Abstract

We experimentally investigate guided acoustic wave Brillouin scattering in several photonic crystal fibers by use of the so-called fiber loop mirror technique and show a completely different dynamics with respect to standard all-silica fibers. In addition to the suppression of most acoustic phonons, we show that forward Brillouin scattering in photonic crystal fibers is substantially enhanced only for the fundamental acoustic phonon because of efficient transverse acousto-optic field overlap. The results of our numerical simulations reveal that this high-frequency phonon is indeed trapped within the fiber core by the air-hole microstructure, in good agreement with experimental measurements.

Details

Actions