

thèse concerne la cryptanalyse des chiffrements par flot et des fonctions de

hachage. La contribution principale de ce travail est de présenter le con-

cept de neutralité probabiliste au niveau des arguments d’une fonction, qui

est une généralisation de la définition de neutralité. Un argument d’entrée

d’une fonction donnée est neutre s’il n’affecte pas la sortie de la fonction.

Cette idée simple a déjà été implicitement employée dans la cryptanalyse des

chiffrements par bloc et des chiffrements par flot pour trouver la clef secrète.

Cependant, en 2004, Biham et Chen ont explicitement employé l’idée de la

neutralité pour accélérer les algorithmes qui trouvent des collisions sur des

fonctions de hachage. Nous qualifions un argument d’entrée d’une fonction

de neutre probabiliste s’il n’a pas une influence “significative” sur la sortie

de la fonction. Plus simplement, ça veut dire que si on change l’argument

d’entrée, la sortie de la fonction reste la même avec une probabilité “proche”

de 1. Nous exploiterons l’idée de la neutralité probabiliste pour évaluer la

sécurité de plusieurs chiffrements par flot et fonctions de hachage. Toutes

nos cryptanalyses se fondent sur la neutralité et/ou la neutralité proba-

biliste. Autrement dit, ces concepts apparâıtront comme des ingrédients

communs pour tous nos algorithmes de cryptanalyse. Cela semble être la

première fois que la neutralité probabiliste trouve des applications diverses

en cryptanalyse.

Mots clés: cryptanalyse, cryptographie, fonction de hachage, chiffrement

par flot.

Acknowledgements

I am heartily thankful to my supervisors, Arjen K. Lenstra and Willi Meier,

whose encouragement, supervision and support from the preliminary to

the concluding stages led to the finalization of this dissertation. Arjen

created a very pleasant working atmosphere for us at LACAL and gave me

great freedom to work on the subject of my interest. Willi accepted me to

collaborate with his crypto group at FHNW which enabled me to deepen

my understanding of the subject.

I am grateful to all my coauthors for having interesting discussions with. In

particular, I would like to thank Simon Fischer. My joint works with Simon

were a very encouraging start for my Ph.D.

I would like to thank all my colleagues at LACAL including our secretary

Monique Amhof for all the nice moments we passed together on different

occasions. In particular, I would like to thank Martijn Stam and Deian

Stefan for proofreading my thesis. I appreciate Monique’s patience for all

the trouble she had in organizing my paperwork. I would also like to thank

Nicolas Gama for his correction of my French abstract.

I am also thankful to the members of my jury for accepting to evaluate my

work.

Lastly, I offer my regards and blessings to all of those who supported me in

any respect during the completion of the studies. Most of all I would like

to thank my parents for everything.

viii

Contents

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Cryptography– goals and tenets . 1

1.2 Ciphers and confidentiality . 2

1.2.1 Perfect security . 3

1.2.2 Computational security . 4

1.3 Stream ciphers . 5

1.3.1 Cryptanalytic model and security of stream ciphers 9

1.3.2 State of the art of stream ciphers 10

1.4 Hash functions . 12

1.4.1 Cryptographic properties of hash functions 12

1.4.2 Hash function design . 13

1.4.3 History and the state of the art of practical hash functions . . . 15

1.5 Techniques for symmetric cryptanalysis 17

1.5.1 Brute force method . 18

1.5.2 Birthday paradox . 18

1.5.3 Time-memory trade-offs . 19

1.5.4 Differential cryptanalysis . 20

1.5.5 Integral cryptanalysis . 22

1.5.6 Algebraic cryptanalysis . 23

1.6 Contribution of the thesis . 24

1.6.1 Target algorithms . 24

ix

CONTENTS

1.6.2 Previous work and main contributions 25

1.6.3 Publications and thesis outline 26

2 Cryptanalysis of Salsa20 and ChaCha 29

2.1 Introduction . 29

2.2 Specification of the primitives . 30

2.2.1 Salsa20 . 31

2.2.2 ChaCha . 32

2.3 Cryptanalytic model . 33

2.4 Differential cryptanalysis with probabilistic neutral bits 33

2.4.1 Truncated differentials . 34

2.4.2 Probabilistic backwards computation 35

2.4.3 Probabilistic neutral bits . 37

2.5 Cryptanalytic algorithm and time complexity 39

2.6 Experimental results . 41

2.7 Summary . 43

3 Chosen IV Cryptanalysis for Synchronous Stream Ciphers 45

3.1 Introduction . 46

3.2 Notations . 47

3.3 Problem formalization . 48

3.4 Basic idea and possible scenarios . 49

3.5 Derived functions from polynomial description 50

3.6 Functions approximation . 52

3.7 Description and evaluation of the cryptanalytic algorithm 53

3.8 Application to Trivium . 55

3.9 Application to Grain-128 . 57

3.10 Connection with previous works . 58

3.11 Follow-ups of our work . 58

3.12 Summary . 60

x

CONTENTS

4 Chosen Ciphertext Cryptanalysis for Self-synchronizing Stream Ci-
phers 61

4.1 Introduction . 62

4.2 Polynomial approach for key recovery on an interactable keyed function 63

4.3 Self-synchronizing stream ciphers . 65

4.3.1 Cryptanalytic model . 65

4.4 Description of the Klimov-Shamir T-function based self-synchronizing

stream cipher . 66

4.4.1 Reduced word size variants . 67

4.5 Analysis of the Klimov-Shamir T-function based self-synchronizing stream

cipher . 68

4.6 Towards a systematic approach to find weak ciphertext variables 72

4.7 Summary . 73

5 Linearization Framework for Finding hash Collisions 75

5.1 Introduction . 76

5.2 Linear differential cryptanalysis of hash functions 78

5.2.1 Attributing compression functions to hash functions 78

5.2.2 Linearization of compression functions 78

5.2.3 Computing the raw probability 79

5.2.4 Link with coding theory . 82

5.3 Finding a conforming message pair efficiently 83

5.3.1 Condition function . 83

5.3.2 Dependency table for freedom degrees use 85

5.4 Application to CubeHash . 89

5.4.1 CubeHash description . 89

5.4.2 Defining the compression function 90

5.4.3 Collision construction . 91

5.4.4 Constructing linear differentials 91

5.4.5 Collision cryptanalysis on CubeHash variants 94

5.5 Generalization . 100

5.5.1 Modular addition case . 103

5.5.2 Note on the different linear approximations 103

xi

CONTENTS

5.6 Application to MD6 . 104

5.7 Summary . 107

6 Conclusion 109

A 111

A.1 The best differential paths found for CubeHash regarding raw probability111

A.1.1 Differential paths for CubeHash-1/? 111

A.1.2 Differential paths for CubeHash-2/? 112

A.1.3 Differential paths for CubeHash-3/? 112

A.1.4 Differential paths for CubeHash-4/? 113

A.1.5 Differential paths for CubeHash-5/? 114

A.1.6 Differential paths for CubeHash-6/? 114

A.1.7 Differential paths for CubeHash-7/? 115

A.1.8 Differential paths for CubeHash-8/? 116

A.2 The best differential paths found for CubeHash regarding collision com-

plexity . 116

A.3 Collisions for CubeHash-3/64 . 118

A.4 Collisions for CubeHash-4/48 . 118

A.5 Collisions for CubeHash-5/96 . 118

A.6 Colliding message for MD6 reduced to 16 rounds 119

A.7 Condition function for CubeHash and MD6 119

A.8 Partitioning example for CubeHash . 119

A.9 Partitioning example for MD6 . 119

References 123

xii

List of Figures

1.1 Synchronous stream cipher . 7

1.2 Self-synchronizing stream cipher . 8

1.3 Finite state machine for stream cipher applications 9

1.4 The three most famous block cipher based compression functions 14

1.5 The standard Merkle-Damg̊ard construction 15

1.6 Meet-in-the-middle technique . 25

2.1 Cryptanalytic model for the Salsa20 and ChaCha 34

xiii

LIST OF FIGURES

xiv

List of Tables

1.1 eSTREAM final portfolio . 11

1.2 SHA-3 second round candidates . 18

2.1 Summary of our cryptanalytic results on Salsa and ChaCha 42

2.2 Different cryptanalytic trade-offs for Salsa20/7 42

4.1 Striking relations on three key bits for the Klimov-Shamir self-synchronizing

stream cipher . 69

4.2 Overview of the dependency of the superpolys in their input arguments

for the Klimov-Shamir self-synchronizing stream cipher 70

4.3 Finding weak ciphertext variables in a systematic way for the Klimov-

Shamir self-synchronizing stream cipher 74

5.1 Main symbols used in chapter 5 . 81

5.2 Differential paths for CubeHash with the highest probability 93

5.3 Differential paths for CubeHash with the least collision complexity . . . 96

5.4 Effect of the threshold value on the collision cryptanalysis complexity

for CubeHash . 97

A.1 Partitioning example for CubeHash . 120

A.2 Partitioning example for MD6 . 121

xv

LIST OF TABLES

xvi

1

Introduction

1.1 Cryptography– goals and tenets

The need to protect valuable information goes back to the very old days. As a con-

sequence, cryptology has developed over the centuries from an art, in which only few

were skillful, into a science. There are several goals which security professionals seek to

achieve. These include confidentiality, integrity, authentication, non-repudiation and

privacy. Cryptology is known as the science of information protection against unau-

thorized parties [174] aiming to concretely address some of these goals. Cryptology is

further subdivided into cryptography and cryptanalysis. ‘ Cryptography is the art of

making cryptosystems, a major part of which concerns confidentiality, authentication,

integrity and non-repudiation. When constructing cryptosystems, designers (known as

cryptographers) share the task as follows. Some focus on designing well-established,

low-level building blocks called cryptographic primitives. Others design cryptographic

protocols by combining cryptographic primitives. Cryptographic primitives are ex-

tremely important; a vast amount of effort is devoted to studying the construction of

some cryptographic primitives based on others. Block ciphers, stream ciphers, hash

functions, message authentication codes and digital signatures are among the most

fundamental primitives of cryptography. In cryptography, it is attempted to provide

concrete definitions for these components. The properties of a cryptographic primitive

are inspired by the security threats (known as attacks) which cryptographic protocols

that use the primitive might be faced with. In other words, a cryptographic protocol

imposes some requirements on the cryptographic primitives that it is using. Cryp-

1

1. INTRODUCTION

tography is performed in one of the following two fashions: symmetric cryptography

(or secret key cryptography) and asymmetric cryptography (or public key cryptography).

Whereas symmetric key cryptography has been used since antiquity, public key cryptog-

raphy appeared in the 1970s. Public key cryptography can be used to construct some

cryptographic primitives, like digital signatures, which are out of scope of symmetric

cryptography.

Cryptanalysis, on the other hand, concerns the analysis and evaluation of cryp-

tosystems. A cryptanalyst examines cryptographic primitives and protocols to see if

they have any weakness. A weakness might be a violation of any requirements which

the designer imposed, or a new threat, previously unaddressed. Cryptanalysis is a very

difficult task; hence, cryptanalysts usually first attempt to break simplified variants of

their targets. History has proved that dealing with reduced versions of primitives is a

reasonable start for cryptanalysts to understand how to cryptanalyze the target and

incrementally reach the analysis of the full version. Moreover, handling simplified in-

stances of primitives gives cryptographers an intuition of the strength of their designs.

The struggle between cryptographers and cryptanalysts keeps the field of cryptography

a very challenging and lively area.

Despite the elegant features of cryptography and the cryptographers’ efforts formal-

izing security notions, security goals in real life might not be an easy aim to achieve.

Real-world security systems are a combination of a complicated series of interactions.

Modern systems have so many components and connections – some even unknown to

the systems’ designers, implementers, or users. Cryptography is not a panacea– you

need a lot more than cryptography to have security– but it is essential [217].

This thesis concerns cryptanalysis of stream ciphers and hash functions, two crypto-

graphic primitives which lie in the category of symmetric cryptography. Stream ciphers

are deployed as pseudo-random number generators mainly to provide confidentiality,

whereas hash functions are used in a wide spectrum of cryptographic applications such

as message integrity, authentication and secure timestamping.

1.2 Ciphers and confidentiality

Confidentiality has ever been a main goal of secure communication. This goal attempts

to restrict access to data to only those who have a legitimate need for it. A cryptosystem

2

1.2 Ciphers and confidentiality

which provides confidentiality is normally referred to as a cipher. However, these two

words (cryptosystem and cipher) are often used interchangeably. A cipher is formally

described as follows (see [225] for example).

Definition 1. A cipher is a five tuple (P,C,K,E,D) where

• P is the plaintext space,

• C is the ciphertext space,

• K is the key space,

• for each key k ∈ K, there is an encryption rule Ek ∈ E and a corresponding
decryption rule Dk ∈ D,

• for every key k ∈ K, the function pairs Ek : P → C and Dk : C → P satisfy
Dk(Ek(p)) = p for every plaintext p ∈ P.

The ultimate goal of a cipher is to enable two entities, who have already shared a

key through a secure channel, to securely communicate over an insecure channel. The

above definition of a cipher does not carry any notion of security. Claude Shannon was

the first one who, in his seminal work in 1949, established the theory of secrecy by

introducing two notions of security, perfect security and computational security.

1.2.1 Perfect security

Ideally, we would like that no information of the plaintext leaks from the ciphertext.

In other words, any adversary, even with unlimited computational power, must not be

able to reduce his ambiguity about the plaintext once he observes the corresponding

ciphertext. In probability theory, this translates to Pr{P = p|C = c} = Pr{P = p} for

any p ∈ P and c ∈ C, where P and C represent the random variables corresponding to

the plaintext and ciphertext. From an information theory perspective, Shannon [218]

has shown that in order to achieve perfect security the entropy of the plaintext, H(P),

must not exceed that of the key, H(K), where H(X) is the Shannon entropy of a

random variable X.

Theorem 1 (Shannon, 1949). Perfect secrecy implies H(K) ≥ H(P).

3

1. INTRODUCTION

Vernam cipher [230] provides perfect security in which the plaintext is bit-wise

XORed with a key of the same length to generate the ciphertext. However, the Vernam

cipher is impractical in almost all real-world applications. The main bottleneck is that

the key length must be at least as large as the message length itself. This problem,

however, is inherent to perfect secrecy according to Theorem 1. In Vernam cipher a

key cannot be used more than once, hence bearing the name of one-time pad as well.

Moreover, the key must be a truly random sequence, a task that is not very easy to

achieve in practice.

1.2.2 Computational security

Due to the intrinsic problem of key length in perfect security, in real-life applications

people are using encryption schemes with keys much shorter than the message size

to encrypt sensitive information. This alternative solution profits from the fact that

cryptanalysts in practice have limited computational power. A cryptosystem is said

to be computationally secure if the best algorithm for breaking it requires at least 2n

operations, where n is some specified number, e.g., n = 128. Such a cryptosystem is

then said to provide n bits of security or to have a security level of n bits. Even under

this definition, no known practical cryptosystem can be proved to be computationally

secure. In practice, however, there are two approaches. In the provable security ap-

proach, which is mostly taken in public key cryptography, the evidence of security is

provided by means of a reduction. In other words, it is shown that if the cryptosystem

can be broken in some specific way, then it would be possible to efficiently solve some

well-studied problem that is believed to be difficult. Problems closely related to integer

factorization and discrete logarithm, which respectively underlie the RSA [207] and

ElGamal [119] public key cryptosystems, are such widely-accepted examples. Shannon

suggested that breaking a good cipher should require “as much work as solving a sys-

tem of simultaneous equations in a large number of unknowns of a complex type”. It

is known that solving a set of random multivariate polynomial equations over a finite

field is an NP-hard problem [120]. Nevertheless, this problem is not a very suitable

choice in practice for provable security since it may not be easy to prove that the re-

sulting system of equations is random. However, Shannon’s suggestion still leaves us a

second approach which might be called ad-hoc security, commonly taken in symmetric

cryptography. Using this approach, cryptosystems are designed in a way such that the

4

1.3 Stream ciphers

resulting system of equations seems to be complex. To this end, normally, a security

parameter (e.g., the number of rounds) is defined for the system such that increasing

it makes the cryptosystem look more complex. The computational security evidence,

on the other hand, is provided with respect to certain specific type of threats or the

best methods cryptanalysts have managed to discover. Of course, security against one

specific type of cryptanalytic algorithm does not guarantee security against some other

methods. The astute reader then may ask why bother with symmetric cryptography?

The answer comes from practical utilization. Symmetric cryptosystems are not only

few hundred times faster than the known asymmetric ones, they also need keys of much

shorter length to provide similar security levels. Finally, if enough care is taken, it is

possible to design cryptosystems which are practically suitable for several decades.

1.3 Stream ciphers

In symmetric key cryptography, confidentiality is provided by using stream ciphers or

block ciphers. Block ciphers are the most well known symmetric primitives and, as the

name indicates, operate on fixed-length data blocks. The best-known block ciphers are

the data encryption standard (DES) [185] and its replacement, the advanced encryption

standard (AES) [186]. AES takes a 128-bit block of plaintext as input together with a

secret key, which can be 128, 192 or 256 bits long, to produce a 128-bit ciphertext block.

The oldest, simplest, and most natural way of encrypting larger amounts of data using

a block cipher is known as the electronic code book (ECB) mode. To use AES in the

ECB mode, the message is padded (if necessary) and divided into 128-bit blocks, and

then each one is encrypted separately. Unfortunately, this easy way of utilizing a block

cipher is insecure as identical plaintext blocks are encrypted into identical ciphertext

blocks. In order to securely encrypt larger amounts of data with a block cipher, some

other mode of operation such as cipher block chaining (CBC) is used.

Stream ciphers, in general, are preferred to block ciphers in software applications

with very high throughput requirements, and in hardware applications with restricted

resources such as limited storage, gate count, or power consumption. Very loosely

speaking, stream ciphers can be thought of as cryptographically secure pseudo-random

number generators with some extra bells and whistles. Modern stream ciphers use

a secret key (typically 80 to 256 bits long) and a publicly known initial value (IV)

5

1. INTRODUCTION

(typically 64 to 256 bits long) to produce a sequence of random-looking symbols (usually

bits), known as the keystream. Incorporating a publicly known IV in a stream cipher

not only avoids several time-memory trade-off threats [133, 54, 105], but also makes it

possible to reuse the same key just by sending a new IV without having to agree on a

new key. The sender and receiver must ensure that they are using the same IV. This

can be done in a number of ways: by transmitting the IV along with the ciphertext,

by agreeing on it in a handshake phase, by calculating it deterministically (usually

incrementally), or with the help of a public parameter such as current time, packet

number, etc. Stream ciphers are meant to imitate the Vernam cipher. Therefore,

in order to encrypt a plaintext {pi}Ni=1 of length N bits, a random-looking binary

keystream {zi}Ni=1 of the same length is produced and then XORed with the plaintext

to produce the ciphertext {ci}Ni=1. That is,

ci = pi ⊕ zi, i = 1, 2, . . . , N . (1.1)

Trivially, decryption is performed by XORing the same keystream with the ciphertext

in order to get the original plaintext. The keystream bits depend on the secret key K

and the publicly known initial value IV . Moreover, in order to keep the keystream bits

and ciphertext bits synchronized, the keystream bit at time i, i.e., zi, depends either

on the value i or on a limited number of the previous ciphertext bits. Depending on

either of these cases, stream ciphers are divided in two categories: synchronous stream

ciphers and self-synchronizing stream ciphers.

Synchronous stream ciphers are adopted more widely in practice and, in the liter-

ature, are shortly referred to as stream ciphers. In a synchronous stream cipher the

keystream is independent of the ciphertext and is simply produced as a mapping of the

secret key K and initial value IV , see Figure 1.1. More precisely the ith keystream bit

can be expressed as follows

zi = fi(K, IV), i = 1, 2, . . . , N . (1.2)

There is no error propagation in the synchronous stream ciphers, making them very

suitable for situations where transmission errors are likely to occur. For example,

if a single ciphertext bit is received erroneously, the receiver will decrypt only the

corresponding plaintext bit wrongly whereas all the remaining plaintext bits will be

decrypted correctly. However, the synchronous stream ciphers are highly sensitive to

6

1.3 Stream ciphers

insertion and deletion errors; the keystream sequence must be kept synchronized with

the received ciphertext sequence at the receiver side for correct decryption. In other

words, the receiver must know the exact position of the ciphertext bits so that the

correct corresponding keystream bits are used in order to decrypt them. As mentioned,

the main role of using an IV in a stream cipher is to be able to use the same key several

times. Furthermore, in the case of synchronous stream ciphers, using a fresh IV is

useful to ensure that the sender and receiver are resynchronized.

Figure 1.1: Synchronous stream cipher - A high level view of a synchronous stream
cipher.

In contrast to synchronous stream ciphers, the keystream bits of the self-synchronizing

stream ciphers do not depend on their position in the keystream sequence. In order to

make the synchronization still possible, the previous ciphertext bits are used to produce

a new keystream bit, see Figure 1.2. More precisely, each keystream bit is computed

as a function of the secret key, the publicly known IV and the previous ciphertext bits.

In order to limit the error propagation, in practice, the keystream is generated as a

function of a limited number of r previous ciphertext bits, and of course the key and

IV. That is,

zi = f(K, IV, ci−r, ci−r+1, . . . , ci−1), i = 1, 2, . . . , N , (1.3)

where one can assume c−r+1 = · · · = c0 = 0 for example. The value r is known

as the resynchronization memory of the cipher and should be kept quite small for

practical reasons. A direct advantage of this property is that the receiver automatically

synchronizes itself with the sender after having received r ciphertext bits correctly. This

makes self-synchronizing stream ciphers suitable for the insertion/deletion channels,

7

1. INTRODUCTION

that is, those channels which tend to drop message bits or add some garbage bits.

However, the self-synchronizing stream ciphers suffer from single bit errors. Though,

the effect is limited and only affects up to r keystream bits.

Figure 1.2: Self-synchronizing stream cipher - The figure shows a high level view of
a self-synchronizing stream cipher. For practical reasons, each keystream bit must depend
on a limited number of the previous cipher text bits.

Dedicated self-synchronizing stream cipher proposals are very rare [89, 215, 11,

213, 91, 152, 92], all of which have shown weaknesses [137, 244, 176, 138, 94, 139, 149,

144]. All the well-known widely used stream ciphers are synchronous stream ciphers.

Real-world examples of synchronous stream ciphers include RC4 [3, 216] (used for

WEP/WPA, by Bittorrent, and by SSL, to name a few), A5/1 and A5/2 [64] (used

in GSM telephony standard) and E0 [61] (used in Bluetooth protocol). Synchronous

stream ciphers commonly operate in two phases: initialization phase and keystream

generation phase. The initialization algorithm computes the initial value of the internal

state as a function of the key and IV. The key generation algorithm then expands the

initial state into the keystream sequence. Traditionally, keystream generators for stream

cipher applications are generally realized as autonomous finite state machines whose

components, state update function and output filter function, can be key dependent.

Nevertheless, in practice designers avoid using key dependent components for their

finite state machines which not only simplifies the design but also avoids unwanted

weak key classes, see Figure 1.3. It is important to mention that some block cipher

modes of operation turn a block cipher into a stream cipher. Notably, the output

8

1.3 Stream ciphers

feedback mode (OFB) and the counter mode (CTR) give rise to synchronous stream

ciphers whereas the cipher feedback mode (CFB) results in a self-synchronizing stream

cipher.

Figure 1.3: Finite state machine for stream cipher applications - The figure shows
how stream ciphers can be realized based on finite state machines.

1.3.1 Cryptanalytic model and security of stream ciphers

As stream ciphers are supposed to imitate the Vernam cipher, their ultimate goal is to

provide keystreams which look like truly random sequences. However, since the only

source of the entropy for the keystream is the secret key, one uses the term pseudo-

random versus truly random.

The security of pseudo-random number generators is then measured in terms of the

best algorithm which can distinguish their keystreams from truly random sequences. We

analyze stream ciphers in a very strong security model used in symmetric cryptography.

In this model the cryptanalyst has access to many ciphertext/plaintext pairs which have

been encrypted under a fixed key, unknown to the cryptanalyst. The cryptanalyst can

choose the ciphertexts (or plaintexts) as well as the IV’s (if any). The selection can

be done adaptively if necessary. For block ciphers there is no IV and these models

are known as chosen plaintext and chosen ciphertext scenarios. For stream ciphers,

however, knowing the ciphertext and plaintext is equivalent to having access to the

keystream. Consequently, for synchronous stream ciphers this model is simply referred

to as chosen IV cryptanalysis scenario. In other words, the cryptanalyst has access

to a large amount of the keystream generated under a number of different IV’s and

a fixed key. In contrast, for self-synchronizing stream ciphers, both chosen IV chosen

plaintext and chosen IV chosen ciphertext cryptanalytic models make sense. As already

mentioned, one goal of a cryptanalyst is to distinguish the stream cipher from a truly

9

1. INTRODUCTION

random number generator. A more ambitious cryptanalyst might aim at predicting

future keystream bits produced by the cipher for the same key, no matter if this happens

by recovering the secret key, recovering the internal state of the cipher at some point,

or otherwise. The quality of a cryptanalytic algorithm (distinguishing, key-recovery,

internal state recovery, etc.) is determined according to the following four parameters:

• Time complexity: the amount of computation required for the algorithm to

terminate.

• Memory complexity: the amount of memory needed for the algorithm to run.

• Data complexity: the total amount of keystream required to apply the algo-

rithm.

• Success probability: the success probability of the algorithm.

Time, memory and data complexities are measured in some specified fixed unit. The

amount of memory and data could be expressed in bits or bytes for example. However,

the time unit is more delicate. Some cryptographers vaguely consider the time unit in

terms of the required time to perform some simple operations, for example, modular

addition or multiplication. Others mention it in terms of the average required time to

test the correctness of a guess for the secret key, which sounds more reasonable. In this

thesis, we use the later time unit unless otherwise specified. The success probability

of a cryptanalytic algorithm is measured over random keys and over any source of

randomness which might have been used in the cryptanalytic algorithm. In this thesis

we use the following definition for the security of stream ciphers.

Definition 2. A stream cipher, which uses k-bit long secret keys, is said to provide a
security level of n bits, if there is no cryptanalytic algorithm with success probability
2−p, p ∈ [0, k], requiring time, data and memory complexities limited to 2n−p.

In symmetric cryptography, it is usually attempted to design k-bit ciphers which

provide a security level of k bits.

1.3.2 State of the art of stream ciphers

Stream ciphers are expected to be faster in software or have a smaller implementation

footprint than comparable block ciphers. This, in general, forces their structure to be

10

1.3 Stream ciphers

much simpler than block ciphers, making them not only more difficult to design but

also more attractive targets for cryptanalysis. History has seen a noticeable number of

weak stream ciphers. The most well-known examples are A5/1 and A5/2 stream ciphers

used in the GSM cellular telephone standard. A5/2 is so weak that it can be broken

instantly in a ciphertext-only scenario which requires just a few dozen milliseconds of

the encrypted conversation [23]. Several cryptanalyses of A5/1 have been published,

the most serious of which [57, 184] requires an expensive preprocessing stage to produce

a huge table after which the cipher can be broken in a matter of minutes or seconds.

Unfortunately the state of two other popular stream ciphers, RC4 and E0, is only

a little less dreadful. Although they do not cower in front of cryptanalysts as A5/1

and A5/2 do, they cannot be considered secure according to modern standards due to

several revealed weaknesses. We refer to [173, 192, 163] for the latest results on RC4

and E0, and to the references therein for older ones.

The first attempt to create a portfolio of secure stream ciphers was done by the

NESSIE project [183], which ran from March 2000 to February 2003. NESSIE did not

select any of the proposed stream ciphers for its portfolio, as none of the submissions

withstood cryptanalysts’ might. The second effort to identify new stream ciphers that

may become suitable for widespread adoption was made by the eSTREAM project [106].

This project started in November 2004 and was finalized in April 2008 after three

evaluation phases. At the end, four stream ciphers were chosen for software-oriented

applications and another four for hardware implementations [19], see Table 1.1. Shortly

after the portfolio was revised [20] due to a severe cryptanalytic result on F-FCSR

family [10], published in [125]. As of April 2010, the eSTREAM portfolio consists of

the remaining seven candidates.

Software Hardware

HC-128 [241] Grain [128, 127]
Rabbit [62] Trivium [72]

Salsa20/12 [35] MICKEY v.2 [21]
SOSEMANUK [28] ////////////F-FCSR-H v2

Table 1.1: The eSTREAM final portfolio. The table shows the current eSTREAM
portfolio. The original one included F-FCSR-H v2 but it was removed later.

We would like to emphasize that unlike the accomplished AES competition [182]

11

1. INTRODUCTION

and the current SHA-3 competition [181], both organized by the U.S. National Institute

of Standards and Technology (NIST), the goal of eSTREAM was not to develop a new

international standard for stream ciphers. But rather merely to act as a focus for

academic interest and an attempt to identify the best candidates among the various

designs. While the eSTREAM recommended algorithms are still quite new and new

weaknesses may yet be found, the portfolio can be considered to represent the current

state of academic research on stream ciphers.

1.4 Hash functions

Very generally speaking, a hash function is an efficiently computable algorithm that

maps arbitrary-length messages to fixed length outputs, called message digests. Hash-

ing is traditionally used in non-cryptographic applications such as performance im-

provement and error checking [130]. In the field of cryptography, hash functions are

among the most fundamental primitives and are sometimes referred to as cryptographic

hash functions. Originally deployed to make digital signatures more efficient, crypto-

graphic hash functions are now used in a broad spectrum of cryptographic applications

including message integrity, authentication and secure timestamping. Aforementioned

cryptographic applications as well as a host of other uses in various cryptographic pro-

tocols often rely on several assumptions about the underlying hash functions. If the

hash function fails to be as secure as believed, then the application also fails to be se-

cure in most cases. Ideally, we would like to have a cryptographic hash function which

behaves like a random oracle [26]. A random oracle is a black box that responds to

every query with a truly random response chosen uniformly from its output domain,

except that for any specific query, it responds the same way every time it receives that

query. Protocols, such as OAEP [27], that use cryptographic hash functions are often

proved secure in the random oracle model [26], see also [219]. Unfortunately, random

oracles do not actually exist in real life, and therefore proofs in the random oracle

model only provide a heuristic for security [67].

1.4.1 Cryptographic properties of hash functions

In cryptographic practice, a hash function is typically a fixed public algorithm H :

{0, 1}? → {0, 1}n, for some fixed n (typically between 128 and 512). The security of

12

1.4 Hash functions

most practical applications involving hash functions often relies on the following three

properties of the underlying hash functions.

• Collision resistance: there is no algorithm running in time less than 2n/2 which

can find two distinct messages x and y such that H(x) = H(y).

• Preimage resistance: given a digest value D ∈ {0, 1}n, there is no algorithm

running in time less than 2n which can find a message x such that H(x) = D.

• Second preimage resistance: given a message x, there is no algorithm running

in time less than 2n which can find a message y different from x such that H(x) =

H(y).

In theory, however, these definitions are not considered to be precise enough. In

order to study hash function security on a solid formal footing, one has to consider

keyed hash functions [96, 97, 180]. In this case, the hash function is thought of as a

collection or family of hash functions {HK : {0, 1}? → {0, 1}n,K ∈ K}. Some valuable

attempts to concretely formalize the above three definitions were done in [208], in which

seven notions of security related to these properties are introduced. In this thesis we,

however, stick to the informal definitions. We would like to emphasize that we consider

the time unit of a cryptanalytic algorithm in terms of hashing a short message, or less

precisely the number of required simple operations. The upper-bound complexity 2n/2

for the collision resistance of an n-bit hash function is due to birthday paradox, see

section 1.5.2.

1.4.2 Hash function design

The design of hash functions usually proceeds in two stages. First, one designs a com-

pression function with fixed domain. A compression function transforms one short

fixed-length input into a shorter fixed-length output. One then applies a domain ex-

tension method, also known as mode of operation, to the compression function in order

to construct a hash function for messages of arbitrary length. In practice, the message

length is limited to an enormous number, e.g., 264 or 2128 bits.

One of the popular ways to create a compression function is to base it on a block

cipher. The emphasis on block cipher-based hashing can be understood both histori-

cally and practically. Block ciphers have long been the central primitives in symmetric

13

1. INTRODUCTION

key cryptography, and there exists some measure of confidence in block cipher designs.

From a practical perspective, one might like to reuse optimized code or hardware de-

signs of block ciphers that have already been implemented. Collision resistance and

preimage resistance are the minimum requirements one expects from a secure block

cipher based compression function. The oldest block cipher based compression func-

tions are commonly referred to as Davies-Meyer [174], Matyas-Meyer-Oseas [169] and

Miyaguchi-Preneel [198, 177], see Figure 1.4. The security of block cipher based com-

pression functions has been extensively studied in the literature; see, e.g., [198, 60, 224].

Figure 1.4: The three most famous block cipher based compression functions
- a) Davies-Meyer f(h,m) = Em(h) ⊕ h, b) Matyas-Meyer-Oseas f(h,m) = Eh(m) ⊕m,
and c) Miyaguchi-Preneel f(h,m) = Eh(m) ⊕ m ⊕ h. The compression functions f :
{0, 1}n × {0, 1}n → {0, 1}n, mapping 2n bits into n bits, are both collision and preimage
resistant, where E is an ideal block cipher with equal block and key length of n bits.

A compression function can be turned into a hash function by plugging it in some

mode of operation. The most common way, known as the Merkle-Damg̊ard [175, 97]

construction, is based on iteratively updating a chaining variable. The standard Merkle-

Damg̊ard construction uses a compression function f : {0, 1}b × {0, 1}n → {0, 1}n, an

initial n-bit chaining value h0 and some injective padding function P : {0, 1}? →(
{0, 1}b

)? \∅. The message M ∈ {0, 1}? to be hashed is first padded (transformed) into

a message whose length in bits is a positive multiple of b, i.e., P (M) = (m0, . . . ,ml−1)

with l ≥ 1. The mi’s are called message blocks. Message blocks then recursively update

the chaining value according to the relation hi = f(mi−1, hi−1), i = 1, . . . , l. The final

chaining value is considered as the message digest, i.e., H(M) = hl; see Figure 1.5.

The security of the Merkle-Damg̊ard construction and its variants has been inten-

sively studied in the literature with respect to several cryptographic properties. The

most widely used hash functions, including MD5 [205], SHA-1 [188] and SHA-2 fam-

ily [189, 190], use a Davies-Meyer compression function with the strengthened Merkle-

14

1.4 Hash functions

Figure 1.5: The standard Merkle-Damg̊ard construction - The message M is first
padded and divided into l message blocks (m0, . . . ,ml−1) where each mi is b bits long.
The message blocks iteratively update the initial chaining value h0 to produce the message
digest hl.

Damg̊ard mode of operation. The strengthened Merkle-Damg̊ard requires to encode

the length of the original message in the padding in order to preclude several trivial

weaknesses [174]. It is easy to see that the strengthened Merkle-Damg̊ard construction

preserves collision-resistance when instantiated with a collision-resistant compression

function [175, 97]. Other variants of the Merkle-Damg̊ard construction can provide

secure domain extenders for some specific properties of the corresponding primitive in

question such as pseudorandomness [24], MAC unforgeability [6, 172] and randomness

extraction [102]. However, the Merkle-Damg̊ard construction does not work to yield

a random oracle even if the underlying compression function is modeled as a random

oracle. The most notable weaknesses of the Merkle-Damg̊ard construction are due to

the length extension [174], multi-collision [135], second preimage [147] and herding [145]

attacks. In order to to prevent the weaknesses of the Merkle-Damg̊ard construction,

many researchers have considered alternative construction methods, see [59, 166, 39]

for example. Building a framework to prove the indifferentiability of domain extenders

from a random oracle provided that the underlying compression function is modeled

as a random oracle was proposed in [171]. Since then there has been an increased

popularity of the indifferentiability framework in the design and analysis of hash func-

tions [80, 25, 76, 103, 40, 104].

1.4.3 History and the state of the art of practical hash functions

Rivest is probably the first to develop a publicly known dedicated cryptographic hash

function. His design, called MD2 [142, 161], was developed in 1989. It has a unique

non-Merkle-Damg̊ard-based construction, suitable for 8-bit processors. MD2 was soon

15

1. INTRODUCTION

superseded by other designs, not because it had been broken, but because its perfor-

mance on 32-bit processors could not compete with the more modern designs. Never-

theless, MD2 is still part of several (de facto) standards, e.g., PKCS#1 v2.1 [1] and

Verisign [2]. Shortly after, Rivest designed MD4 [204] which is a Merkle-Damg̊ard con-

struction with a Davies-Meyer compression function. Despite early cryptanalysis of its

simplified variants [98], MD4 inspired most of the hash functions designed afterwards.

A newer version of MD4, called MD5 [205], was designed in 1991 to become one of

the most widely used hash functions. Two years later, the U.S. National Institute of

Standards and Technology (NIST) developed the Secure Hash Standard (SHA) [187],

unofficially referred to as SHA-0, based on the same principles of MD4 and MD5. In

1995, NIST revised SHA-0 with a subtle tweak to introduce SHA-1 [188]. NIST pub-

lished two new hash functions in 2001, called SHA-256 and SHA-512 [189], still following

the design principles of MD4, MD5 and SHA-1. These hash functions along with two

other variants, SHA-224 and SHA-384, are collectively referred to as the SHA-2 fam-

ily [189, 190], the number indicating the digest length in bits. The later two members,

SHA-224 and SHA-384, are respectively truncated variants of SHA-256 and SHA-512,

computed with different initial chaining values. Nevertheless, the SHA-2 family mem-

bers have not found widespread acceptance. In contrast, the popular hash functions

MD5 and SHA-1 (with respective digests of size 128 and 160 bits) are still used almost

universally.

Despite the quite fast progress in hash function design, it took cryptanalysts quite

some time to gradually grasp and tackle them. Collisions for the compression function

of MD5 were found in 1993 [99]; but it was not yet clear how to produce collisions

for the hash function itself. The first collision for MD4 was found by Dobbertin in

1996 [101]. In 1998, Chabaud and Joux took a major step in hash function cryptanaly-

sis [75] by introducing the linear differential cryptanalysis of hash functions. However,

since the run time of the algorithm was too high to be carried out in practice, the

cryptanalysts had to wait a few more years to produce real collisions with further

progress in cryptanalysis. In 2004, Biham and Chen [44] introduced neutral bits to

speed up the collision finding algorithms on SHA-0. Even though the collisions were

not yet achievable, they produced near collisions for SHA-0 (two messages whose di-

gests differ on a few number of bit positions). However, the year after proved to be

fruitful for hash function cryptanalysis, mostly thanks to the Chinese cryptographer

16

1.4 Hash functions

Xiaoyun Wang. Improved collision cryptanalyses on SHA-0 were published [45, 236],

and the first collision examples on the full MD5 hash function were produced [238].

Real collision examples on SHA-0 were published later the same year [239], and so was

the first collision cryptanalysis on the full SHA-1 [237]. As of April 2010 real collision

examples of SHA-1 have not been found, simply because the task is still enormous.

Surprisingly, despite several attempts, MD2 has still remained quite resistant toward

serious cryptanalysis [196, 211, 178, 156, 157].

Although the SHA-2 family of hash functions has not yet succumbed to the new

collision-finding cryptanalytic algorithms that have plagued MD5 and SHA-1, the cryp-

tographic community has lost their confidence in them. Although this may be mainly

due to their design principles, being similar to those underlying MD5 and SHA-1, some

undesirable properties of the Merkle-Damg̊ard construction have also highlighted the

situation. These unwanted weaknesses include the length extension, multi-collision,

second preimage and herding attacks. Although the length extension property has

been folklore knowledge for many years, the other ones were respectively discovered in

2004 by Joux [135], in 2005 by Kelsey and Schneier [147], and in 2006 by Kelsey and

Kohno [145]. In response to the shocking cryptanalytic results on MD5 and SHA-1

and in order to improve the current state of the art concerning hash functions, NIST

initiated the SHA-3 competition to develop a new set of hash functions. Expected

to finish in 2012, the SHA-3 competition is still on-going. Unlike SHA-1 and SHA-2

which were designed internally, the new procedure goes through an open competition

similar to that of AES [182]. The call for candidate algorithms was made in November

2007 [181] and 64 candidates were submitted by the call deadline, 31 October 2008. For

the first round of the competition, 51 candidates were accepted of which 14 survived

to the second round [202]. Table 1.2 shows the 14 second round candidates according

to the elimination done by NIST on September 2009. NIST plans to select approxi-

mately five finalists for the third round of the competition in the fall of 2010. Due to

the weaknesses of the Merkle-Damg̊ard construction, many of the SHA-3 candidates

are based on the alternative designs such as permutation-based [59, 210, 223, 209] and

wide-pipe [166] constructions.

17

1. INTRODUCTION

BLAKE Grøstl Shabal
BLUE MIDNIGHT WISH Hamsi SHAvite-3

CubeHash JH SIMD
ECHO Keccak Skein
Fugue Luffa

Table 1.2: SHA-3 second round candidates. The table includes the 14 surviving
SHA-3 candidates of the second round. The list is going to shrink in the fall 2010 to about
five candidates for the next round.

1.5 Techniques for symmetric cryptanalysis

Regardless of how computationally secure a cryptographic algorithm is, there always

exist a set of generic cryptanalytic methods. The most trivial generic cryptanalytic

methods are brute force search for keyed primitives and birthday paradox for finding

hash collisions. These methods can be applied to relevant primitives, independent of

the design details. On the other hand, there are many other cryptanalytic tools that,

while still enjoying some sort of generality, specifically target the internal structure of

the primitives. A well-designed primitive has at least one tunable parameter, such as

the number of rounds. There is, however, a trade-off between security and efficiency of

the primitive when playing with the tunable parameter. For example, increasing the

number of rounds normally decreases efficiency while increasing security. A designer’s

job is to find a good balance between security and efficiency. In the following we give

the intuition behind some of the well-known methods which are applicable to symmetric

primitives. The interested reader may refer to [229] for other cryptanalytic techniques.

1.5.1 Brute force method

The brute force method is the most näıve generic cryptanalytic algorithm. Having a

few ciphertext/plaintext pairs in hand, the correct key is simply found by exhaustively

searching the key space. The complexity to recover the key with certainty is 2k for k-bit

long keys. This method is academically important since it determines the maximum

level of security level which a security scheme can provide. In general, if the cryptanalyst

restricts the search space to a subset of the keys of size 2k−p, p ∈ [0, p], he expects to

recover the key with success probability 2−p. This justifies our definition of a secure

18

1.5 Techniques for symmetric cryptanalysis

stream cipher, see Definition 2.

1.5.2 Birthday paradox

In probability theory, the birthday problem pertains to the probability that in a set of

randomly chosen people some pair of them would have the same birthday. In a group of

at least 23 randomly chosen people, this chance is more than 50%. This problem is also

known as birthday paradox since this result is counter-intuitive to many. In general,

the probability that among d independent and identically distributed random variables

with uniform distribution over a set of size N , two of them would be equal is about

1− exp(−d(d−1)
2N).

A direct application of this paradox is the collision finding problem for hash func-

tions, first pointed out by Yuval [243] in 1979. For a hash function with n-bit message

digests, the number of message digests one needs to observe before a collision is found

is approximately 2n/2. For this application, one can substantially reduce the mem-

ory requirements by translating the problem to the detection of a cycle in an iterated

mapping [201]. See [228] for an efficient parallel collision search algorithm.

1.5.3 Time-memory trade-offs

Time-memory trade-offs were first introduced by Hellman [129] in 1980 as a generic way

to cryptanalyze block ciphers, but can be generalized to the general problem of inverting

one-way functions. Hellman’s method uses a precomputed table of total size M which

allows to recover a block cipher’s key in time complexity T . In a precomputation phase

several starting points are randomly chosen. Then from each starting point a chain is

constructed to get an end point. The chains are built by successively applying a function

which is derived from the underlying block cipher. Then the end point/starting point

pairs are sorted based on the end point values and stored in a Table of size M . In

the on-line phase, which takes time T , the goal is to find the predecessor of a given

point. This is done by constructing a long chain of points from the given point. Each

time a new point is computed, it is looked up in the precomputed table. If it exists, in

the table, from the corresponding starting point, the predecessor of the given point is

found. It can be shown that the values of M and T satisfy the relation TM2 = 22k (up

to logarithmic factors), where k is the key size of the block cipher. A convenient choice

19

1. INTRODUCTION

of M and T is M = T = 2
2
3
k. Nonetheless, the precomputation phase still requires a

time complexity of 2k encryptions.

For stream ciphers based on finite state machines whose structures are independent

of the key, there is a well-known time-memory-data trade-off cryptanalysis [17, 121].

This threat does not apply to modern stream ciphers since it is worse than exhaustive

key search when a large internal state is deployed. This method can be explained

as follows. For a stream cipher with an s-bit internal state, the goal is to invert the

function which maps an internal state to the first s bits of the keystream generated from

that state. To this end, in a preprocessing phase, the cryptanalyst chooses 2s/2 random

inputs (internal states) and applies this function to them to get their corresponding

outputs (the prefix of length s of the corresponding keystream). He then sorts the

output/input pairs in approximate time 2s/2 and stores them, based on the output

value, in a table of the same size. The cryptanalyst then observes a keystream of

length 2s/2, from which he can construct about 2s/2 overlapping output values. For

each output value he can examine the sorted table and find the corresponding internal

state value if it exists in the table. According to the birthday paradox a match between

the saved points and the observed output values is quite likely. Since, time, memory

and data complexities of this cryptanalytic algorithm is about 2s/2, it can be easily

thwarted by choosing an internal state which is at least twice bigger than the key

size. Other variants of time-memory-data trade-offs on stream ciphers can be found

in [55, 133, 54, 105].

1.5.4 Differential cryptanalysis

Differential cryptanalysis is a general cryptanalytic method applicable primarily to

block ciphers, but also to stream ciphers and cryptographic hash functions. In a very

broad sense, it is the study of how specific differences in the input of a particular trans-

formation affect the resulting output. Differential cryptanalysis was first publicized by

Biham and Shamir in 1990 [47] to analyze reduced-round variants of DES [47, 48, 52] in

a chosen plaintext scenario, followed by the first cryptanalysis on DES, in 1991, which

recovers the key faster than exhaustive search [51]. Nevertheless, it turned out that

IBM was already aware of this method [79] and so DES was designed to be resistant

to differential cryptanalysis.

20

1.5 Techniques for symmetric cryptanalysis

Differential cryptanalysis studies the differences, usually by means of the XOR, as

they evolve through the various rounds and different operations of a symmetric primi-

tive. One first considers a transformation Z = F (X) which is related to the primitive

specification. In the case of block ciphers, the input X is the combination of the secret

key and the plaintext, i.e., X = (K,P). Moreover, the mapping F is constructed by

tracing the network of transformations which gradually convert the plaintext into the

ciphertext. Any non-random behaviour of this transformation can be exploited to re-

cover the secret key or part of it. In particular, a cryptanalyst tries to find an input

difference ∆x and an output difference ∆z. The input difference ∆x is the combination

of the differences in the plaintext and the difference in the key which we assume to

be zero, i.e., ∆x = (0,∆p). The cryptanalyst then estimates the probability of the

differential (∆p → ∆z), i.e., Pr{F (K,P) ⊕ F (K,P ⊕ ∆p) = ∆z}. The probability of

the differential (∆p → ∆z) can be computed over the whole input domain or a sub-

set of it. Moreover, for block ciphers, and in general for keyed symmetric primitives,

the mapping F is constructed in a way that the output difference ∆z is a function

of some part of the key, called subkey. For example, when the ciphertext is partially

decrypted using the last subkey, one gets the output value of F . Any abnormality in

the probability of the differential can be exploited to recover the subkey or get some

information about it by means of statistical methods. To this end, the cryptanalyst

collects many quadruples of plaintext pairs and their corresponding ciphertext pairs

where each plaintext pair has the desired difference ∆p. It is possible that some of the

plaintext pairs, which already satisfy the required input difference ∆x for the transfor-

mation F , provide the desired output difference ∆z as well. Having at least one such

pair, called a right pair, is essential to eliminate some of the wrong keys. The exact

number of the required right pairs is determined by the best statistical method which

the cryptanalyst can apply to recover the subkey.

Several refinements to differential cryptanalysis have attempted to improve the tech-

nique for some circumstances. A variant of differential cryptanalysis uses an extended

form of differences, in which some of the bits of the output difference are not fixed.

Because part of the output difference is left unspecified, this is equivalent to clustering

several differentials together. This type of cryptanalysis is called truncated differential

cryptanalysis [155]. Another extension of differential cryptanalysis takes advantage of

differentials which occur with probability zero [153, 43]; these differentials are called

21

1. INTRODUCTION

impossible differentials [43]. There are also non-XOR differential cryptanalysis vari-

ants [160], such as modular subtraction, modular division, or a combination of different

differences in various places. The generalization of differential cryptanalysis which

considers differences between differences is called higher-order differential cryptanaly-

sis [155]. Higher-order differences prove to be successful in several cases where ordinary

differential cryptanalysis is not applicable. Furthermore, there are also cryptanalytic

methods that combine differentials in various ways, the most promising of which are the

boomerang [232], amplified boomerang [146], and rectangle [46] cryptanalyses. Lastly,

in related key cryptanalysis [42, 154], which is less desirable and highly disputed, a

nonzero difference in the keys is also permitted.

Differential cryptanalysis of block ciphers and stream ciphers is closely related to

that of hash functions, but also disparate in some aspects. The dissimilarities were

recognized in early works [50, 49, 41, 197] and were later developed in hash crypt-

analyses [98, 99, 101, 75, 212, 44, 45, 236, 238, 239, 237, 73, 179, 70, 168], still used

extensively. A major dissimilarity is that the goal of the cryptanalyst is different. In

the first case, the aim is to obtain the secret key while in the later case there is no key

to be recovered and the goal is mostly to find a hash collision. Another main difference

is the freedom which the cryptanalyst has in playing with the plaintext/message. In

differential cryptanalysis of block ciphers, the only restriction on the chosen plaintext

pairs is their imposed difference. Remember that the input X is the combination of the

secret key and the plaintext, X = (K,P). Although for a plaintext pair (P, P ⊕∆p),

the cryptanalyst has still the ability to choose the plaintext value P , this freedom can

be hardly exploited in practice (e.g., to increase the chance of getting a right pair).

This is mainly because of the fact that the secret key influences the way the input

difference propagates through the cipher from the very beginning. For hash functions,

however, there is no secret key involved and full control over the input X is available.

Any input X for which F (X ⊕∆x)⊕ F (X) = ∆z, called conforming message, yields a

collision for the underlying hash function. The recent collision finding algorithms have

investigated extensive methods to use this freedom in order to efficiently find such con-

forming messages by means of satisfying some conditions. These methods are referred

to as message modification techniques which apparently have been used by Xiaoyun

Wang as early as 1997 [233, 234]. However, they were brought to the attention of the

22

1.5 Techniques for symmetric cryptanalysis

international cryptographic community only in 2005 [236, 238, 239, 237]. Message mod-

ification techniques use concepts such as neutral bits [44], semi-neutral bits [167, 226]

and tunnels [151]. When it comes to implementation, backtracking algorithms [38, 73]

are used to find a conforming message.

1.5.5 Integral cryptanalysis

The dual of differential cryptanalysis is integral cryptanalysis [158]. There are several

cryptanalytic methods related to integral cryptanalysis in the literature, including the

square [93], saturation [165], AIDA [231] and Cube [100] cryptanalytic methods. These

methods are collectively referred to as multiset cryptanalytic method [56]. Unlike

differential cryptanalysis, which uses pairs of chosen inputs with a fixed difference,

integral cryptanalysis uses sets or even multisets of chosen inputs. In most of the cases

the input is divided into two parts, of which one part is held constant and the other part

varies through all possibilities. Furthermore, in integral cryptanalysis one considers

the sum of the outputs over the multiset, whereas in differential cryptanalysis the

subtraction between the output pair is the center of concentration. For example, if we

are considering integral cryptanalysis of the function F (X) where X = (x0, x1, x2, x3) ∈
Z4

256, we might choose 256 different inputs that are the same in the last three positions.

In other words we compute
∑

x∈Z256
F (x, c1, c2, c3) where c1, c2, c3 are some constants.

For finite fields with characteristic two, however, the subtraction and addition are the

same. Therefore, integral cryptanalysis can be considered as a variant of the previously

mentioned higher-order differential cryptanalysis [155].

1.5.6 Algebraic cryptanalysis

The basic principle of algebraic cryptanalysis goes back to Shannon’s seminal work [218]

in 1949. It consists of expressing the whole cryptographic algorithm as a large system

of multivariate algebraic equations, which can then be solved to recover, e.g., the secret

key. Despite much research in algebraic cryptanalysis of block ciphers [84, 78, 4, 53],

thus far, the proposed methods have had very limited success in targeting modern

block ciphers. In fact, there is no modern block cipher (with practical relevance)

that has been successfully cryptanalyzed using algebraic cryptanalysis faster than with

other techniques. This is also true for the case of algebraic cryptanalysis of hash

functions. There is limited work on algebraic cryptanalysis against hash functions

23

1. INTRODUCTION

and algebraic techniques have thus far been relatively unexplored for hash function

cryptanalysis. In contrast to block ciphers and hash functions, algebraic cryptanalysis

has been successfully used in the analysis of several LFSR-based stream ciphers [83,

81, 8, 7, 82]. Algebraic cryptanalysis as a method for stream cipher cryptanalysis was

originally introduced by Courtois and Meier [83], and it generally applies to nonlinear

combiner generators and nonlinear filter generators. Algebraic cryptanalysis of these

keystream generators exploits the fact that each new keystream bit gives rise to a new

simple equation on the initial state. Thus, the cryptanalyst can collect a large number

of bits from the keystream to construct a system of equations, which can then be solved.

The interested reader is referred to [107] for an overview of the main techniques used

for solving systems of multivariate polynomial equations, with special focus on methods

used in cryptanalysis.

1.6 Contribution of the thesis

This thesis concerns cryptanalysis of stream ciphers and hash functions with emphasis

on some of the eSTREAM [106] and NIST SHA-3 [181] candidates.

1.6.1 Target algorithms

In particular, we have contributed to the cryptanalysis of reduced-round variants of the

following algorithms.

1. Salsa20 [31, 35]: One of the eSTREAM final candidates in the software profile,

designed by D. Bernstein in 2005.

2. ChaCha [30, 33]: A variant of the Salsa20 stream cipher, designed by D. Bern-

stein in 2008.

3. Trivium [71, 68, 72]: One of the eSTREAM final candidates in the hardware

profile, designed by C. De Cannière and B. Preneel in 2005.

4. Grain-128 [126, 127]: One of the eSTREAM phase 3 candidates designed by

M. Hell, T. Johansson, A. Maximov and W. Meier in 2005. It is a variant of

the Grain [128, 127] stream cipher, one of the eSTREAM final candidates in the

hardware profile.

24

1.6 Contribution of the thesis

5. Klimov-Shamir SSSC [152]: A self-synchronizing stream cipher proposed by

A. Klimov and A. Shamir in 2005 at the Fast Software Encryption workshop

(FSE’05).

6. MD6 [206]: One of the first round candidates of the NIST SHA-3 competition,

designed by Rivest et al. in 2008.

7. CubeHash [34]: One of the NIST SHA-3 candidates, designed by D. Bernstein

in 2008. It is currently one of the promising second round candidates.

1.6.2 Previous work and main contributions

The main contribution of this work is introducing the concept of probabilistic neutrality

for the arguments of a function, a generalization of definition of neutrality. Interest-

ingly, our cryptanalyses of all the aforementioned algorithms rely on neutrality and/or

probabilistic neutrality. An input argument of a given function is called neutral if it

does not affect the output of the function. This simple idea has already been used in

key recovery cryptanalysis of block ciphers as well as in collision finding algorithms for

hash functions.

To explain how neutrality is used in cryptanalysis of block ciphers, consider a block

cipher C = EK(P) which maps the plaintext P into the ciphertext C using the secret

key K. As explained in section 1.5.4, a cryptanalyst derives a function Z = F (K,P)

from the block cipher such that the output of F can also be computed from the ci-

phertext, by partially decrypting it. In other words the output of F can be related to

the ciphertext and (some part of) the key. Let’s assume Z = G(K,C), see Figure 1.6.

This method is also known as the meet-in-the-middle technique. A cryptanalyst then

finds some nonrandom behaviour of F (e.g., using differential cryptanalysis) in a chosen

plaintext scenario to get some information about the key with the help of G. The key

point is that the function G does not depend on the whole key. In other words, only

some part of the key, known as subkey, suffices to partially decrypt the ciphertext to

get the output value of the function F . In other words a large part of the key is neutral

for G. Hence, in order to detect the correct subkey, the subkey space is exhaustively

searched instead of the whole key space. This application of neutrality is very trivial

and has mostly been used implicitly.

25

1. INTRODUCTION

Figure 1.6: Meet-in-the-middle technique - For a block cipher C = EK(P) one
derives two less complex functions F and G such that F (K,P) = G(K,C). The function
F has some nonrandom behaviour which can be detected using G. The function G does
not depend on the whole key in practice.

However, in 2004 Biham and Chen explicitly used the idea of neutrality to speed

up collision finding algorithms for hash functions [44]. The principle of their idea can

be roughly explained as follows. As mentioned in section 1.5.4, the collision finding

algorithms for hash functions are normally translated into finding a conforming mes-

sage. That is, one needs to find a message X such that F (X) ⊕ F (X ⊕ ∆x) = ∆z

where the function F is derived based on differential cryptanalysis of the underlying

hash function. If p is the probability that a random message X is a conforming one,

a solution can be found after 1/p random tries. However, the task can be performed

faster in two steps by dividing the message in two parts, let say X = X1||X2. In the

first step the cryptanalyst finds the message part X1 such that some conditions are

satisfied. These conditions are such that they are not violated once choosing the sec-

ond message parts X2. In other words, the conditions are neutral with respect to X2.

In the second step, provided that X1 has been chosen to fulfill those conditions of the

first step, X2 is independently found such that X1||X2 is a conforming message. The

probability to randomly accomplish the first and second phases is p1 and p2 respec-

tively where p ≈ p1p2. Therefore, the effort is reduced from 1/(p1p2) to 1/p1 + 1/p2

(p1 and p2 are very small numbers). The multi-block technique [45, 236, 238] as well as

cryptanalysis based on semi-neutral bits [167, 226] can be seen as applications of the

neutrality concept in hash function cryptanalysis.

We call an input argument of a function probabilistic neutral if it does not have a

“significant” influence on the output of the function. Very loosely speaking, it means

that if the input argument is changed, the output of the function stays the same with

a probability “close” to one. We exploit the idea of probabilistic neutrality to crypt-

26

1.6 Contribution of the thesis

analyze several stream ciphers and hash functions. To the best of our knowledge this

is the first time that the probabilistic neutrality has found a concrete application in

cryptanalysis.

1.6.3 Publications and thesis outline

Here is a list of articles which I have published, with the help of my coauthors, during

my Ph.D. studies.

1. Jean-Philippe Aumasson, Simon Fischer, Shahram Khazaei, Willi Meier, and

Christian Rechberger. “New Features of Latin Dances: Analysis of Salsa, ChaCha,

and Rumba”. In Kaisa Nyberg, editor, Fast Software Encryption, 15th Interna-

tional Workshop, FSE 2008, Lausanne, Switzerland, February 10-13, 2008, Re-

vised Selected Papers, volume 5086 of Lecture Notes in Computer Science, pages

470–488. Springer, 2008.

2. Simon Fischer, Shahram Khazaei, and Willi Meier. “Chosen IV Statistical Anal-

ysis for Key Recovery Attacks on Stream Ciphers”. In Serge Vaudenay, editor,

Progress in Cryptology – AFRICACRYPT 2008, First International Conference

on Cryptology in Africa, Casablanca, Morocco, June 11–14, 2008. Proceedings,

volume 5023 of Lecture Notes in Computer Science, pages 236–245. Springer,

2008.

3. Shahram Khazaei and Willi Meier. “New Directions in Cryptanalysis of Self-

Synchronizing Stream Ciphers”. In Dipanwita Roy Chowdhury, Vincent Rijmen,

and Abhijit Das, editors, Progress in Cryptology – INDOCRYPT 2008, 9th Inter-

national Conference on Cryptology in India, Kharagpur, India, December 14–17,

2008. Proceedings, volume 5365 of Lecture Notes in Computer Science, pages

15–26. Springer, 2008.

4. Eric Brier, Shahram Khazaei, Willi Meier, and Thomas Peyrin. “Linearization

Framework for Collision Attacks: Application to CubeHash and MD6”. In Mit-

suru Matsui, editor, Advances in Cryptology – ASIACRYPT 2009, 15th Interna-

tional Conference on the Theory and Application of Cryptology and Information

Security, Tokyo, Japan, December 6–10, 2009. Proceedings, volume 5912 of Lec-

ture Notes in Computer Science, pages 560–577. Springer, 2009.

27

1. INTRODUCTION

5. Shahram Khazaei, Simon Knellwolf, Willi Meier, and Deian Stefan. “Improved

Linear Differential Attacks on CubeHash”. In Daniel J. Bernstein and Tanja

Lange , editor, Progress in Cryptology – AFRICACRYPT 2010, Third Interna-

tional Conference on Cryptology in Africa, Stellenbosch, South Africa, May 3–6,

2010. Proceedings, volume 6055 of Lecture Notes in Computer Science, pages

407–418. Springer, 2010.

6. Shahram Khazaei and Willi Meier. “On Reconstruction of RC4 Keys from In-

ternal States”. In Jacques Calmet, Willi Geiselmann, and Jörn Müller-Quade,

editors, Mathematical Methods in Computer Science, MMICS 2008, Karlsruhe,

Germany, December 17–19, 2008 – Essays in Memory of Thomas Beth, volume

5393 of Lecture Notes in Computer Science, pages 179–189. Springer, 2008.

7. Shahram Khazaei, Simon Fischer, and Willi Meier. “Reduced Complexity At-

tacks on the Alternating Step Generator”. In Carlisle M. Adams, Ali Miri, and

Michael J. Wiener, editors, Selected Areas in Cryptography, 14th International

Workshop, SAC 2007, Ottawa, Canada, August 16–17, 2007, Revised Selected

Papers, volume 4876 of Lecture Notes in Computer Science, pages 1–16. Springer,

2007.

This thesis is based on the first five articles and is organized as follows. Chapter 2

concerns cryptanalysis of Salsa20 and ChaCha stream ciphers and it includes part of

the results from the first paper. Chapter 3 deals with cryptanalysis of Trivium and

Grain-128 stream ciphers, which is based on the material presented in the second arti-

cle. Chapter 4 includes cryptanalysis of the Klimov-Shamir self-synchronizing stream

cipher which is presented in the third publication. Chapter 5 discusses cryptanaly-

sis of CubeHash and MD6 hash function, based on an extended version of the fourth

publication and the fifth. Finally, chapter 6 concludes the dissertation.

The last two articles concern cryptanalysis of two stream ciphers RC4 and Alter-

nating Step Generator. RC4 [3, 216] is the most widely used stream cipher designed

by Rivest in 1994. Alternating Step Generator [124] is one of the well-known classical

LFSR-based constructions, proposed by Günther in 1987. We do not include these two

papers in the thesis since they do not fit in the probabilistic neutral bit cryptanalysis.

28

2

Cryptanalysis of Salsa20 and

ChaCha

In this chapter we cryptanalyze the stream cipher Salsa20 [31], one of the eSTREAM fi-

nal candidates in the software profile [20], and its variant ChaCha [33]. These primitives

have unique designs with a trivial state update function and a complex, round-based

output function, similar to that of block ciphers and hash functions. The only oper-

ations used in the designs are modular addition, XOR and rotation of 32-bit words.

Hence, they are suitable targets for differential cryptanalysis. First, we identify suitable

choices of truncated single-bit differentials using common statistical methods. Then we

introduce the notion of probabilistic neutral bits, along with a method to find them,

which lets us correctly detect part of the key using probabilistic backward computa-

tions. The results of this chapter are based on [15] which we published at FSE 2008.

In [15], we also presented a cryptanalysis of Rumba [32], a compression function based

on Salsa20.

2.1 Introduction

Salsa20 [31] is a stream cipher, introduced by Bernstein in 2005 as a candidate to

the eSTREAM project [106], and it was selected as one of the four final candidates

in the software profile. Bernstein later introduced ChaCha [33], a variant of Salsa20

that aims at bringing faster diffusion without slowing down encryption. These designs

have a total number of 20 rounds. The reduced variants are denoted by Salsa20/R and

29

2. CRYPTANALYSIS OF SALSA20 AND CHACHA

ChaChaR, when the number of rounds is reduced to R. These ciphers are meant to

provide 256-bit security; they also accept 128-bit keys, though.

Before our results, three independent cryptanalyses were published [87, 114, 227], re-

porting key-recovery cryptanalyses for reduced versions of Salsa20 with up to 7 rounds.

These cryptanalyses exploit a truncated differential over 3 or 4 rounds. In 2005, Crow-

ley [87] reported a 3-round differential, and built upon this a cryptanalytic algorithm for

Salsa20/5 with time complexity 2165. In 2006, Fischer et al. [114] exploited a 4-round

differential to cryptanalyze Salsa20/6 with time complexity 2177. In 2007, Tsunoo et

al. [227] improved the time complexity of the cryptanalysis results for Salsa20/7 to 2190,

still exploiting a 4-round differential, and also claiming a break of Salsa20/8. However,

the latter cryptanalysis is effectively slower than brute force.

The previous methods use the fact that not a complete knowledge of all key bits is

required to detect the bias of the truncated differential from the backward direction. In

other words, part of the key is neutral and does not need to be guessed. Tsunoo et al.

notably tried to improve the previous results by reducing the guesses to more relevant

bits — rather than guessing the whole relevant key bits — using nonlinear approxima-

tion of integer addition. However, their method is not precise enough to give an exact

estimation of the cryptanalytic cost. To improve the previous cryptanalyses results of

Salsa20, we introduce a novel method, inspired from correlation cryptanalysis [221],

and from the notions of completeness [110, 143] and neutrality [44]. In particular, we

introduce the notion of probabilistic neutral bits (PNBs) in this chapter. This concept

not only allows us to determine the most relevant key bits to be guessed, but also

provides a method to give a precise estimation of the cryptanalytic cost. To the best of

our knowledge, this is the first time that PNBs are used for the cryptanalysis of keyed

primitives. As a result, we present the first key-recovery cryptanalysis for Salsa20/8,

with time complexity 2251, and improve the previous cryptanalysis for Salsa20/7 by

a factor of 239, when these ciphers use 256-bit keys. We also consider cryptanalysis

of reduced-round variants of Salsa20 with 128-bit keys as well as the ChaCha stream

cipher.

30

2.2 Specification of the primitives

2.2 Specification of the primitives

In this section, we give a concise description of the stream ciphers Salsa20 and ChaCha.

The R-round variants of these ciphers are denoted by Salsa20/R and ChaChaR. The

original designs are composed of 20 rounds. These ciphers use a 256-bit key and a

64-bit nonce (or IV) to produce a sequence of 512-bit keystream blocks. They also

accept 128-bit keys, in which case an extended key is used by simply concatenating

two 128-bit keys to increase the length to 256 bits. Unless mentioned otherwise, we

focus on the 256-bit version. These stream ciphers work with 32-bit words and use

three operations on words: XOR (⊕), left rotation (≪) and modulo 232 addition (+).

The eight-word key k = (k0, k1, . . . , k7) and the two-word nonce v = (v0, v1) produce a

sequence of 16-word keystream blocks. The ith keystream block, 0 ≤ i ≤ 264−1, of the

stream cipher is a function of the key, the nonce, and the two-word counter t = (t0, t1)

which corresponds to the integer i (i = t0 + t1232). Both of these ciphers operate on

the 4× 4 matrix X of words of the following form

X =


x0 x1 x2 x3

x4 x5 x6 x7

x8 x9 x10 x11

x12 x13 x14 x15

 . (2.1)

Once the matrix X is filled with the key, the nonce, the counter and some constants,

the ith keystream block Z is defined as

Z = X + RoundR(X) . (2.2)

The “+” denotes wordwise modular addition of two matrices. The major differences

between Salsa20 and ChaCha are initialization of the matrix X and the definition of

RoundR function. We detail the differences below.

2.2.1 Salsa20

For Salsa20 the matrix X is initialized as

X =


x0 x1 x2 x3

x4 x5 x6 x7

x8 x9 x10 x11

x12 x13 x14 x15

 =


c0 k0 k1 k2

k3 c1 v0 v1

t0 t1 c2 k4

k5 k6 k7 c3

 . (2.3)

31

2. CRYPTANALYSIS OF SALSA20 AND CHACHA

where (c0, c1, c2, c3) = (0x61707865, 0x3320646E, 0x79622D32, 0x6B206574) are prede-

fined constants.1 The function RoundR(X) is itself based on a permutation called

quarterround which maps a four-word vector (a0, a1, a2, a3) into the four-word vector

(b0, b1, b2, b3) according to the following sequence of operations

b1 = a1 ⊕
[
(a3 + a0) ≪ 7

]
,

b2 = a2 ⊕
[
(a0 + b1) ≪ 9

]
,

b3 = a3 ⊕
[
(b1 + b2) ≪ 13

]
,

b0 = a0 ⊕
[
(b2 + b3) ≪ 18

]
.

(2.4)

For a matrix X, the value of Roundr(X), 1 ≤ r ≤ R is computed in r rounds.

The rounds are counted from one, and at each round the matrix X is updated. In odd

rounds, the quarterround mapping updates the columns (x0, x4, x8, x12), (x5, x9, x13, x1),

(x10, x14, x2, x6) and (x15, x3, x7, x11). Whereas, in even rounds, the rows (x0, x1, x2, x3),

(x5, x6, x7, x4), (x10, x11, x8, x9) and (x15, x12, x13, x14) are updated by the quarterround

function.

2.2.2 ChaCha

ChaCha is similar to Salsa20, with the following modifications.

1. The input words are placed differently in the initial matrix:

X =


x0 x1 x2 x3

x4 x5 x6 x7

x8 x9 x10 x11

x12 x13 x14 x15

 =


c0 c1 c2 c3

k0 k1 k2 k3

k4 k5 k6 k7

t0 t1 v0 v1

 . (2.5)

2. The quarterround permutation transforms a vector (a0, a1, a2, a3) to (b0, b1, b2, b3)

by sequentially computing

u0 = a0 + a1, u3 = (a3 ⊕ u0) ≪ 16 ,
u2 = a2 + u3, u1 = (a1 ⊕ u2) ≪ 12 ,
b0 = u0 + u1, b3 = (u3 ⊕ z0) ≪ 8 ,
b2 = u2 + b3, z1 = (u1 ⊕ z2) ≪ 7 .

(2.6)

3. The Roundr(X) function, 1 ≤ r ≤ R, is defined differently. In odd rounds,

the quarterround function updates the columns (x0, x4, x8, x12), (x1, x5, x9, x13),

1A word is denoted by an eight-digit hexadecimal number and, as it is conventional, we prepend

the hexadecimal numbers with 0x.

32

2.3 Cryptanalytic model

(x2, x6, x10, x14) and (x3, x7, x11, x15). Whereas, in even rounds, the quarterround

mapping updates the diagonals (x0, x5, x10, x15), (x1, x6, x11, x12), (x2, x7, x8, x13)

and (x3, x4, x9, x14).

We refer to the Salsa20 [31] and ChaCha [33] original descriptions for more details

and design philosophies. Note that we did not use the notation Roundr(X) as the input

matrix is updated differently in the odd and even rounds. This would have brought

confusion with r-fold function combination. The Roundr(X), 1 ≤ r ≤ R, function is a

permutation and trivially invertible for both Salsa20 and ChaCha. We use the notation

Round−1
R,r, 1 ≤ r ≤ R, for the function which maps RoundR(X) into Roundr(X).

2.3 Cryptanalytic model

The most reasonable cryptanalytic model for Salsa20 and ChaCha is a chosen nonce,

chosen counter scenario. In this model an adversary wants to recover the key k of one

of the stream ciphers Salsa20/R or ChaChaR. As shown in Figure 2.1, the adversary is

allowed to interact with the stream cipher oracle as follows. The adversary can submit

as many pairs of nonces and counters (v, t) of his choice as he wants. Then the oracle

responds to each request with the corresponding keystream block Z created from a fixed

random key k, unknown to the adversary. Once the adversary has collected enough

keystream blocks, he tries to guess the secret key k.

We consider differential cryptanalysis of Salsa20 and ChaCha. Specifically, the

adversary sends two pairs of nonces and counters (v, t) and (v′, t′) with a fixed difference

(∆v,∆t) to the oracle. The oracle then sends back their corresponding keystream blocks

Z and Z ′. In this chapter, the data complexity is given in number of keystream block

pairs collected by the adversary. The time complexity unit is the time required to

produce one keystream block.

2.4 Differential cryptanalysis with probabilistic neutral

bits

This section introduces differential cryptanalysis based on a new technique called prob-

abilistic neutral bits (PNBs). To apply it to Salsa20/R and ChaChaR, we first search

for one-bit truncated differentials in the state matrix after a few rounds. Then we

33

2. CRYPTANALYSIS OF SALSA20 AND CHACHA

Figure 2.1: Cryptanalytic model for the Salsa20 and ChaCha - Cryptanalysis
is done in a chosen nonce, chosen counter scenario. The adversary has access to many
keystream blocks for selected pairs of nonces and counters of his choice. The adversary’s
goal is then to recover the secret key which is unknown to him.

describe a general framework for probabilistic backwards computation, and introduce

the notion of PNBs along with a method to find them.

The intuition behind our method can be sketched as follows. Suppose that we have

identified a suitable non-zero difference (∆v,∆t) in the nonce and counter such that

after r rounds, 1 ≤ r ≤ R, one of the bits in the output of the function Roundr is

biased. Recall that Z = X + RoundR(X) and X depends on the key. If we know

the whole key, we can compute backwards from given keystream blocks to observe the

biased truncated differential bit of Roundr(X). However, if we do not know the key, we

might have to guess it in order to detect the bias which is quite expensive. The idea of

the PNBs is to partially guess the key. That is, we guess only those key bits which are

extremely important. The bias must still be observable when we compute backwards,

even though the other key bits are not correctly guessed.

34

2.4 Differential cryptanalysis with probabilistic neutral bits

2.4.1 Truncated differentials

Let X be an initial state matrix filled with the constants, key k, nonce v and counter t,

see equations (2.3) and (2.5). Consider another initial state matrix X ′ filled with the

constants and the same key k, but with nonce v′ and counter t′, where ∆v = (v0⊕v′0, v1⊕
v′1) and ∆t = (t0 ⊕ t′0, t1 ⊕ t′1). We are interested in the one-bit truncated differential

properties of Roundr function for some small value of r. Let ∆r = Roundr(X) ⊕
Roundr(X ′) where “⊕” is the wordwise XOR of two matrices. Denote the j-th, 0 ≤
j ≤ 31, LSB of the word i, 0 ≤ i ≤ 15, of a general 4 × 4 matrix X by [X]i,j . We

consider one-bit truncated differentials at the qth LSB of the word number p. Such a

differential is denoted by ([∆r]p,q | ∆v,∆t) where 1 ≤ r ≤ R, 0 ≤ p ≤ 15, 0 ≤ q ≤ 31.

In this context, the bias εd of the differential for a fixed key is defined by

Pr
v,t
{[∆r]p,q = 1} =

1
2

(1 + εd) , (2.7)

where v and t are considered as random variables. In addition, the value ε?d is defined

to be the median value of εd when key is considered random. Hence, for half of the

keys this differential will have a bias of at least ε?d.

2.4.2 Probabilistic backwards computation

In the following, assume that we are given a differential ([∆r]p,q |∆v,∆t) with bias εd for

an unknown key k. The corresponding keystream blocks to X and X ′ are respectively

denoted by Z and Z ′. Recall that X depends on k, v and t, whereas X ′ depends on k,

v′ = v⊕∆v and t′ = t⊕∆t; see equations (2.3) and (2.5). Having Z, Z ′, k, v and t, one

can invert the operations in Z = X + RoundR(X) and Z ′ = X ′ + RoundR(X ′) in order

to access to the r-round forward differential (with r ≤ R). This is possible by backward

computation thanks to the relations Roundr(X) = Round−1
R,r(Z−X) and Roundr(X ′) =

Round−1
R,r(Z

′−X ′). More specifically, define f(k, v, t, Z, Z ′) as the function which returns

the qth LSB of the word number p of the matrix Round−1
R,r(Z−X)⊕Round−1

R,r(Z
′−X ′),

that is,

f(k, v, t, Z, Z ′) = [Round−1
R,r(Z −X)⊕ Round−1

R,r(Z
′ −X ′)]p,q . (2.8)

Therefore, the relation f(k, v, t, Z, Z ′) = [∆r]p,q holds. Given enough output block

pairs with the presumed difference in the input, one can verify the correctness of a

35

2. CRYPTANALYSIS OF SALSA20 AND CHACHA

guessed candidate k̂ for the key k by evaluating the bias of the function f . This is

possible based on the reasonable assumption that we have Pr{f(k̂, v, t, Z, Z ′) = 1} =
1
2(1 + εd) conditioned on k̂ = k, whereas for (almost all) k̂ 6= k we expect f to be

unbiased, i.e., Pr{f(k̂, v, t, Z, Z ′) = 1} = 1
2 . The classical way of finding the correct

key requires exhaustive search over all possible 2256 guesses k̂. However, we can search

only over a subkey of m = 256− n bits, provided that an approximation g of f which

effectively depends on m key bits is available. More formally, let ks correspond to the

subkey of m bits of the key k and let f be correlated to g with bias εa; that is,

Pr
v,t,Z,Z′

{f(k, v, t, Z, Z ′) = g(ks, v, t, Z, Z ′)} =
1
2

(1 + εa) . (2.9)

Note that deterministic backwards computation (i.e., ks = k with f = g) is a special

case with εa = 1. Denote the bias of g by ε, i.e., Prv,t{g(ks, v, t, Z, Z ′) = 1} = 1
2(1 + ε).

Under some reasonable independency assumptions, the equality ε = εd ·εa holds. Again,

we denote ε? the median bias over all keys (we verified in experiments that ε? can be

well estimated by the median of εd · εa). Here, one can verify the correctness of a

guessed candidate k̂s for the subkey ks by evaluating the bias of the function g based

on the fact that we have Pr{g(k̂s, v, t, Z, Z ′) = 1} = 1
2(1 + ε) for k̂s = ks, whereas

Pr{g(k̂s, v, t, Z, Z ′) = 1} = 1
2 for k̂s 6= ks. This way we are faced with an exhaustive

search over 2m subkey candidates as opposed to the original 2256 key candidates. This

can potentially lead to a faster cryptanalysis. We stress that the price which we pay is

a higher data complexity as we will see in the following.

In section 2.4.3, we address the problem of finding an approximation function g.

For the moment, assume that such an approximation is available. One can shrink the

set of possible 2m subkeys to a smaller subset if he is given some keystream block pairs.

The number of required keystream block pairs depends on how small one wants the

size of the filtered subset be and the probability that this subset includes the correct

subkey. More precisely, for estimating the number N of keystream block pairs, we need

to consider the following problem of hypothesis testing [222, 85]. We are given a set of

2m sequences of random variables where 2m − 1 of them verify the null hypothesis H0;

that is, the candidate is not the correct subkey. One of them, i.e., the correct subkey,

verifies an alternative hypothesis H1. For a realization a of the corresponding random

variable A, the decision rule D(a) = i to accept Hi can lead to two types of errors:

36

2.4 Differential cryptanalysis with probabilistic neutral bits

1. Non-detection: D(a) = 0 when A ∈ H1. The probability of this event is pnd.

2. False alarm: D(a) = 1 when A ∈ H0. The probability of this event is pfa.

In our case, the random variable A is the vector of length N of the values of

g(k̂s, v, t, Z, Z ′) derived from the N keystream block pairs. Moreover, the optimal

distinguisher is simply constructed by comparing the Hamming weight of a realization

a of this vector with a certain threshold. The Neyman-Pearson lemma [85] gives us

a result to estimate the number N of samples required to get some bounds on the

probabilities. Indeed, it can be shown that for

N ≈

(√
c ln 4 + 3

√
1− ε2

ε

)2

, (2.10)

and for an appropriate threshold value we have pnd = 1.3 × 10−3 and pfa = 2−c.

Calculus details and more details on the construction of the optimal distinguisher can

be found in [222], see also [85, 22] for more general results on the distinguishability

of distributions. In our case, the value of ε is key dependent, so we use the median

bias ε? in place of ε in equation (2.10), resulting in a success probability of at least
1
2(1− pnd) ≈ 1

2 for the cryptanalytic algorithm.

We will show in section 2.5 that the time complexity of a cryptanalytic algorithm

constructed based on such a distinguisher for Salsa20 and ChaCha is 2mN + 2256−c.

For a given m and ε?, the value of c (or equivalently N or pfa) is chosen such that it

minimizes 2mN + 2256−c.

Remark 1. Previous cryptanalysis of Salsa20 use the rough estimate of N = ε−2

samples in order to identify the correct subkey. This estimate, however, is low and
incorrect as it ignores the numerator of equation (2.10). This value is the number of
samples necessary to distinguish two random variables, one of them coming from a
uniform source (hypothesis H0) and the other from a non-uniform source with bias ε
(hypothesis H1). This is clearly a different problem of hypothesis testing.

2.4.3 Probabilistic neutral bits

Our new view of the problem, described in section 2.4.2, demands efficient ways for

finding suitable approximations g(ks,W) of a given function f(k,W) where ks is a

subvector of k. In our case, we have W = (v, t, Z, Z ′) which we treat as a uniformly

37

2. CRYPTANALYSIS OF SALSA20 AND CHACHA

distributed random variable. Finding such approximations, in general, is an interesting

open problem which is related to the completeness/neutrality [110, 143] (see also [44]),

correlation immunity [220] and avalanche properties [116, 240] of Boolean functions.

In this section we introduce a generalized concept of neutral bits, called probabilistic

neutral bits (PNBs). This concept helps us to find suitable approximations in the case

that the Boolean function f does not properly mix its input bits. Generally speaking,

the concept of probabilistic neutrality allows us to divide the key bits into two groups:

significant key bits (of size m) and non-significant key bits (of size n = 256 −m). In

order to identify these two sets, we focus on the amount of influence which each bit of

the key has on the output of f . Definition 3 formally introduces the neutrality measure.

Algorithm 1 Estimation of the neutrality measure
Inputs: key bit index l, number of rounds R, the parameters ∆v,∆t, r, p and q of the
truncated differential.
Output: the estimated neutrality measure γl.

1: Choose the number of samples T and let ctr = 0.
2: for T ′ from 1 to T do
3: Choose k, v, t, Z and Z ′ at random.
4: Construct an initial state matrix X with key k, nonce v and counter t (see

equations (2.3) and (2.5))
5: Similarly construct X ′ with key k, nonce v ⊕∆v and counter t⊕∆t
6: Compute the truncated output difference bit d1 = [Round−1

R,r(Z − X) ⊕
Round−1

R,r(Z
′ −X ′)]p,q.

7: Flip the lth key bit in X and X ′.
8: Compute the truncated output difference bit d2 = [Round−1

R,r(Z − X) ⊕
Round−1

R,r(Z
′ −X ′)]p,q.

9: Increment ctr if the output differences are equal, i.e., d1 = d2.
10: end for
11: Output γl = 2 · ctr/T − 1.

Definition 3. The neutrality measure of the lth key bit with respect to the function
f(k,W) is defined as γl, where 1

2(1 + γl) is the probability (over all k and W) that
complementing the lth key bit does not change the output of f(k,W).

A key bit which has a neutrality measure equal to 1 is called a neutral bit; that is, it

has no effect on the output of the function. More generally, for a given threshold value

38

2.5 Cryptanalytic algorithm and time complexity

γ, −1 ≤ γ ≤ 1, we call the key bits with γl > γ PNBs; whereas we refer to the other

key bits as significant key bits. We also use the term non-significant key bits for PNBs.

Intuitively, the bigger γ is, the less effect the PNBs have on the output of the function,

and hence the better g approximates f . However, the cryptanalyst must choose an

optimal value for the threshold γ to minimize the cryptanalytic time complexity. We

discuss this issue in section 2.5.

Remark 2. Tsunoo et al. [227] used approximations of integer addition to identify the
dependency of key bits. In their method, each bit of a modular addition is approximated
by a nonlinear Boolean function with a limited algebraic degree. This can be seen as a
special case of our method. In particular, our method lets us give a precise estimation of
the cryptanalytic time and data complexities (see section 2.5), whereas the estimation
of [227] is less reliable.

We use Algorithm 1 to compute the neutrality measure of a single key bit for

Salsa20 or ChaCha. The number of samples T must be adjusted according to the

desired confidence level on the estimated neutrality measure. For cryptanalysis of

these stream ciphers, a threshold γ is chosen and then the key bits are divided into

the set of significant and non-significant key bits according to this threshold value and

their neutrality measure. Then the function g is defined to be the same as f except

that the non-significant key bits are set to a random value in k.

2.5 Cryptanalytic algorithm and time complexity

Let’s assume that we have found a truncated differential ([∆r]p,q | ∆v,∆t), and for a

fixed threshold γ, suppose that we have identified the set of significant key bits for which

the function g has median bias ε?, see section 2.4.2. The cryptanalytic algorithm is then

presented in Algorithm 2. Let us now discuss the time complexity of our cryptanalytic

algorithm. Step 2 is repeated for all 2m subkey candidates. For each subkey, steps (3)

and (4) are always executed which requires roughly N keystream block evaluations.1

The search part of step (6) is performed only with probability pfa = 2−c which brings an

1 More precisely the complexity is about 2N(R − r)/R times the required time for producing one

keystream block. The reason is that R rounds are executed to produce one key stream block, whereas

here we only need to invert R−r rounds for each keystream block pair. Recall that in order to evaluate

f (see equation (2.8)), two partial inversions are required.

39

2. CRYPTANALYSIS OF SALSA20 AND CHACHA

additional cost of 2n in case a subkey passes the optimal distinguisher filter. Therefore,

the complexity of steps (5-8) is 2npfa, resulting in a total complexity of

2m(N + 2npfa) = 2mN + 2256−c , (2.11)

for the cryptanalytic algorithm.

Algorithm 2 : Cryptanalytic algorithm for Salsa20 and ChaCha
Inputs: the parameters p, q, r,∆v and ∆t of the truncated differential, the set of m
significant key bits corresponding to a threshold value γ, number N of keystream block
pairs.
Output: the secret key with some probability.

1: Collect N pairs of keystream blocks, produced under an unknown key, where each
pair satisfies the relevant input difference ∆v for nonce and ∆t for counter.

2: for each of the 2m possible assignments ks to the subkey (i.e., the significant key
bits) do

3: Set the significant key bits of a key k to ks and the non-significant key bits to a
random value.

4: Evaluate the function g with the subkey ks for the N keystream block pairs (to
this end, evaluate the function f with the key k constructed in step 3 for the N
keystream block pairs).

5: if the optimal distinguisher, based on the N evaluations of g, legitimates the
subkey candidate ks as a potentially correct one then

6: Perform an additional exhaustive search over the n = 256−m non-significant
key bits in order to check the correctness of the filtered subkey ks, and to find
the non-significant key bits in case ks is indeed the correct subkey.

7: Stop if the right key is found, and output the recovered key.
8: end if
9: end for

However, there are several issues to be discussed. First, for a given differential

([∆r]p,q | ∆v,∆t) and a threshold γ, one needs to estimate the median bias ε? of the

function g in order to determine the required number N of keystream block pairs. If the

bias is big enough (let say |ε?| > 2−15), one can experimentally estimate it. Otherwise,

some theoretical tools are required. We failed to estimate the bias theoretically. To

cope with this problem, in our simulation results to be presented in section 2.6, we

not only restricted ourselves to small values of R (up to 8) and r (up to 4), but also

40

2.6 Experimental results

we allowed only one single bit of one of the four words of (∆v,∆t) to be nonzero.

Second, once we have the estimated value ε? for a given threshold γ, we need to choose

the false alarm probability pfa = 2−c such that the time complexity is minimized; see

equation (2.10) (with ε? instead of ε) and equation (2.11). Third, the minimized time

complexity has still the threshold value γ as a degree of freedom. Bigger values of γ

increase the number m of the significant key bits as well as the bias ε?. Since these two

values have opposite effect on the time complexity, the cryptanalyst must still find the

threshold value γ which optimizes the cryptanalytic time complexity.

2.6 Experimental results

As already mentioned, we only consider one bit difference in ∆v or ∆t. This gives

us 128 possible input differentials. In this section, we denote an r-round differential

([∆r]p,q | ∆v,∆t) by ([∆r]p,q | [∆0]i,j) where i, j indicate the position of the difference

in the initial state matrix. We have 0 ≤ q, j ≤ 31 and 0 ≤ p ≤ 15; moreover, for

Salsa20 6 ≤ i ≤ 9 whereas for ChaCha 12 ≤ i ≤ 15, see equations (2.3) and (2.5). We

used automatized search to identify optimal differentials for the reduced-round versions

Salsa20/7, Salsa20/8, ChaCha6, and ChaCha7. This search is based on the following

observation. The number n of PNBs for some fixed threshold γ mostly depends on the

output difference position (i.e., p and q), but not on the input difference position (i.e.,

i and j). Consequently, for each of the 512 possible positions for the truncated bit, we

can assign the input difference with maximum bias εd, and estimate time complexity

of the algorithm. Below we only present the differentials leading to the best cryptanal-

yses. The threshold γ is also an important parameter. Given a fixed differential, time

complexity of the algorithm is minimal for some optimal value of γ. However, this op-

timum may be reached for quite small γ, such that n is large and |ε?a| small. We use at

most 224 random nonces and counters for each of the 210 random keys, so we can only

measure a bias of about |ε?a| > β ·2−12 (where β ≈ 10 for a reasonable estimation error).

In our experiments, the optimum is not reached with these computational possibilities

in some cases (see, e.g., Table 2.2), and we note that the described complexities may

be improved by choosing a smaller γ. Table 2.1 summarizes our cryptanalytic results

on the two target ciphers.

41

2. CRYPTANALYSIS OF SALSA20 AND CHACHA

Cipher Key length Time Data

Salsa20/8 256 2251 231

ChaCha7 256 2248 227

Salsa20/7 256 2151 226

ChaCha6 256 2139 230

Salsa20/7 128 2111 221

ChaCha6 128 2107 230

Table 2.1: Summary of our cryptanalytic results on Salsa and ChaCha. The
table includes the best cryptanalytic results found for reduced-round variants of Salsa and
ChaCha.

Cryptanalysis of the 256-bit Salsa20/7. We use the differential ([∆4]1,14 | [∆0]7,31)

with |ε?d| = 0.131. The output difference is observed after working three rounds back-

ward from a 7-round keystream block. To illustrate the role of the threshold γ, we

present in Table 2.2 complexity estimates along with the number n of PNBs, the values

of |ε?d| and |ε?|, and the optimal values of c for several threshold values. For γ = 0.5,

the algorithm runs in time 2151 and data 226. The previous best cryptanalysis in [227]

required about 2190 trials and 212 data.

γ n |ε?a| |ε?| c Time Data

1.00 39 1.000 0.1310 31 2230 213

0.90 97 0.655 0.0860 88 2174 215

0.80 103 0.482 0.0634 93 2169 216

0.70 113 0.202 0.0265 101 2162 219

0.60 124 0.049 0.0064 108 2155 223

0.50 131 0.017 0.0022 112 2151 226

Table 2.2: Different cryptanalytic trade-offs for Salsa20/7. The table includes
different parameters which we found for our cryptanalysis of the 256-bit Salsa20/7 with
the differential ([∆4]1,14 | [∆0]7,31). We cannot find the optimal value for the threshold γ

since we measure the bias ε? experimentally.

Cryptanalysis of the 256-bit Salsa20/8. We use again the previous differential

([∆4]1,14 | [∆0]7,31) with |ε?d| = 0.131. The output difference is observed after working

four rounds backward from an 8-round keystream block. For the threshold γ = 0.12,

42

2.6 Experimental results

we find n = 36, |ε?a| = 0.0011, and |ε?| = 0.00015. For c = 8, this results in time

2251 and data 231. The list of PNBs is {26-31, 71, 72, 120-122, 148, 165-177, 210-

212, 224, 225, 242-247}. Note that our cryptanalytic algorithm is 2255−251 = 24 times

faster than brute force for the same success probability of about fifty percent. The

previous cryptanalysis in [227] claims 2255 trials with data 210 for success probability

44% which is worse than exhaustive search, let alone that the required number of

samples is underestimated which increase their complexity even further, see Remark 1.

Therefore, their algorithm does not constitute a break of Salsa20/8.

Cryptanalysis of the 128-bit Salsa20/7. Our cryptanalytic algorithm can be

adapted to the 128-bit version of Salsa20/7. With the differential ([∆4]1,14 | [∆0]7,31)

and γ = 0.4, we find n = 38, |ε?a| = 0.045, and |ε?| = 0.0059. For c = 21, this breaks

Salsa20/7 within 2111 time and 221 data. Our algorithm fails to break 128-bit Salsa20/8

because of the insufficient number of PNBs.

Cryptanalysis of the 256-bit ChaCha6. We use the differential ([∆3]11,0 | [∆0]13,13)

with |ε?d| = 0.026. The output difference is observed after working three rounds back-

ward from a 6-round keystream block. For the threshold γ = 0.6, we find n = 147,

|ε?a| = 0.018, and |ε?| = 0.00048. For c = 123, this results in time 2139 and data 230.

Cryptanalysis of the 256-bit ChaCha7. We use again the previous differential

([∆3]11,0 | [∆0]13,13) with |ε?d| = 0.026. The output difference is observed after working

four rounds backward from a 7-round keystream block. For the threshold γ = 0.5, we

find n = 35, |ε?a| = 0.023, and |ε?| = 0.00059. For c = 11, this results in time 2248 and

data 227. The list of PNBs is {3, 6, 15, 16, 31, 35, 67, 68, 71, 91-100, 103, 104, 127,

136, 191, 223-225, 248-255}.

Cryptanalysis of the 128-bit ChaCha6. Our cryptanalytic algorithm can be

adapted to the 128-bit version of ChaCha6. With the differential ([∆3]11,0 | [∆0]13,13)

and γ = 0.5, we find n = 51, |ε?a| = 0.013, and |ε?| = 0.00036. For c = 26, this breaks

ChaCha6 within 2107 time and 230 data. Our algorithm fails to break 128-bit ChaCha7.

43

2. CRYPTANALYSIS OF SALSA20 AND CHACHA

2.7 Summary

We presented a novel method for cryptanalyzing reduced-round Salsa20 and ChaCha,

inspired by correlation cryptanalysis and by the notion of neutral bits. In particular,

we introduced the notion of probabilistic neutral bits to mount the first cryptanalytic

algorithm faster than exhaustive search on the stream cipher Salsa20/8 with a 256-bit

key. As of April 2010, this is still the best result on the Salsa20 family of stream ciphers.

In [193], Sylvain Pelissier applied our method to reduced-word variants of Salsa20 with

words of size 8 and 16 bits. His results show that the probabilistic neutral bits can

indeed be successfully applied in practice. Nothing in this chapter affects the security

of the full version of Salsa20 and ChaCha. Notably, Salsa20 is widely viewed as a very

promising stream cipher for software applications.

44

3

Chosen IV Cryptanalysis for

Synchronous Stream Ciphers

In this chapter we cryptanalyze the initialization procedure of two synchronous stream

ciphers Trivium [68] and Grain-128 [126]. Trivium is one of the three stream ciphers

in the (updated) eSTREAM final portfolio [20] for hardware applications along with

Grain [128, 127] and MICKEY [21]; whereas Grain-128, a variant of Grain, was only

among the eSTREAM Phase 3 candidates. Both of these ciphers are constructed using

finite state machines with very simple state update functions and output filters, making

them highly suitable for restricted environments. The initialization procedures of these

ciphers are rather simple and based on iterating a fixed number of rounds a function,

either the same as or similar to their state update functions. Our cryptanalysis con-

cerns the general problem of finding an unknown key K from the output of an easily

computable keyed function F (V,K), where the adversary has the power to choose the

public variable V . In the case of synchronous stream ciphers, we simply define F as the

function which maps the key K and IV V into the first keystream bit generated from

that key and IV. The goal of the adversary is then to recover the key in a chosen IV sce-

nario. We first derive a function from F , based on a coefficient of its algebraic normal

form, which is less complex than F itself. Based on the idea of probabilistic neutral bits,

introduced in chapter 2, we then examine how much influence each key bit does have

on the value of that coefficient. Our cryptanalytic method exploits such information

to find the key faster than exhaustive search by filtering some of the wrong candidates.

The results of this chapter are based on [113], published at AFRICACRYPT 2008.

45

3. CHOSEN IV CRYPTANALYSIS FOR SYNCHRONOUS STREAM
CIPHERS

3.1 Introduction

Synchronous stream ciphers are symmetric cryptosystems which are suitable in soft-

ware applications with high throughput requirements, or in hardware applications with

restricted resources (such as limited storage, gate count, or power consumption). For

synchronization purposes, in many protocols the message is divided into short frames

where each frame is encrypted using a different publicly known initial value (IV) and

the same secret key. Stream ciphers should be designed to resist cryptanalytic algo-

rithms that exploit many known keystreams generated by the same key but different

chosen IVs. In general, the key and the IV are mapped to the initial state of the stream

cipher by an initialization function (and the automaton produces then the keystream

bits, using an output and update function). The security of the initialization function

relies on its mixing (or diffusion) properties: each key and IV bit should affect each

initial state bit in a complex way. This can be achieved with a round-based approach,

where each round consists of some nonlinear operations. On the other hand, using a

large number of rounds or highly involved operations is inefficient for applications with

frequent resynchronizations. Limited resources of hardware oriented stream ciphers

may even preclude the latter, and good mixing should be achieved with simple Boolean

functions and a well-chosen number of rounds. In [109, 191, 214, 111], a framework for

chosen IV statistical analysis of stream ciphers is suggested to investigate the structure

of the initialization function. If mixing is not perfect, then the initialization function

has an algebraic normal form (ANF) which can be distinguished from a uniformly ran-

dom Boolean function. Particularly, the coefficients of high degree monomials in the

IV (i.e., the product of many IV bits) may have some biased distribution. This spe-

cially happens in the reduced-round variants of the cipher due to the fact that it takes

many operations before all of the IV bits meet in the same memory cell. In [109], this

question was raised: “It is an open question how to utilize these weaknesses of state

bits to attack the cipher.”. The aim of this chapter is to contribute to this problem and

present a framework to mount key-recovery cryptanalytic algorithms. As in [109, 191],

one selects a subset of IV bits as variables. Assuming all other IV values as well as

the key fixed, one can write a keystream symbol as a Boolean function. By running

through all possible values of these bits and generating a keystream output each time,

46

3.2 Notations

one can compute the truth table of this Boolean function. Each coefficient in the al-

gebraic normal form of this Boolean function is parametrized by the bits of the secret

key. Based on the idea of probabilistic neutral bits from [15], we now examine if every

key bit in the parametrized expression of a coefficient does occur, or more generally,

how much influence each key bit does have on the value of the coefficient. If a coeffi-

cient does not depend on all the key bits, this fact can be exploited to filter those keys

which do not satisfy the imposed value for the coefficient. It is shown in [231] that for

Trivium [68], one of the eSTREAM final candidates in the hardware profile [20], with

IV initialization reduced to 576 iterations instead of 1192, linear relations on the key

bits can be derived for well chosen sets of variable IV bits. Our framework is more

general, as it works with the concept of (probabilistic) neutral key bits, i.e., key bits

which have no influence on the value of a coefficient with some (high) probability. This

way, we can get information on the key for many more iterations in the IV initialization

of Trivium, and similarly for the eSTREAM Phase 3 candidate Grain-128 [126]. On

the other hand, extensive experimental evidence indicates clear limits to our approach;

with our methods, it is unlikely to get information on the key faster than exhaustive

key search for Trivium or Grain-128 with full IV initialization.

3.2 Notations

We use B = {0, 1} for the binary field with two elements. A general t-bit vector in

Bt is denoted by X = (x1, x2, . . . , xt). By making a partition of X into U ∈ Bl and

W ∈ Bt−l, we mean dividing the variables set {x1, x2, . . . , xt} into two disjoint subsets

{u1, . . . , ul} and {w1, . . . , wt−l} and setting U = (u1, . . . , ul) and W = (w1, . . . , wt−l).

However, whenever we write (U ;W) we mean the original vector X. For example,

U = (x2, x4) and W = (x1, x3, x5) is a partition for the vector X = (x1, x2, x3, x4, x5)

and (U ;W) is equal to X and not to (x2, x4, x1, x3, x5). We also use the notation

U = X \W and W = X \ U . A vector of size zero is denoted by ∅. For a multi-index

α = (α1, α2, . . . , αt) ∈ Bt and a vector X ∈ Bt, we have the convenient shorthand Xα =∏t
i=1 x

αi
i for monomial expressions. For example, (x1, x2, x3, x4, x5)(1,0,1,1,0) = x1x3x4.

The Hamming weight of a binary vector X (i.e., the number of nonzero elements of

the vector) is denoted by wt(X). For two binary vectors α and β of equal length t,

whenever we write α ≤ β we mean that αi ≤ βi, for 1 ≤ i ≤ t.

47

3. CHOSEN IV CRYPTANALYSIS FOR SYNCHRONOUS STREAM
CIPHERS

3.3 Problem formalization

Let F : Bm × Bn → B be a keyed Boolean function which maps the m-bit public

variable V and the n-bit secret variable K into the output bit F (V,K). The function

F could stand, e.g., for the Boolean function which maps the key K and IV V of a

synchronous stream cipher to the (let say) first keystream bit produced from that key

and IV. We consider the following cryptanalytic model which corresponds to the chosen

IV scenario in case of synchronous stream ciphers. An oracle chooses a key K uniformly

at random over Bn and returns F (V,K) ∈ B to an adversary for any chosen V ∈ Bm

of adversary’s choice. The oracle chooses the key K only once and keeps it fixed and

unknown to the adversary. The goal of the adversary is to recover K by dealing with

the oracle assuming that he has also the power to evaluate F for all inputs, i.e., all

secret and public variables. To this end, the adversary can try all possible 2n keys

and filter the wrong ones by asking enough queries from the oracle. Intuitively each

oracle query reveals one bit of information about the secret key if F mixes its input

bits well enough to be treated as a random Boolean function with n + m input bits.

Therefore, assuming log2 n � m, the n key bits can be recovered by sending O(n)

queries to the oracle. More precisely if the adversary asks the oracle n+ β queries for

some integer β � 0, then the probability that only the unknown chosen key by the

oracle (i.e., the correct candidate) satisfies these queries while all the remaining 2n− 1

keys fail to satisfy all the queries is (1 − 2−(n+β))2n−1 ≈ e−2−β (for β = 10 it is about

1− 10−3). A wrong key is rejected after two query evaluations on average. Therefore,

the required time complexity is O(2n). However, if F extremely deviates from being

treated as a random function, the secret key bits may not be determined uniquely. It is

easy to argue that F divides Bn into equivalence classes. Two keys K ′ and K ′′ belong

to the same equivalence class if and only if F (V,K ′) = F (V,K ′′) for all V ∈ Bm. The

following lemma is a trivial statement.

Lemma 1. Let F (V,K) =
⊕

κ Γκ(V)Kκ where Kκ = kκ1
1 · · · kκnn for the multi-index

κ = (κ1, . . . , κn) ∈ Bn. No adversary can distinguish between the two keys K ′ and K ′′

for which K ′κ = K ′′κ for all κ ∈ Bn such that Γκ(V) 6= 0.

Indeed, given the 2m values of {F (V,K) | V ∈ Bm} for a key K ∈ Bn, it is only

possible to determine the values of {Kκ|∀κ,Γκ(V) 6= 0} which does not necessarily

have a unique solution for K. As a consequence of Lemma 1, the function F divides

48

3.4 Basic idea and possible scenarios

Bn into J ≤ 2n equivalence classes K1, K2, . . . ,KJ . Let ni denotes the number of keys

which belong to the equivalence class Ki. Note that we have
∑J

i=1 ni = 2n. A random

key lies in the equivalence class Ki with probability ni/2n in which case (n − log2 ni)

bits of information can be achieved about the key. The adversary on average can get∑J
i=1(n− log2 ni)

ni
2n bits of information about the n key bits by asking enough queries.

It is difficult to estimate the minimum number of needed queries due to the statistical

dependency between them. It highly depends on the structure of F but we guess that,

often, O(n) queries suffice again. However, in the case where F does not properly mix

its input bits, there might be faster methods than exhaustive search for key recovery.

We are interested in key-recovery algorithms which are faster than exhaustive search

in this case. The remaining part of this chapter probes this issue.

3.4 Basic idea and possible scenarios

The intuition behind our idea, to provide key-recovery cryptanalytic algorithms which

are faster than exhaustive search, is mainly based on [231, 109, 214, 111, 191] and

can be explained as follows. The algebraic description of the function F (V,K) is too

complex in general to be amenable to direct analysis. If one derives a weaker keyed

function Γ(W,K) : Bm−l ×Bn → B from F which depends on the same key and a part

of the public variables, the adversary-oracle interaction can still go on through Γ this

time. Our main idea is to derive such functions from the algebraic expansion of F by

making a partition of the m-bit public variable V into V = (U ;W) with l-bit vector

U and (m− l)-bit vector W . One can evaluate such derived functions with the help of

F oracle. In our main example, Γ(W,K) is a coefficient of the algebraic normal form

of the function deduced from F by varying over the bits in U only. We return to this

issue in section 3.5. If the function Γ(W,K) does not have a well-distributed algebraic

structure, it can be exploited for cryptanalysis. Let us investigate different scenarios:

1. If Γ(W,K) is imbalanced for (not necessarily uniformly) random W and many

fixed K, then the function F (or equivalently the underlying stream cipher) with

unknown K can be distinguished from a random one.

2. If Γ(W,K) is evaluated for some fixed W , then Γ(W,K) is an expression in the

key bits only. The simpler this expression is, the better it can be exploited.

49

3. CHOSEN IV CRYPTANALYSIS FOR SYNCHRONOUS STREAM
CIPHERS

3. If Γ(W,K) has many key bits which have (almost) no influence on the values

of Γ(W,K), a suitable approximation may be identified and exploited for key

recovery cryptanalytic algorithms.

Scenario 1 has already been discussed in the introduction. We do not explore it further

since it considers distinguishers while we are interested in key recovery algorithms. The

interested reader is referred to [109, 191, 214, 111] for more details.

In scenario 2, the underlying idea is to find a relation Γ(W,K), evaluated for some

fixed W , which depends only on a subset of t (< n) key bits. The functional form

of this relation can be determined with 2t evaluations of Γ(W,K). By trying all 2t

possibilities for the involved t key bits, one can filter those keys which do not satisfy

the imposed relation. The complexity of this precomputation is 2t times needed to

compute Γ(W,K), see section 3.5. More precisely, if p = Pr{Γ(W,K) = 0} for the fixed

W , the key space is filtered by a factor of p2+(1−p)2. The interesting situation happens

when several simple imposed relations on the key bits are available. For example, if a

lot of linear relations on the key bits are available, one combines them with Gaussian

elimination to reduce the key search space efficiently. This case is essentially, what is

done by Vielhaber in the AIDA attack [231].

In scenario 3, our main idea is to find a function A(W,Ks) which effectively depends

on a subvector Ks of the key of size t < n, and which is correlated to Γ(W,K) with

a nonzero correlation coefficient. Then, by asking the oracle enough queries we get

some information about t bits of the secret key by carefully analyzing the underlying

hypothesis testing problem. This scenario is the target scenario of this chapter and will

be discussed in detail. We will proceed by explaining how to derive such functions Γ

from the coefficients of the ANF of F in section 3.5, and how to find such approximation

functions A in section 3.6.

3.5 Derived functions from polynomial description

In this section we explain how to derive functions Γ from the coefficients of the ANF

of F . Consider the algebraic normal form F (V,K) =
⊕

ν,κ Γν,κV νKκ, with binary

coefficients Γν,κ where ν ∈ Bm and κ ∈ Bn. Make the partitionings V = (U ;W)

for the public variable V and ν = (α;β) for the multi-index ν with l-bit segments U

and α, and (m − l)-bit segments W and β such that V ν = UαW β. Therefore, we

50

3.5 Derived functions from polynomial description

have the expression F (V,K) =
⊕

α,β,κ Γ(α;β),κU
αW βKκ =

⊕
α Γα(W,K)Uα, where

Γα(W,K) =
⊕

β,κ Γ(α;β),κW
βKκ. For every α ∈ Bl, the function Γα(W,K) can serve

as a function Γ derived from F . Here is a toy example to illustrate the notation.

Example 1. Let n = m = 3 and F (V,K) = k1v1 ⊕ k2v0v2 ⊕ v2. Take U = (v0, v2)
of l = 2 bits and W = (v1) of m − l = 1 bit. Then Γ0(W,K) = k1v1, Γ1(W,K) = 0,
Γ2(W,K) = 1, Γ3(W,K) = k2.1

Note that an adversary with the help of the oracle can evaluate Γα(W,K) for the

unknown key K at any input W ∈ Bm−l for every α ∈ Bl by sending at most 2l queries

to the oracle. In other words, the partitioning of V has helped us to define a computable

function Γα(W,K) (as a candidate for Γ) for small values of l, even though the explicit

form of Γα(W,K) remains unknown. To obtain the values Γα(W,K) for all α ∈ Bl, an

adversary asks for the output values of all 2l inputs V = (U ;W) with the fixed part W .

This gives the truth table of a Boolean function in l variables for which the coefficients

of its ANF (i.e., the values of Γα(W,K)) can be found in time l2l and memory 2l using

the so-called binary Möbius transform [86]. Alternatively, a single coefficient Γα(W,K)

for a specific α ∈ Bl can be computed, without memory requirements, by XORing the

output of F for all 2wt(α) inputs V = (U ;W) for which each bit of U is at most as large

as the corresponding bit of α. In other words, we have the following equation

Γα(W,K) =
⊕
U≤α

F ((U ;W),K) . (3.1)

One can expect that a subset of public variable bits are not well mixed with other

variables in a not-so-random function F (e.g., in the functions related to the reduced-

round variants of the initialization of stream ciphers). We call such a subset (or vector)

of public variable bits a set of weak public variables in general. In the context of stream

ciphers, we call them a set of weak IV variables. To avoid existence of any set of weak

IV variables, the initialization process of a stream cipher must be long enough such

that all of the IV variables are well mixed with themselves as well as with the key

variables at the end. It is an open question how to identify a set of weak IV variables

by systematic methods.

1We also denote a general multi-index α = (α1, . . . , αt) by its integer representation
Pt
i=1 αt2

t−1.

51

3. CHOSEN IV CRYPTANALYSIS FOR SYNCHRONOUS STREAM
CIPHERS

3.6 Functions approximation

We are interested in the approximations of a given Boolean function Γ(W,K) : Bm−l×
Bn → B which depend only on a subset of key bits. The astute reader may notice

that our probabilistic neutral bit concept in chapter 2 is a useful tool for this goal.

Therefore, we make an appropriate partition of the key K according to K = (Ks;Kn),

with Ks containing t significant key bits and Kn containing the remaining (n− t) non-

significant key bits, and construct the function A(W,Ks). We also use the term subkey

to refer to the set of significant key bits. Such a partitioning can be systematically

identified, using the definition of neutrality measure, see Definition 3. We bring the

definition here for convenience.

Definition 4. The neutrality measure of the ith key bit with respect to a function
Γ(K,W) is defined as γi, where 1

2(1 + γi) is the probability (over all K and W) that
complementing the ith key bit does not change the output of Γ(K,W).

In practice, a threshold −1 ≤ γ ≤ 1 is chosen and then the key bits are divided into

the set of significant and non-significant key bits according to this threshold value

and their neutrality measure. A key bit is recognized as significant if and only if its

neutrality measure is not bigger than the threshold value. Then the approximation

function A(W,Ks) is defined to be the same as Γ except that the non-significant key

bits, Kn, are set to a fixed value (e.g. zero) in K. Note that, if Kn consists only of

neutral key bits (with γi = 1), then the approximation A is exact, because Γ(W,K)

does not depend on these key bits.

Example 2. Let n = m = 3, l = 2 and Γ(W,K) = k0k1k2v0v1 ⊕ k0v1 ⊕ k1v0. For
uniformly random K and W , we find γ0 = 1/8, γ1 = 1/8, γ2 = 7/8. Consequently,
it is reasonable to use Ks = (k0, k1) as the subkey. With fixed k2 = 0, we obtain the
approximation A(W,Ks) = k0v1 ⊕ k1v0 which depends on t = 2 key bits only.

3.7 Description and evaluation of the cryptanalytic algo-

rithm

Suppose that we have already a derived function Γ(W,K) for a function F as well as an

approximation A(W,Ks) of Γ for a partitioning K = (Ks;Kn). For example, Γ can be

52

3.7 Description and evaluation of the cryptanalytic algorithm

constructed from the algebraic coefficients of F by randomly looking for a set of l weak

public variables, see section 3.5. As already mentioned in section 3.6, the partitioning

of the key bits can be easily done according to the neutrality measure of key bits. In

this section we study how to find a small subset of candidates for the subkey Ks by

filtering some of the wrong ones with a probabilistic guess-and-determine procedure.

In order to filter the set of all 2t possible subkeys into a smaller set, we need to

distinguish an incorrect guess for the subkey from the correct subkey. Let K̂s denote a

guess for the subkey. Our ability in distinguishing subkeys is related to the correlation

coefficient between A(W, K̂s) and Γ(W,K) with K = (Ks,Kn) under the following two

hypotheses.

• H0 : the guessed part K̂s is correct

• H1 : the guessed part K̂s is incorrect.

More precisely, under these two hypotheses, the values of ε0 and ε1 defined in the

following play a crucial role:

Pr
W
{A(W, K̂s) = Γ(W,K)|K = (K̂s,Kn)} =

1
2

(1 + ε0) (3.2)

Pr
W,K̂s

{A(W, K̂s) = Γ(W,K)|K = (Ks,Kn)} =
1
2

(1 + ε1) . (3.3)

In general, both ε0 and ε1 are random variables, depending on the key. In the case

that the distributions of ε0 and ε1 are separated, we can achieve a small non-detection

probability pmis and false alarm probability pfa by using enough samples. In the special

case where ε0 and ε1 are constants with ε0 > ε1, the optimum distinguisher is Neyman-

Pearson [85]. Then, N values of Γ(W,K) for different W (assuming that the samples

Γ(W,K) are independent) are sufficient to obtain pfa = 2−c and pmis = 1.3 × 10−3,

where

N ≈

(√
c(1− ε2

0) ln 4 + 3
√

1− ε2
1

ε1 − ε0

)2

. (3.4)

The filtering will be successful with probability 1−pmis. In other words, with probabil-

ity 1− pmis, the filtered set of subkeys, which has an approximate size of pfa2t = 2t−c,

includes the correct subkey. The complexity of a cryptanalytic algorithm based on this

53

3. CHOSEN IV CRYPTANALYSIS FOR SYNCHRONOUS STREAM
CIPHERS

filtering is as follows. For each guess K̂s of the subkey, the correlation coefficient ε of

A(W, K̂s) ⊕ Γ(W,K) must be computed. This requires computation of the approxi-

mation function A(W, K̂s) by the adversary, and computation of the function Γ(W,K)

through the oracle, for the same N values of W . The cost of this part is at most

N2l for each guess of the subkey, assuming that Γ is derived from a coefficient of F

using a set of weak public variables of size l. This must be repeated for all 2t possible

guesses K̂s. The set of filtered candidates for the subkey Ks has a size of about 2t−c.

The whole key can then be verified by an exhaustive search over the non-significant

key part Kn with a cost of 2t−c2n−t evaluations of F . The total complexity becomes

N2l2t + 2t−c2n−t = N2l+t + 2n−c.

Remark 3. In practice, the values of ε0 and ε1 are key dependent. If the key is
considered as a random variable, then ε0 and ε1 are also random variables. However,
their distribution may not be fully separated, and hence a very small pmis and pfa may
not be possible to achieve. We propose the following non-optimal distinguisher: first, we
choose a threshold ε?0 such that pε = Pr{ε0 > ε?0} has a significant value, e.g., 1/2. We
also identify a threshold ε?1, if possible, such that Pr{ε1 < ε?1} = 1. Then, we estimate
the sample size using equation (3.4) by replacing ε0 and ε1 by ε?0 and ε?1, respectively,
to obtain pfa ≤ 2−c and effective success probability (1 − pmis)pε ≈ 1/2. If ε?0 and ε?1
are close, then the estimated number of samples becomes very large. In this case, it is
better to choose the number of samples intuitively, and then estimate the related pfa.

Remark 4. It is reasonable to assume that a false subkey K̂s, which is close to the
correct subkey, may lead to a larger value of ε, and hence a large pfa. Here, the measure
for being “close” could be the neutrality measure γi and the Hamming weight: if only
a few key bits on positions with large γi are false, one would expect that ε is large.
We believe that the effect of this behaviour on pfa is often negligible because in most of
the cases the portion of “close” subkeys is negligible compared to the size of the whole
subkey space.

3.8 Application to Trivium

Trivium [68] is one of the stream ciphers in the final portfolio of the eSTREAM project.

It consists of three shift registers of different lengths with an internal state of 288 bits.

At each round, a bit is shifted into each of the three shift registers using a non-linear

combination of taps from that and one other register; and then one keystream bit is

54

3.8 Application to Trivium

produced using a linear output function. To initialize the cipher, the n = 80 key bits

and m = 80 IV bits are written into two of the shift registers, with the remaining

bits being set to a fixed pattern. The cipher state is then updated R = 18 × 64 =

1152 times without producing output in order to provide a good mixture of the key

and IV bits in the initial state. We consider the Boolean function F (V,K) which

computes the first keystream bit after r rounds of initialization. In [109], Trivium

was analyzed with chosen IV statistical tests and non-randomness was detected for

r = 10× 64, 10.5× 64, 11× 64, 11.5× 64 rounds with l = 13, 18, 24 and 33 IV bits,

respectively. In [231], the key recovery cryptanalysis of Trivium was investigated with

respect to scenario 2 (see section 3.4) for r = 9 × 64 rounds. Here we provide more

examples for key recovery cryptanalysis with respect to scenario 3 for r = 10× 64 and

r = 10.5× 64. In the following two examples, the sets of weak IV variables have been

found by a random search. We first concentrate on equivalence classes of the key.

Example 3. For r = 10 × 64 rounds, the set of l = 10 weak IV variables with the bit
positions {34, 36, 39, 45, 63, 65, 69, 73, 76, 78} for U , and the coefficient with index
α = 1023 (corresponding to the monomial of maximum degree), we could experimentally
verify that the derived function Γα(W,K) only depends on t = 10 key bits with bit
positions {15, 16, 17, 18, 19, 22, 35, 64, 65, 66}. By assigning all 210 different
possible values to these 10 key bits and putting those Ks’s which gives the same function
Γα(W,K) (by trying enough samples of W), we could determine the equivalence classes
for Ks with respect to Γα. Our experiment shows the existence of 65 equivalence classes:
one with 512 members for which k15k16 + k17 + k19 = 0 and 64 other classes with 8
members for which k15k16 + k17 + k19 = 1 and the vector (k18, k22, k35, k64, k65, k66) has
a fixed value. This shows that Γα provides 1

2 × 1 + 1
2 × 7 = 4 bits of information about

the key on average.

Example 4. For r = 10 × 64 rounds, the set of l = 11 weak IV variables with the bit
positions {1, 5, 7, 9, 12, 14, 16, 22, 24, 27, 29} for U , and the coefficient with index
α = 2047 (corresponding to the monomial of maximum degree), the derived function
Γα(W,K) depends on all 80 key bits. A more careful look at the neutrality measure of
the key bits reveals that max(γi) ≈ 0.35 and only 7 key bits have a neutrality measure
larger than γ = 0.18, which is not enough to get a useful approximation A(W,Ks) for an
efficient cryptanalytic algorithm. However, we observed that Γα(W,K) is independent
of the key for W = 0, and more generally the number of significant bits depends on
wt(W).

55

3. CHOSEN IV CRYPTANALYSIS FOR SYNCHRONOUS STREAM
CIPHERS

It is difficult to find a good choice of a set of weak IV variables for larger values of

r, using a random search. The next example shows how we can go a bit further with

some insight on the initialization procedure of the cipher.

Example 5. Now we consider r = 10.5 × 64 = 10 × 64 + 32 = 672 rounds. The con-
struction of the initialization function of Trivium suggests that shifting the bit positions
of U in Example 4 may be a good choice for a set of weak IV variables. Hence, we
choose U with the l = 11 bit positions {33, 37, 39, 41, 44, 46, 48, 54, 56, 59, 61}, and
α = 2047 (corresponding to the monomial of maximum degree). In this case, Γα(W,K)
for W = 0 is independent of 32 key bits, and p = Pr{Γα(0,K) = 1} ≈ 0.42. This is
already a cryptanalysis which is 1/0.42 ≈ 1.95 times faster than exhaustive search.

The following example shows how we can connect a bridge between scenarios 2 and

3 and come up with a cryptanalytic algorithm which is much faster than exhaustive

search.

Example 6. Consider the same setup as in Example 5. If we restrict ourselves to W ’s
with wt(W) = 5 and compute the value of γi conditioned over this subset of W ’s, then
maxi(γi) ≈ 0.68. Assigning all key bits with γi ≤ γ = 0.25 as significant, we obtain
a significant key part Ks with the t = 29 bit positions {1, 3, 10, 14, 20, 22, 23, 24,
25, 26, 27, 28, 31, 32, 34, 37, 39, 41, 46, 49, 50, 51, 52, 57, 59, 61, 63, 68, 74}.
Our analysis of the approximation function A(W,Ks) shows that for about 44% of the
keys we have ε0 > ε?0 = 0.2 when the subkey is correctly guessed. If the subkey is not
correctly guessed, we observe ε1 < ε?1 = 0.15. Then, according to equation (3.4) the
correct subkey of 29 bits can be detected using at most N ≈ 215 samples, with time
complexity N2l+t ≈ 255. Note that N must be smaller than the total number of W ’s
with wt(W) = 5, i.e., N <

(
69
5

)
. This condition is satisfied here.

3.9 Application to Grain-128

The stream cipher Grain-128 [126] is one of the eSTREAM phase 3 candidates. It

consists of an LFSR, an NFSR and a nonlinear output function. Grain-128 has n = 128

key bits, m = 96 IV bits and the full initialization function has R = 256 rounds. We

again consider the Boolean function F (V,K) which computes the first keystream bit of

Grain-128 after r rounds of initialization. In [109], Grain-128 was analyzed with chosen

IV statistical tests. With l = 22 variable IV bits, they observed a non-randomness of

the first keystream bit after r = 192 rounds. They also observed a non-randomness in

56

3.9 Application to Grain-128

the initial state bits after the full number of rounds. In [191], a non-randomness up to

313 rounds was reported (without justification). In this section we provide key recovery

cryptanalysis for up to r = 180 rounds with slightly reduced complexity compared with

exhaustive search. In the following example, the set of weak IV variables for scenario

2 have been found again by a random search.

Example 7. Take the set of l = 7 weak IV variables with the bit positions {2, 6, 8,
55, 58, 78, 90} for U . For the coefficient with index α = 127 (corresponding to the
monomial of maximum degree), a significant imbalance for up to r = 180 rounds can
be detected: the monomial of degree 7 appears only with a probability of p < 0.2 for
80% of the keys. Note that in [109], the cryptanalytic algorithm with l = 7 could be
successfully applied only up to r = 160 rounds.

In the following examples, our goal is to show that there exists a cryptanalytic algorithm

for up to r = 180 rounds on Grain-128 which is slightly faster than exhaustive key

search.

Example 8. Consider again the l = 7 IV bits U with bit positions {2, 6, 8, 55, 58, 78,
90}. For r = 150 rounds we choose the coefficient with index α = 117 (corresponding to
a monomial of non-maximum degree) and include key bits with neutrality measure less
than γ = 0.98 in the list of the significant key bits. This gives a subkey Ks of t = 99 bits.
Our simulations show that ε0 > ε?0 = 0.95 for about 95% of the keys, hence pmis = 0.05.
On the other hand, for 128 wrong guesses of the subkey with N = 200 samples, we
never observed that ε1 > 0.95, hence we estimate pfa < 2−7. This gives a cryptanalytic
algorithm with time complexity N2t+l + 2npfa ≈ 2121 which is an improvement of a
factor of (at least) 1/pfa = 27 compared to exhaustive search.

Example 9. With the same choice for U as in Examples 7 and 8, we take α = 127
(corresponding to the monomial of maximum degree) for r = 180 rounds. We identified
t = 110 significant key bits for Ks. Our simulations show that ε0 > ε?0 = 0.8 in
about 30% of the runs when the subkey is correctly guessed. For 128 wrong guesses of
the subkey with N = 128 samples, we never observed that ε1 > 0.8. Here we have a
cryptanalytic algorithm with time complexity N2t+l+2npfa ≈ 2124, i.e., an improvement
of a factor of 24.

57

3. CHOSEN IV CRYPTANALYSIS FOR SYNCHRONOUS STREAM
CIPHERS

3.10 Connection with previous works

In the literature there are a fair number of articles discussing the security of stream

ciphers with regards to the initialization procedure [90, 115, 63, 122, 111, 136, 108, 123,

9, 164, 163, 242, 77, 214, 29, 109, 231]. The technique of this chapter is in the line of

that of [231, 109, 191, 214, 111], in the sense that all of them consider the algebraic

description of the initialization procedure. The method is also closely related to the

differential [48], higher-order differential [155], square [93], saturation [165] and inte-

gral [158] attacks, also collectively referred to as multiset attack [56], see section 1.5.5.

The resemblance comes from the fact that in all of these methods, a specific function

is summed over a certain set (or more generally multiset) of inputs, see equation (3.1).

However, here we observed a behavior which is less frequent in other methods. In some

of the examples in this chapter, the values for W were often chosen adaptively. By

adaptively we mean that a stronger deviation from randomness is observed for some

restricted choices for W (e.g., low weight W ’s) or even a particular value for W (e.g., W

= 0). Whereas in most applications of differential-related cryptanalysis, specific input

values are of no favor.

3.11 Follow-ups of our work

Following our work, Dinur and Shamir published the cube attack [100] which is essen-

tially the same as Vielhaber’s AIDA attack [231] that we discussed under scenario 2

in section 3.4. Our method is mainly statistical whereas AIDA/cube attack is totally

algebraic. Dinur and Shamir improved the previous results due to the following con-

tributions. They remarked that for a random Boolean function F (V,K) with m-bit

public variable V and n-bit secret key K whose degree is limited to d, any subset of IV

variables of size d− 1 is weak. More precisely, if U is any subvector of size d− 1 of the

public variables, the derived function Γ(W,K) = Γ2d−1−1(W,K) is an affine function

where W = V \ U . In this case, the function Γ corresponds to the coefficient of the

highest degree monomial, i.e., the coefficient of
∏d−1
i=1 ui when F is described in terms

of variables in U . As it was later pointed out by Bernstein [37], this is a trivial corollary

of Lai’s work [159] published in 1994, which can be explained as follows. The function

Γ is a derivative of order d−1 of the original function F . Since, each derivative reduces

the degree at least by one, Γ trivially has degree at most one, i.e., an affine function.

58

3.12 Summary

Interestingly, based on this simple observation, it can be easily argued that AIDA/cube

attack has a complexity of n2d−1 + n2 under the above assumption for F [100]. Since

the degree evolves very slowly in Trivium, this cute observation motivated Dinur and

Shamir to look for sets of weak IV variables of larger size. In our examples in this

chapter we found the sets of weak IV variables mainly using random search. Most re-

markably, Dinur and Shamir developed a random-walk-based heuristic search for finding

sets of weak public variables (which they call it “appropriate maxterms”). This method

helped them to significantly improve the previous results by finding a lot of appropriate

maxterms, after few weeks of preprocessing stage. In particular, for Trivium with 672

initialization rounds (for which we require a time complexity of order 255 with a set

of 11 weak IV variables, see Example 6), they found 63 appropriate maxterms of size

12, yielding an amazingly low total complexity of around 219. For Trivium with 767

initialization rounds, they found 35 appropriate maxterms of size 28-31 which gives rise

to a cryptanalytic algorithm in time 245.

Later, Aumasson et al. introduced the cube testers [14] which led to demonstrate

nonrandom properties for Trivium up to 885 initialization rounds. In [16], cube testers

were implemented using an efficient FPGA hardware to find a set of weak IV variables

of size 40 using an evolutionary-based search algorithm to provide a distinguisher for

Grain-128 with 237 initialization rounds in time 240. By extrapolation, it is conjectured

in [16] that a successful distinguisher in time 283 can be constructed for the full Grain-

128, i.e., with 256 initialization rounds.

Finding a set of weak public variables is essential for the success of this kind of crypt-

analytic algorithms. The random-walk and evolutionary search algorithms turn out to

be very good solutions for this crucial problem. In chapter 4, published before [100]

and [16] in [149], we use a more systematic method to find a set of weak public vari-

ables, rather than random search, to cryptanalyze a self-synchronizing stream cipher

based on the ideas of this chapter.

3.12 Summary

The framework for chosen IV statistical distinguishers for stream ciphers has been

exploited to provide new methods for key recovery algorithms. This is based on a

polynomial description of output bits as a function of the key and the IV. A deviation

59

3. CHOSEN IV CRYPTANALYSIS FOR SYNCHRONOUS STREAM
CIPHERS

of the algebraic normal form (ANF) from random indicates that not every bit of the

key or the IV has full influence on the value of certain coefficients in the ANF. It

has been demonstrated how this can be exploited to derive information on the key

faster than exhaustive key search through approximation of the polynomial description

and using the concept of probabilistic neutral key bits. This answers positively the

question whether statistical distinguishers based on polynomial descriptions of the IV

initialization of a stream cipher can be successfully exploited for key recovery. As

a proof, two applications of our methods through extensive experiments have been

given: a reduced complexity key recovery for Trivium with IV initialization reduced

to 672 of its 1152 iterations, and a reduced complexity key recovery for Grain-128

with IV initialization reduced to 180 of its 256 iterations. Our key recovery results on

Trivum has been improved in [100]. Newer cryptanalyses of Grain-128 [16, 69] discuss

distinguishers based on cube testers [14] and related-key cryptanalysis based on sliding

properties [58] of the initialization procedure of the cipher. Part of our results, still

remains the best cryptanalytic results on Grain-128 as of April 2010.

60

4

Chosen Ciphertext Cryptanalysis

for Self-synchronizing Stream

Ciphers

In cryptology we commonly face the problem of finding a secret key from the output

of an interactable keyed function. The interactable function depends on a secret and

a public variable. The public variable is a controllable input, making the function

interactable in the following sense. An oracle randomly chooses a key and keeps it

unknown to an adversary. He then provides the adversary with the output value of the

function (computed under the fixed unknown key) for any chosen value for the public

variable of adversary’s choice. The goal of the adversary is to recover the secret key as

efficiently as possible. In chapter 3, we studied this problem for synchronous stream

ciphers. In that case, the public variable were the initial value (IV) and the interactable

function were simply the function which maps the key and IV into, for example, the

first keystream bit. In this chapter, we focus on self-synchronizing stream ciphers.

First we show how to model these primitives in the above-mentioned general problem

by relating appropriate interactable functions to the underlying ciphers as it is less

trivial than the case of synchronous stream ciphers. Then we apply the framework of

chapter 3 for dealing with this kind of problems to the proposed T-function based self-

synchronizing stream cipher by Klimov and Shamir [152] at FSE 2005. Our results,

originally presented in [149] at INDOCRYPT 2008, show how to deduce some non-

trivial information about the key for this cipher.

61

4. CHOSEN CIPHERTEXT CRYPTANALYSIS FOR
SELF-SYNCHRONIZING STREAM CIPHERS

4.1 Introduction

The area of stream cipher design and analysis has made a lot of progress recently, mostly

spurred by the eSTREAM [106] project. Thanks to this project, it is now a common

belief that designing elegant strong synchronous stream ciphers is possible. In contrary,

there is no such belief about self-synchronizing stream ciphers (SSSCs). There were

only two SSSCs among the initial 34 eSTREAM candidates, both of which revealed

serious weaknesses. Apparently, SSSCs have been (and maybe still are) widely used

in industrial, diplomatic and military communications [88], nevertheless, their future

deployment is unclear [18]. However, from a theoretical point of view, it has remained

a very challenging issue for almost two decades to come up with suitable designs for

SSSCs. There are very few articles in the literature studying SSSCs. Dedicated con-

structions for SSSCs were first introduced by Maurer [170] in 1991, see [200] for an older

work. The remaining articles are devoted to concrete proposals and their cryptanaly-

ses. In 1992, Daemen et al. reconsidered the design of dedicated SSSCs from a practical

point of view [89] and proposed KNOT as an efficient concrete SSSC. KNOT was later

broken by Joux and Muller in 2003 [137]. There are several tweaked versions of KNOT.

In his Ph.D. thesis, Daemen detected a statistical imbalance in the output of KNOT

and suggested the improved cipher ΥΓ. In 2005, Daemen and Kitsos proposed the SSSC

Mosquito [91] as a candidate to the eSTREAM call for primitives. Soon after in 2006,

Joux and Muller [139] proposed successful cryptanalytic algorithms for Mosquito as well

as ΥΓ. As a response, Mosquito was tweaked and Moustique [92] was proposed, which

was among the eSTREAM phase-3 candidates. However, it was excluded from the final

protfolio [19, 20] due to the successful cryptanalysis of [144]. SSS [213], designed by

Rose et al., was the other eSTREAM SSSC candidate which remained a phase 1 can-

didate due to a devastating cryptanalysis by Daemen et al. [94]. HBB (Hiji-bij-bij) is

another SSSC designed by Sarkar [215] in 2003 which was defeated by Mitra [176], and

Joux and Muller [138]. In 2004, a dedicated SSSC by Arnault and Berger [11] based on

Feedback with Carry Shift Registers (FCSR) was broken by Zhang et al. [244] as well.

To the best of our knowledge, the Klimov-Shamir T-function based SSSC, proposed in

2005 [152], is the only remaining design which has not been subject to cryptanalysis

so far. We would like to mention that in addition to the above-mentioned dedicated

62

4.2 Polynomial approach for key recovery on an interactable keyed
function

designs, a block cipher in a Cipher FeedBack (CFB) mode [112] operates as a SSSC;

see also OCFB [5] and SCFB [141], and the related articles [199, 131, 117] as well.

In this work we first show how to model a SSSC by a family of interactable keyed

functions F (C,Ke). The input parameter C, called the public variable, can be controlled

by the adversary while the input Ke is an unknown parameter to her called the extended

key. The public variable corresponds to the ciphertext whereas the extended key is a

combination of the actual key used in the cipher and the unknown internal state of the

cipher. The goal of the adversary would be to recover Ke or to get some information

about it. The problem of finding the unknown Ke, when access is given to the output

of an interactable function F (C,Ke) for every C of the adversary’s choice, is a very

common problem encountered in cryptography. In general, when the keyed function F

looks like a random function, the best way to solve the problem is to exhaust the key

space. However, there might be more efficient methods if F is far from being a random

function. In chapter 3, we studied how to recover the key faster than by exhaustive

search in case F does not properly mix its input bits. The idea was to first identify

a subset of variable bits from C referred to as a set of weak public variables and then

to consider the coefficient of a monomial involving this set of weak public variables in

the algebraic normal form of F . If this coefficient does not depend on all the unknown

bits of Ke, or it weakly depends on some of them, it can be exploited for efficient

cryptanalysis. Having modeled the SSSCs as the above-mentioned general problem, we

consider the T-function based SSSC proposed by Klimov and Shamir [152] and use the

framework from chapter 3 to deduce some information about the key bits through some

striking relations. Finding sets of weak public variables was raised as a crucial open

question in chapter 3 which was done mostly by random search there. In this chapter

we take a more systematic approach to find sets of weak public variables.

4.2 Polynomial approach for key recovery on an inter-

actable keyed function

In this chapter, we use the framework from chapter 3. For the notations please refer to

section 3.2. In chapter 3, the secret variable (the key) and public variable (the initial

value) were denoted by K and V , respectively. In this chapter, the secret variable (the

extended key) and public variable (the ciphertext) are respectively denoted by Ke and

63

4. CHOSEN CIPHERTEXT CRYPTANALYSIS FOR
SELF-SYNCHRONIZING STREAM CIPHERS

C. Moreover, we use the terminology a set of weak ciphertext variables instead of a

set of weak IV variables or a set of weak public variables. Therefore, the interactable

Boolean function is denoted by F : Bm × Bn → B which maps the m-bit ciphertext

C and the n-bit extended key Ke into the output bit z = F (C,Ke). In addition, for

a subvector U ∈ Bl of l weak ciphertext variables, a derived function is denoted by

ΓU (W,Ke) where W = C \ U ∈ Bm−l.

Our cryptanalytic algorithm in this chapter is based on scenario 3 of section 3.4.

However, there are two differences here. First, in this chapter, we only consider the

derived functions corresponding to the maximum degree monomial. In chapter 3, we

also took advantage of other monomial coefficients. Nevertheless, most of our examples

were based on the maximum degree monomial coefficient. Other works [109, 231, 100]

also suggest that this monomial is usually more suitable. More precisely, we find a

subvector U of l weak ciphertext variables and consider the Boolean function ΓU :

Bm−l × Bn → B where

ΓU (W,Ke) =
⊕
U∈Bl

F ((U ;W),Ke) . (4.1)

Inspired by the terminology of [100], we refer to ΓU as the superpoly (corresponding to

U). The second difference is that we only take advantage of neutral bits. In other words,

we do not use approximations of the superpoly by identifying probabilistic neutral bits.

Hence, we directly analyze the dependency of the superpoly on its arguments. In this

chapter we will see a lot of examples for which the superpoly ΓU does not depend on

some of its total m − l + n input bits. That is, some of the input bits are neutral.

This is a special case of the third scenario in section 3.4 where probabilistic neutral

bits were used instead. Suppose that the superpoly effectively depends on tKe ≤ n

extended key bits and tW ≤ m − l ciphertext bits. Assuming the involved tKe + tW

bits are mixed reasonably well and provided that log2 tKe � tW (see section 3.3), the

involved tKe secret bits can be recovered in time O(2l+tKe) by sending O(tKe2
l) queries

to the F oracle. Recall that each query to ΓU oracle costs 2l queries to F according to

equation (4.1). However, if the superpoly extremely deviates from being treated as a

random function, as already argued in section 3.3 (see Lemma 1), it may even happen

that the tKe secret bits cannot be determined uniquely. In this case one has to look

at the corresponding equivalence classes to see how much information one can achieve

64

4.3 Self-synchronizing stream ciphers

about the involved tKe secret bits on average. In sections 4.5 and 4.6 we will provide

some examples by considering Klimov-Shamir self-synchronizing stream cipher.

4.3 Self-synchronizing stream ciphers

A self-synchronizing stream cipher (SSSC) is built on an output filter O : K× S → M

and a self-synchronizing state update function (see Definition 5) U : M ×K × S → S,

where S, K and M are the cipher state space, key space and plaintext space. We suppose

that the ciphertext space is the same as that of the plaintext. Let K ∈ K be the secret

key, and {Si}∞i=0, {pi}∞i=0 and {ci}∞i=0 respectively denote the sequences of cipher state,

plaintext and ciphertext. We assume that there is no initial value (IV) involved and the

initial state is computed through the initialization procedure as S0 = I(K) from the

secret key K. The ciphertext (in an additive stream cipher) is then computed according

to the following relations:

ci = pi ⊕ O(K,Si), i ≥ 0 , (4.2)

Si+1 = U(ci,K, Si), i ≥ 0 . (4.3)

Definition 5. [152] (SSF) Let {ci}∞i=0 and {ĉi}∞i=0 be two input sequences, let S0 and
Ŝ0 be two initial states, and let K be a common key. Assume that the function U is
used to update the state based on the current input and the key: Si+1 = U(ci,K, Si)
and Ŝi+1 = U(ĉi,K, Ŝi). The function U is called a self-synchronizing function (SSF) if
there exist a positive integer r such that the equality of any r consecutive inputs implies
the equality of the next state, i.e.,

ci = ĉi, . . . , ci+r−1 = ĉi+r−1 ⇒ Si+r = Ŝi+r. (4.4)

Definition 6. The “resynchronization memory” of a function U, assuming it is a SSF,
is the least positive value of r such that equation (4.4) holds.

4.3.1 Cryptanalytic model

In this chapter, we consider key recovery algorithms on SSSCs in a chosen ciphertext

scenario. Our goal as a cryptanalyst is to efficiently recover the unknown keyK by send-

ing to the decryption oracle chosen ciphertexts of our choice. More precisely, we consider

65

4. CHOSEN CIPHERTEXT CRYPTANALYSIS FOR
SELF-SYNCHRONIZING STREAM CIPHERS

the family of functions {Hi : Mi × K × S → M|i = 1, 2, . . . , r}, where r is the resyn-

chronization memory of the cipher and Hi(c1, . . . , ci,K, S) = O(K,Gi(c1, . . . , ci,K, S)),

where Gi : Mi × K × S → S is recursively defined as Gi+1(c1, . . . , ci, ci+1,K, S) =

U(ci+1,K,Gi(c1, . . . , ci,K, S)) with initial condition G1 = U.

Note that, due to the self-synchronizing property of the cipher, Hr(c1, . . . , cr,K, S)

is actually independent of the last argument S; however, all other r−1 functions depend

on their last input. The internal state of the cipher is unknown at each step of operation

of the cipher but because of the self-synchronizing property of the cipher it only depends

on the last r ciphertext inputs and the key. We take advantage of this property and

force the cipher to get stuck in a fixed but unknown state S? by sending the decryption

oracle ciphertexts with some fixed prefix (c?−r+1, . . . , c
?
0) of our choice. Having forced

the cipher to fall in the unknown fixed state S?, we can evaluate any of the functions

Hi, i = 1, 2, . . . , r, at any point (c1, . . . , ci,K,S
?) for any input (c1, . . . , ci) of our choice

by dealing with the decryption oracle. To be clearer let z = Hi(c1, . . . , ci,K,S
?). In

order to compute z for an arbitrary (c1, . . . , ci), we choose an arbitrary c?i+1 ∈ M

and ask the decryption oracle for (p−r+1, . . . , p−1, p0, . . . , pi+1), that is, the decrypted

plaintext corresponding to the ciphertext (c?−r+1, . . . , c
?
0, c1, . . . , ci, c

?
i+1). We then set

z = pi+1 ⊕ c?i+1.

To make notations simpler, we merge the unknown values K and S? in one unknown

variable Ke = (K,S?) ∈ K×S, called extended key. We then use the simplified notation

Fi(C,Ke) = Hi(c1, . . . , ci,K,S
?) : Mi × (K× S)→M where C = (c1, . . . , ci).

4.4 Description of the Klimov-Shamir T-function based

self-synchronizing stream cipher

Shamir and Klimov [152] used the so-called multiword T-functions for a general method-

ology to construct a variety of cryptographic primitives. No fully specified schemes were

given, but in the case of SSSCs, a concrete example construction was outlined. This

section recalls its design. Let ≪, +, ×, ⊕ and ∨ respectively denote left rotation,

addition modulo 264, multiplication modulo 264, bit-wise XOR and bit-wise OR op-

erations on 64-bit integers. The proposed design works with 64-bit words and has a

3-word internal state S = (s0, s1, s2)T . A 5-word key K = (k0, k1, k2, k3, k4) is used to

66

4.4 Description of the Klimov-Shamir T-function based self-synchronizing
stream cipher

define the output filter and the state update function as follows:

O(K,S) =
(
(s0 ⊕ s2 ⊕ k3) ≪ 32

)
×
(
((s1 ⊕ k4) ≪ 32) ∨ 1

)
, (4.5)

and

U
(
c, K, S

)
=


(
((s′1 ⊕ s′2) ∨ 1)⊕ k0

)2(
((s′2 ⊕ s′0) ∨ 1)⊕ k1

)2(
((s′0 ⊕ s′1) ∨ 1)⊕ k2

)2
 , (4.6)

where

s′0 = s0 + c ,
s′1 = s1 − (c ≪ 21) ,
s′2 = s2 ⊕ (c ≪ 43).

(4.7)

4.4.1 Reduced word size variants

We also consider generalized versions of this cipher which use ω-bit words (ω even and

typically ω = 8, 16, 32 or 64). For ω-bit version, the number of rotations in the output

filter, equation (4.5), is ω
2 and those of the state update function, equation (4.7), are

bω3 e and b2ω
3 e, bxe being the closest integer to x.

It can be shown [152] that the update function U is actually a SSF whose resyn-

chronization memory is limited to ω steps and hence the resulting stream cipher is

self-synchronizing indeed. Our analysis of the cipher for ω = 8, 16, 32 and 64 shows

that it resynchronizes after r = ω − 1 steps (using ω(ω − 1) input bits). It is an open

question if this holds in general.

Remark 5. In [152] the notation (k0, k1, k2, kO, k
′
O) is used for the key instead of the

more standard notation (k0, k1, k2, k3, k4). The authors possibly meant to use a 3-word
key (k0, k1, k2) by deriving the other two key words (kO and k′O in their notations corre-
sponding to k3 and k4 in ours) from first three key words. However, they do not specify
how this must be done if they meant so. Also they did not introduce an initialization
procedure for their cipher. In any case, we cryptanalyze a more general situation where
the cipher uses a 5-word secret key K = (k0, k1, k2, k3, k4) in chosen-ciphertext crypt-
analytic scenario. Moreover, for the 64-bit version, the authors mentioned “the best
attack we are aware of this particular example [64-bit version] requires O(296) time”,
without mentioning the attack.

67

4. CHOSEN CIPHERTEXT CRYPTANALYSIS FOR
SELF-SYNCHRONIZING STREAM CIPHERS

4.5 Analysis of the Klimov-Shamir T-function based self-

synchronizing stream cipher

Let ω (ω = 8, 16, 32 or 64) denote the word size and r = ω−1 be the resynchronization

memory of the ω-bit version of the Klimov-Shamir self-synchronizing stream cipher.

Let B = {0, 1} and Bω denote the binary field and the set of ω-bit words respectively.

Following the general model of analysis of SSSCs in section 4.3.1, we focus on the

family of functions Fi(C,Ke) : Biω × B8
ω → Bω, i = 1, 2, . . . , r where C = (c1, . . . , ci)

and Ke = (K,S?) = (k0, k1, k2, k3, k4, s
?
0, s

?
1, s

?
2). We also look at a word b as an ω-bit

vector b = (b0, . . . , bω−1), b0 being its LSB and bω−1 its MSB. Therefore, any vector

A = (a0, a1, . . . , at−1) ∈ Btω could be also treated as a vector in Bt×ω where the (iω+j)th

bit of A is ai,j , the jth LSB of the word ai, for i = 0, 1, . . . , t− 1 and j = 0, 1, . . . , ω− 1

(we start numbering the bits of vectors from zero).

Now, for any i = 1, . . . , r and j = 0, . . . , ω−1 we consider the family of interactable

Boolean functions Fi,j : Biω × B8ω → B which maps the iω-bit ciphertext C and

the 8ω-bit extended key Ke into the jth LSB of the word Fi(C,Ke). Any of these

interactable keyed functions can be put into the framework from [113] explained in

section 4.2. The next step is to identify a set of l weak ciphertext variables and make

the partitioning C = (U ;W) with l-bit subvector U and (iω − l)-bit subvector W to

derive the (hopefully weaker) functions ΓUi,j : Biω−l × B8ω → B. Recall that ΓUi,j is

the superpoly in Fi,j corresponding to U , see equation (4.1). Whenever there is no

ambiguity we drop the superscript or the subscripts. We may also use ΓUi,j [ω] in some

cases to emphasize the word size. We are now ready to give our simulation results.

Note 1. Instead of presenting the variables in the vector U we give the bit numbers
as a set. For example, for ω = 16, the set {0, 18, 31, 32} stands for the subvector
U = (c1,0, c2,2, c2,15, c3,0).

Example 10. For all possible common word sizes (ω = 8, 16, 32 or 64), we have been
able to find some i, j and U such that Γ is independent of W and only depends on three
key bits k0,0, k1,0 and k2,0. Table 4.1 shows some of these quite striking relations. We
also found relations Γ{3}1,0 [8] = 1 + k2,0 and Γ{6,7,8,9,10}

1,0 [16] = 1 + k0,0 involving only one
key bit. In particular, for ω = 64, the three relations in Table 4.1 give 1.75 bits of
information about (k0,0, k1,0, k2,0).

68

4.5 Analysis of the Klimov-Shamir T-function based self-synchronizing
stream cipher

ω i j U the value of ΓUi,j [ω]

8 2 0 {2} 1 + k0,0k1,0 + k0,0k2,0 + k1,0k2,0

16 3 0 {5} 1 + k0,0k1,0 + k2,0 + k0,0k1,0k2,0

16 3 0 {10} 1 + k0,0 + k1,0k2,0 + k0,0k1,0k2,0

32 5 0 {11} 1 + k0,0k1,0 + k2,0 + k0,0k1,0k2,0

32 16 0 {96, 97, 98} 1 + k0,0 + k2,0 + k0,0k2,0

64 11 0 {21} 1 + k0,0k1,0 + k2,0 + k0,0k1,0k2,0

64 11 0 {42} 1 + k0,0 + k1,0k2,0 + k0,0k1,0k2,0

64 12 0 {20} 1 + k0,0k1,0 + k0,0k2,0 + k1,0k2,0

Table 4.1: Simple relations on three key bits for the Klimov-Shamir cipher.
The table shows some striking relations, which depend on three key bits (k0,0, k1,0, k2,0),
for the Klimov-Shamir self-synchronizing stream cipher.

A more detailed analysis of the functions ΓUi,j [ω](W,Ke) for different values of i, j and

U reveals that many of these functions depend on only few bits of their (iω− l)-bit and

8ω-bit arguments. Let tW and tKe respectively denote the number of bits of W and Ke

which Γ effectively depends on. In addition, let tK out of tKe bits come from K and

the remaining tS? = tKe − tK bits from S? (remember Ke = (K,S?)). Table 4.2 shows

these values for some of these functions.

Having in mind what we mentioned in section 4.2 and being too optimistic, we give

the following proposition.

Proposition 1. If a function ΓUi,j is random-looking enough, recovering the tKe un-
known bits of the extended key takes expected time 2× i× 2l+tKe .

The unity of time is processing one ciphertext word of the underlined SSSC. The factors

2, 2l and i come from the following facts. On average two query evaluations are required

to reject a wrong guess for the involved tKe unknown extended key bits. Computing Γ

from Fi needs 2l evaluations of Fi (remember ΓUi,j(W,Ke) =
⊕

U∈Bl Fi,j((U ;W),Ke)).

Finally, computing Fi needs i iterations of the cipher.

Even if the ideal condition of Proposition 1 is not satisfied, the only thing which is

not guaranteed is that the tKe involved unknown bits are uniquely determined. Yet some

information about them can be achieved. Refer to the sections 4.2 and 3.2 regarding

the equivalence classes.

69

4. CHOSEN CIPHERTEXT CRYPTANALYSIS FOR
SELF-SYNCHRONIZING STREAM CIPHERS

ω i j U tKe tW tK tS? comment

8 1 0 ∅ 20 8 9 11
16 1 0 ∅ 40 16 17 23
32 1 0 ∅ 80 32 33 47
64 1 0 ∅ 160 64 65 95

8 1 0 {1} 9 5 3 6
16 1 0 {u} 18 11 6 12 8 ≤ u ≤ 10
32 1 0 {u} 42 23 14 28 16 ≤ u ≤ 20
64 1 0 {u} 90 51 30 60 32 ≤ u ≤ 42

8 3 0 {8} 4 6 4 0
8 3 0 {18} 5 7 5 0 see Example 11
16 7 0 {16} 17 58 17 0
16 7 0 {34} 16 52 16 0 see Example 14
16 7 0 {33, 34} 12 33 12 0 see Example 12
16 7 0 {38, 39} 12 30 12 0 see Example 13
32 15 0 {32} 41 293 41 0
32 15 0 {66} 40 279 40 0
32 15 0 {76, 77} 36 231 36 0
64 31 0 {64} 89 1274 89 0
64 31 0 {130} 88 1243 88 0
64 31 0 {129, 130} 84 1158 84 0 see Proposition 2
64 31 0 {150, 151} 84 1155 84 0 see Proposition 2

Table 4.2: Overview of the dependency of the superpolys in their input argu-
ments for the Klimov-Shamir self-synchronizing stream cipher. The table shows
the effective number of bits of each argument which the superpoly ΓU

i,j [ω](W,Ke) depends
on. The superpoly ΓU

i,j [ω] effectively depends on tW bits of W and tKe bits of Ke. More-
over, tK bits out of the tKe extended key bits are from the original secret key whereas the
remaining tS? = tKe − tK bits are due to the unknown internal state. Note that the func-
tions having the same number of effective bits do not necessarily have the same involved
variables.

70

4.5 Analysis of the Klimov-Shamir T-function based self-synchronizing
stream cipher

Example 11. Take the superpoly Γ{18}
3,0 [8](W,Ke) from Table 4.2. This particular func-

tion depends on tKe = 5 bits (k0,0, k0,1, k1,0, k2,0, k2,1) of the key and on tW = 7 bits
(c1,4, c1,5, c1,6, c2,0, c2,1, c2,5, c2,6) of the ciphertext. The ANF of this function is:

Γ{18}
3,0 [8] = 1 + k0,0k0,1 + k0,0k0,1k2,0 + k2,0k2,1 + k0,0c1,4+

k0,0k2,0c1,4 + k0,0k1,0c1,5 + k0,0k1,0k2,0c1,5+
k0,0c1,6 + k0,0k2,0c1,6 + k2,0c2,0 + k0,0k2,0c2,0+
k2,0c2,1 + c2,0c2,1 + k0,0c2,0c2,1 + k2,0c2,0c2,1+
k0,0k2,0c2,0c2,1 + k1,0k2,0c2,5 + k2,0c2,6.

(4.8)

This equation can be seen as a system of 2tW = 128 equations versus tKe = 5 unknowns.
Our analysis of this function shows that only 48 of the equations are independent which
on average can give 3.5 bits of information about the five unknown bits (4 bits of infor-
mation for 75% of the keys and 2 bits for the remaining 25% of the keys).

Example 12. Take the superpoly Γ{33,34}
7,0 [16](W,Ke) from Table 4.2. This particular

function depends on tKe = 12 key bits and on tW = 33 ciphertext bits. Our analysis of
this function shows that on average about 2.41 bits of information on the 12 key bits
can be achieved (10 bits of information for 12.5% of the keys, 3 bits for 25% of the keys
and 0.67 bits about the remaining 62.5% of the keys).

Example 13. Take the superpoly Γ{38,39}
7,0 [16](W,Ke) from Table 4.2. This particular

function depends on tKe = 12 key bits and on tW = 30 ciphertext bits. Our analysis of
this function shows that on average about 1.94 bits of information on the 12 key bits
can be achieved (10 bits of information for 12.5% of the keys, 3 bits for another 12.5%
of the keys and 0.42 bits for the remaining 75% of the keys).

Example 14. Take the superpoly Γ{34}
7,0 [16](W,Ke) from Table 4.2. This particular

function depends on tKe = 16 key bits and on tW = 52 ciphertext bits. Our analysis of
this function shows that on average about 5.625 bits of information on the 16 key bits
can be achieved (13 bits of information for 25% of the keys, 11 bits for 12.5% of the
keys, 4 bits for another 12.5% of the keys, and 1 bit for the remaining 50% of the keys).

For larger values of i we expect Γ to fit better the ideal situation of Proposition 1.

Therefore, we give the following claim about the security of the 64-bit version of Klimov-

Shamir’s proposal.

Proposition 2. We expect each of the functions Γ{129,130}
31,0 [64] and Γ{150,151}

31,0 [64] to
reveal a large amount of information about the corresponding tKe = 84 involved key bits
for a non-negligible fraction of the keys. The required computational time is 2 × 31 ×
22+84 ≈ 292.

71

4. CHOSEN CIPHERTEXT CRYPTANALYSIS FOR
SELF-SYNCHRONIZING STREAM CIPHERS

In chapter 3, the sets of weak IV variables were mainly found by random search. How

to find a set of weak public variables was raised as an open question in chapter 3. In the

next section we present a systematic procedure to find a set of weak ciphertext variables,

with the consequence of improving Proposition 2. More sophisticated algorithms for

finding a set of weak public variables can be found in [100, 16].

4.6 Towards a systematic approach to find weak cipher-

text variables

The idea is to start with a set (vector) U and extend it gradually. At each step, we

examine all the ciphertext bits which ΓU depends on. The goal is to determine an

extended U for the next step that results in a Γ which depends on the least number

of key bits. To this end, we choose a ciphertext bit (to be added to the current

set U) which has this property. Table 4.3 shows our simulation results by starting

from function Γ{41}
1,0 [64] from Table 4.2 which effectively depends on tKe = 90 extended

key bits and tW = 51 ciphertext bits. Similar to Proposition 2, one expects each of

the functions ΓU1,0[64] in Table 4.3 to reveal a large amount of information about the

corresponding tKe involved extended key bits (including tK effective key bits) for a non-

negligible fraction of the keys; the time complexity is 2× 1× 2l+tKe , as indicated in the

last column. In particular, by starting from the function in the bottom of Table 4.3,

(the promised large amount of information about) the involved tK = 12 key bits and

tS? = 33 internal state bits can be gained in time 265 (for a non-negligible fraction of

the keys). Notice, that once we have the correct value for the unknown extended key

for some function in Table 4.3, those of the previous function can be recovered by little

effort. Therefore, we present the following proposition.

Proposition 3. We expect that by starting from Γ{1−9,32−41}
1,0 [64] and going backwards

to Γ{41}
1,0 [64] as indicated in Table 4.3, a large amount of information about the involved

tKe = 90 unknown bits (including tK = 30 effective key bits) is revealed for a non-
negligible fraction of the keys in time 265 .

Remark 6. By combining the results of different superpolys Γ, one can get better
results. Finding an optimal combination demands patience and detailed examination
of different Γ’s. We make this statement clearer by an example as follows. Detailed
analysis of Γ{129,130}

31,0 [64] and Γ{150,151}
31,0 [64] shows that the key bits which they depend

72

4.7 Summary

on are {0− 27, 64− 90, 128− 156} and {0− 28, 64− 90, 128− 155}, respectively. These
two functions have respectively 27 and 28 bits in common with the 30 key bits {0 −
19, 21 − 30} involved in Γ{41}

1,0 [64]. They also include the key bits {0, 32, 64} for which
1.75 information can be easily gained according to Example 10. Taking it altogether, it
can be said that a large amount of information about the 88 key bits {0 − 30, 32, 64 −
90, 128− 156} can be achieved in time 265 with a non-negligible probability.

4.7 Summary

In this work we proposed a new analysis method for self-synchronizing stream ciphers.

We then applied it to the Klimov-Shamir’s example of a construction of a T-function

based self-synchronizing stream cipher. We did not fully break this proposal, but the

strong key leakage demonstrated by our results makes us believe a total break is not

out of reach. In future design of self-synchronizing stream ciphers, one has to take into

account and counter potential key leakage.

73

4. CHOSEN CIPHERTEXT CRYPTANALYSIS FOR
SELF-SYNCHRONIZING STREAM CIPHERS

U
K

e
W

t K
e

t W
t K

t S
?

T
im

e

{4
1}

{0
−

19
,2

1
−

30
,3

84
−

41
4,

44
9
−

46
7,

46
9
−

47
8}

{0
−

9,
22
−

40
,4

2
−

63
}

90
51

30
60

29
2

{9
,4

1}
{0
−

19
,2

1
−

29
,3

84
−

41
3,

44
9
−

46
7,

46
9
−

47
7}

{0
−

8,
22
−

40
,4

2
−

63
}

87
50

29
58

29
0

{8
,9
,4

1}
{0
−

19
,2

1
−

28
,3

84
−

41
2,

44
9
−

46
7,

46
9
−

47
6}

{0
−

7,
22
−

40
,4

2
−

63
}

84
49

28
56

28
8

{7
−

9,
41
}

{0
−

19
,2

1
−

27
,3

84
−

41
1,

44
9
−

46
7,

46
9
−

47
5}

{0
−

6,
22
−

40
,4

2
−

63
}

81
48

27
54

28
6

{6
−

9,
41
}

{0
−

19
,2

1
−

26
,3

84
−

41
0,

44
9
−

46
7,

46
9
−

47
4}

{0
−

5,
22
−

40
,4

2
−

63
}

78
47

26
52

28
4

. . .
. . .

{1
−

9,
41
}

{0
−

19
,2

1,
38

4
−

40
5,

44
9
−

46
7,

46
9}

{0
,2

2
−

40
,4

2
−

63
}

63
42

21
42

27
4

{1
−

9,
40
,4

1}
{0
−

18
,2

1,
38

4
−

40
5,

44
9
−

46
6,

46
9}

{0
,2

2
−

39
,4

2
−

63
}

61
41

20
41

27
3

{1
−

9,
39
−

41
}

{0
−

17
,2

1,
38

4
−

40
5,

44
9
−

46
5,

46
9}

{0
,2

2
−

38
,4

2
−

63
}

59
40

19
40

27
2

. . .
. . .

{1
−

9,
34
−

41
}

{0
−

12
,2

1,
38

4
−

40
5,

44
9
−

46
0,

46
9}

{0
,2

2
−

33
,4

2
−

63
}

49
35

14
35

26
7

{1
−

9,
33
−

41
}

{0
−

11
,2

1,
38

4
−

40
5,

44
9
−

45
9,

46
9}

{0
,2

2
−

32
,4

2
−

63
}

47
34

13
34

26
6

{1
−

9,
32
−

41
}

{0
−

10
,2

1,
38

4
−

40
5,

44
9
−

45
8,

46
9}

{0
,2

2
−

31
,4

2
−

63
}

45
33

12
33

26
5

T
ab

le
4.

3:
F

in
d

in
g

w
ea

k
ci

p
h

er
te

x
t

va
ri

ab
le

s
in

a
sy

st
em

at
ic

w
ay

fo
r

th
e

K
li

m
ov

-S
h

am
ir

se
lf

-s
y
n

ch
ro

n
iz

in
g

st
re

am
ci

p
h

er
.

T
he

ta
bl

e
sh

ow
s

ho
w

to
st

ar
t

fr
om

an
in

it
ia

l
se

t
of

w
ea

k
ci

ph
er

te
xt

va
ri

ab
le

s
U

(fi
rs

t
lin

e)
an

d
gr

ad
ua

lly
ex

te
nd

it
(t

he
fo

llo
w

in
g

lin
es

).
T

he
ta

bl
e

sh
ow

s
th

e
eff

ec
ti

ve
nu

m
be

r
of

bi
ts

of
ea

ch
ar

gu
m

en
t

w
hi

ch
th

e
su

pe
rp

ol
y

Γ
U 1
,0

[6
4]

(W
,K

e
)

de
pe

nd
s

on
.

T
he

su
pe

rp
ol

y
Γ

U 1
,0

[6
4]

eff
ec

ti
ve

ly
de

pe
nd

s
on

t W
bi

ts
of
W

an
d
t K

e
bi

ts
of

K
e
.

M
or

eo
ve

r,
t K

bi
ts

ou
t

of
th

e
t K

e
ex

te
nd

ed
ke

y
bi

ts
ar

e
fr

om
th

e
or

ig
in

al
se

cr
et

ke
y

w
he

re
as

th
e

re
m

ai
ni

ng
t S

?
=
t K

e
−
t K

bi
ts

ar
e

du
e

to
th

e
un

kn
ow

n
in

te
rn

al
st

at
e.

T
he

la
st

co
lu

m
n

sh
ow

s
ou

r
es

ti
m

at
ed

re
qu

ir
ed

ti
m

e
co

m
pl

ex
it

y
fo

r
re

co
ve

ri
ng

th
e

in
vo

lv
ed

t K
e

ex
te

nd
ed

ke
y

bi
ts

,
in

cl
ud

in
g

th
e
t K

or
ig

in
al

ke
y

bi
ts

.

74

5

Linearization Framework for

Finding hash Collisions

In the previous three chapters, we cryptanalyzed stream ciphers which are among keyed

cryptographic primitives. In this chapter, however, we study hash functions which are

often unkeyed. There is no secret key to be recovered in this case. Instead, a major goal

in hash function cryptanalysis is to find a hash collision. In this chapter, an improved

differential cryptanalysis framework for finding collisions in hash functions is provided.

Its principle is based on linearization of hash functions in order to find low weight

differential characteristics as initiated by Chabaud and Joux [75]. This is, however,

formalized and refined in several ways: for the problem of finding conforming message

pairs whose differential trail follows a linear trail, a condition function is introduced

so that finding collisions is equivalent to finding preimages of the zero vector under

the condition function. Then, the dependency table concept shows how much influence

every input bit of the condition function has on each output bit. Careful analysis of

the dependency table reveals degrees of freedom that can be exploited in accelerated

preimage reconstruction under the condition function. It turns out that the degrees

of freedom are highly related to the neutrality and probabilistic neutrality concepts,

exploited to accelerate key recovery cryptanalysis on keyed primitives in the previous

chapters. These concepts are applied to an in-depth collision analysis of reduced-round

variants of two SHA-3 candidates CubeHash and MD6. This chapter is mainly due to

the contributions of [65], published at ASIACRYPT 2009. We also include the result

of [148], published at AFRICACRYPT 2010, yet largely based on [65].

75

5. LINEARIZATION FRAMEWORK FOR FINDING HASH
COLLISIONS

5.1 Introduction

Hash functions are important cryptographic primitives that find applications in many

areas including digital signatures, commitment schemes and authentication codes. To

this end, hash functions are expected to possess several security properties, one of which

is collision resistance. Informally, a hash function is collision resistant if it is practically

infeasible to find two distinct messages that produce the same output.

The goal of this work is to revisit collision-finding methods using linearization of the

hash function. This method was initiated by Chabaud and Joux on SHA–0 [75] and

was later extended and applied to SHA–1 by Rijmen and Oswald [203]. In particular,

in [203] it was observed that the codewords of a linear code, which are defined through

a linearized version of the hash function, can be used to identify high probability

differential paths. This method was later extended by Pramstaller et al. [195] with

the general conclusion that finding high probability differential paths is related to low

weight codewords of the attributed linear code. In this chapter we further investigate

this issue.

The first contribution of our work is to present a more concrete and tangible relation

between the linearization and differential paths. In the case that modular addition is

the only involved nonlinear operation, our results can be stated as follows. Given the

parity check matrix H of a linear code, and two matrices A and B, find a codeword

∆ such that A∆ ∨ B∆ is of low weight. This is clearly different from the problem of

finding a low weight codeword ∆.

We then consider the problem of finding a conforming message pair for a given

differential trail for a certain linear approximation of the hash function. The recent

collision finding algorithms on hash functions [44, 45, 236, 238, 239, 237, 73, 179, 70, 168,

134] have investigated extensive methods to identify degrees of freedom to be used to

efficiently find conforming message pairs by means of satisfying some conditions. These

methods are referred to as message modification techniques which apparently have been

used by Xiaoyun Wang as early as 1997 [233, 234]. However, they were brought to the

attention of the international cryptographic community only in 2004 [235]; see also [236,

238, 239, 237]. Message modification techniques use concepts such as neutral bits [44],

semi-neutral bits [167, 226] and tunnels [151]. When it comes to implementation,

backtracking algorithms [38, 73] are used to find a conforming message.

76

5.1 Introduction

Our second contribution in this chapter is to present a unified framework to exploit

degrees of freedom and evaluate the complexity of the corresponding backtracking al-

gorithm. Our framework, similar to the work by De Cannière and Rechberger [73],

has the flexibility to be applied to a large number of differential paths to identify the

best one. In particular, we show that the problem of finding conforming pairs can be

reformulated as finding preimages of zero under a function which we call the Condition

function. We then define the concept of dependency table which shows how much in-

fluence every input bit of the condition function has on each output bit. By carefully

analyzing the dependency table, we are able to profit not only from neutral bits [44]

but also from probabilistic neutral bits [15] in a backtracking search algorithm, similar

to [73, 38, 194, 118]. This contributes to a better understanding of freedom degrees

uses.

We consider hash functions working with n-bit words. In particular, we focus on

those using modular addition of n-bit words as the only nonlinear operation. The in-

corporated linear operations are XOR, shift and rotation of n-bit words in practice. We

present our framework in detail for these constructions by approximating modular addi-

tion with XOR. We demonstrate its validity by applying it on reduced-round variants of

CubeHash [34] (one of the 14 second round NIST SHA-3 [181] competitors) which uses

modular addition, XOR and rotation. CubeHash instances are parametrized by two

parameters r and b and are denoted by CubeHash-r/b which process b message bytes per

iteration; each iteration is composed of r rounds. Although we cannot break the original

submission CubeHash-8/1 nor the current tweaked official proposal CubeHash-16/32, we

provide real collisions for the much weaker variants CubeHash-3/64, CubeHash-4/48 and

CubeHash-5/96. Interestingly, we show that neither the more secure variants CubeHash-

6/16, CubeHash-7/64 and CubeHash-8/96 do provide the desired collision security by

providing theoretical attacks with complexities 2219.9, 2203.0 and 280.0 respectively; nor

that CubeHash-6/4 with 512-bit digests is second-preimage resistant, as with probabil-

ity 2−478 a second preimage can be produced by only one hash evaluation. Our theory

can be easily generalized to arbitrary nonlinear operations. We discuss this issue and

as an application we provide collision cryptanalyses on 16 rounds of MD6 [206]. MD6

was a first round SHA-3 candidate whose original number of rounds varies from 80 to

168 when the digest size ranges from 160 to 512 bits.

77

5. LINEARIZATION FRAMEWORK FOR FINDING HASH
COLLISIONS

5.2 Linear differential cryptanalysis of hash functions

5.2.1 Attributing compression functions to hash functions

Hash functions transform a variable-length input to a fixed-size output, called message

digest. In practice, hash functions are mostly built from a fixed input size compres-

sion function, e.g., the Davies-Meyer [174] block cipher based construction; see 1.4.2.

One then applies a domain extension method, such as the renowned Merkle-Damg̊ard

construction, to the compression function in order to construct a hash function that

accepts messages of arbitrary length. To any hash function, no matter how it has

been designed, we can always attribute fixed input size compression functions, such

that a collision for a derived compression function results in a direct collision for the

hash function itself. This way, firstly we are working with fixed input size compression

functions rather than varying input size ones, secondly we can attribute compression

functions to those hash functions which are not explicitly based on a fixed input size

compression function, and thirdly we can derive different compression functions from a

hash function. For example, multi-block collision cryptanalysis [238] benefits from the

third point. Our task is to find two messages for an attributed compression function

such that their digests are preferably equal (a collision) or differ in only a few bits (a

near-collision). Collisions for a compression function are directly translated into colli-

sions for the hash function provided that the initial value condition of the hash function

is satisfied. The relevance of near collisions, however, depends on the hash function

structure and the way the compression function has been defined. In most of the cases

the near collisions of the compression function provide near collisions for the underly-

ing hash function as well. But in some other cases, such as sponge constructions [39]

with a strong filtering at the end or a Merkle-Damg̊ard construction with a strong final

transformation [166], they are of little interest.

5.2.2 Linearization of compression functions

Let’s consider a compression function H = Compress(M,V) which works with n-bit

words and maps an m-bit message M and a v-bit initial value V into an h-bit out-

put H. Our aim is to find a collision for such compression functions with a randomly

given initial value V . In this section we consider modular-addition-based Compress

78

5.2 Linear differential cryptanalysis of hash functions

functions, that is, they use only modulo 2n additions in addition to linear transfor-

mations. This includes the family of AXR (Addition-XOR-Rotation) hash functions

which are based on these three operations. In section 5.5 we generalize our frame-

work to other family of compression functions. For these Compress functions, we are

looking for two messages with a difference ∆ that result in a collision. In particular,

we are interested in a ∆ for which two randomly chosen messages with this difference

lead to a collision with a high probability for a randomly chosen initial value. For

modular-addition-based Compress functions, we consider a linearized version for which

all modular additions are replaced by XOR. This is a common linear approximation

of modular addition. Other possible linear approximations of modular addition, which

are less addressed in literature, can be considered according to our generalization of

section 5.5. As modular addition was the only nonlinear operation, we now have a

linear function which we call Compresslin. Since Compresslin(M,V)⊕ Compresslin(M ⊕
∆, V) = Compresslin(∆, 0) is independent of the value of V , we adopt the notation

Compresslin(M) = Compresslin(M, 0) instead. Let ∆ be an element of the kernel of

the linearized compression function, i.e., Compresslin(∆) = 0. We are interested in the

probability Pr{Compress(M,V) ⊕ Compress(M ⊕∆, V) = 0} for a random M and V .

In the following we present an algorithm which computes this probability, called the

raw (or bulk) probability.

5.2.3 Computing the raw probability

We consider a general n-bit vector x = (x0, . . . , xn−1) as an n-bit integer denoted by

the same variable, i.e., x =
∑n−1

i=0 xi2
i. The Hamming weight of a binary vector or

an integer x, wt(x), is the number of its nonzero elements, i.e., wt(x) =
∑n−1

i=0 xi. We

use + for modular addition of words and ⊕,∨ and ∧ for bit-wise XOR, OR and AND

logical operations between words as well as vectors. We use the following lemma which

is a special case of the problem of computing Pr{
(
(A⊕ α) + (B ⊕ β)

)
⊕ (A+B) = γ}

where α, β and γ are constants and A and B are independent and uniform random

variables, all of them being n-bit words. Lipmaa and Moriai have presented an efficient

algorithm for computing this probability [162]. We are interested in the case γ = α⊕β
for which the desired probability has a simple closed form.

Lemma 2. Pr{
(
(A⊕ α) + (B ⊕ β)

)
⊕ (A+B) = α⊕ β} = 2−wt

(
(α∨β)∧(2n−1−1)

)
.

79

5. LINEARIZATION FRAMEWORK FOR FINDING HASH
COLLISIONS

Lemma 2 gives us the probability that modular addition behaves like the XOR

operation. As Compresslin approximates Compress by replacing modular addition with

XOR, we can then devise a simple algorithm to compute (estimate) the raw probability

Pr{Compress(M,V) ⊕ Compress(M ⊕ ∆, V) = Compresslin(∆)}. Let’s first introduce

some notation.

Notation. Let nadd denote the number of modular additions which Compress uses in

total. In the course of evaluation of Compress(M,V), let the two addends of the ith

modular addition (1 ≤ i ≤ nadd) be denoted by Ai(M,V) and Bi(M,V), for which the

ordering is not important. The value Ci(M,V) =
(
Ai(M,V)+Bi(M,V)

)
⊕Ai(M,V)⊕

Bi(M,V) is then called the carry word of the ith modular addition. Similarly, in the

course of evaluation of Compresslin(∆), denote the two inputs of the ith linearized mod-

ular addition by αi(∆) and βi(∆) in which the ordering is the same as that for Ai and

Bi. We define five more functions A(M,V), B(M,V), C(M,V), α(∆) and β(∆) with

(n − 1)nadd-bit outputs. These functions are respectively defined as the concatena-

tion of the first (n− 1) bits of the words Ai(M,V), Bi(M,V), Ci(M,V), αi(M,V) and

βi(M,V), 1 ≤ i ≤ nadd . For example, A(M,V) and α(∆) are respectively the con-

catenation of the nadd words
(
A1(M,V), . . . , Anadd(M,V)

)
and

(
α1(∆), . . . , αnadd(∆)

)
where the MSBs of the words are excluded. To be more precise, we have A(M,V) =(
A1(M,V) mod 2n−1, . . . , Anadd(M,V) mod 2n−1

)
. Similar relations can be written

for the other four functions.

Table 5.1 is a reference for all the main symbols used in sections 5.2, 5.3.1 and 5.5.

Using this notation, the raw probability can be simply estimated as follows.

Lemma 3. Let Compress be a modular-addition-based compression function. Then for

any message difference ∆ and for random values M and V , p∆ = 2−wt
(
α(∆)∨β(∆)

)
is

a lower bound for Pr{Compress(M,V)⊕ Compress(M ⊕∆, V) = Compresslin(∆)}.

Proof. We start with the following definition.

Definition 7. We say that a message M (for a given V) conforms to (or follows) the
trail of ∆ iff 1(

(Ai ⊕ αi) + (Bi ⊕ βi)
)
⊕ (Ai +Bi) = αi ⊕ βi, for 1 ≤ i ≤ nadd, (5.1)

where Ai, Bi, αi and βi are shortened forms for Ai(M,V), Bi(M,V), αi(∆) and βi(∆),
respectively.

1if and only if

80

5.2 Linear differential cryptanalysis of hash functions

symbol description

H = Compress(M,V) a modular-addition-based or binary-FSM-based

compression function from {0, 1}m × {0, 1}v to

{0, 1}h

Compresslin(∆, 0) or Compresslin(∆) the linearized version of Compress

Condition∆(M,V) or Condition(M,V) condition function associated with a differential trail

∆ for a compression function Compress and its lin-

earized version Compresslin
Y the output of the condition function, Y =

Condition∆(M,V)

Yj the jth condition bit

y the total number of condition bits, i.e., length of Y

nadd the total number of modular additions of a modular-

addition-based Compress function

nnl the total number of NUBFs of a binary-FSM-based

Compress function

(Ai, Bi) or
`
Ai(M,V), Bi(M,V)

´
the two addend words of the ith modular addition

in a modular-addition-based Compress function

Ci or Ci(M,V) the carry word of the ith modular addition in a

modular-addition-based Compress function

(αi, βi) or
`
αi(∆), βi(∆)

´
the two input words of the ith linearized modular

addition (i.e., XOR) in a modular-addition-based

linearized compression function Compresslin
A(M,V) the concatenation of all nadd addend words

A1, . . . , Anadd excluding their MSBs

B(M,V) the concatenation of all nadd addend words

B1, . . . , Bnadd excluding their MSBs

C(M,V) the concatenation of all nadd carry words

C1, . . . , Cnadd excluding their MSBs

α(∆) the concatenation of all nadd words α1, . . . , αnadd

excluding their MSBs

β(∆) the concatenation of all nadd words β1, . . . , βnadd

excluding their MSBs

αk,βk,Ak,Bk,Ck the kth bit of the vectors α,β,A,B,C

gk the kth NUBF of a binary-FSM-based Compress func-

tion

gk
lin the linear approximation of gk as the one in

Compresslin for a binary-FSM-based Compress function

xk the input vector of the kth NUBF of a binary-FSM-

based compression function (i.e., gk) which com-

putes Compress(M,V)

δk the input vector of the kth linearized NUBF of a

linearized binary-FSM-based compression function

(i.e., gk
lin) which computes Compresslin(∆)

Λ(M,V) the output of all the nnl NUBFs of a binary-FSM-

based Compress function

Φ(∆) the output of all the nnl linearized NUBFs of a

linearized binary-FSM-based compression function

Compresslin
Λ∆(M,V) see section 5.5

Γ(∆) see section 5.5

Λk(M,V) the kth bit of the vector Λ(M,V) which equals

gk(xk)

Φk(∆) the kth bit of the vector Φ(∆) which equals gk
lin(δk)

Λ∆
k (M,V) the kth bit of the vector Λ∆(M,V) which equals

gk(xk ⊕ δk)

Γk(∆) the kth bit of the vector Γ(∆); Γk(∆) = 1 iff δk 6= 0

Table 5.1: Main symbols used in this chapter. This table includes the main symbols
used in sections 5.2, 5.3.1 and 5.5 along with their description.

81

5. LINEARIZATION FRAMEWORK FOR FINDING HASH
COLLISIONS

It is not difficult to prove that under some reasonable independence assumptions p∆,
which we call conforming probability, is the probability that a random message M

follows the trail of ∆. This is a direct corollary of Lemma 2 and Definition 7. The
exact proof can be done by induction on nadd, the number of modular additions in
the compression function. Due to other possible non-conforming pairs that start from
message difference ∆ and lead to output difference Compresslin(∆), p∆ is a lower bound
for the desired probability in the lemma.

If Compresslin(∆) is of low Hamming weight, a conforming message pair leads to a near

collision in the output. The interesting ∆’s for collision search are those which belong

to the kernel of Compresslin, i.e., those that satisfy Compresslin(∆) = 0. From now

on, we assume that ∆ 6= 0 is in the kernel of Compresslin, hence looking for collisions.

According to Lemma 3, one needs to try around 1/p∆ random message pairs in order

to find a collision which conforms to the trail of ∆. However, in a random search it

is better not to restrict oneself to the conforming messages as a collision at the end

is all we want. Since p∆ is a lower bound for the probability of getting a collision for

a message pair with difference ∆, we might get a collision sooner. In section 5.3 we

explain a method which might find a conforming message by avoiding random search.

5.2.4 Link with coding theory

We would like to conclude this section with a note on the relation between the following

two problems:

I) finding low-weight codewords of a linear code,

II) finding a high probability linear differential path.

Since the functions Compresslin(∆), α(∆) and β(∆) are linear, we consider ∆ as a

column vector and attribute three matrices H, A and B to these three transformations,

respectively. In other words we have Compresslin(∆) = H∆, α(∆) = A∆ and β(∆) =

B∆. We then call H the parity check matrix of the compression function.

Based on an initial work by Chabaud and Joux [75], the link between these two

problems has been discussed by Rijmen and Oswald in [203] and by Pramstaller et

al. in [195] with the general conclusion that finding highly probable differential paths

is related to low weight codewords of the attributed linear code. In fact the relation

82

5.3 Finding a conforming message pair efficiently

between these two problems is more delicate. For problem (I), we are provided with

the parity check matrix H of a linear code for which a codeword ∆ satisfies the relation

H∆ = 0. Then, we are supposed to find a low-weight nonzero codeword ∆. This

problem is known to be NP-hard but there are some non-optimal heuristic approaches

for it, see [74] for example. For problem (II), however, we are given three matrices

H, A and B and need to find a nonzero ∆ such that H∆ = 0 and A∆ ∨ B∆ is of

low-weight, see Lemma 3. Nevertheless, low-weight codewords ∆’s of the parity check

matrix H might be good candidates for providing low-weight A∆∨B∆, i.e., differential

paths with high probability p∆. In particular, this approach is promising if these three

matrices are sparse.

5.3 Finding a conforming message pair efficiently

The methods that are used to accelerate the finding of a message which satisfies some

requirements are referred to as freedom degrees use in the literature. This includes

message modifications [238], neutral bits [44], semi-neutral bits [167, 226], tunnels [151],

submarine modifications [179] and boomerang attacks [140, 168]. In this section we

show that the problem of finding conforming message pairs can be reformulated as

finding preimages of zero under a function which we call the condition function. One

can carefully analyze the condition function to see how freedom degrees might be used

in efficient preimage reconstruction. Our method is based on measuring the amount of

influence which every input bit has on each output bit of the condition function. We

introduce the dependency tables to distinguish the influential bits, from those which

have no influence or are less influential. In other words, in case the condition function

does not mix its input bits well, we profit not only from neutral bits [44] but also

from probabilistic neutral bits [15]. This is achieved by devising a backtracking search

algorithm, similar to [73, 38, 194, 118], based on the dependency table.

5.3.1 Condition function

Let’s assume that we have a differential path for the message difference ∆ which holds

with probability p∆ = 2−y. According to Lemma 3 we have y = wt
(
α(∆) ∨ β(∆)

)
. In

this section we show that, given an initial value V , the problem of finding a conforming

message pair such that Compress(M,V)⊕ Compress(M ⊕∆, V) = 0 can be translated

83

5. LINEARIZATION FRAMEWORK FOR FINDING HASH
COLLISIONS

into finding a message M such that Condition∆(M,V) = 0. Here Y = Condition∆(M,V)

is a function which maps m-bit message M and v-bit initial value V into y-bit output

Y . In other words, the problem is reduced to finding a preimage of zero under the

Condition∆ function. As we will see it is quite probable that not every output bit of the

Condition function depends on all the message input bits. By taking a good strategy,

this property enables us to find the preimages under this function more efficiently than

random search. But of course, we are only interested in preimages of zero. In order to

explain how we derive the function Condition from Compress, we first present a quite

easy-to-prove lemma. We recall that the carry word of two words A and B is defined

as C = (A+B)⊕A⊕B.

Lemma 4. Let A and B be two n-bit words and C represent their carry word. Let
δ = 2i for 0 ≤ i ≤ n− 2. Then,(

(A⊕ δ) + (B ⊕ δ)
)

= (A+B)⇔ Ai ⊕Bi ⊕ 1 = 0 , (5.2)

(
A+ (B ⊕ δ)) = (A+B)⊕ δ ⇔ Ai ⊕ Ci = 0 , (5.3)

and similarly (
(A⊕ δ) +B) = (A+B)⊕ δ ⇔ Bi ⊕ Ci = 0 . (5.4)

For a given difference ∆, a message M and an initial value V , let Ak, Bk, Ck, αk

and βk, 0 ≤ k < (n−1)nadd, respectively denote the kth bit of the output vectors of the

functions A(M,V), B(M,V), C(M,V), α(∆) and β(∆), as defined in section 5.2.3.

Let {i0, . . . , iy−1}, 0 ≤ i0 < i1 < · · · < iy−1 < (n− 1)nadd be the positions of 1’s in the

vector α(∆) ∨ β(∆). We define the function Y = Condition∆(M,V) as:

Yj =


Aij ⊕Bij ⊕ 1 if (αij ,βij) = (1, 1),

Aij ⊕Cij if (αij ,βij) = (0, 1),
Bij ⊕Cij if (αij ,βij) = (1, 0),

(5.5)

for j = 0, 1, . . . , y − 1. We sill later see that this equation can be equivalently written

as equation (5.8).

Proposition 4. For a given V and ∆, a message M conforms to the trail of ∆ iff
Condition∆(M,V) = 0.

Proof. The proof is straightforward from Definition 7, Lemma 4 and the definition of
the Condition function in equation (5.5).

84

5.3 Finding a conforming message pair efficiently

5.3.2 Dependency table for freedom degrees use

For simplicity and generality, let’s adopt the notation F (M,V) = Condition∆(M,V) in

this section. Assume that we are given a general function Y = F (M,V) which maps

m message bits and v initial value bits into y output bits. Our goal is to reconstruct

preimages of a particular output (e.g., the zero vector) efficiently. More precisely, we

want to find V and M such that F (M,V) = 0. If F mixes its input bits very well, one

needs to try about 2y random inputs in order to find one mapping to zero. However, in

some special cases due to neutrality [44] or semi-neutrality [151, 167, 226] of some input

bits, not every input bit of F affects every output bit. Consider an ideal situation where

message bits and output bits can be divided into ` and `+1 disjoint subsets respectively

as
⋃`
i=1 Mi and

⋃`
i=0 Yi such that the output bits Yj (0 ≤ j ≤ `) only depend on the

input bits
⋃j
i=1 Mi and the initial value V . In other words, once we know the initial

value V , we can determine the output part Y0. If we know the initial value V and the

input portion M1, the output part Y1 is then known and so on. Refer to Tables A.1

and A.2 to see the partitioning of condition functions related to CubeHash and MD6.

This property of F suggests Algorithm 3 for finding a preimage of zero. Algorithm 3 is

a backtracking search algorithm in essence, similar to [73, 38, 194, 118], and in practice

is implemented recursively with a tree-based search to avoid memory requirements.

The values q0, q1, . . . , q` are the parameters of the algorithm to be determined later. To

discuss the complexity of the algorithm, let |Mi| and |Yi| denote the cardinality of Mi

and Yi respectively, where |Y0| ≥ 0 and |Yi| ≥ 1 for 1 ≤ i ≤ `. We consider an ideal

behavior of F for which each output part depends in a complex way on all the variables

that it depends on. Thus, the output segment changes independently and uniformly at

random if we change any part of the relevant input bits.

To analyze the algorithm, we need to compute the optimal values for q0, . . . , q`. The

time complexity of the algorithm is
∑`

i=0 2qi as at each step 2qi values are examined.

The algorithm is successful if we have at least one candidate left at the end, i.e.,

q′`+1 ≥ 0. We have q′i+1 ≈ qi− |Yi|, coming from the fact that at the ith step 2qi values

are examined each of which makes the portion Yi of the output null with probability

2−|Yi|. Note that we have the restrictions qi − q′i ≤ |Mi| and 0 ≤ q′i since we have |Mi|

bits of freedom degree at the ith step and we require at least one surviving candidate

85

5. LINEARIZATION FRAMEWORK FOR FINDING HASH
COLLISIONS

Algorithm 3 : Preimage finding
Inputs: Function F with the corresponding message partitions M1, . . . ,M` and output
partitions Y0, . . . ,Y`, and the (optimised) parameters q0, q1, . . . , q` for the algorithm.
Output: some preimage of zero under F .

0: Choose 2q0 initial values at random and keep those 2q
′
1 candidates which make Y0

part null.
1: For each candidate, choose 2q1−q

′
1 values for M1 and keep those 2q

′
2 ones making

Y1 null.
2: For each candidate, choose 2q2−q

′
2 values for M2 and keep those 2q

′
3 ones making

Y2 null.
...
i: For each candidate, choose 2qi−q

′
i values for Mi and keep those 2q

′
i+1 ones making

Yi null.
...
`: For each candidate, choose 2q`−q

′
` values for M` and keep those 2q

′
`+1 final candi-

dates making Y` null.

after each step. Hence, the optimal values for qi’s can be recursively computed as

qi−1 = |Yi−1|+ max(0, qi − |Mi|) for i = `, `− 1, . . . , 1 with q` = |Y`|.
How can we determine the partitions Mi and Yi for a given function F? Based

on the idea of probabilistic neutrality and neutrality measure introduced in chapter 2,

we propose the following heuristic method for determining the message and output

partitions in practice. We first construct a y×m binary valued table T called dependency

table. The entry Tj,i, 0 ≤ i ≤ m− 1 and 0 ≤ j ≤ y − 1, is set to one iff the jth output

bit is highly affected by the ith message bit. To this end, we empirically measure

the probability that changing the ith message bit changes the jth output bit. The

probability is computed over random initial values and messages. We then set Tj,i to

one iff this probability is greater than a threshold 0 ≤ th < 0.5, e.g., th ≈ 0.3. We then

call Algorithm 4.

In practice, once we make a partitioning for a given function using the above method,

there are two issues which may cause the ideal behavior assumption to be violated:

1. The message segments M1, . . . ,Mi do not have full influence on Yi,

2. The message segments Mi+1, . . . ,M` have influence on Y0, . . . ,Yi.

86

5.3 Finding a conforming message pair efficiently

Algorithm 4 : Message and output partitioning
Input: Dependency table T .
Outputs: `, message partitions M1, . . . ,M`, and output partitions
Y0, . . . ,Y`.

1: Put all the output bits j in Y0 for which the row j of T is all-zero.
2: Delete all the all-zero rows from T .
3: ` := 0;
4: while T is not empty do
5: ` := `+ 1;
6: repeat
7: Determine the column i in T which has the highest number of 1’s and delete

it from T .
8: Put the message bit which corresponds to the deleted column i into the set

M`.
9: until There is at least one all-zero row in T OR T becomes empty

10: If T is empty set Y` to those output bits which are not in
⋃`−1
i=0 Yi and stop.

11: Put all the output bits j in Y` for which the corresponding row of T is all-zero.
12: Delete all the all-zero rows from T .
13: end while

87

5. LINEARIZATION FRAMEWORK FOR FINDING HASH
COLLISIONS

With regard to the first issue, we ideally would like that all the message segments

M1,M2, . . . ,Mi as well as the initial value V have full influence on the output part

Yi. In practice the effect of the last few message segments Mi−di , . . . ,Mi (for some

small integer di) is more important, though. Theoretical analysis of deviation from

this requirement may not be easy. However, with some tweaks on the tree-based (back-

tracking) search algorithm, we may overcome this effect in practice. For example, if the

message segment Mi−1 does not have a great influence on the output segment Yi, we

may decide to backtrack two steps at depth i, instead of one (the default value). The

reason is as follows. Imagine that you are at depth i of the tree and you are trying to

adjust the ith message segment Mi, to make the output segment Yi null. If, after trying

about 2min(|Mi|,|Yi|) choices for the ith message block, you do not find an appropriate

one, you will go one step backward and choose another choice for the (i−1)-st message

segment Mi−1; you will then go one step forward once you have successfully adjusted

the (i− 1)-st message segment. If Mi−1 has no effect on Yi, this would be useless and

increase our search cost at this node. Hence it would be appropriate if we backtrack

two steps at this depth. In general, we may tweak our tree-based search by setting the

number of steps which we want to backtrack at each depth.

In contrast, the theoretical analysis of the second issue is easy. Ideally, we would

like that the message segments Mi, . . . ,M` have no influence on the output segments

Y0, . . . ,Yi−1. The smaller the threshold value th is chosen, the less the influence would

be. Let 2−pi , 1 ≤ i ≤ `, denote the probability that changing the message segment

Mi does not change any bit from the output segments Y0, . . . ,Yi−1. The probability is

computed over random initial values and messages, and a random non-zero difference

in the message segment Mi. Algorithm 3 must be reanalyzed in order to recompute the

optimal values for q0, . . . , q`. Algorithm 3 also needs to be slightly changed by reassuring

that at step i, all the output segments Y0, . . . ,Yi−1 remain null. The time complexity of

the algorithm is still
∑`

i=0 2qi and it is successful if at least one surviving candidate is

left at the end, i.e., q`+1 ≥ 0. However, here we set q′i+1 ≈ qi−|Yi|−pi. This comes from

the fact that at the ith step 2qi values are examined each of which makes the portion Yi

of the output null with probability 2−|Yi| and keeping the previously set output segments

Y0, . . . ,Yi−1 null with probability 2−pi (we assume these two events are independent).

Here, our restrictions are again 0 ≤ q′i and qi − q′i ≤ |Mi|. Hence, the optimal values

88

5.4 Application to CubeHash

for qi’s can be recursively computed as qi−1 = pi−1 + |Yi−1| + max(0, qi − |Mi|) for

i = `, `− 1, . . . , 1 with q` = |Y`|.

Remark 7. When working with functions with a huge number of input bits, it might be
appropriate to consider the m-bit message M as a string of u-bit units instead of bits.
For example, one can take u = 8 and work with bytes. We then use the notation M =
(M [0], . . . ,M [m/u − 1]) (assuming u divides m) where M [i] = (Miu, . . . ,Miu+u−1).
In this case the dependency table must be constructed according to the probability that
changing every message unit changes each output bit.

5.4 Application to CubeHash

CubeHash [34] is Bernstein’s proposal for the NIST SHA-3 competition [181]. Cube-

Hash variants, denoted by CubeHash-r/b, are parametrized by r and b which at each

iteration process b bytes in r rounds. Although CubeHash-8/1 was the original official

submission, later the designer proposed the tweak CubeHash-16/32 which is almost 16

times faster than the initial proposal [36]. Nevertheless, the author has encouraged

cryptanalysis of CubeHash-r/b variants for smaller r’s and bigger b’s.

5.4.1 CubeHash description

CubeHash works with 32-bit words (n = 32) and uses three simple operations: XOR,

rotation and modular addition. It has an internal state S = (S0, S1, . . . , S31) of 32

words and its variants, denoted by CubeHash-r/b, are identified by two parameters

r ∈ {1, 2, . . . } and b ∈ {1, 2, . . . , 128}. The internal state S is set to a specified value

which depends on the digest length (limited to 512 bits) and parameters r and b. The

message to be hashed is appropriately padded and divided into b-byte message blocks.

At each iteration one message block is processed as follows. The 32-word internal state

S is considered as a 128-byte value and the message block is XORed into the first b

bytes of the internal state.1Then, the following fixed permutation is applied r times to

the internal state to prepare it for the next iteration.

1 The first message byte into the least significant byte of S0, the second one into the second least

significant byte of S0, the third one into the third least significant byte of S0, the fourth one into the

most significant byte of S0, the fifth one into the least significant byte of S1, and so forth until all b

message bytes have been exhausted.

89

5. LINEARIZATION FRAMEWORK FOR FINDING HASH
COLLISIONS

1. Add Si into Si⊕16, for 0 ≤ i ≤ 15.

2. Rotate Si to the left by seven bits, for 0 ≤ i ≤ 15.

3. Swap Si and Si⊕8, for 0 ≤ i ≤ 7.

4. XOR Si⊕16 into Si, for 0 ≤ i ≤ 15.

5. Swap Si and Si⊕2, for i ∈ {16, 17, 20, 21, 24, 25, 28, 29}.

6. Add Si into Si⊕16, for 0 ≤ i ≤ 15.

7. Rotate Si to the left by eleven bits, for 0 ≤ i ≤ 15.

8. Swap Si and Si⊕4, for i ∈ {0, 1, 2, 3, 8, 9, 10, 11}.

9. XOR Si⊕16 into Si, for 0 ≤ i ≤ 15.

10. Swap Si and Si⊕1, for i ∈ {16, 18, 20, 22, 24, 26, 28, 30}.

Having processed all message blocks, a fixed transformation is applied to the final

internal state to extract the hash value as follows. First, the last state word S31 is

ORed with integer 1 and then the above permutation is applied 10 × r times to the

resulting internal state. Finally, the internal state is truncated to produce the message

digest of desired hash length. Refer to [34] for the full specification.

Remark 8. For CubeHash-r/b there is a generic collision cryptanalysis with complexity
of about 2512−4b. For b > 64 this is faster than the generic birthday attack on hash
functions with digest length of 512 bits. Specifically, for b = 96 the generic attack has
a complexity of about 2128.

5.4.2 Defining the compression function

To be in the line of our general method, we need to deal with fixed-size input com-

pression functions. To this end, we consider t (t ≥ 1) consecutive iterations of Cube-

Hash. We define the function H = Compress(M,V) with an 8bt-bit message M =

M0|| . . . ||M t−1, a 1024-bit initial value V and a (1024− 8b)-bit output H. The initial

value V is used to initialize the 32-word internal state of CubeHash. Each M i is a

b-byte message block. We start from the initialized internal state and update it in t

iterations. That is, in t iterations the t message blocks M0, . . . ,M t−1 are sequentially

90

5.4 Application to CubeHash

processed in order to transform the internal state into a final value. The output H is

then the last 128− b bytes of the final internal state value which is ready to absorb the

(t+1)-st message block (the 32-word internal state is interpreted as a 128-byte vector).

Our goal is to find collisions for this Compress function. In the next section we

explain how collisions can be constructed for CubeHash itself.

5.4.3 Collision construction

We are planning to construct collision pairs (M ′,M ′′) for CubeHash-r/b which are of

the form M ′ = Mpre||M ||M t||M suf and M ′′ = Mpre||M ⊕ ∆||M t ⊕ ∆t||M suf . Here,

Mpre is the common prefix of the colliding pairs whose length in bytes is a multiple of

b, M t is one message block of b bytes and M suf is the common suffix of the colliding

pairs whose length is arbitrary. The message prefix Mpre is chosen for randomizing the

initial value V . More precisely, V is the content of the internal state after processing

the message prefix Mpre. For this value of V , (M,M ⊕ ∆) is a collision pair for the

compression function, i.e., Compress(M,V) = Compress(M ⊕∆, V). Remember that a

collision for the Compress indicates collision over the last 128− b bytes of the internal

state. The message blocks M t and M t ⊕∆t are used to get rid of the difference in the

first b bytes of the internal state. The difference ∆t is called the erasing block difference

and is computed as follows. When we evaluate the Compress with inputs (M,V) and

(M ⊕∆, V), ∆t is the difference in the first b bytes of the final internal state values.

Once we find message prefix Mpre, message M and difference ∆, any message pairs

(M ′,M ′′) of the above-mentioned form is a collision for CubeHash for any message

block M t and any message suffix M suf . We find the difference ∆ using the linearization

method of section 5.2, to be applied to CubeHash in the next section. Then, Mpre and

M are found by finding a preimage of zero under the Condition function as explained

in section 5.3. Algorithm 6 in appendix A.7 shows how CubeHash Condition function

can be implemented in practice for a given differential path.

5.4.4 Constructing linear differentials

We linearize the compression function of CubeHash to find message differences that

can be used for efficient collision search. In particular, we are interested in finding

differences which result in a low theoretical collision complexity when used with the

dependency table and backtracking algorithm. As a first approach one can search for

91

5. LINEARIZATION FRAMEWORK FOR FINDING HASH
COLLISIONS

differences with a high raw probability. Another motivation is that, as we will see at

the end of this section, a differential path with higher raw probability also corresponds

to a better second preimage cryptanalysis. Table 5.2 indicates the − log2 probability

(i.e., number of bit conditions) of the differential paths with the highest raw probability

which we found for b ∈ {1, 2, 3, 4, 8, 16, 32, 48, 64, 96} and r ∈ {1, 2, 3, 4, 5, 6, 7, 8}. We

did not consider the dash entries “–” since the large probability of their differential

paths makes them less interesting. The corresponding differential paths can be found in

appendix A.1. We would like to emphasize that since we are using linear differentials,

the erasing block difference ∆t only depends on the difference ∆, see section 5.4.3.

Appendix A.1 also includes the erasing block for convenience.

The differential paths have been found as follows. As explained in section 5.2, the

linear transformation Compresslin can be identified with a matrix H. A linear differential

path is a member of the kernel of this matrix, i.e., those ∆’s such that H∆ = 0. For

CubeHash-r/b with t iterations, ∆ = ∆0|| . . . ||∆t−1 and H has size (1024 − 8b) × 8bt,

see section 5.4.2. Let τ be the dimension of the kernel of H. The matrix H does

not have full rank for many parameters r/b and t. Therefore, one can find differences

with a high raw probability in the set of linear combinations of at most λ kernel basis

vectors, where λ ≥ 1 is chosen such that the set can be searched exhaustively. The

results heavily depend on the choice of the kernel vectors, see [148]. The kernel of

H contains 2τ different elements. The above method finds the best difference out of a

subset of
∑λ

i=1

(
τ
i

)
elements. We may find better results by increasing λ or by repeating

the search for another choice of the basis. Using ideas from [74, 195] we propose an

alternative search algorithm, that works well for many variants of CubeHash and does

not decisively depend on the choice of the kernel basis.

Let ∆0, . . . ,∆τ−1 be a kernel basis of Compresslin and denote G the matrix whose

τ rows consist of the binary vectors ∆i‖α(∆i)‖β(∆i) for i = 0, . . . , τ − 1; refer to

section 5.2.3 for the notation. Elementary row operations on G preserve this structure.

That is, the rows always have the form ∆‖α(∆)‖β(∆) where ∆ lies in the kernel of

Compresslin and its raw probability is given by the Hamming weight of α(∆) ∨ β(∆).

For convenience, we call this the raw probability of the row.

Our proposed algorithm works as follows. Determine imax, the index of the row

with the highest raw probability. Then repeat the following steps a number of N times:

92

5.4 Application to CubeHash

1. Randomly choose a column index j and let i be the smallest row index such that

Gi,j = 1 (choose a new j if no such i exists).

2. For all row indices k = i+ 1, . . . , τ − 1 such that Gk,j = 1:

• add row i to row k,

• set imax = k if row k has higher raw probability than row imax.

3. Move row i to the bottom of G, shifting up rows i+ 1, . . . , τ − 1 by one.

Remark 9. Table 5.2 shows the best differential paths with regards to the raw probability
found after 200 trials of the above randomized algorithm with N = 600 repetitions. A
more specific choice of the column index j in the first step does not lead to better
results. In particular, we tried to prioritize choosing columns towards the end, or for
every chosen column in α(∆) to also eliminate the corresponding column in β(∆).

r \ b 1 2 3 4 8 12 16 32 48 64 96

1 1225 221 46 32 32 – – – – – –

2 1225 221 46 32 32 – – – – – –

3 4238 1881 798 478 478 400 400 400 364? 65 –

4 2614 964 195 189 189 156 156 156 130? 130? 38

5 10221 4579 2433 1517 1517 1244? 1244? 1244? 1244? 205 127?

6 4238 1881 798 478 478 394 394 394 309 309 90

7 13365 5820 3028 2124 2124 1748 1748 1748 1748 447? 251?

8 2614 2614 1022 1009 1009 830 830 830 637? 637? 151

Table 5.2: Differential paths for CubeHash with the highest probability. The
table includes the values of y (i.e., the − log2 probability or the number of condition bits)
for the differential path with the highest raw probability which we found. Any entry
which is less than 512 indicates a theoretical second preimage cryptanalysis for 512-bit
digest values. For b ≤ 64, any entry which is less than 256 (already even without message
modification) indicates a theoretical collision cryptanalysis for 512-bit digest values. For
CubeHash-r/96, any entry which is less than 128 (already even without message modifi-
cation) indicates a theoretical collision cryptanalysis for digest values of size bigger than
256 bits, see Remark 8. Some of the corresponding differential paths can be found in ap-
pendix A.1. The entries without a star are optimal with respect to both second preimage
and collision cryptanalyses when message modification is exploited. However, the starred
entries are only optimal with respect to second preimage cryptanalysis, see Table 5.3.

Second preimage cryptanalysis on CubeHash. Any differential path with raw

probability greater than 2−512 can be considered as a (theoretical) second preimage

93

5. LINEARIZATION FRAMEWORK FOR FINDING HASH
COLLISIONS

cryptanalysis on CubeHash with 512-bit digest size. In Table 5.2 the entries which do

not correspond to a successful second preimage cryptanalysis (i.e., y > 512) are shown

in gray, whereas the others have been highlighted. For example, our differential path for

CubeHash-6/4 with raw probability 2−478 indicates that by only one hash evaluation we

can produce a second preimage with probability 2−478. Alternatively, it can be stated

that for a fraction of 2−478 messages we can easily provide a second preimage.

5.4.5 Collision cryptanalysis on CubeHash variants

Table 5.2 includes our best differential paths found with respect to raw probability or

equivalently second preimage cryptanalysis. Nevertheless, when it comes to freedom

degrees use for collision cryptanalysis, these trails might not be the optimal ones. In

other words, for a specific r and b, there might be another differential path which is

worse in terms of raw probability but is better regarding the collision cryptanalysis

complexity if we use some freedom degrees speedup. As an example, for CubeHash-

5/96 with the path which has raw probability 2−127 (given in equation (A.2)), using

our method of section 5.3 the time complexity can be theoretically reduced to about

268.7 (partial) evaluation of its condition function. However, there is another path with

raw probability 2−134 (given in equation (A.4)) which has theoretical time complexity

of about 231.9 (partial) evaluation of its condition function. This behavior can be

explained as follows. As previously observed in [74, 44, 238, 195, 179], conditions in early

steps of the computation can be more easily satisfied than those in later steps. This

is due to message modifications, (probabilistic) neutral bits, submarine modifications

and other freedom degrees use. Similar techniques are used implicitly when using a

dependency table to find a preimage of the condition function (and thus a collision

for the compression function). This motivates to search for differences ∆ such that

α(∆)∨β(∆) is sparse at the end. However, in general, this is not the case for trails of

Table 5.2 since most of them are sparse in the beginning and dense at the end. This

is due to the diffusion of the linearized compression function in the forward direction.

In order to find differential trails which are sparse at the end, one can work with the

inverse linearized round transformations, refer to [148] for more details. Table 5.3 shows

the best paths we found regarding the reduced complexity of the collision cryptanalysis

using our method of section 5.3. While most of the paths are still the optimal ones with

respect to the raw probability, the starred entries indicate the ones which invalidate

94

5.4 Application to CubeHash

this property. Some of the interesting differential paths for starred entries in Table 5.3

are given in appendix A.2. The second entries in Table 5.3 show the reduced time

complexities of the collision cryptanalysis using our method of section 5.3 whereas

the first entries are the complexities without message modification, that is, the − log2

values of the probability of the differential paths. To construct the dependency table,

we have analyzed the Condition function at byte level, see Remark 7. Therefore, the

time complexities might be improved if the dependency table is analyzed at a bit

level instead. The complexity unit is (partial) evaluation of their respective Condition

function. We remind that the full evaluation of a Condition function corresponding to a

t-iteration differential path is almost the same as application of t iterations (rt rounds)

of CubeHash. We emphasize that the complexities are independent of digest size. All

the complexities which are less than min
(
2512−4b, 2c/2

)
, see Remark 8, can be considered

as a successful collision cryptanalysis for CubeHash-r/b if the hash size is bigger than

c bits. In particular, the complexities bigger than 2256 for b ≤ 64 (considering 512-bit

digests) and bigger than 2128 for b = 96 (considering 256-bit digests) are worse than

generic attacks, hence shown in gray. The successfully cryptanalyzed instances have

been highlighted.

Effect of threshold value on cryptanalysis. Recall that a threshold value th was

used to construct the dependency table, see section 5.3.2. The astute reader should

realize that the complexities of Table 5.3 correspond to the optimal threshold value. To

see the effect of the threshold value on the complexity, we focus on seven instances of

CubeHash: CubeHash-3/64, -4/48, -5/96, -6/96, -4/32, -3/48, and -3/32. The first three

instances are the ones for which the theoretical complexities are practically reachable

and we have managed to find their real collision examples, see the next subsection.

The other four instances are the ones whose theoretical complexities are just above the

practically reachable values and are most probably the ones for which real collisions will

be found in near future either using more advanced methods or utilizing a huge cluster

of computers. Table 5.4 shows the effect of the threshold value on the complexity for

these seven instances.

Real collisions for CubeHash-3/64, -4/48 and -5/96. For CubeHash-3/64, we

use the 2-iteration message difference ∆ = ∆0||∆1 of equation (A.1). Equation (A.1)

95

5. LINEARIZATION FRAMEWORK FOR FINDING HASH
COLLISIONS

r \ b 1 2 3 4 8 12 16 32 48 64 96

1 1225 221 46 32 32 – – – – – –

1121.0 135.1 24.0 15.0 7.6 – – – – – –

2 1225 221 46 32 32 – – – – – –

1177.0 179.1 27.0 17.0 7.9 – – – – – –

3 4238 1881 798 478 478 400 400 400 368? 65 –

4214.0 1793.0 720.0 380.1 292.6 153.5 102.0 55.6 53.3 9.4 –

4 2614 964 195 189 189 156 156 156 134? 134? 38

2598.0 924.0 163.0 138.4 105.3 67.5 60.7 54.7 30.7 28.8 7.0

5 10221 4579 2433 1517 1517 1250? 1250? 1250? 1250? 205 134?

10085.0 4460.0 2345.0 1397.0 1286.0 946.0 868.0 588.2 425.0 71.7 31.9

6 4238 1881 798 478 478 394 394 394 309 309 90

4230.0 1841.0 760.6 422.1 374.4 256.1 219.9 180.0 135.7 132.0 51.0

7 13365 5820 3028 2124 2124 1748 1748 1748 1748 455? 260?

13261.0 5709.0 2940.0 2004.0 1892.0 1423.0 1323.0 978.0 706.0 203.0 101.0

8 2614 2614 1022 1009 1009 830 830 830 655? 655? 151

2606.0 2590.0 982.0 953.0 889.0 699.0 662.0 524.3 313.0 304.4 80.0

Table 5.3: Differential paths for CubeHash with the least collision complexity.
The table corresponds to the differential paths which provide the best collision cryptanal-
yses when message modification is exploited using our method of section 5.3. The first
number is the log2 value of the collision complexity without message modification (i.e., the
− log2 probability of the path or the number of condition bits) whereas the second number
is the log2 value of the theoretical reduced collision complexity using message modification.
For b ≤ 64, any entry with log2 complexity less than 256 indicates a theoretical collision
cryptanalysis for 512-bit digest values. For CubeHash-r/96, any entry with log2 complexity
less than 128 indicates a theoretical collision cryptanalysis for digest values of size bigger
than 256 bits, see Remark 8. Some of the corresponding differential paths can be found
in appendices A.1 (for entries without a star) and A.2 (for starred entries). The entries
without a star are optimal with respect to both second preimage and collision cryptanaly-
ses when message modification is exploited. However, the starred entries are only optimal
with respect to the collision cryptanalysis, see Table 5.2.

96

5.4 Application to CubeHash

Variant y \ th 0.0 0.025 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

3/64 65 16.3 11.3 11.4 10.6 10.2 10.4 9.9 9.4 10.4 10.4 11.4

4/48 134 50.8 38.3 34.6 33.6 32.3 38.4 35.0 32.2 30.7 32.3 37.7

5/96 134 48.0 35.2 34.1 32.1 32.2 32.6 32.0 31.9 31.9 42.0 42.0

6/96 90 58.0 55.1 55.0 55.0 54.3 53.4 52.8 51.0 51.0 52.7 54.6

4/32 156 75.2 67.4 67.4 63.7 69.0 62.0 54.8 54.7 60.7 66.0 63.9

3/48 368 99.7 90.6 87.2 80.3 67.6 61.2 65.3 53.3 65.1 83.4 102.6

3/32 400 91.0 63.3 61.5 57.1 61.8 55.6 70.9 70.7 79.7 82.4 98.9

Table 5.4: Effect of the threshold value on the collision cryptanalysis complex-
ity for CubeHash. This table shows the theoretical log2 complexities of the improved
collision cryptanalysis versus the threshold parameter (which is used for constructing the
dependency table, see section 5.3.2) when freedom degrees are exploited using our method
of section 5.3 for some CubeHash instances.

also includes the erasing block difference ∆2, required for collision construction. Ap-

pendix A.3 includes the values of Mpre and M = M0||M1 for collision on CubeHash-

3/64 with 512-bit digest size. In other words, Condition∆(M,V) = 0 holds for the

corresponding condition function where V is the content of the internal state after

processing the message prefix Mpre. According to section 5.4.3, the pair M ′ and M ′′

where

M ′ = Mpre||M0||M1||M2||M suf ,

M ′′ = Mpre||(M0 ⊕∆0)||(M1 ⊕∆1)||(M2 ⊕∆2)||M suf ,

is a collision for CubeHash-3/64 for any message block M2 and any message suffix M suf

of arbitrary length.

For CubeHash-4/48, we use the 2-iteration message difference ∆ = ∆0||∆1 of equa-

tion (A.3). It also includes the erasing block difference ∆2, required for collision con-

struction. The values of Mpre and M = M0||M1, for collision on CubeHash-4/48 with

512-bit digest size, are provided in appendix A.4. Based on these values, collisions for

CubeHash-4/48, similar to the way we explained for CubeHash-3/64, can be constructed.

For CubeHash-5/96, we use the 1-iteration message difference ∆ = ∆0 of equa-

tion (A.4). It also includes the erasing block difference ∆1, required for collision

construction. The values of Mpre and M = M0, for collision on CubeHash-5/96

with 512-bit digest size, are provided in appendix A.5. Therefore, the pair M ′ =

Mpre||M0||M1||M suf and M ′′ = Mpre||(M0 ⊕ ∆0)||(M1 ⊕ ∆1)||M suf is a collision for

97

5. LINEARIZATION FRAMEWORK FOR FINDING HASH
COLLISIONS

CubeHash-5/96 for any message block M1 and any message suffix M suf of arbitrary

length.

Note that a collision pair for a given r and b can be easily transformed to a collision

pair for the same r and bigger b’s by appending enough zeros to each message block.

Practice versus theory. We provided a framework which is handy in order to an-

alyze many hash functions in a generic way. In practice, the optimal threshold value

may be a little different from the theoretical one. Moreover, by slightly playing with

the neighboring bits in the suggested partitioning corresponding to a given threshold

value (Algorithm 4), we may achieve a partitioning which is more suitable for applying

the attacks. In particular, Tables 5.3 and 5.4 contain the theoretical complexities for

different CubeHash instances under the assumption that the Condition function behaves

ideally with respect to the first issue discussed in section 5.3.2. In practice, deviation

from this assumption increases the effective complexity. For particular instances, more

simulations need to be done to analyze the potential non-randomness effects in order

to give a more exact estimation of the practical complexity.

In the following we compare the practical complexities with the theoretical values

for some cases for which their complexities are practically reachable. Moreover, for

some CubeHash instances for which their complexities are unreachable in practice we

try to give a more precise estimation of their effective complexities.

Our tree-based search implementation for the CubeHash-3/64 case with th ≈ 0.3

has median complexity 221 instead of the 29.4 of Table 5.4. The median decreases to

217 by backtracking three steps at each depth instead of one, see section 5.3.2. We

expect the practical complexities for other instances of CubeHash with three rounds to

be slightly bigger than the theoretical numbers in Table 5.3. These cases need to be

further investigated.

Our detailed analysis of CubeHash-4/32, CubeHash-4/48 and CubeHash-4/64 shows

that these cases perfectly match with theory. According to Table 5.3, for CubeHash-

4/64 (with th ≈ 0.33) and CubeHash-4/48 (with th ≈ 0.30) we have the theoretical

complexities 228.8 and 230.7, respectively. We experimentally achieve median complex-

ities 228.3 and 230.4 respectively. For CubeHash-4/32 (with th ≈ 0.30) the theoretical

complexity is 254.7. In the tree-based search algorithm, we need to satisfy 44 bit con-

ditions at step 18, i.e., |Y18| = 44. This is the node which has the highest cost and if

98

5.4 Application to CubeHash

it is successfully passed, the remaining steps will easily be followed. In other words, a

single surviving candidate at this node (which means 2q
′
19 = 1 referring to Algorithm 3)

suffices to make the remaining condition bits null with little cost. Our simulations

show that on average we need about 210 (partial) evaluations of the condition function

per one surviving candidate which arrives at depth 18. Hence, our estimation of the

practical complexity is 210 × 244 = 254 which agrees with theory.

Our detailed analysis of CubeHash-5/96 shows that it perfectly matches with theory.

According to Table 5.3, for CubeHash-5/96 (with th ≈ 0.30) we have the theoretical

complexities 231.9. See also Table A.1, the corresponding dependency table. We ex-

perimentally find collisions in almost the same time. In CubeHash-5/64 case (with

th ≈ 0.24), the costliest node is at depth 20 for which 70 bit conditions must be sat-

isfied, i.e., |Y20| = 70. A single surviving candidate at this node suffices to make the

remaining condition bits null with little cost. Our simulation shows that on average

about 27.0 (partial) evaluations of the condition function are required per one surviving

candidate which arrives at depth 20. Hence, our estimation of the practical complexity

is about 27.0+70 = 277.0, versus theoretical value 271.7.

In CubeHash-6/16 case (with th ≈ 0.12), the costliest node is at depth 9 for which

204 bit conditions must be satisfied, i.e., |Y9| = 204. We need 212 candidates to

successfully pass this node, i.e., q′10 = 12; see Algorithm 3. Our simulation shows that

on average about 25 (partial) evaluations of the condition function are required per one

surviving candidate which arrives at depth 9. Hence, our estimation of the practical

complexity is about 212+5+204 = 2221, versus theoretical value 2219.9.

In CubeHash-7/64 case (with th ≈ 0.25), the costliest node is at depth 24 for which

201 bit conditions must be satisfied, i.e., |Y24| = 201. Only one surviving candidate

at this node suffices to make the remaining condition bits null with much less cost.

Our simulation shows that on average about 27 (partial) evaluations of the condition

function are required per one surviving candidate which arrives at depth 24. Hence,

our estimation of the practical complexity is about 27+201 = 2208, versus theoretical

value 2203.0.

We emphasize that for these latter cases we did not attempt to play with the neigh-

boring bits in the partitioning. We believe, in general, complexities can get very close

to the theoretical ones if one tries to do so.

99

5. LINEARIZATION FRAMEWORK FOR FINDING HASH
COLLISIONS

Comparison with the previous results. The first analysis of CubeHash was pro-

posed by Aumasson et al. [13] in which the authors showed some non-random properties

for several versions of CubeHash. A series of collision examples on CubeHash-1/b and

CubeHash-2/b for large values of b were announced by Aumasson [12] and Dai [95].

Collision cryptanalysis was later investigated deeply by Brier and Peyrin [66]. We

cryptanalyzed not only the untouched variants but also improved on all the existing

results.

5.5 Generalization

In sections 5.2 and 5.3 we considered modular-addition-based compression functions

which use only modular additions and linear transformations. Moreover, we concen-

trated on XOR approximation of modular additions in order to linearize the compres-

sion function. This method is, however, quite general and can be applied to a broad

class of hash constructions, covering many of the existing hash functions. Additionally,

it lets us consider other linear approximations as well. We view a compression function

H = Compress(M,V) : {0, 1}m × {0, 1}v → {0, 1}h as a binary finite state machine

(FSM). The FSM has an internal state which is consecutively updated using message

M and initial value V . We assume that FSM operates as follows, and we refer to such

Compress functions as binary-FSM-based. The concept can also cover non-binary fields.

The internal state is initially set to zero. Afterwards, the internal state is sequen-

tially updated in a limited number of steps. The output value H is then derived by

truncating the final value of the internal state to the specified output size. At each

step, the internal state is updated according to one of these two possibilities: either

the whole internal state is updated as an affine transformation of the current internal

state, M and V , or only one bit of the internal state is updated as a nonlinear Boolean

function of the current internal state, M and V . Without loss of generality, we assume

that all of the nonlinear updating Boolean functions (NUBF) have zero constant term

(i.e., the output of zero vector is zero) and none of the involved variables appear as

a pure linear term (i.e., changing any input variable does not change the output bit

with certainty). As we will see, this assumption, coming from the simple observation

that we can integrate constants and linear terms in an affine updating transforma-

tion (AUT), is essential for our analysis. Linear approximations of the FSM can be

100

5.5 Generalization

achieved by linearizing AUTs and NUBFs. To this end, an AUT is replaced with a

linear transformation by ignoring its constant term (note that the only difference be-

tween an affine transformation and a linear one is the possible existence of an additive

constant term). Moreover a NUBF is replaced with a linear function. Similar to sec-

tion 5.2 this gives us a linearized version of the compression function which we denote

by Compresslin(M,V). As we are dealing with differential cryptanalysis, we take the

notation Compresslin(M) = Compresslin(M, 0). The argument given in section 5.2 is

still valid: elements of the kernel of the linearized compression function (i.e., ∆’s s.t.

Compresslin(∆) = 0) can be used to construct differential trails.

Let nnl denote the total number of NUBFs in the FSM. We count the NUBFs by

starting from zero. We introduce four functions Λ(M,V), Φ(∆), Λ∆(M,V) and Γ(∆)

all of output size nnl bits. To define these functions, consider the two procedures which

implement the FSMs of Compress(M,V) and Compresslin(∆). Let the Boolean function

gk, 0 ≤ k < nnl, stand for the kth NUBF and denote its linear approximation as in

Compresslin by gklin. Moreover, denote the input arguments of the Boolean functions gk

and gklin in the FSMs which compute Compress(M,V) and Compresslin(∆) by the vectors

xk and δk, respectively. Note that δk is a function of ∆ whereas xk depends on M and

V . The kth bit of Γ(∆), Γk(∆), is set to one iff the argument of the kth linearized NUBF

is not the all-zero vector, i.e., Γk(∆) = 1 iff δk 6= 0. The kth bit of Λ(M,V), Λk(M,V),

is the output value of the kth NUBF in the course of evaluation of Compress(M,V)

through the execution of FSM, i.e., Λk(M,V) = gk(xk). Similarly, the kth bit of Φ(∆),

Φk(∆), is the output value of the kth linearized NUBF in the course of evaluation of

Compresslin(∆) through linearized version of FSM, i.e., Φk(∆) = gklin(δk). The kth bit

of Λ∆(M,V), Λ∆
k (M,V), is evaluated in a more complex way: apply the kth nonlinear

Boolean function on the XOR-difference of the arguments which are fed into the two

Boolean functions which compute Λk(M,V) and Φk(∆), i.e., Λ∆
k (M,V) = gk(xk⊕ δk).

Refer to Table 5.1 for a list of these symbols along with the ones used in sections 5.2

and 5.3.1. We can then present the following proposition.

Proposition 5. Let Compress be a binary-FSM-based compression function. For any
message difference ∆, let {i0, . . . , iy−1}, 0 ≤ i0 < i1 < · · · < iy−1 < nnl be the positions
of 1’s in the vector Γ(∆) where y = wt

(
Γ(∆)

)
. We define the condition function

Y = Condition∆(M,V) where the jth bit of Y , 0 ≤ j ≤ y − 1, is computed as

Yj = Λij (M,V)⊕ Λ∆
ij (M,V)⊕ Φij (∆). (5.6)

101

5. LINEARIZATION FRAMEWORK FOR FINDING HASH
COLLISIONS

Then, if ∆ is in the kernel of Compresslin, Condition∆(M,V) = 0 implies that the pair
(M,M ⊕∆) is a collision for Compress with the initial value V .

Proof. First, we present the following definition, a generalization of Definition 7.

Definition 8. We say that a message M (for a given V) conforms to (or follows) the
trail of ∆ till before applying the ith NUBF iff

Λk(M,V)⊕ Λ∆
k (M,V) = Φk(∆), (5.7)

for 0 ≤ k < i. Moreover, we say that the message M (for a given V) conforms to (or
follows) the trail of ∆ iff the equation (5.7) holds for 0 ≤ k < nnl.

To explain the Definition 8, imagine we have three procedures which implement
the FSMs to compute Compress(M,V), Compress(M ⊕∆, V) and Compresslin(∆). If a
message M (for a given V) conforms to the trial of ∆ till before applying the ith NUBF,
it means that at every step before the ith NUBF the difference of the internal states
of the two FSMs which compute Compress(M,V) and Compress(M ⊕∆, V) equals the
internal state value of the FSM which computes Compresslin(∆). This is guaranteed
by equation (5.7) because the only nonlinear operations during this period are the
applications of the first i−1 NUBFs. Note that if a message M conforms to the trial of
∆ for a given V , we then have Compress(M,V)⊕ Compress(M ⊕∆) = Compresslin(∆).

For simplicity, let the Boolean function g stand for the ith NUBF and denote its
linear approximation as in Compresslin by glin. Moreover, denote the input arguments
of the Boolean functions g and glin in the FSMs which compute Compress(M,V) and
Compresslin(∆) by the vectors x and δ, respectively. According to our notation Γi(∆) =
1 iff δ 6= 0, and Λi(M,V) = g(x), Φi(∆) = glin(δ) and Λ∆

i (M,V) = g(x⊕ δ). Now the
role of Γi(∆) becomes visible.

If Γi(∆) = 0, we have δ = 0, and hence g(x) ⊕ g(x ⊕ δ) = glin(δ). In this case the
equation Λi(M,V)⊕ Λ∆

i (M,V)⊕ Φi(∆) = 0 is satisfied by itself, and therefore we do
not need to introduce a condition bit, see equation (5.6). In other words the message
M automatically conforms to the trial of ∆ for the initial value V till before applying
the (i+1)-st NUBF, provided that it conforms to the trial of ∆ till before applying the
ith NUBF.

However, if Γi(∆) = 1, we have x 6= x ⊕ δ. Therefore, if the message M conforms
to the trial of ∆ till before applying the ith NUBF, it will also conform to the trial of
∆ till before applying the (i + 1)-st NUBF iff g(x) ⊕ g(x ⊕ δ) = glin(δ). That is, we
need to impose one condition bit as in equation (5.6). Remember we supposed that
g has no linear term, the reason for which is as follows. If g has some linear terms

102

5.5 Generalization

and if the difference δ is nonzero only in some of those linear inputs, the equation
g(x) ⊕ g(x ⊕ δ) = glin(δ) is held by itself. In this case, the imposed condition bit is
redundant.

The following proposition summarizes our findings.

Proposition 6. Suppose that Compresslin is a linearized version of a given binary-FSM-
based compression function Compress(M,V). For a given ∆ in the kernel of Compresslin

and for an initial value V , a message M conforms to the trail of ∆ iff the corresponding
condition function satisfies Condition∆(M,V) = 0. Moreover, for a random initial value
V , a random message M is a conforming one with probability 2−Γ(∆).

5.5.1 Modular addition case

Let’s review the compression functions involving only linear transformations and mod-

ular addition of n-bit words. We deeply studied this subject in sections 5.2 and 5.3.

The modular addition Z = X + Y can be computed by considering one bit memory c

for the carry bit. Let X = (x0, . . . , xn−1), Y = (y0, . . . , yn−1) and Z = (z0, . . . , zn−1).

We have
ci+1 = cixi ⊕ ciyi ⊕ xiyi for 0 ≤ i ≤ n− 2
zi = xi ⊕ yi ⊕ ci for 0 ≤ i ≤ n− 1,

where c0 = 0. It can be argued that a compression function which uses only linear

transformations and nadd modular additions can be implemented as a binary-FSM-

based compression whose total number of NUBFs is nnl = (n− 1)nadd. All the NUBFs

are of the form g(x, y, z) = xy⊕xz⊕yz. The XOR approximation of modular addition

in section 5.2 corresponds to approximating all the NUBFs g by the zero function,

i.e., glin(x, y, z) = 0. Having the notation of sections 5.3.1, 5.2 and 5.5 in mind (see

also Table 5.1) we deduce that the input argument of the kth NUBF is (Ak,Bk,Ck);

whereas that of the kth linearized NUBF is (αk,βk, 0). Therefore, we have Λk(M,V) =

g(Ak,Bk,Ck) and Φk(∆) = glin(αk,βk, 0). Moreover, we deduce Γk(∆) = αk ∨ βk ∨ 0

and Λ∆
k (M,V) = g(Ak ⊕αk,Bk ⊕ βk,Ck ⊕ 0). As a result we get

Yj = Λij (M,V)⊕ Λ∆
ij

(M,V)⊕ Φij (∆)
= g(Ak,Bk,Ck)⊕ g(Ak ⊕αk,Bk ⊕ βk,Ck ⊕ 0)⊕ 0
= (αij ⊕ βij)Cij ⊕αijBij ⊕ βijAij ⊕αijβij

(5.8)

whenever αij ∨ βij = 1; this agrees with equation (5.5).

103

5. LINEARIZATION FRAMEWORK FOR FINDING HASH
COLLISIONS

5.5.2 Note on the different linear approximations

Various combinations of different linear approximations of the NUBFs provide a diverse

range of linear approximations of the compression function. However, one should be

careful to avoid approximations which might lead to contradictions due to dependency

between different approximations. In fact the probability 2−Γ(∆) would not be a good

estimate in this case if there are strong correlations between approximations. In the

case of linear approximation of modular addition of n-bit words, we have (n−1) NUBFs

for the carry bits, out of which n− 2 are of the form xy ⊕ xc⊕ yc and one of the form

xy (corresponding to the carry of the LSB). There are eight linear approximations for

the earlier Boolean function (because it effectively depends on three variables) and

four linear approximations for the later one (because it effectively depends on two

variables). This shows the possibility of 4 × 8(n−2) different linear approximations.

For one particular linear approximation, if the difference of the two addends are α

and β the output difference γ is uniquely determined. In [162] the notation of “good”

differential is introduced to distinguish those differentials which can happen with non-

zero probability. A differential α, β → γ is not “good” iff for some i ∈ [0, n − 1],

αi−1 = βi−1 = γi−1 6= αi ⊕ βi ⊕ γi [162]. The exact probability of “good” differentials

can be computed from Algorithm 2 of [162]. In general, it might not be easy to take

redundancies into account. However, cryptanalysts should try their best. We also

would like to emphasize that although there exists an exponential number of linear

approximations (in terms of nnl) for the compression function, it would be better in

practice to concentrate on those for which highly probable linear differential paths are

found easily. For example, by approximating the NUBFs with the zero function or

sparse linear functions, the h × m matrix H which satisfies Compresslin(∆) = H∆ is

likely sparser, making it easier to find differential paths with good raw probability.

5.6 Application to MD6

MD6 [206], designed by Rivest et al., was a first round SHA-3 candidate that provides

security proofs regarding some differential attacks. The core part of MD6 is the function

f which works with 64-bit words and maps 89 input words (A0, . . . , A88) into 16 output

words (A16r+73, . . . , A16r+88) for some integer r representing the number of rounds.

104

5.6 Application to MD6

Each round is composed of 16 steps. The function f is computed based on the following

recursion

Ai+89 = Lri,li
(
Si ⊕Ai ⊕ (Ai+71 ∧Ai+68)⊕ (Ai+58 ∧Ai+22)⊕Ai+72

)
, (5.9)

where Si’s are some publicly known constants and Lri,li ’s are some known simple linear

transformations. The 89-word input of f is of the form Q||U ||W ||K||B where Q is a

known 15-word constant value, U is a one-word node ID, W is a one-word control word,

K is an 8-word key and B is a 64-word data block. For more details about function f

and the mode of operation of MD6, we refer to the submission document [206].1 We

consider the compression function H = Compress(M,V) = f(Q||U ||W ||K||B) where

V = U ||W ||K, M = B and H is the 16-word compressed value. Our goal is to find a

collision Compress(M,V) = Compress(M ′, V) for arbitrary value of V . We later explain

how such collisions can be translated into collisions for the MD6 hash function.

According to our model (section 5.5), MD6 can be implemented as an FSM which

has 64 × 16r NUBFs of the form g(x, y, z, w) = x · y ⊕ z · w. Remember that the

NUBFs must not include any linear part or constant term. We focus on the case

where we approximate all NUBFs with the zero function. This corresponds to ignoring

the AND operations in equation (5.9). This essentially says that in order to com-

pute Compresslin(∆) = Compresslin(∆, 0) for a 64-word ∆ = (∆0, . . . ,∆63), we map

(A′0, . . . , A
′
24, A

′
25, . . . , A

′
88) = 0||∆ = (0, . . . , 0,∆0, . . . ,∆63) into the 16 output words

(A′16r+73, . . . , A
′
16r+88) according to the linear recursion

A′i+89 = Lri,li
(
A′i ⊕A′i+72

)
. (5.10)

For a given ∆, the function Γ is the concatenation of 16r words A′i+71∨A′i+68∨A′i+58∨
A′i+22, 0 ≤ i ≤ 16r − 1. Therefore, the number of bit conditions equals

y =
16r−1∑
i=0

wt(A′i+71 ∨A′i+68 ∨A′i+58 ∨A′i+22). (5.11)

Note that this equation compactly integrates cases 1 and 2 given in section 6.9.3.2

of [206] for counting the number of active AND gates. Algorithm 5 in appendix A.7

shows how the Condition function is implemented using equations (5.6), (5.9) and(5.10).
1In the MD6 document [206], the control word W and the linear function Lri,li are respectively

denoted by V and gri,li .

105

5. LINEARIZATION FRAMEWORK FOR FINDING HASH
COLLISIONS

Using a similar linear algebraic method to the one used in section 5.4.4 for Cube-

Hash, we have found the collision difference of equation (5.12) for r = 16 rounds with

a raw probability p∆ = 2−90. In other words, ∆ is in the kernel of Compresslin and

the condition function has y = 90 output bits. Note that this does not contradict the

proven bound in [206]: one gets at least 26 active AND gates.

∆i =


F6D164597089C40E i = 2
2000000000000000 i = 36

0 0 ≤ i ≤ 63, i 6= 2, 36
(5.12)

In order to efficiently find a conforming message pair for this differential path, we need

to analyze the dependency table of its condition function. Referring to our notation

in section 5.3.2, our analysis of the dependency table of function Condition∆(M, 0) at

word level (units of u = 64 bits) shows that the partitioning of the condition function

is as in Table A.2 for threshold value th = 0. For this threshold value clearly pi = 0.

The optimal values for qi’s (computed according to the complexity analysis of the same

section) are also given in Table A.2, showing a total attack complexity of 230.6 (partial)

condition function evaluation.1 By analyzing the dependency table with smaller units

the complexity may be subject to reduction.

Having set V to zero (which corresponds to choosing null values for the key, the

node ID and the control word in order to simplify things), we found a message M ,

given in the appendix A.6, which makes the condition function null. In other words,

the message pairs M and M ⊕∆ are colliding pairs for r = 16 rounds of f . This 16-

round colliding pair provides near collisions for r = 17, 18 and 19 rounds, respectively,

with 63, 144 and 270 bit differences over the 1024-bit long output of f .

Now let’s discuss the potential of providing collisions for reduced-round MD6 hash

function from collisions for reduced-round f . The MD6 mode of operation is optionally

parametrized by an integer L, 0 ≤ L ≤ 64, which allows a smooth transition from the

default tree-based hierarchical mode of operation (for L = 64) down to an iterative

mode of operation (for L = 0). When L = 0, MD6 works in a manner similar to

that of the well-known Merkle-Damg̊ard construction (or the HAIFA method). Since

in the iterative Merkle-Damg̊ard the first 16 words of the message block are used as a

1By masking M38 and M55 respectively with 092E9BA68F763BF1 and DFFBFF7FEFFDFFBF after ran-

dom setting, the 35 condition bits of the first three steps are satisfied for free, reducing the complexity

to 230.0 instead. See Table A.2.

106

5.7 Summary

chaining value, and as our difference in equation (5.12) is non-zero in the first 16 words,

we do not get a collision but a pseudo-collision. Nevertheless, for 16-round MD6 in the

tree-based hierarchical mode of operation (i.e., for 1 ≤ L ≤ 64), we get a hash collision.

We emphasize that one must choose node ID U and control word W properly in order

to fulfill the MD6 restriction on these values as opposed to the null values which we

chose. This is the first real collision example for 16-round MD6. The original MD6

submission [206] mentions inversion of the function f up to a dozen rounds using SAT

solvers. Some slight nonrandom behavior of the function f up to 33 rounds has also

been reported [150].

5.7 Summary

We presented a framework for an in-depth study of linear differential attacks on hash

functions. We applied our method to reduced round variants of CubeHash and MD6.

As of April 2010, our results on CubeHash are still by far the best known collision

cryptanalyses. However, in [132] our results on MD6 were slightly improved by finding

better linear differential paths. MD6 is of no interest any more as it was only among

the first round SHA-3 candidates and was withdrawn by the designers just before the

start of the second round. In contrast, CubeHash is one of the promising candidates

in the second round.

107

5. LINEARIZATION FRAMEWORK FOR FINDING HASH
COLLISIONS

108

6

Conclusion

The field of design and analysis of symmetric cryptographic components is a fascinating

realm of research activity. The struggle between primitive designers and cryptanalysts

has kept the field very lively. Cryptographers over the years have learned to include

a tunable parameter in their design in order to provide flexible security/performance

trade-offs. It is scientifically interesting to explore how much the number of mathe-

matical operations can be reduced to construct a cipher that does not cower against

cryptanalysts. On the other hand, the cryptographic community and standardization

organizations have also learned that the best way to achieve a cipher which can stay

alive for a long period of time is to go through public evaluations. Cipher designers

choose the security parameter such that their schemes are fast enough while still keep-

ing some reasonable level of confidence on their designs. Cryptanalysts on the other

hand try to break reduced-round variants, which are faster, and get as close as possible

to the security parameter set by the designers. In this thesis we cryptanalyzed vari-

ous stream cipher and hash function design proposals, including several candidates of

the ECRYPT eSTREAM project and NIST SHA-3 competition. Although we cannot

break the schemes in many cases, our results have either remained the best so far or

inspired newer improved results.

109

6. CONCLUSION

110

Appendix A

A.1 The best differential paths found for CubeHash re-

garding raw probability

Here we give the differential trials for highlighted entries of Table 5.2 and the entries

of Table 5.3 which are not starred. A differential path is denoted by (∆0,∆1, . . . ,∆t)

where ∆ = ∆0||∆1|| . . . ||∆t−1 is in the kernel of Compresslin and ∆t is the corresponding

erasing block difference. Recall that each ∆i consists of b bytes and Compresslin linearly

maps ∆ in t iterations into the last 128− b bytes of the final state. The erasing block

difference ∆t is then the contents of the first b bytes of the state, hence only depending

on ∆. Nevertheless, we also provide this value for convenience. See sections 5.4.2

and 5.4.4 for more details. Note that a differential path for a given r and b can be

easily transformed to a differential path for the same r and bigger b’s by appending

enough zeros to each difference block. Therefore, we present the differential path for

the smallest valid b.

A.1.1 Differential paths for CubeHash-1/?

CubeHash-1/4 with y = 32:

(∆0, . . . ,∆4) = (00000001, 00000000, 40400010, 00000000, 00000010)

CubeHash-1/3 with y = 46:

(∆0, . . . ,∆4) = (010000, 000000, 104040, 000000, 100000)

CubeHash-1/2 with y = 221:

(∆0, . . . ,∆8) = (0080, 0000, 2200, 0000, 228A, 0000, 0280, 0000, 2000)

111

A.

A.1.2 Differential paths for CubeHash-2/?

CubeHash-2/4 with y = 32:

(∆0,∆1,∆2) = (00000001, 40400010, 00000010)

CubeHash-2/3 with y = 46:

(∆0,∆1,∆2) = (010000, 104040, 100000)

CubeHash-2/2 with y = 221:

(∆0, . . . ,∆4) = (0040, 1100, 1145, 0140, 1000)

A.1.3 Differential paths for CubeHash-3/?

CubeHash-3/64 with y = 65:

∆0 = 4000
000000000000000000000080000000000000008000000000
00000000000000000000000000000000

∆1 = 000000000004100000000000000010000000000000000000
800020800000008008000208080000000000000000000000
41000010000000000140000000000000

∆2 = 002000
000000000000200000000000000000000000000000000000
00000000000000000000000000000010

(A.1)

CubeHash-3/48 with y = 364:

∆0 = 000000000000000000000000000000000000010000000000
00000100

∆1 = 000202800002000000020280000200000000000000000000
000000000000000040000101000000004000010100000000

∆2 = 202022000000000020202200000000004000000500000000
400000050000000040440040404400404044004040440040

∆3 = 080000000800020808000000080002080000000000000000
000000000000000000040000000000000004000000000000

CubeHash-3/12 with y = 400:

∆0 = 000200000000000000020000
∆1 = 000000000000000000000000
∆2 = 800A2A8200000000800A2A82
∆3 = 000000000000000000000000
∆4 = 000020000000000000002000

112

A.1 The best differential paths found for CubeHash regarding raw
probability

CubeHash-3/4 with y = 478:

(∆0, . . . ,∆4) = (00000100, 00000000, 41400515, 00000000, 00000010)

CubeHash-3/3 with y = 798:

(∆0, . . . ,∆4) = (000280, 000000, 0A2A8A, 000000, 080020)

A.1.4 Differential paths for CubeHash-4/?

CubeHash-4/95 with y = 38:

∆0 = 0000001000
000002000000020008000000000000000000000000000000
000000000000000000000000000000000004101000000000
0000100000000000000000000000000000000280000002

∆1 = 010000000000000001400001000000000000000000000000
082000000820000080000000000000000000000000000000
00
0000000100000000000000000000000000200000082000

CubeHash-4/36 with y = 130:

∆0 = 002000000000000000200000000000000000000000000000
000000000000000000001000

∆1 = 000220020000000000022002000000000000000000000000
000000000000000001000110

∆2 = 000020000000000000002000000000000000000000000000
000000000000000000000010

CubeHash-4/12 with y = 156:

∆0 = 040000000000000004000000
∆1 = 004400400000000000440040
∆2 = 000400000000000000040000

CubeHash-4/4 with y = 189:

(∆0,∆1,∆2) = (00001000, 01000110, 00000010)

CubeHash-4/3 with y = 195:

(∆0,∆1,∆2) = (000200, 200022, 000002)

113

A.

A.1.5 Differential paths for CubeHash-5/?

CubeHash-5/96 with y = 127:

∆0 = 400000000000000040000000000000000000000000000000
000000000000000000200000000000000000000000000000
0040
000000000000004000000000000200000000000000000000

∆1 = 010001110100011100000000000000008008002A00000000
0800002200
000000000000000011040000000000004000010101000111
000000000000000000002208000000000800200000000000

(A.2)

CubeHash-5/64 with y = 205:

∆0 = 0400
000000000000000000000008000000000000000800000000
00000000000000000000000000000000

∆1 = 000000000004005000000000000010400000000000000000
000222020002028020202200082020000000000000000000
01400510000000000040040100000000

∆2 = 002000
000000000000200000000000000000000000000000000000
00000000000000000000000000000010

A.1.6 Differential paths for CubeHash-6/?

CubeHash-6/87 with y = 90:

∆0 = 000000000000000000000001000000000020000000200000
000000000000000000000000000000000000008000000000
000000000000000000000000000000000000010000000000
400001010000000000200008002000

∆1 = 044404000000000001040400000000000800A0000800A000
000000000000000000000000000000008000020200000000
000000000000000000000000000000000404000100000000
0004000000000000002080000800A0

CubeHash-6/48 with y = 309:

∆0 = 000000000002000000000000000200000000000000000000
000000000000000000000000000001000000000000000000

∆1 = 00000000800A2A8200000000800A2A820000000000000000
000000000000000000000000414005150000000000000000

∆2 = 000000000000200000000000000020000000000000000000
000000000000000000000000000000100000000000000000

114

A.1 The best differential paths found for CubeHash regarding raw
probability

CubeHash-6/36 with y = 351:

∆0 = 000100000000000000010000000000000000000000000000
000000000000000000800000

∆1 = 400515410000000040051541000000000000000000000000
000000000000000020A0828A

∆2 = 000010000000000000001000000000000000000000000000
000000000000000000000008

CubeHash-6/32 with y = 394:

∆0 = 00000000000000000000000000000000
00000000000001000000000000000100

∆1 = 00000000000000000000000000000000
00000000414005150000000041400515

∆2 = 00000000000000000000000000000000
00000000000000100000000000000010

CubeHash-6/12 with y = 394:

∆0 = 000000400000000000000040
∆1 = 414510500000000041451050
∆2 = 000400000000000000040000

CubeHash-6/4 with y = 478:

(∆0,∆1,∆2) = (00000100, 41400515, 00000010)

A.1.7 Differential paths for CubeHash-7/?

CubeHash-7/96 with y = 251:

∆0 = 0040000000
000000004000000000000000000000000000000000000000
000000000000000000000000002000000000000000000000
000200000000000000000040000000000000004000000000

∆1 = 0000000002800A2000000000000A28820000000000000000
514454405144544000000000100140050000000000000000
0080080200
00000000800A200200000000000000005144544040440040

115

A.

CubeHash-7/64 with y = 447:

∆0 = 000080000000000000008000000000000000000000000000
000000000000000000000040000000000000000000000000
00000000000000000000000000000000

∆1 = A880A2888800808000000000000000005004011400000000
154004000000000000000000004510400000000040011000
0000000000000000880A288A08000888

∆2 = 00
000000000000001000000000000000000000000000000000
00000000000020000000000000002000

A.1.8 Differential paths for CubeHash-8/?

CubeHash-8/88 with y = 151:

∆0 = 000000000000000800000000080002084000000140000001
0004040001
00020808
00000000080008884000000100001041

∆1 = 000000008808000800000000080800020040011000400110
0001040400
0008000208
00000000080000000040011040000100

A.2 The best differential paths found for CubeHash re-

garding collision complexity

Here we give the differential trials for some starred entries of Table 5.3. Please see the

descriptions in appendix A.1.

CubeHash-3/48 with y = 368:

∆0 = 000000000000000000000000000000004000000000000000
4000

∆1 = 800020800000008080002080000000800000000000000000
000000000000000040400010000000004040001000000000

∆2 = 880800080000000088080008000000000040011000000000
004001100000000011001010110010101100101011001010

∆3 = 000000028000020200000002800002020000000000000000
000000000000000001000000000000000100000000000000

116

A.2 The best differential paths found for CubeHash regarding collision
complexity

CubeHash-4/36 with y = 134:

∆0 = 000000080000000000000008000000000000000000000000
000000000000000004000000

∆1 = 880080000000000088008000000000000000000000000000
000000000000000000440040

∆2 = 080000000000000008000000000000000000000000000000
000000000000000000040000

(A.3)

CubeHash-5/96 with y = 134:

∆0 = 080002080800020800000000000000004000010000000000
0040011000
00000000000000000800A000000000000800088808000208
000000000000000040011000000000000045104000000000

∆1 = 800000000000000080000000000000000000000000000000
000000000000000000400000000000000000000000000000
0080
000000000000008000000000000400000000000000000000

(A.4)

CubeHash-7/61 with y = 455:

∆0 = 0400
000000000000000000000008000000000000000800000000
00000000000000000000000000

∆1 = 000000000450040100000000001400010000000000000000
88A880A288008080880A288A880800080000000000000000
01451040000000005001440000

∆2 = 0002
000000000000000200000000000000000000000000000000
00000000000000000000000001

CubeHash-7/96 with y = 260:

∆0 = A00802080000000028000200000000000000000000000000
010001110100011104500401000000000000000000000000
000000000000000000000000000000008008202A00000000
080208A00000000000000000000000000145115101000111

∆1 = 000000000000000000000000000000000000040000000000
00000400
000000000000000000000002000000000000000000000000
000000000000200000000000000400000000000000040000

117

A.

A.3 Collisions for CubeHash-3/64

Mpre = 9B91E97363511AC3AF950F54DBCFD5DF91BC26BDD759104D
F15B37847A4F7015E15A8844ABA3075A3816AE13E583F276
40193317724464649F9BE819EB582ECC

M0 = B22A98139CC0C8606525818EE6DD7775CF25B34196DC51F4
641E56ACB918296BBD082AD01D7481EECC950B6C176C45B6
23CFE1E2638B16255F61E806F34DE91C

M1 = 4D9E9CD62ED12CBDBA1E0B631856DCFE5BD996571CFF6E94
A52242382E154FA6AEB44AC0A247CB298550C7B82BDCA924
E81D5E51E997CA67FBDD86FF15D04A0D

A.4 Collisions for CubeHash-4/48

Mpre = 741B87597F94FF1CC01761CA0D80B07CC2E6E760C95DF9A5
08FFCBABDA11474E2CCEA7AC62A7C822BE29EDCBA99D476C

M0 = 1D30F8022F4AE8DBD477FA1F7DE37C1AF2516BC6FA4657F9
E51539C10EC114DA3B8264DD9361FE07C3D56E88E8512201

M1 = 014A11BFE2FF346FC306D1E430EE80268785A9F841562C9A
88A6BF5858E95362F541ACF41C2FDCC1C49470DF1DFAEFDC

A.5 Collisions for CubeHash-5/96

Mpre = F06BB068487C5FE1CCCABA700A989262801EDC3A69292196
8848F445B8608777C037795A10D5D799FD16C037A52D0B51
63A74C97FD858EEF7809480F43EB264CD66318632A8CCFE2
EA22B139D99E48888CA844FBECCE3295150CA98EB16B0B92

M0 = 3DB4D4EE02958F578EFF307A5BE9975B4D0A669EE6025663
8DDB6421BAD8F1E4384FE1284EBB7E2A72E165871E44C51B
DA607FD91DDAD41F4180297A1607F9022463D2592B73F829
C79E766D0F672ECC084E841BFC700F053095E8658EEB85D5

118

A.6 Colliding message for MD6 reduced to 16 rounds

A.6 Colliding message for MD6 reduced to 16 rounds

5361E9B8579F7CD1, 8B29C52CA2AB51E4, 0BCF2F1E1B116898, 022C254B88191A11,

F0F1CE9D9A7F63B8, 9FB5B2CE87B7D7F5, E7C78F28EEB4F5C7, C5E8C19CEFC07365,

F88B84529ED90209, 8FACF593AE7390CF, 03A93466247C6B54, B12C70C10904143D,

D92EE67244C300D6, 35EEA586ECCC8A77, 9DCF031C64B528F8, C84807607ADCD418,

367E95EE3CB0FC67, 578A2C716FCC5016, B0C30EA5521F61EF, 7F665B24762D5894,

4196BAF0596A7784, ED5F9A8F183B4BCC, 6077463601FCFE46, 495366B1273E119B,

6E11A21AE5B3A48F, 38082264A0F68F93, 4ED510C2DFA9FF98, 35C5ACEC5E9A1756,

1F6731C861879ECD, 8CECD7B4F761CE82, 332A50854FDA8FE6, 588498B1021E9C23,

CB1FFA21CF89C7A5, 63A6871C77848410, 92A550CB4607F31C, 97024803F162E055,

E2D6EA5A57D2DBF3, AEB418A0F1F01CC5, 090A9304040038C1, 5417960E3D9A06A5,

714215C196813F35, BABAD7A4C154F2C3, 71AF3FD02B543940, FA08624B825648DD,

730D61FF48759275, CF85BA5A06D6AED4, 2E12B3150452C65A, 93C7A9FC314220B4,

81B128A4EF361456, BFE652098170C212, 77540989DC246845, 796F353D07721071,

D82776A3CBFEC586, 1132E4391152F408, CE936924CFFB22AA, D338852F80450282,

4F41AB82E790EEF6, F05378CB6BD36203, 5E506F47C6EC4617, FE6FB5A03BDE8E1C,

AB33EA511EEBAEDC, 7D40F8D4F0C62BF4, 1174E2B748B9CC2E, 1EB743671A31547D

A.7 Condition function for CubeHash and MD6

Algorithms 5 and 6 respectively show how the Condition function can be constructed

for MD6 and CubeHash. It is presumed that the input ∆ is in the kernel of their

respective condition functions. Note that, in case the Condition function needs to be

evaluated several times for a fixed differential path ∆ (as is the case for the tree-based

search algorithm), we can precompute that part of the function which is independent

of the input message M .

A.8 Partitioning example for CubeHash

Table A.1 shows the input and output partitionings of the Condition function of CubeHash-

5/96 for the difference ∆ in equation (A.4).

A.9 Partitioning example for MD6

Table A.2 shows the input and output partitionings of the Condition function of MD6

with r = 16 rounds for the difference ∆ in equation (5.12).

119

A.

i Mi Yi qi

0 – ∅ 0.00

1 {2, 6, 66} {1, 2} 2.00

2 {10, 1, 9, 14, 74, 5, 13, 65, 17, 70} {5} 1.35

3 {73, 7, 16, 19, 18, 78, 25, 37, 41} {23, 24} 2.00

4 {69, 77, 24, 33} {21, 22} 2.00

5 {50, 89} {12, 13} 2.00

6 {20, 27, 45, 88} {11} 1.15

7 {57, 4} {38} 1.00

8 {80} {7, 8} 2.00

9 {38, 40, 81, 3, 28, 32} {34} 1.24

10 {49} {41} 1.00

11 {58} {19, 20, 42, 43} 4.00

12 {91} {16, 17} 2.00

13 {23, 34, 44, 83} {29, 30} 2.07

14 {90} {14} 1.07

15 {15, 26} {15} 1.07

16 {36} {37, 55} 2.31

17 {42, 46, 48} {25, 26} 2.12

18 {56} {18, 31, 40} 3.01

19 {59} {48, 79} 2.00

20 {84, 92, 0} {35} 1.00

21 {82} {9, 10, 27, 28, 32, 33} 6.04

22 {31, 51} {44, 56, 64} 3.03

23 {71} {6} 1.00

24 {11, 54, 67} {3} 1.00

25 {75} {78} 1.00

26 {21, 55} {46, 59} 2.00

27 {63} {50} 1.00

28 {79} {45, 49, 65, 70} 4.00

29 {12} {71} 1.06

30 {22} {58, 67, 81, 82, 83} 5.00

31 {29, 62} {63} 1.03

32 {87, 95} {53, 54, 74, 76, 85} 5.01

33 {39, 47} {39} 1.01

34 {53, 8} {69, 88, 89} 3.30

35 {30} {77, 86, 94, 98} 5.04

36 {60, 61} {62, 91, 101, 102} 4.35

37 {35, 52} {61, 90, 103} 4.22

38 {43} {36, 57, 60, 104, 111} 5.77

39 {64} {0} 1.33

40 {68} {4} 2.03

41 {72} {97, 100, 121} 8.79

42 {76} {66, 80, 92, 93} 13.39

43 {85} {47, 112} 16.92

44 {93} {51, 52, 68, 72, 75, 87, 95} 22.91

45 {86, 94} {73, 84, 96, 99, 105, . . . , 110, 113, . . . , 132, 133} 31.87

Table A.1: Partitioning example for CubeHash. This table shows the input and
output partitionings of the Condition function of CubeHash-5/96 for the difference ∆ in
equation (A.4). Numbers in Mi are message byte indices, whereas numbers in Yi are
condition bit indices. The total complexity of the attack is dominated by the last step in
which 31 condition bits must be satisfied.

120

A.9 Partitioning example for MD6

Algorithm 5 : Condition function for MD6
Inputs: r, ∆, M , and V .
Outputs: y and Y = Condition∆(M,V).

1: (A0, . . . , A88) := Q||V ||M
2: (A′0, . . . , A

′
24, A

′
25, . . . , A

′
88) := 0||∆

3: j := 0
4: for i = 0, 1, . . . , 16r − 1 do
5: Ai+89 := Li

(
Si ⊕Ai ⊕ (Ai+71 ∧Ai+68)⊕ (Ai+58 ∧Ai+22)⊕Ai+72

)
6: A′i+89 := Li

(
A′i ⊕A′i+72

)
7: D := A′i+71 ∨A′i+68 ∨A′i+58 ∨A′i+22

8: T := (Ai+71 ∧Ai+68)⊕ (Ai+58 ∧Ai+22)
9: T ′ :=

(
(Ai+71 ⊕A′i+71) ∧ (Ai+68 ⊕A′i+68)

)
⊕
(
(Ai+58 ⊕A′i+58) ∧ (Ai+22 ⊕A′i+58)

)
10: for all bit positions k = 0, 1, . . . , 63 such that Dk = 1 do
11: Yj := Tk ⊕ T ′k
12: j := j + 1
13: end for
14: end for
15: y := j

i Mi Yi qi

0 – ∅ 0

1 {M38} {Y1, . . . , Y29} 29

2 {M55} {Y43, . . . , Y48} 6

3 {M0,M5,M46,M52,M54} {Y0} 1

4 {Mj |j = 3, 4, 6, 9, 21, 36, 39, 40, 42, 45, 49, 50, 53, 56, 57} {Y31, . . . , Y36} 6

5 {M41,M51,M58,M59,M60} {Y30, Y51} 2

6 {Mj |j = 1, 2, 7, 8, 10, 11, 12, 17, 18, 20, 22, 24, 25, 26, 29, {Y52, . . . , Y57} 6

33, 34, 37, 43, 44, 47, 48, 61, 62, 63}
7 {M27} {Y37, . . . , Y42} 6

8 {M13,M16,M23} {Y50} 1

9 {M35} {Y49} 1

10 {M14,M15,M19,M28} {Y58, Y61} 2

11 {M30,M31,M32} {Y59, Y60, Y62 . . . , Y89} 30

Table A.2: Partitioning example for MD6. This table shows the input and output
partitionings of the Condition function of MD6 with r = 16 rounds for the difference ∆
in equation (5.12). Numbers in Mi are message word indices, whereas numbers in Yi are
condition bit indices. The total complexity of the attack is dominated by the last step in
which 30 condition bits must be satisfied.

121

A.

Algorithm 6 : Condition function for CubeHash
Inputs: r, b, t, ∆ = ∆0|| . . . ||∆t−1, M = M0|| . . . ||M t−1, and V = (V0, . . . , V31).
Outputs: y and Y = Condition∆(M,V).

1: (S0, . . . , S31) := V

2: (S′0, . . . , S
′
31) := (0, . . . , 0)

3: j := 0
4: for t ′ from 0 to t− 1 do
5: XOR M t ′ into the first b bytes of the state S {see the footnote on page 89}
6: XOR ∆t ′ into the first b bytes of the state S′ {see the footnote on page 89}
7: for round from 1 to r do
8: for i from 0 to 15 do
9: α := S′i, β := S′i⊕16, A := Si, B := Si⊕16

10: Add Si into Si⊕16 but XOR S′i into S′i⊕16

11: D := α ∨ β
12: C := A⊕B ⊕ Si⊕16 {carry word}
13: T =

(
(α⊕ β) ∧ C

)
⊕ (α ∧B)⊕ (β ∧A)⊕ (α ∧ β) {see equation (5.5) or (5.8)}

14: for all bit positions k = 0, 1, . . . , 31 such that Dk = 1 do
15: Yj := Tk

16: j := j + 1
17: end for
18: end for
19: for 0 ≤ i ≤ 15 do rotate Si and S′i to the left by seven bits end for
20: for 0 ≤ i ≤ 7 do swap Si and Si⊕8 as well as S′i and S′i⊕8 end for
21: for 0 ≤ i ≤ 15 do XOR Si⊕16 into Si and S′i⊕16 into S′i end for
22: for i ∈ {16, 17, 20, 21, 24, 25, 28, 29} do swap Si and Si⊕2 as well as S′i and S′i⊕2 end

for
23: for i from 0 to 15 do
24: α := S′i, β := S′i⊕16, A := Si, B := Si⊕16

25: Add Si into Si⊕16 but XOR S′i into S′i⊕16

26: D := α ∨ β
27: C := A⊕B ⊕ Si⊕16 {carry word}
28: T =

(
(α⊕ β) ∧ C

)
⊕ (α ∧B)⊕ (β ∧A)⊕ (α ∧ β) {see equation (5.5) or (5.8)}

29: for all bit positions k = 0, 1, . . . , 31 such that Dk = 1 do
30: Yj := Tk

31: j := j + 1
32: end for
33: end for
34: for 0 ≤ i ≤ 15 do rotate Si and S′i to the left by eleven bits end for
35: for i ∈ {0, 1, 2, 3, 8, 9, 10, 11} do swap Si and Si⊕4 as well as S′i and S′i⊕4 end for
36: for 0 ≤ i ≤ 15 XOR Si⊕16 do into Si and S′i⊕16 into S′i end for
37: for i ∈ {16, 18, 20, 22, 24, 26, 28, 30} do swap Si and Si⊕1 as well as S′i and S′i⊕1 end

for
38: end for{r rounds}
39: end for{t iterations}
40: y := j

122

References

[1] RSA Laboratories, PKCS#1: RSA
Cryptography Standard (Version
2.1, June 14, 2002). Available at
http://www.rsa.com/rsalabs/node.

asp?id=2125. 16

[2] Verisign, Inc. Status Responder
Certificate. Class 3 Public Primary
Certification Authority. Serial number:
70:BA:E4:1D:10:D9:29:34:B6:38:CA:7B:
03:CC:BA:BF. Issued 1996/01/29,
expires 2028/08/02. http:

//www.verisign.com/repository/

root.html#c3pca. 16

[3] RC4 algorithm revealed, 1994. See
http://groups.google.com/group/

sci.crypt/msg/10a300c9d21afca0.
8, 28

[4] Martin Albrecht and Carlos Cid. Alge-
braic Techniques in Differential Crypt-
analysis. In FSE, pages 193–208, 2009.
23

[5] Ammar Alkassar, Alexander Geraldy,
Birgit Pfitzmann, and Ahmad-Reza
Sadeghi. Optimized Self-Synchronizing
Mode of Operation. In FSE, pages 78–
91, 2001. 63

[6] Jee Hea An and Mihir Bellare. Con-
structing VIL-MACsfrom FIL-MACs:
Message Authentication under Weak-

ened Assumptions. In CRYPTO, pages
252–269, 1999. 15

[7] Frederik Armknecht. Improving Fast
Algebraic Attacks. In FSE, pages 65–
82, 2004. 23

[8] Frederik Armknecht and Matthias
Krause. Algebraic Attacks on Combin-
ers with Memory. In CRYPTO, pages
162–175, 2003. 23

[9] Frederik Armknecht, Joseph Lano, and
Bart Preneel. Extending the Resyn-
chronization Attack. In Selected Ar-
eas in Cryptography, pages 19–38, 2004.
Extended version available at http://

eprint.iacr.org/2004/232. 58

[10] François Arnault, Thierry P. Berger,
and Cédric Lauradoux. F-FCSR
Stream Ciphers. In The eSTREAM
Finalists, pages 170–178. 2008.
http://www.ecrypt.eu.org/stream/

ffcsrpf.html. 11

[11] François Arnault, Thierry P. Berger,
and Abdelkader Necer. A New Class of
Stream Ciphers Combining LFSR and
FCSR Architectures. In INDOCRYPT,
pages 22–33, 2002. 8, 62

[12] Jean-Philippe Aumasson. Collision
for CubeHash-2/120 − 512. mail-
ing list, 4 Dec 2008, 2008, 2007.
http://ehash.iaik.tugraz.at/

uploads/a/a9/Cubehash.txt. 100

[13] Jean-Philippe Aumasson, Eric Brier,
Willi Meier, Maŕıa Naya-Plasencia, and
Thomas Peyrin. Inside the Hypercube.
In ACISP, pages 202–213, 2009. 99

[14] Jean-Philippe Aumasson, Itai Dinur,
Willi Meier, and Adi Shamir. Cube
Testers and Key Recovery Attacks on

123

http://www.rsa.com/rsalabs/node.asp?id=2125
http://www.rsa.com/rsalabs/node.asp?id=2125
http://www.verisign.com/repository/root.html#c3pca
http://www.verisign.com/repository/root.html#c3pca
http://www.verisign.com/repository/root.html#c3pca
http://groups.google.com/group/sci.crypt/msg/10a300c9d21afca0
http://groups.google.com/group/sci.crypt/msg/10a300c9d21afca0
http://eprint.iacr.org/2004/232
http://eprint.iacr.org/2004/232
http://www.ecrypt.eu.org/stream/ffcsrpf.html
http://www.ecrypt.eu.org/stream/ffcsrpf.html
http://ehash.iaik.tugraz.at/uploads/a/a9/Cubehash.txt
http://ehash.iaik.tugraz.at/uploads/a/a9/Cubehash.txt

REFERENCES

Reduced-Round MD6 and Trivium. In
FSE, pages 1–22, 2009. 59, 60

[15] Jean-Philippe Aumasson, Simon Fis-
cher, Shahram Khazaei, Willi Meier,
and Christian Rechberger. New Fea-
tures of Latin Dances: Analysis of
Salsa, ChaCha, and Rumba. In FSE,
pages 470–488, 2008. 29, 47, 77, 83

[16] J.P. Aumasson, I. Dinur, L. Hen-
zen, W. Meier, and A. Shamir. Effi-
cient FPGA Implementations of High-
Dimensional Cube Testers on the
Stream Cipher Grain-128. Special-
purpose Hardware for Attacking Cryp-
tographic Systems (SHARCS’09), 2009.
Available at http://eprint.iacr.

org/2009/218. 59, 60, 72

[17] S. Babbage. A space/time tradeoff in
exhaustive search attacks on stream ci-
phers. In European Convention on Se-
curity and Detection, volume 408 of
IEE Conference Publication, 1995. 19

[18] S. Babbage. Stream ciphers: What
does the industry want. In State of
the Art of Stream Ciphers workshop
(SASC04), 2004. 62

[19] S. Babbage, C. Cannière, A. Can-
teaut, C. Cid, H. Gilbert, T. Johans-
son, M. Parker, B. Preneel, V. Rijmen,
and M. Robshaw. The eSTREAM port-
folio. eSTREAM, ECRYPT Stream
Cipher Project, April 2008. http: //

www. ecrypt. eu. org/ stream/ . 11,
62

[20] S. Babbage, C. Cannière, A. Can-
teaut, C. Cid, H. Gilbert, T. Johans-
son, M. Parker, B. Preneel, V. Ri-
jmen, and M. Robshaw. The eS-
TREAM Portfolio (rev. 1). eS-

TREAM, ECRYPT Stream Cipher
Project, September 2008. http: //

www. ecrypt. eu. org/ stream/ . 11,
29, 45, 47, 62

[21] Steve Babbage and Matthew Dodd.
The MICKEY Stream Ciphers. In
The eSTREAM Finalists, pages 191–
209. 2008. http://www.ecrypt.eu.

org/stream/mickeypf.html. 11, 45

[22] Thomas Baignères, Pascal Junod, and
Serge Vaudenay. How Far Can We Go
Beyond Linear Cryptanalysis? In ASI-
ACRYPT, pages 432–450, 2004. 37

[23] Elad Barkan, Eli Biham, and Nathan
Keller. Instant ciphertext-only crypt-
analysis of GSM encrypted communica-
tion. Journal of Cryptology, 21(3):392–
429, 2008. 11

[24] Mihir Bellare, Ran Canetti, and Hugo
Krawczyk. Pseudorandom Functions
Revisited: The Cascade Construction
and Its Concrete Security. In FOCS,
pages 514–523, 1996. 15

[25] Mihir Bellare and Thomas Ristenpart.
Multi-Property-Preserving Hash Do-
main Extension and the EMD Trans-
form. In ASIACRYPT, pages 299–314,
2006. 15

[26] Mihir Bellare and Phillip Rogaway.
Random Oracles are Practical: A
Paradigm for Designing Efficient Proto-
cols. In ACM Conference on Computer
and Communications Security, pages
62–73, 1993. 12

[27] Mihir Bellare and Phillip Rogaway. Op-
timal Asymmetric Encryption. In EU-
ROCRYPT, pages 92–111, 1994. 12

124

http://eprint.iacr.org/2009/218
http://eprint.iacr.org/2009/218
http://www.ecrypt.eu.org/stream/
http://www.ecrypt.eu.org/stream/
http://www.ecrypt.eu.org/stream/
http://www.ecrypt.eu.org/stream/
http://www.ecrypt.eu.org/stream/mickeypf.html
http://www.ecrypt.eu.org/stream/mickeypf.html

REFERENCES

[28] Côme Berbain, Olivier Billet, Anne
Canteaut, Nicolas Courtois, Henri
Gilbert, Louis Goubin, Aline Gouget,
Louis Granboulan, Cédric Lauradoux,
Marine Minier, Thomas Pornin, and
Hervé Sibert. Sosemanuk, a Fast
Software-Oriented Stream Cipher. In
The eSTREAM Finalists, pages 98–
118. 2008. http://www.ecrypt.eu.

org/stream/sosemanukpf.html. 11

[29] Côme Berbain and Henri Gilbert. On
the Security of IV Dependent Stream
Ciphers. In FSE, pages 254–273, 2007.
58

[30] Daniel J. Bernstein. Salsa20 and
ChaCha. eSTREAM discussion
forum, May 11, 2007. See also
http://www.ecrypt.eu.org/stream/

phorum/read.php?1,1085. 24

[31] Daniel J. Bernstein. Salsa20. Tech-
nical Report 2005/025, eSTREAM,
ECRYPT Stream Cipher Project, 2005.
See also http://cr.yp.to/snuffle.

html. 24, 29, 33

[32] Daniel J. Bernstein. What output size
resists collisions in a XOR of inde-
pendent expansions? , howpublished
= ECRYPT Workshop on Hash Func-
tions, 2007. See also http://cr.yp.

to/rumba20.html. 29

[33] Daniel J. Bernstein. ChaCha, a vari-
ant of Salsa20. In SASC 2008 – The
State of the Art of Stream Ciphers.
ECRYPT, 2008. See also http://cr.

yp.to/chacha.html. 24, 29, 33

[34] Daniel J. Bernstein. CubeHash spec-
ification (2.b.1). Submission to NIST
SHA-3 competition., 2008. http://

cubehash.cr.yp.to/. 24, 77, 89, 90

[35] Daniel J. Bernstein. The Salsa20
Family of Stream Ciphers. In The
eSTREAM Finalists, pages 84–97.
2008. http://www.ecrypt.eu.org/

stream/salsa20pf.html. 11, 24

[36] Daniel J. Bernstein. CubeHash pa-
rameter tweak: 16 times faster. Sub-
mission to NIST SHA-3 competition.,
2009. http://cubehash.cr.yp.to/

submission/. 89

[37] Daniel J. Bernstein. Why haven’t cube
attacks broken anything? Page of au-
thor’s website, 2009. http://cr.yp.

to/cubeattacks.html. 59

[38] Guido Bertoni, Joan Daemen, Michael
Peeters, and Gilles Van Assche. Radio-
gatun, a belt-and-mill hash function.
Presented at Second Cryptographic
Hash Workshop, Santa Barbara, Au-
gust 2006. http://radiogatun.

noekeon.org/. 22, 76, 77, 83, 85

[39] Guido Bertoni, Joan Daemen, Michael
Peeters, and Gilles Van Assche. Sponge
Functions. Presented at Second Cryp-
tographic Hash Workshop, Santa Bar-
bara, August 2006. http://sponge.

noekeon.org/. 15, 78

[40] Guido Bertoni, Joan Daemen, Michael
Peeters, and Gilles Van Assche. On
the Indifferentiability of the Sponge
Construction. In EUROCRYPT, pages
181–197, 2008. 15

[41] Eli Biham. On the applicability of
differential cryptanalysis to hash func-
tions. E.I.S.S. Workshop on Crypto-
graphic Hash Functions, Oberwolfach
(D), March 25-27, 1992. 22

125

http://www.ecrypt.eu.org/stream/sosemanukpf.html
http://www.ecrypt.eu.org/stream/sosemanukpf.html
http://www.ecrypt.eu.org/stream/phorum/read.php?1,1085
http://www.ecrypt.eu.org/stream/phorum/read.php?1,1085
http://cr.yp.to/snuffle.html
http://cr.yp.to/snuffle.html
http://cr.yp.to/rumba20.html
http://cr.yp.to/rumba20.html
http://cr.yp.to/chacha.html
http://cr.yp.to/chacha.html
http://cubehash.cr.yp.to/
http://cubehash.cr.yp.to/
http://www.ecrypt.eu.org/stream/salsa20pf.html
http://www.ecrypt.eu.org/stream/salsa20pf.html
http://cubehash.cr.yp.to/submission/
http://cubehash.cr.yp.to/submission/
http://cr.yp.to/cubeattacks.html
http://cr.yp.to/cubeattacks.html
http://radiogatun.noekeon.org/
http://radiogatun.noekeon.org/
http://sponge.noekeon.org/
http://sponge.noekeon.org/

REFERENCES

[42] Eli Biham. New Types of Cryptoana-
lytic Attacks Using related Keys (Ex-
tended Abstract). In EUROCRYPT,
pages 398–409, 1993. 22

[43] Eli Biham, Alex Biryukov, and Adi
Shamir. Cryptanalysis of Skipjack Re-
duced to 31 Rounds Using Impossible
Differentials. In EUROCRYPT, pages
12–23, 1999. 21

[44] Eli Biham and Rafi Chen. Near-
Collisions of SHA-0. In CRYPTO,
pages 290–305, 2004. 16, 22, 26, 30,
37, 76, 77, 83, 85, 94

[45] Eli Biham, Rafi Chen, Antoine Joux,
Patrick Carribault, Christophe Lemuet,
and William Jalby. Collisions of SHA-
0 and Reduced SHA-1. In EURO-
CRYPT, pages 36–57, 2005. 16, 22, 26,
76

[46] Eli Biham, Orr Dunkelman, and
Nathan Keller. New Results on
Boomerang and Rectangle Attacks. In
FSE, pages 1–16, 2002. 21

[47] Eli Biham and Adi Shamir. Differential
Cryptanalysis of DES-like Cryptosys-
tems. In CRYPTO, pages 2–21, 1990.
20

[48] Eli Biham and Adi Shamir. Differential
Cryptanalysis of DES-like Cryptosys-
tems. J. Cryptology, 4(1):3–72, 1991.
20, 58

[49] Eli Biham and Adi Shamir. Differen-
tial Cryptanalysis of Snefru, Khafre,
REDOC-II, LOKI and Lucifer. In
CRYPTO, pages 156–171, 1991. 22

[50] Eli Biham and Adi Shamir. Differential
Cryptoanalysis of Feal and N-Hash. In
EUROCRYPT, pages 1–16, 1991. 22

[51] Eli Biham and Adi Shamir. Differen-
tial Cryptanalysis of the Full 16-Round
DES. In CRYPTO, pages 487–496,
1992. 20

[52] Eli Biham and Adi Shamir. Differen-
tial cryptanalysis of the data encryption
standard. Springer-Verlag London, UK,
1993. 20

[53] Alex Biryukov and Christophe De
Cannière. Block Ciphers and Systems
of Quadratic Equations. In FSE, pages
274–289, 2003. 23

[54] Alex Biryukov, Sourav Mukhopad-
hyay, and Palash Sarkar. Improved
Time-Memory Trade-Offs with Multi-
ple Data. In Selected Areas in Cryptog-
raphy, pages 110–127, 2005. 6, 20

[55] Alex Biryukov and Adi Shamir. Crypt-
analytic Time/Memory/Data Tradeoffs
for Stream Ciphers. In ASIACRYPT,
pages 1–13, 2000. 20

[56] Alex Biryukov and Adi Shamir. Struc-
tural Cryptanalysis of SASAS. In EU-
ROCRYPT, pages 394–405, 2001. 22,
58

[57] Alex Biryukov, Adi Shamir, and David
Wagner. Real Time Cryptanalysis of
A5/1 on a PC. In FSE, pages 1–18,
2000. 11

[58] Alex Biryukov and David Wagner. Ad-
vanced Slide Attacks. In EURO-
CRYPT, pages 589–606, 2000. 60

[59] John Black, Martin Cochran, and
Thomas Shrimpton. On the Impossi-
bility of Highly-Efficient Blockcipher-
Based Hash Functions. In EURO-
CRYPT, pages 526–541, 2005. 15, 17

126

REFERENCES

[60] John Black, Phillip Rogaway, and
Thomas Shrimpton. Black-Box Anal-
ysis of the Block-Cipher-Based Hash-
Function Constructions from PGV. In
CRYPTO, pages 320–335, 2002. 14

[61] BluetoothTM. Bluetooth Specifica-
tion, version 1.2, pp. 903–948, Novem-
ber, 2003. Available at http://www.

bluetooth.org. 8

[62] Martin Boesgaard, Mette Vester-
ager, and Erik Zenner. The Rab-
bit Stream Cipher. In The eS-
TREAM Finalists, pages 69–83. 2008.
http://www.ecrypt.eu.org/stream/

rabbitpf.html. 11

[63] Yuri L. Borissov, Svetla Nikova, Bart
Preneel, and Joos Vandewalle. 58

[64] Marc Briceno, Ian Goldberg, and David
Wagner. A pedagogical implementa-
tion of the GSM A5/1 and A5/2 voice
privacy encryption algorithms, 1999.
See http://cryptome.org/gsm-a512.

htm. 8

[65] Eric Brier, Shahram Khazaei, Willi
Meier, and Thomas Peyrin. Lineariza-
tion Framework for Collision Attacks:
Application to CubeHash and MD6. In
ASIACRYPT, pages 560–577, 2009. 75

[66] Eric Brier and Thomas Peyrin. Crypt-
analysis of CubeHash. In ACNS, pages
354–368, 2009. 100

[67] Ran Canetti, Oded Goldreich, and Shai
Halevi. The random oracle methodol-
ogy, revisited. J. ACM, 51(4):557–594,
2004. 12

[68] Christophe De Cannière. Trivium: A
Stream Cipher Construction Inspired
by Block Cipher Design Principles. In

ISC, pages 171–186, 2006. 24, 45, 47,
55

[69] Christophe De Cannière, Özgül Küçük,
and Bart Preneel. Analysis of
Grain’s Initialization Algorithm. In
AFRICACRYPT, pages 276–289, 2008.
60

[70] Christophe De Cannière, Florian
Mendel, and Christian Rechberger.
Collisions for 70-Step SHA-1: On
the Full Cost of Collision Search. In
Selected Areas in Cryptography, pages
56–73, 2007. 22, 76

[71] Christophe De Cannière and Bart Pre-
neel. Trivium specifications. Tech-
nical Report 2005/001, eSTREAM,
ECRYPT Stream Cipher Project, 2005.
24

[72] Christophe De Cannière and Bart
Preneel. Trivium. In The eS-
TREAM Finalists, pages 244–266.
2008. http://www.ecrypt.eu.org/

stream/triviumpf.html. 11, 24

[73] Christophe De Cannière and Christian
Rechberger. Finding SHA-1 Charac-
teristics: General Results and Appli-
cations. In ASIACRYPT, pages 1–20,
2006. 22, 76, 77, 83, 85

[74] Anne Canteaut and Florent Chabaud.
A New Algorithm for Finding
Minimum-Weight Words in a Lin-
ear Code: Application to McEliece’s
Cryptosystem and to Narrow-Sense
BCH Codes of Length 511. IEEE
Transactions on Information Theory,
44(1):367–378, 1998. 83, 92, 94

[75] Florent Chabaud and Antoine Joux.
Differential Collisions in SHA-0. In

127

http://www.bluetooth.org
http://www.bluetooth.org
http://www.ecrypt.eu.org/stream/rabbitpf.html
http://www.ecrypt.eu.org/stream/rabbitpf.html
http://cryptome.org/gsm-a512.htm
http://cryptome.org/gsm-a512.htm
http://www.ecrypt.eu.org/stream/triviumpf.html
http://www.ecrypt.eu.org/stream/triviumpf.html

REFERENCES

CRYPTO, pages 56–71, 1998. 16, 22,
75, 76, 82

[76] Donghoon Chang, Sangjin Lee, Mridul
Nandi, and Moti Yung. Indifferentiable
Security Analysis of Popular Hash
Functions with Prefix-Free Padding. In
ASIACRYPT, pages 283–298, 2006. 15

[77] J. Chen, B. Wang, and Y. Hu. A
new method for resynchronization at-
tack. Journal of Electronics (China),
23(3):423–427, 2006. 58

[78] C. Cid, S. Murphy, and M. Robshaw.
Algebraic aspects of the advanced en-
cryption standard. Springer New York,
2006. 23

[79] D. Coppersmith. The Data Encryp-
tion Standard (DES) and its strength
against attacks. IBM Journal of Re-
search and Development, 38(3):243–
250, 1994. 20

[80] Jean-Sébastien Coron, Yevgeniy Dodis,
Cécile Malinaud, and Prashant Puniya.
Merkle-Damg̊ard Revisited: How to
Construct a Hash Function. In
CRYPTO, pages 430–448, 2005. 15

[81] Nicolas Courtois. Fast Algebraic At-
tacks on Stream Ciphers with Linear
Feedback. In CRYPTO, pages 176–194,
2003. 23

[82] Nicolas Courtois. Algebraic Attacks on
Combiners with Memory and Several
Outputs. In ICISC, pages 3–20, 2004.
23

[83] Nicolas Courtois and Willi Meier. Alge-
braic Attacks on Stream Ciphers with
Linear Feedback. In EUROCRYPT,
pages 345–359, 2003. 23

[84] Nicolas Courtois and Josef Pieprzyk.
Cryptanalysis of Block Ciphers with
Overdefined Systems of Equations. In
ASIACRYPT, pages 267–287, 2002. 23

[85] Thomas M. Cover and Joy A. Thomas.
Elements of Information Theory.
Wiley-Interscience, New York, NY,
USA, 1991. 36, 37, 53

[86] Y. Crama and P.L. Hammer. Boolean
Models and Methods in Mathematics,
Computer Science, and Engineering.
Cambridge University Press, 2010. 51

[87] Paul Crowley. Truncated Differen-
tial Cryptanalysis of Five Rounds of
Salsa20. In SASC 2006 – Stream Ci-
phers Revisited, 2006. 30

[88] Joan Daemen. Cipher and Hash Func-
tion Design. Strategies based on Lin-
ear and Differential Cryptanalysis. PhD
thesis, Katholieke Universiteit Leuven.
62

[89] Joan Daemen, René Govaerts, and
Joos Vandewalle. A Practical
Approach to the Design of High
Speed Self-Synchronizing Stream
Ciphers. Singapore ICCS/ISITA’92,
pages 279–293, 1992. Available at:
https://www.cosic.esat.kuleuven.

be/publications/article-134.pdf.
8, 62

[90] Joan Daemen, René Govaerts, and Joos
Vandewalle. Resynchronization Weak-
nesses in Synchronous Stream Ciphers.
In EUROCRYPT, pages 159–167, 1993.
58

[91] Joan Daemen and Paris Kitsos.
The Self-synchronizing Stream Ci-
pher Mosquito. Technical Report

128

https://www.cosic.esat.kuleuven.be/publications/article-134.pdf
https://www.cosic.esat.kuleuven.be/publications/article-134.pdf

REFERENCES

2005/018, eSTREAM, ECRYPT
Stream Cipher Project, 2005. See also
http://www.ecrypt.eu.org/stream/

ciphers/mosquito/mosquito.pdf. 8,
62

[92] Joan Daemen and Paris Kitsos. The
Self-synchronizing Stream Cipher
Moustique. In The eSTREAM Fi-
nalists, pages 210–223. 2008. 8,
62

[93] Joan Daemen, Lars R. Knudsen, and
Vincent Rijmen. The Block Cipher
Square. In FSE, pages 149–165, 1997.
22, 58

[94] Joan Daemen, Joseph Lano, and
Bart Preneel. Chosen ciphertext
attack on SSS. SASC 2006 –
The State of the Art of Stream Ci-
phers., pages 45–51, 2006. Avail-
able at: https://www.ecrypt.eu.

org/stream/papersdir/044.pdf. 8,
62

[95] Watanabe Dai. Collisions for
CubeHash-1/45 and CubeHash-2/89.
Available online, 2008. http://www.

cryptopp.com/sha3/cubehash.pdf.
100

[96] Ivan Damg̊ard. Collision Free Hash
Functions and Public Key Signature
Schemes. In EUROCRYPT, pages 203–
216, 1987. 13

[97] Ivan Damg̊ard. A Design Principle for
Hash Functions. In CRYPTO, pages
416–427, 1989. 13, 14, 15

[98] Bert den Boer and Antoon Bosselaers.
An Attack on the Last Two Rounds
of MD4. In CRYPTO, pages 194–203,
1991. 16, 22

[99] Bert den Boer and Antoon Bosselaers.
Collisions for the Compressin Function
of MD5. In EUROCRYPT, pages 293–
304, 1993. 16, 22

[100] Itai Dinur and Adi Shamir. Cube At-
tacks on Tweakable Black Box Polyno-
mials. In EUROCRYPT, pages 278–
299, 2009. 22, 58, 59, 60, 64, 72

[101] Hans Dobbertin. Cryptanalysis of
MD4. In FSE, pages 53–69, 1996. 16,
22

[102] Yevgeniy Dodis, Rosario Gennaro, Jo-
han H̊astad, Hugo Krawczyk, and Tal
Rabin. Randomness Extraction and
Key Derivation Using the CBC, Cas-
cade and HMAC Modes. In CRYPTO,
pages 494–510, 2004. 15

[103] Yevgeniy Dodis, Krzysztof Pietrzak,
and Prashant Puniya. A New Mode
of Operation for Block Ciphers and
Length-Preserving MACs. In EURO-
CRYPT, pages 198–219, 2008. 15

[104] Yevgeniy Dodis, Leonid Reyzin,
Ronald L. Rivest, and Emily Shen.
Indifferentiability of Permutation-
Based Compression Functions and
Tree-Based Modes of Operation, with
Applications to MD6. In FSE, pages
104–121, 2009. 15

[105] Orr Dunkelman and Nathan Keller.
Treatment of the Initial Value in
Time-Memory-Data Tradeoff Attacks
on Stream Ciphers. Information Pro-
cessing Letters, 107(5):133–137, 2008.
6, 20

[106] ECRYPT. eSTREAM, the ECRYPT
Stream Cipher Project. See http://

www.ecrypt.eu.org/stream. 11, 24,
29, 62

129

http://www.ecrypt.eu.org/stream/ciphers/mosquito/mosquito.pdf
http://www.ecrypt.eu.org/stream/ciphers/mosquito/mosquito.pdf
https://www.ecrypt.eu.org/stream/papersdir/044.pdf
https://www.ecrypt.eu.org/stream/papersdir/044.pdf
http://www.cryptopp.com/sha3/cubehash.pdf
http://www.cryptopp.com/sha3/cubehash.pdf
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream

REFERENCES

[107] Carlos Cid (Ed.), Martin Albrecht,
Daniel Augot, Anne Canteaut, and
Ralf-Philipp Weinmann. D.STVL.7
– Algebraic cryptanalysis of sym-
metric primitives. ECRYPT Re-
port, July 2008. Available at
https://www.ecrypt.eu.org/

ecrypt1/documents/D.STVL.7.pdf.
23

[108] Patrik Ekdahl and Thomas Johans-
son. Another attack on A5/1. IEEE
Transactions on Information Theory,
49(1):284–289, 2003. 58

[109] H̊akan Englund, Thomas Johansson,
and Meltem Sönmez Turan. A Frame-
work for Chosen IV Statistical Analysis
of Stream Ciphers. In INDOCRYPT,
pages 268–281, 2007. 46, 49, 50, 55, 57,
58, 64

[110] H. Feistel. Cryptography and Com-
puter Privacy. Scientific american,
228(5):15–23, 1973. 30, 37

[111] Eric Filiol. A New Statistical Testing
for Symmetric Ciphers and Hash Func-
tions. In ICICS, pages 342–353, 2002.
46, 49, 50, 58

[112] PUB FIPS. 81, DES Modes of Opera-
tion. Issued December, 2, 1980. 63

[113] Simon Fischer, Shahram Khazaei, and
Willi Meier. Chosen IV Statistical
Analysis for Key Recovery Attacks on
Stream Ciphers. In AFRICACRYPT,
pages 236–245, 2008. 45, 68

[114] Simon Fischer, Willi Meier, Côme
Berbain, Jean-François Biasse, and
Matthew J. B. Robshaw. Non-
randomness in eSTREAM Candidates
Salsa20 and TSC-4. In INDOCRYPT,
pages 2–16, 2006. 30

[115] Scott R. Fluhrer, Itsik Mantin, and
Adi Shamir. Weaknesses in the Key
Scheduling Algorithm of RC4. In Se-
lected Areas in Cryptography, pages 1–
24, 2001. 58

[116] Réjane Forré. The Strict Avalanche
Criterion: Spectral Properties of
Boolean Functions and an Extended
Definition. In CRYPTO, pages 450–
468, 1988. 37

[117] Pierre-Alain Fouque, Gwenaëlle Mar-
tinet, and Guillaume Poupard. Practi-
cal Symmetric On-Line Encryption. In
FSE, pages 362–375, 2003. 63

[118] Thomas Fuhr and Thomas Peyrin.
Cryptanalysis of RadioGatún. In FSE,
pages 122–138, 2009. 77, 83, 85

[119] Taher El Gamal. A Public Key
Cryptosystem and a Signature Scheme
Based on Discrete Logarithms. In
CRYPTO, pages 10–18, 1984. 4

[120] Michael R. Garey and David S. John-
son. Computers and Intractabil-
ity: A Guide to the Theory of NP-
Completeness (Series of Books in the
Mathematical Sciences). W. H. Free-
man & Co Ltd, January 1979. 4

[121] Jovan Dj. Golic. Cryptanalysis of Al-
leged A5 Stream Cipher. In EURO-
CRYPT, pages 239–255, 1997. 19

[122] Jovan Dj. Golic, Vittorio Bagini, and
Guglielmo Morgari. Linear Cryptanaly-
sis of Bluetooth Stream Cipher. In EU-
ROCRYPT, pages 238–255, 2002. 58

[123] Jovan Dj. Golic and Guglielmo Mor-
gari. On the Resynchronization Attack.
In FSE, pages 100–110, 2003. 58

130

https://www.ecrypt.eu.org/ecrypt1/documents/D.STVL.7.pdf
https://www.ecrypt.eu.org/ecrypt1/documents/D.STVL.7.pdf

REFERENCES

[124] C. G. Günther. Alternating Step Gen-
erators Controlled by De Bruijn Se-
quences. In EUROCRYPT, pages 5–14,
1987. 28

[125] Martin Hell and Thomas Johansson.
Breaking the F-FCSR-H Stream Cipher
in Real Time. In ASIACRYPT, pages
557–569, 2008. 11

[126] Martin Hell, Thomas Johansson,
Alexander Maximov, and Willi Meier.
A Stream Cipher Proposal: Grain-128.
In Information Theory, 2006 IEEE
International Symposium on, pages
1614–1618, July 2006. 24, 45, 47, 57

[127] Martin Hell, Thomas Johansson,
Alexander Maximov, and Willi Meier.
The Grain Family of Stream Ciphers.
In The eSTREAM Finalists, pages
179–190. 2008. http://www.ecrypt.

eu.org/stream/grainpf.html. 11,
24, 45

[128] Martin Hell, Thomas Johansson, and
Willi Meier. Grain: a stream cipher
for constrained environments. IJWMC,
2(1):86–93, 2007. 11, 24, 45

[129] M. Hellman. A cryptanalytic time-
memory trade-off. IEEE transactions
on Information Theory, 26(4):401–406,
1980. 19

[130] Val Henson. An analysis of compare-by-
hash. In Proceedings of the 9th Work-
shop on Hot Topics in Operating Sys-
tems, 2003. 12

[131] Howard M. Heys. An Analysis of
the Statistical Self-Synchronization of
Stream Ciphers. In INFOCOM, pages
897–904, 2001. 63

[132] Thomas Hodanek. Analysis of Reduced
MD6. In Western European Workshop
on Research in Cryptology, WEWoRC,
July 2009. 107

[133] Jin Hong and Palash Sarkar. New Ap-
plications of Time Memory Data Trade-
offs. In ASIACRYPT, pages 353–372,
2005. 6, 20

[134] Sebastiaan Indesteege and Bart Pre-
neel. Practical Collisions for EnRUPT.
In FSE, pages 246–259, 2009. 76

[135] Antoine Joux. Multicollisions in It-
erated Hash Functions. Application to
Cascaded Constructions. In CRYPTO,
pages 306–316, 2004. 15, 17

[136] Antoine Joux and Frédéric Muller. A
Chosen IV Attack Against Turing. In
Selected Areas in Cryptography, pages
194–207, 2003. 58

[137] Antoine Joux and Frédéric Muller.
Loosening the KNOT. In FSE, pages
87–99, 2003. 8, 62

[138] Antoine Joux and Frédéric Muller. Two
Attacks Against the HBB Stream Ci-
pher. In FSE, pages 330–341, 2005. 8,
62

[139] Antoine Joux and Frédéric Muller.
Chosen-Ciphertext Attacks Against
MOSQUITO. In FSE, pages 390–404,
2006. 8, 62

[140] Antoine Joux and Thomas Peyrin.
Hash Functions and the (Amplified)
Boomerang Attack. In CRYPTO, pages
244–263, 2007. 83

[141] Oliver Jung and Christoph Ru-
land. Encryption with Statistical
Self-Synchronization in Synchronous

131

http://www.ecrypt.eu.org/stream/grainpf.html
http://www.ecrypt.eu.org/stream/grainpf.html

REFERENCES

Broadband Networks. In CHES, pages
340–352, 1999. 63

[142] B. Kaliski. The MD2 message-digest
algorithm. Internet Request for Com-
ments (RFC) 1319, April 1992. 15

[143] J.B. Kam and G.I. Davida. Structured
design of substitution-permutation en-
cryption networks. IEEE Transactions
on Computers, 100(28):747–753, 1979.
30, 37

[144] Emilia Käsper, Vincent Rijmen,
Tor E. Bjørstad, Christian Rechberger,
Matthew J. B. Robshaw, and Gau-
tham Sekar. Correlated Keystreams in
Moustique. In AFRICACRYPT, pages
246–257, 2008. 8, 62

[145] John Kelsey and Tadayoshi Kohno.
Herding Hash Functions and the Nos-
tradamus Attack. In EUROCRYPT,
pages 183–200, 2006. 15, 17

[146] John Kelsey, Tadayoshi Kohno, and
Bruce Schneier. Amplified Boomerang
Attacks Against Reduced-Round
MARS and Serpent. In FSE, pages
75–93, 2000. 21

[147] John Kelsey and Bruce Schneier. Sec-
ond Preimages on n-Bit Hash Functions
for Much Less than 2n Work. In EU-
ROCRYPT, pages 474–490, 2005. 15,
17

[148] Shahram Khazaei, Simon Knellwolf,
Willi Meier, and Deian Stefan. Im-
proved Linear Differential Attacks on
CubeHash. In AFRICACRYPT, pages
??–??, 2010. 75, 92, 94

[149] Shahram Khazaei and Willi Meier. New
Directions in Cryptanalysis of Self-
Synchronizing Stream Ciphers. In IN-

DOCRYPT, pages 15–26, 2008. 8, 59,
61

[150] Dmitry Khovratovich. Nonrandom-
ness of the 33-round MD6. Presented
at the rump session of FSE’09, 2009.
Slides are available online at http://

fse2009rump.cr.yp.to/. 107

[151] Vlastimil Klima. Tunnels in Hash
Functions: MD5 Collisions Within a
Minute. Cryptology ePrint Archive,
Report 2006/105, 2006. http://

eprint.iacr.org/2006/105. 22, 76,
83, 85

[152] Alexander Klimov and Adi Shamir.
New Applications of T-Functions in
Block Ciphers and Hash Functions. In
FSE, pages 18–31, 2005. 8, 24, 61, 62,
63, 65, 66, 67

[153] Lars R. Knudsen. DEAL — a 128-bit
block cipher. Technical Report 151, De-
partment of Informatics, University of
Bergen, Norway, 1998. 21

[154] Lars R. Knudsen. Cryptanalysis of
LOKI91. In AUSCRYPT, pages 196–
208, 1992. 22

[155] Lars R. Knudsen. Truncated and
Higher Order Differentials. In FSE,
pages 196–211, 1994. 21, 23, 58

[156] Lars R. Knudsen and John Erik Math-
iassen. Preimage and Collision Attacks
on MD2. In FSE, pages 255–267, 2005.
17

[157] Lars R. Knudsen, John Erik Mathi-
assen, Frédéric Muller, and Søren S.
Thomsen. Cryptanalysis of MD2. J.
Cryptology, 23(1):72–90, 2010. 17

132

http://fse2009rump.cr.yp.to/
http://fse2009rump.cr.yp.to/
http://eprint.iacr.org/2006/105
http://eprint.iacr.org/2006/105

REFERENCES

[158] Lars R. Knudsen and David Wagner.
Integral Cryptanalysis. In FSE, pages
112–127, 2002. 22, 58

[159] Xuejia Lai. Higher order deriva-
tives and differential cryptanalysis.
In U. Maurer R.E. Blahut, D.J.
Costello Jr and T. Mittelholzer, edi-
tors, Communications and cryptogra-
phy – two sides of one tapestry, pages
227–233. Kluwer Academic Publishers,
1994. Scanned copy online at http:

//cr.yp.to/cubeattacks.html. 59

[160] Xuejia Lai and James L. Massey.
Markov Ciphers and Differentail Crypt-
analysis. In EUROCRYPT, pages 17–
38, 1991. 21

[161] J. Linn. Privacy Enhancement for In-
ternet Electronic Mail: Part III – Algo-
rithms, Modes, and Identifiers. Inter-
net Request for Comments (RFC) 1115,
August 1989. 15

[162] Helger Lipmaa and Shiho Moriai. Effi-
cient Algorithms for Computing Differ-
ential Properties of Addition. In FSE,
pages 336–350, 2001. 79, 104

[163] Yi Lu, Willi Meier, and Serge Vaude-
nay. The Conditional Correlation At-
tack: A Practical Attack on Bluetooth
Encryption. In CRYPTO, pages 97–
117, 2005. 11, 58

[164] Yi Lu and Serge Vaudenay. Cryptanal-
ysis of Bluetooth Keystream Generator
Two-Level E0. In ASIACRYPT, pages
483–499, 2004. 58

[165] Stefan Lucks. Attacking Seven Rounds
of Rijndael under 192-bit and 256-bit
Keys. In AES Candidate Conference,
pages 215–229, 2000. 22, 58

[166] Stefan Lucks. A Failure-Friendly De-
sign Principle for Hash Functions. In
ASIACRYPT, pages 474–494, 2005. 15,
17, 78

[167] Hideki Imai Makoto Sugita, Mit-
suru Kawazoe. Gröbner Basis Based
Cryptanalysis of SHA-1. Cryptology
ePrint Archive, Report 2006/098, 2006.
http://eprint.iacr.org/. 22, 26, 76,
83, 85

[168] Stéphane Manuel and Thomas Peyrin.
Collisions on SHA–0 in One Hour. In
FSE, pages 16–35, 2008. 22, 76, 83

[169] S. M. Matyas, C. Meyer, and J. Os-
eas. Generating strong one-way func-
tions with cryptographic algorithm.
IBM Technical Disclosure Bulletin,
27(10A):5658–5659, 1985. 14

[170] Ueli M. Maurer. New Approaches
to the Design of Self-Synchronizing
Stream Ciphers. In EUROCRYPT,
pages 458–471, 1991. 62

[171] Ueli M. Maurer, Renato Renner, and
Clemens Holenstein. Indifferentiabil-
ity, Impossibility Results on Reduc-
tions, and Applications to the Random
Oracle Methodology. In TCC, pages
21–39, 2004. 15

[172] Ueli M. Maurer and Johan Sjödin.
Single-Key AIL-MACs from Any FIL-
MAC. In ICALP, pages 472–484, 2005.
15

[173] Alexander Maximov and Dmitry
Khovratovich. New State Recovery
Attack on RC4. In CRYPTO, pages
297–316, 2008. 11

[174] Alfred J. Menezes, Paul C. van
Oorschot, and Scott A. Vanstone.

133

http://cr.yp.to/cubeattacks.html
http://cr.yp.to/cubeattacks.html
http://eprint.iacr.org/

REFERENCES

Handbook of Applied Cryptography.
CRC Press, 2001. 1, 14, 15, 78

[175] Ralph C. Merkle. One Way Hash Func-
tions and DES. In CRYPTO, pages
428–446, 1989. 14, 15

[176] Joydip Mitra. A Near-Practical At-
tack Against B Mode of HBB. In ASI-
ACRYPT, pages 412–424, 2005. 8, 62

[177] Shoji Miyaguchi, Masahiko Iwata, and
Kazuo Ohta. New 128-bit hash func-
tion. In Proc. 4th International Joint
Workshop on Computer Communica-
tions, Tokyo, Japan, pages 279–288,
1989. 14

[178] Frédéric Muller. The MD2 Hash Func-
tion Is Not One-Way. In ASIACRYPT,
pages 214–229, 2004. 17

[179] Yusuke Naito, Yu Sasaki, Takeshi Shi-
moyama, Jun Yajima, Noboru Kuni-
hiro, and Kazuo Ohta. Improved Col-
lision Search for SHA–0. In ASI-
ACRYPT, pages 21–36, 2006. 22, 76,
83, 94

[180] Moni Naor and Moti Yung. Univer-
sal One-Way Hash Functions and their
Cryptographic Applications. In STOC,
pages 33–43, 1989. 13

[181] National Institute of Science and
Technology. Announcing request
for candidate algorithm nominations
for a new cryptographic hash al-
gorithm (SHA-3) family. Federal
Register, 72(112), November 2007.
See http://csrc.nist.gov/groups/

ST/hash/sha-3/. 11, 17, 24, 77, 89

[182] James Nechvatal, Elaine Barker,
Lawrence Bassham, William Burr,
Morris Dworkin, James Foti, and

Edward Roback. Report on the devel-
opment of the Advanced Encryption
Standard (AES). Journal of Re-
search of National Institute of Science
and Technology, volume 106, pages
511–576, 2001. Available at: http:

// csrc. nist. gov/ archive/ aes/ .
11, 17

[183] NESSIE. New European Schemes
for Signatures, Integrity and Encryp-
tion. See http://www.cosic.esat.

kuleuven.be/nessie/. 11

[184] Karsten Nohl and Chris Paget. GSM:
SRSLY? The 26th Chaos Communica-
tion Congress (26C3), 27-30 December
2009, Berlin, Germany. See http:

//events.ccc.de/congress/2009/

Fahrplan/events/3654.en.html. 11

[185] National Bureau of Standards. Data
Encryption Standard (DES). Federal
Information Processing Standards Pub-
lication (FIPS PUB) 46. , January
1977. 5

[186] National Institute of Standards and
Technology/U.S. Department of Com-
merce. Advanced Encryption Standard
(AES). Federal Information Process-
ing Standards Publication (FIPS PUB)
197, November 2001. 5

[187] National Institute of Standards and
Technology. FIPS PUB 180: Secure
Hash Standard. May 1993. 16

[188] National Institute of Standards and
Technology. FIPS PUB 180-1: Secure
Hash Standard. April 1995. 14, 16

[189] National Institute of Standards and
Technology. FIPS PUB 180-2: Secure
Hash Standard. August 2002. 14, 16,
134

134

http://csrc.nist.gov/groups/ST/hash/sha-3/
http://csrc.nist.gov/groups/ST/hash/sha-3/
http://csrc.nist.gov/archive/aes/
http://csrc.nist.gov/archive/aes/
http://www.cosic.esat.kuleuven.be/nessie/
http://www.cosic.esat.kuleuven.be/nessie/
http://events.ccc.de/congress/2009/Fahrplan/events/3654.en.html
http://events.ccc.de/congress/2009/Fahrplan/events/3654.en.html
http://events.ccc.de/congress/2009/Fahrplan/events/3654.en.html

REFERENCES

[190] National Institute of Standards and
Technology. Change Notice for FIPS
PUB 180-2 [189]. February 2004. 14,
16

[191] Sean O’Neil. Algebraic Structure De-
fectoscopy. Cryptology ePrint Archive,
Report 2007/378, 2007. http://

eprint.iacr.org/2007/378. See also
http://www.defectoscopy.com. 46,
49, 50, 57, 58

[192] G. Paul and S. Maitra. On biases
of permutation and keystream bytes of
RC4 towards the secret key. Cryptog-
raphy and Communications, 1(2):225–
268, 2009. 11

[193] Sylvain Pelissier. Cryptanalysis of Re-
duced Word Variants of Salsa. In West-
ern European Workshop on Research in
Cryptology, WEWoRC, July 2009. 44

[194] Thomas Peyrin. Cryptanalysis of
Grindahl. In ASIACRYPT, pages 551–
567, 2007. 77, 83, 85

[195] Norbert Pramstaller, Christian Rech-
berger, and Vincent Rijmen. Exploiting
Coding Theory for Collision Attacks on
SHA–1. In IMA Int. Conf., pages 78–
95, 2005. 76, 82, 92, 94

[196] Bart Preneel. Analysis and design of
cryptographic hash functions. PhD the-
sis, Katholieke Universiteit Leuven. 17

[197] Bart Preneel, Rene Govaerts, and Joos
Vandewalle. Differential cryptanalysis
of hash functions based on block ci-
phers. In CCS ’93: Proceedings of the
1st ACM conference on Computer and
communications security, pages 183–
188, New York, NY, USA, 1993. ACM.
22

[198] Bart Preneel, René Govaerts, and Joos
Vandewalle. Hash Functions Based on
Block Ciphers: A Synthetic Approach.
In CRYPTO, pages 368–378, 1993. 14

[199] Bart Preneel, Marnix Nuttin, Vincent
Rijmen, and Johan Buelens. Crypt-
analysis of the CFB Mode of the DES
with a Reduced Number of Rounds. In
CRYPTO, pages 212–223, 1993. 63

[200] Norman Proctor. A Self-Synchronizing
Cascaded Cipher System With Dy-
namic Control of Error-Propagation. In
CRYPTO, pages 174–190, 1984. 62

[201] Jean-Jacques Quisquater and Jean-
Paul Delescaille. How Easy is Colli-
sion Search? Application to DES (Ex-
tended Summary). In EUROCRYPT,
pages 429–434, 1989. 19

[202] A. Regenscheid, R. Perlner, S. Chang,
J. Kelsey, M. Nandi, and S. Paul.
Status Report on the First Round
of the SHA-3 Cryptographic Hash
Algorithm Competition. National
Institute of Science and Technol-
ogy, NISTIR 7620, September, 2009.
See http://csrc.nist.gov/groups/

ST/hash/sha-3/Round1/. 17

[203] Vincent Rijmen and Elisabeth Oswald.
Update on SHA-1. In CT-RSA, pages
58–71, 2005. 76, 82

[204] Ronald L. Rivest. The MD4 Message
Digest Algorithm. In CRYPTO, pages
303–311, 1990. 16

[205] Ronald L. Rivest. The MD5 message-
digest algorithm. Internet Request for
Comments (RFC) 1321, April 1992. 14,
16

135

http://eprint.iacr.org/2007/378
http://eprint.iacr.org/2007/378
http://www.defectoscopy.com
http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/
http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/

REFERENCES

[206] Ronald L. Rivest, Benjamin Agre,
Daniel V. Bailey, Christopher Crutch-
field, Yevgeniy Dodis, Kermin Elliott
Fleming Asif Khan, Jayant Krishna-
murthy, Yuncheng Lin, Leo Reyzin,
Emily Shen, Jim Sukha, Drew Suther-
land, Eran Tromer, and Yiqun Lisa
Yin. The MD6 hash function — a
proposal to NIST for SHA–3. Sub-
mission to NIST SHA-3 competition.,
2008. http://groups.csail.mit.

edu/cis/md6/. 24, 77, 104, 105, 106,
107

[207] Ronald L. Rivest, Adi Shamir, and
Leonard M. Adleman. A Method
for Obtaining Digital Signatures and
Public-Key Cryptosystems. Commun.
ACM, 21(2):120–126, 1978. 4

[208] Phillip Rogaway and Thomas Shrimp-
ton. Cryptographic Hash-Function Ba-
sics: Definitions, Implications, and
Separations for Preimage Resistance,
Second-Preimage Resistance, and Col-
lision Resistance. In FSE, pages 371–
388, 2004. Extended version avail-
able at: http://web.cecs.pdx.edu/

~teshrim/. 13

[209] Phillip Rogaway and John P. Stein-
berger. Constructing Cryptographic
Hash Functions from Fixed-Key Block-
ciphers. In CRYPTO, pages 433–450,
2008. 17

[210] Phillip Rogaway and John P. Stein-
berger. Security/Efficiency Tradeoffs
for Permutation-Based Hashing. In
EUROCRYPT, pages 220–236, 2008.
17

[211] N. Rogier and Pascal Chauvaud. MD2
Is not Secure without the Check-

sum Byte. Des. Codes Cryptography,
12(3):245–251, 1997. 17

[212] Bart Van Rompay, Alex Biryukov, Bart
Preneel, and Joos Vandewalle. Crypt-
analysis of 3-Pass HAVAL. In ASI-
ACRYPT, pages 228–245, 2003. 22

[213] Gregory Rose, Philip Hawkes, Michael
Paddon, and Miriam Wiggers de Vries.
Primitive Specifications for SSS. Tech-
nical Report 2005/028, eSTREAM,
ECRYPT Stream Cipher Project, 2005.
See also http://www.ecrypt.eu.org/

stream/ciphers/sss/sss.pdf. 8, 62

[214] Markku-Juhani O. Saarinen. Chosen-
IV Statistical Attacks on eStream Ci-
phers. In SECRYPT, pages 260–266,
2006. 46, 49, 50, 58

[215] Palash Sarkar. Hiji-bij-bij: A
New Stream Cipher with a Self-
synchronizing Mode of Operation. In
INDOCRYPT, pages 36–51, 2003. 8,
62

[216] B. Schneier. Applied cryptography: pro-
tocols, algorithms, and source code in
C. Wiley-India, 2007. 8, 28

[217] Bruce Schneier. Secrets & lies: digital
security in a networked world. John Wi-
ley & Sons, Inc. New York, NY, USA,
2000. 2

[218] Claude Shannon. Communication The-
ory of Secrecy Systems. The Bell Sys-
tem Technical Journal, 28(4):656–715,
October 1949. 3, 23

[219] Victor Shoup. OAEP Reconsidered. J.
Cryptology, 15(4):223–249, 2002. 12

[220] Thomas Siegenthaler. Correlation-
immunity of nonlinear combining func-
tions for cryptographic applications.

136

http://groups.csail.mit.edu/cis/md6/
http://groups.csail.mit.edu/cis/md6/
http://web.cecs.pdx.edu/~teshrim/
http://web.cecs.pdx.edu/~teshrim/
http://www.ecrypt.eu.org/stream/ciphers/sss/sss.pdf
http://www.ecrypt.eu.org/stream/ciphers/sss/sss.pdf

REFERENCES

IEEE Transactions on Information
Theory, 30(5):776–, 1984. 37

[221] Thomas Siegenthaler. Decrypting a
Class of Stream Ciphers Using Cipher-
text Only. IEEE Trans. Computers,
34(1):81–85, 1985. 30

[222] Thomas Siegenthaler. Decrypting a
Class of Stream Ciphers Using Cipher-
text Only. IEEE Transactions on Com-
puters, 34(1):81–85, 1985. 36, 37

[223] Martijn Stam. Beyond Uniformity:
Better Security/Efficiency Tradeoffs for
Compression Functions. In CRYPTO,
pages 397–412, 2008. 17

[224] Martijn Stam. Blockcipher-Based
Hashing Revisited. In FSE, pages
67–83, 2009. Full version available
at: http://eprint.iacr.org/2008/

071. 14

[225] Douglas R. Stinson. Cryptography: the-
ory and practice. CRC press, 2006. 3

[226] Makoto Sugita, Mitsuru Kawazoe, Lu-
dovic Perret, and Hideki Imai. Alge-
braic Cryptanalysis of 58-Round SHA-
1. In FSE, pages 349–365, 2007. 22, 26,
76, 83, 85

[227] Yukiyasu Tsunoo, Teruo Saito, Hiroy-
asu Kubo, Tomoyasu Suzaki, and Hi-
roki Nakashima. Differential Crypt-
analysis of Salsa20/8. In SASC 2007 –
The State of the Art of Stream Ciphers,
2007. 30, 39, 42, 43

[228] Paul C. van Oorschot and Michael J.
Wiener. Parallel Collision Search with
Cryptanalytic Applications. J. Cryptol-
ogy, 12(1):1–28, 1999. 19

[229] Henk C.A. van Tilborg. Encyclopedia
of cryptography and security. Springer
Verlag, 2005. 18

[230] Gilbert S. Vernam. Cipher print-
ing telegraph systems for secret wire
and radio telegraphic communications.
Journal of the IEEE, 55:109–115, 1926.
4

[231] Michael Vielhaber. Breaking
ONE.FIVIUM by AIDA an Algebraic
IV Differential Attack. Cryptology
ePrint Archive, Report 2007/413, 2007.
http://eprint.iacr.org/2007/413.
22, 47, 49, 50, 55, 58, 64

[232] David Wagner. The Boomerang At-
tack. In FSE, pages 156–170, 1999. 21

[233] Xiaoyun Wang. The Collision Attack
on SHA-0. In Chinese, 1997. 22, 76

[234] Xiaoyun Wang. The Improved Collision
Attack on SHA-0. In Chinese, 1998. 22,
76

[235] Xiaoyun Wang, Dengguo Feng, Xue-
jia Lai, and Hongbo Yu. Collisions for
Hash Functions MD4, MD5, HAVAL-
128 and RIPEMD. Rump session of
Crypto 2004, 2004. 76

[236] Xiaoyun Wang, Xuejia Lai, Dengguo
Feng, Hui Chen, and Xiuyuan Yu.
Cryptanalysis of the Hash Functions
MD4 and RIPEMD. In EUROCRYPT,
pages 1–18, 2005. 16, 22, 26, 76

[237] Xiaoyun Wang, Yiqun Lisa Yin, and
Hongbo Yu. Finding Collisions in the
Full SHA-1. In CRYPTO, pages 17–36,
2005. 17, 22, 76

[238] Xiaoyun Wang and Hongbo Yu. How
to Break MD5 and Other Hash Func-

137

http://eprint.iacr.org/2008/071
http://eprint.iacr.org/2008/071
http://eprint.iacr.org/2007/413

REFERENCES

tions. In EUROCRYPT, pages 19–35,
2005. 16, 22, 26, 76, 78, 83, 94

[239] Xiaoyun Wang, Hongbo Yu, and
Yiqun Lisa Yin. Efficient Colli-
sion Search Attacks on SHA-0. In
CRYPTO, pages 1–16, 2005. 16, 22,
76

[240] A. F. Webster and Stafford E. Tavares.
On the Design of S-Boxes. In CRYPTO,
pages 523–534, 1985. 37

[241] Hongjun Wu. The Stream Cipher HC-
128. In The eSTREAM Finalists, pages

39–47. 2008. http://www.ecrypt.eu.

org/stream/hcpf.html. 11

[242] Hongjun Wu and Bart Preneel. Resyn-
chronization Attacks on WG and LEX.
In FSE, pages 422–432, 2006. 58

[243] Gideon Yuval. How to swindle Rabin.
Cryptologia, 3(3):187–191, 1979. 19

[244] Bin Zhang, Hongjun Wu, Dengguo
Feng, and Feng Bao. Chosen Cipher-
text Attack on a New Class of Self-
Synchronizing Stream Ciphers. In IN-
DOCRYPT, pages 73–83, 2004. 8, 62

138

http://www.ecrypt.eu.org/stream/hcpf.html
http://www.ecrypt.eu.org/stream/hcpf.html

REFERENCES

139

Curriculum Vitae

Education

Ph.D. in Computer Science

Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

July 2006–June 2010

• Thesis: “Neutrality-Based Symmetric Cryptanalysis”

• Supervisors: Prof. Arjen K. Lenstra and Dr. Willi Meier

M.Sc. in Communication Engineering

Sharif University of Technology, Tehran, Iran

Sept. 2002–Nov. 2004

• Thesis: “Cryptanalysis of Stream Ciphers”

• Supervisors: Prof. Mahmoud Salmasizadeh and Mr. Javad Mohajeri

B.Sc. in Electrical Engineering

Sharif University of Technology, Tehran, Iran

Sept. 1998– Aug. 2002

Refereed Papers

1. S. Khazaei, S. Knellwolf, W. Meier and D. Stefan, “Improved Linear

Differential Attacks on CubeHash”. In the proceedings of AFRICACRYPT

2010, LNCS 6055, pp. 407–418 (2010).

2. E. Brier, S. Khazaei, W. Meier and T. Peyrin, “Linearization Frame-

work for Collision Attacks: Application to CubeHash and MD6”. ASI-

ACRYPT 2009, LNCS 5912, pp. 560–577 (2009).

3. S. Khazaei and W. Meier, “On Reconstruction of RC4 Keys from In-

ternal States”. Mathematical Methods in Computer Science MMICS

2008, LNCS 5393, pp. 179–189 (2008).

4. S. Khazaei and W. Meier, “New Directions in Cryptanalysis of Self-

Synchronizing Stream Ciphers”. INDOCRYPT 2008, LNCS 5365, pp.

15–26 (2008).

5. S. Fischer, S. Khazaei and W. Meier, “Chosen IV Statistical Analysis

for Key Recovery Attacks on Stream Ciphers”. In the proceedings of

AFRICACRYPT 2008, LNCS 5023, pp. 236–245 (2008).

6. J.-Ph. Aumasson, S. Fischer, S. Khazaei, W. Meier, and C. Rech-

berger, “New Features of Latin Dances: Analysis of Salsa, ChaCha,

and Rumba”. In the proceedings of Fast Software Encryption FSE

2008, LNCS 5086, pp. 470–488 (2008).

7. S. Khazaei, S. Fischer and W. Meier, “Reduced Complexity Attacks

on the Alternating Step Generator”. In the proceedings of Selected

Areas in Cryptography SAC 2007, LNCS 4876, pp. 1–16 (2007).

8. T. Helleseth, C. J.A. Jansen, S. Khazaei and A. Kholosha, “Security

of Jump Controlled Sequence Generators for Stream Ciphers”. In the

proceedings of Sequences and Their Applications (SETA’06), LNCS

4086, pp. 141–152 (2006).

9. M. Hasanzadeh, S. Khazaei and A. Kholosha, “On IV Setup of Po-

maranch”. In State of Art of Stream Ciphers (SASC’06) pp. 7–12

(2006).

10. Y. Tsunoo, T. Saito, M. Shigeri, T. Suzaki, H. Ahmadi, T. Eghlidos,

and S. Khazaei, “Evaluation of SOSEMANUK with regard to guess-

and-determine attacks”. In State of Art of Stream Ciphers (SASC’06)

pp. 25–34 (2006).

11. M. Hassanzadeh, E. Shakour, S. Khazaei, “Improved Cryptanalysis of

Polar Bear”. In State of Art of Stream Ciphers (SASC’06) pp. 154–160

(2006).

12. M. Kiaei, S. Ghaemmaghami, S. Khazaei, “Efficient Fully Format

Compliant Selective Scrambling Methods for Compressed Video Streams”.

Advanced International Conference on Telecommunications and Inter-

national Conference on Internet and Web Applications and Services

(AICT-ICIW’06), Guadeloupe, French Caribbean (2006).

Reports

1. S. Khazaei, M. Hasanzadeh and M. Kiaei, “Linear Sequential Circuit

Approximation of Grain and Trivium Stream Ciphers”. Cryptology

ePrint Archive, Report 2006/141, (2006).

2. H. Ahmadi, T. Eghlidos and S. Khazaei, “Improved guess and deter-

mine attack on SOSEMANUK”, eSTREAM, ECRYPT Stream Cipher

Project, Report 2005/085 (2005).

Invited Talks

1. “Linearization Framework for Collision Attacks”. Early Symmetric

Crypto (ESC) seminar, 11-15 January 2010. Remich, Luxembourg.

2. “Key recovery Attack on Interactable Keyed Functions”. Dagstuhl

Symmetric Cryptography Seminar, Dagstuhl, Germany, 11-16 January

2009. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, Germany.

3. “eSTREAM, the revival of stream ciphers”. Invited speaker for the

Iranian Society of Cryptology, 11 May 2005. Sharif University of Tech-

nology, Tehran, Iran.

Paper Reviews

1. Conferences: Asiacrypt’06, SAC’07, Eurocrypt’08, FSE’08, SAC’08,

Asiacrypt’08, Indocrypt’08, FSE’09, Asiacrypt’09, Eurocrypt’10, FSE’10.

2. Journals: International Journal of Applied Cryptography (IJACT).

	Title
	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Cryptography-- goals and tenets
	1.2 Ciphers and confidentiality
	1.2.1 Perfect security
	1.2.2 Computational security

	1.3 Stream ciphers
	1.3.1 Cryptanalytic model and security of stream ciphers
	1.3.2 State of the art of stream ciphers

	1.4 Hash functions
	1.4.1 Cryptographic properties of hash functions
	1.4.2 Hash function design
	1.4.3 History and the state of the art of practical hash functions

	1.5 Techniques for symmetric cryptanalysis
	1.5.1 Brute force method
	1.5.2 Birthday paradox
	1.5.3 Time-memory trade-offs
	1.5.4 Differential cryptanalysis
	1.5.5 Integral cryptanalysis
	1.5.6 Algebraic cryptanalysis

	1.6 Contribution of the thesis
	1.6.1 Target algorithms
	1.6.2 Previous work and main contributions
	1.6.3 Publications and thesis outline

	2 Cryptanalysis of Salsa20 and ChaCha
	2.1 Introduction
	2.2 Specification of the primitives
	2.2.1 Salsa20
	2.2.2 ChaCha

	2.3 Cryptanalytic model
	2.4 Differential cryptanalysis with probabilistic neutral bits
	2.4.1 Truncated differentials
	2.4.2 Probabilistic backwards computation
	2.4.3 Probabilistic neutral bits

	2.5 Cryptanalytic algorithm and time complexity
	2.6 Experimental results
	2.7 Summary

	3 Chosen IV Cryptanalysis for Synchronous Stream Ciphers
	3.1 Introduction
	3.2 Notations
	3.3 Problem formalization
	3.4 Basic idea and possible scenarios
	3.5 Derived functions from polynomial description
	3.6 Functions approximation
	3.7 Description and evaluation of the cryptanalytic algorithm
	3.8 Application to Trivium
	3.9 Application to Grain-128
	3.10 Connection with previous works
	3.11 Follow-ups of our work
	3.12 Summary

	4 Chosen Ciphertext Cryptanalysis for Self-synchronizing Stream Ciphers
	4.1 Introduction
	4.2 Polynomial approach for key recovery on an interactable keyed function
	4.3 Self-synchronizing stream ciphers
	4.3.1 Cryptanalytic model

	4.4 Description of the Klimov-Shamir T-function based self-synchronizing stream cipher
	4.4.1 Reduced word size variants

	4.5 Analysis of the Klimov-Shamir T-function based self-synchronizing stream cipher
	4.6 Towards a systematic approach to find weak ciphertext variables
	4.7 Summary

	5 Linearization Framework for Finding hash Collisions
	5.1 Introduction
	5.2 Linear differential cryptanalysis of hash functions
	5.2.1 Attributing compression functions to hash functions
	5.2.2 Linearization of compression functions
	5.2.3 Computing the raw probability
	5.2.4 Link with coding theory

	5.3 Finding a conforming message pair efficiently
	5.3.1 Condition function
	5.3.2 Dependency table for freedom degrees use

	5.4 Application to CubeHash
	5.4.1 CubeHash description
	5.4.2 Defining the compression function
	5.4.3 Collision construction
	5.4.4 Constructing linear differentials
	5.4.5 Collision cryptanalysis on CubeHash variants

	5.5 Generalization
	5.5.1 Modular addition case
	5.5.2 Note on the different linear approximations

	5.6 Application to MD6
	5.7 Summary

	6 Conclusion
	Appendix A
	A.1 The best differential paths found for CubeHash regarding raw probability
	A.1.1 Differential paths for CubeHash-1/
	A.1.2 Differential paths for CubeHash-2/
	A.1.3 Differential paths for CubeHash-3/
	A.1.4 Differential paths for CubeHash-4/
	A.1.5 Differential paths for CubeHash-5/
	A.1.6 Differential paths for CubeHash-6/
	A.1.7 Differential paths for CubeHash-7/
	A.1.8 Differential paths for CubeHash-8/

	A.2 The best differential paths found for CubeHash regarding collision complexity
	A.3 Collisions for CubeHash-3/64
	A.4 Collisions for CubeHash-4/48
	A.5 Collisions for CubeHash-5/96
	A.6 Colliding message for MD6 reduced to 16 rounds
	A.7 Condition function for CubeHash and MD6
	A.8 Partitioning example for CubeHash
	A.9 Partitioning example for MD6

	References

