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Abstract

Object tracking and detection over a wide range of viewpoints is a long-

standing problem in Computer Vision. Despite significant advance in wide-

baseline sparse interest point matching and development of robust dense

feature models, it remains a largely open problem. Moreover, abundance

of low cost mobile platforms and novel application areas, such as real-

time Augmented Reality, constantly push the performance limits of exist-

ing methods. There is a need to modify and adapt these to meet more

stringent speed and capacity requirements.

In this thesis, we aim to overcome the difficulties due to the multi-view

nature of the object detection task. We significantly improve upon existing

statistical keypoint matching algorithms to perform fast and robust recog-

nition of image patches independently of object pose. We demonstrate this

on various 2D and 3D datasets.

The statistical keypoint matching approaches require massive amounts of

training data covering a wide range of viewpoints. We have developed a

weakly supervised algorithm to greatly simplify their training for 3D ob-

jects. We also integrate this algorithm in a 3D tracking-by-detection system

to perform real-time Augmented Reality.

Finally, we extend the use of a large training set with smooth viewpoint

variation to category-level object detection. We introduce a new dataset

with continuous pose annotations which we use to train pose estimators

for objects of a single category. By using these estimators’ output to select

pose specific classifiers, our framework can simultaneously localize objects

in an image and recover their pose. These decoupled pose estimation and

classification steps yield improved detection rates.



Overall, we rely on image and video sequences to train classifiers that can

either operate independently of the object pose or recover the pose param-

eters explicitly. We show that in both cases our approaches mitigate the

effects of viewpoint changes and improve the recognition performance.

Keywords: Computer vision, keypoint recognition, naive Bayes, tracking-

by-detection, object detection, multi-view.



Résumé

La détection et le suivi d’objets à partir d’un grand nombre de points de

vue représente un problème de longue date dans le domaine de la vision

par ordinateur. Malgré les progrès réalisés en correspondance de points

d’intérêt épars étant donné une large ligne de points principaux et les

développements des modèles d’attributs denses et robustes, ce sujet de-

meure un problème ouvert. De plus, l’abondance de plateformes mobiles

bon marché et les domaines d’application novateurs, tels que la réalité

augmentée, repoussent constamment les limites des méthodes existantes.

D’où le besoin de modifier ces méthodes afin de répondre à des exigences

de vitesse et capacité toujours plus accrues.

Dans cette thèse, nous nous efforçons de résoudre les difficultés inhéren-

tes à la variété des points de vues de la tâche de détection d’objets. Nous

améliorons de manière significative les algorithmes existants de correspon-

dance statistique de points d’intérêt, afin qu’ils puissent reconnaı̂tre rapi-

dement et de manière robuste des morceaux d’image indépendamment de

la pose de l’objet. Nos nouveaux développements sont testés sur plusieurs

jeux de données en deux et trois dimensions.

Ces approches statistiques nécessitent de grandes quantités de données

d’apprentissage, couvrant une large gamme de points de vue. Nous dé-

veloppons un algorithme faiblement supervisé afin de simplifier leur ap-

prentissage pour des objets tridimensionnels. Nous intégrons également

cet algorithme dans un système de suivi-par-détection en trois dimensions,

qui rend possible la réalité augmentée en temps réel.

Finalement, nous étendons l’utilisation de grands ensembles d’apprentis-

sage avec variation graduelle de point de vue à la détection de catégories

d’objet. Nous introduisions un nouveau jeu de donnée avec annotation



continue de la pose, que nous utilisons pour entraı̂ner des estimateurs de

pose pour des objets d’une seule catégorie. En utilisant le résultat de ces

estimateurs pour sélectionner un classifieur entraı̂né spécifiquement pour

une pose, notre système peut simultanément localiser des objets dans une

image et identifier leur pose. Le découplage de ces deux étapes d’estima-

tion de pose et de classification génère de meilleurs taux de détection.

En résumé, nous nous basons sur des séquences d’images et vidéos pour

entraı̂ner des classifieurs qui peuvent soit opérer indépendamment de la

pose des objets, soit retrouver les paramètres de pose indépendamment.

Nous montrons que dans les deux cas, notre approche limite les effets dus

aux changement de point de vue et améliore la qualité de la reconnais-

sance.

Mots-clés: Vision par ordinateur, reconnaissance de points d’intérêt,

suivi-par-détection, détection d’objets, multi-vue.
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whose companionship helped me to settle, work, and finish this thesis

much more easily and peacefully.

I would like to thank my parents for being always there for me, before and

after my adventure in Switzerland.

Finally, without the support, love, encouragement, and understanding from

my wife, Özden, it would not be possible to start, finish, or write this the-

sis.



CONTENTS

List of Figures iii

List of Tables v

1 Introduction 1

1.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.1 Keypoint Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.2 Randomized Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.3 Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Thesis Goals and Contributions . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4.1 Framework for Keypoint Matching . . . . . . . . . . . . . . . . . 18

1.4.2 Framework for Object Detection . . . . . . . . . . . . . . . . . . . 20

2 Random Ferns 23

2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 A Semi-Naive Bayesian Approach to Patch Recognition . . . . . . . . . . 26

2.2.1 Formulation of Feature Combination . . . . . . . . . . . . . . . . 27

2.2.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.3 Ferns and Locality-Sensitive Hashing . . . . . . . . . . . . . . . . 32

2.3 Comparison with Randomized Trees . . . . . . . . . . . . . . . . . . . . . 34

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4.1 Ferns vs SIFT to detect planar objects . . . . . . . . . . . . . . . . 41

i



CONTENTS

2.4.2 Ferns vs SIFT to detect 3D objects . . . . . . . . . . . . . . . . . . 45

2.4.3 Panorama and 3D Scene Annotation . . . . . . . . . . . . . . . . . 50

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3 Weakly Supervised Learning by Feature Harvesting 53

3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 3D Wide Baseline Matching using Randomized Trees and Ferns . . . . . 58

3.2.1 Randomized Trees and On-line Training . . . . . . . . . . . . . . . 59

3.2.2 Random Ferns and On-line Training . . . . . . . . . . . . . . . . . 61

3.3 From Harvesting to Detection . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3.2 3D Tracking by Detection . . . . . . . . . . . . . . . . . . . . . . . 64

3.3.3 Feature Harvesting . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.5 Comparison of Feature Harvesting using Trees and Ferns . . . . . . . . . 71

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4 Pose Covariant Object Detection 75

4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 Three-Step Object Localization . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.1 Image Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2.2 Viewpoint Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2.3 Bounding Box Estimation . . . . . . . . . . . . . . . . . . . . . . . 86

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5 Conclusion 95

A Solving the Perspective-Three-Point Problem for Camera Pose Estimation 99

B Homography Parametrization for Training Ferns 103

References 107

ii



LIST OF FIGURES

1.1 Vehicles capable of Autonomous Navigation . . . . . . . . . . . . . . . . 5

1.2 The animated book Les Monde des Montagnes developed by EPFL+ECAL

Lab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Rise and Fall application from Nexus Productions . . . . . . . . . . . . . . 7

1.4 Augmented reality for tourism . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Augmented Reality on a mobile device . . . . . . . . . . . . . . . . . . . . 11

1.6 Keypoint matching using Randomized Trees . . . . . . . . . . . . . . . . 13

1.7 Framework for keypoint matching . . . . . . . . . . . . . . . . . . . . . . 19

1.8 Framework for object detection . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1 A structural comparison of Ferns and Trees . . . . . . . . . . . . . . . . . 24

2.2 A feature space comparison of Ferns and Trees . . . . . . . . . . . . . . . 25

2.3 Image features and the conditional probability distribution for a single

Fern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Recognition rate as a function of Nr . . . . . . . . . . . . . . . . . . . . . 31

2.5 Dataset used in the recognition rate comparisons of Ferns and Trees . . . 35

2.6 Warped patches from the images of Figure 2.5 . . . . . . . . . . . . . . . 35

2.7 Comparison of recognition rates obtained using Trees and Ferns . . . . . 37

2.8 Recognition rate as a function of the number of classes . . . . . . . . . . 39

2.9 Recognition rate and computation time as a function of the amount of

memory available and the size of the Ferns . . . . . . . . . . . . . . . . . 39

2.10 Recognition rate as a function of the number of training samples . . . . . 40

2.11 Matching a mouse pad in a 1074-frame sequence . . . . . . . . . . . . . . 42

iii



LIST OF FIGURES

2.12 Scatter plot showing the number of inliers for the mouse pad experiment 43

2.13 Dataset used in the 3D object detection experiments . . . . . . . . . . . . 45

2.14 Generating ground truth data for 3D object detection . . . . . . . . . . . 47

2.15 Samples from the ground truth for the Horse dataset . . . . . . . . . . . . 48

2.16 Recognition rates for 3D objects . . . . . . . . . . . . . . . . . . . . . . . . 49

2.17 Automated image annotation using Ferns . . . . . . . . . . . . . . . . . . 50

3.1 Feature harvesting applied to a toy car, a face, and a glass . . . . . . . . . 56

3.2 The five steps of feature harvesting . . . . . . . . . . . . . . . . . . . . . . 62

3.3 Sample patches collected during feature harvesting . . . . . . . . . . . . 66

3.4 Drift test sequence and results . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5 Detection results on the Car sequence . . . . . . . . . . . . . . . . . . . . 69

3.6 Detection results on the Face sequence . . . . . . . . . . . . . . . . . . . . 70

3.7 Detection results on the Glass sequence . . . . . . . . . . . . . . . . . . . 70

3.8 Harvesting performance of Ferns and Trees under in-plane rotations . . 72

3.9 Harvesting performance of Ferns and Trees under scale changes . . . . . 73

4.1 Sample object detections from the multi-view test set . . . . . . . . . . . 79

4.2 Image figures used in pose covariant object detection . . . . . . . . . . . 80

4.3 Pose estimation on a single sequence depicting a rotating car . . . . . . . 82

4.4 Feature selection for the pose estimator . . . . . . . . . . . . . . . . . . . 83

4.5 Bounding box estimation results on overlap ratio distribution . . . . . . 85

4.6 Histogram relevance for pose estimation . . . . . . . . . . . . . . . . . . . 86

4.7 Precision/Recall curves comparing localization using only SVMs, using

viewpoint estimation followed by a view-tuned SVM, and finally with

the addition of bounding box estimation . . . . . . . . . . . . . . . . . . . 88

4.8 Accuracy of pose estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.9 Detections from the car show environment. . . . . . . . . . . . . . . . . . 89

4.10 Detections on the database of [91] . . . . . . . . . . . . . . . . . . . . . . . 90

A.1 Geometry of the perspective-three-point problem . . . . . . . . . . . . . 100

A.2 Solution space of the P3P problem . . . . . . . . . . . . . . . . . . . . . . 101

B.1 Geometry of the homography parameterization . . . . . . . . . . . . . . 104

iv



LIST OF TABLES

2.1 Variance of the recognition rate obtained using Trees and Ferns . . . . . 38

4.1 Confusion matrix for object pose estimation . . . . . . . . . . . . . . . . . 92

v



LIST OF TABLES

vi



CHAPTER

ONE

INTRODUCTION

Since the early days of computer vision, object tracking and detection has been a very

active research topic [7, 46, 53, 54, 55, 78, 88, 121] with a wide range of potential ap-

plications in robotics, human computer interfaces, and augmented reality. This is a

challenging task since the 2D appearance of image features such as edges and inter-

est points depend to a great extent on the 3D configuration and pose of the objects in

the scene. Tracking methods [20, 116] cope with this problem by using pose informa-

tion from previous frames to constrain the pose space and reduce feature variation.

However, they require initialization, are prone to drift and fail in the presence of fast

motion or strong occlusions. Consequently, successful long-term tracking requires ob-

ject detection, which usually involves matching image features across a wide range of

viewpoints. This brings back the need to analyze the 2D image features independent

of the 3D object pose.

There are two main approaches to mitigate the effects of changing viewpoint on

the object appearance. The first one relies on finding representations that do not de-

pend strongly on the viewpoint and combining them to analyze the image features

independently of the object pose. The second one relies on the observation that if we

can constrain at least a subset of the pose parameters, then the image features will

vary much less. We can achieve this either by estimating the pose parameters directly

from the image or by searching over a range of parameter values. In both cases the

image features are extracted for fixed object pose.

1



1. INTRODUCTION

In this thesis, we call the former approach pose invariant and the latter pose covari-

ant. We argue that, in practice, usually a large training set of image sequences cap-

tured from smoothly varying viewpoints can be obtained and used to train the object

detectors. This kind of training data greatly improves the performance of both pose

invariant and covariant approaches. Such image sequences depict a continuous vari-

ation of the image features as the viewpoint changes. Hence, they provide essential

information that is required to extract pose invariant representations and to train the

pose estimators used by covariant classifiers. We demonstrate this for various com-

puter vision tasks including wide baseline feature matching, real-time 3D tracking-by-

detection of a single object, and localization of objects from a single category, which

we discuss in more detail below.

Wide baseline feature matching. The dominant approach to matching image fea-

tures is pose covariant and relies on estimating the orientation, scale, and even affine

parameters from the texture around interest points [69, 72, 74, 108]. Although this is

shown to perform very well in practice [75, 76], it usually requires an explicit search

over pose parameters. For example, scale estimation involves finding the maxima of

Laplacian in the scale space. Therefore it can not always cope with real-time require-

ments. We will argue that the pose invariant approach is faster and can be made just

as reliable. Despite the fact that there are no general 3D geometric invariants [81] im-

age features do not vary arbitrarily with viewpoint [12]. The stationary statistics of

these variations can be captured using a probabilistic model and machine learning

techniques [58] can be used to combine many such models to obtain a mostly pose

invariant classifier. Indeed, [63] uses this approach and we build upon it.

Real-time 3D tracking-by-detection. Image acquisition, storage, and processing costs

have declined tremendously in the last decade. As discussed above, when we have

some prior information about the kind of object we want to detect, a large training

set covering a wide range of viewpoints can be captured and used to train the object

detector. However, in a fully supervised setting this still becomes burdensome due to

financial and time costs of manual annotation. This problem can be solved by using

a weakly supervised framework that requires annotation of only a small set of im-

2



ages. By using a classifier that can be trained incrementally [16], it is then possible to

automatically annotate the remaining training data and update the classifier on-line.

A weakly supervised training framework requires perfect output by the classifier

since any labeling errors will corrupt the training set used to update the classifier. In

the presence of such corrupted labels the object appearance model encoded by the

classifier will drift slowly and eventually the classifier will learn parts of the back-

ground as the object. Therefore, there is a need to filter the classifier output to keep

only very high confidence samples to be integrated into the classifier updates.

We have developed a weakly supervised learning framework for matching interest

points on a particular object to obtain a detector that can localize it in images captured

from arbitrary viewpoints. This framework exploits 3D rigidity constraints to remove

false matches between the interest points detected on the frames of a video sequence

that depicts the object as it slowly moves against a relatively uncluttered background.

This constrained training setup is used to perform tracking and detection reliably so

that the object detection and pose recovery can be fully automated and the classifier

is updated after processing each new frame. In this context, reliable tracking and

detection means that the labels of the set of examples used for classifier updates are

mostly correct. After all frames of the training video is processed, the trained classifier

can be used to obtain feature matches to images of the object captured from any of the

viewpoints included in the training set.

We also take advantage of the training video to decide which interest points on

the object are repeatedly detected and reliably recognized by the classifier. We keep

only high performing interest points according to these two criteria. For this reason,

we refer to the developed weakly supervised framework as Feature Harvesting. It is

similar in spirit to the way a human learns complex tasks gradually, starting from a

toy example. It is especially effective considering the large volume of unsupervised

visual data that is available for training.

Object Localization. Finally, we have designed an approach that can localize objects

of a single category in images and also estimate their pose. Since an object category,

such as cars or buildings, contains instances of widely varying geometry, we consider

the specification of the location and size of the object bounding box in the image as

sufficient for localization.

3



1. INTRODUCTION

Similarly, we do not seek to recover every aspect of the object pose which could

be as complex as recovering the six degrees of freedom for 3D rotation and transla-

tion plus tens of joint angles or deformation parameters respectively for articulated or

deformable objects. Instead, we assume that certain aspects of the object pose domi-

nate the way the appearance of the object changes and they can not be modeled in a

trivial way. For example a rotation around the axis perpendicular to the ground plane

will change image features significantly unless the object has a strong rotational sym-

metry. We aim to model such pose parameters since if the image features are mostly

invariant to a pose parameter then estimation of its value will require the solution of

a severely ill defined inverse problem. Chapter 5 contains a more in depth discussion

of which aspects of object pose can be modeled by our approach and future directions

on improving the proposed localization framework.

Note that a classifier that can recover object pose has to be pose covariant, since

otherwise the pose information is lost during training. As a result, most of the state-

of-the-art techniques [10, 19, 28, 29, 38, 82] are not directly suitable for this task.

Moreover, existing datasets either do not contain annotated pose information at

all [26, 44] or contain just descriptive viewpoint labels which are heavily quantized

such as front view, top view [25, 102]. Since training pose covariant classifiers often

requires a more accurate and even continuous annotation of object pose, it is much

easier to design and test a pose invariant approach using these datasets. Lack of pose

information in image datasets contrasts with the human learning process, since ego-

motion is an integral part of the human visual system. We believe the reasons for

this omission and tendency towards pose invariant object detection is of a practical

nature: It is hard to obtain accurate pose information. To overcome this, at least in

a specialized context, we have collected a dataset that contains images of cars with

accurate and continuous pose information. This dataset allows us to train an object

detection pipeline that simultaneously localizes the objects of a single category and

estimates their pose.

Overall, the approaches that we advocate in this thesis call for increased use of

video sequences that include slow variation of the viewpoint and image features for

training purposes. This allows a gradual shift to weaker supervision during training.

Indeed, recent tracking-by-detection approaches [4, 43, 57] already follow this trend.

4



1.1 Applications

(a) (b) (c)

Figure 1.1: Vehicles capable of Autonomous Navigation. (a) A hands-free capable car
developed at Stanford University. In the future, robust driver-less navigation can sig-
nificantly reduce accidents due to human factors. Photo by Steve Jurvetson ( CC© BY:©). (b)
Autonomous flight allows data collection over a large area, in this case to aid fisherman
to locate tuna fish. (c) NASA Sojourner on Mars. Autonomous rovers are an essential part
of space exploration since remote control is not feasible due to latency in communication.

We also hope that the results of this thesis will convince its readers that the choice

between pose invariant and covariant approaches involves fundamental trade-offs on

training and run-time constraints, speed and reliability. Therefore, it should be kept in

mind when designing a new method and it can be exploited to adapt object detection

to different application requirements.

In the rest of this chapter, we first present several applications that can directly

benefit from the results obtained in this thesis. In Section 1.2, we briefly review the

relevant literature. We list the contributions of this thesis in Section 1.3. Section 1.4

outlines the contents of the thesis chapters and also summarizes the techniques we

have developed for feature matching and object detection.

1.1 Applications

The main target applications of this thesis are Autonomous Navigation and Aug-

mented Reality (AR). Both of these application domains demand robust localization

of the camera and the objects in the scene.

Autonomous navigation refers to determining the course that should be taken by

a vehicle without human control or supervision. Figure 1.1 shows several vehicles

that can benefit from such automated guidance. The vehicle’s current position and

sometimes velocity is calculated constantly to correct for errors in its current path.

5



1. INTRODUCTION

(a)

(b)

(c)

Figure 1.2: Le Monde des Montagnes is an animated book developed by EPFL+ECAL Lab. It
uses Ferns to detect images on the book pages and to register the animations on top of the
video frames. Courtesy of Camille Scherrer of EPFL+ECAL Lab [92]. (a) The setup to read
the animated book and a sample frame depicting the animation. A camera is hidden in the
lamp. (b) Different pages of the book are illustrated with different animations according
to the story line. (c) Two more animation samples.
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(a)

(b)

(c)

Figure 1.3: Rise and Fall application from Nexus Productions using Ferns for tracking.
Courtesy of Emily Gobeille and Theo Watson c© 2010. (a) The interactive application
tracks the magazine cover and the scenario changes according to whether it is facing up
or down. The slant of the plane determines the user’s viewpoint. (b) Two images from
the rise modality that depicts a rising balloon and its interaction with several objects. (c)
The fall modality depicts a falling umbrella and it has a dark theme with the interactions
usually resulting in negative events.
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Detection of landmarks and obstacles are also necessary to guide it towards the final

destination on a collision free path. In most applications, collisions are considered as

fatal and have to be prevented to facilitate acceptable operation. Consequently, real-

time detection and localization is an operational requirement. Moreover, it is often

necessary to detect objects from far away so that the vehicle can be steered on time to

avoid collision. Our keypoint matching and object detection framework has been suc-

cessfully tested in the scope of the PEGASE European project [21] to detect runways

for automated guidance of airplanes.

Augmented Reality requires registering virtual objects and annotations onto frames

acquired by a video camera. Successful AR depends on the quality of this registration

as much as on the design of virtual elements and their interaction with the user. These

elements may or may not be rendered at photo realistic quality. The users will accept

them as part of the real-world as long as their behavior is consistent and relatively

similar to that of real objects. As a result, inaccurate position and trajectory recovery

results in poor user experience.

Another factor that affects user experience is application responsiveness. Users

expect their input to result in action-reaction events just as in the real world. Any

delay in this process increases the user’s awareness that a computer algorithm is at

work. Similarly, artificial landmarks, such as fiducial markers used in older AR sys-

tems [115], help the computer algorithm to locate the camera position more reliably,

but are detrimental to the atmosphere necessary to maintain an illusion of reality. They

also make the application more cumbersome to deploy.

The object detection approaches we have developed only need natural image fea-

tures and run at real-time speed on a variety of platforms. They can be used together

with a robust tracking algorithm [109] to satisfy all of the above constraints. As shown

in Figures 1.2 and 1.3, they have already been successfully integrated in several AR

systems [92, 111].

In recent years, AR has generated increased interest in artistic applications. This is

partly due to increased demand from artists trying to innovate new modes of interac-

tion. However, this is not the only reason. This trend is also a sign of increased matu-

rity of the AR algorithms that have become robust, fast, and unconstrained enough to

be practical.
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(a) (b)

Figure 1.4: Augmented reality for tourism. (a) We match an input image against a
panorama and augment the scene with annotations on places of interest. (b) We match an
image against a 3D model mode of the door, overlaid on the rightmost image. This lets us
display annotations at the right place.

Detection and tracking objects in 3D can also be used to invent new modes to

control artistic animations. Figure 1.3 illustrates images from an interactive storyboard

application. Using our approach, pose of a magazine cover is determined at each

frame to guide the story-line and also to change viewpoint of the user.

Emerging smaller hand-held devices with higher processing power and longer bat-

tery life broke the computational barriers required for AR. Mobile devices can be used

to apply AR to tourism, by annotating maps, landmarks and scenery. Tourist maps

contain static information about the road and places of interest. Such maps can be

viewed electronically on a mobile device and various information overlays can be

used to dynamically change the content. But portability requirements limit the size of

these devices and their screens are usually too small to facilitate comfortable viewing.

A combination of these two media can provide the best of both worlds. Figure 1.5

shows that our approach extends naturally to this domain [111]. We demonstrate sim-

ilar usage by annotating images of city scenery and a landmark building in Chapter 2.

Figure 1.4 shows a sample from the resulting images.

AR also finds applications in sports and advertisement. Currently, this involves

more manual labor and mechanical sensors, but automated computer vision algo-

rithms are employed increasingly more often. Visual sports commentary is usually

very static and is attached to screen borders. Even rough tracking and identification

9



1. INTRODUCTION

of players and racers can be used to personalize and attach such commentary to each

one. A similar situation is present for live advertisements, which are usually displayed

at the bottom of the frame as an overlay to the video stream. AR allows the registra-

tion of such adverts onto objects in the scene of a music clip or movie, which is less

distracting for viewers. There is also the possibility to change advertisements for each

channel or different airings on the same channel.

Finally, 3D detection and tracking of devices used in medical operations can help

doctors to train. This usually requires more precision than we attempt to achieve in

this thesis, but the same principles can be applied with tighter constraints. For exam-

ple sub-pixel edge information and several cameras can be used to obtain more accu-

rate 3D pose. Augmenting the operation sites on the patient’s body is another possibil-

ity, but this requires detection of deformable surfaces, which we do not attempt in this

thesis. [86] gives an excellent account of real-time methods for deformable detection

and tracking.

1.2 Related Work

In this section, we briefly review the literature on feature matching and object detec-

tion. The discussion of methods that are directly related to the developments in this

thesis are deferred until the corresponding chapter, where we also provide a compar-

ison.

1.2.1 Keypoint Matching

Due to its robustness to partial occlusions and computational efficiency, recognition

of image patches extracted around detected keypoints is crucial for many vision prob-

lems. As a result, two main classes of approaches to keypoint matching have been

developed to achieve robustness to perspective and lighting changes.

The first family relies on covariant interest point detectors [69, 72, 74, 108] and on

local descriptors designed to be robust to specific classes of deformations [69, 93]. The

keypoint detector provides estimates of the scale and rotation at which the descriptor

should be computed. Among such descriptors, the SIFT vector [69], computed from

local histograms of gradients, has been shown to work remarkably well.
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(a)

(b)

Figure 1.5: Augmented Reality on a mobile device. The lower computational power and
limited memory of the mobile platform requires clever adaptations of existing techniques
to meet real-time constraints. Courtesy of Gerhard Reitmayr and University of Cam-
bridge [111]. (a) Augmented Reality can be used in navigation applications to provide
complex real-time annotations on tourist maps. (b) Detection of two image models on a
mobile phone.
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The first step of keypoint matching using descriptors is to collect the descriptors

on the images to be matched in a database. An interest point is matched by finding

the nearest neighbors of its descriptor in the database. Due to efficiency concerns,

usually only an approximate nearest neighbor search is performed using an efficient

data structure, such as KD-Trees [8].

Since these descriptor based approaches require a complex interest point detector

and the fast matching uses a complex data structure they are usually not preferred for

real-time applications. A simplified version of SIFT and a Spill-Tree [67] based nearest

neighbor matching algorithm has been recently used for AR on mobile devices [111].

The approach we describe in Chapter 2 is much simpler and performs equally well.

It has also been shown that keypoints can be matched by vector quantizing [98]

each one by using either hierarchical K-Means clustering [83], a Randomized KD-

Forest [85], or an Extremely Randomized Clustering Forest [77]. This allows fast ap-

proximate nearest neighbor computation and is used for image retrieval and classifi-

cation in very large image databases. However, performance is measured in terms of

the number of correctly retrieved or classified documents rather than the number of

correctly classified keypoints, which is the important criterion for applications such as

pose estimation or Simultaneous Localization and Mapping.

Recently, techniques have been developed to transform descriptors into short bi-

nary representations. This significantly speeds up matching since the nearest neighbor

search is performed in the Hamming space and the distance computation reduces to

bit counting. [96] converts SIFT vectors by learning a binary embedding that max-

imizes patch similarity. [106] uses Neighborhood Component Analysis [49] to find

a binary representation that preserves the nearest neighbors in the descriptor space.

Although it does not result in a binary vector, [113] learns a descriptor embedding

through Local Discriminant Embedding that yields a high performance descriptor of

a small number of dimensions. These techniques greatly improve matching speed and

quality. But they still require extraction of the original descriptor and as a result they

are currently not suited for real-time object detection.

A second class of feature matching algorithms relies on statistical learning tech-

niques to compute a probabilistic model of the patch. Among these, the most relevant

one for this thesis is that of [63] and we review it in detail below. Section 2.1 gives a
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(a) (b)

Figure 1.6: Keypoint matching using Randomized Trees. (a) Each image patch follows
a path down the tree according to the result of a binary comparison between two pixel
values at each node. The leaves contain the posterior over class labels and every keypoint
has a unique class. (b) A new image patch is classified by dropping it down a set of
Randomized trees, summing up the distributions at each leaf node reached in this way,
and picking the class with the highest probability.

more detailed account of the remaining methods in this category and compares them

to our feature matching approach.

1.2.2 Randomized Trees

Since the set of possible patches around an image feature under changing perspective

and lightning conditions can be seen as a class, [63] showed that the feature matching

problem can be solved by training a set of Randomized Trees [1] to recognize feature

points independently of pose. This is done using a database of patches obtained by

warping those found in a training image by randomly chosen homographies. Fig-

ure 1.6 gives an overview of keypoint matching using Randomized Trees.

Note that unlike in traditional classification problems, a close-to-perfect method is

not required, because the output of the classifier can be filtered by a robust estimator.

However the classifier should be able to handle many classes—typically in the order

of hundreds— simultaneously without compromising performance or speed. This is

required for successful object detection since the repeatability of the interest points will

drop significantly under perspective distortion and modeling a high number of them

ensures presence of enough features for a wide range of viewpoints. A classification

tree can naturally handle such multi-class problems.

13
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Training methods for such tree structured classifiers usually exploit the data dis-

tribution in each node to select optimal tests that reduce the expected classification

error in the child nodes. Since using a single tree with many levels overfits the data,

an ensemble of shorter trees is preferred by combining the output from each. When an

ensemble of trees is used, randomizing the construction of each tree has been found

to increase the classification performance [1, 41] for various data and problem sets.

For keypoint matching, [63] observed that picking the node tests by an optimiza-

tion scheme does not reduce classification errors compared to completely random se-

lection. This is expected since keypoint matching involves classification into hundred

of classes and a single tree have very low accuracy even with the optimization scheme.

Therefore, optimizing the trees individually does not significantly reduce the classifi-

cation error of the ensemble. In Section 2.2.3, we show that when used as in [63],

the trees function as random hash functions and total randomization is an essential

component of the approach.

1.2.3 Object Detection

Given an image, object detection methods aim to check if the sought after object or

objects are present in it and if they are, to localize them in the image by specifying a

region of interest that contains each object. In the case we are interested in localizing

only a particular object we refer to the localization problem as instance-level object

detection. It is also possible to search for any object from a single category such as cars

or pedestrians. In this case, we refer to the localization problem as category-level object

detection. Although these two problems look somewhat similar, they involve different

constraints and a method that works well for one does not necessarily perform well

for the other. Therefore, different approaches have been developed for each of these

problems.

As discussed in the beginning, instance-level object detection is almost a prereq-

uisite to successful long-term object tracking. It entails locating a previously known

object by using prior information on its appearance. This information can be in the

form of a single image [68] or a sequence of images [89]. It is also possible to simulta-

neously detect multiple objects using an efficient data structure, such as a binary de-

cision tree, to access the prior on the objects [84]. In this thesis, we use instance-level

object detection within a tracking-by-detection framework to localize a target object
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in the frames of an input video frame. Chapter 3 includes a more detailed review of

relevant literature after introducing our approach.

Category-level object detection is one of the oldest and most difficult problems of

Computer Vision. One could argue that different attempts at its solution define par-

ticular eras in the history of the field [80]. There are two issues that greatly contribute

to its difficulty.

First, the variation of image features between instances of the same category can be

almost as severe as variations due to viewpoint change. Although local descriptors are

robust to such changes in viewpoint, they also strongly discriminate different textures.

This makes them highly suitable for instance-level object detection, but significantly

reduces their effectiveness for matching two instances of the same category. [31, 82, 95]

try to overcome this by building a feature hierarchy that is partly or fully learned from

training images. The learned features are robust to changes within each category and

they can be shared between categories. Similarly, [107] uses boosting to learn the

features in a discriminative way. [97] builds a descriptor using self-similarity of image

patches independent of the texture element itself. [30, 56] relies on shape information

extracted from image edges, which is more robust to intra-category variations than

image texture.

The second issue, which we target in this thesis, is lack of a strong geometric model

for an object category that works for arbitrary viewpoints. This reduces the overall

robustness of the approaches since appearance alone is usually not enough to filter

out all background clutter and interference between similar categories. [61] builds

a geometric prior by using an Implicit Shape Model in Hough transform space. Im-

age features are quantized into a codebook using K-Means and at detection time they

vote for the object center. This works very well for a limited viewpoint range, but the

Hough transform limits the range of views that can be included. [19] extracts an Ex-

emplar Model from training data in a weakly supervised manner. This model encodes

the spatial distribution of image features of class members that are similar geometric

layout. [35] introduces the notion of Pose Indexed features by defining local coordinate

frames similar to covariant interest point detectors. This again improves geometric

invariance to limited changes in viewpoint an in-plane rotations, but defining such

coordinate frames for 3D perspective changes is difficult. [29] recently extended the

pictorial structures framework [27] to include multiple deformable part models. Each
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model represents the geometric layout of a set of parts and the part locations interact

with each other from a different viewpoint. A latent variable controls which model

best explains the image features. A latent SVM classifier is used to train the model.

The methods above are effective to detect object categories from a limited range

of viewpoints and they are also locally invariant to small changes in viewpoint. In

Chapter 4, we propose a pose covariant framework that can be used in conjunction

with any of these to extend the operation range of the classifier. In Section 4.1, we also

compare our approach to recent 3D pose-aware literature.

1.3 Thesis Goals and Contributions

This thesis aims to develop novel approaches to learn features from image and video

sequences for fast and reliable object tracking-by-detection, camera ego-motion esti-

mation and augmented reality. We require that these sequences depict a slow varia-

tion of image features as the viewpoint is varied. This requirement allows us to extract

salient feature statistics in the training phase and to increase the robustness of object

detection to viewpoint changes at run-time. We specifically aimed to

• improve the robustness and reliability of fast wide-baseline feature matching

approaches,

• design a fast and generic instance-level object detection approach that can be

easily integrated into object tracking frameworks,

• extend these methods to 3D object tracking-by-detection,

• simplify the training phase to reduce the required amount of prior knowledge

on object appearance and geometry,

• apply similar ideas to category-level object detection to improve robustness to

viewpoint changes,

• and to link the developed approaches with a mathematical framework to pro-

vide a better understanding of their advantages and limitations.
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The common theme linking all these goals is the special emphasis placed on learn-

ing to be robust to viewpoint changes. As stated in the beginning of the thesis, there

are multiple ways to achieve this and we have exploited both pose invariant and co-

variant alternatives to reach the set of goals stated above. In this way, we gained the

flexibility necessary to develop novel frameworks that compete with the current state-

of-the-art approaches.

Among our contributions, the Ferns algorithm to match keypoints and its software

implementation found the most wide spread distribution. It has been downloaded

more than five thousand times in the first four months of the year 2010. Our Feature

Harvesting approach to training 3D object detectors can easily be integrated into exist-

ing tracking-by-detection applications and it achieves real-time and reliable detection.

To the best of our knowledge, our work on object category pose estimation is the first

one to report a detailed analysis of the continuous pose estimation quality. Our im-

age database is currently used by researchers working on manifold learning and its

application to pose regression.

In Section 2.2.3, we link keypoint matching using Ferns and Randomized Trees

to Locality Sensitive Hashing [3], which provides a well-known mathematical frame-

work. This greatly enhanced our understanding of the benefits and limitations of both

approaches. However, the analysis we present assumes that the image patches are al-

ready transformed from the Euclidean space of intensities to the Hamming space of

features, which are taken to be intensity comparisons. More work is required to high-

light the effects of the feature extraction step and possible alternatives to it. We discuss

future directions in Chapter 5.

1.4 Organization of the Thesis

In this section, we outline the thesis contents and the frameworks we have developed.

We omit the technical details and just present the general ideas together with the as-

sociated assumptions and requirements. We give pointers to thesis chapters where

appropriate. We first describe a 3D wide-baseline feature matching framework that

requires only weak supervision. We then summarize our pose covariant object detec-

tion pipeline.
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1.4.1 Framework for Keypoint Matching

Our keypoint matching framework is motivated by the approach of [63]. To achieve

wide-baseline viewpoint invariance, it introduces the concept of a view-set, which is

the set of all possible images of an image patch that is centered around a keypoint. It

usually covers a wide range of views but can easily be constrained to exclude a se-

lected viewpoint range depending on the application. A multi-class classifier can then

be trained with this view-set to recognize image patches of several hundred keypoint

classes independent of the viewpoint. Chapter 2 presents a naive Bayesian classifier

that can perform this task efficiently and much better than the Randomized Trees used

in [63].

As discussed in Section 1.2.2, it is easy to obtain the view-set of keypoints detected

on the images of planar surfaces by sampling the homography space and applying

these to a single known image of the surface. However in case of a 3D object, self-

occlusions and depth variations cause more complex visual changes that are very hard

to model. It is even more tedious to simulate complex lighting effects such as specular

reflections and shadows even for a planar object. Figure 1.7 illustrates our framework

for keypoint matching and 3D tracking-by-detection.

We overcome these difficulties by using real-world image sequences during train-

ing. The viewpoints in the image sequence have to cover the view-set for all keypoints

to be learned. To simplify the training, we require the background to be relatively un-

cluttered and the object has to move slowly with respect to the camera. Thanks to these

simplifications, unlike [63], we do not require the knowledge of the camera position

for all frames in the view-set. Our approach only needs a rough geometric model of

the object, which can be as simple as an ellipsoid, and its position in the first frame.

We then train an initial classifier and use it to automatically track the keypoints and

to estimate the remaining viewpoints. During this process, the classifier is updated

on-line with the image patches extracted from only the most recent frame. Section 3.2

describes how to perform these updates and Section 3.3 gives the details of the training

steps.

It is usually better to select a distinctive subset of the keypoints on the object rather

than trying to learn the appearance of all. This both speeds up detection and also im-

proves robustness by reducing the number of wrong matches. Since we use a long
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Figure 1.7: Our keypoint matching framework relies on a statistical description of key-
point appearance under perspective distortion. The training phase starts from a known
object pose and image patches around keypoints are used to train an initial classifier. This
classifier can match the learned keypoints to the ones detected on similar images and re-
cover the object pose. These newly registered frames generate more training patches. 3D
rigid geometric constraints are used to filter these to ensure that the set of training patches
do not contain erroneous labels. The classifier is updated with these without the need to
store previously observed image patches. We stop the updates at the end of training and
the classifier is ready to detect the object at run-time from the viewpoints present in the
training set.
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image sequence for training, we can gather performance statistics for each keypoint.

We keep track of the number of times each keypoint has been detected and also the

percentage of frames it is correctly recognized. We filter out keypoints with lowest

scores. The experimental results in Section 3.4 show that this eliminates keypoints

arising from reflections and occlusion boundaries, which are unstable, and also key-

points detected on ambiguous texture, which are hard to recognize.

1.4.2 Framework for Object Detection

Our object detection framework replicates the way covariant interest point detectors

work. These detectors estimate the orientation and scale at which the image patch

around interest points should be analyzed. Their estimates guide the extraction of

local descriptors and as a result which points are matched to each other. This assumes

that given an image patch, irrespective of its texture, we can define a canonical pose

and recover orientation and scale with respect to it.

In Section 4.2, we show that it is possible to train similar estimators for bounding

box dimensions and object pose that work on images of objects from a specific cate-

gory. Given any 2D point in the image, the first of these estimators predicts the size

of the area of interest. The second one returns an estimate of the object pose. Both

estimates are given irrespective of whether there is actually an object or not. As a re-

sult on a background image patch these estimators produce mostly random results.

Indeed, we do not use any background patches to train them. The estimators assume

the existence of an object. This greatly simplifies their design since they do not need

to discriminate between objects and background which usually contains widely vary-

ing feature statistics. Figure 1.8 shows a sample run of this multi-step estimation and

classification approach.

To detect objects in a given image, we simply generate object hypotheses on a

moderately dense grid. We run the estimators trained as above to obtain the area of

interest and object pose at each location. We then extract image features using the

estimated bounding box and compute a score for object presence using a pose specific

classifier. This classifier is trained using positive examples from only a limited pose

range that is as close as possible to the estimated object pose and all available negative

examples. We have one such classifier for every possible output of the pose estimator

and its output determines which one will be selected. Note that if there is an object at
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(a) (b) (c)

Figure 1.8: Framework for object detection. (a) We scan the image at the corners of a
relatively dense grid but at every test location the area of interest is estimated directly
from image content instead of searching thru all possible sizes. (b) For each location, we
estimate the object pose from image features extracted from the area of interest. (c) A
classifier tuned to the estimated orientation checks for the existence of an object.

any tested location, estimated pose should be close to the real object pose. As a result

correct classifier will be used to assign a high score to this location. In case there is no

object, pose estimator output will select a classifier almost at random. Since all pose

specific classifiers should assign a low score to background patches this randomness

should not cause any misclassification. Finally, a non-maxima suppression algorithm

is run on the computed scores and they are thresholded to obtain regions containing

an object. The details of each step of the object detection pipeline are presented in

Chapter 4.

This detection pipeline decouples object/background decision from feature varia-

tions due to viewpoint changes. The positive examples that are presented to each pose

specific classifier are relatively similar in appearance compared to objects of different

poses. Therefore, the training for these classifiers can easily focus on image features

that are not likely to appear on the background. Moreover, the pose estimators are not

confused by the complex background statistics. They just need to select features that

correspond to a change in viewpoint. This decoupling is fundamental to higher detec-

tion and localization performance and requires just the existence of reliable and stable

pose estimators. If for an object category the image features depend on viewpoint a

lot then it is easier to satisfy this requirement. In Section 4.4, we discuss these issues

in more detail.

21



1. INTRODUCTION

22



CHAPTER

TWO

RANDOM FERNS

In this chapter, we argue that keypoint recognition using Randomized Trees [63], as

described in Section 1.2.1, is effective and fast but can be much improved in two re-

spects. First, the total randomization of the node tests renders the tree structure unnec-

essary. Second, the combination of keypoint class probabilities by averaging is overly

conservative and can be profitably replaced by a naive Bayesian scheme. We first

discuss the rationale behind our modifications, formalize our approach in Section 2.2,

and finally show that it yields increased performance and scalability compared to Ran-

domized Trees in Section 2.3.

In Section 1.2.2, we have reviewed keypoint matching using Randomized Trees,

and noted that picking the node tests at random yields similar classification perfor-

mance as optimizing the tests by entropy minimization. We argue that the discrimi-

native power is the result of the data distributions at each leaf node and not the tree

structure itself. Therefore, replacing the tree structure with a non-hierarchical set of

tests, that we call as a Fern, will be equally effective for keypoint recognition. In-

deed, as shown in Figures 2.1 and 2.2, a random fern can be considered as a simplified

random tree. This simplification yields a faster and more compact implementation

without performance loss. In Section 2.2.3, we use this simplified structure to link

keypoint matching using Randomized Trees and Ferns to a probabilistic version of

Locality-Sensitive Hashing [42] and provide more insight into both methods.

[63] computes the distribution over keypoint classes by averaging the response of

each Randomized Tree. This can be considered optimal in case each Tree computes a
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Figure 2.1: Ferns versus Trees. A tree can be transformed into a Fern by performing the
following steps. First, we constrain the tree to systematically perform the same test across
any given hierarchy level, which results in the same feature being evaluated indepen-
dently of the path taken to get to a particular node. Second, we do away with the hierar-
chical structure and simply store the feature values at each level. This means applying a
set of tests to the patch, which is what Ferns do.

posterior class distribution corrupted by additive Gaussian noise. However, when an

additive mixture is used to combine estimates for the keypoint class from each tree, the

resulting distribution has higher variance than the individual mixture components.

Consequently it will be relatively flat and have low discriminative power. We use an

alternative approach and combine the response from each Fern multiplicatively. Un-

like averaging, the product models can represent much sharper distributions [50]. In

other words, if a single Fern strongly rejects a keypoint class, it can counter the com-

bined effect of all the other Ferns that gives a weak positive response. This increases

the discriminative power but requires larger amounts of training data and the help of

a prior regularization term that we will introduce in Section 2.2.

Such multiplicative combination implies a naive Bayesian formulation that as-

sumes class conditional independence between the distributions computed for each

Fern. Although this assumption will not hold in general, the classification task, which

just picks a single class, will not be adversely affected by the approximation errors in

the joint distribution as long as the maximum probability is assigned to the correct

class [24, 37]. To the best of our knowledge, a clear theoretical argument motivating

the superiority of naive Bayesian techniques in certain application domains does not

exist. There is however strong empirical evidence that they are very effective in sev-

eral problem domains such as spam filtering [90]. We will show that such a naive

combination is a powerful alternative to additive mixtures for keypoint recognition.
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(a) (b)

Figure 2.2: The feature spaces of Trees and Ferns. Although the space of tree features
seems much higher dimensional, it is not because only a subset of features can be eval-
uated. (a) For the simple tree on the left only the four combinations of feature values
denoted by green circles are possible. (b) The even simpler Fern on the left also yields
four possible combinations of feature values but a much simpler structure. As we will
show in Section 2.3, this simplicity does not entail any performance loss in the case of
randomly selected features.

2.1 Related Work

We have reviewed the related work on keypoint recognition using descriptors and

also Randomized Trees in Section 1.2.1. Here we present a more detailed outlook on

methods that use statistical learning techniques that compute a probabilistic model of

the patch.

The one-shot approach of [26] uses PCA and Gaussian Mixture Models but does

not account for perspective distortion.

Local Binary Patterns [103] rely on binary feature statistics by describing the un-

derlying texture in terms of histograms of binary features over all pixels of a target

region. While such a description is appropriate for texture classification, it is not di-

rectly suitable for keypoint characterization since histograms are built in this way, it

will lose the spatial information between the features. By contrast, we compute the

statistics of the binary features over example patches seen from different viewpoints

and use independence assumptions between groups of features, hence using many

more features centered on the keypoint location, to improve the recognition rate.

The Real-Time SLAM method of [112] also extends the Randomized Trees into

lists of features (similar to our Ferns), but the full posterior distribution over binary
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features are replaced by a single bit. This design choice is aimed at significantly re-

ducing the memory requirements while correctly matching the sparse set of visible

landmarks at a time. For maximum performance, we model the full joint probability.

Memory requirements can be tackled by using fixed point representations that require

fewer bits than the standard floating point representation.

[13] trains a set of Randomized Trees with a couple hundred keypoint classes. This

base set of keypoints is sampled at random from detections on the images of natural

scenery. New keypoints are represented by the distributions output by the trained

Randomized Trees. For each keypoint, the identity of the base set keypoints corre-

sponding to the maxima of these distributions is stable under viewpoint variations.

Therefore only a few elements are kept and the rest is set to zero. This results in a

sparse descriptor for keypoints that is called a keypoint signature. [15] employs Com-

pressive Sensing techniques [5] to compact these signatures into short vectors of 176

dimensions. [14] optimizes the selection of the base set using Genetic Algorithms [122]

to yield even shorter descriptors. While the signatures are not entirely pose invariant,

this method combines the statistical representations with a descriptor based approach

to provide speed and compactness at the same time.

Trees and Ferns have also been used for image classification, as a replacement for

a multi-way Support Vector Machine [11]. The binary features are computed on shape

and texture descriptors, hence gaining invariance to local deformations. The distribu-

tions are computed over different instances of the same class, but unlike our approach

the posteriors from different Trees and Ferns are combined by averaging. The results

match our own observations that using either Fern or Tree structures leads to similar

classification performance.

A recent evaluation on template based tracking techniques [66] also reports that

Ferns have improved performance compared to approaches with similar run-time

speed such as SURF [6].

2.2 A Semi-Naive Bayesian Approach to Patch Recognition

In this section we argue that, when the tests are chosen randomly, replacing the Ran-

domized Trees of [63] by our non-hierarchical ferns and pooling their answers in a

Naive Bayesian manner yields better results and scalability in terms of number of
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classes. As a result, we can combine many more features, which is key to improved

recognition rates.

We first show that our non-hierarchical Ferns fit nicely into a Naive Bayesian

framework and then explain the training protocol which is similar to the one used

for RTs.

2.2.1 Formulation of Feature Combination

As discussed in Section 1.4.1 we treat the set of all possible appearances of the image

patch surrounding a keypoint as a class. Therefore, given the patch surrounding a

keypoint detected in an image, our task is to assign it to the most likely class. Let

ci, i = 1, . . . ,H be the set of classes and let fj , j = 1, . . . , N be the set of binary features

that will be calculated over the patch we are trying to classify. Formally, we are looking

for

ĉi = argmax
ci

P (C = ci | f1, f2, . . . , fN ) , (2.1)

whereC is a random variable that represents the keypoint class. Bayes’ Formula yields

P (C = ci | f1, f2, . . . , fN ) =
P (f1, f2, . . . , fN |C = ci)P (C = ci)

P (f1, f2, . . . , fN )
. (2.2)

Assuming a uniform prior P (C), since the denominator is simply a scaling factor that

is independent from the class, our problem reduces to finding

ĉi = argmax
ci

P (f1, f2, . . . , fN |C = ci) . (2.3)

In our implementation, the value of each binary feature fj only depends on the in-

tensities of two pixel locations dj,1 and dj,2 of the image patch. We therefore write

fj =

{
1 if I(dj,1) < I(dj,2)
0 otherwise

, (2.4)

where I represents the image patch. Since these features are very simple, we require

many (N ≈ 300) for accurate classification. Therefore a complete representation of

the joint probability in Equation (2.3) is not feasible since it would require estimat-

ing and storing 2N entries for each class. One way to overcome this difficulty is to
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Figure 2.3: Image features and the conditional probability distribution for a single Fern.
A single node in a Fern outputs a binary number depending on the result of an intensity
comparison. A set of S nodes forms a Fern and for each image patch it generates a binary
number with S bits. A set of patches of the same keypoint class generates a distribution
over S-bit Fern outputs.

assume independence between features. An extreme version is to assume complete

independence, that is,

P (f1, f2, . . . , fN |C = ci) =
N∏
j=1

P (fj |C = ci) . (2.5)

However, this completely ignores the correlation between features. To make the

problem tractable while accounting for these dependencies, a good compromise is

to partition our features into M groups of size S = N
M . These groups are what we

define as Ferns and we compute the joint probability for features in each Fern. The

conditional probability becomes

P (f1, f2, . . . , fN |C = ci) =

M∏
k=1

P (Fk |C = ci) , (2.6)

where Fk = {fσ(k,1), fσ(k,2), . . . , fσ(k,S)}, k = 1, . . . ,M represents the kth fern and

σ(k, j) is a random permutation function with range 1, . . . , N . Hence, we follow a

Semi-Naive Bayesian [120] approach by modelling only some of the dependencies be-

tween features. The viability of such an approach has been shown by [51] in the con-

text of image retrieval applications. Figure 2.3 illustrates both the image features, their

combination as a Fern and computation of the conditional probability distributions.
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Algorithm 1: The pseudo-code of the run-time algorithm that computes
P (f1, f2, . . . , fN |C = ci) as given by Equation (2.6) to classify the image patch
I , where index is an integer index computed from the binary features. No image
rectification, illumination normalization, or parameter tuning are required.

for i = 1 to H do
logPI |C [i]←− 0;

end
forall Fern Fk do

index←− 0;
for j = 1 to S do

index←− 2× index;
if I

(
dσ(k,j,1)

)
< I

(
dσ(k,j,2)

)
then

index←− index + 1;
end

end
for i = 1 to H do

logPI |C [i]←− logPI |C [i] + logPFk
[index, i];

end

end

This formulation yields a tractable problem that involves M ×2S parameters, with

M between 30-50. In practice, as will be shown in Section 2.3, S = 11 yields good

results. M × 2S is therefore in the order of 80000, which is much smaller than 2N with

N ≈ 450 that the full joint probability representation would require. Our formulation

is also flexible since performance/memory trade-offs can be made by changing the

number of Ferns and their sizes. The pseudo-code, given in Algorithm 1, shows the

simplicity of the implementation.

Note that we use randomization in feature selection but also in grouping. An alter-

native approach would involve selecting feature groups to be as independent of each

other as possible. This is routinely done by Semi-Naive Bayesian classifiers based on

a criteria such as the mutual information between features [17]. However, in practice,

we have not found this to be necessary to achieve good performance. We have there-

fore chosen not to use such a strategy to preserve the simplicity and efficiency of our

training scheme and to allow for incremental training.
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2.2.2 Training

We assume that at least one image of the object to be detected is available for training.

We call any such image as a model image. Training starts by selecting a subset of the

keypoints detected on these model images. This is done by deforming the images

many times, applying the keypoint detector, and keeping track of the number of times

the same keypoint is detected. The keypoints that are found most often are assumed

to be the most stable and retained. These stable keypoints are assigned a unique class

number.

To generate the training set, we represent affine image deformations as 2×2 matri-

ces of the formRθR−φdiag(λ1, λ2)Rφ, where diag(λ1, λ2) is a diagonal 2×2 matrix and

Rγ represents a rotation of angle γ. The training set for each class is formed by gen-

erating 10000 sample images with randomly picked affine deformations by sampling

the deformation parameters {θ, φ, λ1, λ2} from a uniform distribution. We add Gaus-

sian noise to each sample image and then smooth it with a Gaussian filter of size 7×7.

This increases the robustness of the resulting classifier to run-time noise, especially

when there are features that compare two pixels on a uniform area.

The training phase estimates the class conditional probabilities P (Fm |C = ci) for

each Fern Fm and class ci, as described in Equation (2.6). For each Fern Fm we write

these terms as:

pk,ci = P (Fm = k |C = ci) , (2.7)

where we simplify our notations by considering Fm to be equal to k if the base 2

number formed by the binary features of Fm taken in sequence is equal to k. With this

convention, Ferns can take K = 2S values and, for each one, we need to estimate the

pk,ci , k = 1, 2, . . . ,K under the constraint

K∑
k=1

pk,ci = 1. (2.8)

The simplest approach would be to assign the maximum likelihood estimate to these

parameters from the training samples. For parameter pk,ci it is

pk,ci =
Nk,ci

Nci

, (2.9)
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Figure 2.4: Recognition rate as a function of log(Nr) using the three test images of Sec-
tion 2.3. The recognition rate remains relatively constant for 0.001 < Nr < 2. For
Nr < 0.001 it begins a slow decline, which ends in a sudden drop to about 50% when
Nr = 0. The rate also drops when Nr is too large because too strong a prior decreases the
effect of the actual training data, which is around 10000 samples for this experiment.

where Nk,ci is the number of training samples of class ci that evaluate to Fern value k

and Nci is the total number of samples for class ci. These parameters can therefore be

estimated for each Fern independently.

In practice however, this simple scheme yields poor results because if no training

sample for class ci evaluates to k, which can easily happen when the number of sam-

ples is not infinitely large, both Nk,ci and pk,ci will be zero. Since we multiply the pk,cj
for all Ferns, it implies that, if the Fern evaluates to k, the corresponding patch can

never be associated to class ci, no matter the response of the other Ferns. This makes

the Ferns far too selective because the fact that pk,ci = 0 may simply be an artifact of

the necessarily limited size of the training set. To overcome this problem we take pk,ci
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to be

pk,ci =
Nk,ci +Nr

Nci +K ×Nr
, (2.10)

where Nr represents a regularization term, which behaves as a uniform Dirichlet

prior [9] over feature values. If a sample with a specific Fern value is not encountered

during training, this scheme will still assign a non-zero value to the corresponding

probability. As illustrated by Figure 2.4, we have found our estimator to be insensi-

tive to the exact value of Nr and we use Nr = 1 in all our experiments. However,

having Nr be strictly greater than zero is essential. This tallies with the observation

that combining classifiers in a naive Bayesian fashion can be unreliable if improperly

done [58].

In effect, our training scheme marginalizes over the pose space since the class con-

ditional probabilities P (Fm |C = ci) depend on the camera poses relative to the object.

By densely sampling the pose space and summing over all samples, we marginalize

over these pose parameters. Hence at run-time, the statistics can be used in a pose in-

dependent manner, which is key to real-time performance. Furthermore, the training

algorithm itself is very efficient since it only requires storing the Nk,ci counts for each

fern while discarding the training samples immediately after use, which means that

we can use arbitrarily many if need be.

2.2.3 Ferns and Locality-Sensitive Hashing

Locality-Sensitive Hashing [42] (LSH) is an algorithm to perform approximate nearest

neighbor (ANN) search in high dimensional spaces. The original LSH version uses

an ensemble of binary random hashes to constrain this search to only a subset of the

data points. Since a Fern can also be considered as a random hash function, we can

link the two approaches and show that the Ferns perform a probabilistic version of

LSH to achieve ANN classification at constant time, i.e. independent of the number of

training samples. We first give a brief overview of LSH. We will then show that given

a binary feature representation of a query patch, Ferns compute an estimate for the

keypoint class of the nearest neighbor (NN) in the training set.

Locality-Sensitive Hashing. Locating the exact NN of a point in high dimensional

spaces is a difficult problem and the run-time of a brute-force implementation scales
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linearly with the number of points in the dataset. Even complex data structures such

as Kd-Trees can not perform much better [3]. However, often an approximate solution

is enough and it can be found efficiently. In particular, given a query point q ∈ Rd,

LSH returns with high probability a point p whose distance to q is at most within a

constant factor c of the distance of the NN point R ∈ R. p is called a c-approximate

R-near neighbor and satisfies

‖ p− q ‖ ≤ cR with probability (1− δ), (2.11)

if ∃ r ∈ Rd, ‖ p− r ‖ = R, R > 0, δ > 0. c and δ are design parameters representing the

quality of approximation compared to the exact NN search in which case c = 1 and

δ = 0. To find the point p, LSH first transforms the query point q using a set of hash

functions H = {h1, h2, . . . , hM} and then searches within dataset points that have the

same hash value for at least one element of H. This significantly speeds up the search

for the ANN and we can increase the number of hash functions M to increase the

number of successful retrievals by decreasing δ.

However for p to satisfy Equation (2.11), the hash functions hk should be selected

such that they are more likely to transform close points to close hash values than points

that are far away. Such a hash function satisfies ∀ p, q ∈ Rd

if ‖ p− q ‖ ≤ R then P (hk(p) = hk(q)) ≥ α, (2.12)

if ‖ p− q ‖ > cR then P (hk(p) = hk(q)) < β, (2.13)

where α > β and is called locality-sensitive.

It is then straightforward to show that projections onto a random subset of di-

mensions in the Hamming space are locality-sensitive. Considering two points p, q ∈
{0, 1}d, if the Hamming distance between them is ‖ p − q ‖H = R then a random pro-

jection onto a subset of dimensions will result in the same hash code with probability

(d−R) /d, and we can write

P (hk(p) = hk(q)) = 1− R

d
. (2.14)

Plugging this into Equations (2.12) and (2.13) yields α = 1 − R/d, β = 1 − cR/d. We

can also reasonably require c > 1, since c = 1 means exact nearest neighbor retrieval

and we seek an approximate solution. This leads to α > β and the random projections

will be locality-sensitive [3].
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As explained in Section 2.2.2, at the training step we perform the pixel comparisons

of Equation (2.4) to every training sample. This transforms the image patches into a

high dimensional Hamming space with d ≈ 400. Since each Fern uses only a subset

of these d dimensions, typically S = 11, each Fern is a locality-sensitive random hash

function in this feature space.

ANN for keypoint matching. Once we obtain the binary hash codes for each train-

ing sample, we can recognize new keypoint patches by finding their nearest neighbors

in the Hamming space and classify each one as the same class as its NN. However,

even an ANN algorithm can not run at high frame rates since we require thousands

of training samples for each class due to the simplicity of the features.

The semi-naive Bayesian approach we have formalized in Section 2.2.1 solves this

problem by estimating the keypoint class of the NN in the Hamming space instead of

actually locating it. More specifically, the training step computes the joint probability

distribution of hash codes and keypoint classes. This allows us to use a large number

of training samples without adversely affecting the run-time speed, to update these

distributions as more training data becomes available as in Chapter 3, and a very sim-

ple and fast classification step as shown in Algorithm 1. What we lose is the location

of the actual NN and its Hamming distance to the binary representation of the query

image patch. We will show that at least for a wide range of problems involving several

hundreds of keypoint classes benefits far outweigh this loss.

2.3 Comparison with Randomized Trees

In this Section we compare RTs and Ferns. We separately quantify the effects of the

structural difference and the change in the probabilistic model.

For this comparison, we experimented with the three images of Figure 2.5. We

warp each image by repeatedly applying random affine deformations and detect Har-

ris corners in the deformed images. We then select the most stable 250 keypoints per

image based on how many times they are detected in the deformed versions to use in

the following experiments and assign a unique class id to each of them. The classifi-

cation is done using patches that are 32× 32 pixels in size.
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Figure 2.5: The recognition rate experiments are performed on three images that show
different texture and structures. Image size is 640× 480 pixels.

(a)

(b)

(c)

Figure 2.6: Warped patches from the images of Figure 2.5 show the range of affine defor-
mations we considered. In each line, the left most patch is the original one and the others
are deformed versions of it. (a) Sample patches from the City image. (b) Sample patches
from the Flowers image. (c) Sample patches from the Museum image.
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Ferns differ from trees in two important respects: The probabilities are multiplied

in a Naive-Bayesian way instead of being averaged and the hierarchical structure is

replaced by a flat one. To disentangle the influence of these changes, we consider four

different scenarios:

• Using Randomized Trees and averaging of class posterior distributions, as in

[63],

• Using Randomized Trees and combining class conditional distributions in a Naive-

Bayesian way,

• Using Ferns and averaging of class posteriors,

• Using Ferns and combining class conditional distributions in a Naive-Bayesian

way, as we advocate in this paper.

The trees are of depth 11 and each Fern has 11 features, yielding the same number of

parameters for the estimated distributions. Also the number of features evaluated per

patch is equal in all cases.

The training set is obtained by randomly deforming images of Figure 2.5. To per-

form these experiments, we represent affine image deformations as 2 × 2 matrices of

the form RθR−φdiag(λ1, λ2)Rφ, where diag(λ1, λ2) is a diagonal 2 × 2 matrix and Rγ

represents a rotation of angle γ. Both to train and to test our ferns, we warped the

original images using such deformations computed by randomly choosing θ and φ in

the [0 : 2π] range and λ1 and λ2 in the [0.6 : 1.5] range. Figure 2.6 depicts patches sur-

rounding individual interest points first in the original images and then in the warped

ones. We used 30 random affine deformations per degree of rotation to produce 10800

images. As explained in Section 2.2.2, we then added Gaussian noise with zero mean

and a large variance—25 for gray levels ranging from 0 to 255—to these warped im-

ages to increase the robustness of the resulting ferns. Gaussian smoothing with a mask

of 7× 7 is applied to both training and test images.

The test set is obtained by generating a separate set of 1000 images in the same

affine deformation range and adding noise. Note that we simply transform the origi-

nal keypoint locations, therefore we ignore the keypoint detector’s repeatability in the

tests and measure only the recognition performance. In Figure 2.7, we plot the results

as a function of the number of trees or Ferns being used.
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(a) (b)

Figure 2.7: (a) The average percentage of correctly classified image patches over many
trials is shown as the number of Trees or Ferns is changed. Using the Naive Bayesian as-
sumption gives much better rates at reduced number of structures, while the Fern and tree
structures are interchangeable. (b) The scatter plots show the recognition rate over indi-
vidual trials with 50 Ferns, given in the x and y axes, respectively for the Naive-Bayesian
combination and posterior averaging. The Naive-Bayesian combination of features usu-
ally performs better, as evidenced by the fact that most points are below the diagonal, and
only very rarely produce recognition rates below 80%. By contrast the averaging produces
rates below 60%.
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Table 2.1: Variance of the recognition rate.

Number of Structures 10 15 20 25 30 35 40 45 50

Fern-Naive 0.59 0.24 0.11 0.06 0.05 0.07 0.06 0.08 0.05

Fern-Average 0.33 0.21 0.29 0.24 0.35 0.39 0.35 0.41 0.30

Tree-Naive 0.37 0.19 0.13 0.07 0.06 0.04 0.04 0.02 0.01

Tree-Average 0.30 0.22 0.13 0.17 0.16 0.17 0.15 0.17 0.20

We first note that using either flat Fern or hierarchical tree structures does not affect

the recognition rate, which was to be expected as the features are taken completely at

random. By contrast the Naive-Bayesian combination strategy outperforms the aver-

aging of posteriors and achieves a higher recognition rate even when using relatively

few structures. Furthermore as the scatter plots of Figure 2.7 show, for the Naive-

Bayesian combination the recognition rate on individual deformed images never falls

below an acceptable rate. Since the features are taken randomly, the recognition rate

changes and the variance of the recognition rate is given as Table 2.1. As more Ferns

or Trees are used the variance decreases and more rapidly for the naive combination.

If the number of Ferns or Trees are below 10, the recognition rate starts to change more

erratically and entropy based optimization of feature selection becomes a necessity.

To test the behavior of the methods as the number of classes is increased, we have

trained classifiers for matching up to 1500 classes. Figure 2.8 shows that the perfor-

mance of the Naive-Bayesian combination does not degrade rapidly and scales much

better than averaging posteriors. For both methods, the required amounts of memory

and computation times increase linearly with the number of classes, since we assign a

separate class for each keypoint.

So far, we have used 11 features for each Fern, and we now discuss the influence

of this number on recognition performance, and memory requirements.

Increasing the Fern size by one doubles the number of parameters hence the mem-

ory required to store the distributions. It also implies that more training samples

should be used to estimate the increased number of parameters. It has however negli-
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Figure 2.8: Recognition rate as a function of the number of classes. While the naive com-
bination produces a very slow decrease in performance, posterior averaging exhibits a
much sharper drop. The tests are performed on the high resolution versions of the City
and Flowers data, respectively.

(a) (b)

Figure 2.9: Recognition rate (a) and computation time (b) as a function of the amount
of memory available and the size of the Ferns being used. The number of ferns used
is indicated on the top of each bar and the y-axis shows the Fern size. The color of the
bar represents the required memory amount, which is computed for distributions stored
with single precision floating numbers. Note that while using many small ferns achieves
higher recognition rates, it also entails a higher computational cost.
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Figure 2.10: Recognition rate as a function of the number of training samples for each one
of the three images of Figure 2.5. As more training samples are used the recognition rate
increases and it does so faster for the Naive-Bayesian combination of Ferns.

gible effect on the run-time speed and larger Ferns can therefore handle more variation

at the cost of training time and memory but without much of a slow-down.

By contrast adding more Ferns to the classifier requires only a linear increase in

memory but also in computation time. Since the training samples for other Ferns can

be reused it only has a negligible effect on training time. As shown in Figure 2.9,

for a given amount of memory the best recognition rate is obtained by using many

relatively small Ferns. However this comes at the expense of run-time speed and

when sufficient memory is available, a Fern size of 11 represents a good compromise,

which is why we have used this value in the experiments.

Finally we evaluate the behavior of the classifier as a function of the number of

training samples. Initially, we use 180 training images that we generate by warping

the images of Figure 2.5 by random scaling parameters and deformation angle φ, while

the rotation angle θ is uniformly sampled at every two degrees. We then increase the

number of training samples by 180 at each step. The graphs depicted by Figure 2.10

show that the Naive-Bayesian combination performs consistently better than the av-

eraging, even when only a small number of training samples are used.
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2.4 Results

We evaluate the performance of Fern based classification for both planar and fully

three dimensional object detection. We also compare our approach against SIFT [69],

which is among the most reliable descriptors for patch matching.

2.4.1 Ferns vs SIFT to detect planar objects

We used the 1074-frame video depicted by Figure 2.11 to compare Ferns against SIFT

for planar object detection. It shows a mouse pad undergoing motions involving a

large range of rotations, scalings, and perspective deformations against a cluttered

background. We used as a reference an image in which the mouse pad is seen frontally.

We match the keypoints extracted from each input image against those found in the

reference image using either Ferns or SIFT and then eliminate outliers by computing

a homography using RANSAC.

The SIFT keypoints and the corresponding descriptors are computed using the

publicly available code kindly provided by David Lowe [70]. The keypoint detection

is based on the Difference of Gaussians over several scales and for each keypoint dom-

inant orientations are precomputed. By contrast the Ferns rely on a simpler keypoint

detector that computes the maxima of Laplacian on three scales, which provides nei-

ther dominant orientation information nor a finely estimated scale. We retain the 400

strongest keypoints in the reference, and 1000 keypoints in the input images for the

two methods.

We train 20 Ferns of size 14 to establish matches with the keypoints on the video

frame by selecting the most probable class. In parallel, we match the SIFT descriptors

for the keypoints on the reference image against the keypoints on the input image by

selecting the one which has the nearest SIFT descriptor. Given the matches between

the reference and input image, we use a robust estimation followed by non-linear

refinement to estimate a homography. We then take all matches with re-projection

error less than 10 pixels to be inliers. Figure 2.11 shows that the Ferns can match as

many points as SIFT and sometimes even more.

It is difficult to perform a completely fair speed comparison between our Ferns and

SIFT for several reasons. SIFT reuses intermediate data from the keypoint extraction

to compute canonic scale and orientations and the descriptors, while ferns can rely on
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(a)

(b)

Figure 2.11: Matching a mouse pad in a 1074-frame sequence against a reference image.
The reference image appears at the top and the input image from the video sequence at
the bottom. (a) Matches obtained using ferns in a few frames. (b) Matches obtained using
SIFT in the same frames.
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Figure 2.12: Scatter plot showing the number of inliers for each frame for the experiment
in Figure 2.11. The values on the axes give the number of inliers for Ferns and SIFT. Most
of the time, the Ferns match at least as many points as SIFT and often even more, as can
be seen from the fact that most of the points lay below the diagonal.
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a low-cost keypoint extraction. On the other hand, the distributed SIFT C code is not

optimized, and the Best-Bin-First KD-tree of [8] is not used to speed up the nearest-

neighbor search.

However, it is relatively easy to see that our approach requires much less compu-

tation. Performing the individual tests of Section 2.2 requires very little time and most

of the time is spent computing the sums of the posterior probabilities. The classifica-

tion of a keypoint requires H×M additions, with H the number of classes, and M the

number of Ferns. By contrast, SIFT uses 128H additions and as many multiplications

when the Best-Bin-First KD-tree is not used. This represents an obvious advantage

of our method at run-time since M can be much less than 128 and is taken to be 20

in practice, while selecting a large number of features for each fern and using tens of

thousands of training samples.

The major gain actually comes from the fact that Ferns do not require descriptors.

This is significant because computing the SIFT descriptors, which is the most difficult

part to optimize, takes about 1ms on a MacBook Pro laptop without including the

time required to convolve the image. By contrast, Ferns take 13.5 10−3 milliseconds to

classify one keypoint into 200 classes on the same machine. Moreover, ferns still run

nicely with a primitive keypoint extractor, such as the one we used in our experiments.

When 300 keypoints are extracted and matched against 200 classes, our implementa-

tion on the MacBook Pro laptop requires 20ms per frame for both keypoint extraction

and recognition in 640 × 480 images, and four fifths of this time are devoted to key-

point extraction. This corresponds to a theoretical 50Hz frame rate if one does ignore

the time required for frame acquisition. Training takes less than five minutes.

Of course, the ability to classify keypoints fast and work with a simple keypoint

detector comes at the cost of requiring a training stage, which is usually off-line. By

contrast, SIFT does not require training and for some applications, this is clearly an ad-

vantage. However for other applications Ferns offer greater flexibility by allowing us

to precisely state the kind of invariance we require through the choice of the training

samples. Ferns also let us incrementally update the classifiers as more training sam-

ples become available as we will demonstrate in Chapter 3 using the Feature Harvesting

framework. This flexibility is key to the ability to carry out off-line computations and

significantly simplify and speed-up the run-time operation.
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(a) (b)

(c) (d)

Figure 2.13: When detecting a 3D object viewpoint change is more challenging due to
self-occlusions and non-trivial lighting effects. The images are taken from a database
presented in [79] and cover a total range of 70 ◦ of camera rotation. They are cropped
around the object, while we used the original images in the experiments. (a) Horse dataset.
(b) Vase dataset. (c) Desk dataset. (d) Dog dataset.

2.4.2 Ferns vs SIFT to detect 3D objects

So far we have considered that the keypoints lie on a planar object and evaluated the

robustness of Ferns with respect to perspective effects. This simplifies training as a

single view is sufficient and the known 2D geometry can be used to compute ground

truth correspondences. However most objects have truly three dimensional appear-

ance, which implies that self occlusions and complex illuminations effects have to be

taken into account to correctly evaluate the performance of any keypoint matching

algorithm.

Recently, an extensive comparison of different keypoint detection and matching

algorithms on a large database of 3D objects has been published [79]. It was per-

formed on images taken by a stereo camera pair of objects rotating on a turntable.

Figure 2.13 shows such images spanning a 70 ◦ camera rotation range. We used this

image database to evaluate the performance of Ferns for a variety of 3D objects. We

compare our results against the SIFT detector/descriptor pair which has been found to

perform very well on this database. The keypoints and the descriptors are computed

using the same software as before [70].
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As in [79], we obtained the ground truth by using purely geometric methods,

which is possible because the cameras and the turn table are calibrated. The initial

correspondences are obtained by using the trifocal geometry between the top/bottom

cameras in the center view and every other camera as illustrated by Figure 2.14. We

then reconstruct the 3D points for each such correspondence in the bottom/center

camera coordinate frame and use these to form the initial tracks that span the−35 ◦/+35 ◦

rotation range around a central view. Since the database images are separated by 5 ◦,

the tracks span 15 images each for the top and bottom cameras. We eliminate very

short tracks and remaining tracks are extended by projecting the 3D point to each im-

age and searching for a keypoint in the vicinity of the projection. Finally to increase

robustness against spurious tracks formed by outliers, we eliminate tracks covering

less then 30% of the views and the remaining tracks form the ground truth for the

evaluation, which is almost free of outliers. Sample ground truth data is depicted by

Figure 2.15, which shows the complex variations in patch appearance induced by the

3D structure of the objects.

The training is done using views separated by 10 ◦, skipping every other frame

in the ground truth data. We then use the views we skipped for testing purposes..

This geometry based sampling is shown in Figure 2.15. Sampling based on geometry

creates uneven number of training and test samples for different keypoints as there

are gaps in the tracks. The sampling could have been done differently to balance

the number of test and training samples for each keypoint. However our approach

to sampling closely mimics what happens in practice when training data comes from

sparse views and the classifier must account for unequal numbers of training samples.

We train the Ferns in virtually the same way as we do in the planar case. Each track

is assigned a class number and the training images are deformed by applying random

affine deformations. We then use all of them to estimate the probability distributions,

as discussed in Section 2.2. 1000 random affine deformations per training image are

used to train 50 Ferns of size 11. Ferns classify the test patches by selecting the track

with the maximum probability. For SIFT, each test example is classified by selecting

the track number of the keypoint in the training set with the nearest SIFT descriptor.

In our tests, we learn the appearance and the geometry of a 3D object from several

views and then detect it in new ones by matching keypoints. Hence the learned ge-

ometry can be used to eliminate outliers while estimating the camera pose using the
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Figure 2.14: Generating ground truth data for 3D object detection. Each test object con-
tains two sequences of images taken by the Top and Bottom cameras while the object rotates
on the turntable. The camera geometry has been calibrated using a checkerboard calibra-
tion pattern. We use 15 consecutive camera views for evaluation purposes, because it is
easy to obtain high quality calibration for this range of rotation.
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Figure 2.15: Samples from the ground truth for the Horse dataset. The image on the left
shows the center view. The six keypoint tracks on the right show the content variation for
each patch as the camera center rotates around the turntable center. Each track contains
two lines that correspond to the Top and Bottom cameras, respectively. Black areas denote
frames for which the keypoint detector did not respond. The views produced by a rotation
that is a multiple of 10 ◦ are used for training and are denoted by red labels. The others
are used for testing.

P3P algorithm [40] together with a robust matching strategy such as RANSAC [32].

Unlike [79], we therefore do not use the ratio test on descriptor distances or a similar

heuristics to reject matches, as this might reject correct correspondences. The addi-

tional computational burden can easily be overcome by using the classification score

for RANSAC sampling as presented by [18].

We compare the recognition rates of both methods on objects with different kinds

of texture. Figure 2.16 shows the recognition rate on each test image together with the

average over all frames. The Ferns perform as well as nearest neighbor matching with

SIFT for a whole range of objects with very different textures.

Note that, when using Ferns, there is almost no run-time speed penalty for using

multiple frames, since as more training frames are added we can increase the size

of our Ferns. As discussed in Section 2.3 this requires more memory but does not

slow down the algorithm in any meaningful way. By contrast, using more frames for

nearest neighbor SIFT matching linearly slows down the matching, although a clever

and approximate implementation might mitigate the problem.

In theory it should be possible to improve the performance of SIFT-based approach
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Figure 2.16: Recognition rates for 3D objects. Each pair of bars correspond to a test frame.
The red bar on the left represents the rate for Ferns and the light green bar on the right
the rate for Nearest Neighbor SIFT matching. The weighted averages over all frames also
appear as dashed line for Ferns and solid line for NN-SIFT. The weights we use are the
number of keypoints per frame.
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(a)

(b)

Figure 2.17: Automated image annotation. (a) We match an input image against a
panorama. Despite occlusions, changes in weather conditions and lighting, the Ferns re-
turn enough matches for reliable annotation of major landmarks in the city. (b) We match
an image to an annotated 3D model, overlaid on the two leftmost images. This lets us
display annotations at the right place.

by replacing nearest neighbor matching with a more sophisticated technique such as

K-Nearest Neighbors with voting. However, this would further slow down the algo-

rithm. Our purpose is to show that the Fern based classifier can naturally integrate

data from multiple images without the need for a more complex training phase or any

handicap in the run-time performance, reaching the performance of standard SIFT

matching.

2.4.3 Panorama and 3D Scene Annotation

With the recent proliferation of mobile devices with significant processing power,

there has been a surge of interest in building real-world applications that can auto-

matically annotate the photos and provide useful information about places of inter-

est. These applications test keypoint matching algorithms to their limits because they

must operate under constantly changing lighting conditions and potentially changing

scene texture, both of which reduce the number of reliable keypoints. We have tested

Ferns on two such applications, annotation of panorama scenes and parts of a histor-

ical building with 3D structure. Both applications run smoothly at frame rate using a

standard laptop and an of the shelf web camera. By applying standard optimizations
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for embedded hardware, we have ported this implementation onto a mobile device

that runs at a few frames per second. More recently, Ferns have been successfully

integrated into commercially available mobile phones to run at frame rates by tak-

ing into account specific limitations of the hardware and integrating detection with

frame-to-frame tracking [111].

For the panorama application, we trained Ferns using an annotated panorama im-

age stitched from multiple images. At run-time given an input image and after having

established correspondences between the panorama and the test image, we compute

a 2D homography and use it to eliminate outliers and to transfer the annotation from

the training image to the input image as shown in Figure 2.17. We successfully run a

number of tests under different weather conditions and different times of day.

Annotating a 3D object requires training using multiple images from different

viewpoints, which is easy to do in our framework as discussed in the previous sub-

section. We also built a 3D model for the object using standard structure from motion

algorithms to register the training images followed by dense reconstruction [100, 101].

The resulting fine mesh is too detailed to be used so it is approximated by a coarse one

containing much less detail. Despite its rough structure, this 3D model allows anno-

tation of important parts of the object and the correct re-projection of this information

onto images taken from arbitrary viewpoints as depicted by Figure 2.17.

2.5 Conclusion

In this chapter, we have introduced a naive Bayesian framework to recognize image

patches around interest points that significantly improves upon the Randomized Tree

based method of [63]. We also showed that its feature extraction step can be greatly

simplified without altering its performance. Using this simplified structure, we high-

lighted its relation to existing techniques for efficient nearest neighbor classification to

provide insights into both the original method and our modified version.

Our scheme builds strongly upon the pose invariant framework of Randomized

Trees. This is essential to fast run-time performance but requires us to use a very large

training set. As noted in Section 2.2.3, this means that recovering even an approximate

nearest neighbor is very costly and we are forced to estimate only its class rather than

its location. Therefore we can not use a distance ratio test to simply reject outliers [69].
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One way to overcome this problem is to model the classifier response for each class

using a Gaussian distribution. We can then label as outliers the keypoints with classi-

fication scores falling outside a predetermined range. This has been found to decrease

detection time for real-world applications 1. [63] also uses a similar strategy to thresh-

old the response of Randomized Trees.

The memory requirements of Ferns can be greatly reduced by quantizing the dis-

tributions into less than 32 bits that is used by single-precision floating point repre-

sentations since this does not degrade the run-time performance much. For example

fixed point representations can profitably replace the floating point arithmetic we use

in our implementation. Our scheme does not use much more memory than Nearest

Neighbor classifiers using local descriptors at least in the context of most Augmented

Reality applications [111]. Of course the descriptors themselves do not take up much

space. But the data structures used in approximate nearest neighbor retrieval achieve

their significant speed-up by exploiting space-time tradeoffs and as a result require

large amounts of memory. However, the memory access pattern of our naive Bayesian

scheme can be much more random than descriptor based methods and it is less suited

to existing memory architectures of mobile devices.

Currently, our scheme can easily deal with hundreds of keypoints which is suf-

ficient in most Augmented Reality applications. Since its memory requirements and

run-time increases linearly with the number of keypoints, it does not scale to tens of

thousands of keypoints required by image retrieval systems. This is a consequence of

assigning an individual class for every single keypoint. This is inefficient and a hi-

erarchical classification step is required to scale sub-linearly with the number of key-

points [84].

1Personal communication with Gerhard Reitmayr who suggested the use of a Gaussian classifier
response model and kindly shared his results with us in the context of his work in [111].
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CHAPTER

THREE

WEAKLY SUPERVISED LEARNING
BY FEATURE HARVESTING

In many 3D object-detection and pose estimation problems ranging from Augmented

Reality to Visual Servoing, run-time performance is of critical importance. For such

applications, using only a recursive tracker is not enough since it requires initializa-

tion, it can drift and most importantly it can not recover from eventual tracking fail-

ure. Therefore an object detector needs to be combined with the tracker to solve these

issues. Unfortunately, object detection usually takes much more time than simple

tracking and can easily become a performance bottle-neck.

However, there usually is time to train the object detector before actually using it

and in this way run-time detection speed can be increased substantially. [64] exploits

this fact by using a textured 3D computer graphics model to generate synthetic images

of the object. These are used to train a Randomized Tree based classifier that can per-

form wide-baseline matching between the keypoints on the image and the 3D features

on the target object. This classifier can then be used to achieve robust real-time 3D ob-

ject detection. In this section, we show that this approach extends naturally to the

case where no a priori textured 3D model is available, thus removing one of the major

limitations of the original method and yielding the behavior depicted by Fig. 3.1.

The key ingredient of our approach is a weakly supervised training algorithm that

we refer to as feature harvesting: Assuming that we can first observe the target object

moving slowly, we define an ellipsoid that roughly projects at the object’s location

in the first frame. We extract feature points inside this projection and use the image
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patches surrounding them to train a first classifier, which is then used to match these

initial features in the following frames. As more and more new frames become avail-

able, we discard features that cannot be reliably found and add new ones to account

for aspect changes. We use new views of the features we retain to refine the classifier

and, each time we add or remove a feature, we update it accordingly. Once all the

training frames have been processed, we run a bundle-adjustment algorithm on the

tracked feature points to also refine the model’s geometry.

In short, starting from the simple ellipsoid shown in the top row of Fig. 3.1, we

robustly learn both geometry and appearance. An alternative approach to initializing

the process would have been to use a fully automated on-line Simultaneous Localiza-

tion and Mapping (SLAM) algorithm [22]. We chose the ellipsoid both for simplicity’s

sake—successfully implementing a SLAM method is far from trivial—and because it

has proved to be sufficient, at least for objects that can be enclosed by one. In case this

is inappropriate, the recent Parallel Tracking and Mapping (PTAM) algorithm [59] can

be used to build the 3D model during the training phase.

Note that the geometric construction and registration of the object model for fea-

ture harvesting employs the same approach that is typically used to perform SLAM.

The feature harvesting extends these geometric concepts to model the image appear-

ance of interest points. The appearance model is build from scratch and it is refined in

a probabilistic manner as more frames are observed. The interest points included in

the model are filtered to keep the best performing ones, not only in terms of repeata-

bility but also according to the reliability of recognition.

The originality of our approach is to use exactly the same tracking and statistical

classification techniques, first, to train the system and automatically select the most

stable features and, second, to detect them at run-time and compute the pose. In other

words, the features we harvest are those that can be effectively tracked by the specific

wide-baseline matching algorithm we use. This contrasts with standard classification-

based approaches in which classifiers are built beforehand, using a training set man-

ually labeled and that may or may not be optimal for the task at hand. Hence our ap-

proach is similar in spirit to more recent on-line trackers based on Adaboost [36] that

can be updated in a semi-supervised manner [4, 43] and the P-N Learning approach

of [57] that trains and updates a set of Randomized Trees from unlabeled data.
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In contrast to these more recent approaches that classify image patches directly

as object or background, we use interest points as features and the 3D geometry to

verify the detection. Integration of the 3D model allows us to recover 3D camera pose

and provides robustness against changes in scale and aspect ratio without an explicit

search over these parameters. As a result, our system is very easy to train by simply

showing it the object slowly moving and, once trained, both very fast and very robust

to a wide range of motions and aspect changes, which may cause complex variations

of feature appearances.

In the next section, we present the relevant literature on object detection and track-

ing either by a sliding window or feature point based approach. In Section 3.2, we

briefly review fast wide baseline matching for interest points using Randomized Trees

and Ferns. We also show that they can both be updated on-line as more training

samples are obtained. We present our Feature Harvesting framework in Section 3.3,

and show its effectiveness using several image sequences in Section 3.4. Finally, we

compare feature harvesting performance of Randomized Tree and to that of Ferns in

Section 3.5.

3.1 Related Work

There are two dominant approaches to tracking-by-detection. Sliding window ap-

proaches use a binary object/background classifier and search for the object in the

image exhaustively. Feature point based approaches use interest points to hypothe-

size potential object locations and verify object presence using geometric cues. We

briefly review both approaches and discuss the performance trade-offs involved.

Sliding Window Approaches. Sliding window approaches [4, 43, 57, 117] train a

binary classifier to distinguish the object from the background and do not require a

geometrical model for verification. They exhaustively check object presence over all

possible image locations and scales. Usually a classifier cascade is used to speed up

this search to achieve real-time performance [34, 110].

Since the background will change during run-time the classifier needs to be up-

dated on-line using the detected object locations on new frames. However since the

classifier may not precisely locate the object, these updates can cause drift. This is
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Figure 3.1: Our approach to 3D object detection applied to a toy car, a face, and a glass.
In each one of the three cases, we show two rows of pictures. The first represents the
training sequence, while the second depicts detection results in individual frames that are
not part of the training sequence. We overlay the ellipsoid we use as our initial model on
the images of the first row. The only required manual intervention is to position it in the
very first image. To visualize the results, we attach a 3D referential to the center of gravity
of the ellipsoid and use the estimated 3D pose to project it into the images. Note that, once
trained, our system can handle large aspect, scale, and lighting changes. It can deal with
the transparent glass as well as with the hand substantially occluding the car. And when
a complete occlusion occurs, such as when the book completely hides the face, it simply
returns no answer and recovers when the target object becomes visible again.

56



3.1 Related Work

avoided using several strategies. [43] uses a semi-supervised approach that combines

the human annotated training samples and the most recent set of detections. The clas-

sifier is allowed to capture variations in recent frames, but it can not drift too far away

from the initial model. [4] trains the classifier using Multiple Instance Learning, which

requires the classifier to label groups of patches as containing the object or not. The

updates enforce that the classifier assigns a positive label to a bag of image patches col-

lected around the most recent detection sites. Hence, individual patches do not need

to be labelled. [57] introduces the P-N Learning framework that slowly updates the

classifier with high confidence training samples that are generated by two processes

as follows: Stable tracking generates the positive samples and ambiguous detections

far from the tracked object form the negative sample set. They also allow other types

of processes as long as the confidence in the labels is high enough.

Sliding window approaches can handle highly non-rigid objects and do not re-

quire strong texture cues to be present. However, lack of 3D information about the

object forces these methods to explore the aspect ratio and scale ranges exhaustively,

which is costly and less robust. Furthermore the camera pose is not recovered during

object localization since the features used by the classifier do not provide the necessary

spatial constraints. As a result, they are more suited for object detection and tracking

in the 2D image plane and when the recovery of the 3D object pose is not required.

Feature Point Based Approaches. Feature point based approaches to object detec-

tion and pose estimation [59, 62, 73, 94, 99, 111] use matches between interest points

detected on the image and 3D object features to localize the object. The presence of the

object is usually verified using geometric constraints. Such geometric information in-

cludes the camera rotation and translation in case a 3D object model is available [64],

a homography in case the object is planar [111], or the epipolar relation to a set of

keyframes [89]. They are relatively insensitive to partial occlusions, cluttered back-

grounds, and scale/aspect changes and they can simultaneously recover both the 2D

object location and 3D camera pose.

The feature points used at detection time are often designed to be affine invari-

ant [76]. Once they have been extracted, various local descriptors have been proposed

to match them across images. Among these, SIFT [69] has been shown to be one of the

most effective [75]. In [76], it is applied to rectified affine invariant regions to achieve
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perspective invariance. In [87], a similar result is obtained by training the system us-

ing multiple views of a target object, storing all the SIFT features from these views,

and matching against all of them. However, computing such descriptors can be costly.

Furthermore, matching is usually performed by nearest-neighbor search, which tends

to be computationally expensive if the number of training views used to build the

detector is large, even when using an efficient data structure [8].

Another weakness of these descriptors is that they are predefined and do not adapt

to the specific images under consideration. [73] addresses this issue by building the

set of the image neighborhoods of features tracked over a sequence. Kernel PCA is

then performed on this set to compute a descriptor for each feature. This approach,

however, remains computationally expensive.

By contrast, [64] uses textured model of the target object to synthesize images from

different viewpoints to train a set of Randomized Trees that can recognize the key-

points detected on these training views. This is effective because it allows the system

to learn potentially complex appearance changes. However, it requires building a tex-

tured 3D model. This can be cumbersome if the object is either complex or made of

a non-Lambertian material that makes the creation of an accurate texture-map non-

trivial. If one is willing to invest the effort, it can of course be done but it is time

consuming. The approach we introduce in this section completely does away with

this requirement.

3.2 3D Wide Baseline Matching using Randomized Trees and
Ferns

Let us consider a set of 3D object features {Mi} that lie on the target object and let us

assume that we have collected a number of image patches pi,j centered on the projec-

tions of Mi into image j, for all available i and j. The {pi,j} constitute the training set

we use to train the classifier R̂ to predict to which Mi, if any, a given image patch p

corresponds, in other words, to approximate as well as possible the actual classifica-

tion rule R(p) = i. At run-time, R̂ can then be used to recognize the object features by

considering the image patch p around a detected image feature. Given the 3D position

of the Mi, this establishes 2D–3D correspondences that can be used to compute 3D

pose.
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In principle any kind of classifier could have been used. Randomized Trees, how-

ever, are particularly well adapted because they naturally handle multi-class prob-

lems, while being both robust and fast. We first review wide baseline matching us-

ing Randomized Trees and introduce a mechanism to perform online updates as new

training samples become available. In Section 3.2.2, we show that Random Ferns can

also be updated similarly.

As discussed in Section 1.2.2, multiple trees are grown so that each one yields a

different partition of the space of image patches. The tree leaves contain an estimate

of the posterior distribution over the classes, which is learned from training data. A

patch p is classified by dropping it down each tree and performing an elementary test

at each node, which sends it to one side or the other, and considering the sum of the

probabilities stored in the leaves it reaches. We write

R̂(p) = argmax
i

∑
T∈T

P̂L(T,p)(R(p) = i) , (3.1)

where i is a label, the P̂L(T,p)(R(p) = i) are the posterior probabilities stored in the leaf

L(T, p) of tree T reached by p, and T is the set of Randomized Trees. Such probabilities

are estimated during training as the ratio of the number nLi of patches of class i in the

training set that reach L and the total number ni of patches of class i that is used in the

training. This yields

P̂L(R(p) = i) ' nLi /ni
SL

, (3.2)

where SL =
∑

j

nL
j

nj
is a normalization term that enforces

∑
i P̂L(R(p) = i) = 1. We

normalize by the number of patches because the real prior on the class is expected to

be uniform, while this is not true in our training population. Although any kind of

test could be performed at the nodes, simple binary tests based on the difference of

intensities of two pixels of Equation (2.4) have proved sufficient. In practice, classify-

ing a patch involves only a few hundreds of intensity comparisons and additions per

patch, and is therefore very fast.

3.2.1 Randomized Trees and On-line Training

The approach described above assumes that the complete training set is available from

the beginning, which is not true in our case as object features may be added or re-
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moved while the classifier is being trained. Here we show how to overcome this limi-

tation by exploiting the random nature of the tree building algorithm.

As discussed before, in [64], the node tests are chosen so as to minimize leaf en-

tropy, which is estimated according to the training set. Without the complete training

set, this cannot be meaningfully done. Instead, we build the tree by randomly select-

ing the tests, that is to say the dj,1 and dj,2 locations of Equation (2.4). The training

data is only used to evaluate the P̂L posterior probabilities in the leaves of these ran-

domly generated trees. Surprisingly, this much simplified procedure, which is going

to allow us to iteratively estimate the P̂L values, results in virtually no loss of classi-

fication performance [63]. Interestingly, a similar result has also been reported in the

context of 2D object recognition [71].

We also introduce a mechanism for updating the tree when new views of an exist-

ing object feature are introduced or when an object feature is either added or removed,

which the RT approach lets us do as follows.

• Incorporating New Views of Object Features. Recall that, during the initial

training phase, patches are dropped down the tree and the number of patches

reaching leaf L is plugged into Equation (3.2) to derive P̂L for each class at leaf L.

Given a new view, we want to use it to refine these probability estimates. To this

end, we invert the previous step and compute the number of patches reaching

leaf L as

nLi = P̂L(R(p) = i)× ni × SL. (3.3)

This only requires storing the normalization terms SL at each leaf L and keeping

the ni counters for each class. We then use newly detected patches to incre-

ment nLi and ni. When all the new patches have been processed, we again use

Equation (3.2) to obtain the refined values of P̂L. Note that we do not store the

image patches themselves, which could cost a lot of memory for long training

sequences.

• Adding and Removing Object Features. The flexible procedure outlined above

can also be used to add, remove or replace the classes corresponding to specific

object features during training. Removing class i and the corresponding object

feature merely requires setting

nLi = ni = 0. (3.4)
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We can then replace the ith feature by a new one by simply changing the Mi

3D coordinates introduced at the beginning of Section 3.2 to be those of the new

object feature and using patches centered around the new projections of Mi to

estimate P̂L.

These update mechanisms are the basic tools we use to recursively estimate the

RTs while harvesting features, as discussed in Section 3.3.

3.2.2 Random Ferns and On-line Training

Random Ferns can be updated in a similar manner by writing the probabilities of

Equation (2.10) computed during Ferns training as

P (F = k |R(p) = i) '
nk,i +Nr∑K

k=1(nk,i +Nr)
(3.5)

=
nk,i +Nr

ni +K ×Nr
, (3.6)

where Fern F takes on one of K values, Nr is the regularization prior, nk,i is the num-

ber of training samples from class i with Fern value k, and ni is the total number of

training samples from class i. Note that this is similar to Equation (3.2) except the lack

of the normalization term SL and the addition of the prior Nr.

Given a training set TT =
⋃T
t=1 Tt that contains T subsets, and denoting the num-

ber of training samples from subset t and class i that evaluates to Fern value k as ntk,i,

the training estimates the posterior distribution of feature values for each class,

P (F = k |R(p) = i,TT ) '
Nr +

∑T
t=1 n

t
k,i∑K

k=1

(
Nr +

∑T
t=1 n

t
k,i

) (3.7)

=
Nr +

∑T
t=1 n

t
k,i

K ×Nr +
∑T

t=1

(∑K
k=1 n

t
k,i

) (3.8)

=
Nr +

∑T
t=1 n

t
k,i

K ×Nr +
∑T

t=1 n
t
i

(3.9)

=
nTk,i +

(
Nr +

∑T−1
t=1 n

t
k,i

)
nTi +

(
K ×Nr +

∑T−1
t=1 n

t
i

) (3.10)

=
nTk,i +NT−1

k,i

nTi +DT−1
i

. (3.11)
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Figure 3.2: The five steps of feature harvesting introduced at the beginning of Sec-
tion 3.3.1.

Since the feature probability estimated using the first T − 1 training subsets is

P (F = k |R(p) = i,TT−1) '
NT−1
k,i

DT−1
i

, (3.12)

storing the denominator termsDT−1
i , one for each class, is enough to be able to update

the probabilities. In fact for Ferns this can be done more efficiently than for Trees since

there is no need to store and update the normalization terms SL.

Such incremental training assumes that the classifier trained using partial data will

be effective in object detection from viewpoints that are not in the range used to ob-

tain the training set. Of course we do not expect the classifier to generalize to wildly

varying viewpoints but to those that are close to at least some training examples. In

Section 3.5, we compare the generalization ability of Trees and Ferns to such test cases

and assess their suitability for Feature Harvesting.

3.3 From Harvesting to Detection

In this section, we show that standard frame-to-frame tracking and independent 3D

detection in each individual frame can be formalized similarly and, therefore, com-

bined seamlessly as opportunity dictates. This combination is what we refer to as

tracking-by-detection. The originality of our approach is to use exactly the same im-

age feature recognition technique at all stages of the process, first, to train the system

and automatically select the most stable features and, second, to detect them at run-

time.

We first give an overview of our method. We then explain how the tracking is

performed without updating the classifier, and conclude with the complete “feature

harvesting” framework.
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3.3 From Harvesting to Detection

3.3.1 Overview

As shown in the top row of Figure 3.1, to initialize the training process, we position

the ellipsoid that we use as an initial 3D model so that it projects on the target object

in the first frame. We then extract a number of image features from this first image

and back-project them to the ellipsoid, thus creating an initial set of the {Mi} object

features of Section 3.2. By affine warping lightly the image patches surrounding the

image features, we create the pi,j image patches that let us instantiate a first set of

randomized trees.

During training, new features detected on the object are integrated into the classi-

fier. Because the number of such features can become prohibitively large when dealing

with long training sequences, it is desirable to keep the ones that are successfully de-

tected and recognized by the classifier most often, and remove the other ones. More

precisely, given the set of trees trained using the first frame or more generally all

frames up to frame t − 1, we handle frame t using the five-step feature-harvesting

procedure described below and illustrated by Figure 3.2:

1. We extract image features from frame t and use the classifier to match them,

which, in general, will only be successful for a subset of these features.

2. We derive a first estimate γ̃t of the camera pose from these correspondences us-

ing a robust estimator that lets us reject erroneous correspondences.

3. We use γ̃t to project unmatched image features from frame t− 1 into frame t and

match them by looking for the image features closest to their projections.

4. Using these additional correspondences, we derive a refined estimate γ̂t.

5. We use small affine warping of the patches around image features matched in

frame t to update the classifier as discussed in Section 3.2.1. Features that have

not been recognized often are removed to be replaced by new ones.

At run-time, we use the exact same procedure, with one single change: We stop up-

dating the classifier, which simply amounts to skipping the fifth step.
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3. WEAKLY SUPERVISED LEARNING BY FEATURE HARVESTING

3.3.2 3D Tracking by Detection

Let us first assume that the classifier R has already been trained. Both tracking and

detection can then be formalized as the estimation of the camera pose Γt from image

features extracted from all previous images that we denote Is≤t. In other words, we

seek to estimate the conditional density P (Γt | Is≤t).

A camera motion model —appearing as the term P (Γt |Γt−1) in the following

derivations— should be chosen. It often assumes either constant velocity or constant

acceleration. This is fine to regularize the recovered motion but can also lead to com-

plete failure. This tends to occur after an abrupt motion or if Γt−1 is incorrectly esti-

mated, for example due to a complete occlusion. Γt can then have any value no matter

what the estimate of Γt−1 is. In such a case, we should consider the density of Γt as

uniform and write P (Γt |Γt−1) ∝ λ, which amounts to treating each frame completely

independently. In our implementation, we use a mixture of these two approaches and

take the distribution to be

P (Γt |Γt−1) ∝ m(Γt−1,Γt) = exp
(
− (Γt − Γt−1)

>Σ−1 (Γt − Γt−1)
)

+ λ . (3.13)

This lets us both enforce temporal consistency constraints and to recover from track-

ing failures by relying on single-frame detection results. In our implementation, the

respective values of Σ and λ were chosen manually.

Unfortunately, introducing the term λ process precludes the use of standard par-

ticle filtering techniques. Our camera pose space has six dimensions, and the re-

quired number of particles, which grows exponentially with the number of dimen-

sions, would be too large to make particle filters tractable. Therefore we have to re-

strict ourself to the estimation of the mode γ̂t of this density:

γ̂t = argmax
γ

P (Γt = γ | Is≤t) ,

in which the expression of P (Γt = γ | Is≤t) can be found using the standard Bayesian

tracking relation:

P (Γt = γ | Is≤t) ∝ P (It |Γt = γ)P (Γt = γ |Γt−1 = γ̂t−1)P (Γt−1 = γ̂t−1 | Is<t) . (3.14)

Once we obtain the set ñt of correspondences using the classifier, we apply a

RANSAC based approach to remove false matches and to derive a first estimate γ̃t
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3.3 From Harvesting to Detection

for the camera pose. A new set n̂t is then made of the inliers of ñt, and completed

by projecting the unmatched object features with γ̃t and matched each of them with

the closest image feature. A numerical optimization is then performed to find γ̂t by

minimizing the log-likelihood of m(γ̂t−1, γ)P (It |Γt = γ):

γ̂t = argmin
γ

∑
n∈n̂t

‖P(γ)M(n)−m(n)‖2 + ρ
(

(γ − γ̂t−1)>Σ−1 (γ − γ̂t−1)
)

(3.15)

where P(γ) is the projection matrix for the camera pose γ, ρ is the Tukey robust esti-

mator that approximates the logarithm of (3.13), and M(n) and m(n) are respectively

the object feature and the image feature for correspondence n.

The advantage of the classifier is that there is no need for the previous pose. How-

ever, this procedure can result in some jittering on the estimated pose over a sequence.

To enforce temporal consistency and reduce the effect, when γ̂t−1 is valid, we also

consider transient object features which projections can be matched across It−1 and It

using standard cross-correlation. Their 3D positions can be estimated from the rough

model and γ̂t−1 by back-projection. According to our experience, over two consecu-

tive frames, this position is accurate enough to improve the recovered displacement.

These additional correspondences are integrated in Equation (3.15) for pose estima-

tion exactly in the same way as the correspondences established with the classifier.

Note that these correspondences are not required by our method, but they are useful

to reduce the jittering effect.

3.3.3 Feature Harvesting

During training we use the same process but now the classifier is not initially available

and we want to create it incrementally by “feature harvesting.” This implies keeping

or discarding object features such as those shown in Figure 3.3. Let us first denote by

r∗t the best classifier obtained with the images Is≤t and the feature correspondences

computed using the poses γs≤t:

r∗t = argmax
r

P (R = r |Γs≤t = γs≤t, Is≤t) . (3.16)
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3. WEAKLY SUPERVISED LEARNING BY FEATURE HARVESTING

(a)

(b)

(c)

Figure 3.3: The harvest. (a) Three sample patches for three distinct features on the glass.
Note that the foreground is relatively constant while the background changes drastically.
(b) Three sample patches for three distinct face features, obtained under changing light
and orientation. (c) Patches corresponding to object features found to be unreliable and
discarded during training.

Here we show that r∗t can be used to compute γ̂t+1 under reasonable assumptions. We

have:

P (Γs≤t = γs≤t, Is≤t)

=
∑
r

P (Γs≤t = γs≤t, Is≤t,R = r) =
∑
r

P (Γt = γt, It,Γs<t = γs<t, Is<t,R = r)

=
∑
r

P (Γt = γt, It |Γs<t = γs<t, Is<t,R = r)P (R = r |Γs<t = γs<t, Is<t)×

P (Γs<t = γs<t, Is<t) .

All the classifiers have a negligible probability P (R = r |Ps<t = γs<t, Is<t) except

for those concentrated around r = r∗t−1. Otherwise, that would mean that other clas-

sifiers than r∗t−1 constructed with γs<t, Is<t would be as good as r∗t−1, which is not

realistic since r∗t−1 has been built from these poses and images. Let us continue the

derivation:

' P (Γt = γt, It |Γs<t = γs<t, Is<t, R = r∗t−1)P (Γs<t = γs<t, Is<t)

= P (It |Γt = γt, Γs<t = γs<t, Is<t, R = r∗t−1)×

P (Γt = γt |Γs<t = γs<t, Is<t, R = r∗t−1)P (Γs<t = γs<t, Is<t)

' P (It |Γt = γt, R = r∗t−1)P (Γt = γt |Γs<t = γs<t)P (Γs<t = γs<t, Is<t)

because the incoming image does not depend on the poses except on the current one,

and the current pose does not depend on the previous images neither on the classifier,
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3.3 From Harvesting to Detection

after bundle−adjustment

Car object features

(a) (b) (c)

Figure 3.4: (a) Sample frames from a training sequence where the toy car is fixed to a
tripod and rotated four times. The frames marked with a star show the reference position
which is reached in all four loops. (b) Recovered relative camera motion with respect to
the toy car after the first loop. The trajectory is shown in the referential of the ellipsoid.
The dots represent the trajectory before bundle-adjustment, the plain curve after. (c) Cam-
era motion for all four loops. As can be seen, there is no drift. Note that all four loops go
through the star.

which is reasonable. By applying the Bayes’ theorem on the terms P (Γs≤t = γs≤t, Is≤t)

and P (Γs<t = γs<t, Is<t), we get:

P (Γs≤t = γs≤t | Is≤t) '
P (Is<t)
P (Is≤t)

P (It |Pt = γt, R = r∗t−1)P (Γt = γt |Γt−1s<t = γs<t)P (Γs<t = γs<t | Is<t)

And under standard probabilistic tracking hypotheses, we finally obtain:

P (Γt = γt | Is≤t) ∝
P (It |Pt = γt, R = r∗t−1)P (Γt = γt |Γt−1 = γt)P (Γt−1 = γt−1 | Is<t)

which is the same expression as Equation (3.14) used for tracking, except that the clas-

sifier r∗t−1 appears in the observation model. That means that the same method as in

Section 3.3.2 can be used to estimate γ̂t. Once this pose is found, r∗t−1 is updated using

correspondences between object features and image features to give r∗t as explained in

Section 3.2.1.

To validate this training procedure, we performed the experiment depicted by Fig-

ure 3.4, which clearly shows that the recovered camera trajectory does not drift.
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3. WEAKLY SUPERVISED LEARNING BY FEATURE HARVESTING

3.4 Results

In this section we demonstrate the effectiveness and generality of our approach using

three very different objects, a toy car, a face, and a partially-textured transparent glass.

In all three cases, we follow the same procedure: We show the system the training

sequence depicted by the top rows of Figure 3.1, which is used to harvest features as

discussed in Section 3.3.3. When all the training frames have been processed, we freeze

the set of RTs we have built and proceed with the tracking-by-detection approach of

Section 3.3.2. Our non-optimized implementation runs at 5Hz during tracking, and

1Hz during training. About 20% of the time is devoted to extracting and recognizing

the features, and the remaining 80% by the pose estimation procedure. This could be

considerably sped-up by using more efficient strategies [18].

Figures 3.5, 3.6, and 3.7 show a number of frames extracted from test sequences of

several hundreds frames—the toy sequence is made of about 1500 frames—in which

our target objects translate and rotate. Because the object is re-detected in every frame,

the algorithm is robust to abrupt motion and complete occlusion. For example, after

the third frame of Figure 3.5, the car falls on the ground and has to be picked up. As

soon as it becomes visible again, the system re-acquires it. The same happens in the

example of Figure 3.6 after the subject hides his face behind the book. These examples

highlight some of the strengths of our algorithm:

• Robustness to cluttered background. Once trained, the classifier is feature-

specific enough so that it does not get confused by cluttered background as

shown in Figure 3.5.

• Insensitivity to scale changes. Thanks to the multi-scale interest point detec-

tor, the algorithm can handle a very broad range of scales, including scales that

were not part of the training sequence. As shown in several of the examples of

Figures 3.5 and 3.6, the system keeps on successfully detecting even though the

target object moves both much closer and much further.

• Robustness to complex illumination effects. In the case of the face, we delib-

erately changed the lighting when acquiring the training sequence of Figure 3.1

to build lighting invariance into the classifier. As can be seen in the bottom

rows of Figure 3.6, this was successful and gives the system robustness to very
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3.4 Results

Figure 3.5: Detecting the car in a sequence that involves abrupt motions, large scale and
lighting changes, and very substantial occlusions. To visualize the results, we attach a 3D
referential to the center of gravity of the initial ellipsoid and use the estimated 3D pose to
project it into the images. We also overlay the projections of the harvested object feature
points. The toy car is successfully detected in all frames except those where it is almost
entirely occluded. And, because the object is re-detected in every frame, the system easily
recovers after such a failure.
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(a)

(b)

(c)

(d)

Figure 3.6: Face results. Note that by contrast with previous face detection approaches,
the face pose can be retrieved under (a) large rotations, (b) scale and lighting changes,
and (c) different facial expressions. (d) After the occlusion by the book, the algorithm
automatically recovers.

Figure 3.7: Detecting a transparent object with partial texture. The squares in the first
three images outline the patches around the features detected at three different scales in a
test frame. The straight line segments connect the feature with the corresponding one in
a frame of the training sequence. Since during training the system learned which parts of
the patches are meaningful as shown in Figure 3.3, the image features can be recognized
even if the patch overlaps the background or the transparent parts. As shown in the fourth
frame, the glass is successfully detected.
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3.5 Comparison of Feature Harvesting using Trees and Ferns

marked lighting changes. While it was not necessary for the toy car because it

has a simple shape, it experimentally appeared that a training sequence with

such variations greatly improve the results.

• Handling transparencies. Finally, we can also handle the partially-textured

transparent glass of Figure 3.6 by using a suitable training sequence with a com-

plex background. It lets the classifier learn that the parts of the patches surround-

ing feature points that overlap the transparent parts or the background are not

relevant for classification purposes. Our algorithm can automatically reject fea-

ture points on transparent parts. At run-time features can thus be successfully

recognized even if the background has changed.

3.5 Comparison of Feature Harvesting using Trees and Ferns

The feature harvesting relies on two important assumptions: the classifier trained us-

ing partial data will be effective in the detection of the object from new viewpoints and

it can be updated on-line without the necessity of remembering the initial training set.

This latter requirement ensures the efficiency of updates and the scalability to long

training videos. In Section 3.2, we have already shown that both Randomized Trees

and Ferns satisfy this requirement by virtue of their probabilistic representations.

So far we have not quantified the efficiency of the initial classifier. We have per-

formed another set of experiments to measure how well it generalizes to wider range

of viewpoints than used to generate the training set. We use the images of Section 2.3

in these tests as follows. In the first test we apply a random set of 2D perspective

deformations to the images of Figure 2.5 and we limit the in-plane rotations to ±5 de-

grees. We use 150 training samples generated in this way to train the initial classifier.

The test set is obtained in the same way but it covers a wider range of ±30 degrees of

in-plane rotation with the addition of image noise. We measure the recognition rate

on the test set and repeat this experiment each time with an increased range of in-

plane rotations during training. We plot the results in Figure 3.8 that show Ferns are

affected less by the limited range of training data than Randomized Trees. To under-

stand this better we have included the prior term into the posterior distributions used

by Randomized Trees. This resulted in a boost of their performance despite yielding

lower performance than Ferns. This can be explained by noting that the prior term
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Figure 3.8: Recognition rate of Ferns and Trees as the range of in-plane rotations present
in training data varies. The range of rotations used to generate the test data is±30 degrees
in each case. As the training range is decreased recognition rate decreases but less so for
Ferns than Trees. This robustness is due to the prior term in Equation (2.10) since adding
a similar term also boosts the performance of Trees. (a) City image. (b) Flowers image.
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Figure 3.9: Recognition rate of Ferns and Trees as the range of scale changes during train-
ing is varied. Starting from±0.1 octave and increasing till±0.5 octave, which is the range
used to generate test data, we observe a steady increase in recognition performance. Note
that this set of fine scale changes does not affect the performance as much as in-plane ro-
tations of Figure 3.8 and the Ferns still yield higher recognition rates. (a) City image. (b)
Flowers image.

reduces the effect of leaves that receive a small number of samples during training

and increases the weight of the more confident ones in the final classification. Without

this regularization the naive Bayesian combination does not work at all. Our experi-

ments show that it also increases the generalization of the additive combination when

a small number of training samples are used.

Figure 3.9 depicts the results of a repetition of the above experiment, but this time

using a limited range of scale changes during training. The test set covers one octave of

the scale space and the training range is slowly increased from ±0.1 to ±0.5 octaves.

Our conclusions above for in-plane rotations apply equally well to the case of scale

changes.

3.6 Conclusion

In this chapter, we have shown that it is possible to train Randomized Trees and Ferns

in a weakly supervised manner and the 3D rigid geometric constraints is effective to
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3. WEAKLY SUPERVISED LEARNING BY FEATURE HARVESTING

remove the false matches generated by the classifiers. As a result, we can remove the

stringent requirement of a textured 3D model and use ordinary image sequences dur-

ing training with minimal supervision for the first frame. This significantly improves

both the quality and the simplicity of training for 3D objects.

Considering the increased training data available in the form of video sequences,

weaker supervision is an essential step towards faster and better object tracking-by-

detection. Recent developments in this area show very promising results [4, 43, 57].

However, there are still barriers to successful application of these ideas. Perhaps the

most important of these is the determination of object boundaries under 3D perspec-

tive changes. In a fully supervised setting the object is delineated by a human super-

visor with correct boundaries or features.

To completely remove such supervision requires identifying the features that be-

come visible during training as belonging to either the background or the object. This

is equivalent to solving a segmentation problem in each frame that will be used to

update the classifier. One possible research direction is to guide this segmentation

task using category-level boundary and feature information that is collected from a

database of objects of the same category as the tracked object. Indeed, the 3D ellipsoid

and cylinder we have used in training exactly represent such category-level geomet-

ric prior information. Despite their effectiveness, these models are not very flexible

and require careful initialization at the beginning of training. They are also very rigid

and purely geometric. Replacing these with a statistical prior on both appearance and

shape would increase both the quality and ease of training and consequently the per-

formance at run-time.
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CHAPTER

FOUR

POSE COVARIANT OBJECT DETECTION

In Chapter 3, we have shown that using 3D geometric constraints, a single object can

be detected in images without performing an explicit search over scale and aspect

ranges. In contrast, most state-of-the-art approaches to detecting and localizing ob-

jects of a particular category rely on searching over all possible image windows and on

using a pose invariant classifier to decide whether or not the object is present in indi-

vidual windows. This raises two difficult issues: First, for most objects, the bounding

box aspect ratio and size can vary significantly, thus forcing the algorithm to explore

a whole range of location and size parameters. Second, to achieve good localization

performance, the classifier must be able to reject windows that only partially overlap

with the object while at the same time being insensitive to object pose.

The first problem severely increases the computational burden of these approaches.

The second is potentially even more serious because good performance rests on two

conflicting demands: Good localization requires sensitivity to errors in bounding box

location while robustness to viewpoint changes requires insensitivity to the changing

feature statistics. As a result, even though standard histogram-based approaches offer

some measure of pose invariance, their localization performance is often poor.

In this chapter, we will argue that both problems are due to the pose invariant

nature of the classifier. Specifically, this classifier is used both to reject background

patches and to estimate object dimensions and location by filtering out bounding

boxes with incorrect dimensions or misplaced boxes of the correct size. These are

in fact two separate problems and it is hard to efficiently solve for both, especially
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4. POSE COVARIANT OBJECT DETECTION

independent of object pose, by using a single monolithic classification step. Instead,

we propose a three step approach that is pose covariant. The first two steps concern

estimating the correct bounding box dimensions and object pose, while the final step

performs the object versus background classification. The information recovered in

the first two steps guides and greatly simplifies the final classification.

To reliably estimate object bounding box and pose, we need to model their effect

on the image features. Unfortunately, the rigid 3D geometric constraints that we have

utilized to perform tracking-by-detection can not be obtained for an object category

due to within class variance. However, object instances of the same category often

share significant image characteristics such as edge orientations and feature locations

that can be used to constrain the pose and scale at which the object is imaged. We will

show that given appropriate training data, standard machine learning techniques can

be used to train viewpoint and scale classifiers to extract such geometric information.

Note that these estimators work on image patches regardless of whether they contain

an object or not. In case of a background image patch, their output is almost random.

In fact, they are trained with only pose and size annotated positive training samples.

As a result they are not confused by complex background feature statistics and can fo-

cus on selecting only features that model viewpoint and scale variations. This greatly

simplifies their training. Indeed, in Section 4.2 we show that even a simple naive Bayes

classifier is sufficient when coupled with a powerful feature selection method such as

Conditional Mutual Information Maximization (CMIM) [33].

Once we obtain such classifiers for object scale and pose, we can verify the ex-

istence of an object in the estimated area of interest using a classifier that is trained

with only images of objects with similar viewpoints to the estimated one. The posi-

tive training sets for these view-tuned classifiers contain much less feature variation

compared to that of a pose invariant approach. Therefore the feature statistics are

much easier to model and they can be more efficiently separated from background

clutter. Note that this is similar in spirit to the one used in keypoint descriptors such

as SIFT [69] to achieve scale and rotation covariant keypoint recognition. SIFT uses

maxima of Laplacian and the gradient orientation histogram to estimate the scale and

rotation of the keypoints to be matched, both of which can be directly computed from

image features. Our scale and pose estimators for object categories replace this direct
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computation with a probabilistic one. Furthermore, as in the case of keypoint descrip-

tors, we do not require these estimates to be perfect. Approximate values are sufficient

because we rely on histogram based feature representations that are largely invariant

to small changes in bounding box size and view angle.

Overall, we propose a layered approach to covariant object detection that greatly

increases localization performance. First, we train an estimator for the bounding box

dimensions, which then allows us to run our classifier only on windows with the

estimated size instead of looping through ranges of different sizes. We then achieve

view invariance by training a second estimator to return the viewpoint under which

the object was imaged, which allows us to use a classifier trained for that viewpoint.

Section 4.2 presents the details of each step.

To be able to train the pose and scale estimators and to quantify their performance,

we introduce a database of images acquired at a car show. They were taken as the

cars were rotating on a platform and cover the whole 360 degree range with a sample

every 3 to 4 degrees. There are around 2000 images in the database belonging to 20

very different car models and Figure 4.1 depicts some sample frames together with

detection and pose estimation results. In Section 4.3, using the first 10 sequences for

training purposes and the rest for testing purposes, we show that our approach results

in improvement in both detection and localization performance.

4.1 Related Work

Object detection and localization from multiple views has recently gained more at-

tention with the adoption of more challenging datasets containing images of objects

seen from arbitrary views [10, 19, 28, 29, 38]. To handle the increased variance in the

object appearance and to close the gap between classification and localization, recent

approaches either integrate stronger part location statistics [2, 28, 35] or rely on more

complex classification machinery [10, 82]. However these approaches do not handle

the 3D nature of the problem and rely on the classifier to discover an invariant repre-

sentation using a training set that contains different objects of the same category seen

from disparate views.

An alternative approach is to directly model the 3D viewpoint [65, 104, 118, 119].

Recently, [91] showed that it is possible to learn a 3D part based representation that
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explicitly includes the viewpoint, which is also recovered as part of the detection pro-

cess. [102] improved this approach by automatically learning a set of key frames that

are registered on a view sphere and extracting the part based model using the geo-

metric constraints imposed by the set of key frames. Although we share the same

goal, our multi-step approach is more flexible since we have a much simpler statistical

model and do not require rigid 3D constraints. Note that we use a manually anno-

tated training set in our experiments, however we could recover the pose information

using 3D constraints as [102] does and use it as input to the classifiers. Furthermore

our classifiers can be used in conjunction with any existing method for object classifi-

cation, which can be used to perform the final step. We demonstrate that decoupling

the multi-view aspect of the problem from object classification yields better object lo-

calization.

Improved localization performance also depends on rejecting windows that only

partially overlap with the object. [10] addresses this problem by training an object

detector that learns a mapping from input features to the output label and bounding

box. However this approach is dependent on the ability to compute a bound on the

classification score for rectangle sets, which is a restrictive assumption. By contrast, we

learn a separate mapping for bounding box estimation hence do not need to impose

constraints on the form of the classification score.

4.2 Three-Step Object Localization

We present an object localization framework inspired by viewpoint invariant interest

point descriptors and show that it leads to improved object localization. Our frame-

work involves three steps. The first two assume that an object is present in the vicinity

of the test location and estimate the bounding box size and object pose under this

assumption. The final step confirms the existence of an object within the estimated

bounding box, which is done using a single classifier tuned to the estimated view-

point.

We first introduce the joint feature space for all three steps and give the details of

our approach to viewpoint and bounding box estimation.
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Figure 4.1: Sample detections from the test set. The green rectangle depicts the recovered
bounding box and the estimated viewpoint is indicated inside the green circle at the top-
right corner. A front facing car is indicated by a downward pointing line. Despite the
challenging lightning conditions and changing backgrounds our approach can correctly
localize cars and estimate their pose.
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(a) (b)

(c)

Figure 4.2: Image features. (a) Original image. (b) Cluster label map. A descriptor is
computed at every point and assigned a cluster number. (c) Histogram pyramid. The
cluster map is divided into increasingly finer regions and for each region a histogram of
cluster numbers is built. The contribution of each pixel is weighted by a Gaussian kernel
to achieve invariance to small translations.
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4.2.1 Image Features

Given a bounding-box that defines an image window, we describe it in terms of histogram-

based features, which have become the norm in object detection due to their abil-

ity to handle large intra-class variation and to provide robustness against errors in

bounding-box size and location. In practice, to create these features, we first compute

at every pixel a SIFT-like descriptor that has recently been introduced and is designed

for dense computation [105]. We then assign to each pixel a cluster number to create

label maps such as the one of Figure 4.2(b). The clusters centers are estimated in the

training phase using K-Means. Finally, we create a spatial pyramid of histograms [60]

that represents the label frequencies in smaller and smaller regions. We provide the

precise parameters we used in Section 4.3.

Given these features, the final step of our algorithm is to train Support Vector

Machines (SVMs) to decide whether or not a specific object is present within the

bounding-box. We show below that these features are also effective for bounding box

size and pose estimation.

4.2.2 Viewpoint Estimation

We model the viewpoint by a single angle representing the rotation parallel to the

ground plane as it is the dominant factor as far as feature statistics are concerned.

It is quantized into 16 pose bins. The ith bin is denoted by Pi and P0 represents a

front facing object. We assume that the cars in our database rotate at constant angular

velocity and recover its value by using the time of capture of a full rotation. Using this

information we compute the rotation angle for each image with respect to the front

facing reference pose, to be used in the training and also as ground truth for testing.

We then use a Naive Bayes classifier to learn the mapping from spatial pyramid

histograms to the probability of each pose bin,

P (Pi |H), (4.1)

where H represents the spatial pyramid histograms computed in the given bound-

ing box. It is obtained by concatenating the histograms from all regions inside the

bounding box,

H = [H1,H2,H3, · · · ,HNk ], (4.2)
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Figure 4.3: Pose estimation. (a) From top to bottom, frames 1, 20, 40, 60 and 81 of an image
sequence from the test set depicting a slowly rotating car.(b) Estimated pose distributions
for all frames of the sequence. The red stars indicate the pose bin with maximum prob-
ability. The estimated pose values is mostly in sync with the motion of the car. Note the
ambiguity of the estimated pose between the front and back facing object pose bins P0 and
P8, which is the sole source of wrong estimates that are off the diagonal that represents
the true car motion.
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(a)

⇓

(b)

⇓

(c)

Figure 4.4: Feature selection for the pose estimator. (a) Initially, we generate ten thousand
binary features ξi that compare two random bins of the histograms of Equation (4.2). (b)
CMIM selects a subset of these features that have high mutual information with the object
pose. (c) We build probability tables for each selected feature independently of the others.
CMIM ensures that these tables will be discriminative when determining the object pose
p.

where H1 is the histogram covering the whole bounding box, H2 to H5 are the four

histograms that are computed on the second level, and so on.

Since some of the information present in the histograms is irrelevant for viewpoint

estimation, we first define binary features on the histograms and select the ones that

carry high mutual information with the pose bin value. We use binary features that

compare two cluster label frequencies within the same region in the pyramid. We take

the feature value to be

ρki,j(H) =

{
0 if Hk

i < Hk
j

1 otherwise
, (4.3)

where Hk
i denotes the frequency of the ith cluster in the kth region in the pyramid.

We generate an initial feature set, denoted by F, that contains a large number of

features with randomly chosen parameters. Then a much smaller feature set is se-

lected to be used in the pose estimation and we denote it by FS. In practice, there are
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10000 features in F and 150 in FS. The feature selection algorithm is based on condi-

tional mutual information maximization [33], which sequentially picks features that

carry high mutual information with the pose bin value, while avoiding features that

are too similar to already picked ones. More exactly, we start with an empty set FS and

select M features by repeatedly picking a feature ξ̂i from F in the ith selection round,

removing it from F and adding to FS . Denoting candidate features in F by ξ, and

already selected ones in FS by ξ∗, ξ̂i satisfies

ξ̂i = argmax
ξ∈F

min

{
I(P; ξ), min

ξ∗∈FS

I(P; ξ | ξ∗)
}
, (4.4)

where I(P; ξ) is the mutual information between the object pose and a feature con-

sidered for selection, and I(P; ξ | ξ∗) is the value of the same quantity conditioned an

already selected feature. They are both estimated using the training set.

We can visualize the relative importance of the different histograms for pose es-

timation by comparing the number of selected features that use each histogram as

shown in Figure 4.6. The selected features almost never use the single histogram on

the first level since it is too coarse. The remaining 3 levels contain 15, 44, and 38 percent

of the features, respectively.

Since the selection process ensures only weak dependency between features, we

approximate the mapping between the pyramid histograms and the object pose by

P (Pi |H) ≈ P (Pi |FS(H)) (4.5)

≈
M∏
j

P (Pi | ξ∗j (H)), (4.6)

where FS(H) represents the binary values of the features in FS and ξ∗j (H) the value of

the jth feature, all computed from the pyramid histograms. The feature probabilities

P (Pi | ξ∗j (H)) are again estimated from the training set. Figure 4.4 depicts the feature

selection process and the naive Bayes modelling.

At run-time, given a bounding box in the image we compute the pyramid his-

tograms and then use the learned mapping to estimate a distribution on the pose bins.

For simplicity, we take the object pose to be the one that maximizes the probability for

the corresponding bin. However, it would be straightforward to extend our approach

to include multiple pose hypotheses using the pose probability distribution. Figure 4.3
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(a) (b)

(c)

Figure 4.5: Bounding box estimation. (a) Histogram of the overlap ratios of the ran-
domly sampled windows in the vicinity of the correct top left corner. (b) Histogram of the
overlap ratios after bounding box estimation. The overlap ratio with the object has been
greatly increased. (c) Ratio of windows that have larger overlap than a threshold, as the
threshold is varied. Note that even for a conservative ratio of 0.7, most of the estimated
windows can be considered as positive samples.
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Figure 4.6: Histogram relevance for pose estimation. The brighter regions in the his-
togram pyramid denote higher importance. Feature selection has captured the impor-
tance of the lower parts of the bounding box. By contrast, the coarse first level and the
corners in the upper part do not contribute to pose estimation.

depicts the estimated distributions over pose bins for an image sequence from the test

set. The pose estimation is performed on the ground truth boxes. In Section 4.3, we

show that partial overlap with ground truth is sufficient for reliable pose estimation.

4.2.3 Bounding Box Estimation

Bounding box estimation follows the same philosophy as pose estimation but involves

estimating two variables, the bounding box aspect ratio and area. A straightforward

approach would be to quantize their joint space into bins and estimate the correct

bin from image features, exactly as above. However, the size of the joint space is

large, which can bias the estimation in regions that receive a small number of training

examples. To avoid these problems, we take a two step approach and treat the aspect

ratio and area independently. We learn the distributions for both using the training

set bounding boxes and divide the obtained value ranges into 20 equal bins.

We first learn an estimator for the aspect ratio using pyramid histograms from

windows of fixed size, 150×150 pixels in our experiments. These windows are placed

in the image so that their top left corners coincide with that of the training bounding
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boxes. The estimator for the bounding box area is trained in the same way but us-

ing windows with the same aspect ratio as the training bounding boxes and of fixed

height, taken to be 150 pixels in the experiments.

During testing, we use the trained estimators to select a single bounding box size

with higher degree of overlap with the object than can be obtained by random sam-

pling. To illustrate this, for each one of the 1000 test images, we sample 100 windows

with random dimensions and top left corners within ±10 pixels of the ground truth.

The sampling distribution for the window size is computed from dimension statistics

of the training set bounding boxes, and offset of the top left corner is uniform. The

quality of a sampled window is measured by its overlap ratio (r) with the ground

truth bounding box, which is computed in the standard way as

r =
|BG ∩B|
|BG ∪B|

, (4.7)

where B represents the region covered by the sampled window and BG by the ground

truth. We then measure the overlap ratio after resizing the windows to the dimensions

obtained by bounding box estimation. First a fixed sized window is used to infer the

aspect ratio. We then scale the width of the window to match the estimated value and

update the pyramid histograms. The final window dimensions are obtained by esti-

mating the area and by resizing the window to the estimated value. Figure 4.5 shows

that the quality of the estimated dimensions is much better than random sampling

and the bounding box estimator can reliably replace the exhaustive evaluation of all

possible dimensions since it almost always finds a box of adequate size.

4.3 Results

We compare our estimators against a baseline implementation that uses a single SVM.

The classifier uses spatial pyramid histograms that are built as follows. We extract

DAISY descriptors[105] at every pixel in the training images. We randomly sample

100000 descriptors from the training images that are inside the object bounding boxes

and obtain 100 cluster centers using K-Means. For each training image we compute

4 levels of spatial pyramid histograms as described in Section 4.2.1. Each pyramid

contains 30 histograms, adding up to a 3000 dimensional representation.
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(a) (b)

Figure 4.7: Precision/Recall curves comparing localization using only SVMs, using view-
point estimation followed by a view-tuned SVM (Pose+SVM), and finally with the addi-
tion of bounding box estimation (BBox+Pose+SVM). (a) Curves when 0.5 bounding box
overlap is accepted as positive detection, which is the standard threshold used in the lit-
erature. Adding viewpoint estimation improves the results and bounding box estimation
leads to improved precision. (b) Curves when 0.7 bounding box overlap is required to
be considered as a positive detection, which entails increased localization accuracy. Since
boxes with smaller overlap can receive higher classification scores than boxes with more
than 0.7 overlap, all curves degrade. However the degradation is much less severe when
pose and window size estimation are turned on. In this more demanding context, it there-
fore yields even more clearly superior performance.

88



4.3 Results

(a) (b)

Figure 4.8: Accuracy of pose estimation. (a) Histogram that shows the distribution of the
error in the estimated pose in degrees. The small peak around 180 degrees is caused by
the similarity in car appearance when seen from exactly opposite sides. (b) The confusion
matrix showing the errors separately for each pose bin. As evidenced by the pose distri-
butions from Figure 4.3, the pose errors are mostly due to the similarity of the front and
back facing cars rather than due to confusion of side views. This is what produces the off
diagonal terms in the confusion matrix.

Figure 4.9: Detections from the car show environment. We show correct detection results
except in the last column which contains some false positives.

89



4. POSE COVARIANT OBJECT DETECTION

Figure 4.10: Detections on the database of [91]. The last column again contains false
detections that can be attributed to failure in the bounding box estimation or to the fact
that the scale of the cars is very different from the ones we used to train our SVMs.

The training set encompasses all images from the first 10 sequences, around 1000

images. In each one, we randomly pick 20 bounding boxes in addition to the ground

truth box. These sampled boxes are labeled as positive or negative samples accord-

ing to their overlap ratio defined by Equation (4.7). We further sample 9000 negative

bounding boxes from 300 negative images that do not contain any cars. Using this

training set, we train the viewpoint and bounding box estimators described in Sec-

tion 4.2 and the baseline SVM. 16 view-tuned SVMs are then trained, each with posi-

tive samples only from a restricted viewpoint range but all the negative training set.

In both cases, the SVM complexity parameters are found by cross-validation, training

on 6 sequences and using the remaining 4 together with the 300 negative images as

validation set.

Baseline approach. We detect cars in the test images by sliding windows and ran-

domly sampling the window dimensions using the learned statistics from the train-

ing set. Each window is given a classification score by the baseline SVM and the

non-maxima suppression removes windows that overlap with another window that

received a higher score.
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Our approach. To measure the performance of the viewpoint estimation we repeat

the same process but this time we estimate the viewpoint for each sampled window

using the Naive Bayes classifier and then compute the classification score with the

selected view-tuned SVM. Finally, we also resize each sampled box to the dimensions

given by the bounding box estimator and compute the score by view-tuned SVMs.

The bounding box estimator computes features within two extra windows com-

pared to using the sampled box dimensions, one fixed size and another one with fixed

height. Hence, to even out the amount of computation required by each experiment

we sample three times as many windows when bounding box estimation is disabled.

Figure 4.7 depicts the precision/recall curves drawn for the test set containing 10

sequences of car images and 1000 images that do not contain any cars. The pose esti-

mation yields a much improved curve compared to a single SVM and the bounding

box estimation improves localization. The effect of bounding box estimation is more

pronounced as higher accuracy is desired in bounding box dimensions.

We also test the accuracy of the pose estimation. During testing, for each bound-

ing box that has overlap ratio with the ground truth greater than 0.5, we record the

estimated pose value and compare it to the ground truth. Figure 4.8 shows the his-

togram of errors and the confusion matrix for the estimated pose bin. Table 4.1 lists

the confusion matrix entries in percent.

By setting the threshold on the classification score to be the one that yields equal

precision and recall, we obtain the detection results shown in Figure 4.1. We then

ran our car detector on images acquired at the car show including cars not on rotating

platforms and the results are depicted by Figure 4.9. We also tested our detector on the

database provided by [91] and we show some representative detection results in Fig-

ure 4.10. On the binary car detection task, we achieve performances that are roughly

equivalent to those reported in [91] even though we did not retrain our system for this

case. This demonstrates that our estimators generalize well to images taken under

much more generic conditions than those we trained for.

4.4 Conclusion

In this chapter, we have introduce a pose covariant object detection framework. Since

pose covariance requires pose and scale estimators for an object category, we have
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Table 4.1: Confusion matrix entries for object pose estimation in percent.

Bin # 0 1 2 3 4 5 6 7

0 59.5 3.1 0.1 0.1 0.1 0.0 0.1 7.7
1 17.8 46.0 4.7 0.1 0.0 0.0 0.1 0.9
2 0.2 17.8 46.6 13.2 1.4 0.1 1.0 0.2
3 0.6 0.4 17.2 38.2 22.1 7.6 1.2 0.2
4 1.0 0.9 1.3 18.9 31.5 25.3 5.9 0.4
5 0.3 0.6 0.8 2.3 8.8 41.0 24.9 0.5
6 1.1 0.6 1.4 0.6 0.1 12.1 39.6 14.5
7 13.8 0.7 0.3 0.7 0.1 0.2 9.6 41.1
8 28.5 1.9 0.1 0.7 0.4 0.1 1.2 8.5
9 6.0 23.9 1.1 0.1 0.0 0.2 1.1 1.4
10 1.3 8.9 10.9 2.0 0.1 0.1 4.4 0.8
11 1.8 0.0 2.1 10.0 3.5 1.2 0.9 1.6
12 1.8 0.0 0.0 3.2 3.1 1.8 1.8 1.1
13 0.5 0.0 0.0 0.4 0.7 2.7 6.2 0.6
14 1.4 0.0 0.0 0.0 0.0 0.7 7.1 4.9
15 21.2 0.0 0.0 0.0 0.0 0.0 2.1 15.4

Bin # 8 9 10 11 12 13 14 15

0 21.9 3.4 0.0 0.0 0.0 0.1 0.0 3.8
1 11.9 16.6 1.5 0.0 0.0 0.1 0.0 0.0
2 0.5 5.6 12.6 0.6 0.1 0.1 0.0 0.0
3 1.2 1.0 5.4 2.3 1.7 1.0 0.0 0.0
4 1.6 3.4 0.9 1.2 4.3 3.5 0.0 0.0
5 0.6 3.0 2.8 0.2 2.1 8.0 3.6 0.4
6 0.9 3.4 9.6 0.1 0.0 2.4 7.1 6.4
7 17.0 3.0 1.5 0.3 0.2 0.1 1.3 10.1
8 43.0 14.9 0.2 0.1 0.1 0.1 0.1 0.3
9 17.2 41.3 5.7 0.0 0.0 0.3 0.3 0.3
10 0.3 11.3 43.8 12.2 1.3 0.6 0.4 1.6
11 1.5 1.0 12.6 28.9 21.7 9.6 2.3 1.3
12 1.2 1.2 1.8 12.1 33.1 28.3 8.9 0.6
13 0.3 0.4 3.3 1.5 9.6 38.2 32.6 2.8
14 0.1 0.4 2.9 0.9 0.5 7.9 42.5 30.6
15 3.7 0.3 0.1 0.2 0.3 0.0 4.0 52.7
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acquired a dataset that contains continuous pose annotation and used it to train these

estimators. By comparing their output to ground truth values obtained similarly, we

showed that these estimators are accurate and stable. When used in conjunction with

an object detector, they yield improved localization.

Moreover our scheme is able to simultaneously recover object pose at detection

time. This is useful to provide contextual information since the orientations of objects

play a fundamental role in scene understanding. For example the cars and pedestrians

often move along a road in a single direction. Such consistent behavior can be used to

filter out clutter and noise [39, 45, 48].

Whether pose estimation can be performed reliably for an object category depends

on the variation of image features as a function of object pose. In case these features

vary significantly and in a statistically meaningful way it is easier to design estima-

tors to capture the pose information. The feature selection algorithm we have used in

training (CMIM) relies on the existence of such features and picks the best ones to be

included in pose estimation. On the other hand in case the features do not change at all

then the object detection task can be performed easily using a pose independent clas-

sifier. Obviously in this case even defining a pose space for the object is not possible.

Therefore automatic ways to determine the extend of pose variation and grouping of

category instances with similar pose is a requirement for further developments in the

field. The latent variables used in recent deformable part based models [29] can repre-

sent a change in object pose and each individual part model can represent appearance

from a separate viewpoint. As a result they have a potential to be used in covariant

pose detection and estimation of the viewpoint. However doing this automatically

requires decoupling appearance changes due to pose from intra-category variations.

The database we have collected and also the one of [91] exactly targets this kind of

classifier training.

Overall, we argue that understanding the limitations of both pose invariant and

covariant classifiers will allow us to tackle some fundamental issues in category-level

object detection. Databases with continuous feature variation and pose annotation

will be a requirement for this task. Using such voluminous data might require weaker

supervision during training. We believe the experience gained from instance-level

object detection can be instrumental in the design of novel training algorithms that

require less supervision.
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CHAPTER

FIVE

CONCLUSION

We have presented the frameworks we have developed to match feature points, to

automatically train a 3D object detection system, and to detect objects of a single cate-

gory together with pose annotations. In all cases, we exploit the presence of training

data that densely covers a wide range of viewpoints.

We showed that it is possible to match keypoints fast by using a powerful naive

Bayesian classifier that is easy to train. We tested our approach on various 2D and

3D datasets. It allows robust real-time Augmented Reality on various application do-

mains. We also compared it to existing approaches using Randomized Trees steps or

local descriptors. It outperforms similar methods and it is more suited to real-time

applications than local descriptors.

The main disadvantage of using large training sequences is the amount of nec-

essary manual labelling. We developed a weakly supervised training algorithm for

our keypoint matching approach that greatly reduces the training requirements. This

algorithm is also effective to remove keypoints that do not contribute consistently to

reliable detection of the object. Such data filtering is essential to be able to handle

larger training data and also has a significant effect on the run-time detection quality.

We have demonstrated the combination of these approaches on a 3D tracking-by-

detection task. Using a training image sequence, we trained an object detector that

can recover the 3D camera pose independently in every frame of a test video. Such

a detector greatly improves the performance of object tracking by providing a means
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of recovery and preventing drift. We showed that our system is robust to scale and

lighting changes and it can handle occlusions.

Finally, we extended the use of viewpoint-dense training data to category-level ob-

ject detection. This is not possible with readily available datasets, so we have collected

a new one that contains image sequences that depict objects as the viewpoint varies

slowly. It permits us to construct an estimator for the object pose. We showed that

this estimator produces reliable and stable output and it can be utilized to improve

detection performance. Although we have used a standard linear SVM baseline in

our comparisons, any object detection algorithm can be integrated in our framework

to improve its robustness to viewpoint variations.

Overall, we have demonstrated various ways to train classifiers to perform view

independent object detection. In some cases, these classifiers employ invariant statis-

tics to dampen the effects of viewpoint variation. Others estimate the extend of these

variations with respect to a reference view. This estimate guides the analysis of image

features and the way they are classified. We showed that given suitable training data

both approaches can be used in novel ways to improve the run-time performance on

several vision tasks.

Limitations and Future Work

Our keypoint classification system already satisfies the constraints of most Augmented

Reality systems. The main drawback of this system is its memory consumption. Al-

though several modifications have already been proposed, these only reduce the re-

quired amount by a relatively small integer factor. At the moment, we represent and

store the learned probabilistic model as multinomial histograms independently for

each keypoint. It should, at least in principle, be possible to either share some of these

histogram data between keypoints or to replace the histograms with a parametric dis-

tribution with much fewer variables.

The most recent image retrieval systems can easily handle thousands of images

that contain on the order of thousand keypoints each. Our approach currently does

not generalize to this more demanding domain. This is a consequence of allocating

a separate class for each keypoint. It might be possible to remedy this by clustering

keypoints and by replacing the linear classification structure with a hierarchical one.
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A possible research direction is to follow the combined statistical and descriptor

based approach of [15], discussed in Section 2.1, that collects generic texture statistics

to compute compact signatures for keypoints. This is beneficial since the dictionary

used in the signature generation can be quite small and it is shared by all keypoints.

All current work on signatures is based on learning pose invariant texture statistics,

but a more pose-aware approach might be needed to go beyond current limitations on

operational viewpoint range. More specifically, the signature will vary as a function

of the viewpoint parameters. Even for fixed pose, there might be multiple alterna-

tive base keypoints to be included in the keypoint signature since Randomized Trees

respond similarly for all of them. These alternatives can be learned to assign a set

of signatures to each new keypoint instead of a single one. Each member of this set

can be annotated with its valid viewpoint range to simultaneously recover keypoint

identity and object pose information at run-time.

Our feature harvesting framework overcomes the need to manually label all train-

ing images. However this is achieved by relying on a rough geometric model of the

object. This model is necessary to segment the object in novel images with very dif-

ferent viewpoints from the initial frame. Removing it from the training prerequisites

would greatly increase the flexibility of our approach and ease of training for new

objects. One possibility is to replace this stringent geometric constraint by a prior

on object motion. Since we already require a restricted environment, we can also re-

quire the object and background features to have inconsistent motion vectors without

severely encumbering the training process.

In Chapter 4, we have demonstrated that our category-level object detection pipeline

is effective to detect cars from multiple viewpoints. The selection of cars as a category

to test our approach is not an arbitrary one. Estimating object pose naturally requires

a well defined pose space and image features that vary consistently with viewpoint,

both of which are well satisfied by the cars object category. Similar arguments can be

made for bikes, motorcycles, TV sets, and chairs. Note that all these categories have a

well defined front face enforced by their function and edges in their images smoothly

vary with viewpoint. On the other hand, categories like trees, glasses, and pedestrians

either do not have a completely well defined pose or their dominant image features

do not change much with viewpoint. These won’t fit into our framework easily. This

also means that they are much easier to recognize from multiple viewpoints using
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image features only from a specific view. As a result, there is a need to handle pose

variations in a more automated manner, using a combination of pose invariant and

covariant approaches.
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APPENDIX

A

SOLVING THE PERSPECTIVE-THREE-POINT PROBLEM
FOR CAMERA POSE ESTIMATION

We present a brief overview of the Perspective-Three-Point (P3P) algorithm that we

used to recover the 3D camera pose as described in Chapter 3. We refer the readers

to [23, 40] for a more detailed account of solutions to P3P problem.

The goal in solving a P3P problem is to determine the location of three 3D points

{MC
i } in the camera coordinate system using their projections {mi} in the image

plane. The assumption is that we already know the 3D coordinates of these points

{MW
i } in a world coordinate system, they are part of a rigid scene, and they are not

coplanar with the camera center C. Consequently, 3D inter-point distances {dij}i<j
between each pair will be the same in the camera coordinate system.

We also assume knowledge of camera internal calibration matrix K. Therefore

given a pair of 2D points mi and mj , we can back-project rays ri and rj from C.

They are given by

ri = K−1mi and rj = K−1mj . (A.1)

We can also compute the angle between them Θij as

cos Θij =
mT
i ωmj(

mT
i ωmi

)1/2 (
mT
j ωmj

)1/2 , (A.2)

where ω =
(
KKT

)−1 is the image of the absolute conic [47].

Since we know that the 3D point MC
i must lie on ri and MC

j on rj , the only un-

knowns are the distances between C and the 3D points MC
i and MC

j , which we denote
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A. SOLVING THE PERSPECTIVE-THREE-POINT PROBLEM FOR CAMERA
POSE ESTIMATION

Figure A.1: Geometry of the perspective-three-point problem. Since the angle Θij and the
distance dij is known, it is possible to write a quadratic constraint on the 3D lengths li
and lj using the cosine law.

by li and lj respectively. As shown by Figure A.1, these satisfy the law of cosines

d2ij = l2i + l2j − 2lilj cos Θij . (A.3)

Since we have three points, each pair generates an independent equation that can

be stacked to form the P3P system of equations

d212 = l21 + l22 − 2l1l2 cos Θ12 (A.4)

d213 = l21 + l23 − 2l1l3 cos Θ13

d223 = l22 + l23 − 2l2l3 cos Θ23.

[40] presents a complete set of solutions to this system by decomposing it into

ten components and solving each of these polynomial systems independently. The

first one of these is called the main component and the rest contain degenerate con-

figurations. The solution involves computing the resultant of two polynomials which

removes one of the variables but increases the degree of the remaining system.

We have used the solution to the main component in our implementation, which

we found to be robust enough for our purposes. It may contain up to four solutions,

but in practice most of the time one or two solutions will be found. Figure A.2 illus-

trates the solution space. Multiplicity of the solutions is not a problem since we use
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(a) (b)

Figure A.2: Solution space of the P3P problem [114]. (a) The locations of MC
1 and MC

2

are determined by fitting a line segment of length d12 between rays r1 and r2. (b) The
points MC

1 , MC
2 , and MC

3 define a 3D triangle that fits on the baseline defined by MC
1 and

MC
2 . For a fixed baseline MC

3 lies on a circle C3. Then the family of possible locations
for the baseline in (a) defines a family of circles. The set of P3P solutions contains the
intersections of ray r3 with this circle family.

RANSAC [32] to select the best one. Moreover, since P3P requires only three 2D-to-

3D correspondences, RANSAC can converge very fast even when the outlier ratio is

relatively high.

Solution to P3P gives the lengths {li} and this is enough to compute the locations

of the 3D points in the camera coordinate system {MC
i }. To find the camera pose with

respect to the world coordinate system, we need to compute the rotation R and trans-

lation t between the point sets {MC
i } and {MW

i }. This is called the absolute orientation

and [52] gives a closed form algorithm to solve for it.
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APPENDIX

B

HOMOGRAPHY PARAMETRIZATION
FOR TRAINING FERNS

For planar objects, the training for Ferns and Randomized Trees involves generating

random homography deformations representing transformations of a model image

in 3D. In Section 2.3, we have sampled from parameters of affine transformations to

obtain these deformations. We represent affine image deformations in the form

A = RθR−φdiag(λ1, λ2)Rφ, (B.1)

where diag(λ1, λ2) is a diagonal 2 × 2 scaling matrix and Rγ represents a rotation of

angle γ. R−φ controls the degree of skew deformation.

While this representation is suitable for many applications, it suffers from several

limitations. First, a uniform sampling of the skew angle R−φ does not result in a

uniform sampling of skew deformations. This is due to the effect of scaling parameters

λ1 and λ2). When the values of these are close to each other the skew angle has little

effect. As a result, training set reflects scale changes stronger than skew. Second,

it is difficult to translate constraints on viewpoint into restrictions on the parameter

values. For example, we might restrict viewpoints to no more than ±20 degrees of

out of plane rotations. Affine parameterization does not easily allow this. Although

rejection sampling can be used to simulate these constraints, it is not very efficient.

In this appendix, we derive a parameterization of the homography space that bet-

ter reflects viewing conditions. We assume that the model image for training Ferns
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B. HOMOGRAPHY PARAMETRIZATION FOR TRAINING FERNS

Figure B.1: Geometry of the homography parameterization.

have been captured from a fronto-parallel viewpoint. The camera is placed at a dis-

tance Z from the planar target as depicted by Figure B.1 and we write its projection

matrix as

P = K [I |0] . (B.2)

Therefore, model camera coordinate system coincides with the world coordinate sys-

tem.

We define another coordinate system whose origin is at the center of the pla-

nar object and its xy-plane is parallel to the object surface. The z-axis points away

from the plane towards the model image camera. We refer to this system as the

object coordinate system. The model image camera center is at (0, 0, Z)T in this co-

ordinate system. To generate the training images, we move the camera to a loca-

tion given by the spherical object coordinates (Z ′, ω, φ)T . The training camera z-axis

points towards the object center. Its y-axis is in the direction of the normal vector

(− sinφ sinω, cosφ,− sinφ cosω)T in the object coordinate system. We also rotate the

training camera in its xy-plane by an angle θ to simulate in-plane rotations. This com-

pletely specifies its location and orientation using four parameters (Z ′, ω, φ, θ)T . Note

that this is smaller than the six parameters required to specify a camera in 3D space.

The missing two correspond to a translation of the camera in the x and y directions of

the object coordinate system. Since this will result in a shift in the generated training
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image, we do not need to explicitly set these. The placement and orientation scheme

detailed above implicitly defines default values for these two remaining parameters.

We can write the training projection matrix in the world coordinate system as

P′ = K′ [R | t] . (B.3)

Once we specify R and t = (t0, t1, t2)
T , we can write the transfer homography H be-

tween the model and training images [47] as

H = K′

R−

0 0 −t0/Z
0 0 −t1/Z
0 0 −t2/Z

 K−1. (B.4)

It is not easy to write the rotation matrix directly and we derive it using quater-

nions. Please refer to [52] for a detailed description. To follow the discussion here it is

enough to know that a 3D rotation about a unit vector u by an angle δ can be repre-

sented by using a four element vector q = (cos(δ/2), sin(δ/2) u)T . The rotation matrix

R is a composition of three consecutive rotations represented by the following set of

quaternions

qω = (cos(ω/2), sin(ω/2) nω)T (B.5)

qφ = (cos(φ/2), sin(φ/2) nφ)T

qθ = (cos(θ/2), sin(θ/2) nθ)
T .

The first one is a rotation about the y-axis and the corresponding normal is

nω = (0, 1, 0)T . (B.6)

The second one is a rotation about the x-axis, but x-axis has been transformed by the

first rotation so the corresponding normal is

nφ = (cosω, 0, sinω)T . (B.7)

Finally, the camera is rotated about its z-axis to perform an in-plane rotation and the

corresponding normal can be written as

nθ =

− sinω cosφ
sinφ

cosω cosφ

 . (B.8)
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The quaternion representing the combined rotation is given by the multiplication of

the three quaternions qR = qθ · qφ · qω = (q0, q1, q2, q3)
T and the rotation matrix can be

computed using the Rodrigues Formula

R =

q20 + q21 − q22 − q23 2 (q1q2 + q0q3) 2 (q1q3 + q0q2)
2 (q1q2 + q0q3) q20 + q22 − q21 − q23 2 (q2q3 + q0q1)
2 (q1q3 + q0q2) 2 (q2q3 + q0q1) q20 + q23 − q21 − q22

 . (B.9)

The training camera center can be directly written as

C′ =

 Z ′ cosφ sinω
−Z ′ sinφ

Z − Z ′ cosφ cosω

 . (B.10)

The corresponding translation vector is

t = −RC′. (B.11)
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M. Özuysal, P. Fua, and V. Lepetit
IEEE Conference on Computer Vision and Pattern Recognition

2006 Feature Harvesting for Tracking–by–Detection
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