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Abstract. Shape Optimization problems governed by partial differential equations re-
sult from many applications in computational fluid dynamics; they involve the repetitive
evaluation of outputs expressed as functionals of the field variables and usually imply big
computational efforts. For this reason looking for computational efficiency in numerical
methods and algorithms is mandatory. The interplay between scientific computing and
new reduction strategies is crucial in applications of great complexity. In order to achieve
an efficient model order reduction, reduced basis methods built upon a high-fidelity “truth”
finite element approximation – and combined with suitable geometrical parametrization
techniques for efficient shape description – can be introduced, thus decreasing both the
computational effort and the geometrical complexity.

Starting from an excursus on classical approaches – such as local boundary variation
and shape boundary parametrization – we focus on more efficient parametrization tech-
niques which are well suited for a combination with a reduced basis approach, such as the
one based on affine mapping (even automatic), nonaffine mapping (coupled with a suitable
empirical interpolation technique for better numerical performances) and free-form defor-
mations. We thus describe (and compare) the principal features of these parametrization
techniques by showing some applications dealing with shape optimization of parametrized
configurations in viscous flows, and discussing computational advantages and efficiency
obtained by geometrical and computational model order reduction.

‡This work has been supported in part by the Swiss National Science Foundation (Project 200021-
122136). We are grateful to the family of Prof. F. Saleri for granting the use of the MLife library as a
basis for FE simulations. We acknowledge Prof. A.T. Patera and his group for the rbMIT software used
for RB computations. We thank Prof. A. Quarteroni and T. Lassila for their feedbacks and C. Gunther
for data provided.
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1 INTRODUCTION

In many engineering contexts, the main focus when investigating fluid flow processes is
to control and optimize by influencing some parameters such that some outputs of interest
are minimized or maximized. The reduction of drag forces acting on airfoils or the wall
shear stress minimization in a cardiovascular bypass anastomosis are just two examples
from very different fields, which can be solved using the same tools and strategies.1,2,3

Optimal flow control problems can thus be formulated as the minimization of a given
cost functional (or output) controlling some physical parameters (such as model coeffi-
cients, source terms or boundary values) or, alternatively, some geometrical quantities.
We refer to this second case such as shape optimization problems.4 Such problems in-
volve the study of a system of partial differential equations (PDEs) and the evaluation
of an output depending on the field variables, combining flow simulation, mathematical
optimization and shape variation.5 Since optimization procedures require repetitive eval-
uations of the output and the flow field, computational costs can become unacceptably
high and strategies to reduce numerical efforts and model order are being developed.
We thus intend to focus on different shape parametrization techniques in order to manage
with the geometrical complexity. Moreover, we are interested in using reduced basis (RB)
methods, since they provide a great computational reduction in a multi-query context like
shape optimization. To do this, we need to write our problem on a reference domain, and
to freeze geometric variations in the coefficients of the equation by using a suitable para-
metric mapping. Since classical approaches such as local boundary variation and shape
boundary parametrization are not well suited for being used together with RB methods,
we need to introduce different and more advanced shape parametrization strategies.

Depending on the role played by design variables (or input parameters) we have dif-
ferent shape parametrization techniques. When input parameters represent geometrical
properties (such as lengths, angles, diameters) we may divide the flow domain in different
subdomains and build affine or nonaffine mappings on single subdomains. On the other
hand, if input parameters are introduced as coefficients of a shape basis vector, they can
represent a set of control points describing directly a shape boundary or giving some free-
form perturbations of the metric of the whole domain. In both cases the parametrization
involves naturally some given shape families, such as Bezier curves or B-splines; neverthe-
less, within the second approach (the so-called free-form deformation techniques), design
parameters are not directly connected neither to geometrical properties nor to the shape
boundary, and parametric mappings turn out to be flexible even if very low-dimensional.

The paper is organized as follows: after a short summary of the most important features
related with shape optimization by flow control (Section 2), we will review in Section 3 two
relevant parametrization techniques which historically have been proposed. Basic aspects
of reduced basis methods are presented in Section 4, while new geometrical parametriza-
tion approaches – well suited to RB methods - are introduced in Section 5. Finally, some
applications will be presented in Section 6 and conclusions follow in Section 7.
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2 SHAPE OPTIMIZATION BY FLOW CONTROL

The goal of a shape optimization problem by flow control is minimizing a given cost
functional by finding the optimal shape of the domain where the PDEs problem is defined.
In an abstract setting depending (for the sake of simplicity) on flow scalar variables, given
a set of admissible shapes Oad, we thus aim in finding the optimal shape Ω̂o ∈ Oad s.t.

Ω̂o = arg min
Ωo∈Oad

J (Ωo, y(Ωo)) with a(y(Ωo), φ) = F (φ) ∀φ ∈ V, (1)

where y = y(Ωo) ∈ V is the flow (state) variable, V an Hilbert space, a(·, ·) a bilinear form
on V × V and F (·) a linear form on V . Hence, a shape optimization framework consists
of three main stages: the flow computation, the optimization algorithm and a suitable
approach for representing and deforming efficiently the shape of underlying geometry.
Such a problem usually involves high computational costs since (i) iterative procedures
for optimization require the evaluation of field y(Ωo) and cost functional J (Ωo, y(Ωo))
for many possible configurations; (ii) PDEs can be expensive to solve (great number of
unknowns, nonlinearities, fine physical details to be captured by very fine meshes) and
(iii) discretization assembling procedures are expensive when geometry keeps changing.

For these reasons, both geometrical and computational reduction are mandatory; the
use of RB methods, together with suitable shape parametrizations, allows to get these
reductions. We target this work on geometrical reduction through efficient shape parame-
trizations; since first options historically introduced are not well indicated also for a more
effective computational reduction, more general ad hoc procedures have been developed.

2.1 An abstract setting for shape optimization

For the analysis of the problem (1) we can use the framework based on the Lagrangian
functional,5,6 which treats a shape optimization problem as a constrained minimization
problem. We can define the Lagrangian functional associated to (1) as

L(Ω, y, p) := J (Ω, y) + F (p)− a(y, p) (2)

where p ∈ V is the Lagrangian multiplier. The optimum (Ω̂, ŷ(Ω̂), p̂(Ω̂)) ∈ Oad × V × V ,
whether exists, is a stationary point of the Lagrangian functional L(Ω, y, p) and fullfills7

the following (first order) optimality conditionsa:

∂pL(Ω, y(Ω), p(Ω))[φ] = 0 ∀ φ ∈ V state equation
∂yL(Ω, y(Ω), p(Ω))[ψ] = 0 ∀ ψ ∈ V adjoint equation
∂ΩL(Ω, y(Ω), p(Ω))[V] = 0 ∀ V ∈ S optimality condition.

(3)

The second equation of the system (3) is the adjoint equation (for which p(Ω) ∈ V is
defined as the adjoint variable) whose weak form reads as follows:

aThis abstract formulation is valid if V does not depend on Ωo; the same result stands also for problems
in which V = V (Ωo) introducing suitable Lagrange multipliers for treating Dirichlet boundary conditions.
See the following footnote b for the definition of the space S and of speed fields V.
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find p(Ω) ∈ V (Ω) : a′(y(Ω))(p(Ω), ψ) = ∂yJ (Ω, y(Ω))[ψ] ∀ψ ∈ V (Ω). (4)

Finally, by differentiating the Lagrangian functional with respect to the shapeb, we obtain

∂ΩL(Ω, y(Ω), p(Ω))[V] = dJ̃ (Ω; V),

from which it is possible to extract the gradient of the cost functional, needed e.g. for
gradient-based numerical optimization procedures.

2.2 Numerical strategies for shape optimization

From a numerical point of view, discretization techniques (e.g. finite elements or fi-
nite volumes) are employed for approximating the solution of state and adjoint equations
in (3), together with a numerical optimization algorithm. Gradient based procedures,
quasi Newton methods (like sequential quadratic programming) or other nonlinear pro-
gramming techniques can be used for this goal. In order to manage with shape deforma-
tions and numerical computations of shape sensitivities and/or derivatives, some shape
parametrization has to be introduced; in principle, any method which realizes a geome-
try representation is applicable (e.g. simply grid locations). However, the greater is the
number of design variables, the higher will be the required computational costs: thus,
a trade-off between low-dimensionality and flexibility is a key issue in defining a shape
parametrization. Let us introduce a parameter vectors µ = (µ1, . . . , µP ) ∈ D ⊂ RP and
a generical parametrized “original” configuration of the domain Ωo(µ); depending on the
role played by parameters µ1, . . . , µP , we will have different parametrization techniques; in
each case, problem (1) is translated into the following parametrized optimization problem:

find µ̂ ∈ D = arg min
µ∈D

J(µ, y(µ)) with a(y(µ), φ;µ) = F (φ;µ) ∀φ ∈ V, (5)

where J(µ, ·), a(·, ·;µ) and F (·;µ) are the corresponding parametrized cost functional,
bilinear and linear forms, respectively (see Section 5.3). Thus, an optimization result
may depend on the order/complexity of parametrization, on the number of design vari-
ables and their relationship with geometry, and on shape deformations by parameters
variation. Moreover, we have different behaviors in terms of geometry smoothness, local
shape control and grid deformation. Different parametrization approaches will be com-
pared with respect to these features in Section 6. Let us now briefly discuss some classical
parametrization techniques deeply used in shape optimization.

bThe speed method8 is a general technique for setting an equivalence between domain transformations
and speed fields. Given a shape Ωo ⊂ R2 to be optimized by acting on its boundary Γo

c ⊆ ∂Ωo, we
can introduce a speed field V : [0, τ ] × R2 → R2 such that V(·,x) ∈ C0,1([0, τ ]; R2) ∀x ∈ R2 and that
V(t, ·) = 0 on ∂Ω \ Γo

c for all t ∈ [0, τ ]; S is the space of speeds satisfying these properties. Under the
action of the speed V, the domain Ωo can be mapped into a new perturbed domain Ωt

o(V) := TV(Ωo; t),
for t ≥ 0, where x → TV(x; t) ≡ xt(t) is given as the solution of ẋt(t) = V(t,xt(t)), t ∈ [0, τ ], with
xt(0) = x. Thus, considering J̃ (Ωo) = J (Ωo, y(Ωo)), its shape derivative, at Ωo in direction V, is given
by dJ̃ (Ωo; V) = j′(0), where j(t) = J̃ (Ωt

o); furthermore, if the map V 7→ dJ̃ (Ωo; V) is linear and
continuous, it is denoted ∇J̃ (Ωo) and referred to as the (shape) gradient of J̃ .
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3 CLASSICAL PARAMETRIZATION APPROACHES

Since shape representation is highly problem-dependent, various methods have been
proposed; following Samareh,9 we distinguish among discrete approaches, polynomial or
spline parametrizations, domain element approaches and free-form deformationsc. After
a brief historical survey, we focus on suitable techniques within RB framework.

3.1 Local boundary variation by mesh nodes displacement

One of the most common strategy for shape deformation uses the coordinates of the
boundary points as design variables. In this case, during the optimization steps, the shape
is deformed through a local boundary variation (LBV),7 by defining a deformation field

acting on the boundary nodes. In this way, starting from an initial shape Ω
(0)
o , the new

shape Ω
(k+1)
o , k > 0 is obtained by Ω

(k)
o through the transformation TV(k)(·) depending on

the speed vector V(k) related to the gradient ∇J (Ω
(k)
o ); the simplest transformation is an

identity perturbation TV(·; t) = (I + tV)(·), leading to the following updating relation:

Ω(k+1)
o = Ω(k)

o + τ (k)V(k), k > 0.

In this way, the whole computational mesh is deformed, and no remeshing is a priori
requested. For complex shapes or flows, we need very fine meshes, leading to very large
number of design variables and thus to high computational costs. A local shape control
is allowed, even if geometrical smoothness is not assured; moreover, also the selection of
step-size τ (k) may be very difficult, impacting deeply on the stability of the algorithm.

3.2 Analytical shape boundary parametrization

Another classical approach largely adopted in shape optimization is based on a polyno-
mial (or spline) shape parametrization (PSP), which helps in reducing sensibly the number
of design variables. In this case, shape is described by a control point set through which
we combine some basis shapes chosen in a given family, such as Bezier curves, B-splines
or Nurbs.6,10,11 Within this approach, shape is described by a curve φ : [0, 1]→ R2 s.t.

s→ φ(s) =
P∑

i=1

µiϕ
n
i (s),

where P is the number of control points {µi = (µ1
i , µ

2
i )}Pi=1 and the {ϕni (s)}Pi=1 are e.g.

Bernstein polynomials (for Bezier representation of simple curves) of degree n or B-splined

basis functions of degree n. In the first case ϕni (s) =
(
n
i

)
si(1−s)n−i, and control points are

strictly related to the curve position, since the curve is contained into the convex hull of the
Bezier control polygon. Within a polynomial parametrization, a descent algorithm can be
applied directly to the control points µi, giving µ

(k+1)
i = µ

(k)
i −τ k∂J /∂µi(µ(k)

1 , . . . ,µ
(k)
P ),

cMany other approaches - such as CAD based parametrizations - are also possible.
dInstead of using high-degree Bezier curves for the representation of more complex geometries, we can

use composite (low-degree) Bezier curves, referred to as B-splines.
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i = 1, . . . , P , where the sensitivities {∂J /∂µi}Pi=1 can be easily computed6 from the ex-
pression of the shape gradient ∇J (Ω). With respect to LBV, PSP allows to reduce the
geometrical complexity by some orders of magnitude; nevertheless, a large number of
parameters may be required to represent complex shapes, i.e. the representation com-
plexity is directly related with design complexity. Moreover, a remeshing is requested at
each iteration, making this technique particularly expensive for large and complex flow
simulations, where FE assembling and storage can lead to very high computational costs.

4 COMPUTATIONAL REDUCTION BY REDUCED BASIS METHODS

Our approach to shape optimization takes advantage of reduced basis (RB) methods for
rapid and reliable prediction of engineering outputs associated with parametric PDEs.12

This method is premised upon a classical finite element (FE) method “truth” approxima-
tion space XN of (typically very large) dimension N and is based on the use of “snapshot”
FE solutions of the PDEs (for certain values of the parameters) as global approximation
basis functions previously computed and stored.
The RB framework requires a parameter independent domain Ω as the snapshots we use
for building RB spaces have to be defined relative to the same spatial configuration. We
thus consider Ω as reference domain related to the parameter-dependent “original” do-
main of interest Ωo(µ) through a parametric mapping T (·;µ), s.t. Ωo(µ) = T (Ω;µ). The
standard Galerkin FE approximation of the state problem in (5) is to find yN (µ) ∈ XN
s.t. a(yN (µ), w;µ) = F (w;µ), ∀w ∈ XN . The RB method gives an efficient way to
compute an approximation yNN (µ) of yN (µ) by using a Galerkin projection on a reduced
subspace made up of well-chosen FE solutions, i.e. corresponding to a specific choice SN =
{µ1, . . . ,µN} of parameter values. Indicating by XNN = span{yN (µn), n = 1, . . . , N}, RB
formulation is to find yNN ∈ XNN s.t. a(yNN , w;µ) = F (w;µ), ∀w ∈ XNN .

Thanks to the (very) reduced dimension N � N of linear systems obtained from
RB approximation, we can provide both reliable results and rapid response12 in the real-
time and multi-query contexts. Reliability is ensured by rigorous a posteriori estimations
for the error in the RB approximation w.r.t. truth FE discretization; rapid response is
ensured by an Offline–Online computational strategy that minimizes marginal cost and a
rapidly convergent global RB space assembling. To achieve this second goal, we need to
rely on the assumption of affine parametric dependence in a(·, ·;µ) and F (·;µ), given by:

a(y, w;µ) =

Qa∑

q=1

Θq
a(µ)aq(y, w), F (w;µ) =

QF∑

q=1

Θq
F (µ)F q(µ). (6)

Hence, in an expensive Offline stage we prepare a very small RB “database”, while in
the Online stage, for each new µ ∈ D, we rapidly evaluate both the field and the output
(with error bounds) whose computational complexity is independent of FE dimension N .
This is essential in a parametrized optimization problem, where a great number of such
evaluations are required. In cases where there is a nonaffine parametric dependence, an
affine approximation is introduced through an empirical interpolation method (EIM).14

6



Gianluigi Rozza, Andrea Manzoni

5 GEOMETRICAL REDUCTION BY SHAPE PARAMETRIZATION

Classical techniques introduced in Section 3 are not well suited for the use within RB
framework, since a parametric mapping between a reference domain (where PDEs prob-
lems have to be solved) and the original domain Ωo(µ) is needed, rather than a boundary
representation. At most, it may be possible to obtain such a mapping by using a polyno-
mial parametrization, even if of great complexity and often computationally unaffordable.
We thus have to introduce alternative shape parametrization techniques, leading natu-
rally to the definition of a parametric mapping T (·;µ); two alternative approaches are
possible, according the role of the design variables, which can parametrize (i) geometrical
properties or (ii) shape deformations. In the first case, a domain decomposition is leading
to the definition of local mappings on different subdomains; in the second case, a global
mapping can be built by using the so-called free-form deformation techniques.

5.1 Affine and nonaffine mappings built “by hand”

Shape parametrization based on geometrical properties is the simplest option we can
consider. In general, we need to define a domain decomposition and a different mapping on
each subdomain, since a unique mapping is not sufficient to describe the entire geometry.
Each mapping can be either affine or nonaffine; moreover, they can be built “by hand” or
automatically, by using for example the software rbMIT.13 Let us consider in this section
the former, while the latter will be discussed in Section 5.2. In order to build a parametric
mapping related to geometrical properties, we introduce a domain decomposition of Ωo(µ),

Ωo(µ) =

Kdom⋃

k=1

Ωk
o(µ), (7)

consisting of mutually nonoverlapping open subdomains Ωk
o(µ), s.t. Ωk

o(µ) ∩ Ωk′
o (µ) = ∅,

1 ≤ k < k′ ≤ Kdom. If related to geometrical properties used as input parameters (e.g.
lengths, thicknesses, diameters or angles) the definition of parametric mappings can be
done in a quite intuitive fashione. Our reference domain is then simply defined for a
reference parameter value µref ∈ D as Ω ≡ Ωo(µref). In the following we will identify
Ωk = Ωk

o(µref), 1 ≤ k ≤ Kdom, and denote the “Kdom” domain decomposition of Ω as
our “RB triangulation”; it will play an important role in the generation of our affine
representation (6). Both in affine and nonaffine cases, original and reference subdomains
must be linked via a mapping T (·;µ) : Ωk → Ωk

o(µ), 1 ≤ k ≤ Kdom, such that:

Ωk
o(µ) = T k(Ωk;µ), 1 ≤ k ≤ Kdom; (8)

these mappings must be individually bijective and collectively continuous, which means
they have to fulfill the following interface condition:

T k(x;µ) = T k
′
(x;µ), ∀x ∈ Ωk ∩ Ωk′

, 1 ≤ k < k′ ≤ Kdom. (9)

eThese regions can represent different material properties, but they can also be used for algorithmic
purposes to ensure well-behaved mappings.
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In the affine case, for the kth subdomain (1 ≤ k ≤ Kdom) the concrete affine transfor-
mation is then given, for any µ ∈ D and for any x ∈ Ωk, by

T aff,k
i (x,µ) = C aff,k

i (µ) +
d∑

j=1

G aff,k
ij (µ)xj, 1 ≤ i ≤ d, (10)

for given translation vectors C aff,k : D → Rd and linear transformation matrices G aff,k :
D → Rd×d. The linear transformation matrices can effect rotation, scaling and/or shear
and have to be invertible. The associated Jacobians can be defined as J aff,k(µ) =
| det (G aff,k(µ))|, 1 ≤ k ≤ Kdom; for invertible mappings they are strictly positive.
If the transformation does not take the form (10), transformation is said to be nonaffine.
In this case, for the kth subdomain (1 ≤ k ≤ Kdom), for any µ ∈ D and for any x ∈ Ωk,
xo ∈ Ωk

o(µ), the nonaffine transformation is given by a generic expression

xo i = T naff,k
i (x,µ), 1 ≤ i ≤ d, (11)

and the Jacobians J naff,k(x,µ) = | det (Gnaff,k(x,µ))|, 1 ≤ k ≤ Kdom, are strictly positive,
being Gnaff,k : Ωk × D → Rd×d the Jacobian matrices of the mappings T naff,k(·,µ). The
interface condition (9) allows us to interprete the set of local mappings as a global bijective
piecewise affine transformation T (·;µ) : Ω→ Ωo(µ), given for any µ ∈ D by

T (x,µ) = T aff∨ naff,k(x;µ), k = min
k′∈{1,...,Kdom}|x∈Ωk′

k′. (12)

5.2 Automatic affine mappings by rbMIT

The software rbMIT13 allows to build efficient affine mappings in an automatic fashion
based on a domain decomposition made up by some “building blocks” introduced in this
section; for clarity, we concentrate on a single subdomainf.

5.2.1 Automatic affine mappings for a single subdomain

Since in the two-dimensional case (d = 2) straight lines are mapped into straight lines
and parallelism is preserved, a parallelogramm is mapped into a parallelogram and hence a
triangle into a triangle; moreover, affine transformations map ellipses into ellipses. These
features will be exploited for the development of an automatic domain decomposition
technique suitable for the RB context. Thus, affine mappings contains d(d + 1) = 6
degrees of freedom (the mapping coefficients), and it is therefore sufficient, for any given
µ ∈ D, to consider the relationship between three non-colinear pre-image points in Ω,
(z1, z2, z3) and three parametrized image nodes in Ωo(µ), (z1

o(µ), z2
o(µ), z3

o(µ)). Note
that every point consists of two components (zi1, z

i
2), 1 ≤ i ≤ 3, resp. (zio 1, z

i
o 2), 1 ≤ i ≤ 3,

and therefore the application of (10) to these points gives a system of six independent
equations to determineg the six mapping coefficients:

fWe shall suppress the subdomain superscript for clarity of exposition; the matrices Caff(µ) ∈ Rd and
Gaff(µ) ∈ Rd×d in (10) are now called “mapping coefficients”.

gThe assumption that the affine transformation is bijective thereby ensures that image nodes are per-
force also non-colinear (if pre-image nodes are non-colinear) and hence equations are linear independent.
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zmo i(µ) = Caff
i (µ) +

2∑

j=1

Gaff
ij (µ)zmj , 1 ≤ i ≤ 2, 1 ≤ m ≤ 3; (13)

Our RB triangulation shall be built on (standard) triangles, elliptical triangles and
general “curvy” triangles, which are discussed in detail below and are the building blocks
in the rbMIT software13 used for the RB computations in this work.

5.2.2 Standard Triangles

In the case of a standard triangle subdomain the three vertices of the triangle in the
reference domain shall serve as pre-image nodes while the three vertices of the triangle
in the actual (µ-dependent) domain shall serve as image nodes. In this case, our three
points uniquely define not only the transformation but also the reference domain and
parametrized domains.12 We can then readily establish the system of six linear equations
to determine the six unknown mapping coefficients. In this way, we can construct an
affine transformation from any reference triangle in R2 onto any desired triangle in R2.

5.2.3 Elliptical and Curvy Triangles

The class of elliptical triangles covers a much greater range of possible geometries and
their formulation is also necessary for the more general case dealing with curvy triangles.
We can distinguish two different kinds of elliptic triangles: “inwards” and “outwards”
triangles. Both types are depicted in Figure 1. In both cases, the elliptical triangle Ωo(µ)
is defined by the three vertices z1

o(µ), z2
o(µ), z3

o(µ), the two straight lines z1
o(µ)z2

o(µ)

and z1
o(µ)z3

o(µ) as well as the elliptical arc z2
o(µ)z3

o(µ)
arc

.

z1
o(µ)

z2
o(µ)

z3
o(µ)

Ωo(µ)

θ31(µ)θ12(µ)

θ31(µ)

z1
o(µ)

z2
o(µ)

z3
o(µ)

Ωo(µ)

θ31(µ)

θ12(µ)

θ31(µ)

(a)

z1
o(µ)

z2
o(µ)

z3
o(µ)

Ωo(µ)

θ31(µ)θ12(µ)

θ31(µ)

z1
o(µ)

z2
o(µ)

z3
o(µ)

Ωo(µ)

θ31(µ)

θ12(µ)

θ31(µ)

(b)

O(µ) + Qrot(µ)S(µ)
(

cos t
sin t

)

ρ2(µ
)

ρ1(µ
)

φ(µ)O(µ)

xo2

xo1

(c)

Figure 1: (a) “Inwards” elliptical triangle and (b) “outwards” elliptical triangle; (c) definition of a point
on a prescribed parametrized ellipse.

We shall now precise the definition and description of the elliptical arc and explain the
constraints that must be met by the location of the third point z1

o(µ) to ensure “proper”
triangles and a continuous and well-defined global mapping in the multidomain context.
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First, the description of the elliptical arc shall be derived from the definition of a para-
metrized ellipse (see Figure 1 (c)). The ellipse is described implicitly by

(xo −O(µ))TQrot(µ)S−2(µ)Qrot(µ)T (xo −O(µ)) = 1. (14)

A particular point on this ellipse is then given by

xo ≡
(
xo1
xo2

)
= O(µ) +Qrot(µ)S(µ)

(
cos t
sin t

)
(15)

for given t ∈ R. As we can see in Figure 1, O(µ) : D → R2 is the center of the ellipse,
ρ1(µ) : D → R+ and ρ2 : D → R+ define the length of the semi-axes of the ellipse and
φ(µ) : D → R is the angle of inclination. With these quantities, the scaling matrix S(µ)
and the rotation matrix Qrot(µ) can be defined:

S(µ) ≡
(
ρ1(µ) 0

0 ρ2(µ)

)
, Qrot(µ) =

(
cosφ(µ) − sinφ(µ)
sinφ(µ) cosφ(µ)

)
.

The description of the elliptical arc with these means is then as follows:

z2
o(µ)z3

o(µ)
arc

=

{
O(µ) +Qrot(µ)S(µ)

(
cos t
sin t

) ∣∣∣∣ t2 ≤ t ≤ t3

}
. (16)

with t2 ∈ R and t3 ∈ R chosen such that the points z2
o(µ) and z3

o(µ) are given as the
endpoints of the elliptical arc for t = t2 and t = t3:

zmo (µ) = O(µ) +Qrot(µ)S(µ)

(
cos tm
sin tm

)
, m = 2, 3. (17)

In addition, we have to make sure that 0 ≤ t3− t2 < π. It remains to specify the location
of the third point z1

o(µ). For elliptical triangles, this location is not arbitrary but has
to be chosen in a way that ensures that the affine transformation generates the desired
elliptical arc (16). First, this ensures a continuous global mapping; second, to obtain
well-defined elliptical triangles (and thus a well defined domain), several internal angle
conditions have to be met by the choice for z1

o(µ): 0 < Θ∗ < π, ∀Θ∗ ∈ {Θ12,Θ23,Θ31}.
The first requirement can be fulfilled by the expression of the three corner points as

zmo (µ) = O(µ) + ωmQrot(µ)S(µ)

(
cos tm
sin tm

)
, 1 ≤ m ≤ 3, (18)

for given ω1 = ω ∈ R, ω2 = ω3 = 1 and t1 ∈ [t2, t3]. Pre-image points are thus given as

zmo (µref) = O(µref) + ωmQrot(µref)S(µref)

(
cos tm
sin tm

)
, 1 ≤ m ≤ 3. (19)

From these representations we can identify our affine mapping as

zmo (µ) = Caff(µ) + Gaff(µ)zm = (O(µ)−Qrot(µ)S(µ)S(µref)
−1Qrot(µref)

TO(µref))

+ (Qrot(µ)S(µ)S(µref)
−1Qrot(µref)

T )zm.

10
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z2
o(µ)

n2,3(µ)

n2(µ)

n3(µ) Rout(µ)

Rin(µ)

z3
o(µ)

z2,3
o (µ)

(xo −O(µ))T Qrot(µ)S−2(µ)
Qrot(µ)T (xo −O(µ)) = 1

Figure 2: Regions in which z1
o(µ) must reside in the inwards (Rin(µ)) and the outwards case (Rout(µ)).

The second requirement - the internal angle conditions - is illustrated in Figure 2. In the
inwards case, a necessary and sufficient condition to ensure the conditions 0 < Θ∗ < π,
∀Θ∗ ∈ {Θ12,Θ23,Θ31} is given for an inwards elliptical triangle by z1

o(µ) ∈ Rin(µ), where

Rin(µ) = {z1
o(µ) ∈ R2|(z1

o(µ)− z2
o(µ))Tn2(µ) < 0,

(z1
o(µ)− z3

o(µ)))Tn3(µ) < 0, (z1
o(µ)− z2,3

o (µ))Tn2,3(µ) < 0}, (20)

and for the outwards elliptical triangle by z1
o(µ) ∈ Rout(µ), where

Rout(µ) = {z1
o(µ) ∈ R2|(z1

o(µ)− z2
o(µ))Tn2(µ) > 0, (z1

o(µ)− z3
o(µ))Tn3(µ) > 0}. (21)

Here n2(µ) and n3(µ) are the outwards-facing normals to the ellipse at z2(µ) and z3(µ)
respectively, z2,3

o (µ) = 1
2
(z2

o(µ) + z3
o(µ)) and n2,3(µ) is the “outwards-facing” normal to

the line segment z2
o(µ)z3

o(µ) at z2,3
o (µ). An important feature of the elliptical triangles is

that they are consistent under refinement: so, if we split an elliptical triangle for which the
internal angle conditions (20) and (21) are fulfilled, the resulting two elliptical triangles
also satisfy the internal angle conditions. To enlarge the possible range of geometries even
more, the elliptical triangles are extended to “curvy” triangles. This is done by replacing
(cos t, sin t)T in (15) with a general parametrization (g1(t), g2(t))T .

5.2.4 Piecewise-Affine Mappings for Multiple Subdomains

To treat more complex geometries, it is necessary to allow our domain to be built of
several (standard, elliptical or curvy) triangles. We are then not restricted to a single
affine mapping, but we deal with a piecewise affine mapping based on this domain de-
composition. We can thus consider geometrical domains for which the boundary can be
represented either by straight edges or by elliptical triangles as presented in Section 6.

The multi-domain mapping process is then performed in three steps. First, the RB
triangulation is generated on the reference domain Ω together with the associated reference
regions. In the second step, the necessary parameter-dependent affine mappings for each
subdomain are constructed, as described in the previous section. In the last step we have
to translate the parametric mappings obtained for each subdomain into PDE coefficients.

11
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5.3 Parametrized formulation of PDEs problems

When the geometric map (10) is built, it is possible to write the PDEs problem under
the affine form (6). This is straightforward for an affine geometrical mapping, while in the
case of a nonaffine mapping we need to rely on the empirical interpolation method (EIM)
– which is an interpolation method for parametric functions based on adaptively chosen
interpolation points and global shape functions14 – in order to approximate the nonaffine
components of the transformation tensors. Let us consider the affine mapping case and
an abstract problem like the one in (5), with a parameter-dependent domain Ωo(µ); this
problem can be written in general form as: given µ ∈ D, evaluate yo(µ) ∈ Xo(µ) s.t.

ao(yo(µ), φ;µ) = fo(ψ), ∀ψ ∈ Xo(µ) ⊆ H1(Ωo(µ)).

A sufficient condition on the continuous and coercive bilinear form ao(·, ·;µ) : Xo(µ) ×
Xo(µ)→ R that ensures an affine expansion is fulfilled if we have

ao(w, v;µ) =

Kdom∑

k=1

∫

Ωk
o(µ)

[
∂w
∂xo1

∂w
∂xo2

w
]
Ko,k(µ)




∂v
∂xo1
∂v
∂xo2

v


 . (22)

The matrices Ko,k : D → R3×3, 1 ≤ k ≤ Kdom, are in the symmetric case symmetric
positive definite matrices. Similarly, we require that fo : Xo(µ)→ R is written as

fo(v) =

Kdom∑

k=1

∫

Ωk
o(µ)

Fo,k(µ)v, (23)

with Fo,k : D → R, 1 ≤ k ≤ Kdom. Identifying y(µ) = yo(µ)◦T aff(·;µ), and recalling that

∂/∂xoi =
∂xj

∂xoi

∂
∂xj

= (Gaff,k(µ))−1
1i ∂/∂x1 + (Gaff,k(µ))−1

2i ∂/∂x2, for i = 1, 2, and dΩk
o(µ) =

Jaff,k(µ)dΩ, it then follows that the transformed bilinear form a can be expressed as

a(w, v;µ) =

Kdom∑

k=1

∫

Ωk

[
∂w
∂x1

∂w
∂x2

w
]
Kk(µ)




∂v
∂x1
∂v
∂x2

v


 , (24)

where the Kk : D → R3×3 are given by Kk(µ) = Jaff,k(µ)Gk(µ)Ko,k(µ)(Gk(µ))T , for
1 ≤ k ≤ Kdom; moreover, the Gk : D → R3×3 are given by

Gk(µ) =

(
(Gaff,k(µ))−1 0

0 1

)
, 1 ≤ k ≤ Kdom. (25)

The transformed linear form can be expressed similarly as

f(v) =

Kdom∑

k=1

∫

Ωk

F k(µ)v, (26)

where F k : D → R is given by F k = Jaff,k(µ)Fo,k(µ), for 1 ≤ k ≤ Kdom. In general, the
Kk(µ) and F k(µ) will be different for each subdomain Ωk. The affine formulation (24)
can then be derived by simply expanding this expression (in terms of the subdomains Ωk

and the different entries of Kk
ij, 1 ≤ i, j ≤ 3, 1 ≤ k ≤ Kdom). This results in

12
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a(w, v;µ) = K1
11(µ)

∫

Ω1

∂w

∂x1

∂v

∂x1

+K1
12(µ)

∫

Ω1

∂w

∂x1

∂v

∂x2

+ · · · (27)

The affine representation is now clear: for each term in (27) the (parameter-independent)
integral represents aq(w, v), while the (parameter-dependent) prefactor represents Θq(µ).
The linear form f admits a similar treatment. The affine representation obtained by this
process contains at most Qa = 3Kdom terms. In some special cases the number of nonzero
terms in (27) is even reduced to Qa = 2Kdom, like dealing with potential flows (without
mixed derivatives in the Laplacian). In other situations, many terms can be economized if
linear dependent entries are assembled together. Another possibility to reduce the number
of terms Qa is an intelligent choice of user-provided initial control points and edges for
the RB triangulation, exploiting symmetry effects and isolate geometric variation.

5.4 Free-form deformation techniques

A more versatile but low-dimensional parametrization can be introduced by exploiting
the so-called free-form deformation (FFD) techniques, in which the deformations of an ini-
tial design are parametrized, rather than the geometry itself. Originally introduced in the
late 70s,15 FFD techniques have been deeply used in computer graphics; only in last years
they have been employed in optimal design problems,16,17 also with RB methods.18,19 With
respect to other classical shape parametrizations, FFD helps in avoiding both problems
of complex shapes and remeshing, thus realizing a computational reduction too.

A free-form deformation operates on a bivariate Bezier control area built around (and
regardless of) the shape we want to optimize, manipulating a lattice of control points. In
this way, design parameters are not directly connected neither to geometrical properties
nor to the shape boundary. Moreover, both the space metrics and objects inside are
deformed and, automatically, the computational finite element mesh too. In this way,
FFD inherits from usual boundary parametrization techniques the possibility to handle
with global deformations by acting on a small set of control points,10 but providing an
easier manipulation tool since no explicit shape parametrization of the object is required.
Let us introduce the main features of FFD techniques. Given a fixed rectangular domainD

Figure 3: Schematic diagram of the FFD technique: unperturbed control points Pl,m, perturbed control
points Po

l,m(µl,m), mapping T̃ (x;µ) and resulting deformation.
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s.t. Ω ⊂ D, we assume the existence of a differentiable and invertible map Ψ : (x1, x2)→
(s, t) such that Ψ(D) = (0, 1)2; by this freezing procedure, FFD can be defined in a simpler
way in the coordinates (s, t) of the spline parameter space (0, 1)2 (see Figure 3). We thus
select an ordered mesh of (L+1)×(M+1) unperturbed control points Pl,m = [l/L,m/M ]T ,
l = 0, . . . , L, m = 0, . . . ,M , and modify the object by moving control points to a new
position. The corresponding perturbed control points Po

l,m(µl,m) = Pl,m + µl,m are thus
specified by a set of (L+1)(M+1) parameter vectors µl,m ∈ R2, giving in all 2(L+1)(M+1)
possible degrees of freedom. As often as not, only small subsets of these points are selected
as design variables if we want to perform a sensible geometrical reduction; moreover,
several rows or columns of control points may be fixed to obtain desired levels of continuity
and to “anchor” certain parts of the domain. In general, among the control points Pl,m,
we indicate the effectively free scalar-valued parameters chosen as design variables as
µ1, . . . , µP – each corresponding to the displacement of a control point in the s or t
direction – and define the parametric map T̃ (·,µ) : D → R2 by which the uploaded
geometry is computed as follows:

T̃ (Ψ(x);µ) = Ψ−1

(
L∑

l=0

M∑

m=0

bL,Ml,m (Ψ(x))Po
l,m(µl,m)

)
, (28)

where bL,Ml,m (s, t) = bLl (s)bMm (t) are tensor products of unidimensional Bernstein basis poly-

nomials bLl (s) =
(
L
l

)
sl(1− s)L−l and bMm (t) =

(
M
m

)
tm(1− t)M−m defined on the unit square

(s, t) ∈ [0, 1]× [0, 1]. Finally, we have Ωo(µ) = T (Ω;µ), by using the restriction T = T̃ |Ω.
By this procedure, we obtain a polinomial map defined on Ω. Nevertheless, the (now,

global) tensor transformation K : Ω×D → R3×3 through which we obtain the transformed
bilinear form (24) is given by K(x,µ) = Jnaff(x,µ)G(x,µ)Ko(µ)(G(x,µ))T , where

G(x,µ) =

(
(Gnaff(x,µ))−1 0

0 1

)
, (29)

Gnaff(x,µ) is the Jacobian matrixh of T (·;µ) and Jnaff(x,µ) = | det(Gnaff(x,µ))|. In
the same way, transformation in (26) is given by F (x,µ) = Jnaff(x,µ)Fo(µ). Hence, in
order to recover the affine representation – necessary to split the RB solution through an
offline/online decomposition – we rely on empirical interpolation;14 we thus approximate
each components Kij(x,µ) and F (x,µ) with an affine representation given by

K̃i,j(x,µ) =

Na
ij∑

n=1

β̃i,jn (µ)ξ̃i,jn (x) + εi,j(x;µ), F̃ (x,µ) =
Nf∑

n=1

δ̃n(µ)ψ̃n(x) + ε(x;µ), (30)

where all the β̃i,jn ’s, ξ̃i,jn ’s, δ̃n’s and ψ̃n’s are efficiently computable scalar functions and
the error terms are guaranteed to be under some tolerance, i.e. ‖εi,j(·;µ)‖∞ ≤ εEIMtol ,
‖ε(·;µ)‖∞ ≤ εEIMtol , for all µ ∈ D. We underline that the number and position of control
points have a deep impact on FFD flexibility: it is crucial to maximize the influence of
the control points by placing them close to the sensitive regions of the configuration.

hIn the nonaffine case, the Jacobian matrix (and thus its determinant and all transformation tensors)
depend both on the coordinates x and on the parameter µ.
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6 NUMERICAL EXAMPLES

In this section we show some representative test cases to illustrate the functionality
of the proposed shape parametrization techniques, coupled with a reduced basis method
for the solution of the parametrized PDEs describing the related flows. As example of
optimal design problem, we consider the minimization of drag forces acting on a body
embedded in a viscous linear flow, formulated as:

find Ω̂o ∈ Oad, Ω̂o = arg min
Ωo∈Oad

J (Ωo,v(Ωo), p(Ωo)) = −
∫

Γo
B

(T(v, p)no) · v̂∞dΓo (31)

where (v(Ωo), p(Ωo)) are velocity and pressurei solutions of the following Stokes system:

−ν∆v +∇p = f in Ωo

∇ · v = 0 in Ωo
with

v = v∞ on Γoin ∪ Γow
v = 0 on ΓoB
−p · n + ν

∂v

∂n
= 0 on Γoout.

(32)

Here T(v, p) = −pI + ν(∇v +∇Tv)/2, while ν = µ/ρ is the ratio between the dynamic
viscosity µ and the fluid density ρ. The family Oad of admissible shapes is here given by
configurations in the form Ωo = D \Bo, where D is a fixed rectangle and Bo is a Lipschitz
domain of boundary ΓoB = ∂Bo (see Figure 4). No-slip conditions are imposed on ΓoB, a
given profile v∞ (whose direction v̂∞ is horizontal) is imposed on inflow Γoin and walls Γow,
while a free-stress condition is imposed on the outflow Γoout. The parametrized version of
(32) is given by the following problem, obtained by mapping its weak formulation back
onto the reference domain Ω: find (v(µ), p(µ)) ∈ X(Ω)×Q(Ω) s.t.{

a(v(µ),w;µ) + b(p(µ),w;µ) = F (w) ∀ w ∈ X(Ω) ≡ (H1
0,ΓD

(Ω))2

b(q,v(µ);µ) = G(q) ∀ q ∈ Q(Ω) ≡ L2(Ω)
(33)

with Rvg ∈ (H1(Ω))2 a lifting function s.t. Rvg|Γin∪Γw = v∞, Rvg|ΓB
= 0 and

a(v,w;µ) =

∫

Ω

∂v

∂xi
νij(x;µ)

∂w

∂xj
dΩ, b(p,w;µ) = −

∫

Ω

pχij(x;µ)
∂wj
∂xi

dΩ, (34)

F (w) =

∫

Ω

f ·w | det(Gnaff)|dΩ− a(Rvg,w;µ), G(q) = b(q, Rvg;µ). (35)

The transformation tensors are defined as ν(x;µ) = (Gnaff)−1νo(Gnaff)−T | det(Gnaff)| and
χk(µ) = (Gnaff)−1| det(Gnaff)|, where νoij = νδij (being δij the Kronecker symbol) and, as
before, Gnaff(·,µ) is the Jacobian matrix of T (·;µ). Problem (31) thus becomes:

find µ̂ ∈ D, µ̂ = arg min
µ∈D

J(µ,v(µ), p(µ)) =

∫

ΓB

η(v(µ), p(µ))|Gnaff t|dΓ

where η(µ,v(µ), p(µ)) = −([(T(v, p)no) · v̂∞] ◦ T )(x;µ) is the drag force mapped back
onto Ω and t is the unit tangent vector to ∂Ω. In order to solve (6), we use the
parametrization strategies discussed and non-linear programming algorithms – e.g. se-
quential quadratic programming – implemented in Matlab. After discussing some numer-
ical results, the main features of proposed parametrization techniques will be summarized.

iHere the pressure is considered as a normalized pressure (w.r.t. density ρ).
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Figure 4: Schematic geometrical domain (left) and setup of test case 1 (right).

6.1 Test case 1: affine and non-affine mappings built “by hand”

The simplest representation of the body B ⊂ D := [−6, 6] × [−4, 4] is given by a
parametrized ellipse with P = 2 parameters, where µ = (µ1, µ2) ∈ D := [0.5, 1.0] ×
[0.25, 0.5] are its semiaxes, i.e. the semi-length and the semi-thickness of the body. By
dividing the domain Ωo(µ) in four subdomains as depicted in Figure 4, we can build a
map T aff,k of the form (10) for each Ωk, 1 ≤ k ≤ Kdom ≡ 4, as follows (e.g. for k = 1):

C aff,1(µ) =

(
6(1− µ1−6

µ1,ref−6
)

4(1− µ2−4
µ2,ref−4

)

)
, G aff,1(µ) =

(
µ1−6

µ1,ref−6
0

0 µ2−4
µ2,ref−4

)
,

where µref = (0.75, 0.375). By these affine mappings, we build the parametrized bilinear
forms (34) and recover an affine development as in (6), consisting at most of Qa + Qb =
3Kdom + 3Kdom = 24 terms (being νk and χk symmetric tensors); in the same way, the
affine development of linear forms in (35) are made at most of QF = Kdom + 3Kdom = 16
and QG = Qb = 12 terms respectively. Here v∞ = (1, 0), ν = 10−1 and f = (0, 0).
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Figure 5: Test case 1: optimal shape for µ1 = µ1,max: velocity (magnitude) and pressure fields.

Optimal shape and corresponding Stokes flow (e.g. obtained fixing µ1 = µ1,max) are
shown in Figure 5; at each step, the Stokes flow and the drag functional have been eval-
uated through an RB approximation of problem (33) and output in (6) respectively. For
more complex configurations, a shape parametrization built “by hand” may become very
difficult and involve non-affine mappings; in this case, we prefer to build automatically
affine mappings by exploiting rbMIT potentialities.
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6.2 Test case 2: automatic affine mappings by rbMIT

Let us consider a rectangular domain D = [−6, 6] × [−4, 4] and a body B given by a
symmetric (centered) airfoil profile of the NACA 4-digits family of unity length, whose
thickness distribution is given by the following equation:

±xo2 =
µ1

0.2
(0.2969

√
xo1 − 0.1260xo1 − 0.3520x2

o1 + 0.2832x3
o1 − 0.1021x4

o1),

where µ1 ∈ [4, 24] is the maximum thickness. This parametrization can be transformed
to the equivalent form (15) for a general curvy triangle as follows:

xo =

(
1
0

)
+

(
−1 0
0 ±µ1/20

)(
1− t2

0.2969t− 0.1260t2 − 0.3520t4 + 0.2832t6 − 0.1021t8

)
,

for t ∈ [0,
√

0.3], and

xo =

(
0
0

)
+

(
1 0
0 ±µ1/20

) (
t2

0.2969t− 0.1260t2 − 0.3520t4 + 0.2832t6 − 0.1021t8

)
,

for t ∈ [
√

0.3, 1]. In this way, we can deal with a complex geometry of real life interest
without involving too many parameters (here P = 1). By using rbMIT, an affine mapping
is automatically built on a RB triangulation made by Kdom = 98 subdomains, leading to
an affine decomposition of Qa +Qb = 65 termsj; as for test case 1, v∞ = (1, 0), ν = 10−1

and f = (0, 0); optimal shape and corresponding Stokes flow are shown in Figure 6.
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Figure 6: Test case 2: geometry decomposition and velocity field (magnitude and streamlines, right).

6.3 Test case 3: free-form deformation techniques

Let us consider a squared domain D = [0, 1]× [0, 1] and a body B given by a symmetric
(centered) airfoil NACA profile as in test case 2, but of length l = 0.2. Let us introduce a
grid of 6× 6 control points on the domain Ω = D×B of which the eight central ones (see
Figure 7) are allowed to move in the vertical direction, giving P = 8 degrees of freedom,
with µi ∈ [−0.25, 0.25], i = 1, . . . , 8. Here Kdom = 1, ν = 10−1, f = (0, 0) and a parabolic
flow is imposed at the inflow, i.e. v∞ = (4x2(1− x2), 0) on Γin and v∞ = (0, 0) on Γw.

jMany terms are economized assembling together linear dependent entries and adding some initial
points for a more “intelligent” RB triangulation.
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Empirical interpolation on ν and χ components give affine expansions as in (30):

ν̃i,j(x;µ) =

Ka
ij∑

n=1

β̃i,jn (µ)ξ̃i,jn (x), χ̃i,j(x;µ) =

Kb
ij∑

n=1

γ̃i,jn (µ)ζ̃ i,jn (x),

leading to a problem dimension of Qa =
∑2

i,j=1 K
a
ij = 413, Qb =

∑2
i,j=1K

b
ij = 19 for bilin-

ear forms and QF = Qa, QG = Qb for right-hand-sides. Optimal shape and corresponding
Stokes flow are shown in Figure 7.

Figure 7: Test case 3: reference domain and FFD setting; shape deformation and control point displace-
ment (unperturbed Pl,m and perturbed Po

l,m control points are depicted in red and black respectively);
detail of the velocity field around the optimal profile (magnitude).

6.4 A comparison of numerical results and proposed techniques

Approximation details for numerical test cases presented below are summarized in Ta-
ble 1. For each test case, drag forces are minimized for profiles with smallest thickness
among admissible values. Moreover, also in test case 3 optimal shape is a bi-convex sym-
metric profile, even if admissible configurations in this case are not a priori symmetric.
By the proposed shape parametrization techniques we may increase computational com-
plexity and flexibility without involving a growth in parametric complexity. A general
summary with respect to some geometrical criteria is reported in Table 2. Affine map-
ping built “by hands” are well suited for simple descriptions related to basic geometrical
properties used as input parameters (e.g. lengths, thicknesses, diameters or angles, etc.);
instead, the rbMIT automatic procedure allows to deal with more complex configurations,
but low-order parametrizations still lead to restricted families of admissible shapes.
FFD techniques are thus the most proper choice, being both versatile and low-dimensio-
nal. In this case, control point perturbations yield small and global deformations of the
whole space and objects inside it – giving automatically a mesh deformation too – even
if parametrized mappings are independent with respect to the shape parametrization and
the computational meshk.

kParametrization is mesh independent if for a given geometry and mesh we can construct a
parametrization of arbitrary accuracy without remeshing.
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Approximation data Test case 1 Test case 2 Test case 3
Number of parameters P 2 1 8
Number of subdomains Kdom 4 98 1
Problem dimension Qa +Qb 24 65 432
Affine/non-affine problem affine affine non-affine

Table 1: Approximation details for numerical test cases presented.

Criteria LBV PSP Affine/non affine Automatic Free-Form
by hand affine rbMIT (FFD)

design variable set big small small small small
geometrical properties no yes/no yes yes/no no
shape deformations small large large large small
smooth perturbations no yes yes yes yes
mesh deformation yes no no no yes
mesh independence no no no no yes
affine µ dependence no no yes/no yes no

Table 2: Summary of proposed shape parametrization techniques.

7 CONCLUSIONS

Three parametrization techniques for geometrical reduction in shape optimization have
been presented, and an example of drag minimization on a profile in a Stokes flow has been
discussed. Free-form deformations allow to realize a good compromise between versatility
and complexity; moreover, reduced basis methods have been effectively coupled with these
techniques for a further computational reduction in such a many-query context.
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