
How Efficient Can Gossip Be?
(On the Cost of Resilient Information Exchange)

Dan Alistarh1, Seth Gilbert1, Rachid Guerraoui1, and Morteza Zadimoghaddam1,2

1 EPFL
2 MIT

Abstract. Gossip protocols, also known as epidemic dissemination schemes, are
becoming increasingly popular in distributed systems. Yet, it has remained a par-
tially open question to determine how robust such protocols can be. We consider
a natural extension of the random phone-call model by Karp et al. [21], in which
we analyze two different notions of robustness: the ability to tolerate adaptive
failures, and the ability to tolerate oblivious failures.
For adaptive failures, we present a new gossip protocol, TrickleGossip, which
achieves near-optimalO(n log3 n) message complexity; to the best of our knowl-
edge, this is the first epidemic-style protocol that can tolerate adaptive failures.
We also show a direct relation between resilience and message complexity, demon-
strating that gossip protocols which tolerate a large number of adaptive failures
need to use a super-linear number of messages with high probability.
For oblivious failures, we present a new gossip protocol, CoordinatedGossip,
that achieves optimal O(n) message complexity. This protocol makes novel use
of the universe reduction technique to limit the message complexity, resulting in
a protocol that is both fast and message-efficient.

1 Introduction
Consider a distributed system consisting of n processes p1, . . . , pn, each connected by
a pairwise communication channel to every other process. Processes may have unique
identifiers, but a process does not know the identifiers of the other processes until it has
exchanged information with them.

Disseminating information efficiently and robustly in such a system is a fundamen-
tal problem, which can roughly be defined as follows. Each process pi is initialized with
a rumor ri; eventually, each process should learn as many rumors as possible. More-
over, this exchange of information should be fault-tolerant: it should succeed even if
some of the processes fail (i.e., crash). Any process that does not crash should succeed
in disseminating its rumor to every other non-crashed process. This problem is a basic
building block in many distributed settings, such as distributed databases [7], failure de-
tection [32], group multicast [3,14,28], group membership [24], resource location [23],
and, recently, update dissemination for mobile nodes [4].

In this paper, we investigate the relationship between fault tolerance and efficiency
for such dissemination protocols. We consider a natural extension of the random phone-
call model of Karp et al. [21]3. In the case of adaptive failures, i.e. failures that are

3 For a detailed discussion of the model distinctions, see Section 3.

history-dependent, we introduce the first protocol that achieves sub-quadratic message
complexity. The protocol, which we call TrickleGossip, ensures dissemination while
using O(n log3 n) messages and O(log2 n) communication rounds, with high proba-
bility. We also prove a super-linear lower bound for the message complexity of any
gossip protocol that tolerates a large number of adaptive failures. In the case of obliv-
ious failures, we introduce a new protocol, CoordinatedGossip, that achieves optimal
O(n) message complexity and terminates in O(log n) communication rounds. Surpris-
ingly, this implies that one may achieve a similar level of efficiency in a network with
oblivious failures as in a fault-free network. Together, our results highlight an inherent
trade-off between efficiency and resilience: in order to tolerate more aggressive failures,
protocols need to send more messages. On the other hand, we show that information ex-
change can be implemented efficiently even in the presence of adaptive failures.
We now describe our results in more detail.

1. Adaptive failures. Our first main result is a gossip protocol, TrickleGossip, that
achieves O(n log3 n) message complexity, with high probability, when failures are
adaptive, i.e., when failures may depend on the ongoing execution. The protocol ter-
minates in O(log2 n) rounds, which is near-optimal–a simple modification of the result
in [5] yields a lower bound of Ω(log n/ log log n) rounds for the problem.

The challenge, when failures are adaptive, is that the “adversary,” which is dictat-
ing the failures, may select which processes to crash, and therefore can target specific
rumors and prevent them from being disseminated. For example, the adversary may
decide to “single out” a process pi by failing every process that pi chooses to send a
message to. Unless process pi sends a large number of messages, the adversary can
always prevent the associated rumor ri from spreading to any other process. Our algo-
rithm introduces a scheme for each process to monitor the spread of its rumor, sending
more and more messages if it realizes it is being “isolated” from other processes, until
its rumor is successfully disseminated. At the same time, the protocol has to prevent too
many processes from sending too many messages. Thus the protocol alternates spread-
ing rounds that attempt to disseminate rumors, collection rounds that attempt to discover
new rumors, and sampling rounds that attempt to gauge how far rumors have spread.

It is perhaps surprising that gossip can work efficiently when failures are adaptive.
Typically, the robustness of epidemic gossip is explained by observing that the protocol
is making random choices. That is, oblivious failures have a limited effect on the dis-
semination process. For adaptive failures, this is not the case: the failure pattern adapts
to the actual execution of the protocol. One key observation we use is that randomiza-
tion spreads messages roughly uniformly; our protocol ensures that, by failing a limited
set of processes, the adversary can only prevent a proportional set of rumors from being
spread. We also ensure that, once a rumor has been learned by enough processes, the
adversary can do little to stop its spread to almost all correct processes.

We also show a trade-off between robustness and message complexity in the pres-
ence of adaptive faults. More precisely, any protocol that tolerates n(1 − ε) process
crashes, where 1 ≥ ε > 0 is a function of n, has message complexity Ω(n log (1/ε)),
with high probability. Of note, for small ε, e.g. ε < 1/ log log n, this results in a super-
linear lower bound on message complexity, the first such bound for gossip protocols in
the presence of adaptive faults.

2. Oblivious failures. Our second main result is a gossip protocol, CoordinatedGossip,
that achieves optimal O(n) message complexity, with high probability, when failures
are oblivious, i.e., independent of the actual execution (and hence independent of ran-
dom choices made by the processes). This implies that, asymptotically, we can achieve
the same level of efficiency in a crash-prone network as in a fault-free network!

The key idea underlying this algorithm is universe reduction: we randomly select a
small set of coordinators and use them to collect and then disseminate the rumors. The
main challenge here is the need for coordinators to work efficiently together; specifi-
cally, they must avoid duplicating work (i.e., messages). However, the coordinators do
not initially know the identities of the other coordinators, nor how to reach them. The
protocol builds simple, yet robust, overlay structures that allow coordinators to commu-
nicate amongst themselves, and allow processes to communicate with coordinators.

This result is particularly surprising due to the existence of an Ω(n log log n) lower
bound on the message complexity of gossip broadcast by Karp et al. [21]; in the problem
of broadcast, a single process attempts to distribute its message to all others. In [21],
they consider a model in which, in each round, each process can: (i) contact a random
process and (ii) either push information to the random process or pull information from
it. By contrast, in this paper, we allow a process to send more than one message per
round, and to reply to processes that communicate with it at later rounds. The capacity
to maintain a connection over multiple rounds allows us to circumvent the lower bound
and obtain significant improvements.

2 Distributed System Model

We consider a synchronous distributed system consisting of n processes {p1, . . . , pn}.
An execution proceeds in rounds in which each process sends a set of messages, re-
ceives a set of messages, and updates its state. Every pair of processes is connected by
a pairwise communication channel.

Faults. Up to t < n/3 processes may fail by crashing. When a process pi crashes in
some round r, any arbitrary subset of its round r messages may be delivered; process
pi then takes no further steps in any round > r. A process that does not fail is correct.
We think of the failures as dictated by an adversary.

Unique Ids. Each process has a unique identifier. When the execution begins, a pro-
cess does not know the identity of any other process in the system4. The first time that
a process pi receives a message from another process pj , it learns the identity of pro-
cess pj , and hence it learns on which channel it can send messages to pj . Formally,
each process pi has access to an unordered set of n channels Si (including a channel
connecting pi to itself). In each round, each process can send a message on any subset
of the available channels, and, in addition, it can reply to any message received in a
previous round (using the channel on which that message was delivered).

4 Often distributed algorithms assume that processes know the identity of their neighbors, since
learning this information requires only a single exchange of messages on each channel. How-
ever, this neighbor-discovery process requires Θ(n2) messages, and so we do not assume that
a process knows the identities of its neighbors a priori.

This basic model is well suited for studying randomized gossip protocols, as it leads
naturally to epidemic dissemination: each process can exchange information with ran-
domly chosen partners by selecting random subsets of its channels5.
Anonymous Systems. While we assume, for simplicity, that processes have unique
identifiers, this assumption is not needed for any of the results in this paper. A pro-
cess can simply choose an identifier at random from a suitably large namespace (e.g.,
{1, . . . , Θ(n2)}), such that, with high probability, every process selects a unique iden-
tifier. All the results in this paper continue to hold.

Moreover, there are several reasons why anonymity may be desired. For example, in
order to ensure privacy, processes may not want to reveal their identity. Along the same
lines, processes may be communicating via an anonymous routing protocol (e.g., onion
routing). All that is required for the protocols in this paper is the ability to establish a
communication session with randomly chosen processes.
Oblivious and Adaptive Failures. We distinguish two types of failures: when failures
are independent of the actual execution (and hence independent of the random choices
made by the processes), we say that they are oblivious (or that the adversary is oblivi-
ous); by contrast, when failures may depend on the ongoing execution, we say that they
are adaptive (or that the adversary is adaptive). Formally, when failures are oblivious,
we assume that a failure pattern is fixed prior to the execution; the failure pattern spec-
ifies precisely in which round each faulty process fails, and which of its messages are
delivered in that round. When failures are adaptive, we assume that failures in round r
are determined by a failure function which takes as input the entire history of rounds
1, . . . , r − 1.

When we say that a protocol has message complexity M with probability p, this
means that for every failure pattern/function, the probability that more thanM messages
are sent in an execution is no greater than p. The term with high probability (w.h.p.)
means with probability at least 1−O(n−γ), for an arbitrary constant γ > 0.

3 Related Work
The idea of randomized rumor distribution dates back to Frieze and Grimmett [16], and
later, Pittel [30] and Feige [15], who showed that one can distribute a single rumor in a
complete graph with n vertices in time log n+ lnn+ o(1), as well as in other types of
random graphs. Demers et al. [7] showed that rumor spreading can be used for efficient
distributed database maintenance, an idea extended in e.g., [27, 29].

In a landmark paper, Karp, Schindelhauer, Shenker and Vöcking [21] considered
the problem in the random phone-call model. The paper shows how to distribute a
rumor with high probability, in the presence of an oblivious adversary using O(log n)
communication rounds andO(n log log n) messages. This is shown to be optimal, in the
absence of addresses. Moreover, it is shown that, even using addresses, no algorithm can
achieve both time and communication optimality.

The results of [21] inspired a significant amount of research. Elsässer et al. [2, 11–
13] study extensions of the random phone-call model over various types of connected

5 By contrast, any deterministic protocol requiresΩ(n2) messages, since processes do not know
the identities of the other processes prior to the execution; this precludes protocols based on
constructing specially crafted overlays, such as expander graphs.

random graphs. In [9,10], Doerr et al. consider quasirandom rumor spreading, in which
each process has a list of its neighbors through which it is allowed to cycle when send-
ing the rumor. Surprisingly, the time bounds of [16] and [15] are still optimal in this
augmented model. The robustness of the quasirandom model is analyzed in [8], under
the assumption of probabilistic transmission failures. Later, Kempe, Kleinberg, and De-
mers [22] introduced a gossip-based algorithm for resource location. References listed
so far consider an oblivious adversary.

Model Comparison. Our model may be seen as an enrichment of the random phone-
call model of Karp et al. [21]. Of note, this allows us to achieveO(n) message complex-
ity for oblivious failures, and it allows us to develop protocols for a stronger, adaptive
adversary. Compared to the original model of [21], and the later variations in [9,12,13],
our model is stronger in that it allows processes to send several messages per round (for
example, a process might choose to send messages on all n available links in a round),
and it allows processes to reply to messages received. Also, note that we consider gossip
(n rumors to be spread), rather than broadcast.

There has also been much work on gossip when addresses are available, i.e., when
processes known in advance the identities of all the other processes in the system.
Chlebus and Kowalski [5] present deterministic algorithms (based on an expander-
graph construction) that ensure the dissemination of rumors within timeO(log2 t) using
O(n polylog t) total messages, where t is the number of failures. Earlier research [6]
determined time and cost trade-offs for gossip, in a model in which one neighbor is
contacted per round. Gilbert et al. [17] provided upper and lower bounds for the com-
plexity of gossip in an asynchronous environment. A detailed account of prior work on
gossip in distributed networks can be found in [19].

A key aspect of the CoordinatedGossip algorithm present in Section 6 is the tech-
nique of universe reduction, which has been an important tool in developing distributed
algorithms. Of particular note are recent algorithms by Ben-Or et al. [1], Kapron et
al. [20], King et al. [26], and King and Saia [25] that use universe reduction to solve
Byzantine agreement.

In a recent paper [18], Gilbert and Kowalski use the universe reduction technique to
develop a crash-tolerant consensus protocol that has optimal communication complex-
ity: it uses only O(n) bits of communication. In the same paper, they discuss how these
techniques can be used to solve gossip using O(n) messages. The model in that paper,
however, assumes that processes know the identities of their neighbors; as discussed in
Section 2, this assumption adds a hidden implicit Ω(n2) message cost which we avoid
in this paper. Thus, we cannot take advantage of the work sharing techniques discussed
in [18]; instead a more careful scheme is needed to avoid sending too many messages.

4 Gossip Against an Adaptive Adversary

In this section, we present a gossip algorithm, TrickleGossip, which uses O(n log3 n)
messages with high probability, and terminates in O(log2 n) communication rounds.
Previous work [5] shows that the algorithm is optimal in terms of round complexity, up
to logarithmic factors.

4.1 Algorithm Description
The execution of the algorithm is divided into two epochs: the dissemination epoch and
the confirmation epoch. We proceed to describe the structure of each epoch. Let β be a
large integer constant (e.g., β = 200), and let α = 7/12.
The Dissemination Epoch. The epoch is composed of log n individual phases, and
each phase is composed of 3 log n+ 1 communication rounds.

The first round of each phase is designed for distributing single rumors. Each pro-
cess is initially unmarked. In the first round of phase number i, each unmarked process
sends its rumor to a set of 2i log n randomly chosen processes (if i ≥ log n− log log n,
then all n processes are chosen).

In the following log n rounds of phase i, each process, whether marked or un-
marked, gathers all the distinct rumors it has received thus far in a packet, and sends
this packet to log n randomly chosen neighbors, in every round.

Finally, the last 2 log n rounds of a phase i are testing rounds for processes that
are still unmarked. In each odd testing round, each unmarked process chooses at ran-
dom 2iβ log n processes, if i < log n − log log n − log β, or chooses all n processes,
otherwise. The unmarked process sends a query regarding the rumors received to all
selected processes. In the even testing rounds, each process replies to the queries with
the list of rumors received so far. An unmarked process changes its state to marked if at
least min(α2iβ log n, n − t) of the processes that were contacted during the previous
(even) communication round had received its rumor. Otherwise, the process remains
unmarked. A marked process stops disseminating its message, but keeps replying to
queries from other processes, and sends packets in the second part of every phase. Once
a process is marked, it remains marked for the rest of the dissemination epoch.

The algorithm guarantees that, during the dissemination epoch, the number of un-
marked processes is roughly halved in every phase–we say that information “trickles”
down to the last uninformed processes.
The Confirmation Epoch. This epoch also consists of log n phases, each of which
consists of 2 log n communication rounds. At the beginning of this epoch, we set all
processes to the unmarked state. In each odd round of phase i, each process in unmarked
state queries 2iβ log n processes chosen randomly (if i ≥ log n− log log n− log β, then
the process sends messages to all n processes), about the rumors they received so far. In
even rounds, processes reply to the queries by sending the list of rumors they received
in the current execution. If the phase number i is less than log n − log log n − log β,
then the process needs to receive at least α2iβ log n replies to switch to the marked
state. Otherwise, if i ≥ log n − log log n − log β, then the process needs to receive at
least n − t replies in order to switch to the marked state. All processes terminate after
the last phase of this epoch by delivering the rumors they received so far.

4.2 Correctness
Note that termination is ensured by the structure of the algorithm. We first show that
every process delivers every rumor belonging to a correct process, with high probability.
Second, we show that the algorithm sends O(n log3 n) messages, w.h.p. Due to space
restrictions, we defer the complete proofs to the appendix.

In terms of notation, let t be the maximum number of failures in an execution, and
let f be the actual number of failures that occur in the current execution (not counting

processes that fail prior to the start of the execution; these latter processes have no
effect on the outcome). The model section assumes that f ≤ t < n/3. To simplify the
analysis, in the following, we will consider a run of the algorithm in which f < n/κ,
where κ is a large constant. Note that, because of the properties of the algorithm, we
can “boost” its resiliency from f < n/κ failures to f ≤ t < n/3 failures, without
affecting its asymptotic complexity, by re-running it for κ times (as during one of these
κ executions, by the pigeonhole principle, there are no more than n/κ failures).
Delivery. We first show that, by the end of the first epoch, every rumor belonging to
a correct (non-crashed) process has spread to at least n/2 processes w.h.p. The proof is
based on the analysis of the sampling procedure used for marking processes.

Lemma 1 (Spreading). For every correct process p, there is a majority of correct pro-
cesses that have received its rumor during the first epoch, with high probability.

During the second epoch, with high probability, every rumor belonging to a correct
process is delivered to every other correct process through the majority that holds it at
the end of the dissemination epoch.

Lemma 2 (Delivery). By the end of the confirmation epoch, every correct process has
received the rumors initiated by other correct processes, with high probability.

Message Complexity. In this section, we prove that the algorithm sends O(n log3 n)
in every run, with high probability. The argument is based on the observation that, in
every phase of an epoch, the number of processes that remain unmarked is roughly
halved. This implies that the number of messages sent in a phase is always bounded by
O(n log2 n), w.h.p. Finally, since there are O(log n) phases in an execution, we obtain
that the total number of messages sent is O(n log3 n) with high probability.

In the following analysis, we consider, without loss of generality, that the adversary
makes its choices of which process to fail at each round r, precisely at the beginning
of round r, by inspecting the local state and the randomly chosen message receivers
for each process that has not yet been crashed (by the beginning of the previous round
r − 1). This simplifies the exposition, without decreasing the power of the adversary.

The first Lemma proves that, during the dissemination epoch, the number of un-
marked processes is halved in each phase, with high probability.

Lemma 3 (Dissemination Epoch). At the beginning of phase number i of the first
epoch, the number of unmarked processes is at most n/2i−1, with high probability.

Proof. (Sketch) We proceed by induction on the phase number i. The case i = 1 is
trivial. For the induction step, we assume that, at the beginning of phase number i, there
are at most n/2i−1 unmarked processes.

Let Ui be the set of processes that are unmarked at the beginning of phase number
i. We analyze the progressive spread of rumors in Ui during the current phase of the
algorithm. Recall that, in the first round of the phase, each unmarked process sends its
rumor to 2i log n randomly chosen processes. We say that a rumor from a process in Ui
is fast in round r1 if it is held by at least 2i−3 log n processes that are not crashed at the
second round of the phase. The first step proves that, by failing f1 processes during the

first round of the phase, the adversary may prevent at most cf1/2i processes being fast,
where c is a constant. We denote the set of fast rumors for round r1 by Mi.

The second step analyzes the following log n communication rounds, in which ev-
ery process sends packets containing rumors it received so far. We prove that by failing
f2 processes in the second part of the phase, the adversary may stop at most 220f2 pack-
ets from spreading to at least n(α + 1/48) processes each, w.h.p. We say that a packet
is fast in round r of this part, if it is sent by at least min(logr n/96r, n(α + 1/24))
processes that do not crash before round r + 1. We notice that the rumors are spread
uniformly in each of these rounds. By a counting argument, we obtain that, by crashing
fr processes in a round r, the adversary may stop at most cfr rumors from being fast
in round r, where c is a constant. Therefore, for each rumor that is fast throughout this
part of the phase, we are analyzing an epidemic process with a growth rate of log n/96.
On the other hand, the adversary may stop the growth for individual rumors, by failing
processes at every round. A careful analysis of this procedure, which can be found in the
appendix, shows that, by failing f processes in the second part of the phase, the adver-
sary may stop at most a total of K ·f packets from being spread to at least n(α+1/48)
processes each, where K is a constant.

Since each rumor in Mi is distributed into at least 2i−3 log n packets at the end of
the first round in this phase, the adversary has to stop all packets containing the rumor
from being fast in order to prevent the rumor from being spread to a large fraction of
processes. On the other hand, by a Chernoff bound, a packet contains at most 10 log n
rumors from Mi, w.h.p. Therefore, by stopping x packets, the adversary may prevent at
most 10x log n/(2i−3 log n) ≤ 80f/2i rumors from being spread to at least n(1/2 +
ε/4) processes each, w.h.p. Finally, we obtain that, for suitable values of κ, there are at
most n/2i+1 rumors started by processes inUi that are not spread to at least n(α+1/24)
processes. So at least |Ui|−n/2i+1 rumors are spread to at least n(α+1/24) processes.

The third and final step shows that there are at most n/2i+1 processes associated to
these |Ui|−n/2i+1 rumors that are not marked during the testing part of the phase, with
high probability. This concludes the proof of the induction step, and of the Lemma.

The final lemma in the proof of the message complexity upper bound proves that the
number of non-marked processes is halved in each phase of the confirmation epoch as
well. The proof is similar to that of Lemma 3, and can be found in the appendix.

Lemma 4 (Confirmation Epoch). At the beginning of phase i of the second epoch, the
number of unmarked processes is not more than n/2i−1, with high probability.

5 Relating Fault-Tolerance to Message Complexity
In this section, we prove a lower bound on the message complexity of any gossip algo-
rithm that tolerates t < n(1− ε) process crashes. We consider that ε is a function of n,
with 1 > ε(n) ≥ 0. For simplicity, in the rest of this section, we omit the argument of
the ε(n) function, and simply write ε.

Theorem 1 considers the case in which every process starts out with a rumor, which
has to be delivered by every correct process as long as its source is correct. The argu-
ment can be adapted to yield a similar result in the case of the broadcast problem, in
which a rumor that is delivered by a correct process has to be delivered by every correct
process. We present the full proof in the appendix.

Theorem 1 (Message Complexity Lower Bound). Any algorithm that tolerates t <
n(1 − ε) process crashes, and guarantees gossip with constant positive probability,
needs to send Ω(n log(1/ε)) messages, with high probability.

Proof. (Sketch) We consider an algorithm A that solves gossip with constant positive
probability, tolerating n(1−ε) failures, and show that there exists an adversarial strategy
which forces the algorithm to generate Ω(n log(1/ε)) messages with high probability.
The adversarial strategy is to crash any process that receives a new rumor, and to crash
every process immediately after it generates n/4 messages. We split the execution into
phases, with the property that, in each phase, the adversary crashes exactly half of the
processes that were not crashed at the end of the previous phase. Our main claim is that,
with high probability, by sending n/64 new messages, the algorithm makes the whole
system progress for at most one phase. The main difficulty in proving the claim is that
the random variables corresponding to messages sent are not independent; however, we
are able to show that they are negatively associated, in the sense of [31], which allows
the use of tail bounds. Finally, we show that, in order to achieve gossip with constant
probability, the algorithm needs to make the system progress for Ω(log(1/ε)) phases
with high probability, which implies the lower bound on message complexity.

6 Gossip and Oblivious Failures
In this section, we present the CoordinatedGossip protocol, that disseminates every ru-
mor initiated by a correct process, using only O(n) messages, with high probability.
The key idea behind the protocol is to elect a small set of Θ(log n) coordinators, who
then collect and disseminate the rumors. There are two main challenges:
1. Intra-coordinator communication: Since the coordinators are selected independently,
they do not initially know how to contact the other coordinators. Therefore the coordi-
nators select a set of O(

√
n log2 n) intermediaries that form an overlay connecting all

the coordinators.
2. Coordinator discovery: In order to collect and disseminate the rumors, the coordina-
tors need to efficiently contact all the processes in the system. Each coordinator sending
a message to each process would be too expensive, requiring Θ(n log n) messages. In-
stead, each coordinator selects Θ(n/ log n) relays, leading to Θ(n) relays in total. To
collect the rumors, each process forwards its rumor to a relay, which can then forward
it to a coordinator. To disseminate rumors, the process is reversed.
We first present the protocol in Section 6.1. We then analyze the message complexity
in Section 6.2. All omitted proofs can be found in the appendix.

6.1 CoordinatedGossip

We split the presentation of the CoordinatedGossip protocol in three parts. First, we
describe a set of initial steps in which we select three special sets of processes: coordi-
nators, intermediaries, and relays. We describe how the rumors are collected, and then
how rumors are disseminated.
Selecting processes. In the first round, each process decides whether to be a coordi-
nator, an intermediary, a relay, or none of the above. (Note that a process can play more
than one role.)

Coordinators: Each process decides to be a coordinator with probability Θ(log n/n),
specifically, 12c log n/n.
Intermediaries: Each coordinator chooses Θ(

√
n log n) processes at random, specif-

ically, 6c
√
n log n processes, and sends each an intermediary-election message; each

process that receives such a message decides to be an intermediary. We say that a pro-
cess is a correct intermediary if it receives an intermediary-election message and does
not fail. For a given intermediary, we define the intermediary’s neighbors to be the set
of processes from which it received intermediary-election messages.
Relays: Each coordinator participates in c relay elections. That is, for every ` ∈ {1, . . . , c},
each coordinator choosesΘ(n/ log n) processes at random, more precisely n/(24c log n)
processes, and sends each a relay-election-` message.

If, for any ` ∈ {1, . . . , c}, a process receives exactly one relay-election-` message,
then it decides to be an `-relay. We define the `-parent of a relay to be the coordinator
that sent it a unique relay-election-` message. We say that a process is a good relay for
` if: (i) it receives exactly one relay-election-`message, for some `; (ii) it is correct; and
(iii) its `-parent is correct.
We will argue that there are Θ(log n) correct coordinators, that every pair of coordina-
tors shares a correct intermediary, and that there are Θ(n) good relays.
Collecting rumors. After choosing coordinators, intermediaries, and relays, there is
an collection phase. The goal of the collection phase is to ensure that every rumor from a
correct process is known to every correct coordinator. Each process attempts to send its
rumor to a relay; the relay forwards it to its parent, a coordinator; the coordinators then
exchange rumors via the intermediaries. We proceed to describe this process in more
detail. Specifically, the collection phase consists of Θ(log n) iterations, specifically,
45(c+ 1) log n iterations, of the following seven rounds:

a. Each process that has not succeeded in a prior iteration sends its rumor to a random
process.

b. Each relay sends any messages received in Round (a) to its parents (for each ` ∈
{1, . . . , c}).

c. Each coordinator forwards all the rumors it has received to the set of intermediaries
to which it previously sent intermediary-election messages.

d. Each intermediary forwards every rumor received to its neighbors.
e. Each coordinator sends a response to every relay from which it received a message

in Round (b).
f. Each relay that received a response in Round (e) sends a response to every process

from which it receives a message in step (a).
g. Each process that receives a response in Round (f) has succeeded and remains silent

thereafter.

We will argue that the collection phase uses O(n) messages, with high probability, and
that, by the end, every rumor from a non-failed process has been received by every
non-failed coordinator, with high probability.
Disseminating rumors. After the collection phase, there is a dissemination phase.
In the first round of the dissemination phase, each coordinator sends all the rumors it
has learned to the set of relays that it previously sent relay-election messages to. The

remainder of the dissemination phase proceeds much like the collection phase, except in
reverse. As before, the dissemination phases consists ofΘ(log n) iterations, specifically
45(c+ 1) log n iterations, of the following rounds:

a. Each process that has not succeeded in a prior iteration sends its message to a
random process.

b. Each relay sends a response to every message received in Round (a); the response
includes all the rumors previously received from the coordinators.

c. Each process that receives a response in Round (b) has succeeded and remains
silent thereafter.

We will argue that the dissemination phase uses O(n) messages, with high probability,
and that every non-failed process learns every rumor that was previously collected by
the coordinators.

6.2 Analysis
We begin by bounding the number of coordinators, which follows from a straightfor-
ward calculation:

Lemma 5 (Coordinator-Set Size). With probability at least (1− 1/nc): (a) There are
at most 24c log n coordinators; and (b) There are at least c log n correct coordinators.

Next, we argue that for every pair of coordinators, there is some correct intermediary
that has both coordinators as neighbors.

Lemma 6 (Good Intermediaries). With probability at least (1−1/nc): for every pair
of non-failed coordinators pi, pj , there exists some intermediary pk such that both pi
and pj are neighbors of pk.

Next, we argue that a constant fraction of the processes are good relays. This is perhaps
the key fact that leads to good performance: the coordinators can efficiently contact
a constant fraction of the world (i.e., the relays); and there are enough relays that the
processes can easily find a relay, and hence a path to a coordinator. The lemma follows
from a balls-and-bins style analysis.

Lemma 7 (Good Relays). There exists some ` ∈ {1, . . . , c} such that at least n/18
processes are good for `, with probability at least (1− 2/nc).

Next, we argue that every process succeeds during the collection and dissemination
phases, resulting in every correct process learning the entire set of rumors that were
initiated at correct processes.

Lemma 8 (Gossip Success). With probability at least (1 − 4/nc): (a) By the end of
the collection phase, every process has succeeded. (b) By the end of the dissemination
phase, every process has succeeded. (c) When the protocol terminates, every rumor
from a correct process has been received by every correct process.

Finally, we analyze the message complexity of the collection and dissemination phases.
The key part of this analysis is showing that the process of finding relays is efficient.
This fact follows from the following analogy: the attempts by processes to find relays
is equivalent to flipping a (biased) coin until we get n heads; this requires only O(n)
flips, with high probability.

Lemma 9 (Message Complexity). With probability at least (1− 5/nc), the collection
and dissemination phases have message complexity O(n).

We conclude with the main theorem:

Theorem 2. The CoordinatedGossip protocol is correct and has message complexity
O(n), w.h.p.

Proof. By Lemma 8, we see that every rumor is successful disseminated with probabil-
ity at least (1−4/nc). In terms of message complexity, when Lemma 5 holds, i.e., with
probability (1 − 1/nc): the selection of coordinators requires at most O(

√
n log2 n)

messages; the selection of relays requires at most O(n) messages. Lemma 9 states
that coordination and dissemination have message complexity O(n) with probability
(1− 5/nc). Thus, overall, the message complexity is O(n), with high probability.

References
1. Michael Ben-Or, Elan Pavlov, and Vinod Vaikuntanathan. Byzantine agreement in the full-

information model in o(log n) rounds. In STOC, 2006.
2. Petra Berenbrink, Robert Elsaesser, and Tom Friedetzky. Efficient randomised broadcasting

in random regular networks with applications in peer-to-peer systems. In PODC, 2008.
3. K.P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and Y. Minsky. Bimodal multicast.

ACM Trans. on Computer Systems, 17:41–86, 1999.
4. Augustin Chaintreau, Jean-Yves Le Boudec, and Nikodin Ristanovic. The age of gossip:

spatial mean field regime. In SIGMETRICS, 2009.
5. Bogdan S. Chlebus and Dariusz R. Kowalski. Robust gossiping with an application to con-

sensus. J. Comput. Syst. Sci., 72(8):1262–1281, 2006.
6. A. Czumaj, L. Gasieniec, and A. Pelc. Time and cost trade-offs in gossiping. SIAM Journal

on Discrete Mathematics 11 (1998), 400-413.
7. Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker, Howard

Sturgis, Dan Swinehart, and Doug Terry. Epidemic algorithms for replicated database main-
tenance. In PODC, 1987.

8. B. Doerr, A. Huber, and A. Levavi. Strong robustness of randomized rumor spreading pro-
tocols. Proceedings of ISAAC’09.

9. Benjamin Doerr, Tobias Friedrich, and Thomas Sauerwald. Quasirandom rumor spreading.
In SODA, 2008.

10. Benjamin Doerr, Tobias Friedrich, and Thomas Sauerwald. Quasirandom rumor spreading:
Expanders, push vs. pull, and robustness. In ICALP (1), pages 366–377, 2009.

11. R. Elsässer and T. Sauerwald. On the runtime and robustness of randomized broadcasting.
Theor. Comput. Sci., 410(36):3414–3427, 2009.

12. Robert Elsässer. On the communication complexity of randomized broadcasting in random-
like graphs. In SPAA, 2006.

13. Robert Elsässer and Thomas Sauerwald. The power of memory in randomized broadcasting.
In SODA, 2008.

14. P. Eugster, R. Guerraoui, S. Handurukande, A-M Kermarrec, and P. Kouznetsov. Lightweight
probabilistic broadcast. ACM Transactions on Computer Systems, 21(4), 2003.

15. Uriel Feige, David Peleg, Prabhakar Raghavan, and Eli Upfal. Randomized broadcast in
networks. In SIGAL ’90, pages 128–137, London, UK, 1990. Springer-Verlag.

16. Alan M. Frieze and G.R. Grimmett. The shortest-path problem for graphs with random
arc-lengths. Discrete Applied Mathematics, (10):55–77, 1985.

17. Chryssis Georgiou, Seth Gilbert, Rachid Guerraoui, and Dariusz R. Kowalski. On the com-
plexity of asynchronous gossip. In PODC, 2008.

18. Seth Gilbert and Dariusz Kowalski. Distributed agreement with optimal communication
complexity. SODA 2010.

19. J. Hromkovic, R. Klasing, A. Pelc, P. Ruzika, and W. Unger. Dissemination of information in
Communication Networks: Broadcasting, Gossiping, Leader Election, and Fault-Tolerance.
Springer-Verlag, 2005.

20. Bruce M. Kapron, David Kempe, Valerie King, Jared Saia, and Vishal Sanwalani. Fast
asynchronous byzantine agreement and leader election with full information. In SODA,
pages 1038–1047, 2008.

21. R. Karp, C. Schindelhauer, S. Shenker, and B. Vöcking. Randomized rumor spreading. In
FOCS, 2000.

22. D. Kempe and J. Kleinberg. Protocols and impossibility results for gossip-based communi-
cation mechanisms, 2002.

23. D. Kempe, J. Kleinberg, and A. Demers. Spatial gossip and resource location protocols.
Journal of ACM, pages 943–967, 2004.

24. A. Kermarrec, L. Massoulie, and A. Ganesh. Probabilistic reliable multicast in ad hoc net-
works. IEEE Trans. on Parallel and Distr. Syst., 14, 2003.

25. Valerie King and Jared Saia. Fast, scalable byzantine agreement in the full information model
with a nonadaptive adversary. In DISC, 2009.

26. Valerie King, Jared Saia, Vishal Sanwalani, and Erik Vee. Scalable leader election. In SODA,
pages 990–999, 2006.

27. Rivka Ladin, Barbara Liskov, Liuba Shrira, and Sanjay Ghemawat. Providing high availabil-
ity using lazy replication. ACM Trans. Comput. Syst., 10(4):360–391, 1992.

28. J. Luo, P. Eugster, and J.P. Hubaux. Route driven gossip: Probabilistic reliable multicast in
ad hoc networks. In INFOCOM, 2003.

29. Dahlia Malkhi, Yishay Mansour, and Michael K. Reiter. On diffusing updates in a byzantine
environment. In SRDS, pages 134–143. IEEE Computer Society, 1999.

30. Boris Pittel. On spreading a rumor. SIAM J. Appl. Math., 47(1):213–223, 1987.
31. Devdatt Dubhashi Desh Ranjan. Balls and bins: A study in negative dependence. Random

Structures and Algorithms, 13:99–124, 1996.
32. R. van Renesse, Y. Minsky, and M. Hayden. A gossip-style failure detection service. In Int-l

Conference on Distributed Systems Platforms and Open Distributed Processing, 1998.

Appendix
A Proofs omitted from Section 4
Lemma 10. For every correct process p, there is a majority of correct processes that have re-
ceived its rumor during the first epoch, with high probability.

Proof. Let p be a correct process. It is easy to see that p is marked at the end of the dissemination
epoch. This implies that process p queried min(2i · β · logn, n) processes during some round r
in the dissemination phase, and at least a fraction of α of these had p’s rumor at the end of round
r − 1. If process p is in a phase where it queries n processes in each round, the claim becomes
trivial.

Otherwise, let x be the number of processes that had p’s rumor at the end of round r − 1.
The expected number of processes that tell process p that they had its message before round r is
2iβ logn·x/n. Since p did receiveα·2iβ logn positive responses, we can say that 2iβ logn·x/n
is not less than α−1/24

α
· 2iαβ logn, with high probability. This implies that x ≥ n(1/2+1/24)

with high probability. This means that the number of processes that were not crashed and had
process p’s rumor at the end of round r − 1 is at least n(1/2 + 1/24). Since the number of
failures in the current run of the algorithm is at most n/κ, it follows that, for sufficiently large κ,
there are at least n(1/2 + 1/48) correct processes that received p’s rumor with high probability,
which form a majority. 2Lemma 1

Lemma 11. By the end of the confirmation epoch, every correct process has received the rumors
initiated by other correct processes, with high probability.

Proof. Let p be an arbitrary correct process. It is easy to see that every such process gets marked
by the end of the last phase of the confirmation epoch.

We want to prove that this process receives all rumors initiated by correct processes. Let i be
the phase of the confirmation epoch in which we marked process p. If p queried all n processes
in phase i, then the claim follows. Otherwise, process p queried 2iβ logn random processes, and
received responses from at least 2iαβ log(n) of these processes.

Lemma 1 ensures that, for every correct process q, there are at least n(1 + 1/24)/2 correct
processes having its rumor by the end of the first epoch. On the other hand, the expected number
of correct processes that have q’s rumor and were queried by p in this round is at least (1+1/24)·
2i−1β logn. By the Chernoff bound, with high probability, there are at least 1+1/48

2
·2i−1β logn

such processes.
On the other hand, p has received query responses from at least α2iβ logn processes. Since

α > 1/2, it follows that, with high probability, p receives a message from a correct process that
had q’s rumor. 2Lemma 2

Lemma 12. At the beginning of phase number i of the first epoch, the number of unmarked
processes is at most n/2i−1, with high probability.

Proof. We proceed by induction on the phase number i. The case i = 1 is trivial. For the induc-
tion step, we assume that, at the beginning of phase number i, there are at most n/2i−1 unmarked
processes, and we prove that the number of unmarked processes at the end of the phase is at most
n/2i.

Let Ui be the set of processes that are unmarked at the beginning of phase number i. In
round r1, the first round of phase i, each unmarked process sends exactly 2i logn messages to
other processes. This implies that each process receives on average |Ui|/n · 2i logn ≤ 2 logn

messages in this round. Therefore, by the Chernoff bound, each process receives between logn
and 10 logn messages in this round, with high probability. The first step in the proof is to bound
the number of rumors of unmarked processes that the adversary may stop from spreading at a
large number of processes during round r1.

Note that, since t < n/3, each process in Ui sends messages to at least 2i−2 logn processes
that were not crashed at the end of round r1 - 1, with high probability. Given this observation, we
say that a rumor initiated by a process p in Ui is fast-spreading in round r if at most half of the
processes that 1) were not crashed at the end of round r−1 and 2) received the rumor in round r,
are crashed by the adversary before they complete sending for round r+1. In particular, a rumor
is fast-spreading in round r1, with high probability, if the adversary crashed at most 2i−3 logn
of the processes that received the rumor in round r1. Note that, if rumor m is fast-spreading in
round r1, then at least 2i−3 logn processes successfully send the rumor in round r1 + 1.

Next, we bound the number of rumors that the adversary may prevent from being fast spread-
ing in round r1, depending on the number of failures that the adversary is willing to expend in
this round.

Since a process may receive at most 10 logn messages in round r1, with high probability,
and the adversary has to fail at least 2i−3 logn processes in this round to prevent a rumor from
spreading fast in this round, if follows that by failing f processes during round r1, the adversary
may prevent at most 20f/2i−3 rumors from spreading fast in this round, whp. This implies that
at least |Ui| − 20f/2i−3 ≥ |Ui| − 20n

2i−3κ
rumors are fast spreading in round r1. Let Mi denote

the set of these fast spreading rumors.
Next, we analyze the following logn communication rounds, in which every process sends

packets containing rumors it heard so far. The previous claim shows that each of the rumors in
Mi is in at least 2i−3 logn packets at the beginning of the second part of the phase. On the other
hand, a packet contains at most 10 logn rumors, whp. Next, we prove that by failing f processes
in the second part of the phase, the adversary may stop at most 220f packets from spreading to
at least n(α+ 1/48) processes each, whp.

Recall that the second part of the phase contains logn rounds, in which each process sends its
packet to logn randomly chosen neighbors. Let p1, p2, . . . , p` be the processes that participate
in the second part of the phase, and let c1, c2, . . . , c` be their respective packets. Also, for each
round r ∈ {1, 2, . . . , logn} in the second part of this phase, let Srj be the set of processes that
had packet cj at the end of round r, and that successfully send the packet in round r, i.e. are not
crashed during round r. For completeness, let S0

j = {pj}. We say that a packet cj is fast if for
every round r in this phase, |Srj | ≥ min(logr n/96r, n(α+ 1/24)). Otherwise, we say that the
packet is slow.

We prove that there are at least n− f0 − 220
∑logn
k=1 fk fast packets in this part of the phase,

where fk is the number of processes that are crashed by the adversary in round k of the phase.
The statement is trivial for the first round. For the induction step, we assume that there are at least
n − f0 − 220

∑r
k=1 fk fast packets up to round R, and f0 is the number of processes that take

no steps in this phase. If logR n/96R > n(α + 1/24), then the claim follows. Otherwise, for
each fast packet cj , pick a set Bj such that Bj ⊆ SRi , and |Bj | = logr n/96r . For simplicity, let
b = |Bj |. We now analyze the spread of messages from processes in Bj in round r. We define
Hj as the set of processes which received at least one message from a process in Bj in round
r. Note that some of these processes may be crashed by the adversary at the beginning of round
r + 1.

There are b logn messages sent from each set Bj . For this part of the analysis, we assume
without loss of generality that these messages are sent independently. We notice that, by the end
of this round, |Hj | ≥ min(n(α+ 1/24), b logn/50). If |Hj | < n(α+ 1/24), then there are at
least 2n/3− |Hj | ≥ n/24 correct processes that are not in Bj . Therefore, the size of Bj either
surpasses n(α+ 1/24), or it is increased to b logn/50, with high probability.

We now analyze the number of rumors that remain fast in round r, given that the adversary
fails fr processes in this round. Note first that, if |Hj | ≥ n(α+ 1/24), then, since the adversary
may fail a total of n/κ processes in the current run of the protocol, we obtain that there are at least
|Hj | ≥ n(α + 1/48) processes that have packet j and do not crash in this run, for large values
of κ, thereby concluding our claim for packet j. Otherwise, |Hj | ≥ b logn/50 whp, therefore
the adversary has to crash at least b logn/110 processes in Hj at the beginning of round r + 1
in order to stop rumor i from being fast. On the other hand, every process receives on average
b logn messages from processes in the sets Bj in this round. Therefore, by the Chernoff bound,
every process receives at most 2b logn messages from processes in the sets Bj in this round. It
follows that, by failing x processes in round r, the adversary may stop at most 220bx logn

b logn
= 220x

rumors from being fast in this round.
Therefore, by failing f processes in the course of this part of the phase, the adversary may

stop at most a total of 220f packets from being spread to at least n(α + 1/48) processes each.
Since each rumor in Mi is distributed into at least 2i−3 logn packets, the adversary has to stop
all packets containing the rumor in order to prevent a rumor from being spread. On the other
hand, a packet contains at most 10 logn rumors from Mi. Therefore, by failing x packets, the
adversary may prevent at most 10x logn/(2i−3 logn) ≤ 80f/2i rumors from being spread to
at least n(1/2 + ε/4) processes each, with high probability. By failing f < n/κ processes, the
adversary may stop at most 220f packets from being spread. Finally, we obtain that, for suitable
values of κ, there are at most n/2i+1 rumors started by processes in Ui that are not spread to
least n(α+1/24) processes. So at least |Ui|−n/2i+1 rumors are spread to at least n(α+1/24)
processes.

In the final step, we prove that among the rumors that are spread to at least n(α + 1/24)
processes in the previous part, there are at most n/2i+1 processes associated with these rumors
that remain unmarked in the testing phases. Assume a process p among these processes. If it sends
n messages, it will receive at least n − t replies which makes it unmarked. Otherwise p sends
2iβ logn messages. Since there are at most n/2i−1 unmarked processes. Everybody receives at
most 2β logn messages in expectation. Using the Chernoff bound, this number is not more than
3β logn.

On the other hand, if p receives replies from at least a fraction of α of these processes, it will
be marked. We expect at most 1/3 of its recipients to be already failed. With high probability the
number of already failed recipients of p is not more than a fraction of 1/3+ε. So the adversary can
keep a process unmarked only by failing at least (1−1/3−εα)×2iβ logn > 2iβ logn/15 of p’s
recipients for small enough ε. We also know that each process receives at most 3β lognmessages
in each round. So the adversary can keep at most x · (3β logn)/(2iβ logn/15) = 45x/2i

processes unmarked by failing x processes in the testing phase. Again by choosing a suitable
value for κ, the number of these rumors that remain unmarked is at most n/2i+1. So there are at
most n/2i+1 + n/2i+1 rumors that are still unmarked. So at least n/2i−1 − 2n/2i+1 = n/2i

are marked.
2Lemma 3

Lemma 13. At the beginning of phase i of the second epoch, the number of unmarked processes
is not more than n/2i−1, with high probability.

Proof. The induction base (i = 1) is trivial. Recall that the confirmation epoch is composed
of logn phases, each of which has 2 logn rounds. In each odd round, every unmarked pro-
cesses sends 2iβ logn queries, and it waits for the replies in the next round. If it receives at least
α2iβ logn replies, the process moves to the “marked” state.

Let r be the current round. Let r be odd, and let Zp be the set of processes that p sends a
request message to in round r. So |Zp| = 2iβ logn. Some processes in Zp are already failed.

Some of them might be failed by the adversary after they receive the message, i.e. before they
complete sending their messages for round r + 1. Note that t < n/3, so the expected number of
processes in Zp that are already failed is at most (t/n)× (2iβ logn) ≤ 2iβ logn/3. So, by the
Chernoff bound, it is not more than 2iβ log (n) · (1/3 + 1/24), with high probability.

We also know that process p remains unmarked only if at least 2i logn(1− α) processes in
Zp are either already failed or will be failed in this or next round. So the adversary has to crash
at least 2iβ logn(1− α− 1/3− 1/24) ≥ 2iβ logn/8 processes in Zp in order to keep process
p unmarked.

On the other hand, we know that each unmarked process sends 2iβ lognmessages, and there
are at most n/2i−1 unmarked processes in this phase. Therefore, the total number of messages
sent in round r is at most 2βn logn. So the expected number of messages that a process receives
is 2β logn, and no process receives more than 3β logn messages whp.

Assume that the adversary fails fr processes in this round. Each of these processes received
at most 3β logn messages in this round. So the total number of messages “lost” to failures is at
most 3β logn. In order to keep process p unmarked in this round, the adversary has to fail at least
2iβ logn/8 processes in round r, whp. So the total number of processes that remain unmarked
until the end of the execution is at most 24βfr logn/2iβ logn = 24fr/2

i. Note, however, that
we only need to mark process p in one of the log r rounds of this phase, and, once a process is
marked, it remains marked until the end of the execution. Since the number of failures in this
run of the algorithm is at most n/κ, there exists a round R in phase i in which there are at most
n/(κ logn) failures. The number of processes that remain unmarked after round R is at most
24fR/2

i ≤ 24n/(2iκ logn). This is obviously less than n/2i, which finishes the proof of the
induction step and the proof of the lemma.

2Lemma 4

B Proof of the Lower Bound (Section 5)
Theorem 1. Any algorithm that tolerates t < n(1 − ε) process crashes, and guarantees gossip
with constant positive probability, needs to send Ω(n log(1/ε)) messages, with high probability.

Proof. LetA be an algorithm that solves gossip with constant positive probability. In the follow-
ing, we define an adversarial strategy which forces the algorithm to sendΩ(n log(1/ε)) messages
in every execution, with high probability.

The adversarial strategy is the following. First, every time a message is sent in round r ≥ 1,
its receiver is failed as soon as it receives all its messages for round r. Second, if a process sends
n/4 messages in total from the beginning of the execution, then the process is crashed. Let A
be the set of non-failed processes at some stage in the execution, and let x = |A|. We split an
execution into phases, with the property that, in phase i ≥ 1, n/2i−1 ≥ x > n/2i. It is easy to
see that this adversarial strategy prevents any communication between processes, as long as the
adversary does not run out of failures. The strategy stops when x = n/ε, i.e., after approximately
log(1/ε) phases.

We claim that, if less than n/64 messages are sent by the algorithm since the beginning of
phase i, then, with high probability, the system does not progress for more than one phase. To
prove the claim, fix phase i, and a process p that has not been failed at the beginning of phase i.
The number of processes that p has not communicated with so far is at least 3n/4 (otherwise p
would be failed). Also, note that process p cannot find out about failures in the system from other
processes, since there is no consistent addressing for processes.

Let m1,m2, . . . ,mn/64 be the first n/64 messages sent during this phase, and let Xi be an
indicator random variable that is 1 if message mi was sent to a process that was not crashed at
the beginning of the phase, and 0 otherwise. The probability that a message is sent to a process

that has not been failed is at most x/(3n/4) ≤ 1/2i−2. Then E[
∑
iXi], the expected number of

non-failed processes that are hit by messages during phase i (and hence crashed by the adversary)
is at most (n/64) · 1/2i−2 = n/2i+4.

Next, we notice that the dependence relation between the random variables Xi is negative.
It is easy to see that Pr(Xi = 1|Xj = 1) ≤ Pr(Xi = 1), since there are less non-crashed
processes to hit if one is already crashed. This implies that E[Xi|Xj] ≤ E[Xi] for all pairs i, j
in {1, 2, . . . , n/64}, which in turn implies that E[XiXj] ≤ E[Xi] · E[Xj] for all pairs i, j. It
follows that the random variablesXi are negatively associated, in the sense of [31]. Proposition 5
from [31] implies that, in this case, the Chernoff bound applies to the sum of the random variables
Xi.

Therefore, with high probability, the number of messages that “hit” the set of processes that
have not been crashed at the beginning of phase number i is less than n/2i+2. The number of
processes crashed during this phase because they have sent at least n/4 messages throughout
the execution is o(logn), since otherwise the algorithm A sends Ω(n logn) messages in this
execution. These two facts imply that, with high probability, at most n/2i+1 processes are crashed
as long as the algorithm sends n/64 messages, which implies that, with high probability, the
system will stay in phase i or move to phase i+ 1.

The claim above means that by sending n/64 messages, the algorithm cannot make the sys-
tem progress for more than one phase, with high probability. This implies that, after the algorithm
sends n/64 · log(1/ε) messages, there are still, with high probability, n/ε processes that have not
been failed, and did not receive any rumor except their own.

We analyze the case where the algorithm A ensures termination with constant positive prob-
ability, and delivery with constant positive probability. This means that, given a fixed adversarial
failure pattern, in all but a constant fraction of the executions associated with that pattern, every
correct process terminates, and every terminating process delivers the rumors of all correct pro-
cesses. However, we presented an adversarial failure pattern which guarantees with high prob-
ability that at least n/ε > 2 processes do not receive any rumor except their own, as long as
at most n log(1/ε)/128 messages are sent. Let E be the set of executions associated with this
failure pattern. The properties of algorithm A ensure that in all but a constant fraction of the
executions in E , every correct process terminates, and every terminating process delivers the ru-
mors of all correct processes. This implies that, with high probability, the algorithm has to send
Ω(n log(1/ε)) messages in each one of these executions, which means that the algorithm A has
to send Ω(n log(1/ε)) messages with high probability.

2Theorem 1

C Proofs omitted from Section 6.2
Lemma 14. With probability at least (1− 1/nc): (a) There are at most 24c logn coordinators;
and (b) There are at least c logn correct coordinators.

Proof. Let Xi be a 0/1 variable indicating whether a process elects itself a coordinator, and
recall that at least n/3 processes are correct. Since the adversary is oblivious, Xi is independent
of whether process pi is correct.

Since PrXi = 12c logn/n, we conclude that the expected number of coordinators is
12c logn, and the expected number of correct coordinators is at least 4c logn. The result fol-
lows by a straightforward Chernoff bound. 2Lemma 5

Lemma 15. With probability at least (1 − 1/nc): for every pair of non-failed coordinators pi,
pj , there exists some intermediary pk such that both pi and pj are neighbors of pk.

Proof. Fix some non-failed coordinators pi and pj . Both pi and pj sendΘ(
√
n logn) intermediary-

election messages. Let I be the set of intermediaries chosen by pi. The probability that pj does
not choose a correct intermediary in the set I is at most:(

1− |I|
3n

)6c
√
n logn

≤
(
1− 2c

√
n logn

n

)6c
√
n logn

≤
(
1

2

)12c2 log2 n

≤
(
1

n

)c+2

This implies that pi and pj have a shared intermediary with with probability at least 1− 1/nc+2.
Taking a union bound over all

(
n
2

)
pairs of pi and pj , the probability that there exists some non-

failed pi and pj without a shared intermediary is no greater than 1/nc. 2Lemma 6

Lemma 16. There exists some ` ∈ {1, . . . , c} such that at least n/18 processes are good for `,
with probability at least (1− 2/nc).

Proof. We first argue that for each ` ∈ {1, . . . , c}, there is a probability at least 1/n that at
least n/24 processes are good relays for `. Recall that Lemma 5 states that with probability
(1 − 1/nc), there are at least c logn correct coordinators, and at most 24c logn coordinators in
total. We assume for the remainder of the proof that this condition holds.

Fix some ` ∈ {1, . . . , c}. We first calculate the probability that a correct process is a good
relay for `. That is, we calculate the probability that a correct process is sent exactly one relay-
election-` message by a good coordinator, and no relay-election-` messages by the at most
24c logn− c logn faulty coordinators. (Recall that each coordinator sends n/(24c logn) relay-
election-` messages.) That is, assuming Lemma 5 holds, the probability of being a good relay for
some ` is at least: (

1− 1

n

)n/24−1(
1− 1

n

)23n/24

≥ 1

e

Since there are n/3 correct processes, we conclude that, in expectation, there are n/3e correct
processes that are good relays for `. By a straightforward Chernoff bound, there are at least n/18
processes that are good for `, with probability (1− 1/n).

Thus, the probability that Lemma 5 holds and that for some ` there are at least n/18 relays
that are good for ` is at least (1− 2/nc). 2Lemma 7

Lemma 17. With probability at least (1 − 4/nc): (a) By the end of the collection phase, every
process has succeeded. (b) By the end of the dissemination phase, every process has succeeded.
(c) When the protocol terminates, every rumor from a correct process has been received by every
correct process.

Proof. Lemma 7 states that with probability at least (1−2/nc), there is some ` for which there are
at least n/18 relays that are good for `. Lemma 6 states that with probability at least (1− 1/nc),
every pair of non-failed coordinators shares an intermediary. Assume these events occur (with
probability (1− 3/nc)), and fix ` for the remainder of this proof.

During the dissemination phase, it is easy to see that a process is successful as soon as it
chooses a relay that is good for `. The same is true of the collection phase: every message received

by a relay that is good for ` is forwarded to a correct coordinator, and via a correct intermediary,
to every other non-failed coordinator, leading to a response. Thus, during both the collection and
dissemination phases, when a process chooses a relay that is good for ` in some iteration, then it
succeeds by the end of that iteration.

In each iteration, each process that has not succeeded has probability 1/18 of choosing a
relay that is good for `. Over 45(c+ 1) log n rounds, a process chooses a relay that is good for `
with probability at least (1 − 1/nc+1). Thus, taking a union bound over n processes, and when
combined with the probabilities from Lemmas 7 and 6, we conclude that every process succeeds
with probability at least (1− 4/nc).

For the final point, notice that since every non-failed process succeeds during the collection
phase, we can conclude that every non-failed coordinator has received the rumor of every correct
process. Thus in the first step of the dissemination phase, every non-failed rumor is sent to every
relay, in particular, to every relay that is good for `. From this it is easy to see that since every
correct process succeeds during the dissemination phase, every correct process receives every
“correct” rumor. 2Lemma 8

Lemma 18. With probability at least (1− 5/nc), the collection and dissemination phases have
message complexity O(n).

Proof. Lemma 5 states that with probability at least (1−1/nc) there are at least c logn coordina-
tors and at most 12c logn coordinators. Lemma 7 states that with probability at least (1−2/nc),
there is some ` for which there are at least n/18 relays that are good for `. Lemma 6 states that
with probability at least (1−1/nc), every pair of non-failed coordinators shares an intermediary.
Assume these events occur (with probability (1−4/nc)), and fix ` for the remainder of this proof.

We first consider the message complexity of the collection phase. We divide the message
complexity into two parts: the messages sent between coordinators and intermediaries, and the
remaining messages.

Since there are Θ(logn) coordinators (by Lemma 5), each of which selects Θ(
√
n logn)

intermediaries, there are at mostO(
√
n log2 n) intermediaries; we conclude that in each iteration

of the collection phase, coordinators and intermediaries send O(
√
n log2 n) messages.

We also observe that each process that has not yet succeeded induces at most O(c) messages
in each iteration: the message it sends to the relay, the (at most) c messages its relay sends to its
parents, the (at most) c responses it receives, and the response the relay sends to the process. It
thus remains to bound the number of times an unsuccessful process participates in an iteration.

Specifically, a process succeeds in an iteration as soon as it finds a relay that is good for `.
Each such attempt is independent. Thus the process is analogous to flipping a biased coin, with
probability 1/18 of getting a heads (as per Lemma 7), repeatedly until heads has appeared n
times. In expectation, this requires 18n attempts. Thus, the probability that it takes more than
36n+ c logn ≤ 45(c+1) logn attempts is at most 1/nc. The same argument holds for dissem-
ination.

That is, when including the probability that earlier lemmas do not hold, with probability at
least (1− 5/nc), the message complexity of collection and dissemination is O(n). 2Lemma 9

