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22q11.2 deletion syndrome (22q11DS) is associated with an increased susceptibility to develop
schizophrenia. Despite a large body of literature documenting abnormal brain structure in
22q11DS, cerebral changes associated with brain maturation in 22q11DS remained largely
unexplored. To map cortical maturation from childhood to adulthood in 22q11.2 deletion
syndrome, we used cerebral MRI from 59 patients with 22q11DS, aged 6 to 40, and 80 typically
developing controls; three year follow-up assessments were also available for 32 patients and 31
matched controls. Cross-sectional cortical thickness trajectories during childhood and adolescence
were approximated in age bins. Repeated-measures were also conducted with the longitudinal
data. Within the group of patients with 22q11DS, exploratory measures of cortical thickness
differences related to COMT polymorphism, 1Q, and schizophrenia were also conducted. We
observed deviant trajectories of cortical thickness changes with age in patients with 22q11DS. In
affected preadolescents, larger prefrontal thickness was observed compared to age-matched
controls. Afterward, we observed greater cortical loss in 22q11DS with a convergence of cortical
thickness values by the end of adolescence. No compelling evidence for an effect of COMT
polymorphism on cortical maturation was observed. Within 22q11DS, significant differences in
cortical thickness were related to cognitive level in children and adolescents, and to schizophrenia
in adults. Deviant trajectories of cortical thickness from childhood to adulthood provide strong in
vivo cues for a defect in the programmed synaptic elimination, which in turn may explain the
susceptibility of patients with 22q11DS to develop psychosis.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

understand the pathogenesis of schizophrenia (Murphy and
Owen, 2001). A variety of genes have been identified in the 3Mb

22q11.2 deletion syndrome (22q11DS) is a neurogenetic deletion associated with 22q11DS, among which haploinsuffi-
condition which draws particular interest as a model to ciency of the catechol-O-methyltransferase (COMT) gene has
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received a large emphasis (Gothelf et al., 2008). From the point
of view of structural neuroimaging, a large body of literature is
aimed at delineating the cerebral phenotype in these indivi-
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have reported specific patterns of volumetric alterations in
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the dynamic unfolding of structural brain changes with age. As a
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result, the question as to how the brain matures throughout life
in individuals affected by 22q11DS remains scarcely documen-
ted. Providing a comprehensive picture of the dynamic of brain
maturation from childhood to adulthood in the syndrome is all
the more important, if theories argue that schizophrenia
involves a disruption in the cortical maturational processes
during adolescence (Hoffman and Dobscha, 1989; Keshavan
et al., 1994).

To study structural brain maturation in vivo using MRI,
cortical thickness emerges as the ideal technique among other
methods. The typical curvilinear trajectories of thickness changes
with age share strikingly similar temporal and regional similar-
ities with the progression of synaptic pruning as observed post-
mortem, confirming the potential of cortical thickness to reliably
identify the brains critical development periods (Sowell et al.,
2003; Gogtay et al., 2004; Shaw et al.,, 2006a, 2008; Thompson
et al, 2004). Moreover, cortical thickness studies have an
exquisite resolution, allowing for the identification of local
alterations with high precision. Consequently, a growing amount
of studies apply thickness measurement as an index of
development in patients with various conditions, such as
attention deficit/hyperactivity disorder (ADHD) (Shaw et al.,
20073, 2006b), autism (Chung et al, 2005; Hadjikhani et al,
2007; Hardan et al., 2006), or schizophrenia (Thompson et al.,
2004; Greenstein et al, 2006; Kuperberg et al, 2003). In
22q11DS, previous studies by Bearden and colleagues in 21
affected children and adolescents compared to 13 controls
reported thinner superior parietal, right parieto-occipital and
ventro-medial occipito-temporal cortices (Bearden et al., 2007;
Bearden et al., 2009). However, these studies did not account for
cortical thickness changes with age, warranting further explora-
tion of the dynamic of cortical thickness over a more encom-
passing age range.

In the present study, we exploited neuroimaging data from
patients with 22q11DS aged 6 to 40 who have been participating
in our research project since 2001 (Debbané et al., 2006; Glaser
et al,, 2006; Schaer et al., 2006). As supported by longitudinal
volumetric observations (Gothelf et al., 2005), we expected that
patients will show a more intense thinning in the prefrontal
regions during adolescence than controls.

In subsequent analyses, we also explored the effect of specific
parameters on cortical thickness within the syndrome. First, we
explored the possibility that patients with 22q11DS will show
different cortical thickness depending of their genetic polymor-
phism on the COMT>® (Val vs. Met) allele. Patients carrying the
low-activity Met allele may be exposed to unusually high levels of
prefrontal dopamine that impair their cognitive functioning, a
hypothesis which is supported by previous studies identifying
the Met allele as a risk factor for poorer outcome in 22q11DS
(Gothelf et al., 2005; Zinkstok et al., 2008; van Amelsvoort et al.,
2008). Second, we subdivided our sample of patients with
22q11DS into children and adolescents (below 18 years old), and
adults. In the younger subgroup, we investigated cortical
thickness differences related to IQ. In accordance with previous
observations of increased gray matter density or thicker cortexin
high-functioning individuals compared to those with lower IQ
(Shaw et al., 2006a; Wilke et al., 2003; Frangou et al., 2004; Narr
et al., 2007; Fjell et al., 2006), we expected that patients with
poorer performances will show thinner cortices than those with
higher IQ scores. Finally, in the adult subsample, we searched for
cortical thickness differences related to schizophrenia. As

observed in non-syndromic adults with schizophrenia (Green-
stein et al., 2006; Kuperberg et al., 2003), we expected that a
thinner cortex in the frontal and temporal regions will
characterize patients with schizophrenia compared to those
without.

2. Methods
2.1. Participants

Patients with 22q11DS were recruited through announce-
ment in regional parents associations. Fifty-nine patients with
confirmed 22q11.2 deletion were included in the study (35F/
24M), with an average age of 15.9 + 8.9 (see Table 1). Using the
Wechsler Full Scale IQ, the group of patients had an average IQ of
69.0 + 12.0. Hemizygosity for either the COMT'>®Met or the
COMT™8val allele was determined by polymerase chain
reaction with the restriction enzyme Nlalll (Lachman et al.,
1996). At the time of evaluation, 7 patients received antipsy-
chotic treatment (age range: 19.6-36.6), 3 received methyl-
phenidate (age range: 6.4-12.6) and one received antiepileptic
treatment (11.5 years old).

Eighty healthy participants were recruited through a news-
letter distributed at public schools in Geneva and in the com-
munity (44F/36M). Subjects with a history of past or present
neurological or psychiatric disorders were excluded. The control
group had a mean age of 159+84 and an average 1Q of
111.712.8. Written informed consent was received from partici-
pants and their parents (for subjects younger than 18 years old),
under protocols approved by the Institutional Review Board of
Geneva University School of Medicine.

Thirty-two patients who were younger than 18 years old at
the first evaluation participated at follow-up examination
(interval: 3.10.3 years). The longitudinal subgroup of patients
(19F/13M) had ameanageof 11.4+3.5attime 1 (T1) and 14.5+
3.6 at time 2 (T2). The average IQ for this subgroup did not differ
at T1 (70.74+10.9) and T2 (71.6+12.8). Thirty-one healthy
participants (20F/11M) matched for age also participated in the
follow-up examination (interval: 3.0 4 0.3 years). The longitudi-
nal subgroup of controls had a mean age of 11.143.6 at T1 and
14.24+3.6 at T2, with an average 1Q of 112.74+12.4 at T1 and
10844123 at T2.

Table 1
Repartition of the participants in the different age bins.
Cross-sectional Longitudinal
Control 22q11DS* Control 22q11DS*?
6t09 16 15 (0/0) 1 9 (0/0; 0/3)
9to 12 22 11 (0/4) 9 11 (0/4; 0/6)
12 to 15 8 10 (0/2) 5 8 (0/1: 0/1)
15to 18 7 4 (0/3) 6 4 (0/3; 2/3)
18+ 27 19 (6/15)
Total 80 59 (6/24) 31 32 (0/8; 2/13)

The right part of the table details the subsample who participated in the
follow-up examination.

2 In the patients' columns, psychiatric statuses are described in brackets as
follows: “(number of schizophrenic patients/number of patients presenting
either hallucinations or delusions or both)”. For the longitudinal subgroups,
psychiatric characteristics are presented similarly, but with “(status at Time 1;
status at Time 2)".
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2.2. Imaging

Coronal cerebral MRI was acquired using a Philips 1.5 T Intera
scanner with a 3D volumetric pulse sequence using the following
scan parameters: TR=35ms, TE=6ms, flip angle=45°,
NEX =1, matrix size=256x 192, field of view =24 cm?, slice
thickness = 1.5 mm, 124 slices.

Images were imported into the software FreeSurfer (http://
surfer.nmr.mgh.harvard.edu) to reconstruct accurate cortical
surface models. The algorithms used for cortical thickness
estimation were previously validated against manual delinea-
tion on MRI sections (Kuperberg et al., 2003) and postmortem
brains (Rosas et al., 2002). Further, cortical thickness measure-
ments have been proven reliable, independently of scanner
manufacturer or field strength (Han et al., 2006).

Fully automated image processing included resampling into
cubic voxels, intensity normalization and skull stripping. Subse-
quent surface reconstructions used deformation algorithms
based on the local intensity value, geometrical and topological
constraints (Dale et al., 1999; Fischl et al., 2001). The final three-
dimensional cortical surfaces include the white (gray-white
boundary) and the pial (gray-CSF interface) surfaces. Cortical
thickness was measured in the native space of the images, as the
shortest distance between the white and pial surfaces (Fischl and
Dale, 2000). As a result, cortical thickness values with a submilli-
meter accuracy were available at more than 150,000 points over
each hemisphere.

2.3. Statistical analyses

2.3.1. Cross-sectional analyses

Statistical analyses employed a general linear model (GLM)
to estimate the effect of diagnosis, age and diagnosis by age at
each cortical point. Cortical thickness changes with age were
fitted using a linear model. A false discovery rate at FDR <0.05
was employed to correct for Type 2 errors related to multiple
comparisons. Interactions for gender were not included in the
final model because they did not contribute significantly to the
explanatory power of the model across the cortical surface
(after employing a FDR correction).

To refine the trajectories of cortical changes with age, we
further subdivided the sample of subjects into 5 age bins, as
detailed in Table 1. The 3 year interval was chosen in order to
keep a sufficient number of subjects within each age bin, while
keeping an appropriate temporal resolution in the period where
the most cortical changes are known to occur. Moreover, 3 years
corresponded exactly to the interval between the two time-
points for longitudinal analyses. Within each age bin, a GLM was
employed to assess the effect of diagnosis at each vertex.

2.3.2. Longitudinal analyses

Mixed effect models, which would have been the gold
standard technique to combine cross-sectional and longitudinal
data, commonly encompass more than 500 scans (Shaw et al.,
20064, 2006b, 2007a, 2007b, 2008) or 3-4 time-points (Gogtay
et al., 2004; Greenstein et al., 2006). Given the limited size of our
sample, we preferred the use of repeated-measures at each
cortical vertex, to identify significant differences in thickness
changes over the 3 year period. The repeated-measures were
separately conducted on the subgroups that were below 9 of age
at Time 1, and those that were between 9 and 18 at Time 1. This

subdivision was based on a priori cross-sectional analyses
showing distinct thickness changes in age bins below and
above 9 years old (see Fig. 2a).

2.3.3. COMT polymorphism

Of the 59 patients, information about the COMT'*®Val/Met
status was not available for 2 of them. The remaining 57 showed
the following COMT polymorphism: 29 patients had the Met
allele (18F/11M; mean age: 16.8 4- 8.8; average IQ: 68.7 +-10.7)
and 28 had the Val allele (16F/12M; mean age: 15.4+49.3;
average 1Q: 68.3+13.1). The Val and Met subgroups did not
differ neither in age distribution (p=0.541), nor in IQ
(p=0.907). To determine the effect of COMT polymorphism
on cortical thickness, a GLM was applied at each vertex,
modeling the effect of COMT and age. Furthermore, repeated-
measures were also conducted on the longitudinal subsample of
32 patients (15 Met/17 Val) to evidence differences in cortical
maturation associated with COMT polymorphism. Given previ-
ous evidence for an interaction of COMT by gender during brain
development in 22q11DS (Kates et al., 2006), gender was
introduced as an independent variable in the longitudinal
analysis.

2.3.4. Within group factors: 1Q and schizophrenia

In patients below 18 years old, we defined a low performing
subgroup with all children and adolescents who had an
established mental delay, as defined by an IQ lower or equal
to 65 (n=13, 7F/6M, FSIQ: 58.9 + 5.5, range: 44-64). Twenty-
one children and adolescents scored above 75 (13F/8M, FSIQ:
81.1+4.6, range: 75-91) and constituted the high performing
subgroup. Both groups had similar average age (low: 11.2 +-4.5;
high: 10.2+4.0, p=0.371). A GLM was applied to assess the
effect of group, age and age by group interaction on cortical
thickness at each vertex.

Then, cortical thickness changes associated with schizophre-
nia were examined in the 46 individuals who were older than
18 years old, namely 27 controls (14F/13M, mean age: 26.0+
5.9), 6 schizophrenic patients (3F/3M, mean age: 31.6 +4.1) and
13 non-schizophrenic adults with 22q11DS (8F/5M, mean age:
24.8 4-6.2). There was a trend for a significant difference in age
distribution between the 3 subgroups (F=2.944, p=0.063).
Post-hoc analyses demonstrated no age difference between the
control and non-schizophrenic groups (p=0.843) or between
the control and schizophrenic groups (p=0.113). However, a
trend for a significant difference between the non-schizophrenic
and schizophrenic groups (p=0.073). Because of this age
difference, no age by group interaction could be assessed; rather
aGLM assessed the effect of group and age on cortical thickness at
each vertex.

3. Results
3.1. Cross-sectional analyses

ANOVA comparing mean thickness values over the whole
sample revealed significantly higher thickness in patients (2.67 +
0.20 mm) than controls (2.60 4-0.16 mm; F=5.934, p=0.016).
The effect of diagnosis on mean thickness became even more
significant when covarying for age (F; 136 = 17.785,p<0.001), or
age and gender (Fs135=17.701, p<0.001). Statistical cortical
maps revealed that regions of thicker cortex were relatively
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widespread, touching extensively the frontal regions (Fig. 1a). At
the same time than increased thickness, a significant age by
diagnosis interaction was observed, with a steeper slope of
cortical thickness reduction with age in patients than controls
(Fig. 1b).

Fig. 2a illustrates the profile of mean cortical thickness over
the different age bins, while cortical maps depict the detailed
distribution of significant thickness differences between groups.
In the youngest bin, patients show significantly larger thickness
values than controls in the left hemisphere (F= 6.541,p =0.016)
and a trend for a thicker cortex in the right hemisphere
(F=3.3387, p=0.076). At this age, widely distributed small
clusters of thicker cortex are observed in patients. In the 9 to 12
age bin, significantly greater thickness is observed in both
hemispheres (right: F=15.490, p<0.001; left: F=12.076,
p=0.002), mostly driven by thicker frontal cortex in patients
than controls. In the 12 to 15 age bin, higher average thickness
values are still observed in both hemispheres (right: F=13.496,
p=0.002; left: F=9.616, p=0.007), that appear to be mostly
driven by thicker cortex in the dorsal frontal regions. In the 15 to
18 bin, we do not observe any differences in average thickness
(right: F=1.186,p =0.302; left: F=1.618,p = 0.232). Although
the absence of significant difference may be driven by the
smallest sample size, the absence of significant average
thickness difference in the subsequent adult bin (right:
F=0.050, p =0.825; left: F=0.326,p =0.571) further confirms
the disappearance of the thicker cortex observed in younger
patients with 22q11DS compared to controls.

3.2. Longitudinal analyses

As depicted in Fig. 2b, we were able to confirm the trajectories
of cortical thickness changes identified with cross-sectional
design using longitudinal repeated-measures. In the younger
subgroup, we observed clusters where cortical thickness loss
over the 3 year period was significantly larger in controls than in
patients. For instance in several clusters of the frontal lobe,
cortical thinning was shown in control participants whereas
patients showed almost no thickness changes or even slight
cortical thickening (see plots A to D on Fig. 2b). Contrarily, in the
older subgroups, we identified widespread clusters of signifi-
cantly greater cortical loss in patients compared to controls.

Effect of diagnosis

lateral

Right

ventral

medial

p<0 01 p<0.001 p<0.0001

3.3. COMT polymorphism

No significant effect on COMT polymorphism was ob-
served on mean cortical thickness values (Met: 2.630.21 mm,
Val: 2.700.20 mm; F=1.732, p=0.194). As shown in Fig. 3,
the statistical maps also did not reveal a compelling intensity
and direction of changes associated with COMT polymor-
phism, neither using the cross-sectional nor the longitudinal
analyses. Indeed, cortical thickness differences between
subgroups were observed in both directions and were only
of modest significance.

3.4. Within group: 1Q and schizophrenia

In the patients with 22q11DS below 18 years old, the cortical
maps demonstrated numerous clusters of significantly thinner
cortex in low performing compared to high performing subgroup
(Fig. 4). Namely, thinner cortex in the medial frontal gyri
bilaterally, the superior and inferior right frontal gyri, and the left
superior temporal sulcus were seen in the low performing
subgroup. No group by age interaction was observed.

In adult participants (Fig. 5), statistical maps of cortical
thickness difference demonstrate that (1) patients without
schizophrenia show a combination of increased and decreased
thickness compared to healthy participants; (2) schizophrenic
patients show extended regions of cortical thinning, as compared
to healthy controls and to non-schizophrenic patients with
22q11DS. Among the region in which thinnest cortex was
associated with schizophrenia, arrow heads on Fig. 5 at the right
fusiform/lingual region and at the left superior frontal gyrus
depict reduction in schizophrenic patients compared to both the
controls and the non-schizophrenic patients. Thin arrows at the
right middle frontal gyrus and the left superior temporal sulcus
illustrate an intriguing pattern of thickness change, with normal
thickness in patients with schizophrenia, whereas aberrantly
high thickness in these regions was observed in patients without
schizophrenia.

4. Discussion
The work presented here uses cortical thickness to

quantify the course of cerebral maturation over a wide age
range in 22q11.2 deletion syndrome. When comparing the entire

b Age by diagnosis interaction

lateral QI
Right Left )

ventral

medial medial

S
p<0.05 p<0.01 p<0.001

Fig. 1. Vertex-wise comparisons of cortical thickness between groups (cross-sectional). (a) When comparing the entire sample, we observe extensive areas of
thicker cortex in patients with 22q11DS compared to controls (in blue). Small regions of thinner cortex in 22q11DS are shown around the bilateral entorhinal and
parahippocampal regions. (b) Clusters in red/yellow show regions of significant age by diagnosis interaction, meaning that the regression line of cortical thickness
changes with age shows a significantly steeper slope in patients with 22q11DS compared to controls.
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Fig. 2. Trajectories of cortical thickness change with age. a) Using a cross-sectional design to compute cortical thickness differences between patients and controls in each age bin, we observe that the larger clusters of thicker cortex
(blue) are apparent between 9 and 12 years old in the prefrontal regions. Between 12 and 15 years old, clusters of thicker cortex are mostly located in the dorsal prefrontal region. In adults, prominent clusters of thinner clusters
(yellow) are seen around the superior temporal gyrus, bilaterally. b) Using repeated-measures with the longitudinal subsample, we confirm the different trajectories of cortical thickness changes observed with cross-sectional
design. In preadolescents (before 9 of age at Time 1), we observe numerous clusters where no thickness changes occur in patients, whereas thinning is observed in controls. In clusters A to D, this pattern of delayed thinning reach
significance at threshold p <0.007, with the following effect size (partial eta-squared): cluster A: 0.335, B: 0.467, C: 0.456, and D: 0.428. Contrarily, we observed greater thickness loss in affected adolescents compared to controls
(older than 9 at Time 1). This larger thinning with age in patients compared to controls is significant at p <0.002 and with the following partial eta-squared: cluster F: 0.342, G: 0.215, H: 0.285, and E: 0.239.
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Effect of COMT polymorphism

a On cortical thickness (cross-sectional)

- Right .’ Left I ateral
medial I

ventral

medial

p<0.05 p<0.01 p<0.001

b On cortical maturation (longitudinal)

C

lateral lateral

ventral

medial

[
p<0.05 p<0.01 p<0.001

Fig. 3. Effect of COMT polymorphism on cortical thickness within 22q11DS. a) Apart from a cluster of thinner cortex at the left cuneus in patients with Met
compared to Val allele (in yellow), only modest clusters of significant differences associated with COMT polymorphism are observed. b) Using repeated-measures
in the longitudinal subsample, no compelling evidence for an unequivocal age by COMT polymorphism interaction is shown. Namely, clusters in blue illustrate
larger thinning in Val compared to Met reaching the significance of p <0.023 (partial eta-squared: A: 0.196, B: 0.225, C: 0.161). Clusters in yellow show greater
cortical loss in Met compared to Val with significance of p <0.022 (partial eta-squared: D: 0.205, E: 0.279, F: 0.256, G: 0.234, H: 0.164, I: 0.297, J: 0.244, K: 0.181).

sample of patients to age-matched controls, we observe several
clusters of thicker cortex (Fig. 1a). The observation of thicker
cortex partially modifies the classical view that patients with
22q11DS consistently show differences in the reduced direction.
Indeed, volumetric studies have always reported reduced cortical
volume in the syndrome (Eliez et al,, 2000; Kates et al,, 2004,
2001; Simon et al., 2005; van Amelsvoort et al., 2001). If cortical
volume is undeniably the product of its surface and thickness,
surface changes are more susceptible to result in volumetric
changes than thickness alterations (Im et al., 2008). Thus, the
drastic cortical surface reduction that we observed in previous
studies (Schaer et al, 2006, 2008) may better predict the
decreased volume than subtle thickness changes associated
with maturation. The present observation of thicker cortex in
preadolescents with 22q11DS also contrasts with observations of
thinner cortex in children aged from 8 to 17 years old (Bearden

Differences between High and Low IQ

lateral ' Right ‘. Left I lateral

ventral

medial

p<0.05 p<0.01 p<0.001

Fig. 4. Differences in cortical thickness related to cognitive abilities within
22q11DS. Clusters in red/yellow depict regions where children and
adolescents with 22q11DS who score above 75 on the IQ tests show larger
thickness values than those with 1Q below 65. This association between
thicker cortex and better performances seems to hold true at each age, as no

significant clusters of group by age interaction were evidenced at p <0.05
(statistical maps not shown).

etal,, 2007,2009). However, methodological differences between
these studies and ours, such as scaling of the brain, divergences in
cortical thickness measurements, and absence of correction for
an effect of age in the statistical analyses, may account for a
different direction of the results.

From childhood to adulthood, we observed distinct patterns
of thickness alterations in 22q11DS, corroborating the hypoth-
esis that the dynamic rather than the absolute value of cortical
thickness is more relevant during brain development (Shaw
etal,, 20063, 2007a). In the youngest patients, we observed only
minimal thickness changes, followed by a significantly thicker
cortex in preadolescents with 22q11DS, and by a subsequent
disappearance of the changes by the end of adolescence. As
illustrated in Fig. 2a, the transient thickening mostly affecting
the frontal regions of affected patients supports a delay in the
normal process of cortical thinning with age. Retarded onset of
frontal cortical thinning was also recently observed in ADHD
(Shaw et al, 2007a). But contrarily to their observation of
parallel trajectories of cortical thickness change in ADHD and
controls, the delay observed here in 22q11DS is associated with
deviant trajectories of cortical changes. Indeed, the significant
age by diagnosis interaction (Fig. 1b), the absence of significant
thickening by the end of adolescence (Fig. 2a) and the
longitudinal analyses (Fig. 2b), all provide compelling evidence
for a greater thickness loss after the age of 9 in 22q11DS. An
exaggerated rate of thinning in 22q11DS may reflect a
disturbance in the maturational processes occurring during
adolescence, namely a defect in the programmed synaptic
elimination.

More than two decades ago, Feinberg proposed that a defect
in pruning may be associated with schizophrenia (Feinberg,
1982), a theory which is corroborated by the observation of
decreased neuropil on neuropathological examinations (Arnold,
1999). In neural networks models, hypoconnectivity or mis-
connectivity caused by excessive pruning has been suggested to
decrease functional efficiency and to trigger abnormal percep-
tions comparable to hallucinations (Hoffman and McGlashan,
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a Controls vs non-schizophrenic patients
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Fig. 5. Cortical thickness differences related to schizophrenia in adults. In the controls vs. non-schizophrenic patients, clusters in blue demonstrate thicker cortex in
patients than controls, whereas red/yellow clusters show thinner cortex in patients compared to controls. When controls are compared to schizophrenic patients,
only clusters of thinner cortex (red/yellow) are found in patients. Finally, the comparison within 22q11DS reveals mostly areas of cortical thinning (red/yellow) in

schizophrenic compared to non-schizophrenic patients.

1997; Hoffman and McGlashan, 2006; McGlashan and Hoffman,
2000). However, the association between aberrant pruning and
schizophrenic symptomatology remains difficult to prove in vivo,
e.g. using EEG (Micheloyannis et al., 2006), fMRI (Liu et al., 2008),
or DTI (Kubicki et al., 2007). In this study, we observed that adult
patients with 22q11DS and without schizophrenia demonstrate
preserved thickness as compared to age-matched controls.
Contrarily, patients with schizophrenia show a thinner cortex
as compared to controls and to patients without. Together, these
observations provide a strong support that excessive cortical
thinning during adolescence is selectively associated with the
onset of schizophrenia. A distinct neuroanatomical phenotype in
patients with and without schizophrenia is in agreement with
previous cross-sectional volumetric studies in 22q11 deletion
syndrome (van Amelsvoort et al, 2004). More recently, a
longitudinal study documented that a more drastic the prefrontal
reduction was associated with the emergence of psychotic
symptoms (Gothelf et al., 2005). If future studies following the
course of cortical changes during adolescence confirm that
exaggerated pruning is specifically seen in individuals developing
schizophrenic symptoms, the search for factors interacting with
synaptic pruning may serve as a guide for future targeted
preventions.
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