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ON THE HODGE DECOMPOSITION IN Rn
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Abstract. We prove a version of L
p-Hodge decomposition for differen-

tial forms in Euclidean space and a generalization to the class of Lizorkin

currents. Using these tools, we also compute Lq,p-cohomology of R
n.
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1. Introduction

The classical Hodge decomposition Theorem is a fundamental result in differential
geometry. It says that on a compact Riemannian manifold without boundary, any
L2-differential form can be uniquely decomposed as sum of an exact form plus a
coexact and a harmonic form. The standard proof is obtained by constructing
an inverse G to the Laplacian ∆ on the L2-orthogonal complement to the space of
harmonic forms (see, e.g., [14, Chap. 5.8]). The map G is called the Green operator.
In 1995, Chad Scott proved that this decomposition also holds for Lp-differential
forms on a closed manifold [11]. For non compact, complete Riemannian manifolds,
the L2-Hodge decomposition holds under some technical hypothesis (which can be
written in the language of L2-cohomology, see [5, Theorem 14.3]), but the situation
for Lp-forms is still an open problem.

The main goal of the present paper is to provide a rigorous statement and proof of
the Hodge decomposition theorem for Lp-differential forms in Euclidean space. Our
proof uses standard techniques from Fourier analysis, but also the more specialized
notion of Lizorkin currents (see Sections 4 and 8.2 below and the books [7], [9]).
In order to keep the paper readable for non specialists we give all the necessary
background starting from the classic notion of tempered distribution, which are
dual objects to rapidly decreasing smooth functions.

Our techniques also provide a Hodge decomposition for temperate currents, which
are differential forms on Rn with coefficients in the space of temperate distributions
(besides a short mention in the last section of the book [10], temperate currents
seem to have been left aside in the literature). Let us denote by S′(Rn, Λk) the
topological vector space of temperate currents of degree k, we then have the fol-
lowing theorem:
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Theorem 1.1. There is an exact sequence

0 → H(Rn, Λk) → S′(Rn, Λk)
∆
−→ S′(Rn, Λk) → 0, (1.1)

where H(Rn, Λk) is the space of differential forms on Rn whose coefficients are

harmonic polynomials.

This theorem is contained in Corollary 7.3 below. We also have an exact sequence

0 → H(Rn, Λk) → P(Rn, Λk)
∆
−→ P(Rn, Λk) → 0, (1.2)

where P(Rn, Λk) is the space of differential forms of degree k on Rn with polynomial
coefficients.

It follows from the sequence (1.1) and the identity ∆ = (dδ + δd) that any
θ ∈ S′(Rn, Λk) can be written as

θ = ∆ω = d(δω) + δ(dω) (1.3)

for some ω ∈ S′(Rn, Λk). In particular, any temperate current θ ∈ S′(Rn, Λk) can
be decomposed as sum of an exact current plus a coexact current; this is the Hodge–

Kodaira decomposition for such currents. A similar statement holds for polynomial
differential forms.

If one formally introduces the operators

U = δ ◦ ∆−1, U∗ = d ◦ ∆−1,

then the Hodge decomposition (1.3) writes

θ = d(Uθ) + δ(U∗θ). (1.4)

Of course, due to the kernel H(Rn, Λk) in the exact sequence (1.1), the operator
∆−1, as well as U and U∗, is not really well defined. However if one restricts
our attention to the space Lp(Rn, Λk) ⊂ S′(Rn, Λk) of differential forms with
coefficients in Lp(Rn), then

Lp(Rn, Λk) ∩H(Rn, Λk) = {0}

for any 1 6 p < ∞ because Lp(Rn) does not contains any non zero polynomials.
The Laplacian ∆: Lp(Rn, Λk) → S′(Rn, Λk) is thus injective and the operators U
and U∗ can be properly defined on appropriate subspaces of S′(Rn, Λk).

We can now state the Hodge–Kodaira decomposition for the space Lp(Rn, Λk):

Theorem 1.2. Let 1 < p <∞. The space Lp(Rn, Λk) admits the following direct

sum decomposition

Lp(Rn, Λk) = ELp(Rn, Λk) ⊕ E∗Lp(Rn, Λk), (1.5)

where ELp(Rn, Λk) = Lp(Rn, Λk) ∩ dS′(Rn, Λk−1T ∗Rn) is the space of exact cur-

rents belonging to Lp and E∗Lp(Rn, Λk) = Lp(Rn, Λk)∩δS′(Rn, Λk+1T ∗Rn) is the

space of coexact currents belonging to Lp. Furthermore:

(i) ELp(Rn, Λk) and E∗Lp(Rn, Λk) are closed subspaces ;
(ii) the projections E : Lp(Rn, Λk) → ELp(Rn, Λk) and E∗ : Lp(Rn, Λk) →

E∗Lp(Rn, Λk) are bounded operators ;
(iii) these operators satisfy

E2 = E, E∗2 = E∗, E + E∗ = Id;
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(iv) the projection E is self-adjoint, meaning that if 1
p + 1

q = 1, then

〈Eθ, φ〉 = 〈θ, Eφ〉,

for any θ ∈ Lp(Rn, Λk) and φ ∈ Lq(Rn, Λk) (where 〈θ, φ〉 =
∫

Rn θ ∧ ⋆φ);
(v) the same property holds for E∗.

We proove this result in Section 7.4.

Corollary 1.3. If 1
p + 1

q = 1, then E∗Lq(Rn, Λk) and ELp(Rn, Λk) are orthogonal,

meaning that

〈θ, φ〉 =

∫

Rn

θ ∧ ⋆φ = 0,

for any θ ∈ ELp(Rn, Λk) and φ ∈ E∗Lq(Rn, Λk).

Proof. Since E and E∗ are projectors on complementary subspaces, we have Eθ = θ
for any θ ∈ ELp(Rn, Λk) and Eφ = 0 for any φ ∈ E∗Lq(Rn, Λk), hence 〈θ|φ〉 =
〈Eθ|φ〉 = 〈θ|Eφ〉 = 〈θ|0〉 = 0. �

The previous theorem implies that any differential form θ ∈ Lp(Rn, Λk) admits
a Hodge–Kodaira decomposition θ = dα+δβ, where dα = Eθ and δβ = E∗θ belong
to Lp(Rn, Λk). The forms α and β are in general just temperate distributions, but
more can be said if 1 < p < n:

Theorem 1.4. Let 1 < p < n and q = np
n−p . There are bounded linear operators

U∗ : Lp(Rn, Λk) → Lq(Rn, Λk−1) and U : Lp(Rn, Λk) → Lq(Rn, Λk+1),

such that E = d ◦U : Lp(Rn, Λk) → ELp(Rn, Λk) and E∗ = δ ◦U∗ : Lp(Rn, Λk) →
E∗Lp(Rn, Λk). In particular, any differential form θ ∈ Lp(Rn, Λk) can be uniquely

decomposed as a sum of an exact form dα plus a co-exact form dβ with α = Uθ ∈
Lq(Rn, Λk−1) and β = U∗θ ∈ Lq(Rn, Λk+1):

θ = E θ + E∗ θ = d(Uθ) + δ(U∗θ) = dα+ δβ. (1.6)

This theorem is also proved in Section 7.4. We will also see that such a decom-
position exists only if 1 < p < n and q = np

n−p .

As said before, our results are proved using various known facts from harmonic
analysis and symbolic calculus in the context of differential forms and currents. We
present all necessary notions in a self contained way, and the paper is organized as
follows: In Section 2, we recall some basic facts about the space S′ of tempered
disitribution, the Fourier transform and the notion of convolution. In Section 3 we
recall the characterization of polynomials as elements in S′ annihilating some power
of the Laplacian. In Section 4 we introduce the Lizorkin distributions, which are
tempered distributions modulo the space of polynomials. In Section 5, we develop
some symbolic calculus for Lizorkin distributions and apply it to the Riesz potential
and Riesz transform, and in Section 6 we recall some basic facts from Lp-harmonic
analysis.

In Sections 2–6, only functions are investigated. In Section 7, we recall some basic
facts about differential forms in Rn and we prove all the results stated in the present
introduction. Section 8 is devoted to some applications of the previous results; in
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particular, we prove three fundamental inequalities concerning differential forms
in Rn and we give a necessary and sufficient condition for the vanishing of the
Lqp-cohomology of Rn. The paper ends with a technical appendix devoted to a
calculation of the Fourier transform of the Riesz kernel.

2. The Space of Tempered Distributions

We will work with the Fourier transform of tempered distributions as they are
developed, e.g., in [10], [13], [14]. Recall that the Schwartz space S = S(Rn) of
rapidely decreasing functions is the space of smooth functions f : Rn → C such that

[f ]m,α = ‖(1 + |x|)m∂αf‖L∞(Rn) <∞

for all m ∈ N and all multi-indices α ∈ Nn. This is a Frechet space for the topology
induced by the collection of all semi-norms [ · ]m,α, it is dense in Lp(Rn) for any
1 6 p < ∞ and it is also a pre-Hilbert space for the inner product (f |g) = 〈f, ḡ〉,
where

〈f, g〉 =

∫

Rn

f(x)g(x) dx. (2.1)

Recall also that S is an algebra for the multiplication and for the convolution prod-
uct, it is closed under translation, differentiation and multiplication by polynomials.

Of basic importance is the fact that the Fourier transform1

F(f)(ξ) = f̂(ξ) =

∫

Rn

f(x)eix·ξ dx

is an isomorphism F : S → S, with inverse

F−1(g)(x) = ǧ(x) =
1

(2π)n

∫

Rn

f(x)e−ix·ξ dx.

Some of the basic properties of the Fourier transform are

(i) F(f ∗ g) = F(f) · F(g) (here and below ∗ is the convolution product);
(ii) F(f · g) = 1

(2π)n F(f) ∗ F(g);

(iii) F(∂jf)(ξ) = −iξj · F(f)(ξ);

(iv) F(ḡ) = (2π)n F−1(g);

(v) F (f ◦A) = 1
|detA|F(f) ◦

(
A−1

)t
for any A ∈ GLn(R).

From Fubini’s Theorem, we have

〈Ff, g〉 = 〈f, Fg〉 =

∫

Rn

∫

Rn

f(x)g(y)eixy dx dy. (2.2)

This identity can also be written as

(Ff |g) = (2π)n
(
f |F−1g

)
or (Ff |Fh) = (2π)n (f |h) (2.3)

(just set h = F−1g in the previous identity). The latter formula is the Parseval–

Plancherel identity.

1There are different conventions for this definition, this affects some constants in the following
formulas. Here, we follow [13].
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The topological dual of S is called the space of tempered distributions and is
denoted by S′, and if w ∈ S′ and f ∈ S, the evaluation of w on f will be denoted
by

〈w, f〉 ∈ C.

Any measurable function f such that |f(x)| 6 C(1 + |x|m) for some m > 0 and
any function in f ∈ Lp(Rn) defines a tempered distributions2 by the formula (2.1).
Distributions with compact support also belong to S′.

The space S′ is a complete locally convex topological vector space when equipped
with the weak* topology, i.e. the smallest topology for which the linear form

w 7→ 〈w, ϕ〉

is continuous for any ϕ ∈ S (note that S′ is not a Frechet space).

Lemma 2.1. If A ⊂ Rn is a non empty closed subset, then

S′
A = {w ∈ S′ : supp(w) ⊂ A}

is a closed subset in S′.

Proof. Suppose that w0 /∈ S′
A, then, by definition, there exists a function ϕ ∈ S

such that supp(ϕ) ∩ A = ∅ and s = 〈w0, ϕ〉 > 0. Consider now the set W ⊂ S′

defined by

W =
{
w ∈ S′ : 〈w, ϕ〉 >

s

2

}
.

By definition of the weak* topology, W is open in S′. It is clear that W ∩S′
A = ∅.

We have thus found, for any w0 /∈ S′
A, an open set such that

w0 ∈ W ⊂ S′ \ S′
A.

This means that the complement of S′
A is an open subset in S′. �

The differential operator ∂i acts continuously on S′ by duality:

〈∂iw, f〉 = −〈w, ∂if〉.

We can also define the Fourier transform by

〈Fw, f〉 = 〈w, Ff〉

and its inverse by
〈F−1w, f〉 = 〈w, F−1f〉.

These are continuous isomorhisms F , F−1 : S′ → S′ which are inverse to each other.
Some important examples of Fourier transforms are

F(e−
|x|2

2 )(ξ) = (2π)
n
2 e−

|ξ|2

2 , F(1) = (2π)nδ0, F(δ0) = 1,

where δ0 ∈ S′ is the Dirac measure.
The convolution of two tempered distributions is in general not defined, but we

can define a convolution product

∗ : S × S′ → S′

2More generally, a complex Borel measure µ on R
n belongs to S′ if and only if |µ(B(0, R)| 6

C · (1 + R)N for some N ∈ Z and all R > 0.
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by the formula

〈f ∗ w, g〉 = 〈w, g̃ ∗ f〉,

where w ∈ S′ and f, g ∈ S. Here f̃(x) = f(−x). Observe that this formula is
consistent with Fubini theorem in the case w ∈ S. The Dirac measure δ0 ∈ S′ is
the convolution identity in the sense that

f ∗ δ0 = f.

for all f ∈ S.

3. The Laplacian and Polynomials

Let uss denote by P the space of all polynomials P : R
n → C. It is a subspace

of S and it has the following important characterization (see [14, Proposition 4.5]):

Proposition 3.1. A tempered distribution f ∈ S′ is a polynomial if and only if

the support of its Fourier transform is contained in {0}:

P = {f ∈ S′ : supp f̂ ⊂ {0}}.

Corollary 3.2. P is a closed subspace of S′.

Proof. This follows directly from the previous proposition and Lemma 2.1. �

The Laplacian on R
n is the partial differential operator ∆ = −

∑n
j=1 ∂

2
j . For a

distribution w ∈ S′, we define ∆w ∈ S′ by

〈∆w, ϕ〉 = 〈w, ∆ϕ〉

for any ϕ ∈ S. The relation with the Fourier transform is given by

F(∆w)(ξ) = |ξ|2F(w).

A distribution w ∈ S′, is called harmonic if ∆w = 0 and we denote by H the
space of harmonic tempered distributions, i.e., the kernel of ∆:

H = {w ∈ S′ : ∆w = 0}.

Proposition 3.3. A tempered distribution f ∈ S′ is a polynomial if and only if

∆mf = 0 for some m ∈ N.

Proof. It is obvious that if f ∈ P is a polynomial of degree m, then ∆mf = 0.
Conversely, if ∆mf = 0, then

0 = F(∆mf)(ξ) = (−1)m|ξ|2mf̂(ξ),

hence supp f̂ ⊂ {0}. �

We just proved that H = ker∆ ⊂ P . A consequence of this result is the following
generalization of Liouville’s theorem:

Corollary 3.4.

L∞(Rn) ∩ ker∆ = R and Lp(Rn) ∩ ker∆ = {0} for 1 6 p <∞. �
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Observe however that not every globally defined harmonic function in Rn is
a polynomial, for instance the function h(x) = sin(x1) sinh(x2) is harmonic. Of
course h /∈ S′.

Theorem 3.5. The Laplacian ∆: P → P is surjective; we thus have an exact

sequence

0 → H → P
∆
−→ P → 0.

Proof. A computation shows that if m ∈ N and h ∈ P is a homogenous function of
degree ν (i.e., h(tx) = tνh(x) for t > 0), then

∆(|x|2m+2h(x)) = |x|2m+2∆h(x) + cn,m,ν |x|
2mh(x), (3.1)

where cn,m,ν = 2(m+1)(2m+2ν+n) (use Euler’s formula for homogenous functions:∑
xi∂ih = ν ·h). On the other hand, a basic result about polynomials (see [2]) says

that any f ∈ P can be written as a finite sum

f(x) =
∑

m,ν

am,ν |x|
2mhm,ν(x), (3.2)

where hm,ν ∈ H is a homogenous polynomial of degree ν Now it is clear from (3.1)
that f = ∆g with

g(x) =
∑

m,ν

am,ν

cn,m,ν
|x|2m+2hm,ν(x). (3.3)

The surjectivity of ∆: P → P follows. �

Remark. The paper [2] gives an explicit procedure to compute the decomposition
(3.2), the proof thus shows that the inverse Laplacian ∆−1 : P → P given by (3.3)
is algorithmically computable.

4. The Lizorkin Space and its Fourier Image

Definition. We introduce two subspaces Φ and Ψ of S defined as follow:

Φ =

∞⋂

m=0

∆m(S) and Ψ = {ψ ∈ S : ∂µψ(0) = 0, for any µ ∈ N
n} .

The space Φ is called the Lizorkin space, basic references on this space are [7], [9].
We shall see below that Ψ is the Fourier dual of Φ, that is the image of Φ under
the Fourier transform.

Theorem 4.1. The restriction of the Laplacian to the Lizorkin space is a bijection

∆: Φ → Φ.

Proof. The Laplacian is injective on S because ker∆ ∩ S ⊂ P ∩ S = {0} by
proposition 3.3. To prove the surjectivity, consider an arbitrary element ϕ ∈ Φ.
By definition, for any m ∈ N there exists gm ∈ S such that ∆mgm = ϕ. Ob-
serve that ∆(∆mgm+1 − g1) = ϕ − ϕ = 0. Since ∆ is injective on S, we have
g1 = ∆mgm+1 ∈ ∆m(S). It follows that g1 ∈ Φ and therefore ϕ = ∆g1 ∈ ∆Φ. �
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Proposition 4.2. For any rapidly decreasing function ψ ∈ S, the following condi-

tions are equivalent :

(a) ψ ∈ Ψ;
(b) ∂µψ(ξ) = o(|ξ|t) as |ξ| → 0 for any multi-indice µ ∈ N

n and any t > 0;
(c) |ξ|−2mψ ∈ S for any m ∈ N.

Proof. The implication (b)⇒ (a) is obvious and (a)⇒ (b) is clear by Taylor expan-
sion.

To prove that (b)⇒ (c), observe that condition (b), together with the Leibniz
rule, implies that the function |ξ|−2mψ vanishes at the origin and is continuous as
well as all its derivatives. It is then clear that |ξ|−2mψ ∈ S.

To prove (c)⇒ (a), observe that condition (c) says that ψ = |ξ|2mρ for some
function ρ ∈ S. By the Leibniz rule, we then have ∂mψ(0) = ∂m(|ξ|2mρ)(0) = 0. �

Proposition 4.3. We have F(Φ) = Ψ.

Proof. For any ϕ ∈ Φ and m ∈ N there exists ϕm ∈ S such that ∆mϕm = ϕ.
The Fourier transform of this relation writes ϕ̂ = (−1)m|ξ|2mϕ̂m, thus |ξ|−2mϕ̂ =
(−1)mϕ̂m ∈ S for any integer m and it follows from condition (c) in the previous
proposition that ϕ̂ ∈ Ψ, hence F(Φ) ⊂ Ψ.

To prove the opposite inclusion, we consider a function ψ ∈ Ψ. Using again
condition (c) in the previous proposition, we know that for any m ∈ N, we can
write ψ = |ξ|2mψm for some function ψm ∈ S. We then have

F−1(ψ) = F−1(|ξ|2mψm) = (−1)m∆m(F−1(ψm)),

hence F−1(ψ) ∈
⋂∞

m=0 ∆m(S) = Φ. �

Corollary 4.4. For any ϕ ∈ S, we have

ϕ ∈ Φ ⇔ 〈P, ϕ〉 = 0 for any polynomial P ∈ P .

Proof. For any ϕ ∈ S and µ ∈ Nn, we have

〈xµ, ϕ〉 =

∫

Rn

xµϕ(x) dx = i−|µ|

∫

Rn

(ix)µϕ(x)e−ix·0 dx = i−|µ|∂µϕ̂(0).

Thus 〈P, ϕ〉 = 0 for any polynomial if and only if ∂µϕ̂(0) = 0 for any µ ∈ Nn, i.e.,
if ϕ̂ ∈ Ψ and we conclude by the previous proposition. �

Proposition 4.5. Ψ is a closed ideal of S.

Proof. It is clear from the Leibniz rule that if ψ ∈ Ψ and f ∈ S, then ∂µ(fψ)(0) = 0
for any µ ∈ N

n, hence Ψ ⊂ S is an ideal. To show that Ψ ⊂ S is closed, let us
consider a sequence {ψj} ⊂ Ψ converging to ψ ∈ S. This means that for any
µ ∈ Nn, m ∈ N, we have supx∈Rn(1 + |x|)m |∂µψ − ∂µψj | → 0 as j → ∞. But then
∂µψ(0) = limj→∞ ∂µψj(0) = 0. �

Since F : S → S is a linear homeomorphism sending Φ to Ψ, we immediately
conclude that

Corollary 4.6. Φ is a closed subspace of S and it is an ideal for the convolution.
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The statement that Φ ⊂ S is a convolution ideal means that if ϕ ∈ Φ and f ∈ S,
then ϕ ∗ f = f ∗ ϕ ∈ Φ. This can also be seen directly from the definition of Φ,
indeed, if ϕ ∈ Φ, then for any m ∈ N there exists gm ∈ S such that ∆mgm = ϕ and
we have

∆m(f ∗ gm) = f ∗ (∆mgm) = f ∗ ϕ.

Thus f ∗ ϕ ∈ ∆m(S), for any m, i.e., f ∗ ϕ ∈ Φ.

Corollary 4.7. ∆: Φ → Φ is a homeomorphism.

Proof. We already know that ∆: Φ → Φ is bijective. The inverse ∆−1 : Φ → Φ is
given by the formula

∆−1(ϕ) = F−1(|ξ|−2Fϕ).

Since the map ψ → |ξ|2ψ is clearly a self-homeomorphism of Ψ, we obtain the
continuity of ∆−1 : Φ → Φ. �

Proposition 4.8. (A) The topological dual Φ′ of Φ is the quotient of the space of

tempered distribution modulo the polynomials

Φ′ = S′/P .

(B) The topological dual Ψ′ of Ψ is the quotient of the space of tempered distri-

bution modulo the Fourier transforms of polynomials

Ψ′ = S′/F(P).

Proof. The closed subspace P ⊂ S′ coincides with Φ⊥ = {w ∈ S′ : w(Φ) = 0} and
Ψ⊥ = F(P). The Proposition follows now from standard results from functional
analysis (see, e.g., [3, Chap. V, Th. 2.3]). �

An element w ∈ Φ′ is thus represented by a tempered distribution which is
only well defined up to a polynomial. The Fourier transform F : S′ → S′ gives an
isomorphism between these quotients which we continue to denote by F : Φ′ → Ψ′.
We have

〈Fw, ϕ〉 = 〈w, Fϕ〉

for any w ∈ Φ′ and ϕ ∈ Φ.

5. Some Symbolic Calculus

5.1. Operators on Ψ′ and multipliers. In this section, we study the operators
M : Ψ′ → Ψ′ which can be represented by a multiplication.

Definitions. 1. By an operator M : Ψ′ → Ψ′ we mean a continuous linear map.
Concretely, an operator associates to an element w ∈ S′ another tempered dis-
tribution Mw ∈ S′ which is well defined modulo F(P). The linearity means
that M(a1w1 + a2w2) = a1M(w1) + a2M(w2) modulo F(P) for any a1, a2 ∈ C,
w1, w2 ∈ S′ and the continuity means that 〈wi, ψ〉 → 〈w, ψ〉 for any ψ ∈ Ψ implies
〈Mwi, ϕ〉 → 〈Mw, ϕ〉. If M has a continuous inverse, then we say that it is an
isomorphism.

2. We denote by Op(Ψ′) the algebra of all operators Ψ′ → Ψ′.
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We will discuss a special class of operators on Ψ, obtained by multiplication with
a suitable function which we now introduce:

Definition. Let MΨ′ be the space of all functions σ ∈ C∞(Rn \ {0}, C) such that
for any multi-index µ ∈ Nn, there exists constants m ∈ N and C > 0 with

|∂µσ(ξ)| 6 C(|ξ|m + |ξ|−m)

for any ξ ∈ Rn \ {0}. An element of MΨ′ is called a Ψ′-multiplier.

It is that clear that S ⊂ MΨ′ and P ⊂ MΨ′ , other typical elements of MΨ′

are the functions log |ξ| and |ξ|α (for any α ∈ C). Observe also that MΨ′ is a
commutative algebra.

The units in MΨ′ , i.e., the group of invertible elements, will be denoted by
UMΨ′ , hence

UMΨ′ =

{
σ ∈ MΨ′ :

1

σ
∈ MΨ′

}
.

Elements in MΨ′ are not tempered distributions, however, we have the following
important lemma:

Lemma 5.1. Ψ is a module over the algebra MΨ′ , that is for any σ ∈ MΨ′ and

any ψ ∈ Ψ, we have σ · ψ ∈ Ψ.

Proof. By Proposition 4.2, we know that an element ψ ∈ S belongs to Ψ if and
only if ∂µψ(ξ) = o(|ξ|t) as |ξ| → 0 for any multi-indice µ ∈ Nn and any t > 0. The
proof of the lemma follows now easily from the Leibniz rule. �

By duality, we can now associate to any σ ∈ MΨ′ an operator Mσ ∈ Op(Ψ′)
defined by

〈Mσg, ψ〉 = 〈g, σψ〉 (5.1)

for any g ∈ Ψ′ and ψ ∈ Ψ.

Lemma 5.2. This correspondence defines a map

M : MΨ′ → Op(Ψ′)

σ 7→Mσ

which is a continuous homomorphism of algebras. In particular Mσ1σ2
= Mσ1

◦Mσ2

and Mσ is invertible if and only if σ ∈ UMΨ′

The proof is elementary. �

Definition. An operator Mσ ∈ Op(Ψ′) of this type is called a multiplier in Ψ′; the
set of those multipliers is denoted by MOp(Ψ′), it is a commutative subalgebra of
Op(Ψ′).

Observe that, by Lemma 5.1, Ψ ⊂ Ψ′ is invariant under any multiplier in Ψ′

(i.e., Mσ(Ψ) ⊂ Ψ for any Mσ ∈ MOp(Ψ′)). The converse is in fact also true. The
multiplication Mσ(ψ) = σ ·ψ is a continuous operator on Ψ′ if and only if σ ∈ MΨ′

(see [8]).
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5.2. Operators on Φ′ and their symbols. In this section, we study the opera-
tors T : Φ′ → Φ′ which can be represented on the Fourier side by a multiplication.
We already know the Laplacian:

F(∆w) = |ξ|2F(w).

Definitions. 1. An operator T : Φ′ → Φ′, is a continuous linear map, it associates
to an element w ∈ S′ another tempered distribution Tw ∈ S′ which is well defined
up to a polynomial.

2. We denote by Op(Φ′) the algebra of all operators Φ′ → Φ′.

An obvious consequence of the previous section is the following

Proposition 5.3. For any σ ∈ MΨ′ , the map Tσ : Φ′ → Φ′ defined by

Tσ = F−1 ◦Mσ ◦ F

belongs to Op(Φ′). If σ ∈ UMΨ′ , then Tσ is an isomorphism of Φ′. �

Definition. Operators of this type are called Fourier multipliers in Φ′. We denote
the set of those operators by FMOp(Φ′).

If T = Tσ = F−1 ◦Mσ ◦ F ∈ FMOp(Φ′), then the function σ ∈ MΨ′ is the
symbol of Tσ and we write

σ = Smb(T ).

Thus, to say that T ∈ FMOp(Φ′) means that for any Lizorkin distribution
f ∈ Φ′ and any ϕ ∈ Φ, we have

〈Tf, ϕ〉 = 〈f, F
(
σ · F−1(ϕ)

)
〉,

where σ = Smb(T ). Observe that FMOp(Φ′) is a commutative algebra and the
map MΨ′ → FMOp(Φ′) given by σ 7→ Tσ is an isomorphism whose inverse is give
by the symbol map:

Smb: FMOp(Φ′) → FMΨ′

σ 7→ Tσ.

Examples. (i) The symbol of the identity is 1;
(ii) Smb(T ◦ U) = Smb(T ) · Smb(U);
(iii) The derivative ∂j ∈ FMOp(Φ′) and Smb(∂j) = −iξj ;
(iv) The symbol of the Laplacian is Smb(∆) = |ξ|2;
(v) More generally, T is a partial differential operator with constant coefficients

if and only if P = Smb(T ) ∈ P ;
(vi) If T (w) = ϕ ∗ w for some ϕ ∈ S, then Smb(T ) = ϕ̂.

Any operator Tσ ∈ FMOp(Φ′) is self-adjoint in the following sense:

Proposition 5.4. For any Tσ ∈ FMOp(Φ′), we have Tσ(Φ) ⊂ Φ and

〈Tσw, ϕ〉 = 〈w, Tσϕ〉

for all w ∈ Φ′ and ϕ ∈ Φ.
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Proof. The fact that Tσ(Φ) ⊂ Φ follows from Lemma 5.1 and we have

〈Tσw, ϕ〉 =
〈
F−1 ◦Mσ ◦ F(w), ϕ

〉

= (2π)−n 〈Mσ ◦ F(w), F(ϕ)〉

= (2π)−n 〈F(w), Mσ ◦ F(ϕ)〉

=
〈
w, F−1 ◦Mσ ◦ F(ϕ)

〉

= 〈w, Tσϕ〉 . �

5.3. The Riesz potential and the Riesz operator

Definitions. The Riesz potential on Φ′ of order α ∈ R is the operator Iα ∈
FMOp(Φ′) whose symbol is

Smb(Iα) = |ξ|−α.

Theorem 5.5. ∆: Φ′ → Φ′ is an isomorphism with inverse I2 : Φ′ → Φ′.

Proof. We have Smb(∆) = |ξ|2, hence Smb(I2 ◦ ∆) = |ξ|−2 · |ξ|2 = 1. �

Corollary 5.6. ∆: S′ → S′ is surjective and we we thus have an exact sequence

0 → H → S′ ∆
−→ S′ → 0.

Proof. The previous theorem says that for any f ∈ S′, we can find a distribution
g ∈ S′ such that

∆g = f in Φ′ = S′/P .

This means that there exists a polynomial P ∈ P such that ∆g = f + P in S′. By
Theorem 3.5, we can find a polynomial Q ∈ P such that ∆Q = P and it is now
clear that

∆(g −Q) = f in S′.

This proves that ∆(S′) = S′. �

Remark. The distribution g in the above reasoning is only well defined in Φ′ (by
the formula g = I2f). In the space S′ it is only well defined up to a polynomial
and we have no constructive inverse map ∆−1 : S′ → S′.

Definition. The Riesz operator in direction j is the operator Rj ∈ FMOp(Φ′)
defined by

Rj := −I1 ◦ ∂j = −∂j ◦ I
1.

Its symbol is

Smb(Rj) = − Smb(I1) Smb(∂j) = i
ξj
|ξ|
.

Proposition 5.7. The Riesz potential and the Riesz operator enjoy the following

properties :

(i) I0 = Id;
(ii) Iα ◦ Iβ = Iβ ◦ Iα = Iα+β ;
(iii) I−2 = ∆ =

∑
j ∂

2
j ;

(iv) ∆ ◦ Iα = Iα ◦ ∆ = Iα−2;
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(v) Ri ◦ Rj = Rj ◦ Ri = I2∂i∂j ;
(vi)

∑n
j=1 R

2
j = −Id;

(vii) 〈Iαϕ, η〉 = 〈ϕ, Iαη〉.

The proof is straightforward. �

The Riesz potential Iα ∈ FMOp(Φ′) is sometimes denoted by Iα = ∆−α/2, the
previous lemma justifies this notation.

5.4. Convolution operators in S. Let T = Tσ ∈ FMOp(Φ′) be an operator

such that σ = Smb(T ) ∈ S′ ∩M, then we can define another operator T̃ : S → S′

by the convolution

T̃ϕ = (F−1σ) ∗ ϕ.

The next lemma is easy to check.

Lemma 5.8. The relation between T and T̃ is given by

T (ϕ) = T̃ (ϕ) (mod P)

for any ϕ ∈ Φ. In other words, the following diagram commutes:

S
eT

S′

Φ

∪

T
Φ′. �

Theorem 5.9. The symbol of the Riesz potential Iα of order α belongs to S′ if

α < n.
If 0 < α < n, then Iα defines a convolution operator S → S′ by

Iαϕ = kα ∗ ϕ,

where kα is the Riesz kernel

kα(x) =
1

γ(n, α)
|x|α−n.

The proof is given in the appendix. �

The Riesz potential Iα : S → S′ is thus given by the explicit formula

Iαϕ(x) =
1

γ(n, α)

∫

Rn

ϕ(y)

|x− y|n−α
dy (5.2)

if 0 < α < n, and

Iαϕ(x) =
1

γ(n, α)

∫

Rn

ϕ(y) log
1

|x|
dy (5.3)

if α = n.
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6. The Lizorkin Space and Harmonic Analysis in Lp(Rn)

Proposition 6.1. The subspace Φ ⊂ Lp(Rn) is dense 1 < p <∞.

The proof can be found in [9, Theorem 2.7].

Proposition 6.2. The space Lp(Rn) injects in Φ′ for any 1 6 p < ∞. More

generally, Lp(Rn) + Lq(Rn) injects in Φ′ if p+ q <∞.

This result is a direct consequence of the following lemma:

Lemma 6.3. Let f, g ∈ L1
loc(R

n) ∩ S′ be two locally integrable functions such that

λn{x ∈ R
n : |f(x) − g(x)| > a} <∞,

for some a > 0 (here λn is the Lebesgue measure). Assume that f and g coincide

in Φ′, i.e., ∫

Rn

fϕ dx =

∫

Rn

gϕ dx

for any ϕ ∈ Φ. Then (f − g) is almost everywhere constant in Rn.

Proof. This is Lemma 3.8 in [7]. We repeat the proof, which is very short. Since
f and g coincide in Φ′, we have P = (f − g) ∈ P ; by hypothesis, we have λn{x ∈
Rn : |P (x)| > a} < ∞, this is only possible if P = c is a constant such that
|c| < a. �

Remark. The argument also shows that L∞(Rn)/R injects in Φ′.

We summarize the known inclusions in the following lemma:

Lemma 6.4. We have the following inclusions (1 < p <∞)

Φ ⊂ S ⊂ Lp(Rn) ⊂ Φ′ = S′/P .

Furthermore Φ is dense in Lp (for the Lp norm) and in Φ′ (for the weak topology).
�

Lemma 6.5. If 0 < α < n, then the Riesz kernel kα is a tempered distribution.

In fact

kα ∈ (Lr(Rn) + Ls(Rn)) ⊂ S′

for any r, s > 1 such that

0 <
1

s
< 1 −

α

n
<

1

r
6 1.

Proof. Let χB be the characteristic function of the unit ball and set K1 = χB kα

and K2 = (kα −K1) = (1 − χB) kα(x). It is easy to check that K1 ∈ Lr(Rn) for
any 1 6 r < n

n−α and K2 ∈ Ls(Rn) for any n
n−α < s <∞, thus

kα = K1 +K2 ∈ Lr(Rn) + Ls(Rn). �

Corollary 6.6. If 0 < α < n, then the Riesz potential

Iαϕ(x) = kα ∗ ϕ(x) =
1

γ(n, α)

∫

Rn

ϕ(y)

|x− y|n−α
dy
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defines a bounded operator

Iα : Lp(Rn) → (Lq1(Rn) + Lq2(Rn))

for any 1 6 p 6 ∞ and 1 6 q1 < q2 <∞ such that 1
q2

< 1
p − α

n < 1
q1

.

In particular, Iα is a continuous operator Iα : Lp(Rn) → Φ′ for any 0 < α < n.

Proof. Let us set r = (pq1 − p− q)/(pq1) and s = (pqs − p− q)/(pq2), we then have

1

r
= 1 +

1

q1
−

1

p
> 1 −

α

n
and

1

s
= 1 +

1

q2
−

1

p
< 1 −

α

n
. (6.1)

By the previous lemma, we may write kα = K1 + K2 with K1 ∈ Lr(Rn) and
K2 ∈ Ls(Rn).

The Young inequality for convolutions says that under the condition (6.1), we
have

‖K1 ∗ f‖Lq1 6 ‖K1‖Lr‖f‖Lp and ‖K2 ∗ f‖Lq2 6 ‖K2‖Ls‖f‖Lp

Since kα = K1 +K2, we conclude that

‖kα ∗ f‖Lq1 6 (‖K1‖Lr + ‖K2‖Ls) ‖f‖Lp. �

If p ∈ (1, n/α), then we have the following much deeper result:

Theorem 6.7 (Hardy–Littlewood–Sobolev). The Riesz potential defines a bounded

operator

Iα : Lp(Rn) → Lq(Rn)

if and only if α ∈ (0, n), 1 < p < n/α and q = np
n−pα . The formulas (5.2) and (5.3)

still hold in this case.

References for this important result are [12, page 119], [9, Th. 2.2] or [1, Th. 3.14].
Recall that we defined the Riesz transform in direction j to be the operator

Rj = −I1 ◦ ∂j . Its symbol is ρj = i|ξ|−1ξj , and for any ϕ ∈ S, we thus have

F(Rj(ϕ)) = ρjF(ϕ).

The Riesz transform of a Lizorkin distribution f ∈ Φ is characterized by

〈Rj(ϕ)(f), ϕ〉 = 〈f, F−1(ρjF(ϕ))〉

for any ϕ ∈ S.
The function ρj does not belong to the Schwartz space S and thus its (inverse)

Fourier transform ρ̌j = F−1(ρj) is not a priori well defined. We can therefore not
write the Riesz transform as a convolution. However, Rj can be represented as a
singular integral:

Theorem 6.8 (Calderon–Zygmund–Cotlar). The Riesz transform Rj : S → S′ is

given by the formula

Rj(ϕ(x)) = lim
δ→0

Γ(n+1
2 )

π(n+1)/2

∫

|y|>δ

(xj − yj)

|x− y|
ϕ(y) dy. (6.2)

Furthermore, Rj extends as a bounded operator

Rj : Lp(Rn) → Lp(Rn)

for all 1 < p <∞ and the formula (6.2) still holds in this case.
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This deep result is a consequence of Sections II.4.2, III.1.2 and III.3.3 in the
book of Stein [12], see also [1]. �

Let us denote by cp = ‖Rj‖Lp→Lp the norm of the operator Rj : Lp(Rn) →
Lp(Rn), it is clearly independant of j. The exact value of cp is known, see [6, page
304]; let us only stress that

lim
p→1

cp = lim
p→∞

cp = ∞.

Remark. For p = 1 and p = ∞, the Riesz transform is still a bounded operator in
appropriate function spaces, namely

Rj : L1(Rn) → weak L1(Rn)

Rj : L∞(Rn) → BMO(Rn)

are bounded operators. There are also results on weighted Lp spaces satisfying a
Muckenhoupt condition.

6.1. Applications of these L
p bounds. To illustrate the power of the two previ-

ous theorems, we give below very short proofs of two important results for functions
in Rn (cf. [12, pages 59 and 126]).

Theorem 6.9 (Sobolev–Gagliardo–Nirenberg). Let 1 < p, q < ∞ be such that
1
p − 1

q = 1
n . There exists a finite constant C < ∞ such that for any f ∈ Lp(Rn),

we have

‖f‖Lq(Rn) 6 C

n∑

j=1

‖∂jf‖Lp(Rn). (6.3)

Remarks. 1. This inequality also holds for p = 1, see [12, Chap. V §2.5 pp.
128–130], but not for p = ∞.

2. A homogeneity argument shows that the inequality (6.3) cannot hold with a
finite constant if 1

p − 1
q 6= 1

n (see the argument in the proof of Theorem 8.2 below).

Proof. Combining the identity −Id =
∑

j R
2
j =

∑
j I

1 ◦Rj ◦ ∂j with Theorems 6.7
and 6.8, we obtain

‖f‖Lq(Rn) 6 ap

n∑

j=1

‖Rj∂jf‖Lp(Rn) 6 apcp

n∑

j=1

‖∂jf‖Lp(Rn). �

Theorem 6.10 (A priori estimates for the Laplacian). The following inequality

holds for any f ∈ Φ′ and any µ, ν = 1, . . . , n:

‖∂µ ◦ ∂νf‖Lp(Rn) 6 c2p ‖∆f‖Lp(Rn). (6.4)

Recall that cp < 0 if and only if 1 < p <∞.

Proof. This result is an obvious consequence of the definition of cp and the identity

∂µ ◦ ∂ν = −Rµ ◦ Rν ◦ ∆. �

Remark. This result holds for any f ∈ Ls(Rn), 1 6 s 6 ∞, since Ls(Rn) ⊂ Φ′.
But it does not hold for arbitrary functions f ∈ S′(Rn), for instance the harmonic
polynomial f(x, y) = xy ∈ H satisfies ∆f = 0, but ∂x∂yf = 1 6= 0.
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7. Applications to Differential Forms

7.1. Differential forms in R
n. We denote by Λk = Λk(Rn∗) the vector space of

antisymmetric multinear k-forms on Rn. Recall that dim(Λk) =
(
n
k

)
and a basis of

this space is given by

{dxi1 ∧ dxi2 ∧ · · · ∧ dxik
: i1 < i2 < · · · < ik}.

A smooth differential form θ of degree k on R
n is simply a smooth function on R

n

with values in Λk. It is thus uniquely represented as

θ =
∑

i1<i2<···<ik

ai1...ik
(x)dxi1 ∧ dxi2 ∧ · · · ∧ dxik

, (7.1)

where the coefficients ai1...ik
are smooth functions. We denote by C∞(Rn, Λk) the

space of smooth differential forms of degree k on Rn.

We will also consider later other spaces of differential forms on Rn such as
Lp(Rn, Λk) or S(Rn, Λk). The form (7.1) belongs to S(Rn, Λk) if its coefficients
ai1...ik

are rapidly decreasing functions and θ ∈ Lp(Rn, Λk) if all ai1...ik
∈ Lp(Rn).

We shall study a number of operators on differential forms. Observe first that
the operators ∂µ = ∂

∂xµ
, Iα and Rµ are well defined on appropriate classes of

differential forms by acting on the coefficients ai1...ik
of the form (7.1).

The Hodge star operator is the linear map ⋆ : Λk → Λn−k defined by the condition

(dxi1 ∧ · · · ∧ dxik
) ∧ ⋆ (dxi1 ∧ · · · ∧ dxik

) = dx1 ∧ dx2 ∧ · · · ∧ dxn

for any i1 < i2 < . . . ik; observe that

⋆ ⋆ = (−1)k(n−k)Id on Λk. (7.2)

The ⋆ operator naturally extends to the space of differential forms with any kind
of coefficients.

The interior product of the k-form θ with the vector X is the (k−1)-form defined
by

ιXθ(v1, . . . , vk−1) = θ(X, v1, . . . , vk−1).

We denote by ιµ = ι ∂
∂xµ

the interior product with ∂
∂xµ

and by εµ the exterior

product with dxµ:

εµ θ = dxµ ∧ θ.

Lemma 7.1. The following holds on k-forms :

ιµ = (−1)nk+n ⋆ εµ ⋆ . (7.3)

Proof. We first show that for an arbitrary differential form α, we have

ιµ(⋆ α) = ⋆ (α ∧ dxµ). (7.4)

It is enough to prove this identity for α = dxj1 ∧ · · · ∧ dxjk
. Observe that if µ = jr

for some r ∈ {1, 2, . . . , k}, then both sides of the equation (7.4) trivially vanish:
we thus assume µ 6= jr for all r and set β = ⋆ (α ∧ dxµ). Then, by definition

α ∧ dxµ ∧ β = dx1 ∧ dx2 ∧ · · · ∧ dxn,
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this relation clearly implies ⋆ α = dxµ ∧ β, and the equation (7.4) is now easy to
check:

ιµ(⋆α) = ιµ(dxµ ∧ β) = β = ⋆(α ∧ dxµ).

Let us now consider an arbitrary k−form θ, and let α = (−1)k(n−k) ⋆θ, i.e., ⋆α = θ.
Using (7.4), we have

ιµ(θ) = ιµ(⋆α) = ⋆ (α ∧ dxµ) = (−1)n−k ⋆ (dxµ ∧ α)

= (−1)n−k ⋆ (εµ α) = (−1)n−k(−1)k(n−k) ⋆ (εµ ⋆ θ)

= (−1)kn+n ⋆ (εµ ⋆ θ). �

We now define the exterior differential operator by

d =

n∑

µ=1

εµ ◦ ∂µ =

n∑

µ=1

∂µ ◦ εµ, (7.5)

and the codifferential operator by

δ = −
n∑

µ=1

ιµ ◦ ∂µ = −
n∑

µ=1

∂µ ◦ ιµ. (7.6)

It follows from Lemma 7.1, that for any k-form θ, we have

δθ = (−1)nk+n+1 ⋆ d ⋆ θ. (7.7)

If θ has the representation (7.1) then dθ is given by

dθ =
∑

i1<···<ik

dai1...ik
∧ dxi1 ∧ dxi2 ∧ . . . dxik

,

and δθ is given by

δθ =
∑

i1<···<ik

k∑

j=1

(−1)j ∂ai1...ik

∂xij

dxi1 ∧ · · · ∧ d̂xij
∧ · · · ∧ dxik

;

A direct computation show that these operators enjoy the following properties:

d ◦ d = δ ◦ δ = 0

and

∆ = (d+ δ)2 = d ◦ δ + δ ◦ d = −

n∑

µ=1

∂2
µ.

7.2. Temperate and Lizorkin currents

Definitions. A rapidly decreasing differential form of degree k is an element θ ∈
S(Rn, Λk), i.e., a differential form with coefficients in the Schwartz space S.

A temperate current f of degree k is a continuous linear form on S(Rn, Λk),
see [10]. The evaluation of the temperate current f on the differential form θ ∈
S(Rn, Λk) is denoted by

〈f, θ〉 ∈ C.
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the continuity of f means that if {θi} ⊂ S(Rn, Λk) is a sequence of rapidly decreas-
ing differential forms such that θi converges to θ ∈ S(Rn, Λk) (i.e., all coefficients
converge in the Schwartz space S), then

〈f, θ〉 = lim
i→∞

〈f, θi〉.

The space of temperate currents is denoted by S′(Rn, Λk). Any differential form
f ∈ Lp(Rn, Λk) determines a temperate current by the formula

〈f, θ〉 =

∫

Rn

f ∧ ∗θ.

This formula defines an embedding Lp(Rn, Λk) ⊂ S′(Rn, Λk).

Another important class of temperate currents is given by the space P(Rn, Λk)
of differential forms with polynomial coefficients. We may thus define the space of
Lizorkin forms as

Φ(Rn, Λk) = {φ ∈ S(Rn, Λk) : 〈P, φ〉 = 0 for all P ∈ P(Rn, Λk)}.

The dual space is called the space of Lizorkin currents, it coincides with the quotient

Φ′(Rn, Λk) = S′(Rn, Λk)/P(Rn, Λk),

we can think of a Lizorkin current as a differential forms with coefficients in Φ′.
Given a Lizorkin current f ∈ Φ′(Rn, Λk), we define its differential df , its cod-

ifferential δf , its Laplacian and its Riesz potential of order α by the following
formulas

〈df, ϕ〉 = 〈f, δϕ〉, 〈δf, ϕ〉 = 〈f, dϕ〉,

〈∆f, ϕ〉 = 〈f, ∆ϕ〉, 〈Iαf, ϕ〉 = 〈f, Iαϕ〉

for all ϕ ∈ Φ(Rn, Λk). These are continuous operators Φ′(Rn, Λk) → Φ′(Rn, Λk).

Observe that the Riesz potential commutes with δ and d:

δI2 = I2δ and dI2 = I2d,

and that we have ∆I2 = I2∆ = Id. In particular, we have the

Theorem 7.2. The Laplacian ∆: Φ′(Rn, Λk) → Φ′(Rn, Λk) is an isomorphism

with inverse I2.

Proof. This follows immediately from Theorem 5.5. �

Corollary 7.3. We have the exact sequences

0 → H(Rn, Λk) → P(Rn, Λk)
∆
−→ P(Rn, Λk) → 0,

and

0 → H(Rn, Λk) → S′(Rn, Λk)
∆
−→ S′(Rn, Λk) → 0.

In particular, any temperate current θ ∈ S′(Rn, Λk) is the sum of an exact plus a

coexact current, more precisely we have

θ = ∆ω = δ(dω) + d(δω)

for some ω ∈ S′(Rn, Λk), well defined up to a harmonic current.
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Proof. The first exact sequence follows from Theorem 3.5 and the second one is
proved as in Corollary 5.6, using the previous theorem. �

Remark. Observe that the situation is very different from the L2-theory (or any
other Hilbert space model); in L2, we have Im∆ = (ker∆)⊥; in particular ker∆ = 0
if ∆ is onto, but in S′(Rn, Λk), the Laplacian is onto while ker∆ = H(Rn, Λk) 6= 0.

7.3. The Riesz transform on currents

Definitions. We define the Riesz transform on Φ′(Rn, Λk) by

R = d ◦ I1 = I1 ◦ d =

n∑

µ=1

εµ ◦ Rµ (7.8)

and its adjoint

R∗ = δ ◦ I1 = I1 ◦ δ = −

n∑

µ=1

ιµ ◦ Rµ. (7.9)

We also define four additional operators E, E∗, U, U∗ : Φ′(Rn, Λk) → Φ′(Rn, Λk)
by

E = d ◦ δ ◦ I2 = R ◦R∗, E∗ = δ ◦ d ◦ I2 = R∗ ◦ R, (7.10)

and

U = I1 ◦ R∗ = I2 ◦ δ, U∗ = I1 ◦ R = I2 ◦ d. (7.11)

Proposition 7.4. These operators are continuous on Φ′(Rn, Λk). They enjoy the

following properties :

(a) E + E∗ = R ◦R∗ + R∗ ◦ R = ∆ ◦ I2 = Id;
(b) E = 0 on ker δ and E∗ = 0 on ker d;
(c) E ◦ E∗ = E∗ ◦ E = 0;
(d) E ◦ E = E and E∗ ◦ E∗ = E∗;
(e) E = Id on ker d and E∗ = Id on ker δ;
(f) ImE = ker(E∗) = Im d = ker d and ImE∗ = kerE = Im δ = ker δ;
(g) (R, R∗) and (U, U∗) are adjoint pairs, i.e.,

〈Rθ, ϕ〉 = 〈θ, R∗ϕ〉 and 〈R∗θ, ϕ〉 = 〈fθ, Rϕ〉,

for any θ ∈ Φ′(Rn, Λk) and ϕ ∈ Φ(Rn, Λk), and likewise for U ;
(h) E and E∗ are self-adjoint ;
(i) E = d ◦ U and E∗ = δ ◦ U∗.

Proof. (a) Follows from the definitions and Id = ∆ ◦ I2 = (dδ + δd) ◦ I2 = E +E∗.
(b) If δ θ = 0, then E θ = d δ I2 θ = I2 d δ θ = 0, hence E∗ = 0 on ker d. A

similar argument shows that E∗ = 0 on ker d.
(c) By definition E ◦E∗ = d δ I2 δ d I2 = I4 d δ2d = 0. The proof that E∗ ◦E = 0

is the same.
(d) This follows from (a) and (c), since

E = E ◦ Id = E ◦ E + E ◦ E∗ = E ◦ E.

(e) This follows immediately from (a) and (b).
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(f) From E ◦E = E, we have θ ∈ ImE if and only if θ = Eθ. Since E+E∗ = Id,
we have E∗θ = (Id − E)θ = 0, thus ImE = kerE∗. Furthermore, using E = dδI2

and Property (e), we see that

ImE ⊂ Im d ⊂ kerd = E(ker d) ⊂ ImE.

This shows that ImE = Im d = kerd. The proof that ImE∗ = kerE = Im δ = ker δ
is similar.

(g) We have

〈Rθ, ϕ〉 = 〈dI1θ, ϕ〉 = 〈I1θ, δϕ〉 = 〈θ, I1δϕ〉 = 〈θ, R∗ϕ〉.

The proof that (U, U∗) is an adjoints pair is similar, using U = I2δ.
(h) It follows that E is selfadjoint, for

〈Eθ, ϕ〉 = 〈RR∗θ, ϕ〉 = 〈R∗θ, R∗δϕ〉 = 〈θ, RR∗ϕ〉 = 〈θ, Eϕ〉,

and likewise for E∗.
(i) We have dU = dI2δ = dδI2 = E and δU∗ = δI2d = δdI2 = E∗. �

Let us denote by

EΦ′(Rn, Λk) = dΦ′(Rn, Λk−1)

the space of exact Lizorkin currents of degree k and by

E∗Φ′(Rn, Λk) = δΦ′(Rn, Λk+1)

the space of coexact Lizorkin currents of degree k.

Corollary 7.5. These subspaces can be expressed as

EΦ′(Rn, Λk) = Im(E) = kerE∗ = ker[d : Φ′(Rn, Λk) → Φ′(Rn, Λk+1)]

and

E∗Φ′(Rn, Λk) = Im(E∗) = kerE = ker[δ : Φ′(Rn, Λk) → Φ′(Rn, Λk−1)].

In particular EΦ′(Rn, Λk) and E∗Φ′(Rn, Λk) are closed subspaces in Φ′(Rn, Λk)
and we have a direct sum decomposition

Φ′(Rn, Λk) = EΦ′(Rn, Λk) ⊕ E∗Φ′(Rn, Λk).

Proof. This is obvious from the previous proposition. �

Remarks. 1. Thus E and E∗ are the projections of Φ′(Rn, Λk) onto EΦ′(Rn, Λk)
andE∗Φ′(Rn, Λk) respectively. One says that Eθ is the exact part of θ ∈ Φ′(Rn, Λk)
and E∗θ is its coexact part. The formula

θ = Eθ + E∗θ

is the Hodge–Kodaira decomposition of the Lizorkin distribution θ.
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2. The last part says in particular that there is no cohomology in Φ′(Rn, Λk),
i.e.,

· · · → Φ′(Rn, Λk−1)
d
→ Φ′(Rn, Λk)

d
→ Φ′(Rn, Λk+1) → · · ·

is an exact sequence.
3. Using the equalities U = I2 ◦ δ and U∗ = I2 ◦d, and observing that E = d◦U

and E∗ = δ◦U∗, one can write the Hodge–Kodaira decomposition of θ ∈ Φ′(Rn, Λk)
as

θ = d(Uθ) + δ(U∗θ).

7.4. Proof of Theorems 1.2 and 1.4. The operators defined in the previous
section are well behaved on Lp:

Theorem 7.6. The Riesz transform and its dual

R, R∗ : Lp(Rn, Λk) → Lp(Rn, Λk−1)

are bounded operators on Lp for any 1 < p <∞.

Proof. The boundedness of these operators on Lp follows from Theorem 6.8 and
the expansions (7.8) and (7.9). �

Theorem 7.7. The operators U∗ and U restrict as bounded operators

U∗, U : Lp(Rn, Λk) → Lq(Rn, Λk−1),

if and only if 1
p − 1

q = 1
n .

Proof. This follows from Theorems 6.7. �

We can now prove the theorems stated in the introduction.

Proof of Theorem 1.2. The equation (1.5) is a trivial consequence of the equality
E+E∗ = Id and Im(E)∩Im(E∗) = {0}. We know from Theorem 7.6, that the Riesz
transform and its dual are well defined bounded operators R, R∗ : Lp(Rn, Λk) →
Lp(Rn, Λk−1). The operators E = R ◦ R∗ and E∗ = R∗ ◦ R are then also clearly
bounded on Lp(Rn, Λk−1). The algebraic properties (iii), (iv) and (v) in Theorem
1.2 are proved in Proposition 7.4, and we know that ELp(Rn, Λk) ⊂ Lp(Rn, Λk)
is a closed subspace, since it coincides with the kernel of the bounded operator
E∗ : Lp(Rn, Λk) → Lp(Rn, Λk). Likewise E∗Lp(Rn, Λk) = kerE is also bounded
in Lp(Rn, Λk). �

Proof of Theorem 1.4. By Theorem 7.7, the operators U∗, U restrict as bounded
operators on Lq(Rn, Λk−1). The relations dU = E and δU∗ = E∗ are given in
Proposition 7.4. �
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8. Some Additional Applications

8.1. The Gaffney inequality

Theorem 8.1. Assume 1 < p < ∞. There exists a constant Cp such for any

θ ∈ Lp(Rn, Λk) and any µ = 1, 2, . . . n, we have

‖∂µθ‖Lp(Rn) 6 Cp

(
‖dθ‖Lp(Rn) + ‖δθ‖Lp(Rn)

)
. (8.1)

Proof. By Theorem 6.8 , we know that Rµ is a bounded operator on Lp and by
Theorem 7.6, it is also the case of R and R∗. The Theorem follows now immediately
from the following identity:

∂µ = Rµ ◦ R ◦ δ + Rµ ◦ R∗ ◦ d. (8.2)

The latter formula is a consequence of the relations ∆◦I2 = Id and Rµ = I1◦∂µ,
indeed:

∂µ = ∆ ◦ I2 ◦ ∂µ

= (I1 ◦ ∂µ) ◦ (∆ ◦ I1)

= Rµ ◦ (dδ + δd) ◦ I1

= Rµ ◦ (d ◦ I1) ◦ δ + Rµ ◦ (δ ◦ I1) ◦ d

= Rµ ◦ R ◦ δ + Rµ ◦ R∗ ◦ d. �

8.2. A Sobolev inequality for differential forms. We have the following So-
bolev–Gagliardo–Nirenberg inequality for differential forms on Rn:

Theorem 8.2. Let 1 < p, q < ∞. There exists a constant C < ∞ such that for

any θ ∈ Lp(Rn, Λk), we have

‖θ‖Lq(Rn) 6 C (‖dθ‖Lp(Rn) + ‖δθ‖Lp(Rn)). (8.3)

if and only if 1
p − 1

q = 1
n .

Proof. We have θ = Eθ + E∗θ = U(dθ) + U∗(δθ). By Theorem 1.2, we know
that U, U∗ : Lp(Rn, Λk−1) → Lq(Rn, Λk−1) are bounded operators if and only if
1
p − 1

q = 1
n , hence the inequality (8.3) holds with

C = max{‖U‖Lp→Lq , ‖U∗‖Lp→Lq}.

We need to show in the converse direction,that the inequality (8.3) cannot hold
with a finite constant if 1

p − 1
q 6= 1

n . To do that, we consider a non zero k-form

θ ∈ Lp(Rn, Λk), observe that either dθ 6= 0 or δθ 6= 0, for otherwise the form θ
would have constant coefficients, which is impossible for a non zero form in Lp(Rn).
The following quantity is therefore well defined:

Q(t) =
‖h∗t θ‖Lq(Rn)

‖h∗tdθ‖Lp(Rn) + ‖h∗t δθ‖Lp(Rn)
,

where ht is the 1-parameter group of linear dilations in R
n given by ht(x) = t · x.

A calculation shows that for any ω ∈ Ls(Rn, Λm), we have

‖h∗t ω‖Ls(Rn) = tm−n
s ‖ θ‖Ls(Rn), (8.4)
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since dh∗t θ = h∗td θ is a (k + 1)-form, we obtain

‖h∗tdθ‖Lp(Rn) = t1+k− n
p ‖dθ‖Lp(Rn). (8.5)

Now be careful, because δh∗t 6= h∗t δ. In fact δh∗t θ = t2 h∗t δ θ; this is a (k − 1)-form
and thus (8.4) implies that

‖h∗t δθ‖Lp(Rn) = t2tk−1−n
p ‖δθ‖Lp(Rn) = t1+k− n

p ‖δθ‖Lp(Rn). (8.6)

The last three identities give us

Q(t) =
tk−

n
q

t1+k−n
p

Q(1) = t
n
p
−n

q
−1Q(1).

If 1
p−

1
q −

1
n < 0, then limt→0Q(t) = ∞ and if 1

p−
1
q −

1
n > 0, then limt→∞Q(t) = ∞.

We conclude that the Sobolev inequality (8.3) cannot hold if 1
p − 1

q − 1
n 6= 0. �

8.3. The L
p a priory estimates for the Laplacian on forms

Theorem 8.3. The following inequality holds for any θ ∈ Φ′(Rn, Λk), 1 < p <∞
and µ, ν = 1, 2, . . . , n:

‖∂µ∂νθ‖Lp(Rn) 6 c2p ‖∆θ‖Lp(Rn) (8.7)

where cp is the norm of the operator Rj : Lp(Rn) → Lp(Rn).

Observe that this estimate is actually a scalar estimate.

Proof. By Theorem 6.8, we know that Rµ is a bounded operator on Lp. It is also
clearly the case of R and R∗. The corollary now follows from the following lemma
and the definition of cp. �

Lemma 8.4. The following identity holds in OpΦ′(Rn, Λk):

∂µ∂ν = Rµ ◦ Rν ◦ ∆. (8.8)

Proof. We have

∂µ∂ν = ∆ ◦ I2 ◦ ∂µ ◦ ∂ν

= ∆ ◦ (I1 ◦ ∂µ) ◦ (I1 ◦ ∂ν)

= ∆ ◦ Rµ ◦ Rν

= Rµ ◦ Rν ◦ ∆. �

8.4. The Lq,p-cohomology of Rn. The set of closed forms in Lp(Rn, Λk) is
denoted by

Zk
p (Rn) = Lp(Rn, Λk) ∩ ker d,

and the set of exact forms in Lp(Rn, Λk) which are differentials of forms in Lq is
denoted by

Bk
q,p(R

n) = d(Lq(Rn, Λk−1)) ∩ Lp(Rn, Λk).

Lemma 8.5. Zk
p (Rn) ⊂ Lp(Rn, Λk) is a closed linear subspace.
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Proof. By definition, a form θ ∈ Lp(Rn, Λk) belongs to Zk
p (Rn) if and only if∫

Rn θ∧ϕ = 0 for any ϕ ∈ S(Rn, Λn−k). Suppose now that θ ∈ Lp(Rn, Λk) is in the

closure of Zk
p (Rn). This means that there exists a sequence θi ∈ Zk

p (Rn) converging
to θ for the Lp norm. Using the Hölder inequality with q = p/(p− 1), we have

∣∣∣∣
∫

Rn

θ ∧ ϕ

∣∣∣∣ = lim
i→∞

∣∣∣∣
∫

Rn

(θ − θi) ∧ ϕ

∣∣∣∣ 6 lim
i→∞

‖θ − θi‖Lp‖ϕ‖Lq = 0,

and therefore θ ∈ Zk
p (Rn). �

Remark. It is clear that Bk
q,p(R

n) ⊂ ELp(Rn, Λk) ⊂ Zk
p (Rn). By Proposition 7.4

(a), 7.4 (b) and Theorem 1.2, we have in fact Zk
p (Rn) = ELp(Rn, Λk).

Definition. The Lq,p-cohomology of Rn is the quotient

Hk
q,p(R

n) = Zk
p (Rn)/Bk

q,p(R
n).

The next result computes this cohomology:

Theorem 8.6. For any p, q ∈ (1, ∞) and 1 6 k 6 n, we have

Hk
q,p(R

n) = 0 ⇔
1

p
−

1

q
=

1

n
.

Proof. Assume first that 1
p−

1
q = 1

n . By Proposition 7.4, we have for any θ ∈ Zk
p (Rn)

θ = Eθ + E∗θ = Eθ = d(Uθ),

because E∗ = 0 on kerd. By Theorem 1.2, we know that U : Lp(Rn, Λk−1) →
Lq(Rn, Λk−1) is a bounded operator. Hence θ = d(Uθ) ∈ Bk

q,p(R
n); but since

θ ∈ Zk
p (Rn) is arbitrary, we have

Hk
q,p(R

n) = Zk
p (Rn)/Bk

q,p(R
n) = 0.

To prove the converse direction, we use the interpretation of the Lq,p-cohomology
in terms of Sobolev inequalities. In particular, it is proven in [5, Theorem 6.2] that
if Hk

q,p(R
n) = 0, then there exists a constant C such that for any φ ∈ Lq(Rn, Λk−1),

there exists a closed form ζ = ζ(φ) ∈ Zk−1
q (Rn) such that

‖φ− ζ‖Lq 6 C ‖dφ‖Lp . (8.9)

Let us fix a form φ ∈ Lq(Rn, Λk−1) which is not closed and apply the above
inequality to h∗t φ, where ht(x) = t · x. It says in this case that for any t ∈ R, there
exists ζt ∈ Zk−1

q (Rn) such that

‖h∗t φ− ζt‖Lq 6 C ‖h∗t dφ‖Lp . (8.10)

Using the identity (8.4) with s = q, m = (k − 1) and s = p, m = k, we obtain the
inequality

‖φ− h∗−tζt‖Lq 6 Ctγ ‖dφ‖Lp (8.11)

with γ = 1 + n
q − n

p . The right hand side of this inequality converges to zero as

t → 0 if γ < 0 or as t → ∞ if γ > 0. Since h∗−tζt ∈ Zk−1
q (Rn) for any t and

Zk−1
q (Rn) ⊂ Lq(Rn, Λk−1) is closed, it follows that φ ∈ Zk−1

q (Rn). But φ is not
closed by hypothesis, we thus conclude that γ = 0. To sum up, the argument shows
that if Hk

q,p(R
n) = 0, then γ = 1 + n

q − n
p = 0. �



924 M. TROYANOV

Remark. Theorem 6.2 in [5] says in fact that there exists a constant C such that
(8.9) holds if and only if T k

q,p(R
n) = 0 (provided 1 < q, p < ∞). Here T k

q,p is the

torsion, which is defined to be the quotient Bk
q,p/B

k
q,p. We have thus also proved

that T k
q,p(R

n) = 0 ⇔ 1
p − 1

q = 1
n . In particular Hk

q,p(R
n) is infinite dimensional if

1
p − 1

q 6= 1
n .

Appendix: Computation of the Fourier Transform of the

Riesz Kernel

Definition. The Riesz kernel of order α ∈ (0, n) is the function kα defined on R
n

by

kα(x) =
1

γ(n, α)
|x|α−n,

where the normalizing constant is given by

γ(n, α) = 2απn/2 Γ(α
2 )

Γ(n−α
2 )

.

Theorem 8.7. The Fourier transform of the Riesz kernel of order α ∈ (0, n) is

given by

F(kα) = |ξ|−α.

Proof. We will use the fact that the Gaussian function g(x) = e−s|x|2 belongs to S
for any s > 0 and that its Fourier transform is given by

F(e−s|x|2)(ξ) =
(π
s

)n/2

e−|ξ|2/4s, (8.12)

(this is a well known fact; see, e.g., [4, Proposition 8.24] or [13, page 38]).
To compute the Fourier transform of kα, we start from the formulas

Γ(z) a−z =

∫ ∞

0

sz−1e−as ds and Γ(w) b−w =

∫ ∞

0

s−w−1e−b/s ds, (8.13)

which hold for any a, b ∈ (0, ∞) and any z, w ∈ C such that Re(z), Re(w) > 0.
To check these formulas, use the substitution t = as (for the first identity) and

t = b/s (for the second identity) in the definition Γ(z) =
∫ ∞

0 tz−1e−t dt of the
Γ-function.

We will use the first formula with a = |x|2 and apply the Fourier transform;
keeping in mind the identity (8.12), we have

F(Γ(z)|x|−2z) = F

(∫ ∞

0

sz−1e−|x|2s ds

)

=

∫ ∞

0

sz−1F(e−|x|2s) ds (Fubini)

=

∫ ∞

0

sz−1
(π
s

)n/2

e−|ξ|2/4s ds

= πn/2

∫ ∞

0

sz−n
2
−1e−|ξ|2/4s ds.
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Setting b = |ξ|2/4 and w = n
2 − z, we obtain from the second identity in (8.13)

Γ(z)F(|x|−2z) = πn/2

∫ ∞

0

s−w−1e−b/s ds = πn/2Γ(w)4w |ξ|−2w.

Let us set α = n− 2z, thus z = n−α
2 and w = n

2 − z = α
2 ; we write this formula as

F(|x|α−n) = γ(n, α)|ξ|−α,

where

γ(n, α) = πn/22α Γ(α
2 )

Γ(n−α
2 )

.

The above calculation assumes Re(z), Re(w) > 0, which is equivalent to 0 < α < n.
�

Remark. Using the Fourier transform in the Lizorkin sense, it is possible to extend
the Riesz kernel kα of order α for any real number α > 0 (and in fact any complex
number with Reα > 0). We define it as follow

kα =
1

γ(n, α)
|x|α−n

if α 6= n+ 2m for any m ∈ N, and by

kα =
1

γ(n, α)
|x|α−n log

1

|x|

if α = n+ 2m for some m ∈ N.

With this definition, the previous result is still valid

Proposition 8.8. The Fourier transform of kα, α ∈ C is given by

F(ka) = |ξ|−α. �
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sanne – Switzerland

E-mail address: marc.troyanov@epfl.ch

http://www.ams.org/mathscinet-getitem?mr=MR0209834
http://www.ams.org/mathscinet-getitem?mr=MR1297538
http://www.ams.org/mathscinet-getitem?mr=MR0290095
http://www.ams.org/mathscinet-getitem?mr=MR1276724
http://www.ams.org/mathscinet-getitem?mr=MR1395148

	1. Introduction
	2. The Space of Tempered Distributions
	3. The Laplacian and Polynomials
	4. The Lizorkin Space and its Fourier Image
	5. Some Symbolic Calculus
	5.1. Operators on \Psi' and multipliers
	5.2. Operators on \Psi' and their symbols
	5.3. The Riesz potential and the Riesz operator 
	5.4. Convolution operators in \mathcal S

	6. The Lizorkin Space and Harmonic Analysis in L^p(\mathbb R^n)
	6.1. Applications of these L^p bounds

	7. Applications to Differential Forms
	7.1. Differential forms in R^n
	7.2. Temperate and Lizorkin currents 
	7.3. The Riesz transform on currents 
	7.4. Proof of Theorems 1.2 and 1.4

	8. Some Additional Applications
	8.1. The Gaffney inequality
	8.2. A Sobolev inequality for differential forms
	8.3. The L^p a priory estimates for the Laplacian on forms
	8.4. The L_{q,p}-cohomology of \mathbb R^n

	Appendix: Computation of the Fourier Transform of the Riesz Kernel
	References

