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Introduction
The restricted range of the planned ICRH antennas in ITER is such that minority3He is likely

to be employed. Due to the negligible or reverse current drive contributions from minority3He,
it was thought [1] that MHD control with toroidally propagating waves would not be viable. In
contrast, the new explanation recently been given in Ref. [2] for the sawtooth control mechanism
does not rely on net driven current, and was therefore predicted to function even with minority
3He. Consequently, minority3He experiments in JET have been devised and carried out and
interpreted with simulations in order to demonstrate the viability of sawtooth control using3He
minority in ITER, and to conclusively show that the previously assumed classical mechanism
[3] cannot explain ICRF sawtooth control experiments in JET.

Experimental Results
The objective of the experiment was for the3He resonance to pass slowly through the in-

version radius on the high field side in each discharge. This was technically difficult, because
the fundamental hydrogen resonance needed to remain outside the antenna region (>4m) at
all times. The CMOD-DIF configuration, shown in Fig. 1 (a) for discharge 76189 at 61s, was
chosen because the plasma is shifted significantly over to the low field side. This configuration
permitted the3He resonance to access a q=1 radius which was not compromised in size. The
two pulses shown in Fig. 1 (b) had the slowest field and current ramp in the session, and the
clearest sawtooth control signatures, shown clearly in Figs. 1 (a) and (b). The pulses were iden-
tical, except crucially, 76189 employed 3MW of counter-propagating waves (-90), while 76190
employed 2MW of co-propagating waves (+90).

The minority ion concentration was around 1 percent, giving fast ion tail temperatures in
excess of 200 keV. Sawteeth were strongly affected when the resonance was about 2 to 6 cen-
timetres inside the inversion radius (rinv). Discharge 76189 (-90) demonstrates sawtooth desta-
bilisation (small period) over a width of approximately 3 percent of the minor radius. For 76190
(+90), the signature of the sawtooth stabilisation is slightly broader. Nevertheless, since a con-
trastingly different signatures occur for +90 and -90 phasings, we have demonstrated that the
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Figure 1: Showing (a) the configuration employed for discharges 76189 (+90) and 76190 (-90)

shown in (b). Shown in (c) and (d) are the evolution of the sawtooth period for 76189 and 76190.

sawteeth were not merely modified by a change in the local conductivity, which nevertheless
would not be expected to result in sawteeth that are highly sensitive to resonance position [4].

Verification of negligible fast ion current
The experimental objective of generating negligible net minority ion currents in the core

was apparently achieved. Shown in Fig.2(a) is a SELFO [5] calculation of the fast ion current
density jh = enhZhvh for discharge 76189 at 61s, wherevh is thev‖ moment of the distribution
function. However, the plasma is dragged along with the fast ions, such that the total current is
proportional to a drag coefficientjd such thatjtot = jh× jd.

The fast ion current is subject to momentum conservation, quasi-neutrality and the balance
of collision rates of electrons on all ion species [6], giving

jd = 1−

[

Zh

Zef f
+

mh∑i Zini(1− (Zi/Ze f f)

Zh∑i nimi
−G

(

Zh

Zef f
−

mh∑i niZ2
i

ZhZef f ∑i nimi

)]

,

whereG= 1.46A(Ze f f)ε
1/2, A is a weak function ofZe f f andi denotes ion species other that hot

(h). It is seen thatjh is a dipole, with maximum current around 30 kA/m2. Due to the minority
ion mass numbermh = 3 and chargeZh = 2 and moderateZe f f ≈ 1.8 givingA≈ 1.4, the effect
of the plasma drag, shown in Fig. 2(b) is to reverse the sign of the net current density inside
q = 1, and to neutralise the current density (Fig. 2(c)) and the change in the shear atq = 1.

Simulation of the sawtooth period
In Ref. [2] it was shown that energetic passing ions influence the internal kink mode when

the distribution of ions is asymmetric inv‖, a natural feature of co or counter propagating ICRH
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Figure 2: Showing (a) the passing and trapped ion current densities calculated from SELFO for

76189,(b) the plasma drag coefficientjc, and (c) the small net current density.
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Figure 3: Showing and (a) and (b) the HAGIS evaluated potential energies of the passing and

trappedfast ions for 76189 and 76190.

waves. An analytical derivation showed that the hot passing ion contribution due tov‖ asymme-
try is crudely given by,

ˆδWr1 ≈−
2

πε1

1
ZhΩc

(

2µ0

B2
0

)

T1/2
⊥ T1/2

‖

d < jφ0 >

dr

∣

∣

∣

∣

r1

wherethe ideal growth rateγ/(vA/R0) = −(π/s1)( ˆδWr1 + ˆδWh + ˆδW f ) is proportional to the
sum of the fast ion ˆδWr1 + ˆδWh andbackground plasma fluid potential energŷδWf . In the
3He experiments,T⊥ ≈ 200 keV,B≈ 2.8T andd < jφ0 > /dr can be evaluated by taking the
local radial derivative of the fast ion current dipolejh before the plasma drag is subtracted.
The results compare fairly well with HAGIS [7] simulations shown in Fig. 3 (a) and (b) for
76189 and 76190, although the HAGIS results are more sensitive to resonance location relative
to r1. The HAGIS simulations variedr1 while keeping the resonance position and the fast ion
distribution fixed. Providing the artificialr1 scaling in the fast ion contributions is removed,
similar behaviour to that of the experiments is observed when one looks at sawtooth stability
with respect to the difference between the resonance position and inversion radius. For counter
propagating waves there is a narrow region of strong instability (negativeδW), while for co-
propagating waves there is a steep transition to strong stability.

By allowing the electron and ion density and temperature profiles to evolve during the saw-
tooth ramp, broadly as observed in the experiment, we can simulate the time taken for ideal in-
stability ˆδWr1 + ˆδW f < 0 to occur. Profiles assume full reconnection after previous crash. The
fluid potential energy evolves due to evolving poloidal betaβp, with toroidal and elongation
effects [8] included ˆδW f = ε2

1(δW0 + δW1βp + δW2β 2
p)− ε2

1(3/2)βp(κ − 1)/(κ + 1), where
δW0,1,2 aredefined in e.g. Ref. [9], andκ is the elongation atr1. We have demonstrated that
the sawtooth mechanism for these discharges cannot be sensitive to the shear, and its evolution.
Consequently, we take the shear to be fixed.

The fast ion contribution evaluated by HAGIS is assumed to increase transiently from zero
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Figure 4: Showing (a) the non-stationary inversion radius, and (b) and (c) simulations of the

sawtooth period and comparisons with corresponding measurements for 76189 and 76190.

within a slowing down time of the3He ions, which is consistent with the assumption that the
fast ions must be transported (RF kicks and collisions) withinr1 following a crash. It should be
noted that for, e.g. 76189, the width of the passing particle contribution toδW is around twice
that of the 3 cm variation ofRres (within which the sawteeth are measured to be small). Never-
theless theory and experiment are consistent when one takes into account the measured linearly
decreasing inversion major radius,Rinv with time. Plotted in Fig. 4(a) is a linear temporal fit of
Rinv for sawteeth longer than 150ms, plotted with respect to the3He resonant radius. The fit will
be used to re-scale the data for comparison with simulation, shown in Figs. 4 (b) and (c).

Excluding a few small sawteeth at the end of the discharge, the simulations agree well with
experiments: For the -90 discharge, the passing ion contribution due to parallel asymmetry is
clearly responsible for the deep and narrow well in the sawtooth period. Trapped ions begin to
contribute to the stabilisation only for larger values ofr inv− rres. For the +90 case, the steep
transition to longer sawteeth is governed by the passing ion contribution, i.e the asymmetry
mechanism. As expected, trapped ions can only begin to contribute when they are in sufficient
numbers inside theq = 1 radius. This is increasingly the case for increasingr inv− rres.

Conclusions
Recent JET experiments demonstrate the viability of sawtooth control using ITER relevant

3He minority at low concentration. Simulation of RF induced currents have been confirmed to
be negligible, as expected, but the recently developed fast ion mechanism [2] has been analysed
for these discharges, and shown to be consistent with the sawteeth.
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