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Abstract—Non-adaptive group testing involves grouping ar-
bitrary subsets of n items into different pools and identifying
defective items based on tests obtained for each pool. Motivated
by applications in network tomography, sensor networks and
infection propagation we formulate non-adaptive group testing
problems on graphs. Unlike conventional group testing problems
each group here must conform to the constraints imposed by a
graph. For instance, items can be associated with vertices and
each pool is any set of nodes that must be path connected. In this
paper we associate a test with a random walk. In this context
conventional group testing corresponds to the special case of a
complete graph on n vertices.

For interesting classes of graphs we arrive at a rather
surprising result, namely, that the number of tests required
to identify d defective items is substantially similar to that
required in conventional group testing problems, where no
such constraints on pooling is imposed. Specifically, if T (n)
corresponds to the mixing time of the graph G, we show that
with m = O(d2T 2(n) log(n/d)) non-adaptive tests, one can
identify the defective items. Consequently, for the Erdős-Rényi
random graph G(n, p), as well as expander graphs with constant
spectral gap, it follows that m = O(d2 log3 n) non-adaptive tests
are sufficient to identify d defective items. We next consider a
specific scenario that arises in network tomography and show that
m = O(d3 log3 n) non-adaptive tests are sufficient to identify d
defective items. We also consider noisy counterparts of the graph
constrained group testing problem and develop parallel results
for these cases.

I. INTRODUCTION

In this paper we introduce the graph constrained group
testing problem (GCGT) motivated by applications in network
tomography, sensor networks and infection propagation. While
group testing theory (see [1], [2] and more recently [3]),
and its numerous applications, such as industrial quality assur-
ance [4], DNA library screening [5], software testing [6], and
multi-access communications [7], have been systematically
explored, the graph constrained group testing problem is new
to the best of our knowledge.

Group testing involves identifying at most d defective items
out of a set of n items. In non-adaptive group testing, which is
the subject of this paper, we are given an m×n binary matrix,
M , usually referred to as a test or measurement matrix. Ones
on the jth row of M indicate which subset of the n items
belongs to the jth pool. A test is conducted on each pool;
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a positive outcome indicating that a defective item is part of
the pool; and a negative test indicating that no defective items
are part of the pool. The conventional group testing problem
is to design a matrix M with minimum number of rows m
that guarantees error free identification of the defective items.
While the best known (probabilistic) pooling design requires
a test matrix with m = O(d2 log(n/d)) rows, and an almost-
matching lower bound of m = Ω(d2(log n)/(log d)) is known
on the number of pools (cf. [2, Chapter 7]), the size of the
optimal test still remains open.

Note that in the standard group testing problem the test
matrix M can be designed arbitrarily. In this paper we consider
a generalization of the group testing problem to the case where
the matrix M must conform to constraints imposed by a graph
G = (V,E). In general the problem we describe naturally
arises in several applications such as network tomography [8],
[9], sensor networks [10], and infection propagation [11].
While the graph constrained group testing problem has been
alluded to in these applications the problem of test design or
the characterization of the minimum number of tests, to the
best of our knowledge, has not been addressed before. In this
light our paper is the first to formalize the graph constrained
group testing (GCGT) problem1. In the GCGT problem the n
items are either vertices or links (edges) of the graph; at most
d of them are defective. The task is to identify the defective
vertices or edges. The test matrix M is constrained as follows:
for items associated with vertices each row must correspond to
a subset of vertices that are connected by a path on the graph;
for items associated with links each row must correspond to
links that are path connected in the line graph of G. The task is
to design an m×n binary test matrix with minimum number of
rows m that guarantees error free identification of the defective
items.

The GCGT problem has close connections to network
tomography [9], [8], [10], which deals with identification
of congested links from end-to-end path measurements for
a given network. Congested links lead to packet losses or
delays for a route that goes through these links. A network
is associated with a graph G = (V,E) where the set V
denotes the network routers/hosts and the set E denotes

1While variations of classical group testing possessing a graph theoretic
nature has been studied, our setting where pools are associated with paths is
new. Notable examples of employing graph constraints include the problem
of learning hypergraphs [12]. Another variation concerns group testing with
constraints defined by a rooted tree (see [2, Chapter 12]).
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Fig. 1. The result of pool 1 is positive since it contains a defective item,
whereas the result of pool 2 is negative since it does not contain a defective
item. Pool 3 is not consistent with the graph and thus not allowed since the
items are not connected by a path.

the communication links (see Fig. 1). Suppose, we have a
monitoring system that consists of one or more end hosts
(so called vantage points) that can send and receive packets.
Each vantage point sends packets through the network by
assigning the routes and the end hosts. A vantage point can
only assign those routes which form a path in the graph G.
Each measurement has a binary outcome, namely, it is deemed
to be positive if packets sent along a route have significant path
losses or path delays (and negative otherwise). The question
of interest is to determine the number of measurements that
is needed in order to identify the congested links in a given
network.

Nevertheless, the network tomography problem just de-
scribed is static [9] in that it corresponds to the case where
the binary test matrix M is fixed once a set of vantage points
has been chosen. Our paper is closely related to situations
arising in wireless sensor networks (WSN), where the test
matrices can be random. Indeed in WSNs [10] the routing
topology is constantly changing. At any instant, sensor nodes
form a tree to route packets to the sink. The routing tree
constantly changes unpredictably but must be consistent with
the underlying network connectivity.

Motivated by the WSN scenario we describe pool designs
based on random walks on graphs. As is well known a random
walk is the state evolution on a finite reversible Markov chain.
Each row of the binary test matrix is derived from the evolution
of the random walk, namely, the ones on the jth row of M
correspond to the vertices visited by the jth walk. This is close
to the WSN scenario because as in the WSN scenario the
path between two given nodes changes randomly. However, a
significant difference is that random walks have loops. In this
context it is worth mentioning that there is a close connection
between random walks and random spanning trees [13].

We first consider random walks that start either at a random
node or an arbitrary node but terminate in some appropriately
chosen time t. By optimizing the length of the walk we arrive
at a surprising result for interesting classes of graphs. Specif-
ically we show that the number of tests required to identify d
defective items is substantially similar to that required in con-
ventional group testing problems, where no such constraints on
pooling is imposed. The best known result for the number of

tests required when no graphical constraints are imposed scales
as O(d2 log(n/d)). For the graph constrained case we show
that with m = O(d2T 2(n) log(n/d)) non-adaptive tests one
can identify the defective items, where T (n) corresponds to
the mixing time of the graph G. Consequently, for the Erdős-
Rényi random graph G(n, p), as well as expander graphs with
constant spectral gap, it follows that m = O(d2 log3 n) non-
adaptive tests are sufficient to identify d defective items. Next
we consider unbounded-length random walks that originate at
a source node and terminate at a sink node. Both the source
node and the sink node can either be arbitrary or be chosen
uniformly at random. This situation is closer in spirit to the
WSN network tomography problem. In this scenario we show
that m = O(d3 log3 n) non-adaptive tests are sufficient to
identify d defective items.

Finally, we also consider noisy counterparts of the graph
constrained group testing problem and develop parallel results
for these cases. Specifically, we consider the so called dilution
model. In this case each item can be diluted in each test with
some a priori known probability. This corresponds to the case
when a test on a path with a congested link can turn out to be
negative with some probability. We show that similar scaling
results holds for this case as well.

The rest of this paper is organized as follows. In Section II,
we introduce our notation and mention some basic facts related
to group testing and random walks on graphs. Then Section III
formally describes the problem that we consider and states our
main results. The reader is referred to the full version of this
paper2 for an elaborate discussion on various applications of
graph-constrained group testing and omitted proof details.

II. DEFINITIONS AND NOTATION

In this section we introduce some tools, definition and
notations which are used throughout the paper.

Definition 1: For two given boolean vectors S and T of
the same length we denote their element-wise logical or by
S ∨ T . More generally, we will use

∨d
i=1 Si to denote the

element-wise or of d boolean vectors. The logical subtraction
of two boolean vectors S = (s1, . . . , sn) and T = (t1, . . . , tn),
denoted by S \ T , is defined as a boolean vector which has
a 1 at each position i if and only if si = 1 and ti = 0. We
also use |S| to show the number of 1’s in (i.e., the Hamming
weight of) a vector S.

Matrices that are suitable for the purpose of group testing
are known as disjunct matrices. The formal definition is as
follows:

Definition 2: An m × n boolean matrix M is called d-
disjunct, if, for every column S0 and every choice of d columns
S1, . . . , Sd of M (different from S0), there is at least one
row at which the entry corresponding to S0 is 1 and those
corresponding to S1, . . . , Sd are all zeros. More generally, for
an integer e ≥ 0, the matrix is called (d, e)-disjunct if for

2Available online at 〈http://arxiv.org/abs/1001.1445〉



every choice of the columns Si as above, they satisfy

|S0 \
d∨

i=1

Si| > e.

A matrix that is (d, 0)-disjunct is said to be d-disjunct.
A classical observation in group testing theory states that

disjunct matrices can be used in non-adaptive group testing
schemes to distinguish sparse boolean vectors (cf. [2]). More
precisely, suppose that a d-disjunct matrix M with n columns
is used as the measurement matrix; i.e., we assume that the
rows of M are the characteristic vectors of the pools defined
by the scheme. Then, the test outcomes obtained by applying
the scheme on two distinct d-sparse vectors of length n must
differ in at least one position. More generally, if M is taken
to be (d, e)-disjunct, the test outcomes must differ in at least
e+1 positions. Thus, the more general notion of (d, e)-disjunct
matrices is useful for various “noisy” settings, where we are
allowed to have a few false outcomes. As observed in [11],
this notion is also suitable for handling the dilution model,
where with some small probability a defective item may not
affect the outcome of a test in which it participates.

For our application, sparse vectors correspond to boolean
vectors encoding the set of defective vertices, or edges, in
a given undirected grph. Moreover, we aim to construct
measurement matrices that are not only disjunct in the classical
sense describe above, but are also constrained to be consistent
with the underlying graph, as formalized below.

Definition 3: Let G = (V,E) be an undirected graph, and
A and B be boolean matrices with |V | and |E| columns,
respectively. The columns of A are indexed by the elements
of V and the columns of B are indexed by the elements of
E. Then,

• The matrix A is said to be vertex-consistent with G if
each row of A, seen as the characteristic vector of a subset
of V , exactly represents the set of vertices visited by some
walk on G.

• The matrix B is said to be edge-consistent with G if each
row of B, seen as the characteristic vector of a subset of
E, exactly corresponds to the set of edges traversed by a
walk on G.

Note that the choice of the walk corresponding to each row
of A or B need not be unique. Moreover, a walk may visit a
vertex (or edge) more than once.

Definition 4: An undirected graph G = (V,E) is called
(D, c)-uniform, for some c ≥ 1, if the degree of each vertex
v ∈ V (denoted by deg(v)) is between D and cD.

Throughout this work, the constraint graphs are considered
to be (D, c)-uniform, for an appropriate choice of D and some
(typically constant) parameter c. When c = 1, the graph is D-
regular.

Definition 5: The point-wise distance of two probability
distributions µ, µ′ on a finite space Ω is defined as

‖µ− µ′‖∞ := max
i∈Ω
|µ(i)− µ′(i)|,

where µ(i) (resp., µ′(i)) denote the probability assigned by µ
(resp., µ′) to the outcome i ∈ Ω.

Definition 6: Let G = (V,E) with |V | = n be a (D, c)-
uniform graph and denote by µ its stationary distribution.
The δ-mixing time of G (with respect to the `∞ norm) is
the smallest integer t such that a random walk of length t
starting at any vertex in G ends up having a distribution µ′

with ‖µ′−µ‖∞ ≤ δ. For concreteness, we define the quantity
T (n) as the δ-mixing time of G for δ := (1/2cn)2.

Two classes of graphs that are of particular importance for
us are expander graphs and Erdős-Rényi random graphs.

Let G be a regular undirected graph3, and denote by A the
normalized adjacency matrix of G (so that the entries on each
row/column of A sum up to 1). The spectral gap of G is
defined as 1− λ, where λ is the second largest eigenvalue of
A in absolute value. We consider G an expander graph when
the spectral gap is constant; i.e., 1− λ = Ω(1).

An instance of a random graph in the Erdős-Rényi model
is obtained using the following procedure: Start with the
complete graph on n vertices, and remove each edge of the
graph independently with probability 1 − p. We denote the
corresponding sample space by G(n, p).

III. PROBLEM SETTING AND MAIN RESULTS

Problem Statement. Consider a given graph G = (V,E)
in which at most d vertices (resp., edges) are defective. The
goal is to characterize the set of defective items using as small
number of measurements as possible, where each measurement
determines whether the set of vertices (resp., edges) observed
along a path on the graph has a non-empty intersection with the
defective set. We call the problem of finding defective vertices
vertex group testing and that of finding defective edges edge
group testing.

As mentioned earlier, not all sets of vertices can be grouped
together, and only those that share a path on the underlying
graph G can participate in a pool (see Fig. 1).

In the following, we introduce four random constructions
(designs) for both problems. The proposed designs follow the
natural idea of determining pools by taking random walks on
the graph.

Design 1. Given: a constraint graph G = (V,E) with r ≥ 0
designated vertices s1, . . . , sr ∈ V , and integer parameters m
and t.
Output: an m× |V | boolean matrix M .
Construction: Construct each row of M independently as
follows: Let v ∈ V be any of the designated vertices si,
or otherwise a vertex chosen uniformly at random from V .
Perform a random walk of length t starting from v, and let
the corresponding row of M be the characteristic vector of the
set of vertices visited by the walk.

By construction, Designs 1 and 3 (resp., Designs 2 and 4)
output boolean matrices that are vertex- (resp., edge-)

3To be precise, we have implicitly assumed that G belongs to an infinite
family of regular graphs containing arbitrarily large graphs.



Design 2.
Given: a constraint graph G = (V,E) and integer parameters
m and t.
Output: an m× |E| boolean matrix M .
Construction: Construct each row of M independently as
follows: Let v ∈ V be any arbitrary vertex of G. Perform
a random walk of length t starting from v, and let the
corresponding row of M be the characteristic vector of the
set of edges visited by the walk.

Design 3.
Given: a constraint graph G = (V,E) with r ≥ 0 designated
vertices s1, . . . , sr ∈ V , a sink node u ∈ V , and integer
parameter m.
Output: an m× |V | boolean matrix M .
Constructions: Construct each row of M independently as
follows: Let v ∈ V be any of the designated vertices si,
or otherwise a vertex chosen uniformly at random from V .
Perform a random walk starting from v until we reach u, and
let the corresponding row of M be the characteristic vector of
the set of vertices visited by the walk.

Design 4.
Given: a constraint graph G = (V,E), a sink node u ∈ V ,
and integer parameter m.
Output: an m× |E| boolean matrix M .
Construction: Construct each row of M independently as
follows: Let v ∈ V be any arbitrary vertex of G. Perform
a random walk, starting from v until we reach u, and let the
corresponding row of M be the characteristic vector of the set
of edges visited by the walk.

consistent with the graph G. Our main goal is to show that,
when the number of rows m is sufficiently large, the output
matrices become d-disjunct (for a given parameter d) with
overwhelming probability.

Remark 7: Designs 1 and 3 in particular provide two
choices for constructing the measurement matrix M . Namely,
the start vertices can be chosen within a fixed set of designated
vertices, or, chosen randomly among all vertices of the graph.
As we will see later, in theory there is no significant difference
between the two schemes. However, for some applications it
might be the case that only a small subset of vertices are
accessible as the starting points (e.g., in network tomography
such a subset can be determined by the vantage points), and
this can be modeled by an appropriate choice of the designated
vertices in Designs 1 and 3.

The following theorem states the main result of this work.
Theorem 8: Let p ≥ 0 be a fixed parameter, and suppose

that G = (V,E) is a (D, c)-uniform graph on n vertices
with mixing time T (n). Then there exist parameters with
asymptotic values given in Table I such that, provided that
D ≥ D0,

1) Design 1 with the path length t := t1 and the number
of measurements m := m1 outputs a matrix M that is
vertex-consistent with G. Moreover, once the columns

TABLE I
THE ASYMPTOTIC VALUES OF VARIOUS PARAMETERS IN THEOREM 8.

Parameter Value
D0 O(c2dT 2(n))

m1, m2 O(c4d2T 2(n) log(n/d))
m3 O(c8d3T 4(n) log(n/d))
m4 O(c9d3DT 4(n) log(n/d))
t1 O(n/(c3dT (n)))
t2 O(nD/(c3dT (n)))

e1, e2, e3, e4 Ω(pd log(n/d)/(1− p)2)
m′

i, i ∈ [4] O(mi/(1− p)2)

of M corresponding to the designated vertices s1, . . . , sr

are removed, the matrix becomes d-disjunct with proba-
bility 1− o(1). More generally, for m := m′1 the matrix
becomes (d, e1)-disjunct with probability 1− o(1).

2) Design 2 with path length t := t2 and m := m2 mea-
surements outputs a matrix M that is edge-consistent
with G and is d-disjunct with probability 1−o(1). More
generally, for m := m′2 the matrix becomes (d, e2)-
disjunct with probability 1− o(1).

3) Design 3 with the number of measurements m := m3

outputs a matrix M that is vertex-consistent with G.
Moreover, once the columns of M corresponding to the
designated vertices s1, . . . , sr and the sink node u are
removed, the matrix becomes d-disjunct with probability
1 − o(1). More generally, for m := m′3 the matrix
becomes (d, e3)-disjunct with probability 1− o(1).

4) Design 4 with the number of measurements m := m4

outputs a matrix M that is edge-consistent with G and
is d-disjunct with probability 1− o(1). More generally,
for m := m′4 the matrix becomes (d, e4)-disjunct with
probability 1− o(1).

Proof (sketch): First, observe that by construction, the
obtained matrices are consistent with the underlying graph.
Let W1 be any of the m walks performed in Design 1, and
similarly, W2,W3,W4 be any of the walks in Designs 2, 3,
and 4, respectively. We distinguish the following quantities
related to the walks:
• For a vertex v ∈ V and subset A ⊆ V such that v /∈ A,
|A| ≤ d, denote by πv,A (resp., π(u)

v,A) the probability that
W1 (resp., W3) passes v but none of the vertices in A.
We assume that {v} ∪A is disjoint from {s1, . . . , sr} in
Design 1 and from {s1, . . . , sr, u} in Design 3.

• For an edge e ∈ E and subset B ⊆ E such that e /∈ B,
|B| ≤ d, denote by πe,B (resp., π(u)

e,B) the probability that
W2 (resp., W4) passes e but none of the edges in B.

Under the assumptions on the underlying graph G, it can be
shown that,

πv,A = Ω
(

1
c4dT 2(n)

)
πe,B = Ω

(
1

c4dT 2(n)

)
π

(u)
v,A = Ω

(
1

c8d2T 4(n)

)
π

(u)
e,B = Ω

(
1

c9d2DT 4(n)

)
.

The proofs for the above lower bounds are technical and rather
lengthy, and are skipped in this short presentation. Detailed
proofs can be found in the full version of this paper. For
concreteness, we focus on the first claim about Design 1.



The proof for the other designs is similar. Take a vertex
v ∈ V and A ⊆ V such that v /∈ A, |A| ≤ d, and
({v} ∪ A) ∩ {s1, . . . , sr} = ∅. For each i ∈ [m1], define a
random variable Xi ∈ {0, 1} such that Xi = 1 iff the ith
row of M has a 1 entry at the column corresponding to v
and zeros at those corresponding to the elements of A. Let
X :=

∑m1
i=1Xi. Note that the columns corresponding to v and

A violate the disjunctness property of M iff X = 0, and that
the Xi are independent Bernoulli random variables. For each
i, Xi = 1 happens exactly when the ith random walk passes
the vertex v but never hits any vertex in A, and by the lower
bound on πv,A, we have Pr[Xi = 1] = Ω(1/(c4dT 2(n))).

Denote by pf the failure probability, namely that the
resulting matrix M is not d-disjunct. By a union bound on
the choice of v and A, we get

pf ≤
∑
v,A

(1− πv,A)m1

≤ exp
(
d log

n

d

)
·
(

1− Ω
(

1
c4dT 2(n)

))m1

.

Thus by choosing m1 = O(d2c4T 2(n) log(n/d)), we can
ensure that pf = o(1), and hence, M is d-disjunct with over-
whelming probability. The agument for (d, e1)-disjunctness is
similar, but uses Chernoff bounds to upper bound the failure
probability that X ≤ e1 for some choice of v and A.

Remark 9: In Design 1, we need to assume that the des-
ignated vertices (if any) are not defective, and hence, their
corresponding columns can be removed from the matrix M .
By doing so, we will be able to ensure that the resulting matrix
is disjunct. Obviously, such a restriction cannot be avoided
since, for example, M might be forced to contain an all-ones
column corresponding to one of the designated vertices and
thus, fail to be even 1-disjunct.

Remark 10: By applying Theorem 8 on the complete graph
(using Design 1), we get O(d2 log(n/d)) measurements, since
in this case, the mixing time is T (n) = 1. Thereby, we
recover the trade-off obtained by the probabilistic construction
in classical group testing (note that classical group testing
corresponds to graph-constrained group testing on the vertices
of the complete graph).

Remark 11: By considering the special case of complete
graphs it is possible to establish that the cubic dependence of
m3 on d and dependence of m4 on the degree parameter D
are necessary and cannot be in general improved. We omit the
details due to space constraints.

Now we instantiate the result obtained in Theorem 8 to two
important special cases; namely, expander graphs and Erdős-
Rényi random graph G(n, p). We will use the following results
(proofs can be found in the full version of the paper):

Lemma 12: Suppose that G is a regular expander graph
with constant spectral gap. Then T (n) = O(log n).

Lemma 13: For every ε > 0, there is a constant α > 0
such that the following holds. Suppose that G is a random
graph G(n, p) with average degree np ≥ α lnn. Then, with
probability 1− o(1),

• The graph G is (np(1− ε), (1 + ε)/(1− ε))-uniform,
• We have T (n) = O(log n).
Using the above lemmas in Theorem 8, we get the following

result:
Theorem 14: There is an integer D0 = Ω(d log2 n) such

that for every D ≥ D0 the following holds: Suppose that the
graph G is either

1) A D-regular expander graph with constant spectral gap,
or,

2) A random graph G(n,D/n).
Then for every p ∈ [0, 1), with probability 1 − o(1) Designs
1, 2, 3, and 4 output (d, e)-disjunct matrices (not considering
the columns corresponding to the designated vertices and the
sink in Designs 1 and 3), for some e = Ω(dp log n), using
respectively m1,m2,m3,m4 measurements, where m1,m2 =
O(d2 log3 n), m3 = O(d3 log5 n), and m4 = O(d3D log5 n).

Decoding: In light of Theorems 8 and 14, we know that the
matrix M output by our proposed designs is almost surely
guaranteed to be (k, e)-disjunct, and moreover, is consistent
with the underlying graph G. Therefore, as discussed in
Section II, the set of pools defined by the rows of M can
be used to distinguish any set of up to d defective vertices
(or edges) in G. We further point out that, as in the case
of classical group testing, the set of defective items (i.e.,
defective vertices or edges of G) can be reconstructed using
the following (well known) simple and efficient decoding
procedure: Let y ∈ {0, 1}m denote the vector consistintg of the
measurement outcomes. Then an item i is labeled as defective
iff the ith column of M , denoted by Ci, satisfies |Ci \ y| ≤ e.
See [11] for a detailed discussion on this method.
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