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a b s t r a c t

This paper presents new results on miniaturized pentacene thin film transistors (TFTs) fabricated on a
spin coated polyimide (PI) film. Patterning steps, which are vital for the integrity and electrical perfor-
mance of organic TFTs, were done using resistless shadow-mask lithography with two high precision
MEMS fabricated stencils, thus avoiding solvents and high temperature processes. Both pentacene and
source–drain (S/D) electrodes were directly patterned through stencils with high accuracy on wafer scale.
eywords:
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tencil lithography
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olyimide

The TFTs have been characterized before and after peeling the flexible PI film off the rigid surface, showing
full transistor functionality in both cases.

© 2010 Elsevier B.V. All rights reserved.
lexible electronics

. Introduction

Polymers enable devices to be flexible and to better withstand
tress and strain under mechanical load. Polymer substrates and
rganic semiconductors are of great interest for large arrays of
hin film transistors (TFTs). Flexible TFTs and circuits have been
idely reported during the last few years [1–5], with transistor

hannel lengths down to 20 �m [6]. In view of further miniaturiza-
ion and process improvements we adopted a previously reported
ligned stencil lithography process [7,8] as a clean, resistless, in-
acuum patterning technique for organic electronic devices on
lastic substrates. Stencil lithography is based on the principle
f the shadow-mask technique, which is a parallel process with
igh spatial resolution, down to sub-micron scale [9–11]. A typical
tencil includes low-stress silicon nitride (SiN) membranes which
ontain design-specific micro- and nanoapertures. The membranes
re released by wet etching chemistry and finally supported by bulk

ilicon (Si). The stencil is aligned and clamped to the substrate, the
equired material is deposited through the stencil, and finally the
tencil is removed, leaving the substrate patterned.
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2. Fabrication

Organic TFTs were fabricated using polyimide (PI) as both flexi-
ble substrate and gate dielectric material, gold (Au) pads as contacts
for gate, source and drain, and pentacene as the organic semicon-
ductor (Fig. 1a and b). A rigid wafer is used to handle the flexible
PI substrate through all the processing steps. Stencil lithography
enables solvent-free local patterning of pentacene followed by the
deposition of the Au source–drain (S/D) top contacts.

2.1. Stencil

Two full-wafer stencils with different designs were fabricated
to locally pattern pentacene and to define S/D as top contacts.
The stencils are made of a 10 cm Si wafer and 500 nm low-stress
SiN as membrane material. The full-wafer stencils include align-
ment marks to position stencil apertures relative to the patterned
gate contacts on the substrate (Fig. 1c). A customized MA/BA6
SUSS MicroTec machine is used as a stencil aligner, with an align-

ment accuracy around 2 �m. The membrane apertures for local
pentacene patterning are rectangles, few micrometers larger than
the channel dimensions. Membrane apertures for S/D top contacts
define channel lengths of 3–20 �m and channel widths of 3–50 �m
(Fig. 1d).
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http://www.elsevier.com/locate/sna
mailto:katrin.sidler@epfl.ch
mailto:juergen.brugger@epfl.ch
dx.doi.org/10.1016/j.sna.2010.04.016


156 K. Sidler et al. / Sensors and Actuators A 162 (2010) 155–159

Fig. 1. (a) Schematic cross section of an organic TFT on a flexible PI substrate. PI is used as gate dielectric, pentacene as organic semiconductor, Au as gate and S/D top contacts.
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b) Schematic top view an organic TFT on a flexible PI substrate including S/D and g
ade of a Si wafer and low-stress SiN as membrane material. Inset: Stencil lithog

ontacts.

.2. Device

The flexible TFTs are fabricated using a full-wafer stencil-based
rocess. The fabrication starts with a 10 cm Si wafer as a rigid
ubstrate to support all the processing steps. The Si wafer is spin
oated with PI (PI2611 from HD MicroSystems) at a speed up to
000 rpm for 40 s to obtain a 12 �m thin layer. The soft bake is
arried out at 100 ◦C and the hard bake at 300 ◦C, respectively. Both
ard and soft bake are done in a N2 environment. Gate contact pads
re defined by standard lift-off processing using UV lithography.
0 nm Ti as an adhesion layer and 100 nm Au as gate material are
vaporated by means of e-beam. 60 wt% PI2610 + NMP (n-methyl-
-pyrrolidone) is spin coated at a speed of 5000 rpm for 40 s to
efine a 230 nm thick dielectric. The soft bake and the hard bake
re also carried out at 100 and 300 ◦C, respectively. The dielectric
hickness was measured at several places on the wafer and found
o be uniform within 12 nm. UV lithography and O2 plasma are
hen used to open the contact pad of the gate electrode. A second
ift-off processing patterns 10 nm thin Ti adhesion pads for S/D con-
acts. A full-wafer stencil with apertures for pentacene deposition is
ligned to the pre-patterned substrate. The deposition of pentacene
epresents a critical step. This very sensitive organic semiconduc-
or cannot be exposed to high temperature or chemical solvents.
hus, stencil lithography is the only viable way to date for local
atterning as well as for any further processing steps. The pen-
acene is thermally evaporated locally through an aligned stencil
bove the gate contacts using a vacuum chamber at room tem-
erature. After removing the stencil, a second full-wafer stencil is
ligned and 100 nm thin Au electrodes as S/D contacts are deposited
hrough the membrane apertures by e-beam evaporation. The sec-
nd stencil is removed from the substrate. After pentacene and
u stencil depositions, both stencils are cleaned of the remaining
aterial before further use. The pentacene is removed by expos-

ng the stencil to an O2 plasma at 500 W for 10 min. The Au film
n the second stencil is removed using a Au etch solution [12–13].
oth stencils were used for four evaporation–cleaning cycles, and
emained functional.

The adhesion of the PI as a flexible substrate to the Si carrier
afer has been optimized to stand all processing, while being low

nough to allow simple detachment by peeling off the film in a
eliable way (Fig. 2).

. Characterization

The gate dielectric was independently tested using

edicated designs on the same wafer as the transistors.
etal–insulator–metal (MIM) structures were fabricated to

est the 230 nm thick PI layer as gate dielectric. The MIM contact
ads are made of Au and have a size of 150 �m × 150 �m. The
haracterization of the gate dielectric was done by measurements
ntacts. Pentacene is locally patterned above the gate contact. (c) Full-wafer stencil
alignment marks. (d) Apertures in a low-stress SiN membrane to pattern S/D top

of capacitance and leakage current vs. applied voltage of the
mentioned test structures. A dielectric strength of 2.3 × 106 V/cm
and a leakage current on the order of 10−9 A/cm2 were obtained
up to fields of 2 × 106 V/cm. A relative permittivity εr,PI = 2.6 ± 0.2
of the PI was extracted.

Pentacene TFTs of various channel widths and lengths (Fig. 3)
were characterized electrically. The output and transfer DC char-
acteristics of a transistor with a channel length L = 10 �m and
a channel width of W = 20 �m show satisfactory levels of drain
current ID, with classical MOSFET-like behavior in the linear and
saturation regimes (Fig. 4). Due to the relatively thick and low-
permittivity PI gate dielectric the gate coupling to the TFT channel
is not strong and, consequently, the sub-threshold slope is higher
than needed for faster electronic circuits. In addition, gate and
drain biases need to be higher than 15 V to achieve an on-current
of 5 nA/�m or higher. From the DC transfer characteristics the
extracted low-field mobility � of fabricated pentacene TFTs is
5.6 × 10−2 cm2/V s and extrapolated threshold voltage VT is −3.8 V.
After detaching the PI substrate including pentacene TFTs off
the wafer, the TFT low-field mobility � slightly decreased to
5.3 × 10−2 cm2/V s, whereas the threshold voltage VT stayed con-
stant.

Channel dimensions of L > W have been realized to explore the
possibilities of stencil lithography. The output and transfer DC char-
acteristics of such a transistor with L = 10 �m and W = 3 �m peeled
off the wafer show MOSFET-like behavior and the drain current
scales down with the channel width (Fig. 5). From the DC transfer
characteristics the extracted low-field mobility � of such a pen-
tacene TFTs is 3.3 × 10−2 cm2/V s and the extrapolated threshold
voltage VT is −3.2 V.

A pentacene TFT with L = 4 �m and W = 50 �m is pushing the
limit to shorter channel lengths with S/D top contact configura-
tion. The characterization of such a pentacene TFT shows as the
previous examples MOSFET-like behavior and a sufficient level
of drain current (Fig. 6). The extracted low-field mobility � is
3.9 × 10−2 cm2/V s, and threshold voltage VT is −3.0 V. Drawbacks
of this pentacene TFT are a less dominant saturation regime in the
output characteristics which are probably caused by defects in the
pentacene layer.

Finally, a pentacene TFT with the same channel length L = 4 �m
and a narrower channel width W = 20 �m is characterized. This
device shows a linear regime but saturation does not occur above
a gate voltage of VG = −40 V. Nevertheless, transfer characteristics
have MOSFET-like behavior. The extracted low-field mobility �
is 0.8 × 10−2 cm2/V s and the extrapolated threshold voltage VT is

−2.5 V, respectively.

Low-field mobilities �, transconductances gm, Ion/Ioff ratios and
extrapolated threshold voltages VT from the presented pentacene
TFTs DC transfer characteristics were extracted using the approach
of Ghibaudo [14] and they are summarized in Table 1.
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Fig. 2. Organic TFTs on a flexible 12 �m thin PI substrate are peeled off the Si wafer after processing.

Fig. 3. Two organic TFT fabricated by a stencil-based process. The dotted line guides the eye where pentacene is locally patterned above the gate contact. S/D top contacts
are aligned to the gate contact.

Fig. 4. (a) ID–VD output characteristics and (b) ID–VG transfer characteristics of a pentacene TFT of 10 �m channel length and 20 �m channel width before and after peeling
the PI substrate off the Si wafer.

F
o

ig. 5. (a) ID–VD output characteristics and (b) ID–VG transfer characteristics of a pentacene
ff the Si wafer.
TFT of 10 �m channel length and 3 �m channel width after peeling the PI substrate
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Fig. 6. (a) ID–VD output characteristics and (b) ID–VG transfer characteristics of a pentacene TFT of 4 �m channel length and 50 �m channel width after peeling the PI substrate
off the Si wafer.

Table 1
Summarized physical parameters extracted from pentacene TFTs DC transfer characteristics.

Channel length [�m] 10 10 10 4 4
Channel width [�m] 20 20 3 50 20

On wafer Peeled off Peeled off Peeled off Peeled off
Low-field mobility � [cm2/V s] 5.6 × 10−2 5.3 × 10−2 3.3 × 10−2 3.9 × 10−2 0.8 × 10−2

Transconductance gm [S] 6.4 × 10−9 5.8 × 10−9 0.2 × 10−9 4.3 × 10−9 0.4 × 10−9
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Ion/Ioff ∼104 ∼104

Extrapolated VT [V] −3.8 −3.8

. Discussion

Applying full-wafer stencil lithography we obtained working
rganic TFT on flexible substrates with channel lengths down to
�m. While classical TFT designs consider channel dimensions
ith L < W, in our experiments, channel dimensions of L > W have

lso been included to explore the possibilities of stencil lithog-
aphy. The fabrication of S/D for short but wide channels (L < W)
oses stability issues for the SiN bridge between the stencil aper-
ures. Therefore, shorter but wider bridges have a higher chance
f survival. Inspections at the end of the stencil fabrication process
ave shown that the SiN bridges between S/D for channel lengths of
�m did not withstand the processing. However, membranes with
pertures for longer channels were stable enough and survived
ll processing. Electrical characterization of TFTs with channels
horter than 3 �m but intact bridges often showed leakage between
/D contacts. The electrical connection between the S/D contacts is
result of the enlargement of the transferred stencil apertures to

he substrate, known as blurring [15].
The alignment accuracy of a full-wafer stencil to a substrate is

imited. First, the curvatures of the stencil and the substrate are dif-
erent. Every step of the process flow changes the internal stress of
he wafers and modifies their curvature. Therefore, the lateral posi-
ions of the patterned structures in the stencil and the substrate
eviates slightly from the design. Second, the alignment of a sten-
il with respect to the substrate is limited by the 2 �m accuracy of
he customized MA/BA6 SUSS MicroTec machine. These constraints
esult in a non-uniform alignment over the full-wafer substrate.
lthough a good alignment can be achieved locally, asymmetric
lignment of pentacene and S/D contacts is observed at other loca-
ions on the same wafer.

Threshold voltages VT change for the different channel widths
nd lengths used in our experiments. The threshold voltage VT
ncreases towards positive values with decreasing channel lengths.

his behavior is similar to short-channel effects in Si MOSFET
evices. This is based on a drain-induced barrier lowering (DIBL),
here a lower gate voltage is required to create a channel [16].
IBL-like behavior of pentacene TFT has been reported for a chan-
el width of 100 �m and channel lengths between 5 and 50 �m
∼7 × 103 ∼103 ∼4 × 102

−3.2 −3.0 −2.5

[17]. Our work shows this phenomenon occurs also for channels as
narrow as 20 �m.

5. Conclusion and outlook

We succeeded in fabricating organic transistors using a 12 �m
thin flexible substrate, a 230 nm thick PI dielectric, locally pat-
terned pentacene and S/D top contacts by aligned full-wafer
stencil lithography. Transistors with channel lengths from 3 to
20 �m showed good MOSFET-like behavior. However, when scal-
ing channel lengths below 5 �m some TFT characteristics started
to become noisy, and also dependent on the device location on
the wafer. We are currently investigating in depth the unifor-
mity across the wafer and identifying the parameters influencing
it. The organic TFT on the flexible PI substrate maintain their
functionality after being peeled off from the rigid Si wafer. The
maximum extracted low-field mobility � of pentacene TFTs is
5.3 × 10−2 cm2/V s, and the minimum threshold voltage VT −2.5 V,
respectively.

In view of improving the transistor characteristics, a double-gate
configuration is in progress [18]. Future investigations also con-
centrate on the reliability of organic TFTs under mechanical load.
Controlled tensile strain will be applied to the flexible PI substrate
for single stretching and cycling experiments.
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