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ON THE HODGE DECOMPOSITION IN R"
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ABSTRACT. We prove a version of LP-Hodge decomposition for differen-
tial forms in Euclidean space and a generalization to the class of Lizorkin
currents. Using these tools, we also compute Ly, ,-cohomology of R™.
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1. INTRODUCTION

The classical Hodge decomposition Theorem is a fundamental result in differential
geometry. It says that on a compact Riemannian manifold without boundary, any
L2-differential form can be uniquely decomposed as sum of an exact form plus a
coexact and a harmonic form. The standard proof is obtained by constructing
an inverse G to the Laplacian A on the L?-orthogonal complement to the space of
harmonic forms (see, e.g., [14, Chap. 5.8]). The map G is called the Green operator.
In 1995, Chad Scott proved that this decomposition also holds for LP-differential
forms on a closed manifold [11]. For non compact, complete Riemannian manifolds,
the L?-Hodge decomposition holds under some technical hypothesis (which can be
written in the language of L?-cohomology, see [5, Theorem 14.3]), but the situation
for LP-forms is still an open problem.

The main goal of the present paper is to provide a rigorous statement and proof of
the Hodge decomposition theorem for LP-differential forms in Fuclidean space. Our
proof uses standard techniques from Fourier analysis, but also the more specialized
notion of Lizorkin currents (see Sections 4 and 8.2 below and the books [7], [9]).
In order to keep the paper readable for non specialists we give all the necessary
background starting from the classic notion of tempered distribution, which are
dual objects to rapidly decreasing smooth functions.

Our techniques also provide a Hodge decomposition for temperate currents, which
are differential forms on R™ with coeflicients in the space of temperate distributions
(besides a short mention in the last section of the book [10], temperate currents
seem to have been left aside in the literature). Let us denote by S’(R™, A¥) the
topological vector space of temperate currents of degree k, we then have the fol-
lowing theorem:

Received January 11, 2008.

©2009 Independent University of Moscow

899



900 M. TROYANOV

Theorem 1.1. There is an exact sequence
0 — H(R", AF) = S'(R™, AF) 2 S/(R", A%) — 0, (1.1)

where H(R™, A¥) is the space of differential forms on R™ whose coefficients are
harmonic polynomials.

This theorem is contained in Corollary 7.3 below. We also have an exact sequence
0 — H(R", AF) = P(R", A¥) 2 PR, AF) - 0, (1.2)

where P(R", A¥) is the space of differential forms of degree k on R™ with polynomial
coefficients.

It follows from the sequence (1.1) and the identity A = (d§ + dd) that any
0 € S'(R™, A*) can be written as

0 = Aw = d(éw) + §(dw) (1.3)

for some w € S'(R™, A¥). In particular, any temperate current 6 € S’(R", A¥) can
be decomposed as sum of an exact current plus a coexact current; this is the Hodge—
Kodaira decomposition for such currents. A similar statement holds for polynomial
differential forms.

If one formally introduces the operators

U=60A"t, U*=doA™1,
then the Hodge decomposition (1.3) writes
0 =d(U0) +o(U0). (1.4)

Of course, due to the kernel H(R™, A¥) in the exact sequence (1.1), the operator
A~ as well as U and U*, is not really well defined. However if one restricts
our attention to the space LP(R™, A*) C &'(R", A¥) of differential forms with
coefficients in LP(R™), then

LP(R™, AF) N H(R", A*) = {0}
for any 1 < p < oo because LP(R™) does not contains any non zero polynomials.
The Laplacian A: LP(R", A¥) — S'(R", A¥) is thus injective and the operators U
and U* can be properly defined on appropriate subspaces of S'(R”, A¥).
We can now state the Hodge-Kodaira decomposition for the space LP(R™, A¥):

Theorem 1.2. Let 1 < p < co. The space LP(R™, A*) admits the following direct
sum decomposition
LP(R™, A*) = ELP(R", A*) @ E*LP(R", AF), (1.5)

where ELP(R™, A¥) = LP(R", A¥) NdS'(R", A¥=1T*R"™) is the space of exact cur-
rents belonging to LP and E*LP(R", AF) = LP(R™, AF)N6S' (R, AFTIT*R™) is the
space of coexact currents belonging to LP. Furthermore:

(i) ELP(R™, A¥) and E*LP(R", A¥) are closed subspaces;

(ii) the projections E: LP(R™, A¥) — ELP(R™, A*¥) and E*: LP(R", AF) —

E*LP(R™, A¥) are bounded operators;
(iil) these operators satisfy

E*=FE, E**=FE*, FE+E* =1Id
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(iv) the projection E is self-adjoint, meaning that zf}—lj + % =1, then

(E0, ¢) = (0, E9),
for any 0 € LP(R™, A*) and ¢ € LY(R™, A*) (where (0, ¢) = [5. 0 A *¢);
(v) the same property holds for E*.

We proove this result in Section 7.4.

Corollary 1.3. If%—i—% =1, then E*L1(R™, A*) and ELP(R", A*) are orthogonal,
meaning that

0.0)= [ onvo=0,
for any 0 € ELP(R™, A*) and ¢ € E*L1(R", A¥).

Proof. Since E and E* are projectors on complementary subspaces, we have £ = 6
for any 0 € ELP(R", AF) and E¢ = 0 for any ¢ € E*LI(R", A¥), hence (|¢) =
(E0|¢) = (0|E¢) = (0]0) = 0. O

The previous theorem implies that any differential form 6 € LP(R"™, AF) admits
a Hodge-Kodaira decomposition § = da+ 03, where da = Ef and 68 = E*0 belong
to LP(R™, A¥). The forms o and 3 are in general just temperate distributions, but
more can be said if 1 <p < n:

Theorem 1.4. Let 1 <p<n and q= n"—_’;). There are bounded linear operators

U*: LP(R™, A*) — LYR"™, A*=1) and U: LP(R™, A*) — LYR"™, AF1),
such that E = doU: LP(R", A¥) — ELP(R™, A¥) and E* = §oU*: LP(R"™, A¥) —
E*LP(R™, A¥). In particular, any differential form 6 € LP(R™, A*) can be uniquely
decomposed as a sum of an exact form do plus a co-exact form df with o = U0 €

LiR™, A*=1) and B = U*0 € LI(R"™, AF*+1):
0=FE0+E"0=dUb)+6(U"0) = da+ 0. (1.6)

This theorem is also proved in Section 7.4. We will also see that such a decom-
position exists only if 1 < p <n and q = %.

As said before, our results are proved using various known facts from harmonic
analysis and symbolic calculus in the context of differential forms and currents. We
present all necessary notions in a self contained way, and the paper is organized as
follows: In Section 2, we recall some basic facts about the space S’ of tempered
disitribution, the Fourier transform and the notion of convolution. In Section 3 we
recall the characterization of polynomials as elements in " annihilating some power
of the Laplacian. In Section 4 we introduce the Lizorkin distributions, which are
tempered distributions modulo the space of polynomials. In Section 5, we develop
some symbolic calculus for Lizorkin distributions and apply it to the Riesz potential
and Riesz transform, and in Section 6 we recall some basic facts from LP-harmonic
analysis.

In Sections 2-6, only functions are investigated. In Section 7, we recall some basic
facts about differential forms in R™ and we prove all the results stated in the present
introduction. Section 8 is devoted to some applications of the previous results; in
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particular, we prove three fundamental inequalities concerning differential forms
in R™ and we give a necessary and sufficient condition for the vanishing of the
Lqp-cohomology of R™. The paper ends with a technical appendix devoted to a
calculation of the Fourier transform of the Riesz kernel.

2. THE SPACE OF TEMPERED DISTRIBUTIONS

We will work with the Fourier transform of tempered distributions as they are
developed, e.g., in [10], [13], [14]. Recall that the Schwartz space S = S(R™) of
rapidely decreasing functions is the space of smooth functions f: R" — C such that

[flm.a = 11+ [2))™ 0% f|| Loe mmy < 00

for all m € N and all multi-indices o € N™. This is a Frechet space for the topology
induced by the collection of all semi-norms [-],,q, it is dense in LP(R™) for any
1 < p < oo and it is also a pre-Hilbert space for the inner product (f|g) = (f, 3),
where

(f,9) = - f(z)g(x)de. (2.1)

Recall also that S is an algebra for the multiplication and for the convolution prod-
uct, it is closed under translation, differentiation and multiplication by polynomials.
Of basic importance is the fact that the Fourier transform®

F(HE) = f&) = . F@)e™ da

is an isomorphism F: § — S, with inverse
F o)) = 3(w) = Gz [ Flae™ .

Some of the basic properties of the Fourier transforrn are

(i) F(f=g) = ]-"(f) - F(g) (here and below x is the convolution product);

(i) F(f - 9) = @n F () * Flo):

(iii) F(0;1)(&) = —i& - F(f)(&);

(iv) F(g) = 2m)" F~1(9);
(v) F(fod) = ggF(f)o (A1) for any A € GL,(R).

From Fubini’s Theorem, we have

(Ff,9) =/, fg>:/n Rnf(w)g(y)e”ydxdy- (2.2)

This identity can also be written as

(Fflg) = @m)" (fIF'g) or (FfIFh) = (2m)" (f|h) (2.3)
(just set h = F~lg in the previous identity). The latter formula is the Parseval—
Plancherel identity.

LThere are different conventions for this definition, this affects some constants in the following
formulas. Here, we follow [13].
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The topological dual of S is called the space of tempered distributions and is
denoted by &', and if w € &’ and f € S, the evaluation of w on f will be denoted
by

(w, f) e C.
Any measurable function f such that |f(z)] < C(1 4 |z|™) for some m > 0 and
any function in f € LP(R") defines a tempered distributions® by the formula (2.1).
Distributions with compact support also belong to S.

The space S8’ is a complete locally convex topological vector space when equipped
with the weak* topology, i.e. the smallest topology for which the linear form

w = (w, @)
is continuous for any ¢ € S (note that S’ is not a Frechet space).

Lemma 2.1. If A C R"™ is a non empty closed subset, then
Sy ={weS": supp(w) C A}
is a closed subset in S’.
Proof. Suppose that wy ¢ S'4, then, by definition, there exists a function ¢ € S

such that supp(¢) N A = @ and s = (wg, ¢) > 0. Consider now the set W C &’
defined by

WZ{wGS’: (w, ¢) >§}
By definition of the weak* topology, W is open in §&’. It is clear that WN S/, = @.
We have thus found, for any wo ¢ S’;, an open set such that
wo €W CS\S,.
This means that the complement of §’; is an open subset in S’ O

The differential operator d; acts continuously on &’ by duality:

We can also define the Fourier transform by

(Fuw, f) = (w, Ff)
and its inverse by
(Flw, f) = (w, F71f).
These are continuous isomorhisms F, F~!: &’ — &' which are inverse to each other.
Some important examples of Fourier transforms are
. 2 n 2
Fle™ )@ =@mie ™, F)=(@2n)"6%, Fo)=1,

where §p € S’ is the Dirac measure.

The convolution of two tempered distributions is in general not defined, but we
can define a convolution product

:SxS =&

2More generally, a complex Borel measure p on R™ belongs to &’ if and only if [u(B(0, R)| <
C- (14 R)N for some N € Z and all R > 0.
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by the formula
<f*wa g> - <wa g*f>7

where w € § and f, g € S. Here f(z) = f(—x). Observe that this formula is
consistent with Fubini theorem in the case w € S. The Dirac measure Jg € S’ is
the convolution identity in the sense that

f*50:f
for all f € S.

3. THE LAPLACIAN AND POLYNOMIALS

Let uss denote by P the space of all polynomials P: R” — C. It is a subspace
of § and it has the following important characterization (see [14, Proposition 4.5]):

Proposition 3.1. A tempered distribution [ € S’ is a polynomial if and only if
the support of its Fourier transform is contained in {0}:

P={feS": suppf cC {0}}.
Corollary 3.2. P is a closed subspace of S'.

Proof. This follows directly from the previous proposition and Lemma 2.1. O

The Laplacian on R"™ is the partial differential operator A = — 2?21 8?. For a
distribution w € &', we define Aw € & by

(Aw, ¢) = (w, Ap)
for any ¢ € S. The relation with the Fourier transform is given by
F(Aw)(8) = [¢PF(w).

A distribution w € &', is called harmonic if Aw = 0 and we denote by H the
space of harmonic tempered distributions, i.e., the kernel of A:

H={weS": Aw=0}.

Proposition 3.3. A tempered distribution f € S’ is a polynomial if and only if
A™f =0 for some m € N.

Proof. 1t is obvious that if f € P is a polynomial of degree m, then A™f = 0.
Conversely, if A™f =0, then

0=F(A™f)(E) = ()" f(€),
hence supp f C {0}. O

We just proved that H = ker A C P. A consequence of this result is the following
generalization of Liouville’s theorem:

Corollary 3.4.
L*@R")NkerA=R and LP(R")NkerA={0} forl<p< oo. O
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Observe however that not every globally defined harmonic function in R”™ is
a polynomial, for instance the function h(x) = sin(z;)sinh(zz) is harmonic. Of
course h ¢ S'.

Theorem 3.5. The Laplacian A: P — P is surjective; we thus have an ezxact
sequence

0—H—P 2P0

Proof. A computation shows that if m € N and h € P is a homogenous function of
degree v (i.e., h(tx) = t"h(x) for t > 0), then

A(|lz"*2h(@)) = |z T2AR(@) + enm |2 h(@), (3.1)

where ¢ m.» = 2(m+1)(2m+2v+n) (use Euler’s formula for homogenous functions:
> x;0;h = v-h). On the other hand, a basic result about polynomials (see [2]) says
that any f € P can be written as a finite sum

F@) =" am | hno (), (3.2)

where h,, , € H is a homogenous polynomial of degree v Now it is clear from (3.1)
that f = Ag with

Um,v m
gla) = Y P (). (3.3)
The surjectivity of A: P — P follows. O

Remark. The paper [2] gives an explicit procedure to compute the decomposition
(3.2), the proof thus shows that the inverse Laplacian A~!: P — P given by (3.3)
is algorithmically computable.

4. THE LIZORKIN SPACE AND ITS FOURIER IMAGE

Definition. We introduce two subspaces ® and ¥ of S defined as follow:

o= ﬂ A™(S) and ¥ ={ypeS:0"Y(0)=0, for any pp € N"}.
m=0
The space ® is called the Lizorkin space, basic references on this space are [7], [9].

We shall see below that W is the Fourier dual of ®, that is the image of ® under
the Fourier transform.

Theorem 4.1. The restriction of the Laplacian to the Lizorkin space is a bijection
A: P — P,

Proof. The Laplacian is injective on S because kerANS € PNS = {0} by
proposition 3.3. To prove the surjectivity, consider an arbitrary element ¢ € ®.
By definition, for any m € N there exists g, € S such that A™g,, = ¢. Ob-
serve that A(A™gm41 — 1) = ¢ — ¢ = 0. Since A is injective on S, we have
g1 = A" g1 € A™(S). Tt follows that g; € ® and therefore p = Ag; € A®. [
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Proposition 4.2. For any rapidly decreasing function 1 € S, the following condi-
tions are equivalent:

(a) ¥ €;

(b) (&) = o(|€]*) as €] — O for any multi-indice p € N™ and any t > 0;

(c) |€|72™ € S for any m € N.

Proof. The implication (b) = (a) is obvious and (a) = (b) is clear by Taylor expan-
sion.

To prove that (b)=(c), observe that condition (b), together with the Leibniz
rule, implies that the function |£|~2™4) vanishes at the origin and is continuous as
well as all its derivatives. It is then clear that [|72™1) € S.

To prove (c)=>(a), observe that condition (c) says that 1 = [£]?*"p for some
function p € 8. By the Leibniz rule, we then have 9™ (0) = 9™ (£ p)(0) = 0. O

Proposition 4.3. We have F(®) = .

Proof. For any ¢ € ® and m € N there exists ¢,, € S such that A"y, = ¢.
The Fourier transform of this relation writes @ = (—1)™|£|*" @y, thus [£|72™mF =
(=)@, € S for any integer m and it follows from condition (c¢) in the previous
proposition that @ € ¥, hence F(®) C V.

To prove the opposite inclusion, we consider a function ¥ € W. Using again
condition (c¢) in the previous proposition, we know that for any m € N, we can
write ¢ = |£|*™4),, for some function v, € S. We then have

FH W) = FHIEP™ Ym) = (1) A™(F " (vm)),
hence F~1(¢) € (_g A™(S) = . O
Corollary 4.4. For any ¢ € S, we have

peP® & (P, p)=0 for any polynomial P € P.
Proof. For any ¢ € S and u € N", we have

(at, o) = /n aPo(z) de =i~ /n (iz) (z)e™ 0 dx = i~ 1M9"(0).

Thus (P, ¢) = 0 for any polynomial if and only if 9#$(0) = 0 for any u € N i.e.,
if € ¥ and we conclude by the previous proposition. (I

Proposition 4.5. U is a closed ideal of S.

Proof. Tt is clear from the Leibniz rule that if ¢» € ¥ and f € S, then 0#(f4)(0) =0
for any p© € N, hence ¥ C § is an ideal. To show that ¥ C § is closed, let us
consider a sequence {1;} C ¥ converging to ¢y € S. This means that for any
p e N" m e N, we have sup,epn (1 + |z|)™ |0#1) — 0*1;| — 0 as j — oo. But then
0" (0) = lim; o 0"1;(0) = 0. O

Since F: § — S is a linear homeomorphism sending ® to ¥, we immediately
conclude that

Corollary 4.6. ® is a closed subspace of S and it is an ideal for the convolution.
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The statement that ® C S is a convolution ideal means that if p € ® and f € S,
then o x f = f * @ € ®. This can also be seen directly from the definition of @,
indeed, if ¢ € ®, then for any m € N there exists g,, € S such that A™g,, = ¢ and
we have

AT (f # gm) = [ (A gm) = [ = .
Thus f ¢ € A™(S), for any m, i.e., f* ¢ € P.
Corollary 4.7. A: & — ® is a homeomorphism.

Proof. We already know that A: ® — & is bijective. The inverse A™!: & — ® is
given by the formula

A7 p) = FHEI 2 Fo).

Since the map ¢ — [£]?¢ is clearly a self-homeomorphism of ¥, we obtain the
continuity of A™1: & — ®. O

Proposition 4.8. (A) The topological dual ®" of ® is the quotient of the space of
tempered distribution modulo the polynomials

o =S /P.

(B) The topological dual O’ of W is the quotient of the space of tempered distri-
bution modulo the Fourier transforms of polynomials

vV =S'/F(P).

Proof. The closed subspace P C S’ coincides with ®+ = {w € §': w(®) = 0} and
UL = F(P). The Proposition follows now from standard results from functional
analysis (see, e.g., [3, Chap. V, Th. 2.3]). O

An element w € @' is thus represented by a tempered distribution which is
only well defined up to a polynomial. The Fourier transform F: &' — &’ gives an
isomorphism between these quotients which we continue to denote by F: &' — ¥,
We have

(Fw, ) = (w, F)

for any w € ®" and ¢ € P.

5. SOME SYMBOLIC CALCULUS

5.1. Operators on ¥’ and multipliers. In this section, we study the operators
M : ¥ — ¥’ which can be represented by a multiplication.

Definitions. 1. By an operator M: ¥ — ¥’ we mean a continuous linear map.
Concretely, an operator associates to an element w € S’ another tempered dis-
tribution Mw € S’ which is well defined modulo F(P). The linearity means
that M(aywy + asws) = a1 M (wy) + ae M (wz) modulo F(P) for any a1, as € C,
wy, we € 8" and the continuity means that (w;, ¥) — (w, ¥) for any ¢ € ¥ implies
(Mw;, ) — (Mw, ¢). If M has a continuous inverse, then we say that it is an
isomorphism.
2. We denote by Op(¥’) the algebra of all operators ¥/ — ¥,
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We will discuss a special class of operators on ¥, obtained by multiplication with
a suitable function which we now introduce:

Definition. Let My be the space of all functions o € C°(R™\ {0}, C) such that
for any multi-index p € N™, there exists constants m € N and C' > 0 with
0o (E)] < O™ +1€17™)
for any £ € R™\ {0}. An element of My is called a W'-multiplier.
It is that clear that S € My, and P C My, other typical elements of My
are the functions log|¢| and [¢|* (for any o € C). Observe also that My is a
commutative algebra.

The units in My, i.e., the group of invertible elements, will be denoted by
UMy, hence

UMy = {UEM\I//: % GM\IJ’}.

Elements in My are not tempered distributions, however, we have the following
important lemma:

Lemma 5.1. VU is a module over the algebra My, that is for any o € My and
any ¢ € ¥, we have o -9 € U.

Proof. By Proposition 4.2, we know that an element i) € S belongs to ¥ if and
only if 9"1(&) = o(|¢]") as |¢] — 0 for any multi-indice p € N™ and any ¢ > 0. The
proof of the lemma follows now easily from the Leibniz rule. O

By duality, we can now associate to any ¢ € My an operator M, € Op(¥’)
defined by
(Mog, ¥) = (g, o) (5.1)

for any g € ¥’ and ¢ € 0.

Lemma 5.2. This correspondence defines a map
M: M\I// — Op(\I//)
o— M,

which is a continuous homomorphism of algebras. In particular My, 5, = My, 0 My,
and M, is invertible if and only if o € UMy,

The proof is elementary. (]

Definition. An operator M, € Op(¥’) of this type is called a multiplier in ¥'; the
set of those multipliers is denoted by M Op(¥’), it is a commutative subalgebra of
Op(T).

Observe that, by Lemma 5.1, ¥ C ¥’ is invariant under any multiplier in ¥’
(i.e., My(¥) C ¥ for any M, € M Op(¥’)). The converse is in fact also true. The
multiplication M, () = o -1 is a continuous operator on ¥’ if and only if o € My

(see [3]).
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5.2. Operators on ®’ and their symbols. In this section, we study the opera-
tors T': ® — @’ which can be represented on the Fourier side by a multiplication.
We already know the Laplacian:

FlAw) = [¢2F(w).

Definitions. 1. An operator T: ® — ®’, is a continuous linear map, it associates
to an element w € S’ another tempered distribution Tw € S’ which is well defined
up to a polynomial.

2. We denote by Op(®’) the algebra of all operators &' — @',

An obvious consequence of the previous section is the following
Proposition 5.3. For any 0 € My, the map Ty: ® — &' defined by
T,=F toM,oF
belongs to Op(®’). If 0 € UMy, then T, is an isomorphism of ®. O

Definition. Operators of this type are called Fourier multipliers in ®. We denote
the set of those operators by FM Op(d’).

ET=T,=F1oM,oF € FMOp(®'), then the function o € My is the
symbol of T, and we write

o = Smb(T).

Thus, to say that T' € FM Op(®’) means that for any Lizorkin distribution
f € ® and any ¢ € ®, we have

(Tf, @)= (f, F (o F ),

where 0 = Smb(T"). Observe that FMOp(P’) is a commutative algebra and the
map Mg — FM Op(®’) given by o — T, is an isomorphism whose inverse is give
by the symbol map:

Smb: FM Op(®') — FMy:

o—T,.
Examples. (i) The symbol of the identity is 1;
(ii) Smb(T o U) = Smb(T") - Smb(U);

i) The derivative 0; € FMOp(®') and Smb(9;) = —i&;;
iv) The symbol of the Laplacian is Smb(A) = |¢|%;

) More generally, T is a partial differential operator with constant coefficients
if and only if P = Smb(T) € P;
(vi) If T(w) = ¢ * w for some ¢ € S, then Smb(T) = @.

Any operator T, € FM Op(®’) is self-adjoint in the following sense:
Proposition 5.4. For any T, € FM Op(®’), we have T,(®) C ® and
(Tow, @) = (w, Top)
for allw € ® and p € .



910 M. TROYANOV

Proof. The fact that T,,(®) C ® follows from Lemma 5.1 and we have
(Tow, p) = (F~' o M, o F(w), ¢)
— (2m) ™" (M, 0 Flw), F(9))
— (2m)" (F(w), My o F(p))
= <w, Flo M, of((p)>
= (w, Typ) . O

5.3. The Riesz potential and the Riesz operator

Definitions. The Riesz potential on ®' of order € R is the operator I* €
FMOp(P') whose symbol is

Smb(I%) = ¢,
Theorem 5.5. A: & — &' s an isomorphism with inverse I?: ® — &',
Proof. We have Smb(A) = [£|?, hence Smb(I%2 0 A) = |¢[72 - [£]? = 1. O
Corollary 5.6. A: S’ — S’ is surjective and we we thus have an exact sequence
0-H—8 28 —0.

Proof. The previous theorem says that for any f € &', we can find a distribution
g € 8’ such that

Ag=f in & =S8/P.
This means that there exists a polynomial P € P such that Ag= f+ P in §&’. By
Theorem 3.5, we can find a polynomial Q € P such that AQ = P and it is now
clear that

Alg—Q)=f in &.
This proves that A(S") =§'. O

Remark. The distribution ¢ in the above reasoning is only well defined in @’ (by
the formula g = I?f). In the space S’ it is only well defined up to a polynomial
and we have no constructive inverse map A~!: §' — S’

Definition. The Riesz operator in direction j is the operator R; € FM Op(P’)
defined by
Rj = -1t 00; =—0; ol

Its symbol is

Smb(R;) = — Smb(I') Smb(9;) = zg—]

4
Proposition 5.7. The Riesz potential and the Riesz operator enjoy the following
properties:
(i) 1° = 1d;
(ii) I®oIP =IP o I® = [**5,
(ii) 17> =A=3,07;
(iv) Aol* =10 A =]%"2
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(V) RZ o Rj = Rj o RZ = 1281'8]';
(Vl) Z_j:l R? = —Id;
(vii) (I%p, n) = (¢, I*n).

The proof is straightforward. O
The Riesz potential I* € FM Op(®’) is sometimes denoted by I® = A=*/2 the

previous lemma justifies this notation.

5.4. Convolution operators in 8. Let T'= T, € FM Op(®’) be an operator
such that o = Smb(T") € &' N M, then we can define another operator 7: § — S’
by the convolution

To = (F'o) .
The next lemma is easy to check.
Lemma 5.8. The relation between T and T is given by
T(p) =T(p)  (mod P)

for any o € ®. In other words, the following diagram commutes:

s—T. g

o

T O
Theorem 5.9. The symbol of the Riesz potential I1¢ of order a belongs to S’ if
a < n.

If 0 < a < n, then I* defines a convolution operator S — S’ by

1% = ko x @,
where ko, is the Riesz kernel
1
ka(r) = ———=[a]*™"
v(n, a)
The proof is given in the appendix. (]

The Riesz potential I*: § — &’ is thus given by the explicit formula

o () = — L ¢(y)
) = Ty o T 2
if 0 < a<n,and
oy — 1 L
rple) = s [ ol log 7o dy (53)

if @ =n.
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6. THE LIZORKIN SPACE AND HARMONIC ANALYSIS IN LP(R"™)
Proposition 6.1. The subspace & C LP(R™) is dense 1 < p < 0.
The proof can be found in [9, Theorem 2.7].

Proposition 6.2. The space LP(R™) injects in ®" for any 1 < p < oco. More
generally, LP(R™) + LY(R™) injects in ®' if p+ q < co.

This result is a direct consequence of the following lemma:

Lemma 6.3. Let f, g € LL _(R™) NS’ be two locally integrable functions such that

loc
Az e R": |f(z) —g(x)] = a} < oo,
for some a > 0 (here \"™ is the Lebesque measure). Assume that f and g coincide
n @, ie.,
fodx = / gpdz
]Rn n
for any o € ®. Then (f — g) is almost everywhere constant in R™.

Proof. This is Lemma 3.8 in [7]. We repeat the proof, which is very short. Since
f and g coincide in @', we have P = (f — ¢g) € P; by hypothesis, we have A"{x €
R™: |P(z)| > a} < oo, this is only possible if P = ¢ is a constant such that
le| < a. O

Remark. The argument also shows that L>(R")/R injects in ¢.
We summarize the known inclusions in the following lemma:

Lemma 6.4. We have the following inclusions (1 < p < c0)
PCSCILP(RY)Cd =8P
Furthermore ® is dense in LP (for the LP norm) and in ®' (for the weak topology).
O

Lemma 6.5. If 0 < o < n, then the Riesz kernel k,, is a tempered distribution.
In fact
ko € (L"(R™) + L*(R™)) C S’
for any r, s > 1 such that
1 1
0<-<l-T<=<1,
S n or

Proof. Let x be the characteristic function of the unit ball and set K7 = x g ko
and Ky = (ko — K1) = (1 — xg) ka(x). It is easy to check that Ky € L"(R™) for
any 1 <r < = and Ky € L*(R") for any —"— < s < 0o, thus

ko = K1+ Ko € L"(R™) + L*(R™). O
Corollary 6.6. If 0 < a < n, then the Riesz potential

(o) = ko x plo) =~ | b))

v, @) Jen |z —ynme
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defines a bounded operator
I9: LP(R") — (L% (R") + L% (R"))
foranyl<p<ooandl < ¢ <q2<oosuchthatqi2<%—

a 1
n q1’

In particular, ¢ is a continuous operator I*: L?(R™) — &’ for any 0 < a < n.

Proof. Let us set r = (pg1 —p—q)/(pq1) and s = (pgs —p — q)/(pgz), we then have

1 1 1 1 1 1
St ——2>1-2 and c=14-—--<1-2% (6.1)
r G p n s G P n
By the previous lemma, we may write k, = K; + K2 with Ky € L"(R™) and
Ky € L5(R").

The Young inequality for convolutions says that under the condition (6.1), we
have

1Ky fllo < [ Kallerllflle and || Ky fllne < [ Kallze|[flLr
Since k., = K1 + K», we conclude that
ko s flla < (1K llr + 1K2]l2e) [1F]le- 0
If p € (1, n/«), then we have the following much deeper result:

Theorem 6.7 (Hardy-Littlewood—Sobolev). The Riesz potential defines a bounded
operator

L=)

I*: LP(R™) — LY(R")
if and only if a € (0, n), 1 <p <n/a and g = ;=L=. The formulas (5.2) and (5.3)
still hold in this case.

References for this important result are [12, page 119], [9, Th. 2.2] or [, Th. 3.14].
Recall that we defined the Riesz transform in direction j to be the operator
Rj = —1I'09;. Its symbol is p; = i|¢|71¢;, and for any ¢ € S, we thus have
F(Ri(p)) = p; F (o).
The Riesz transform of a Lizorkin distribution f € ® is characterized by

(Ri(@)(f), @) = {f, FH(p; F(p)))

for any ¢ € S.

The function p; does not belong to the Schwartz space S and thus its (inverse)
Fourier transform j; = F~!(p;) is not a priori well defined. We can therefore not
write the Riesz transform as a convolution. However, R; can be represented as a
singular integral:

Theorem 6.8 (Calderon—Zygmund—Cotlar). The Riesz transform Rj: S — S’ is
given by the formula

(L T — s
Ryt = im iy [ o ay (62)

Furthermore, R; extends as a bounded operator
R;: LP(R") — LP(R")
for all 1 < p < oo and the formula (6.2) still holds in this case.
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This deep result is a consequence of Sections 11.4.2, TI1.1.2 and II1.3.3 in the
book of Stein [12], see also [1]. O

Let us denote by ¢, = [|Rj|lzr—rr the norm of the operator R;: LP(R") —
LP(R™), it is clearly independant of j. The exact value of ¢, is known, see [6, page
304]; let us only stress that

lim ¢, = lim ¢, = oo.

p—1 p—o0
Remark. For p =1 and p = oo, the Riesz transform is still a bounded operator in
appropriate function spaces, namely

R;: LY(R™) — weak L'(R™)

Rj: L*(R") — BMO(R")
are bounded operators. There are also results on weighted LP spaces satisfying a

Muckenhoupt condition.

6.1. Applications of these LP bounds. To illustrate the power of the two previ-
ous theorems, we give below very short proofs of two important results for functions
in R™ (cf. [12, pages 59 and 126]).

Theorem 6.9 (Sobolev—Gagliardo—Nirenberg). Let 1 < p, ¢ < oo be such that
1

i % = % There exists a finite constant C' < oo such that for any f € LP(R™),

we have .
£l Lomy < C Y110 fllLoqn). (6.3)
j=1

Remarks. 1. This inequality also holds for p = 1, see [12, Chap. V §2.5 pp.
128-130], but not for p = co.

2. A homogeneity argument shows that the inequality (6.3) cannot hold with a
finite constant if % - % # 1 (see the argument in the proof of Theorem 8.2 below).

Proof. Combining the identity —Id = Y, R} = 37, I' o R; 0 9; with Theorems 6.7
and 6.8, we obtain

£l oy < ap > I1R;0j fllony < apep Y1105 fllo(ern)- O
j=1 j=1

Theorem 6.10 (A priori estimates for the Laplacian). The following inequality
holds for any f € ®" and any p, v =1, ..., n:

104 © B0 Fll oy < AL oo gan) (6.4)

Recall that ¢, < 0 if and only if 1 < p < 0.
Proof. This result is an obvious consequence of the definition of ¢, and the identity
0p00,=-R,0R,0A. O

Remark. This result holds for any f € L*(R"), 1 < s < oo, since L*(R™) C ¢.
But it does not hold for arbitrary functions f € S'(R™), for instance the harmonic
polynomial f(x, y) = xy € H satisfies Af =0, but 9,0, f =1 # 0.
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7. APPLICATIONS TO DIFFERENTIAL FORMS

7.1. Differential forms in R™. We denote by A¥ = A¥(R"*) the vector space of
antisymmetric multinear k-forms on R". Recall that dim(A*) = (}) and a basis of
this space is given by
{dl‘il Adz;, /\---/\d:z:ik:il <dg < - <’L'k}.

A smooth differential form 6 of degree k on R™ is simply a smooth function on R"
with values in A*. It is thus uniquely represented as

9 = Z ail__,ik (1‘)d1‘11 A dZL'Z'2 A A dl‘ik, (71)

i1 <ig <--<ip

where the coefficients a;, _;, are smooth functions. We denote by C>°(R", A¥) the
space of smooth differential forms of degree k on R".

We will also consider later other spaces of differential forms on R™ such as
LP(R™, A*) or S(R™, A¥). The form (7.1) belongs to S(R", A¥) if its coefficients
ai,. i, are rapidly decreasing functions and 0 € LP(R™, AF) if all a;, _;, € LP(R").

We shall study a number of operators on differential forms. Observe first that
the operators 0, = %, I and R, are well defined on appropriate classes of

differential forms by acting on the coefficients a;, .. 4, of the form (7.1).
The Hodge star operator is the linear map x: A¥ — A% defined by the condition

(daxiy N ANdag, ) AN (dxgy N+ ANday,) = dey Adxg A+ Ndxy,
for any i1 < i9 < ...i; observe that
* = (=1)F"=P1d  on A*. (7.2)
The x operator naturally extends to the space of differential forms with any kind
of coefficients.
The interior product of the k-form 6 with the vector X is the (k—1)-form defined
by
1,X0(v1, ceey kal) = Q(X, Vly ovny kal)-
We denote by ¢, = ¢ 2 the interior product with % and by g, the exterior
Tu
product with dx,,:
€, 0 =dx, NO.
Lemma 7.1. The following holds on k-forms:
Ly = (1) s g, % (7.3)
Proof. We first show that for an arbitrary differential form «, we have
tu(xa) =*x(aNdzy,). (7.4)

It is enough to prove this identity for o = dxj, A--- Adxj, . Observe that if p = j,
for some r € {1, 2, ..., k}, then both sides of the equation (7.4) trivially vanish:
we thus assume p # j,. for all  and set 5 = % (o A dz,,). Then, by definition

aANdr, NG =dri Ndra A--- Ndzy,
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this relation clearly implies o = dx,, A 3, and the equation (7.4) is now easy to
check:

tu(xa) = vu(dey, A B) = = *(a ANdzy,).
Let us now consider an arbitrary k—form 6, and let a = (—1)k("_k) *0, i.e., xa=0.
Using (7.4), we have
1u(0) = 1y (xa) = % (@ Ndz,) = (—1)"F % (dz, A @)
= (—1)"*x(epa) = ()" F (=1 x (e, % )
= (=1 x (g, % 0). O

We now define the ezterior differential operator by

d=> €,00,=> o€, (7.5)
p=1 p=1

and the codifferential operator by

n n

§== 1,00,==> o, (7.6)

p=1 p=1
It follows from Lemma 7.1, that for any k-form 6, we have
60 = (—1)"F L 4 d g (7.7)
If 6 has the representation (7.1) then df is given by
o= > dai, i, Adzi, Adi, AL da,
i1 <<

and d0 is given by

aa —
Z Z oL '“dxil/\~~/\dxij/\~~/\dzik;

i< <ip j=1
A direct computation show that these operators enjoy the following properties:
dod=606=0
and
n
A=(d+0)’=dobd+dod=- 0.
p=1

7.2. Temperate and Lizorkin currents
Definitions. A rapidly decreasing differential form of degree k is an element 6 €
S(R™, A¥), i.e., a differential form with coefficients in the Schwartz space S.

A temperate current f of degree k is a continuous linear form on S(R", A¥),

see [10]. The evaluation of the temperate current f on the differential form 0 €
S(R™, A¥) is denoted by

(f,0)yeC
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the continuity of f means that if {6;} C S(R™, A¥) is a sequence of rapidly decreas-
ing differential forms such that 6; converges to § € S(R™, A¥) (i.e., all coefficients
converge in the Schwartz space §), then

(. 6) = lim (. 6,).

The space of temperate currents is denoted by S’(R™, A¥). Any differential form
f € LP(R™, A¥) determines a temperate current by the formula

(f,0)= [ fAxob.

RTL
This formula defines an embedding LP(R", A¥) c S'(R", A¥).

Another important class of temperate currents is given by the space P(R"™, A¥)
of differential forms with polynomial coefficients. We may thus define the space of
Lizorkin forms as

B(R", A*) = {p € S(R™, A¥): (P, ¢) = 0 for all P € P(R™, A¥)}.
The dual space is called the space of Lizorkin currents, it coincides with the quotient
(R, AF) = S'(R™, A*)/P(R™, A¥),
we can think of a Lizorkin current as a differential forms with coefficients in ®’.
Given a Lizorkin current f € ®(R", A*), we define its differential df, its cod-
ifferential 0 f, its Laplacian and its Riesz potential of order « by the following
formulas
(df, o) =(f, 00),  (6f, @) = ([, do),
(Af, @) =(f, Ap), ({If, @) =(f, I%p)
for all p € ®(R", A¥). These are continuous operators ® (R", A¥) — ®'(R", A¥).
Observe that the Riesz potential commutes with § and d:
S =1%5  and  dI? =1%d,
and that we have AI? = I2A = Id. In particular, we have the

Theorem 7.2. The Laplacian A: ® (R™, A¥) — &' (R™, A*) is an isomorphism
with inverse I2.

Proof. This follows immediately from Theorem 5.5. (]
Corollary 7.3. We have the exact sequences

0 — H(R", AF) — P(R", A*) 2 P(R™, AF) — 0,
and

0 — H(R", AF) = S'(R", AF) 25 S/(R", A¥) — 0.

In particular, any temperate current 6 € S'(R™, A¥) is the sum of an exact plus a
coezact current, more precisely we have

0 = Aw = 6(dw) + d(dw)

for some w € S'(R™, AF), well defined up to a harmonic current.
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Proof. The first exact sequence follows from Theorem 3.5 and the second one is
proved as in Corollary 5.6, using the previous theorem. O

Remark. Observe that the situation is very different from the L2-theory (or any
other Hilbert space model); in L?, we have Im A = (ker A)~; in particular ker A = 0
if A is onto, but in S’(R"™, A¥), the Laplacian is onto while ker A = H(R", A¥) # 0.

7.3. The Riesz transform on currents

Definitions. We define the Riesz transform on ®(R™, A¥) by

R=dol'=I'od=Y e,0R, (7.8)
p=1
and its adjoint
R'=d0l'=I"06==) 1,0R,. (7.9)
p=1

We also define four additional operators E, E*, U, U*: ®'(R", A¥) — &'(R", A¥)
by
E=dofol?=RoR*, E*=dodol>=R"oR, (7.10)

and
U=I'oR*=1%?06, U*=I'oR=1*0d. (7.11)

Proposition 7.4. These operators are continuous on ® (R™, A*). They enjoy the
following properties:

(a) E+ E*=RoR*+R*oR=Ao0I2=1d;

)
)
) EoE=FE and E* o E* = E*;

) E=1d on kerd and E* = 1d on ker 0;

) ImE =ker(E*) =Imd =kerd and Im E* =ker E =Im{ = ker §;
)

(RO, ¢) = (0, R*p) and (R*0, @) = (f0, Rep),
for any 0 € ® (R™, A*) and ¢ € ®(R™, A¥), and likewise for U;

(h) E and E* are self-adjoint;

(i) E=doU and E* =50 U*.
Proof. (a) Follows from the definitions and Id = Ao I? = (d6 + dd) o [? = E + E*.

(b) If 60 = 0, then E0 = d51?°60 = [dd6 = 0, hence E* = 0 on kerd. A
similar argument shows that £* = 0 on kerd.

(c) By definition Fo E* =d§1*§dI* = I*d§*d = 0. The proof that E*o E =0
is the same.

(d) This follows from (a) and (c), since

E=Fold=FoFE+FEoE"=FokFE.

(e) This follows immediately from (a) and (b).
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(f) From Fo E = E, we have § € Im E if and only if § = Ef. Since E+ E* = Id,
we have E*0 = (Id — E)f = 0, thus Im E = ker E*. Furthermore, using E = d§I?
and Property (e), we see that

ImFE CImd C kerd = E(kerd) C Im E.
This shows that Im £ = Imd = kerd. The proof that Im £* = ker E = Im d = ker ¢
is similar.
(g) We have
(RO, ) = (dI'0, ) = (I'0, 5p) = (0, I'6p) = (6, R* ).

The proof that (U, U*) is an adjoints pair is similar, using U = I?4.
(h) Tt follows that F is selfadjoint, for

(E0, p) = (RR*0, p) = (R*0, R*p) = (0, RR™¢) = (0, Ey),

and likewise for E*.
(i) We have dU = dI%§ = d§I? = E and §U* = §1%d = §dI* = E*. O

Let us denote by
E®'(R", AF) = d®'(R™, A*71)
the space of exact Lizorkin currents of degree k and by
E*®'(R", AF) = 60’ (R", AFT1)
the space of coexact Lizorkin currents of degree k.
Corollary 7.5. These subspaces can be expressed as
E®' (R", A*) = Im(E) = ker E* = ker[d: ®'(R", AF) — &' (R", AFF1)]
and
E*®'(R", A¥) = Tm(E*) = ker E = ker[§: ®'(R™, A*) — &'(R", A*~1)].

In particular E®'(R™, A¥) and E*®'(R", A*) are closed subspaces in ® (R™, A¥)
and we have a direct sum decomposition

®'(R", A*) = E®'(R", A*) @ E*®'(R™, AF).
Proof. This is obvious from the previous proposition. (I

Remarks. 1. Thus E and E* are the projections of ® (R", A¥) onto E®’(R", A¥)
and E*®'(R", A¥) respectively. One says that E is the exvact part of § € &' (R™, A¥)
and E*0 is its coexact part. The formula

0=FE0+ E*0

is the Hodge—Kodaira decomposition of the Lizorkin distribution 6.
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2. The last part says in particular that there is no cohomology in ®(R", A¥),

ie.,

-—>(I)I(Rn, Ak—l) i(I)/(R", Ak) i)(I)I(Rn, Ak—i—l) IR

is an exact sequence.

3. Using the equalities U = I? 06 and U* = I? od, and observing that E = doU
and E* = §oU*, one can write the Hodge-Kodaira decomposition of § € ®'(R", A¥)
as

0 = d(U0) + 6(U*0).

7.4. Proof of Theorems 1.2 and 1.4. The operators defined in the previous
section are well behaved on LP:

Theorem 7.6. The Riesz transform and its dual
R, R*: LP(R", A*) — LP(R"™, A*71)
are bounded operators on LP for any 1 < p < oco.

Proof. The boundedness of these operators on LP follows from Theorem 6.8 and
the expansions (7.8) and (7.9). O

Theorem 7.7. The operators U* and U restrict as bounded operators
U*, U: LP(R", AF) — LY(R™, AF71),

if and only if }17 — % .

Proof. This follows from Theorems 6.7. (]

We can now prove the theorems stated in the introduction.

Proof of Theorem 1.2. The equation (1.5) is a trivial consequence of the equality
E+FE* =1d and Im(E)NIm(E*) = {0}. We know from Theorem 7.6, that the Riesz
transform and its dual are well defined bounded operators R, R*: LP(R", A*¥) —
LP(R™, A¥=1). The operators £ = R o R* and E* = R* o R are then also clearly
bounded on LP(R™, A¥=1). The algebraic properties (iii), (iv) and (v) in Theorem
1.2 are proved in Proposition 7.4, and we know that ELP(R"™, A¥) Cc LP(R", A¥)
is a closed subspace, since it coincides with the kernel of the bounded operator
E*: LP(R™, AF) — LP(R™, A¥). Likewise E*LP(R", A*) = ker E is also bounded
in LP(R", A®). O

Proof of Theorem 1.4. By Theorem 7.7, the operators U*, U restrict as bounded
operators on L(R"™, A¥=1). The relations dU = E and dU* = E* are given in
Proposition 7.4. O
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8. SOME ADDITIONAL APPLICATIONS
8.1. The Gaffney inequality

Theorem 8.1. Assume 1 < p < oo. There exists a constant C,, such for any
0 € LP(R™, A*) and any =1, 2, ...n, we have

1081l Lr@ny < Cp (0]l Lrny + [160] o (gn)) - (8.1)

Proof. By Theorem 6.8 , we know that R, is a bounded operator on LP and by
Theorem 7.6, it is also the case of R and R*. The Theorem follows now immediately
from the following identity:

Op=Ruo0Roé+R,0R" od. (8.2)

The latter formula is a consequence of the relations AoI? = Id and R, = I'09,,,
indeed:

dp=A00I%00,
=(I"00,)0 (A0l
=R, 0 (ds+dd)oI"
=Ruo(dol")od+R,o0(dol")od
=RyoRod+R,0oR" od. O

8.2. A Sobolev inequality for differential forms. We have the following So-
bolev—Gagliardo—Nirenberg inequality for differential forms on R™:

Theorem 8.2. Let 1 < p, ¢ < co. There exists a constant C < oo such that for
any 0 € LP(R™, A¥), we have

0]l Larny < C (10| oy + 106]] Lo ®r))- (8.3)

. 11 1
if and only of = — = = =.
f yif 5 —5=x=

Proof. We have § = Ef + E*0 = U(df) + U*(66). By Theorem 1.2, we know
that U, U*: LP(R", A¥=1) — L9(R™, A*~1) are bounded operators if and only if

1—17 — % = %, hence the inequality (8.3) holds with

C = ma.X{Hu|‘Lp_>Lq, Hu*|‘LP_>Lq}.
We need to show in the converse direction,that the inequality (8.3) cannot hold
with a finite constant if % - % #+ % To do that, we consider a non zero k-form

0 € LP(R™, A¥), observe that either df # 0 or 66 # 0, for otherwise the form @
would have constant coefficients, which is impossible for a non zero form in L?(R").
The following quantity is therefore well defined:

B 1760 e
Az d0|| Lo @ny + 17700 Lo @n)’

where h; is the 1-parameter group of linear dilations in R™ given by hi(z) = ¢ - z.
A calculation shows that for any w € L*(R™, A™), we have

L#(R™)> (8.4)

Q(t)

|y wllps@ny =™ | 6]
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since dhf @ = hid0 is a (k + 1)-form, we obtain
Ry df|| o eny =t % ||| Lo (.- (8.5)

Now be careful, because 6h} # hjd. In fact 6h; 0 = t> h}4 0; this is a (k — 1)-form
and thus (8.4) implies that

17560 Loy = 28517 160)| Loy = "7 160 Loqn)- (8.6)
The last three identities give us

tk_ a n_mn

QM) =~y Q) = 5757 Q).

If%f%f% < 0, then lim; o Q(t) = oo and 1f%f%—% > 0, then lim; o Q(t) = 0o
We conclude that the Sobolev inequality (8.3) cannot hold if 1—1) — % — % #0. 0O

8.3. The LP a priory estimates for the Laplacian on forms

Theorem 8.3. The following inequality holds for any 6 € ®'(R™, A¥), 1 < p < oo
and p, v=1,2,...,n:

HauayeHLp(]Rn) < 0127 HAQHLP(R") (87)
where ¢, is the norm of the operator R;: LP(R™) — LP(R™).
Observe that this estimate is actually a scalar estimate.

Proof. By Theorem 6.8, we know that R, is a bounded operator on LP. It is also
clearly the case of R and R*. The corollary now follows from the following lemma
and the definition of c,,. O

Lemma 8.4. The following identity holds in Op ® (R™, A¥):
0,0, =R, 0Ry 0 A. (8.8)
Proof. We have
0,0, :Aolzoaﬂo&,
=Ao(I! oau)o([1 00d,)
=AoR,oR,
=RuoR,0A. O

8.4. The L, ,-cohomology of R™. The set of closed forms in LP(R™, A*) is
denoted by

k(mn n k
Z,(R") = LP(R", A¥) Nkerd,

and the set of exact forms in LP(R"™, A*) which are differentials of forms in L7 is
denoted by

k n n k—1 n k
BY (R") = d(LY(R", A1) 1 LP(R", AF),

Lemma 8.5. ZF(R") C LP(R™, A¥) is a closed linear subspace.
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Proof. By definition, a form 6 € LP(R™, A¥) belongs to ZS(R") if and only if
Jgn @A @ =0 for any ¢ € S(R", A"~*). Suppose now that § € LP(R™, A¥) is in the
closure of Z;f (R™). This means that there exists a sequence 0; € Z]’; (R™) converging
to 0 for the LP norm. Using the Holder inequality with ¢ = p/(p — 1), we have

/9/\@‘_11111 / (99i)/\50‘<_1im 16— 64| o[ 0]l 20 = O,

and therefore 0 € Z)(R™). O

Remark. It is clear that BY (R™) C ELP(R™, A¥) C ZF(R"). By Proposition 7.4
(a), 7.4 (b) and Theorem 1.2, we have in fact ZF(R") = ELP(R", A).

Definition. The L, ,-cohomology of R" is the quotient
HE (R™) = ZE(R™)/BE (R™),
The next result computes this cohomology:

Theorem 8.6. For any p, ¢ € (1, 00) and 1 < k < n, we have

1 1 1
Hi R") =0 & ———=—.
' p g n
Proof. Assume first that %—% = % By Proposition 7.4, we have for any 0 € Z;f (R™)

0=FE0+ E*0=EO=d(U?),
because £* = 0 on kerd. By Theorem 1.2, we know that U: LP(R", A1) —
L9(R™, AF=1) is a bounded operator. Hence § = d(U#) € Bk (R™); but since
0 e Z]’; (R™) is arbitrary, we have
k ny _ 7k n k ny __
H; ,(R") = Z;(R")/B; ,(R") = 0.

To prove the converse direction, we use the interpretation of the L, ,-cohomology
in terms of Sobolev inequalities. In particular, it is proven in [5, Theorem 6.2] that
if HY (R™) = 0, then there exists a constant C' such that for any ¢ € L(R™, A*1),
there exists a closed form ( = ((¢) € Z,’;_l(R”) such that

¢ —CllLe <Clldoll s - (8.9)

Let us fix a form ¢ € L9(R", A*~1) which is not closed and apply the above
inequality to h} ¢, where hi(x) = t-x. It says in this case that for any ¢ € R, there
exists ¢, € Z~!(R™) such that

17t ¢ = Gill o < Cllhi doll s - (8.10)
Using the identity (8.4) with s = ¢, m = (k — 1) and s = p, m = k, we obtain the
inequality

¢ — hZyGilla < CtY [|doll L (8.11)
with v = 1+ % — %. The right hand side of this inequality converges to zero as
t — 0if y < 0orast— ooify>0. Sinceh® (; € ZF~*(R") for any t and
ZFH(R™) € LYR™, AF=1) is closed, it follows that ¢ € Z)~'(R™). But ¢ is not
closed by hypothesis, we thus conclude that v = 0. To sum up, the argument shows
that if Hy ,(R") =0, then v =142 — 2 = 0. 0
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Remark. Theorem 6.2 in [5] says in fact that there exists a constant C' such that
(8.9) holds if and only if Téfp(R”) =0 (provided 1 < ¢, p < o0). Here Téfp is the
torsion, which is defined to be the quotient BY / Bgm. We have thus also proved
that Tlip(R") =0< % — 1 =1 Tn particular H;p (R™) is infinite dimensional if

1 1 1 /
p a7

APPENDIX: COMPUTATION OF THE FOURIER TRANSFORM OF THE
RiEsz KERNEL

Definition. The Riesz kernel of order a € (0, n) is the function k, defined on R"

by
Falw) = ———al*"
: Y(n, a) ’
where the normalizing constant is given by
I'(g)
— 9 n/2 2 ]

Theorem 8.7. The Fourier transform of the Riesz kernel of order o € (0, n) is
given by
F(ka) = €7

Proof. We will use the fact that the Gaussian function g(z) = e=1*I* belongs to S
for any s > 0 and that its Fourier transform is given by

f(efs|m|2)(§) _ (g)n/Q e*|§|2/45, (812)

(this is a well known fact; see, e.g., [4, Proposition 8.24] or [13, page 38]).
To compute the Fourier transform of k., we start from the formulas

F(z)afzz/ s*le " ds and F(w)bﬂ”:/ sTwTlembs g, (8.13)
0 0

which hold for any a, b € (0, c0) and any z, w € C such that Re(z), Re(w) > 0.

To check these formulas, use the substitution ¢ = as (for the first identity) and
t = b/s (for the second identity) in the definition I'(z) = [;*¢*~'e~"dt of the
I'-function.

We will use the first formula with @ = |z|*> and apply the Fourier transform;
keeping in mind the identity (8.12), we have

FO@Ll ) =7 ([ tea)
0
=/ sz_lf(e_lzlzs)ds (Fubini)
0

_ /OO e (i)"” ol /5 g
O S

o0
_n_q1 _lg? .
:ﬂ"/2/ s7 3 LT IEl /45 g,
0
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Setting b = |¢]?/4 and w = £ — z, we obtain from the second identity in (8.13)

T(2)F(|z| %) = 7"/2 / sT e ds = 72T (w)4v (¢
0

n—o

Let us set o = n — 2z, thus z = “5% and w = § — z = §; we write this formula as

F(l|*™) = ~y(n, a)[€]7,

I'(3)

P(23%)

where
1(n, a) =220

The above calculation assumes Re(z), Re(w) > 0, which is equivalent to 0 < o < n.
(]

Remark. Using the Fourier transform in the Lizorkin sense, it is possible to extend
the Riesz kernel k,, of order « for any real number a > 0 (and in fact any complex
number with Rea > 0). We define it as follow

1
ko = — |x|*7"
v(n, @)
if a« # n+ 2m for any m € N, and by
1 1
ko = —— |z|*7" log —
v(n, a) |z|

if « = n + 2m for some m € N.
With this definition, the previous result is still valid

Proposition 8.8. The Fourier transform of ko, o € C is given by
F(ka) = 16177 0
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