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Abstract

In this article we discuss Markovian term structure models in discrete
time and with continuous state space. More precisely we are concerned
with the structural properties of such models if one has the Markov prop-
erty for a part of the forward curve. We investigate the two cases where
these parts are either a true subset of the forward curve, including the
short rate, or the entire forward curve. For the former case we give a
sufficient condition for the term structure model to be affine. For the
latter case we provide a version of the HJM [6] drift condition (see also
[7]). Under a Gaussian assumption an HJM-Musiela [10] type equation is
derived.
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1 Forward Curve Models in Discrete Time

We consider a discrete trading economy with trading times t ∈ N0. Denote by
P (t, T ) the price of the zero-coupon bond at time t that pays a sure unit at time
of maturity T ≥ t. Thus in particular P (T, T ) = 1. The time t continuously
compounded forward rate r(t, k) for the period [t + k, t + k + 1] is defined by

r(t, k) := log
P (t, t + k)

P (t, t + k + 1)
, k ∈ N0.

Equivalently,

P (t, T ) = exp


−

T−t−1∑

j=0

r(t, j)


 , t = 0, . . . , T − 1. (1)
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The short rate R(t) is the continuously compounded rate contracted at time t
on a one-period loan starting immediately. By definition hence R(t) = r(t, 0).
This defines the savings account

B(0) := 1, B(t) := exp

(
t−1∑
s=0

R(s)

)
, t ∈ N.

We denote by K ≤ +∞ the maximal time to maturity of those bonds which
are traded at each calender time t. If K is finite then the forward rates r(t, j),
given by (1), are only defined for j = 0, . . . , K − 1. In any case the sequence
r(t) = (r(t, j))0≤j<K is called the forward curve at time t.

Here and subsequently, we let (Ω,F , (Ft)t∈N0 ,P) denote a filtered probability
space. We suppose that the forward rate processes r(t, j), for all 0 ≤ j < K,
and thus the bond prices P (t, T ), are (Ft)-adapted. The savings account B(t)
accordingly is (Ft)-predictable.

Suppose for the moment that P were the physical measure. The first fun-
damental theorem of asset pricing in discrete time states that, on a finite time
horizion t = 0, 1, . . . , T < ∞, the existence of an equivalent martingale mea-
sure Q ∼ P on FT is equivalent to the absence of arbitrage. In general, Q is
not unique and there are various ways to distinguish a particular equivalent
martingale measure. A detailed exposition of the arbitrage-theory in discrete
time can be found in [11, Chapter V]. We do not further discuss the issues of
incompleteness here. In what follows we are interested in the dynamics of the
forward curve process under a generic martingale measure on F , which we shall
denote by P. This is expressed by the following assumption.

(NA) For arbitrary T ∈ N0 the sequence

P (t, T )
B(t)

, t = (T −K)+, . . . , T,

is a martingale.

In this paper we will analyze the interplay of (NA) and various Markov hy-
potheses imposed on the forward curve process r(t).

To clarify the terminology we recall some basic concepts. First, we make the
convention that all equalities between random variables hold P-almost surely.
Let (E, E) be a measurable space. We write Bb(E) for the space of bounded
measurable functions (and, if E is equipped with a topology, Cb(E) for the
space of bounded continuous functions). An (Ft)-adapted sequence (X(t)) of
E-valued random variables is called a Markov chain with respect to the filtration
(Ft) if, for any ϕ ∈ Bb(E),

E[ϕ(X(t + 1))|Ft] = E[ϕ(X(t + 1))|σ(X(t))],

where σ(X(t)) denotes the σ-field of events generated by X(t). Then also

E[ϕ(X(t + 1))|σ(X(0), . . . , X(t))] = E[ϕ(X(t + 1))|σ(X(t))], (2)
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and if (2) holds X(t) is simply a Markov chain. If, in addition, there exists a
sequence of transition kernels Pt(x, Γ), x ∈ E, Γ ∈ E , such that

E[ϕ(X(t + 1))|σ(X(0), . . . , X(t))] = Ptϕ(X(t)),

then the sequence (X(t)) is called a Markov chain with transition kernels Pt.
Here we used the notation,

Ptϕ(x) =
∫

E

ϕ(y)Pt(x, dy).

A Markov chain is time-homogeneous if for all t ∈ N0, Pt = P0, and then P0 is
denoted by P .

The remainder of the paper is as follows. In Section 2 we consider the case
where a finite subset rΓ(t) := (r(t, 0), . . . , r(t, γ)) of the forward curve is a time-
homogeneous Markov chain with transition kernel P . Here Γ = {0, . . . , γ} for
some 0 ≤ γ < K. Assumption (NA) yields a representation of the forward
curve as a function of rΓ(t) (Theorem 1). For γ ≥ 1 this imposes arbitrage
restrictions for P (Corollary 2). If P is generated by a continuous convolution
semigroup then the term structure is affine (Theorem 5). This is the discrete
time analogue to the results in [3] and [5]. Section 2.3 is devoted to the study
of affine short rate models. We characterize the shapes of the implied forward
curves and examine the limiting behavior of R(t) when t tends to infinity. A
concrete example is given in Section 2.3.1.

In Section 3 the entire forward curve r(t) is viewed as a Markov chain on
E ⊂ RK . From general Markov theory it follows that r(t) will always admit a
representation of the form r(t+1) = F (t, r(t), ξt+1), where the noise terms ξt are
i.i.d. Under (NA) there has to be some kind of “drift condition”. Theorem 10
gives this condition in terms of the mapping F . In Section 3.2 the Gaussian
case is studied. The main result is Theorem 13 which shows that the forward
curve can be represented as the solution to the discrete time analogue of the
HJM-Musiela [10] equation.

The Appendix contains some classical results for conditional Gaussian dis-
tributions in infinite dimension.

We write Rn
+ = [0,+∞)n, Rn

++ = (0,+∞)n and N0 = {0, 1, . . . }. Whenever
working with a Hilbert space H, we denote by 〈·, ·〉 and ‖ · ‖ the scalar product
and the norm, respectively.

We emphasize that the various Markov hypotheses on r(t) are always im-
posed under the measure P which is not the physical measure.

2 Partly Markovian Forward Curves

In this section we consider the case where a finite subset of the forward curve
is Markovian. We derive a representation of the forward curve as a function
of its Markovian part. A focus will be on affine term structure (in particular
short rate) models, where our results can be made more explicit. For the latter
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we provide a concrete example. For simplicity of presentation we suppose that
K = +∞. Most of the following results can be carried over without problem to
finite K.

2.1 Generalities

Let γ ∈ N0 and set Γ = {0, . . . , γ}. We assume that rΓ(t) = (r(t, 0), . . . , r(t, γ))
follows a time-homogeneous Markov chain on E ⊂ Rγ+1 with transition kernel
P . We further assume that

Pφ =
∫

E

φ(y)P (·, dy) ∈ Bb(E), (3)

where φ(y) := e−y0 , for y = (y0, . . . , yγ) ∈ E.
We mention that, without any problems, Γ could be replaced by an arbitrary

finite subset of N0 which contains 0. That is, the short rate R(t) = r(t, 0) has
to be a component of the Markovian part in any case.

Define inductively the functions

φ0 := 1, φk+1 := P (φφk), k ∈ N0. (4)

Notice that φk ∈ Bb(E), for k ∈ N0, by (3).

Theorem 1 Assume that (NA) holds and that rΓ(t) is a time-homogeneous
Markov chain with respect to the filtration (Ft). Then

r(t, k + 1) = ln
(

φk

φk+1
(rΓ(t))

)
, ∀t, k ∈ N0. (5)

Proof: Let T ∈ N. From (NA) we have

P (t, T )
B(t)

= E
[

1
B(T )

∣∣∣∣ Ft

]
, t ≤ T.

Therefore

P (t, T ) = exp


−

T−t−1∑

j=0

r(t, j)


 = E

[
exp

(
−

T−1∑
s=t

R(s)

)∣∣∣∣Ft

]
, t ≤ T − 1.

Hence

P (t, T ) = E
[
e−
PT−1

s=t R(s)

∣∣∣∣Ft

]
= E

[
e−
PT−2

s=t R(s)E
(
e−R(T−1)|FT−2

) ∣∣∣∣Ft

]

and by the Markov property

P (t, T ) = E
[
e−
PT−2

s=t R(s)Pφ(rΓ(T − 2))
∣∣∣∣Ft

]
.
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In the same way, taking into account that Pφ = φ1,

P (t, T ) = E
[
e−
PT−3

s=t R(s)E
(
e−R(T−2)φ1(rΓ(T − 2))|FT−3

) ∣∣∣∣Ft

]

= E
[
e−
PT−3

s=t R(s)φ2(rΓ(T − 3))
∣∣∣∣Ft

]
.

By induction
P (t, T ) = e−R(t)φT−t−1(rΓ(t)), t ≤ T − 1.

Consequently, for arbitrary t, k ∈ N0

exp


−

k∑

j=0

r(t, j)


 = e−R(t)φk(rΓ(t)).

Or equivalently, since R(t) = r(t, 0),

k∑

j=1

r(t, j) = − ln φk(rΓ(t)),

which yields the assertion.
It is easily seen that, for γ ≥ 1, equation (5) imposes arbitrage constraints

on the transition kernel P .

Corollary 2 Suppose γ ≥ 1 and that the assumptions of Theorem 1 hold for
any initial point rΓ(0) = x ∈ E. Then necessarily

ln φk(x) = −
k∑

j=1

xj , ∀x = (x0, . . . , xγ) ∈ E, ∀k = 1, . . . , γ. (6)

In (6) there are γ conditions for the transition kernel P to be satisfied. They
can be made explicit as we shall see in Theorem 5 below. Conditions (6) are
implied by the fact that the dynamics of the bond prices P (t, T ), for 0 ≤ t ≤ T
and 1 ≤ T ≤ γ +1 are directly specified by P via (1). This requires consistency
with condition (NA). In contrast, the bond prices P (t, T ) with time to maturity
T − t > γ + 1 are defined by – and hence consistent with – (NA). Notice that
for γ = 0 (i.e. Markovian short rates) there are no constraints since in this case
condition (NA) is trivially satisfied,

P (t, t + 1)
B(t)

=
e−R(t)

e
Pt−1

s=0 R(s)
= e−

Pt
s=0 R(s) =

1
B(t + 1)

.

Put in other words, in a Markovian short rate model every bond price is given
as a derivative by (NA). We also refer to the discussion in [1, Section 16.1].
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2.2 Affine Term Structure

We now shall determine a class of transition kernels P for which the functions
φk can be calculated explicitly. In view of (4), a candidate is given by any P
which transforms exponential functions into exponential functions. The Lévy–
Khintchine formula (see Proposition 3 below) tells us that such measures P (x, ·)
are infinitely divisible and have the convolution semigroup property with respect
to x. We arrive this way at the so called affine term structure models. Let
m,n ∈ N.

Definition 1 A family of probability measures (µx)x∈Rn
+

on Rm
+ is called a con-

tinuous convolution semigroup if

µx+y = µx ∗ µy, ∀x, y ∈ Rn
+

and x 7→ µx is weakly continuous1.

In particular, each µx is infinitely divisible and µ0 = δ0. It is easy to see that
(µx)x∈Rn

+
is a continuous convolution semigroup if and only if µx = µ1

x1
∗· · ·∗µn

xn
,

for x = (x1, . . . , xn) ∈ Rn
+, where each (µi

t)t∈R+ is a continuous convolution
semigroup. In fact µi

t = µtei , where ei is the i-th standard basis vector in Rn.
The following result is a corollary of the classical Lévy–Khintchine formula

(see [4, Section XIII.7]).

Proposition 3 A family of probability measures (µx)x∈Rn
+

on Rm
+ is a contin-

uous convolution semigroup if and only if the Laplace transform of µx is of the
form

µ̃x(λ) :=
∫

Rm
+

e−〈λ,y〉 µx(dy) = e−〈ψ(λ),x〉, x ∈ Rn
+, λ ∈ Rm

+ ,

where ψ = (ψ1, . . . , ψn) with

ψi(λ) = 〈βi, λ〉+
∫

Rm
++

(1− e−〈λ,y〉) mi(dy), (7)

for βi ∈ Rm
+ and non-negative measures mi(dy) on Rm

++ such that
∫

Rm
++

(1 ∧ ‖y‖) mi(dy) < +∞, 1 ≤ i ≤ n.

Based on these facts we now construct a Markov chain model rΓ(t). To be
consistent with the notation in Section 2.1 we set m = n = γ + 1 ∈ N and
let E = Rm

+ . Accordingly, we write x = (x0, . . . , xγ) ∈ Rm
+ , and {e0, . . . , eγ}

1That is, Z
Rm

+

f dµxk →
Z
Rm

+

f dµx, ∀f ∈ Cb(Rm
+ ),

whenever xk → x.
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for the standard basis in Rm. Suppose (µx)x∈Rm
+

is a continuous convolution
semigroup. Then P (x, dy) = µx(dy) is a Markov transition kernel on Rm

+ . Since
P (0, dy) = δ0(dy) the point 0 is absorbing. This can be relaxed as shown in the
next lemma.

Lemma 4 Let ν be a probability measure on Rm
+ with Laplace transform ν̃ =

e−ϕ and (µx)x∈Rm
+

as above with ψ given by (7). Define

P (x, dy) := ν ∗ µx(dy), x ∈ Rm
+ . (8)

Then
φk(x) = exp(−Ak − 〈Bk, x〉), k ∈ N0, (9)

where A0 := 0, B0 := 0 and

Ak+1 := Ak + ϕ(Bk + e0), Bk+1 := ψ(Bk + e0), k ∈ N0. (10)

Proof: We proceed inductively. By definition (4), the statement is true for
k = 0. Now let k ∈ N0 and calculate

φk+1(x) = P (φφk)(x) = e−Ak

∫

Rm
+

e−〈Bk+e0,y〉P (x, dy)

= e−Ake−ϕ(Bk+e0)−〈ψ(Bk+e0),x〉,

which yields the assertion.

In the present setup, (6) reads as follows.

Theorem 5 Suppose (NA) holds for every initial point rΓ(0) = x ∈ Rm
+ .

If γ ≥ 1 then necessarily

ϕ




k−1∑

j=0

ej


 = 0, ψ




k−1∑

j=0

ej


 =

k∑

j=1

ej , ∀k = 1, . . . , γ. (11)

Accordingly, we have

supp ν ⊂ {y ∈ Rm
+ | y0 = · · · = yγ−1 = 0} (12)

and, for all t ≥ 0,

supp µj
t ⊂

{
{y ∈ Rm

+ | y0 = · · · = yγ−1 = 0}, j = 0,

{y ∈ Rm
+ | y0 = · · · = yj−2 = 0}, j = 2, . . . , γ.

(13)

The resulting forward curve is an affine function of rΓ(t),

r(t, k + 1) = Ak+1 −Ak + 〈Bk+1 −Bk, rΓ(t)〉, k ∈ N0, (14)
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with Ak, Bk as in Lemma 4. Here in particular,

Ak = 0, Bk =
k∑

j=1

ej , ∀k = 1, . . . , γ. (15)

If γ = 0 then we only conclude (14).

Proof: Equation (14) follows directly by Theorem 1 and (9), for all γ ≥ 0. Now
suppose that γ ≥ 1. According to (6) we have

Ak + 〈Bk, x〉 =
k∑

j=1

xj , ∀x ∈ Rm
+ , ∀k = 1, . . . , γ.

This yields (15). Equation (11) is now a direct consequence of (10). From (11)
we conclude that ∫

Rm
+

e−
Pγ−1

i=0 yi ν(dy) = 1

and, by the property µ̃x = µ̃0
x0
· · · µ̃γ

xγ ,

∫

Rm
+

e−
Pk−1

i=0 yi µj
t (dy) =

{
1, j = 0 or k < j ≤ γ,

e−t, 2 ≤ j ≤ k.

This yields (12) and (13).

Remark 6 We have noticed in the preceding proof that (9) implies (14). Con-
versely, if (14) holds for every initial point rΓ(0) = x ∈ Rm

+ then this yields (9).
Equation (9) holds since, by (8), the Laplace transform of the transition kernel
is exponential-affine in x,

P̃ (x, λ) = e−ϕ(λ)−〈ψ(λ),x〉. (16)

Hence we have the implications

(8) ⇒ (16) ⇒ (9) ⇔ ((14), ∀rΓ(0) ∈ Rm
+ ).

We will show in the next section (Proposition 9) that, for m = 1 and under
some mild conditions, (16) and (9) are equivalent. But (16) does not imply (8),
in general. A counter-example has been found by F. Hubalek [8]. This is in
contrast to continuous time Markov models, where (16) and (8) are equivalent
(see [5]).

Finally, we give a slightly alternative description of the process rΓ(t). Let
X be a random variable with distribution ν. Let Lj be the (increasing) Lévy
process specified in distribution by µj

t (that is, Lj
t ∼ µj

t ), for j = 0, . . . , γ. We
assume that X and L0, . . . , Lγ are mutually independent. Then we have, in
distribution,

rΓ(t + 1) = X + L0
r(t,0) + · · ·+ Lγ

r(t,γ), t ∈ N0. (17)
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Of course, for each t we have to chose an independent copy of the family
X,L0, . . . , Lγ . Representation (17) clarifies the interplay between the differ-
ent components in the dynamics of rΓ(t).

In case of γ ≥ 1, equation (17) gives a better understanding of (12) and (13).
Indeed, by (12) only the last component of X is different from 0. By (13), the
above Lévy processes are of the form L0

t = (0, . . . , 0, ∗) and



L1
t

L2
t
...

Lγ
t


 =




∗ ∗ · · · ∗
0 ∗ · · · ∗
...

. . . . . .
...

0 · · · 0 ∗


 ,

where ∗ stands for a generic nonnegative number. To give an illustration of this
particular structure suppose that the present Markovian part of the forward
curve is flat zero, rΓ(0) = (r(0, 0), . . . , r(0, γ)) = (0, . . . , 0). By simple arbitrage
considerations it is clear that r(1, j) = 0 for all 0 ≤ j ≤ γ − 1. Indeed, since
P (0, 1) = P (0, γ + 1) = 1, we can enter the following strategy at time t = 0 at
zero cost: buy one bond maturing at 1, sell one bond maturing at γ + 1. At
time t = 1 we get one dollar from the first bond. We immediately reinvest this
dollar and buy 1/P (1, γ + 1) bonds maturing at γ + 1. If r(1, j) > 0 for some
0 ≤ j ≤ γ − 1 then

1/P (1, γ + 1) = e
Pγ−1

j=0 r(1,j) > 1,

see (1). Hence we realize a net gain at time t = γ + 1, which means arbitrage.
By the same reasoning one shows that

r(t, j) = 0, ∀0 ≤ j ≤ γ − t, t = 1, . . . , γ.

It is now easy to comprehend this phenomenon by simply looking at (17), given
the particular structure of X and L0, . . . , Lγ .

2.3 Affine Short Rate models

In this section we investigate the case where γ = 0 (that is, m = 1) in more
detail. First, we discuss the possible shapes of the implied forward curve (14).
Let Ak and Bk be given as in Lemma 4. Write

ak :=

{
0, for k = 0,
Ak −Ak−1, for k ≥ 1,

bk :=

{
1, for k = 0,
Bk −Bk−1, for k ≥ 1.

Now (14) reads
r(t, k) = ak + bk R(t), k ∈ N0. (18)

If ν is the Dirac measure at 0 then ϕ ≡ 0 and therefore ak = 0, for all k ∈ N0. In
the sequel we shall exclude this trivial case and suppose that ν((0, +∞)) > 0 and
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similarly µx((0, +∞)) > 0, for x > 0. We use the notation as in Proposition 3
but skip the indices since now m = 1. Write

∆ := β +
∫

R++

y m(dy) ≤ +∞.

By monotone convergence we have

lim
λ↓0

ψ′(λ) = β + lim
λ↓0

∫

R++

ye−λy m(dy) = ∆.

Proposition 7 The sequence (ak) is strictly increasing with

lim
k→+∞

ak

{
= +∞, if β ≥ 1
< +∞, if β < 1.

If β > 1 then (bk) is strictly increasing and limk→+∞ bk = +∞.
If β = 1 then (bk) is non-decreasing with finite limit.
If β < 1 then limk→+∞ bk = 0, and there exists k∗ ∈ N0 such that (bk)k≤k∗

is non-decreasing and (bk)k≥k∗ is strictly decreasing. Necessary for k∗ ≥ 1 is
∆ ≥ 1. Then (bk) has a hump.

Proof: Since ψ(λ) is strictly increasing in λ the sequence (Bk) is strictly in-
creasing. If β < 1 then its limit is finite. If β ≥ 1 the limit is infinite. Since
ak = ϕ(Bk−1 +1), for k ∈ N, the first part of the proposition is established. We
claim that

bk+1 ≥ β bk, ∀k ∈ N0.

Indeed, b1 = ψ(1) ≥ β and for k ≥ 1 we have

bk+1 = ψ(Bk + 1)− ψ(Bk−1 + 1) ≥ β(Bk −Bk−1) = β bk.

Taking into account that ψ′(λ) = β +
∫
R++

ye−λy m(dy) → β for λ → +∞, the
rest of the proposition follows.

We now examine the limiting behavior of the short rate process R(t). Denote
by Pn the n-th iterate transition kernel (Pn(x, ·) is the distribution of R(n) given
that R(0) = x).

Proposition 8 If ∆ > 1 then Pn converges weakly to δ+∞ on R+ (the one-
point compactification of R+).

If ∆ < 1 and
∫
R+

y ν(dy) < ∞ then Pn converges weakly to an invariant
measure µ∗ on R+. Hence the Markov chain R(t) is strongly mixing.

Proof: By the Chapman–Kolmogorov equation, the Laplace transform of Pn

is
P̃n(x, λ) = e−ϕ(n,λ)−ψ(n,λ)x,
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where
ϕ(n + 1, λ) := ϕ(n, λ) + ϕ(ψ(n, λ)), ϕ(1, λ) := ϕ(λ),
ψ(n + 1, λ) := ψ(ψ(n, λ)), ψ(1, λ) := ψ(λ), n ∈ N.

(19)

Notice that ψ′′(λ) = − ∫
R++

y2e−λy m(dy) ≤ 0, hence ψ is concave. We thus
have

0 ≤ ψ′(λ) ≤ ∆, ∀λ ∈ R+.

If ∆ > 1 then limn→∞ ψ(n, λ) = λ∗, for all λ > 0, for some λ∗ ∈ (0, +∞].
Hence limn→∞ ϕ(n, λ) = +∞, for all λ > 0. Therefore limn→∞ P̃n(x, λ) = 0,
for all λ > 0, and the first part of the proposition is proved.

Suppose ∆ < 1 and
∫
R+

y ν(dy) = limλ↓0 ϕ′(λ) < ∞. Then ψ is contracting
on R+,

ψ(n + 1, λ) = ψ(ψ(n, λ)) ≤ ∆ψ(nλ) ≤ ∆nψ(λ), n ∈ N0.

In particular, limn→∞ ψ(n, λ) = 0 uniformly in λ on compacts. On the other
hand,

|ϕ(n + k, λ)− ϕ(n, λ)| ≤
k∑

j=1

|ϕ(n + j, λ)− ϕ(n + j − 1, λ)|

≤
k∑

j=1

C∆n+j−1ψ(λ) = C∆n 1−∆k

1−∆
ψ(λ),

for some C < ∞, for n large enough. Hence ϕ(n, ·) converges uniformly on
compacts to a function ϕ∗ and

lim
n→∞

P̃n(x, λ) = e−ϕ∗(λ).

This specifies µ∗. Since Pnf ∈ Cb(R+) for f ∈ Cb(R+) and supx∈R+
|Pnf(x)| ≤

supx∈R+
|f(x)|, it follows by dominated convergence that

∫

R+

(
Pnf(x)−

∫

R+

f(y) µ∗(dy)

)2

µ∗(dx) → 0, for n →∞.

Hence the Markov chain R(t) is strongly mixing.
The next proposition was announced in Remark 6.

Proposition 9 If ∑

k∈N

1
Bk

= +∞ (20)

then (16) and (9) are equivalent.
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Proof: The implication (16)⇒(9) is trivial. Now suppose (9) holds. An easy
calculation shows that

∫

R+

e−(Bk+1)y P (x, dy) = e−(Ak+1−Ak)−Bk+1x, k ∈ N0.

Thus, for x, y ∈ R+ fixed,

P̃ (x + y, λ)P̃ (0, λ) = P̃ (x, λ)P̃ (y, λ), (21)

for all λ = Bk + 1, k ∈ N0. But the product of two Laplace transforms is again
a Laplace transform. Since (20) is equivalent to

∑
k(Bk + 1)−1 = +∞, Müntz’

theorem applies (see [4, Sect. XIII.1]). It states that a Laplace transform is
uniquely determined by the sequence Bk + 1. Hence (21) holds for all λ ∈
R+. Now we fix λ ∈ R+ and define g(x) := P̃ (x, λ)/P̃ (0, λ). This function is
measurable, positive, bounded and satisfies the functional equation g(x)g(y) =
g(x+ y). Hence there exists ψ(λ) ∈ R+ such that g(x) = exp(−ψ(λ)x). We can
write φ(λ) = − ln P̃ (0, λ), and (16) follows.

2.3.1 Examples

Subsequently we illustrate some possible choices of P (x, dy) (see also [4, Chapter
XIII.7]).

Compound Poisson Distributions Let F be a probability distribution on
R+ and α > 0. Then

µx := e−αx
∑

n∈N0

(αx)n

n!
Fn∗

defines a continuous convolution semigroup on R+. Here ψ(λ) = α(1 − F̃ (λ)).
And (7) is true with m(dy) = αF (dy) and β = 0.

If F = δ1, then µx is the ordinary Poisson distribution with expectation αx
and ψ(λ) = α(1− e−λ).

As a concrete example consider ψ(λ) = 3/4λ + 1/5(1 − e−λ) and ϕ(λ) =
ln(1 + λ/5). That is, ν(dy) = 5e−5y dy. Then the assumptions of the second
part of Proposition 8 are satisfied and the Markov chain is strongly mixing. The
representation (17) reads

R(t + 1) = X + LR(t),

where X is exponentially distributed with expectation 1/5 and Lt = 3/4t + Nt,
where N is a Poisson process with intensity 1/5. The components of the forward
curve (18) are shown in Figure 1.
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Figure 1: The sequences ak (increasing) and bk (decreasing), for k = 0, . . . , 30.

Gamma Distributions For a, b > 0 let fa,b(y) := 1
Γ(b)a

byb−1e−ay denote the
density of the corresponding gamma distribution. Then

µx(dy) := fa,bx(y) dy, x > 0,

defines a continuous convolution semigroup on R+. Here ψ(λ) = b log(1+ λ
a ) and

(7) holds with m(dy) = abe−ay dy
y and β = 0, which is seen by differentiation.

The choice of a, b is made according to Propositions 7 and 8 and with regard to
ψ′(0) = b/a.

Stable Distributions on R+ For 0 < α < 1 the function ψ(λ) = λα can
be expressed with m(dy) = α

Γ(1−α)
dy

yα+1 . This is seen again by differentiation.
Hence ψ defines a continuous convolution semigroup (µx)x∈R+ and each µx is
stable. However, since here ∆ = limλ↓0 αλα−1 = +∞, stable distributions are
not really convenient for our setup (see Propositions 7 and 8).

3 Markovian Forward Curves

We now consider the case where the entire forward curve is a Markov chain.
We also give an alternative, equivalent description of the Markov chain as a
dynamical system.

It is well known that Markov chains on rather general measurable spaces can
be regarded (have the same laws) as solutions of stochastic difference equations,

X(t + 1) = F (t,X(t), ξt+1), t ∈ N0, (22)

where ξ1, ξ2, . . . is a sequence of independent identically distributed random
variables taking values in E0 = Rd, or even in [0, 1], independent of X0. More-
over, for each t ∈ N0, F (t, ·, ·) is a measurable mapping from E × E0 into E.
For a representation of this type it is sufficient that the state space E is a Borel
subset of a separable, complete metric space (see e.g. [12]). If the Markov
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chain is time-homogeneous, the function on the right hand side of (22) does not
explicitly depend on t.

3.1 General Markovian Term Structure

In the present subsection K might be finite or infinite. We assume that r(t) is
a Markov chain on a Borel set E ⊂ RK and is a solution of equation (22). If
x = (x0, . . .) ∈ E and z ∈ Rd then we set:

F (t, x, z) = (F0(t, (x0, . . . ), z), . . . , Fj(t, (x0, . . . ), z), . . . ) .

The following theorem is the analogue of Theorem 1.

Theorem 10 Assume that r(t) is a Markov chain, given by (22), with respect
to the filtration (Ft) and that the σ-fields Ft are independent of ξt+1, ξt+2, . . . .
Define

FJ(t, x) := E


exp


−

J∑

j=0

Fj(t, x, ξ)





 , x ∈ E, t, J = 0, 1, . . . ,

where ξ is a random variable with the same distribution as all ξt. If

FJ(t, x) = exp


−

J∑

j=0

xj+1


 , x ∈ E, t = 0, 1, . . . , (23)

for J = 0, 1, . . . , K − 2 if K is finite, and for J ∈ N0 if K is infinite. Then the
martingale hypothesis (NA) holds.

Proof: Assume for instance that K < +∞. Note that for 2 ≤ T − t ≤ K

E
[
P (t + 1, T )
B(t + 1)

∣∣∣∣Ft

]
= E


e−

Pt
s=0 R(s) exp


−

T−t−2∑

j=0

r(t + 1, j)




∣∣∣∣Ft




= e−
Pt

s=0 R(s)E


exp


−

T−t−2∑

j=0

Fj(t, r(t), ξt+1)




∣∣∣∣Ft




=
1

B(t)
e−r(t,0)FT−t−2(t, r(t)).

The final identity is a consequence of the imposed properties on (Ft). Since
(23) holds, the result follows.

Remark 11 If (NA) holds for any initial state r(0) = x ∈ E, the condition
of Theorem 10 is also necessary. It is important to remark that if K < +∞,
then the function FK−1 is not determined by the theorem and in fact it can
be arbitrary. It means, in practical terms, that the dynamics of the long rate,
r(t, K − 1), has to be additionally specified.

Remark 12 The case of binomially distributed random variables ξt was ana-
lyzed in particular in Jarrow’s book [9] (see also the references therein).
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3.2 Markov Gaussian Term Structure

In this section we regard r(t) as a process on E = RK . If K = +∞ we treat
E = R+∞ as a metric space with coordinate-wise convergence. An E-valued
random variable X = (X0, X1, . . . ) is called Gaussian if any arbitrary finite
subset of the random variables {X0, X1, . . . } is Gaussian. The definition can be
extended to any family of random variables Xt.

Let H be a separable Hilbert space. An H-valued random variable ξ is said
to be Gaussian with mean vector m and covariance operator Q if for arbitrary
h ∈ H, < ξ, h > is a real-valued Gaussian random variable and

E[< ξ, h >] =< m, h >, E[< ξ, h >< ξ, g >] =< Qh, g >, h, g ∈ H.

Arbitrage-free Markov Gaussian forward curve processes can be nicely charac-
terized. For simplicity of representation we write

∑−1
k=0 · · · := 0.

Theorem 13 Let K = +∞ and assume that r(t) is a sequence of E-valued
Gaussian random variables, which is Markovian with respect to (Ft).

i) If (NA) holds then there exists a sequence of independent E-valued Gaus-
sian random variables ξ1, ξ2, . . . with coordinates ξt(j), j = 0, 1, . . . , such that

r(t + 1) = Ar(t) +
1
2
at + ξt+1, t = 0, 1, . . . , (24)

where A = (αij) is the left-shift operator with

αij =
{

1, if j = i + 1
0, otherwise, (25)

and

at(j) = E

[
ξt+1(j)

(
2

j−1∑

k=0

ξt+1(k) + ξt+1(j)

)]
. (26)

ii) Conversely, if r(t) is defined by (24)–(26), where ξ1, ξ2, . . . are E-valued,
independent and Gaussian such that Ft is independent of ξt+1, ξt+2, . . . , then
(NA) is satisfied.

Proof: Part ii) follows from Theorem 10.
For the proof of part i) we need some well-known results for Gaussian Markov

chains, which are sketched in the Appendix. On a finite time horizon we can
regard r(t) as a Hilbert space valued Gaussian sequence, choosing as the Hilbert
space the set H = l2ρ of of all sequences x = (x0, x1, . . . ) such that

||x||2ρ =
+∞∑

j=0

ρjx
2
j < +∞,

equipped with the norm || · ||ρ. Here (ρj) is a a sequence of positive numbers
tending to 0 sufficiently fast. Consequently, by Proposition 17,

r(t + 1) = ζt + mt+1 + ξt+1,
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where ζt is σ(r(t))-measurable and ξt+1 is an H-valued Gaussian random vari-
able independent of σ(r(0), . . . , r(t)). Component-wise we thus have

r(t + 1, j) = ζt(j) + mt+1(j) + ξt+1(j), j = 0, 1, . . . . (27)

Hypothesis (NA) is equivalent to the identities

E
[
e−
PJ

j=0 r(t+1,j)|Ft

]
= e−

PJ+1
j=1 r(t,j), J = 0, 1, . . . (28)

Taking into account (27) and the Markov property of the process r one obtains
that

E
[
e−
PJ

j=0 r(t+1,j)|Ft

]
= E

[
e−
PJ

j=0 r(t+1,j) | σ(r(t))
]

= E
[
e−
PJ

j=0(mt+1(j)+ζt(j)+ξt+1(j)) | σ(r(t))
]

= e−
PJ

j=0(mt+1(j)+ζt(j))E
[
e
PJ

j=0 ξt+1(j)
]

= e−
PJ

j=0(mt+1(j)+ζt(j))+
1
2E[(

PJ
j=0 ξt+1(j))

2].

And we arrive at the following identities

J∑

j=0

(mt+1(j) + ζt(j))− 1
2
E







J∑

j=0

ξt+1(j)




2

 =

J+1∑

j=1

r(t, j), J = 0, . . . ,

from which

ζt(j) = r(t, j + 1)−mt+1(j) +
1
2
E




(
j∑

k=0

ξt+1(k)

)2

−
(

j−1∑

k=0

ξt+1(k)

)2

 . (29)

Inserting (29) into (27) we obtain the required result.

Remark 14 Thus it follows from rather general conditions on the evolution
of the forward curve that r(t) necessarily satisfies a linear stochastic difference
equation with the left-shift matrix operator A and the drift vector linked to the
driving noise through the generalized HJM drift condition (26).

Remark 15 A similar result can be obtained for K < +∞ with the exception
that the component r(t,K − 1) is not determined by Hypothesis (NA), compare
with Remark 11. This is related to the fact that the stochastic difference equation
for r(t) is only well posed with a boundary condition.

4 Appendix

Here we provide the material needed for the proof of Theorem 13, part i).
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First, we have to define images of Gaussian random variables by unbounded
linear transformations. Let ξ be a Gaussian random variable with mean vector
0 and covariance operator Q, taking values in a separable Hilbert space U .
Assume that B is a linear operator with domain D(B) ⊃ ImQ1/2 and values
in some separable Hilbert space H. Let {ek : k = 1, 2, . . .} be the orthonormal
sequence of all eigenvectors of Q corresponding to non-zero eigenvalues of Q and
let Pk be the orthogonal projection onto the finite dimensional space spanned
by e1, . . . , ek,

Pku =
k∑

j=1

〈u, ej〉ej .

One easily checks that if the operator BQ1/2 is Hilbert-Schmidt then the formula

Bξ = lim
k→∞

BPkξ,

with limit in the L2(Ω, H) norm, defines an H-valued Gaussian random variable
with mean zero and covariance operator (BQ1/2)(BQ1/2)∗. In the sequel, if ξ
is a Hilbert space valued Gaussian random variable with mean 0 and B a linear
operator, Bξ is a Gaussian random variable defined in the above way.

The pseudo-inverse Q−1/2 of Q1/2 is has domain D(Q−1/2) = ImQ1/2 and
Q−1/2u is defined as the element of Q−1/2({u}) with the minimal norm. We
point out that if B : U → H is a Hilbert–Schmidt operator then BQ−1/2ξ
is a well-defined H-valued Gaussian random variable with covariance operator
BB∗ (this is immediate from the above discussion since (BQ−1/2)Q1/2 = B is
Hilbert–Schmidt).

We recall a result on conditional Gaussian distributions, see [14]. A Gaussian
measure with mean m and covariance Q is denoted by Nm,Q.

Proposition 16 Suppose (X, Y ) is a Gaussian random variable with values in
a separable Hilbert space U × V , with mean vector (mX ,mY ) and covariance
operator (

QXX , QXY

QY X , QY Y

)
.

Then ImQY X ⊂ ImQ
1/2
Y Y and the operator Q

−1/2
Y Y QY X is Hilbert–Schmidt. More-

over for an arbitrary Borel map φ : U → R+,

E [φ(X)|Y ] =
∫

U

φ(x)NX̂,Q̂(dx)

where
X̂ = E[X|Y ] = mX + (Q−1/2

Y Y QY X)∗Q−1/2
Y Y (Y −mY )

and
Q̂ = QXX − (Q−1/2

Y Y QY X)∗(Q−1/2
Y Y QY X).
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Proof: Denote by {ek} an orthonormal basis in U . Let v ∈ V . Then we have

‖QXY v‖2U =
∑

k∈N
〈QXY v, ek〉2U =

∑

k∈N
(E [〈X, ek〉U 〈Y, v〉V ])2

≤
∑

k∈N
E

[〈X, ek〉2U
]
E

[〈Y, v〉2V
]

= E
[‖X‖2U

] 〈QY Y v, v〉V = E
[‖X‖2U

] ‖Q1/2
Y Y v‖2V .

By [2, Proposition B.1] we conclude that ImQY X ⊂ ImQ
1/2
Y Y .

Now let {fk} be an orthonormal basis of V , consisting of eigenvectors of
QY Y , such that

QY Y fk = λkfk, k ∈ N.

We may assume that λk > 0 (otherwise we chose V smaller by skipping the
corresponding fk). Then {〈Y, fk〉V /

√
λk} is an orthonormal basis of L2(Ω),

E
[ 〈Y, fk〉V√

λk

〈Y, fl〉V√
λl

]
= δkl.

Let u ∈ U . We now have

〈Q−1/2
Y Y QY Xu,Q

−1/2
Y Y QY Xu〉V =

∑

k∈N
〈Q−1/2

Y Y QY Xu, fk〉2V

=
∑

k∈N
〈QY Xu,

1√
λk

fk〉2V

=
∑

k∈N

(
E

[
〈X, u〉U 〈Y, fk〉V√

λk

])2

= E
[〈X, u〉2U

]
= 〈QXXu, u〉U .

But QXX is trace class, hence Q
−1/2
Y Y QY X is Hilbert–Schmidt.

The rest of the proposition follows as in the finite-dimensional case (see
e.g. [12, Theorem 11.1.1.]).

Proposition 17 Assume that an H-valued Gaussian sequence (Xt) is a Markov
chain on H. Then there exists a sequence of closed (in general unbounded) linear
operators A0, A1, . . . on H and a sequence of independent H-valued Gaussian
random variables ξ1, ξ2, . . . , independent of X0, such that

Xt+1 = At(Xt −mt) + mt+1 + ξt+1.

Sequences as described in Proposition 17 are called Ornstein–Uhlenbeck pro-
cesses.

Proof: Suppose η is a U -valued Gaussian random variable with covariance
operator Q. Denote by L2

H(η) the closed subspace of L2(Ω, H), consisting of all
H-valued Gaussian random variables of the form a + B(η − E[η]) where a ∈ H
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and BQ1/2 is a Hilbert–Schmidt operator. The norm on L2
H(η) is induced by

L2(Ω, H),
‖ζ‖2L2

H(η) = E[‖ζ‖2H ] = ‖a‖2H + ‖BQ1/2‖2HS ,

for ζ = a + B(η − E[η]) ∈ L2
H(η).

Since the sequence (Xn) is Markovian, E[Xn+1|X0, . . . , Xn] = E[Xn+1|Xn].
Moreover, by Proposition 16, the random variable E[Xn+1|X0, . . . , Xn] is the
L2(Ω, H)-orthogonal projection of Xn+1 onto L2

H(X0, . . . , Xn). Consequently,
the Gaussian random variable ξn+1 = Xn+1 − E[Xn+1|X0, . . . , Xn] is orthog-
onal to L2

H(X0, . . . , Xn), hence in particular independent of X0, . . . , Xn. By
induction ξn+1 is independent of X0, ξ1, . . . , ξn. From Proposition 16 we have

E[Xn+1|Xn] = E[Xn+1] +
(
Q
−1/2
XnXn

QXnXn+1

)∗
Q
−1/2
XnXn

(Xn − E[Xn]),

where QXnXn and QXnXn+1 denote the covariance operators of (Xn, Xn) and
(Xn, Xn+1), respectively. We conclude that

Xn+1 = E[Xn+1|Xn] + ξn+1 = An(Xn −mn) + mn+1 + ξn+1

where An =
(
Q
−1/2
XnXn

QXnXn+1

)∗
Q
−1/2
XnXn

.
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