Infoscience

Journal article

Option Pricing with Model-Guided Nonparametric Methods

Parametric option pricing models are largely used in Finance. These models capture several features of asset price dynamics. However, their pricing performance can be significantly enhanced when they are combined with nonparametric learning approaches that learn and correct empirically the pricing errors. In this paper, we propose a new nonparametric method for pricing derivatives assets. Our method relies on the state price distribution instead of the state price density because the former is easier to estimate nonparametrically than the latter. A parametric model is used as an initial estimate of the state price distribution. Then the pricing errors induced by the parametric model are fitted nonparametrically. This model-guided method estimates the state price distribution nonparametrically and is called Automatic Correction of Errors (ACE). The method is easy to implement and can be combined with any model-based pricing formula to correct the systematic biases of pricing errors. We also develop a nonparametric test based on the generalized likelihood ratio to document the efficacy of the ACE method. Empirical studies based on S&P; 500 index options show that our method outperforms several competing pricing models in terms of predictive and hedging abilities.

Related material