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Abstract

Motivated by financial applications, we study convex analysis for modules over the ordered ring LY
of random variables. We establish a module analogue of locally convex vector spaces, namely locally
LY-convex modules. In this context, we prove hyperplane separation theorems. We investigate continu-
ity, subdifferentiability and dual representations of Fenchel-Moreau type for LY-convex functions from
L% modules into LY. Several examples and applications are given.
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1. Introduction

Various fundamental results in mathematical finance draw from convex analysis. For instance,
arbitrage theory or duality of risk and utility functions are concepts built on the Hahn—Banach ex-
tension theorem and its consequences for hyperplane separation in locally convex vector spaces,
cf. [6,10].

The simplest situation is a one period setup:

T
R -

P (1.1)
0——T.

Random future (date T') payments are modeled as elements of a locally convex vector space E
endowed with semi norms p. Price, risk or utility assessments 7, p, or u, map E linearly, con-
vexly, or concavely, into the real line R, respectively.

However, the idea of hedging random future payments develops its power in a multi period set-
ting. We therefore randomize the initial data, and let 7 = 7 (w, ), p = p(w, ), or u = u(w, -), be
w dependent, where w € §2 denotes the initial states modeled by a probability space (§2, F, P).
Here F is understood as the information available at some future initial date t < T'.

While classical convex analysis perfectly applies in the one period model (1.1), its application
in a multi period framework is rather delicate. Take, for instance, the convexity properties of the
risk measure p. These properties have to be extended to w wise convexity properties of p(w, -)
for almost all w € £2. But w wise convex duality correspondences for p(w, -) have to be made
measurable in w to assert intertemporal consistency in a recursive multi period setup. This would
require heavy measurable selection criteria.

We propose instead to consider 7 = 7 (w, -), p = p(®, -), or u = u(w, -), as maps into L0 =
L2(82, F, P), the ordered ring of (equivalence classes of) random variables:

T,0,U
R 10 <—E
\_/
P
0 t T.

The space E, in turn, is considered as module over L0,
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This requires hyperplane separation and convex duality results on topological modules, which
seem to be new in the literature. In this paper, we provide a comprehensive treatment of convex
analysis for topological L°-modules. While our emphasis is on financial applications as outlined
above, the results in this paper are of theoretical nature. We illustrate the scope of applications
that can be covered by our results in Section 3.2 below.

The paper is divided into two parts. The first part covers Hahn—Banach extension and hyper-
plane separation theorems. In the second part, as an application of the first, duality results are
established. The related literature is discussed in the course of the text. The remainder of the
paper is as follows:

Part1.In Section 2.1 we state the main results on locally L°-convex topologies and hyperplane
separation in locally L°-convex modules. For the sake of readability, all proofs are postponed
to the subsequent respective sections. In Section 2.2 we prove a Hahn—Banach type extension
theorem in the context of L°-modules. Instead of sublinear and linear functions on a vector space
we study LO-sublinear and L°-linear functions on an L°-module. In Section 2.3 we characterize
a class of topological L%-modules, namely locally L%-convex modules. An important feature of
a locally L%-convex module E is that the neighborhoods of 0 absorb E over L°. This is the key
difference to the notion of a locally convex module which is merely absorbent over the real line,
cf. [13,20,23]. The neighborhood base of a locally L%-convex module is constructed by means
of L%-semi norms. Such vector valued, or vectorial, norms go back to [14]. In Section 2.4 we
establish some preliminary results for L°-valued gauge functions. In Section 2.5 we prove the
hyperplane separation theorems in locally L°-convex modules. We separate a non-empty open
L%-convex set from an L%-convex set and we strictly separate a point from a non-empty closed
L%-convex set by means of continuous L-linear functions.

Part 1I. In Section 3.1 we state the main Fenchel-Moreau type duality results in locally
L%-convex modules. Section 3.2 illustrates the scope of financial applications. As in part one,
all proofs are postponed to the subsequent respective sections. In Section 3.3 we prove that
L%-convex functions share a certain local property. In Section 3.4 we characterize lower semi
continuous functions. In Section 3.5 we establish continuity results for L%-convex functions.
For instance, under topological assumptions on E, proper L°-convex functions are automatically
continuous on the interior of their effective domain. In Section 3.6 we prove that proper lower
semi continuous L-convex functions are subdifferentiable on the interior of their effective do-
main. In Section 3.7 we prove our Fenchel-Moreau type dual representation for proper lower
semi continuous L-convex functions.

2. Part L Separation in locally L°-convex modules
2.1. Main results

Let (£2, F, P) be a probability space. Denote by L the ring of real valued F-measurable
random variables. Random variables and sets which coincide almost surely are identified. Recall
that L equipped with the order of almost sure dominance is a lattice ordered ring. Throughout,
the strict inequality X > Y between two random variables is to be understood as point-wise
almost surely (in other texts, “X > Y is sometimes interpreted as “X > Y and X # Y”).
Define Lg ={YeL’|Y >0} and L9r+ ={YelL’|Y >0} By LY we denote the space
of all F-measurable random variables which take values in R := R U {#o00} and we define
LY :={Y € L° | Y > 0}. Throughout, we follow the convention 0 - (+-00) := 0.
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The order of almost sure dominance allows to define the following topology on L°. We let
Be:={reL’||Y|<s]

denote the ball of radius ¢ € L(J)r . centered at 0 € L% A set V c L? is a neighborhood of ¥ € L°
if there is ¢ € L(_)|r+ such that Y + B, C V. A set V C LY is open if it is a neighborhood of
all Y € V. Inspection shows that the collection of all open sets is a topology on L°, which is
referred to as topology induced by | - |. By construction, U :={B; | € € L% 4} is a neighborhood
base of 0 € L. Throughout, we make the convention that L0 = (L, | - |) is endowed with this
topology.

Notice that (L°,| - |) is not a real topological vector space, in general. Indeed, suppose
(82, F, P) is atom-less. Then the scalar multiplication R — L, o — « - 1 is not continuous
at o = 0. The topology on L? induced by | - | is finer than the topology of convergence in proba-
bility, which is often used in convex analysis on L, such as in [3]. For example, L?F 4 is openin
(L, | -]) but not in the topology of convergence in probability.

However, it follows from Theorem 2.4 below that (LY, | - |) is a topological ring or, equiva-
lently, a topological L°-module in the following sense:

Definition 2.1. A topological L°-module (E, 7) is an L°-module E endowed with a topology T
such that the module operations

G (E, T)x(E, T)— (E,T),(X1,X2)— X1+ X, and
) (L% |- D x(E, T)— (E,T),(Y,X)—~> YX

are continuous w.r.t. the corresponding product topologies.
Locally L%-convex topologies in our framework are defined as follows:

Definition 2.2. A topology 7 on E is locally L%-convex if (E, T) is a topological L°-module
and there is a neighborhood base U/ of 0 € E for which each U e U is

(i) L%-convex: YX; +(1—Y)Xse U forall X;,X,eUandY € Lo with0 <Y < I,
(ii) LO-absorbent: for all X € E thereis Y € L(_)|r+ such that X e YU,
(iti) LO-balanced: YX € U forall X e U and Y € L° with |Y| < 1.

In this case, (E, 7) is a locally L°-convex module.

Note that an L°-convex set K C E with 0 € K satisfies YK C K for all ¥ € L with 0 <
Y < 1;inparticular, 14K C K forall A € F.

Next we show how to construct, and actually characterize all, locally LO-convex modules. Let
E be an L%-module.

Definition 2.3. A function || - || : E — Lg is an L%-semi norm on E if:

@) IYX[ =YX forall Y e Land X € E,
(i) [1X1 4 Xall < [I X1l + | X2| for all Xy, X5 € E.
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If, moreover,
(iii) || X]| =0 implies X =0,
then || - || is an L°-norm on E.

Any family P of L°-semi norms on E induces a topology in the following way. For finite
QCPandee L), wedefine

Uo.e :={XeE‘ sup ||X||<e]
IleQ

and
U:={Ug,|QcCPfiniteand e € L }. (22

We then proceed as for (L?, | - |) above and define a topology, referred to as topology induced
by P, on E with neighborhood base I/ of 0. We thus obtain a locally L°-convex module, as the
following theorem states:

Theorem 2.4. A topological L°-module (E,T) is locally L°-convex if and only if T is induced
by a family of L°-semi norms.

Proof. This follows from Lemma 2.16 and Corollary 2.24. O

By convention, an L°%-normed module (E, Il - D) is always endowed with the locally LO-convex
topology induced by || - ||. Notice that any L%norm |- |lon E = L0 satisfies 1] >0and | - || =
- 1.

An important L%-normed module is given in the following example. Recall that a function
w: E — LY is LO-linear if u(Y1X| + Y2X») = Yiu(X1) + You(X2) for all X1, X» € E and
Y1, Y,e L0,

Example 2.5. Let (£2, E, P) bg a probability space with F C &, and let p € [1, +00]. We define
the function || - ||, : L%(£) — LY.(F) by

lim,— oo E[|X|P An | FIVP  if p < 400,

1 X1 = { . -0 . (2.3)
ess.inf{Y € LY(F) | Y > |X|} if p=+o0,
and denote
LE&)={XeL%&) | X, e L’ (P}
In [15], it is shown that (Lg_-(é‘), Il -1lp) is an L°-normed module, which is complete in the

sense that any Cauchy net in L;-(S ) has a limit in LgL-(S). Moreover, for p < oo, the L%-module
of all continuous L°-linear functions w : L;(é’) — L9 can be identified with L?_-(E), where
q:=p/(p—1 (=+oc0if p=1).
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Since X/||X||, € LP(€) for X € LY.(E), we conclude that L(£) = LO(F) - LP(£) as sets.
In particular, for F = {#J, £2} the function | - ||, can be identified with the classical L”-norm.
In turn Lf;) _Q}(S ) can be identified with the classical L? space L” (). In fact, whenever F =

.....

Hahn—Banach type extension theorems for modules appear already in the fifties. This started
with [11], where modules over totally ordered rings were considered. Modules over rings which
are algebraically and topologically isomorphic to the space of essentially bounded measurable
functions on a finite measure space were considered in [12,21,19]. Nowadays, it is well known,
cf. [4,22], that a Hahn—Banach type extension theorem for modules over more general ordered
rings can be established. In particular, this is the case for L°-modules.

However, to our knowledge, the following hyperplane separation theorems for L°-modules
are new in the literature. The proofs are given in Section 2.5 below.

Theorem 2.6 (Hyperplane separation I). Let E be a locally L°-convex module and let K, M C E
be LO-convex, K open and non-empty. If 1,M N1, K = @ forall A € F with P[A] > O then there
is a continuous LO-linear function u : E — L such that

wY <uZ forallYeKand Ze M.

For the second hyperplane separation theorem we need to impose some technical assumption
on the topology.

Definition 2.7. A topological L°-module has the countable concatenation property if for every
countable collection (U,,) of neighborhoods of 0 € E and for every countable partition (A,) C F
(AyNAy, =0@forn#mand |,y An = £2) the set

Z lA,, Un
neN

again is a neighborhood of 0 € E.
Notice that any L°-normed module has the countable concatenation property.

Theorem 2.8 (Hyperplane separation II). Let E be a locally L°-convex module that has the
countable concatenation property and let K C E be closed L°-convex and non-empty. If X € E
satisfies 1A{X}N 14K =@ forall A € F with P[A] > O then there is € € L?Hr and a continuous
LO-linear function . : E — L° such that

uY +e<uX forallY e K.
2.2. Hahn—Banach extension theorem
In this section, we establish a Hahn—Banach type extension theorem. We recall that the main
result of this section, Theorem 2.14, is already contained in [4,22]. Nevertheless, for the sake

of completeness, we provide a self contained proof which is tailored to our setup. The fact that
not all elements in L° possess a multiplicative inverse leads to difficulties in showing that the
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“one step extension” from the proof of the classical Hahn—Banach theorem is well defined in our
framework. For this reason, we derive some preliminary results first.

The following lemma recalls that F is a complete lattice w.r.t. the partial order of almost sure
set inclusion.

Lemma 2.9. Every non-empty collection D C F has a supremum denoted by ess.supD and
called essential supremum of D. Further, if D is directed upwards (AU B € D forall A, B € D)
there is an increasing sequence (Ay) in D such that ess.supD =, ey An-

If D C F is empty we set ess.supD := (.
Proof. For a countable set C C D define A¢ :=|J ¢ A. Then Ac € F and the upper bound

c:= sup{P[Ac] | ccD countable}

is attained by some Cyyp; indeed, take a sequence (C,) in D with P[A¢,] — ¢ and Cyyp =
UnenCn- Then, Cyyp € F and P[Ac,,] = c. We conclude that ess.supD := Ac,,, is as re-
quired. Indeed, ess.supD is an upper bound of D, otherwise there would be A € D with
P[A \ ess.supD] > 0 and in turn P[AcsupU{A}] > P[Acsup] = c. To see that ess.supD is a least
upper bound, observe ess.supD C A’ whenever A’ € F with A C A’ for all A € D. By construc-
tion, there is an increasing sequence approximating ess.sup D if D is directed upwards. O

Let E be an L°-module. For a set C C E, we define the map M(-|C): E — F,

M(Z|C):=esssup{AeF|14Z€eC}. 2.4)

If C is an L°-submodule of E the collection {A € F | 14Z € C} is directed upwards for all
Z € E and hence there exists an increasing sequence (M,) C JF such that

M(Z|C)= U M,,. (2.5)
neN

Definition 2.10. A set C C E has the closure property if
ImizicyZ e C forall Ze E. (2.6)
By C we denote the smallest subset of E that has the closure property and contains C.
Note that C is given by
C ={lmuzic)Z | Z € E)
and therefore C always exists and is well defined. By definition, the closure property is a property
in reference to E. In particular, E has the closure property. The next example illustrates the

situation where an L%-submodule C of E does not have the closure property.

Lemma 2.11. Let C C E be an L°-submodule. Then C is again an L°-submodule.
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Proof. Let X € C and Y € L°. Denote Z = Y X. By definition, there exists some X' € E
with X = Iy x/c)X’. Since C is an L%-submodule of E there exist an increasing sequence
(M) C F with M, / M(X' | C) such that 1y, X’ € C. Hence 1y,Z =Y 1y, X' € C, and thus
M, C M(Z | C), for all n € N. We conclude that M (X' | C) C M(Z | C) and thus

YX = YlM(X/|C)X/ =lpuizi0)Z € C.

Now let X = 14X, Y = 15Y’ € C where A := M(X'| C) and B := M(Y' | C), for some
X', Y’ € E. Denote

Z=X+Y=1a08X+1anp(X +Y)+1paY.

As above there exist increasing sequences (A,), (B,) C F with A, /" A and B, /' B such that
14,X’,1p,Y" € C and thus

Ia\BX = 1A\B1AnX/ eC,
lA,,ﬂB,,(X+ Y)= anlA,,X/+ lAnanY/ eC,

Ip\aY = 1B\AIB,1Y, eC.
Define the disjoint union M, = (A, \ B) U (A, N B,) U (B, \ A). We obtain
Iy, Z =14,\8X + 14,0, (X +Y)+1p,aY €C,

and thus M,, c M(Z | C), foralln € N. Since M,, /* AU B, we conclude that AUB C M(Z | C)
and thus

X+Y=1yzocZec C.
Hence the lemma is proved. O

For a set C C E we denote by

spanzo(C) := { Z Y X;

i=1

X;eC, Yiel’ 0<i<n, neN}

the L%-submodule of E generated by C. The next example illustrates the situation where an
L%-submodule C of E does not have the closure property.

Example 2.12. Consider the probability space §2 = [0, 1], F = BI0, 1] the Borel o -algebra and
P the Lebesgue measure on [0, 1]. Let £ = L0, and define

C :=spano{ljj_y--1 _p-n) | n €N}

Then,lgéCbutleé.
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Proposition 2.13. Let C C E be an L°-submodule of E, Z' € E and Z := 1p(z\cyc Z'. Then
(i) M(Z'|C)=M(Z|C),
(i) X=X and Y =Y on M(Z | C)° whenever X +YZ = X'+ Y'Z for X, X' € C and
Y,Y €LY and
(iii) for W e IM(Z|C)cL0 and an L°-linear function . : C — L°
AX+YZ):=uX+YW forallXeCandY € L°, (2.7)
defines the unique LC-linear extension of ju to span 10(C, Z) which satisfies pZ = W.
If in addition to this C has the closure property,
(iv) span;o(C, Z") = span;o(C, Z).
Proof. (i) By definition of Z, M(Z' | C) Cc M(Z | C), and since P[M(Z |C)\ M(Z' | C)] >0
would contradict the definition of M(Z’ | C) we have M(Z' |C)=M(Z | C).

(i) X+YZ=X+YZisequivalentto X — X' ="' - Y)Z. If B:={Y —Y #0}N
M(Z | C)° had positive measure then on B, Z = (X — X')/(Y' — Y) € C in contradiction to the
definition of M(Z | C).Hence Y =Y  andinturn X = X' on M(Z | C)°.

(iii) This is an immediate consequence of (ii).

(iv) By definition of Z, span;o(C, Z) C span;o(C, Z’). Since C has the closure property,
1ym(z1c)Z" € C and hence span;o(C, Z) =span;o(C, Z'). O

We can now state and prove the main result of this section.

Theorem 2.14 (Hahn-Banach). Consider an L°-sublinear function p : E — L°, an L°-
submodule C of E and an L°-linear function - C — L° such that

uX < p(X) forall X eC.
Then w extends to an L°-linear function i - E — L° such that i X < p(X) for all X € E.
Proof. Step 1: In view of Lemma 2.15 below we can assume that C has the closure property and
that there exists Z' € E\ C. Then Z := 1y (z/c)cZ" ¢ C and Z # 0. We will show that u extends
Lo-linearly to [t : span;o(C, Z) — C, such that
pnX < p(X) forall X espan;o(C, Z). 2.8)
More precisely, we claim that

W = 1pmz|0) ess.sup(,uX —p(X — Z))
XeC

and 1 defined as in (2.7) satisfies

pX+YW<p(X+YZ) forallXeCandY e L”, (2.9)
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which, apparently, is equivalent to (2.8). To verify this claim, let X, X’ € C and observe

uX +uX' =puX+X)
<pX+X)
=pX'+Z+X-2)
<pX'+2)+p(X - 2).

Hence,
uX —p(X—-2)< p(X’ +27)—uX' forall X, X eC. (2.10)

Since Z=0o0n M(Z | C) we have uX — p(X —Z) <0on M(Z | C) as well as p(X' + Z) —
uX ' >00n M(Z|C) forall X, X" € C. Hence, (2.10) implies

uX —p(X—=2)<W<pX'+2)—pX forall X, X eC, (2.11)
and in turn
nXEWp(X£2Z) foral X eC.
From this we derive

la(nX + W
lAc(/,LX 4

Iap(X+Z)=1ap(X+142), (2.12)

)
) S laep(X = Z) =1aep(X — 14 Z) (2.13)

NN

for all A € F. Adding up the inequalities in (2.12) and (2.13) yields
uX 4+ g —140)W < p(X + (14 — lAc)Z) forall X € C and A € F. (2.14)

Further, for all ¥ € L? with P[Y #0] =1 we have Y/|Y| =14 — 1 oc, where A :={Y > 0} € F.

Thus, (2.14) implies
|Y|( (X)+ Yw)<|Y| (X i Yz)
152 reeny v X P\ 5T o
Y] Y] Y\ Y|
forall X € C and Y € L° with P[Y #0] = 1. From this we derive

pX+YW<p(X+YZ) foralXeCandY e L® with P[Y £0]=1.  (2.15)

But this already implies the required inequality in (2.9). Indeed, for X € C and arbitrary ¥ € L°
we define Y/ :=Y 14 + 1 ¢, where A :={Y # 0}, and derive from (2.15)

LAUX +YW) = La(uX + Y W) < Iap(X +Y'Z) = Lap(X + Y 2), (2.16)
Lac(uX + Y W) = Lye(uX) < Lae p(X) = Lae p(X + Y Z). 2.17)

Adding up (2.16) and (2.17), we see that (2.15) implies (2.9) and complete this step.
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Step 2: The set

LO-linear

(D. ) CCD C E, D has the closure property
M ‘ 03;
L lnear LO, flc=pand X < p(X) forall X € D

is partially ordered by
(D,p) < (D', iy ifandonlyif Dc D and flp=p
We will show that a totally ordered subset {(D;, i1;), i € I} of Z (that is, for all 7, j either

(Dj, 4i) < (Dj, 1) or (D;, 1) = (Dj, f17)) has an upper bound and then we will apply Zorn’s
lemma. To this end, observe that D given by

CcD::UD,-cE

iel
is an L%-module since {(D;, j1;), i € I} is totally ordered. i : D — L° given by Alp; == [
is L°-linear, dominated by p on all of D and ji|c = u. Further, in view of Lemma 2.15 be-
low, we can assume that D has the closure property. Hence, (D, 1) € Z is an upper bound for
{(D;, i;), i € I} and Zorn’s lemma yields the existence of a maximal element (Dmax, imax) € Z,
i.e.
(Dmax,> bmax) < (D, ) €I implies  (Dmax, Amax) = (D, i1).
Assume that D, # E. Then, by the first step of this proof, imax extends to

ax © SPaN0(Dimax, Z) — LY,

where Z € E \ Dmax, which contradicts the maximality of (Dmax, ftmax). Hence, Dmax = E and
max 18 as desired. O

Lemma 2.15. Let C, i1, p be as in Theorem 2.14. Then v extends uniquely to an LO-linear
Sfunction i : C — LY such that aX < p(X) forall X € C.

Proof. For Z € E, let

i(mzie)2) = lim p(ly,2), (2.18)
where M(Z | C) = UnEN M,, as in (2.5). Since for all n <m

w(p,Z2) =pn(lpy,Z) onM,,

(2.18) uniquely and unambiguously defines the LO—liqear extension i : € — L0 of u to C.
Further, (2.18) guarantees that 21X < p(X) forall X e C. O
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2.3. Locally L°-convex modules

In this section we establish some facts about locally L%-convex modules. For more back-
ground on general topological spaces we refer to the comprehensive Chapter 2 of [1].

Let us first recall some basic definitions. Let 7 be a topology on some set E. Then K C
E is closed if K¢ € 7. The interior, boundary and closure of K are denoted by K L 0K, K,
respectively. Moreover, KNdK=9,Kis open if and only if K = K, and K closed if and only
if K= K.Anelement X € K , 0K, K is an interior, boundary, closure point of K, respectively.

Now let E be an L%-module and 7 the topology induced by some family P of L%-semi
norms on E, see Definition 2.3 and below. The following result gives one direction in the proof
of Theorem 2.4. The converse direction is proved in Corollary 2.24 below.

Lemma 2.16. (E, 7T) is a locally LO-convex module.
Proof. Let U/ denote the neighborhood base given in (2.2). It follows by inspection that each
U €U is L°-convex, L°-absorbent and L°-balanced as in Definition 2.2. To establish (i) and (ii)
of Definition 2.1, let O € T.

(i) We show that O :={(X,Y) | (X,Y) € EX E, X+ Y € O} is open. Let (X,Y) € O and
U=Ug,€Usuchthat X +Y +U C O. Then V = Ug . satisfies V + V C U and hence
X+V)x((Y+V)C O. This means that (X, Y) is an interior point of O and (i) follows.

(ii) We show that O :={(X,Y) | (X,Y) € E x LY, XY € O} is open. Consider (X,Y) € O
and U =Ug . €U suchthat XY +U C O. We find e € LY and W € U such that

Wx{zeL’||1Z-Y|<e}CO

as follows. As in the proof of (i) let V € U be such that V +V C U and let ¢ € L., be such that
eX € V, which is possible since V is LO-absorbing. Further, since V is L%-balanced,

(Z-Y)XeV if|Z-Y|<e.

V is of the form V = Ug s, hence W :=Ug 5/(c 4|y satisfies (¢ + |[Y[)W C V and since W is
L%-balanced

ZW CV forall Ze L° with |Z| <& +]Y].
Finally, for |Z — Y| < ¢ and X’ € W we derive
ZX+X)-YX=Z-NX+ZX eV+VCU
and the assertion is proved. O
Here is a trivial example.
Example 2.17 (Chaos topology). The locally L°-convex topology 7 induced by the trivial L°-
semi norm || - || = 0 on L° consists of the sets @ and L°. 7 is called chaos topology and it is an

example for a locally L%-convex topology which is not Hausdorff. Note that 7 is locally convex
and locally L°-convex at the same time.
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2.3.1. The countable concatenation property

A technicality we encounter is a certain concatenation property. This concatenation property is
crucial in the context of hyperplane separation, cf. Lemma 2.28, Theorem 2.8 and Examples 2.29
and 2.30 in Section 2.5 below.

The following result motivates the subsequent definition.

Lemma 2.18. Let P be a family of L°-semi norms inducing a locally L°-convex topology T
on E.

() For Ae Fand | -| € P, 14| - | is an LO-semi norm.
ii) For a finite collection || - ||1, ..., || - |ln € P, sup;_ -||; is an LY-semi norm.
F te collect. P, sup;_1.__ LY
(iii) Define

P =PU{lsl-Il|AcF, ||| eP),

P =P U { sup || - || ‘ QcC P/ﬁnite}
I-1€Q

and denote T' and T" the induced locally L-convex topologies, respectively. Then T =
T' =T"; in other words, we may always assume that, with every || - | € P, P contains
Lall - || for all A € F and that P is closed under finite suprema.

Proof. (i) and (ii) follow from the properties of L9-semi norms.
(iii) Since P C P’ C P” we have T C 7’ C T". The inclusion 7" C 7T follows from the fact
that for all ¢ € L(_)H,

Ug-ine CUpn,e forall|-]lePand AeF  and

Uil llae = Ugsupizy_y I-3e - foralll-fle, ...+l €P. O

For a finite collection Ug, ,,...,Ug, s, and a finite collection of pairwise disjoint sets
Al,...,Ay € F(AiNAj =0 fori # j), the preceding lemma shows that >/, 14,Ug, ¢, is
a neighborhood of 0 € E. Indeed, let

n
I-l:==> 1a sup [[-]l= sup La sup |-
i—1 I-leQi i=l,..n I-leQ;

and &:= 37, 1a;&i. Then, 357, 14,Ug; e, = Uy .-

In the case of a countably infinite sequence (Ug, ,,) and a pairwise disjoint sequence
(Ap) CF (AiNAj; =4 for i # j) the next example illustrates that the above reasoning does
not apply, as the L%-semi norm given by

I 1="1a, sup |- =supla, sup ||
N ey neN - [eQ,

cannot be assumed to belong to P in general.
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Example 2.19. Consider the probability space 2 = [0, 1], F = 0(A, | n € N) the o-algebra
generated by the sets A, :=[1 — 2-(=1 1 _2-"] and P the Lebesgue measure. Define B, :=
Umgn Apm, and let E := LO. For the family P of L%-semi norms | - |, 1= 14,11, neN, we
subsequently derive the following:

M [ 1= pen!:ln g P

(ii) For all € € L9r+, Ufhe = 2nen 14, Uyl-1,).¢ is not a neighborhood of the origin in the
locally L%-convex topology induced by P.

(iii) The sequence (13, % + 1 pe)nen converges to 0 w.r.t. the locally L-convex topology induced

by P but it does not converge to 0 in the locally L°-convex topology induced by P U {| - |}.
This leads us to the following definition.

Definition 2.20. A family 7 of L°-semi norms has the countable concatenation property if

D gl lneP

neN

for every pairwise disjoint sequence (A,) C F and for every sequence of L°-semi norms (|| - ||,,)
in P.

If P is a family of L°-semi norms which has the countable concatenation property then (E, 7)
has the countable concatenation property in the sense of Definition 2.7. Conversely, if (E, 7T) is
a topological L°-module which has the countable concatenation property, where 7 is induced
by a family P of L°-semi norms, we can always assume that 7 has the countable concatenation
property. Indeed, inspection shows that

{Zunn ln

neN

(Ap) C F pairwise disjoint, (| - [l,) C P}

also induces 7.
In view of Lemma 2.18 we can always assume that a finite family of L°-semi norms has the
countable concatenation property.

2.3.2. The index set of nets
The neighborhood base U of 0 € E given in (2.2) is indexed with the collection of all finite
subsets of P and Lg 4. We introduce a direction “>” on this index set as follows:

(Ra2,02) =2 (R1,a1) ifandonlyif RoCR; and o <oy, (2.19)
for all finite R{, R, C P and a1, ap € L(_)H. We denote nets w.r.t. this index set by (Xx o). If E
is a topological L°-module, not necessarily locally L%-convex, nets are denoted by (X¢)yep Or
(Xg) for corresponding index set D.

2.4. The gauge function

Let E be an L%-module.
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Definition 2.21. The gauge function pg : E — Z& of aset K C E is defined by
pr(X):=ess.inf{Y € L) | X e YK}. (2.20)

The gauge function px of an L%-absorbent set K C E maps E into Lg_. Moreover:
Proposition 2.22. The gauge function px of an L°-absorbent set K C E satisfies:
(i) px(X)<1forall X € K.
(1) 1apx(1aX) 2> 14px(X) forall X € E and A € F.
(i) Ypx (lyy-=00X) = px (YX) forall X e E and Y € Lg; in particular, Ypg (X) = px (Y X)
ifYeLY,.

Proof. (i) This assertion follows immediately from the definition of pg.
(i) Let X € F and A € F. We have

laessinfZ =1 ess.inflsZ > 14 essinf 147

XeZK XeZK 14XelsZK
=14 ess.inf 14Z =14 ess.inf Z, (2.21)
14XeZK 14XeZK

where the inequality in (2.21) follows since X € ZK implies 14X € 14ZK . Hence, 14 px (X) >
Lapk(1aX).
(i)Let Xe E, Y € Lg and define A := {Y > 0}. We have

) ) Z'=YZ .
Y ess.inf Z = ess.inf YZ © '= ess.inf Z’
1AXeZK 1A XeZK 1AXYElAZ'K

= ess.inf Z = ess.inf Z,
14XYeZK XYeZK

and hence Ypg (14X) = px(YX). 0O

A non-empty LC-absorbent L°-convex set K C E always contains the origin; indeed, let
XeFEandY,, Y, e L?Hr be such that X/Y1, —X/Y> € K. Then, since K is L%-convex,

Y, X+ Y =X X-X
YI+Y Y Yi+Y, Yo Y41,

=0eKk. (2.22)

Depending on the choice of K C E, the gauge function px can be L-sublinear or an L%-semi
norm.

Proposition 2.23. The gauge function px of an L°-absorbent L°-convex set K C E satisfies:

(i) px(X)=ess.inf{Y € LY, | X € YK} forall X € E.
(ii) Ypx(X)=px(YX) forallY € LY and X € E.
(iii) px(X +Y) < pr(X) + px (Y) forall X, Y € E.
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(iv) Forall X € E there exists a sequence (Zy) in L° such that
q

Z, \\pk(X) a.s. (2.23)

In particular, since 0 € K (cf. (2.22)), pk is LO-sublinear.
If in addition to this K is L°-balanced then py satisfies:

V) pg(YX)=|Y|px(X) forall Y € L and forall X € E.
In particular, pg is an L°-semi norm.

Proof. (i) As “<” follows from the definition of pg we only prove the reverse inequality. To
this end, let Y € Lg_ with X =Y Z for some Z € K. Then {Y =0} C {X =0} and in turn A :=
{Y >0} D {X #0}. Thus, with Y, := 1Y + lce for e € LY, we have

X=14X=Y14Z=Y 14Z €Y, 14K CY.K.

The claim now follows since ess.inf,_;0 Y, =Y.
++

(i) To prove this assertion we first show that

Lapxk(1aX) =1apx(X) forall X e Eand A € F. (2.24)

(ii) then follows from (iii) of Proposition 2.22 together with (2.24).

To establish (2.24), we only have to prove the reverse inequality in (2.21). To this end, let
Yi,h e Lg_ with 14X = 14Y1Z1, X =Y22Z, for Z1,Z> € K and A € F. In particular, 14X =
14¢Y>2Z>. We have

X=1a"Z1 + 14 Y272y = (14Y1 + 14 Y2)(1aZ1 + 14c Z3)
and since Lo—convexity of K impliesthat 14 Z1 +14cZ> = 14Z1 4+ (1 — 14)Z> € K the required
inequality follows.

(iii) Let X1, X e Eand Y1, Y, € L(_)H_ such that X1/Y1, X2/Y> € K. Since K is LO-convex

Y ﬁ+ o X2 Xi+Xp
n+hhyr i+, Nn+hn

€eK.

Thus, PK(%) < 1, and hence pg(X; + X2) < Y1 + Y,. Since Y7 and Y, are arbitrary, we

may take the essential infimum over all such pairs Y7, Y2 and — in view of (i) — we derive
pk (X1 + X2) < px(X1) + pr (X2).
(iv) As in the proof of (2.24), L%-convexity of K implies that the set

[veL |Xevk}

is directed downwards (and upwards) for all X € E.
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(V)Let X € E,Y € L? and A := {Y > 0}. Then (2.24) and (ii) imply

Pk (YX)=141Y|pg(X) + L4c|Y |pk (—X),

and hence it remains to prove that px (—X) = pg (X). But since K is L9-balanced we have
—K = K and hence

pk(=X)=p-xk(=X)=pg(X). O
As a consequence of Proposition 2.23, we can now complete the proof of Theorem 2.4:

Corollary 2.24. Any locally L°-convex topology T on E is induced by a family of L°-semi
norms.

Proof. Let U/ be a neighborhood base of 0 € E such that every U € U is L%-absorbent, LO-
convex and L°-balanced. Then, the family of gauge functions

P:={pv U elU],

by Proposition 2.23, is a family of L°-semi norms and the topology induced by P coincides
with 7. O

Proposition 2.25. The gauge function pg of an L°-absorbent L°-convex set K C E (recall that
0 € K, cf. (2.22)) satisfies:

1) px(X) = 1forall X € E with 14X ¢ 14K forall A € F with P[A] > 0.
If in addition to this, E is a locally L°-convex module, then px satisfies:
(i) px(X)<1forall X € K.
Proof. To prove (i) let us assume that {pg (X) < 1} has positive P-measure for some X € E

with X14 ¢ K for all A € F with P[A] > 0. With (iv) of Proposition 2.23 we know that there is
Ye L(}r such that B := {Y < 1} has positive P-measure and

XeYK.

But this is a contradiction as we derive
X1peYlpK C 15K,

where the last inclusion follows from the LO—convexity of 1pK. (Note that 0 € K.)

(ii) Let X € K. Then there exists a neighborhood Ug . (Q C P finite and ¢ € L9r+) of 0e E
such that X +Ug , C K. In view of Proposition 2.18 we can assume that P is closed under finite
suprema and that Ug ¢ = Ujj.||,p},e» Where || - [lsup :=supy.jcg Il - II. Then, for all § € L(_)H,

X = XA+ =8Xlsup-

sup
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Thus, choosing § such that 6| X||suyp < &, we derive X(1 + 6) € K and hence pg(X) <
1/(14+68)<1. O

2.5. Hyperplane separation

Let E be a locally L%-convex module.
Let X € E be such that there is an LO-linear bijection s : span; o(X) — L°. Then, necessarily

w(YX)=YuX forallY eL?, (2.25)

and u': L% — span;o(X) is LO-linear as well. Since p is a surjection we derive from (2.25)
that P[uX # 0] = 1. Further,

Y=p(pn '(Y)) = n(YX) =YX

forall Y € L°. Hence, ¥ = Y/uX and in turn 1~ (Y) = Y X/ X. On replacing p by w/(uX),
we can always assume that X = 1. In this case, u(YX) =Y and u~'Y = Y X forall ¥ € L°.

Lemma 2.26. Let K, M C E be L°-convex, K open and non-empty. If 1AM N 14K = 0 for all
A € F with P[A] > O, then there is an Lo-linearfunction u:E— L0 such that

wY <uZ forallY eKandZe M. (2.26)

Proof. We can assume that M is non-empty.

Step 1: Suppose first that M = {X} is a singleton.

Without loss of generality, we may assume that 0 € K. Indeed, if 0 ¢ K replace X by X — Y
and K by K —Y forsome Y € K which is possible since K # (). Note that {X — Y}, K — Y remain
L%-convex, that K — Y remains open non-empty and that an L-linear function u : E — L°
separates {X} from K — in the sense of (2.26) — if and only if it separates {X — Y} from
K-Y.

Thus, let K be L°-convex open non-empty and 0 € K. (Note that K is L°-absorbent.) By
assumption, 14X ¢ K for all A € F with P[A] > 0. In particular, 14X # 0 for all A € F with
P[A] > 0.Hence, YX = Y'X implies Y = Y’ forall ¥, Y" € L° and y : span;o(X) — L°,

uw(YX):=Y forallY e L°, (2.27)
is a well-defined L°-linear bijection of span;o(X) into L°. By Proposition 2.23, the gauge
function pg : E — LY is LO-sublinear. We show px(Z) = pZ for all Z € span;o(X). For

Z e spango(X) let Y € LY be the unique element with Z = Y X. From (2.24) in the proof of
Proposition 2.23 we derive

Pr(YX)=1apg(1aYX) + 1acpg(1acY X) (2.28)
for A :={Y > 0}. Further, with (ii) of Proposition 2.23 and (i) of Proposition 2.25 we know that

Lapk(1aY X) = 14Y pg (X) 2 14Y = 1an(Y X) (2.29)
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and since px >0
Lacpg (14 Y X) 2 14cY = Lac (Y X). (2.30)
Adding up (2.29) and (2.30), together with (2.28), yield

pr(YX) = n(YX).

Hence, px(Z) > nZ for all Z € span;o(X) and therefore n extends by the Hahn—-Banach The-
orem 2.14 to p : E — L° such that

uY < pg(Y) forallY e E.
In particular, for all ¥ € K
wY <pg(Y) <1l=uX,
where the strict inequality follows from (ii) of Proposition 2.25 and the equality follows
from (2.27).
Step 2: Now let M be as in the lemma. Then, K — M is L°-convex open non-empty and

14{0} N 14(K — M) =( for all A e F with P[A] > 0. Thus, from the first step of this proof,
there is an LO-linear function u : E — L° with

nwl¥ —27Z)<0 foralYeKandZe M,
and the assertion is proved. O
Lemma 2.27. Let K C E be open L°-convex with 0 € K. If v : E — L° is LO-linear such that

w(X) < pr(X) forallX € E,

then w is continuous.
Proof. It suffices to show that u_l B; is a neighborhood of 0 € E for each ball B, centered at
0e LY Thus, let ¢ € L(J)FJF. The set U := ¢K N —¢K is a neighborhood of 0 € E. (Indeed, let
V :=Ug,s C K, be a neighborhood of 0 € E, which exists since K is open and O € K. Then,
eV =Ug,s is an L0-balanced neighborhood of 0 € E. Further, ¢V C ¢K, —eV C —¢K and

since ¢V is L%-balanced ¢V = —¢V and in turn ¢V C ¢K N —eK ) Further, for all X € U we
have

n(X) < pxk(X)<e and
—u(X) =pu(=X) < px(—=X) <e.

Thus, [(X)| <eandhence U C u~'B,. O

We can now prove Theorem 2.6.
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Proof of Theorem 2.6. We can assume that M is non-empty. Define L := K — M. For X € L,
the set L — X is L%-convex open and 0 € L — X. By assumption, 0 ¢ 14 L for all A € F with
P[A]>0andso 14(—X) ¢ 14(L — X). From the first step of the proof of Lemma 2.26 we know
that there is an L°-linear function p : E — L° such that

wY <pr_x() forallY e E.

By Lemma 2.27, u is continuous. Further,

wY <u(=X) forallYelL—X,
and Theorem 2.6 is proved. O

Lemma 2.28. Let P be a family of F-semi norms inducing a locally L°-convex topology on E
and let K C E be closed with 14X + 14cX' € K for all A€ F and X, X' € K. If P has the
countable concatenation property and X € E satisfies 14{X} N 14K = @ for all A € F with
P[A] > 0, then there is an L% convex, L2-absorbent and L°-balanced neighborhood U of 0 € E
such that

1IAX+U)N14(K+U)=0
forall A € F with P[A] > 0.

Proof. We can assume that K # . Via translation by X, it suffices to construct an L%-convex,
L%-absorbent and L°-balanced neighborhood U of 0 € E such that

LAUNIAK+U)=0

for all A € F with P[A] > 0.
Step 1: In this step we construct an LO-convex, L%-absorbent, L%-balanced neighborhood U
of 0 € E suchthat 1,U N14K =@ for all A € F with P[A] > 0. To this end, define

e*:=1A ess.sup ess.inf]e € L(-)H- |Ug:NK #0}.
QCP finite

(Note that for all Q@ C P finite there is ¢ € Lﬂ 4 such that Ug , N K # @ since all neighborhoods
of 0 € E are L%-absorbent.) Successively we show that ¢* satisfies:

: * 0
(1) e*ell,.
(ii) There is an L°-semi norm || - ||* € P such that
%

e
5 < ess.inf{s € L(_)H_ | Ulrye N K ;A(Z)}.

(i) 14U p#1.er2N 14K =@ for all A € F. (Note that U+ e+ /2 is LO-convex, L°-absorbent,
L%-balanced and closed.)
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(1) Suppose P[A] > 0, A := {&¢* = 0}. Then for all Q@ C P finite and for all « € L9_+ there is
X 9,4 € K such that

14Xga€Ug1/aN1sK.

Hence, for X € K thenet (14X g o + 14cX) convergesto 14X and 14X 9 o +14<X € K forall
Q C P finite and for all o € LS)r 4. Since K is closed, we derive 14¢X € K, which is impossible
as it would imply 0 = 1414cX € 14K.

(ii) For all finite Q@ C P, let

eg=essinfle € LY, |Ug . NK #0}.

For finite @, Q' C P, Ugug'.. C Uge, Ug .. Thus, the collection {eg | @ C P finite} is di-
rected upwards and hence there is an increasing sequence (eg,) with 1 Aeg, /' ¢* a.s. Let

Ap:={eg, >¢&%/2},
An={eq, >€e*/2}\ Ay_1 foralln >2.

Then, U, ey An /' §2 since e* > &*/2. Further, the L°-semi norm

-1 :=> 14, sup |-

neN H'HGQH
is an element of P since P has the countable concatenation property and || - ||* is as required.
(iii) Finally, assume there is A € F, P[A] > 0, and X € K such that 14X € 14Uy #},¢%/2-
Then

*

&
1a eSS.il‘lf{S IS L(_)H_ | Ugt,e N K 75@} < 1A?»

in contradiction to the statement in (ii).

Step 2: From the first step we have || - | e P and ¢ € L9r+ such that 14 Uy.y,e N 14K =@ for
all A € F with P[A] > 0. This implies 14Uy j1,e/2 N 1a(K + Uy |3,e/2) =@ for all A € F with
P[A] > 0 and the assertion follows. O

The next example illustrates, that the countable concatenation property, as an assumption on P
in Lemma 2.28, cannot be omitted.

Example 2.29. Let (2, F, P), A,, and the family P of LO%-semi norms on E = L? be as in
Example 2.19. From Example 2.19 we know that P does not have the countable concatenation
property. We now further derive the following:

(i) The set K := {X € E | X > 1} is closed with respect to the locally L°-convex topology
on E induced by P.
Indeed, if X ¢ K then there isn € N such that 0 <1 — X =:c € R on A,. But then X +
Ufi,, I-1}.c/2 defines a neighborhood of X which is disjoint of K. Hence K¢ is open.
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(i) 14K N{0} =@ forall A € F with P[A] > 0.
This follows as 14, K N {0} =, for all atoms A,,n € N.
(iii) For every neighborhood U of 0 € E there exists A € F with P[A] > O such that 14K N
U #90.
Indeed, for every neighborhood U of 0 € E there are n € N and ¢ € Lg_ 4 such that
U{]An I, C U. Note that P[A,] < 1. But now, lAflK C 1A2E = 1Aﬁ U{lAn e CU.
We can now prove Theorem 2.8:
Proof of Theorem 2.8. Recall we can assume a family P of L°-semi norms induces the locally
L%-convex topology on E and that P inherits the countable concatenation property from E.

By Lemma 2.28, there is an LO-convex, LY-absorbent and L°-balanced neighborhood U
of 0 € E such that

IAX+U)N1IA(K+U) =0

forall A € F with P[A] > 0. Since K + U, X + U are L°-convex open and K + U is non-empty
Theorem 2.6 yields a continuous L°-linear function u : E — L° such that

wY <pZ foralY e K+UandZeX+U.

Further, from the first step of the proof of Lemma 2.26 we know that there is Xo € E such that

n(YXo)=Y forally eLP.

Since U is L%-absorbent and L°-balanced there is ¢ € L(_)Hr such that —eXg € U. Thus,

wY <u(X —eXo)=puX—¢ forallY e K +U.

In particular,

uY+e<puX forallY e K,
whence Theorem 2.8 is proved. O

We provide an example which illustrates that the countable concatenation property, as an
assumption on P in Theorem 2.8, cannot be omitted.

Example 2.30. Let (£2, F, P), A,, and the family P of LO%-semi norms on E = L° be as in
Example 2.29. Then the closed subset K := {X € E | X > 1} of E cannot be separated from O
by a continuous L°-linear function.

Indeed, as every L0 linear function u:E— L0 is of the form

nX = Z 14,a,X forall X € E,
neN
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for some sequence (a,) C R, we conclude that a, > 0 for all n € N if u separates 0 from K.
Such 1, however, is not continuous at 0. To see this, let Z := ", .y 1a,an, € € L(_)Hr and observe
that

wHyeL®||lY|<e}={XeE|IX/Z|I<¢}
is not a neighborhood of 0 € E.
3. Part IL Duality in locally L°-convex modules
3.1. Main results

We first recall and introduce some terminology. Let E be an L°-module. The effective domain
of a function f : E — LY is denoted by dom f :={X € E | f(X) € L°}. The epigraph of f is
denoted by epi f :={(X,Y) € E x L°| £(X) < Y}. The function f is proper if f(X) > —oo for
all X € E and dom f # 0.

Definition 3.1. Let E be an L°-module and f : E — L° a proper function.

() fis LO%-convexif fF(YX1+ (1 —Y)X2) <Yf(X1)+ (1 —Y)f(X>) forall X;, X, € E and
YeLowith0<Y < 1.
(i) f has the local property if 14 f(X) =14 f(14X) forall X € E and A € F.

As a first result in this part, we obtain that L%-convexity enforces the local property. The proof
is given in Section 3.3 below.

Theorem 3.2. Let E be an L°-module. A proper function f : E — L is LO-convex if and only if
f has the local property and epi f is LO-convex.

We now address some topological properties of L-convex functions.

Definition 3.3. Let E be a topological L°-module. A function f : E — L° is lower semi contin-
uous if for all ¥ € L the level set {X € E | f(X) < Y} is closed.

As one expects from the real case, lower semi continuity of an L°-convex function can also
be characterized in terms of its epigraph. In fact, the following result is proved in Section 3.4.

Proposition 3.4. Let E be a locally go-convex module that has the countable concatenation
property. A proper function f : E — L that has the local property is lower semi continuous if
and only if epi f is closed.

A subset B of a topological L°-module E is an L-barrel if it is L-convex, L%-absorbent, L°-
balanced and closed. A locally L°-convex module E is an L°-barreled module if every L-barrel
is a neighborhood of 0 € E. It follows by inspection that L°-normed modules are L°-barreled.
The following result is proved in Section 3.5.
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Proposition 3.5. Let E be an L°-barreled module. A proper lower semi continuous L°-convex
function f : E — LY is continuous on dom f.

We now turn to our main, Fenchel-Moreau type, duality results. Let E be a topological L°-

module, and denote by L(E, LY the L%-module of continuous LO-linear functions u : E — L°.
The conjugate f*: L(E, L%) — L° of a function f : E — L is defined by

170 = esssup(uX = (X)), (331)

Further, the conjugate f**: E — L% of f* is defined by

(X)) = esssup (uX — f*(w)). (3.32)
wel(E,L

Definition 3.6. Let E be a topological L% module. An element x of £(E, L?) is a subgradient
of a function f : E — L at X( € dom f if

w(X —Xo) < f(X)— f(Xp) forall X € E.
The set of all subgradients of f at X is denoted by 9f (Xo).

A pre stage of Theorem 3.7 below, which we will prove in Section 3.6, is given in Kutateladze
[18,16,17]. However, Kutateladze entirely remains within an algebraic scope as he does not ad-
dress topological aspects such as continuity. More precisely, he provides necessary and sufficient
conditions for the existence of algebraic subgradients of L%-sublinear functions in terms of the
underlying ring. Further, Kutateladze only covers the case of L%-sublinear functions which take

values in L? adjoint 400, that is, L U {400} rather than functions which take values in L°.

Theorem 3.7. Let E be an LO-barreled module that has the countable concatenation property.
Let f : E — L° be a proper lower semi continuous L°-convex function. Then,

3f(X)#£ W forall X € dom f.

Here is the generalized Fenchel-Moreau duality theorem, the proof of which is given in Sec-
tion 3.7.

Theorem 3.8. Let E be a locally LO-convex module that has the countable concatenation prop-
erty. Let f : E — L° be a proper lower semi continuous L°-convex function. Then,

f — f**
3.2. Financial applications

In this section we illustrate the scope of applications that can be covered by our results. The
entropic risk measure pg : L0 — [—00, +00] is defined as
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po(X) :=log E[exp(—X)].

Its restriction to the locally convex vector space L?, p € [1, +00], is proper, convex, lower semi
continuous. Classical convex analysis yields the dual representation

po(X) = sup (E[ZX] - p3(Z))
Zel4d

with conjugate function

03(Z) = sup (E[ZX] — po(X)) (= E[—Zlog(—2)] if defined and = 400 otherwise)
XeLp

where g := p/(p — 1) (= +o0 if p = 1), cf. [8]. For p = +o00, in particular, pg is continuous
and subdifferentiable on dom po = L with unique subgradient —exp(—X)/E[exp(—X)] at
X eL®™.

Market models in stochastic finance involve filtrations which represent the flow of informa-
tion provided by the market. Let (§2, F, (F;)eN, P) be a filtered probability space. We shall
write LO(}' ), LO(]-',), etc. to express the respective reference o -algebra. The [—o0, +o00]-valued
entropic risk measure pp can be made contingent on the information available at by modifying
itto p; : LYF) — LO(F)),

0 (X) :=logE[exp(—X) | }",].

As in the deterministic case, subdifferentiability and dual representation of p; are important
aspects in risk management applications. For this reason, p; must be restricted to a space which
allows for convex analysis.

The restriction p; to bounded risks, that is L% (F), has been analyzed in [2,5,7,9]. It turns out
that p, maps L°°(F) into L°°(F;). Convex analysis of p; can then be carried out by means of
scalarization, an idea which goes back to [12,19,21].

However, L*°(F) is a too narrow model space for financial risks. For instance, it does not
contain normal distributed random variables. The space L”(F), for p € [1, +00), is larger and
already sufficient for many applications. But p, restricted to L” (F) takes values in LO(F,) and
the scalarization method used in the previous literature can no longer be applied.

Exploiting our results, we thus propose to view p; as a function on the LC(F;)-module
L 5—1 (F), defined in Example 2.5, which in fact is much larger than L? (F) and thus even better apt

for applications. The function p; : LY (F) — LO(F;) is proper L°-convex. Fatou’s generalized
lemma and Lemma 3.10 show that p; is lower semi continuous. Moreover, from Theorem 3.8 we
know that the following dual representation applies

pi(X) = ess.sup (E[ZX | F]— p}(2))
ZeL% (F)

= €ss.sup (YEIZ'X | F]—pf(YZ))).
YeLO(F,), Z'eL4(F)

For time-consistent dynamic risk assessment, compositions of the form p; o (—p;41) are an-
other important aspect, cf. [5,9]. For the entropic risk measure we derive in an ad hoc manner
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that p; o (—pr+1) = pr On LO(F). Hence, our results immediately apply to the dynamic risk
assessment by means of the entropic risk measure. An extension to more general dynamic risk
measures and lower semi continuity as well as subdifferentiability aspects of compositions of
lower semi continuous functions is subject to future research.

3.3. Proof of Theorem 3.2
To prove the if statement, let X1, X, € Eand Y € L% 0<Y <1.The inequality
FYXi+0-Y)X2) <Yf(X)+1—-Y)f(X2) (3.33)

is trivially valid on {f(X1) = +o0} U { f(X2) = +00}. Since f is proper there is X € dom f.
Since f has the local property

X1 = 170t <too) X1+ 1 £(X))=400) X € dom f,
Xy = 17 (xa) <400} X2 + 1 £ (Xp)=+00) X € dom .
From LO—convexity of epi f we derive
FYXi+A=1X5) <Yf(X])+ 1A =Y)f(X5). (3.34)
The local property of f together with (3.33) and (3.34) yields
FYXi+1=1X2) <Yf(X)+ (=Y f(X2),

that is, f is LO%-convex.
To establish the only if statement, observe that epi f is L%-convex if fis L%_convex. Thus, it
suffices to prove that f has the local property. This, however, follows from the inequalities

FUAX) = f(1aX +140) <14 f(X) + 14 £(0)
=1af(1a(1aX) 4+ 14 X) + L4c f(0)
<Iaf(1aX)+ 14 £(0)

which become equalities if multiplied with 14.

3.4. Lower semi continuous functions

Lemma 3.9. Let E be a topological L°-module. The essential supremum of a family of lower
semi continuous functions f; : E — LO, i € I, I an arbitrary index set, is lower semi continuous.

Proof. The assertion follows from the identity

{X X € E and ess.sup f; (X) < Y} =ﬂ{X | X € E and f;(X) <Y}
iel iel

forallY e LY. O
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The essential limit inferior ess.liminf, X, of a net (X,) C LY is defined by

ess.liminf X, := ess.supess.inf Xg.
o o Bza

Lemma 3.10. Let E be a locally g,o-convex module that has the countable concatenation prop-
erty. A proper function f : E — L that has the local property is lower semi continuous if and

only if
ess.liminf f(Xy) > f(X) (3.35)

for all nets (X,) C E with X, — X for some X € E.
Proof. Assume that f has the local property, is lower semi continuous and let (Xy) C E be such
that X, — X for some X € E. Let Y € L° be such that ¥ < f(X) which is possible since f is

proper. By lower semi continuity of f, the set V :={Z € E | f(Z) < Y} is closed and by the
local property we have 14 X" + 14¢X” € V for all A € F and X', X" € V. Further,

14X ¢ 1,V
for all A € F with P[A] > 0. By Lemma 2.28 there is a neighborhood U of 0 € E such that
14X +U)N14V =9 for all A € F with P[A] > 0. Since X, — X there is «g such that

Xpg € X+ U forall B > ap. Due to the local property, 14Xg ¢ 14V forall 8 > ap and A € F
with P[A] > 0. Hence, f(Xg) > Y for all 8 > a and in turn

ess.liminf f(Xy) = ess.supess.inf f(Xp)
« o BZa

> ess.inf f(Xg) 2 Y.

Zag

Since Y was arbitrary, we deduce (3.35).
Now assume (3.35) and let Y € L?. We have to show that the set

Vi={ZeE|f(Z)<Y]}

is closed. To this end, let (X,) C V and X € E with X, — X for some X € E. Then, from the
inequality f(Xy) <Y for each «, we obtain

f(X) <ess.liminf f(Xy) <Y,
o
so X € V. Thatis, V is closed, and hence f is lower semi continuous. O
Next, we prove Proposition 3.4.

Proof of Proposition 3.4. Define ¢ : E x L% — L% by

¢(X.Y):=f(X)-Y.
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From Lemma 3.10 and the definition of the product topology we derive that lower semi continuity
of f on E is equivalent to lower semi continuity of ¢ on E x LY. For all Z € L° we have

X, Y)eExL?|¢(X,Y)< Z}=epif - (0, 2).

Since E x L is a topological L°-module we derive that {(X,Y) € E x L° | ¢(X,Y) < Z} is
closed if and only if epi f is closed. This proves Proposition 3.4. O

3.5. Lower semi continuous L°-convex functions

Lemma 3.11. Let E be a topological L%-module. If in the neighborhood of Xy € E a proper
LO-convex function f : E — L° is bounded above by Yy € L° then f is continuous at X.

Proof. On replacing f by f(- + Xo) — f(Xop), we assume that Xo = f(Xp) =0. Let 6 € L9r+
and f(X) < Yp for all X in a neighborhood V of 0 € E. We have to show that there is a neigh-
borhood W5 of 0 € E such that | f(X)| < § forall X € W;.

Without loss of generality we can assume that Y is such that ¢ := §/ Yy > 0 is well defined
and ¢ < 1. Since E is a topological L%-module W := V N —V is a symmetric (W = —W) neigh-
borhood of 0 € E. We will show that the neighborhood Wy := ¢ W is as required. Indeed, for all
X €W we have £X /e € V and hence L-convexity of f implies

FX) < —e)fO) +ef(X/e)<eYo=8 and
FXO = A+ f0) —ef (~X[e) > —e¥o = 5.

Thus, | f(X)| < § for all X € Ws, whence the required continuity follows. O

Proposition 3.12. Let E be a topological L°-module. Let f : E — L° be a proper L°-convex
function. The following statements are equivalent:

(i) There is a non-empty open set O C E on which f is bounded above by Yy € LY.
(i1) f is continuous on dom f and dom f # (.

Proof. (ii) implies (i) since for every Xg € dom f and for every § € L(_)F o (F) there is a neigh-
borhood V of X such that f(Xp) — 6 < f(X) < f(Xo)+ 5 forall X e V. O := V and
Yo := f(Xp) + § are then as required.

Conversely, let O and Y, be as in (i) and take Xo € O. Then, X¢ € dom f, whence dom f#
#. To see that f is continuous on dom f.let X; € dom f. Observe that there is Y| € Lg 1
Y; > 1, such that X, := Xo + Y1 (X — Xp) € dom f. Since E is a topological L%-module the
map H: E — E given by

Y1 -1
H(X):=X,—

(X, —X) forall X e E,

is continuous and has continuous inverse H 1. As H transforms Xy into X, it transforms O
into an open set H(0) containing X1. By L%-convexity of f, we have for all X € H(O)



4024 D. Filipovi¢ et al. / Journal of Functional Analysis 256 (2009) 3996—4029

-1 _, 1
f(X)=f(—H (X)-i‘?le)
Y1 -1

Yy
Y1 -1
Y,

<

1
FHTYX)) + 7 /X2
1

<

1
Yo+ rlf(Xz)'

In other words, for every X; € dom f there is a neighborhood of X; on which f is bounded
above by an element of L°. By Lemma 3.11, f is continuous at X;. 0O

Corollary 3.13. Let E be a topological L%-module and X € E. Every proper L°-convex function
f ispanjo(X) — LY is continuous (with respect to the trace topology) on dom f.

Proof. Without loss of generality we assume that 0 € doron~f , else translate. Then there is a
neighborhood U of 0 € span;o(X) and ¥ € L3_+ such that X := YX € U C dom f. From L°-

convexity it follows that f is bounded above by sup(f(0), f (X)) on the open set
[AX]0<r<1, 1eL’
and hence, by Proposition 3.12, f is continuous on dom f. O

We can now prove Proposition 3.5.

Proof of Proposition 3.5. Assume that there is X¢ € dom f. By translation, we may assume
Xo = 0. Take Yy € L? such that f(0) < Yp. By assumption, the level set C := {X € E |
f(X) < Yo} is closed. Further, for all X € E the net (X/ Y)YeLg+ converges to 0 € E. By Corol-
lary 3.13, the restriction of f to span;o(X) is continuous at 0, hence f(X/Y) < Yy for large Y
which implies that C is LO%-absorbent. Hence, C N —C is an LO-barrel and in turn a neighborhood
of 0 € E. Thus, C is a neighborhood of 0 € E and since f is bounded above by Y; on all of C it
is continuous at 0. This proves Proposition 3.5. O

3.6. Subdifferentiability
Let E be a topological L°-module. Recall the definitions (3.31) and (3.32) of the conjugates

f*and f** of a function f : E — L% and f*, respectively. The effective domain of f* is given
by the set

|M e L(E, LY ‘ 3y e L0 es;.s;p(pLX —F0) < Y}.
€

If f is proper, then f* maps its effective domain into L and f* is L%-convex if f is so. The
effective domain of f** is given by the set

{X €E ‘ 3y € L°: ess.sup (mX — f*(w) < Y]~
weL(E,L%
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Again, if f* is proper f** maps its effective domain into L% and f** is L%-convex if f* is so.
Since for all X € FE and u € L(E, LO),

fH(w) = pX — f(X) (3.36)
we have forall X e E
fX) = f(X). (3.37)
For u € L(E, L% and Xy € dom f we have
wedf(Xg) ifandonlyif f(Xg)=puXo— f*(n). (3.38)
Indeed, i € f (Xo) by definition means
f(Xo) <uXo— (uX — f(X)) forall X e E.
This is equivalent to

f(Xo) < uXo — eS;.S]lslp(pLX — F(X)) = pXo— FH(w)
S

which, by (3.36), is equivalent to f(Xo) = uXo — f*(u).
With (3.37) and (3.38) we know that i € 9f (Xo) maximizes (3.32) at X, i.e.

™ (Xo) = nXo — f*(w.
Lemma 3.14. Let E be an L°-barreled module that has the countable concatenation property.

Let f : E — L° be a proper lower semi continuous function that has the local property. Equiva-
lent are:

(i) dom f # @.
(i) epi f # 0.

Further, for all X € dom f, (X, f(X)) € depi f and 14(X, f(X)) ¢ lAepifforallA e F with
P[A] > 0.

Proof. To prove that (i) implies (i), let € € Lg cand X € dom f. We claim

(X, f(X)+¢)eepi f. (3.39)

To verify this, we show that there is a neighborhood U of (X, f(X) 4 ¢) such that U C epi f.
By Proposition 3.5, f is continuous at X. Hence, there is a neighborhood Ufg of X such that

fX)+e/3> f(X") forall X' € Ug.

This implies
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(X, f(X)+¢&) €Ug x Upo Cepi f,
where
Up:={YeL||f(X)+e—Y|<e/3}.
U :=Ufg x Ujo is as required and (3.39) is proved.
Conversely, to prove that (ii) implies (i), let (X, Y) € ep(i f. Then there are neighborhoods Ug
and Ujo of X and Y respectively such that U := Ug x U;o Cepi f. In particular, f(X') < 400
for all X’ € Ug and hence X € dom f.

Next, let X € dom f. To prove (X, f(X)) € depi f we show that every U C E x L° of the
form

U:=Upgx{YeL||fX)-Y|<e},
Ug C E aneighborhood of X, satisfies
UNepif#0sUNepife.
Observe (X, f(X) —&/2), (X, f(X)+¢&/2) € U and (X, f(X) —/2) ¢ epi f and (X, f(X) +

£/2) € epi f, which proves (X, f(X)) € depi f. For fixed A € F with P[A] > 0, we show in a
similar way that 14 (X, f(X)) ¢ 1aepi f. Observe that every U C E X L of the form

U:=Upx{YeL||laf(X)-Y|<e},
Ug C E aneighborhood of 14X, satisfies

UnNepif°+#0.

Indeed, 14(X, f(X) —€&/2) € U and yet 14(X, f(X) —e/2) ¢ 1aepi f by the local property
of f. This proves 14(X, f(X)) ¢ laepif. O

Next, we prove Theorem 3.7.

Proof of Theorem 3.7. Let X € dom f. We separate (Xg, f(Xo)) from epi f by means of
Theorem 2.6. By Lemma 3.14, epi f is non-empty, (Xo, f(Xo)) € depi f and

14{(Xo. f(X0))} N1gepi f =@ forall A € F with P[A] > 0.
Hence, there are continuous L°-linear functions up: E— L% and uo L% — L9 such that
wiX 4+ woY < wiXo+ po f(Xo) forall (X,Y) €epi f. (3.40)
From (3.40) together with the fact that oY = Yus1 for all ¥ € LY we derive that us1 < 0.
We will show that —/1,1/,u21 € 0f(Xg). To this end, let X € E, A := {f(X) = 4o0} and

X :=14X0 + lAcX Then, X € dom f and in turn (X, f(X)) € depi f. Thus, there is a net
(XR.a» YR.a) C epl f which converges to (X, f(X)) and for which
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P1XR e+ YR a2l < p1Xo+p2f(Xo) forall R, e. (3.41)

Since p1 is continuous we may pass to limits in (3.41) yielding

—u1(X — Xo)

< f(X) — f(Xo).
u2l

Finally, from the local property of f and w1 we derive

n1(X — Xo)

< f(X) — f(Xo)
2l

and since X € E was arbitrary we conclude that —p1/u>1 indeed is a subgradient of f at X.
This proves Theorem 3.7. O

3.7. Proof of the Fenchel-Moreau duality Theorem 3.8

In this section, we prove Theorem 3.8. The proof follows a known pattern, cf. Proposition A.6
in [10]; however, it contains certain subtleties due to our L%-convex framework.

We fix X¢ € E, and proceed in two steps.

Step 1: Let B € L° with B < f(Xo). In this step, we show there is a continuous function
h: E — L° of the form

h(X)=uX + Z, (3.42)

where . : E — L is continuous L°-linear and Z € L°, such that 4 (Xo) = g and h(X) < f(X)
for all X € E. To this end, we separate (Xg, 8) from epi f by means of Theorem 2.8. It applies
since B < f(Xo) and the local property of f imply

14{(X0.8)} N1aepi f =9 forall A€ F with P[A] > 0.

(Note, epi f is closed by Proposition 3.4.) Hence, there are continuous L°-linear functions
w1 E — L%and py: LY — L such that

§:= ess.sup w1 X+ w2 < pu1Xo+ m2p. (3.43)
(X,Y)eepi f

This has two consequences:

(i) u21<O0.
Indeed, oY =Yyl forall Y € L. Further, (X,Y) eepi f for arbitrarily large Y as long
as f(X) < Y. Hence, for large Y € L°, 11 X + Y is large on {u»1 > 0} and yet bounded
above by 1 Xo + u28. This implies P[uz1 > 0] =0.

(1) {f(Xo) <+4o0} C{uzl <0}.
Indeed, define X := 1{r(xy) <400} X0 + 1{£(Xg)=+00) X for some X € dom f. (f is proper by
assumption.) By L°-convexity of f, Xo € dom f. Local property of f and (3.43) imply on
{f (Xo) < +00)
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1 Xo + puaf(Xo) = w1 Xo + paf(Xo) < w1 Xo + i2p.

Hence, f(Xo)ual = p2f(Xo) < u2f = Bual on {f(Xo) < +oo} and so ual <0 on
{f(Xo) < +oo}.

We distinguish the cases X € dom f and X( ¢ dom f.
Case 1. Assume X € dom f. By (i), u21 < 0. Thus, define & by

(X — Xo)

h(X) =
u2l

+p forall X eE,

which is as required. Indeed, 2 (X) < f(X) for all X € dom f as a consequence of (3.43). If
X ¢ dom f we have

1gh(X) = 15h(X") <15 f(X) = 15 f(X), (3.44)

where X’ = 15X + 15 X” for some X” € dom f and B = { f (X) < +o0o}. Hence, h(X) < f(X)
forall X € E.

Case 2. Assume Xo ¢ dom f. Then chose any X, € dom f and let A’ be the correspond-
ing L0-affine minorant as constructed in case 1 above. Define A| := {ur1 <0}, Ay := Ai and
hi,hy: E — LO,

X—-X
oo =1, (402 ).

2l
L [mW 0K on (X0 > B
PO 00 + By on ' (Xo) < ),

with the convention 0/0 := 0, where h:E— LO,
h(X):=686— 1 X.
Note that on {121 = 0}, 1(Xo) < 0 and i (X) > 0 for all X € dom f. It follows that
h:=h1+hy
is as required. (As in (3.44) we see h(X) < f(X) forall X € E.)
Step 2: Recall f > f**, cf. (3.37). By way of contradiction, assume f(Xg) > f**(Xo) on a

set of positive measure. Then there is 8 € L? with 8 > f**(X() on a set of positive measure and
B < f(Xo) (a.s.). The first step of this proof yields & : E — Lo

h(X)=uX+2Z forall X e E,

for continuous L°-linear 11 : E — L% and Z € L, such that #(Xo) = 8 and h(X) < f(X) for all
X € E. We derive a contradiction as
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™ (Xo) = pnXo — f*(w)
=uXo— ess.sup(uX — f(X))
XeE

> uXo— ess.sup(uX — h(X)) =8
XeE

negates 8 > f**(X) on a set of positive measure. This finishes the proof of Theorem 3.8.
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