
Master Thesis

Exploration and comparison of
reduced order modelling

techniques for parametrized
system

Fabrizio Gelsomino

Supervised by
Prof. Alfio Quarteroni
Dr. Gianluigi Rozza

CMCS - Chaire de Modélisation et Calcul scientifique - Modelling and
Scientific Computing Chair

January 15, 2010

Contents

Acknowledgements vii

Introduction ix

1 Overview of the Reduced Basis Method: Elliptic Problems 1
1.1 Parametric bilinear forms . 1

1.1.1 Coercivity eigenproblem 3
1.1.2 Affine parameter dependence and parametric coercivity 3

1.2 Elliptic coercive parametric PDEs: compliant case 4
1.2.1 Problem formulation 4
1.2.2 Truth approximation 6
1.2.3 Reduced basis approximation 7
1.2.4 Offline-Online procedure 9
1.2.5 Operation count and storage 11

1.3 Sample/space assembling strategies 12
1.3.1 POD RB spaces . 13
1.3.2 Greedy Lagrange spaces 14

1.4 Geometric variations . 15
1.4.1 Affine Mappings: Single Subdomain 17
1.4.2 Bilinear Form . 22

1.5 A posteriori error bound . 25
1.5.1 Preliminaries . 26
1.5.2 Offline-Online procedure 29
1.5.3 Coercivity lower bound 31
1.5.4 The successive constraint method 34

iii

CONTENTS

1.6 Non-compliant elliptic problems 36

2 Overview of the Reduced Basis Method: Parabolic problems 39
2.1 Reduced Basis and a posteriori error bound 39
2.2 POD(t)-Greedy(µ) sampling procedure 42

3 The 3D thermal fin problem 45
3.1 Problem description . 45

3.1.1 Heat Sink . 45
3.1.2 Parametrized geometry and parameters 46

3.2 Mathematical description . 49
3.2.1 Strong formulation . 49
3.2.2 Weak formulation . 50

3.3 Reference geometry . 50
3.3.1 Construction of affine mappings 51
3.3.2 Affine decomposition 53

3.4 Results and Visualizations . 55
3.4.1 Mesh . 55
3.4.2 SCM . 56
3.4.3 Greedy . 57
3.4.4 Comparison between the POD and the Greedy 57
3.4.5 Output . 58
3.4.6 Computational time 60
3.4.7 Visualization . 61

4 The 3D Time-Dependent Graetz Problem 63
4.1 Problem description . 63
4.2 Mathematical description . 64

4.2.1 Strong formulation . 65
4.2.2 Weak formulation . 66

4.3 Reference geometry . 67
4.3.1 Construction of affine mappings 67
4.3.2 Afiine decomposition 71

4.4 Results and Visualization . 73
4.4.1 Mesh . 73
4.4.2 SCM . 74
4.4.3 POD-Greedy . 74
4.4.4 Output . 75

iv

CONTENTS

4.4.5 Computational time 77
4.4.6 Visualization . 78

A Appendix 81
A.1 Offline part . 81
A.2 Online part . 82

A.2.1 Elliptic problem . 82
A.2.2 Parabolic problem . 83

Bibliography 85

v

Acknowledgements

First of all, I would like to thank my thesis supervisors Prof. Alfio Quar-
teroni and Dr. Gianluigi Rozza who approved this project and helped me
to find a good topic. I especially thank Gianluigi Rozza to have followed
me during my project, for his motivation, his encouragements, his patience
and particularly for his knowledge and his availability (even when he slept
he thought about Graetz problem).

The staff of CMCS for its kindness and its good mood has also all my
gratitude. I would like to thank the soccer team which by sun and rain was
always present for the very competed monday’s game. I thank also Paolo
Crosetto for his excellent (numerous) coffees, Anwar Koshakji for his deli-
cious apple juice and Alberto Trezzini for our useful and long discussions
about reduced basis and Comsol.

Infine ringrazio i miei genitori Antonietta e Salvatore per avermi sostenuto
e incoraggiato durante tutti i miei studi. Grazie ai miei fratelli Marco e Yvan
per tutti i grandi momenti passati insieme. Infine, ringrazio la mia ragazza
Fanny per avermi sostenuto (e sopportato) durante i miei studi all’EPFL.

vii

Introduction

Computing the solution of partial differential equations (PDEs) is very
expensive. For realistic simulations, we need thousands degrees of freedom
(DoF) to obtain good approximations of the solution. For example for the
analysis and the optimization of an engineering system, we have to compute
several solutions of the PDEs. We may be interested in outputs depending on
the state solution : i.e. maximum or average temperature, heat transfer rates,
flow rates, etc. The introduction of some parameters leads to input-outputs
relationships. The input-parameter may represent boundary conditions and
sources, geometric configurations or physical properties. So, classical dis-
cretization methods like finite element, finite volume or spectral methods
are not the most appropriate. Consequently, we have to develop techniques
that reduce the cost and time of the computations. These techniques are
called reduced order methods (ROM). Reduced basis (RB) method is one of
them and is indicated to evaluate very quickly the outputs mentioned earlier.
Moreover, the goal of the reduced basis method is to reduce the complexity
of a system without a loss of information or accuracy of the results. This
method does not replace one existing method, like the finite element (FE)
method, but it is a collaboration with it. The idea is to start with a FE
basis of dimension N and then we construct a RB space which dimension is
N << N . The RB method is particularly well suited in two contexts: the
real-time context and the many-query context. The real-time context arises
in applications like control engineering and in parameter estimations. The
many-query context is involved in multiscale, multiphysics and optimization
problems. The RB method is a response of these contexts.
In this thesis, we essentially treat affine coercive elliptic problems [20]. This
class of problems has significant advantages for the reduced basis. The affine

ix

INTRODUCTION

parameter-dependence hypothesis enables an efficient Offline-Online compu-
tation. The reduced basis method reduces notably the Online cost. However,
to reduce the Online cost, we have to provide much effort and preparation in
the Offline step. So, this method is optimized for problems that allow rapid
Online computation at the cost of a bigger Offline effort. In other words, the
Offline part depends on N while the Online part depends only on N .

In this thesis, we will use the RB method to solve 3-dimensional prob-
lems: the thermal fin problem and the time-dependent Graetz problem. In the
past, 2-dimensional problems have been successfully solved using the rbMIT
software package [1]. This software has been developed by Anthony Patera’s
group at MIT. The rbMIT software is a library developed in MATLAB. It
contains a symbolic part that compute the affine decomposition and the re-
lated matrices and another part that contains all the methodology of the RB
method such as SCM and Greedies (see Chapter 1). So the user needs only
to provide the equation to be solved, the parameter domain and the kind of
output. For more details about the use of the rbMIT software, see [7].

However, in the 3D case, we can not use the provided symbolic solver and
then we have to find other solutions. Here, we propose to link the rbMIT
software with COMSOL [2]. COMSOL is a powerful environment for solving
and modelling engineering problems based on PDEs. It permits to create
your own geometry and generate meshes. The most important capability is
that it can be interfaced with MATLAB. So the idea is to construct the ge-
ometry, the mesh and the different matrices with COMSOL and then use the
rbMIT software to construct our RB space. Here, we will focus on problems
with simple geometries in order to find "easily" the affine decomposition. In
this thesis, we are more interested on results about convergence and compu-
tational time for the method applied to 3D problems in order to show that
the RB method can be used for more complicated problems for example in
the numerical simulation of the cardiovascular system.

In the first chapter, we will review the main points of the RB method for
affine coercive elliptic problems. First of all, we will give some generalities
about parametric bilinear forms. Then, we present the RB method and some
sample strategy. We will treat the geometric variations and the constructions
of affine mappings and then, we introduce the a posteriori error bound and
some extensions for non-compliant problems.

x

INTRODUCTION

The second chapter is the continuation of the first, where we extend our
attention to parabolic problems. We will introduce the main changes arising
with the time-dependency.

In the third chapter, we present the 3D thermal fin problem (see [3], [5]
and [10]) which is a heat problem with parametrized geometry and physics,
already solved in the 2D case (see [1]). Consequently, we could compare
our results. In a first time, we will give a description of the problem and
its mathematical description. Then, we will indicate how we construct the
affine mappings and give the affine decomposition. At the end, we present
some convergence results for the reduced basis method and a comparison
with several ROM. The behaviour of the parametrized output is discussed
too.

We next solve a time-dependent problem in chapter four; the Graetz
problem (see [4], [5] and [22]). This problem is a time-dependent problem
dealing with heat conduction and forced heat convection in a duct. In the
same way we do for the thermal fin, we will introduce the mathematical
description of the problem and some numerical results solving system with
reduced basis method.

Historical on Reduced Basis

We present here a brief historical on reduced basis. For more details and
references read [21] and [13].
Almroth, Stern and Brogan [6] are the first who have introduced the reduced
basis method for one parameter problem. Then the method was developed by
Noor [14] and extended to multi parameter problem. The need for more ef-
fectivity, many-query design evaluation and from the need for more efficiency
parameter methods for nonlinear problems depending on a parameter is the
reason of development of this method. This method was next extended to
general system and a variety of different reduced basis approximation spaces.
Then, the method has been used in fluid dynamics and for incompressible
Navier Stokes equations [19].
Current research are dedicated to the development of a posteriori error esti-
mation procedure and to the development of effective sampling strategies for
many parameters spaces, in order to improve convergence and computational
efficiency [20].

xi

Chapter 1

Overview of the Reduced
Basis Method: Elliptic

Problems

In this chapter, we will introduce the RB method for compliant, coercive
affine elliptic problems. In the first part of this chapter, we will briefly recall
some generalities about parametric bilinear form and about coercivity, then
the methodology is presented. The last part deals with the construction of
a posteriori error bounds. Finally, we will extend the theory to the non-
compliant case. The theory we present here can be found in more details
principally in [20] and [15].

1.1 Parametric bilinear forms
In this section, we recall some definitions and properties about parametric

bilinear forms and coercivity constants. For more details, the reader can
refers to [15].
Let Z1 and Z2 be two vector spaces over R. Let D ⊂ RP be a closed bounded
parameter domain. A typical parameter vector in D shall be denoted µ =
(µ1, . . . , µP). We assume that D is suitably regular, for example with a
Lipschitz continuous boundary.

Definition 1.1. A form b : Z1×Z2×D −→ R is a parametric bilinear form,
if for all µ ∈ D and for any α ∈ R, w, v ∈ Z1, z ∈ Z2

b(αw + v, z,µ) = αb(w, z,µ) + b(v, z,µ),

and for any α ∈ R, z ∈ Z1, w, v ∈ Z2

b(z, αw + v,µ) = αb(z, w,µ) + b(z, v,µ).

1

1.1 PARAMETRIC BILINEAR FORMS

In the next, we consider Z1 = Z2 = Z and that dim(Z) <∞.

Definition 1.2. A parametric bilinear form b : Z × Z × D −→ R is sym-
metric, if for µ ∈ D and for any w, z ∈ Z, b(w, z,µ) = b(z, w,µ).
A parametric bilinear form b : Z × Z × D −→ R is skew-symmetric, if for
µ ∈ D and for any w, z ∈ Z, b(w, z,µ) = −b(z, w,µ).

Definition 1.3. Let b : Z×Z×D −→ R be a parametric bilinear form. We
define:

- the symmetric part of b as

bS(w, z,µ) =
1

2
(b(w, v,µ) + b(v, w,µ)) , ∀v, w ∈ Z, µ ∈ D,

- the skew-symmetric part of b as

bSS(w, z,µ) =
1

2
(b(w, v,µ)− b(v, w,µ)) , ∀v, w ∈ Z, µ ∈ D.

Definition 1.4. A parametric bilinear form b : Z × Z ×D −→ R is
- positive definite, if for µ ∈ D and for any v ∈ Z, b(v, v,µ) ≥ 0 with

equality only for v = 0.
- positive semidefinite, if for µ ∈ D and for any v ∈ Z b(v, v,µ) ≥ 0.

Definition 1.5. A parametric bilinear form b : Z ×Z ×D −→ R is coercive
over Z if

α(µ) = inf
w∈Z

b(w,w,µ)

‖w‖2
Z

(1.1)

is positive for all µ ∈ D.
We can then define α0 = min

µ∈D
α(µ).

Remark: We note that we can replace b in (1.1) by the symmetric part
bS.

Definition 1.6. We say that a parametric bilinear form b : Z×Z×D −→ R
is continuous over Z if

γ(µ) = sup
w∈Z

sup
v∈Z

b(w, v,µ)

‖w‖Z ‖v‖Z
(1.2)

is finite for all µ ∈ D.
We can the define γ0 = max

µ∈D
γ(µ)(<∞).

2

1.1 PARAMETRIC BILINEAR FORMS

1.1.1 Coercivity eigenproblem

As mentioned in the previous remark, we can rewrite (1.1) as

α(µ) = inf
w∈Z

bS(w,w,µ)

‖w‖2
Z

. (1.3)

It follows that α(µ) can be expressed as a minimum eigenvalue.

Then, we introduce the coercivity symmetric (generalized) eigenproblem
associated with the parametric bilinear form b : Z × Z ×D −→ R:

Given µ ∈ D, find the couple (ξi(µ), λi(µ)) ∈ Z × R, i = 1, . . . , dim(Z),
such that

bS(ξi, v,µ) = λi (ξi(µ), v)Z , ∀v ∈ Z (1.4)

and
‖ξi(µ)‖ = 1. (1.5)

We order the eigenvalues in ascending order such that λ1(µ) ≤ . . . ≤ λdim(Z)(µ).
This procedure will be recalled when dealing with POD, (Proper Orthogo-
nal Decomposition). It follows from (1.3) and (1.4) that if a is coercive
α(µ) = λ1 > 0.

1.1.2 Affine parameter dependence and parametric co-
ercivity

A crucial ingredient for a real-time evaluation of outputs is the affine
decomposition of the bilinear form b : Z1 × Z2 ×D −→ R.

Definition 1.7. A parametric bilinear form b is affine in the parameter if

b(w, v,µ) =

Qb∑
q=1

θqbb
q(w, v) ∀w ∈ Z1, ∀v ∈ Z2, (1.6)

for some finite Qb and some parameter-dependent function θqb : D −→ R,
1 ≤ q ≤ Qb, and where bq(w, v) : Z1 × Z2 −→ R, 1 ≤ q ≤ Qb are parameter-
independent continuous bilinear forms.

The decomposition (1.6) is non-unique, so we can find a minimal value
for Qb.

3

1.2 ELLIPTIC COERCIVE PARAMETRIC PDES: COMPLIANT CASE

Definition 1.8. An affine parametric bilinear form b : z × Z × D −→ R is
parametrically coercive if c = bS admits an affine development such as:

c(w, v,µ) =

Qc∑
q=1

θqc(µ)cq(w, v) ∀w, v ∈ Z, (1.7)

that satisfies
θqc(µ) > 0 ∀µ ∈ D, 1 ≤ q ≤ Qc, (1.8)

and
cq(v, v) ≥ 0 ∀v ∈ Z, 1 ≤ q ≤ Qc. (1.9)

1.2 Elliptic coercive parametric PDEs: compli-
ant case

In this section, we focus on elliptic problems. As mentioned in the In-
troduction, we may be interested in the evaluation of output that depends
on the state equation which is solution of an elliptic PDE. The goal of this
section is to introduce the reduced basis method in order to solve this kind of
problem. At the beginning, we will give the exact formulation (in weak form)
of the problem and a finite element discretization. Then, we will be able to
introduce the reduced basis method, detailing what we do in the Offline and
the Online part. The main references for this part are [20], [15] and [23].

1.2.1 Problem formulation

Let Ω ∈ Rd, d = 1, 2, 3 a suitable physical domain with Lipschitz con-
tinuous boundary ∂Ω. Let D ⊂ RP the parameter domain. Let Xe(Ω) be a
Hilbert function space such that (H1

0 (Ω))
ν ⊂ Xe(Ω) ⊂ (H1(Ω))

ν where ν = 1
(respectively ν = d) for a scalar (respectively, vector) field. Here,

H1(Ω) =
{
v ∈ L2(Ω) | ∇v ∈

(
L2(Ω)

)d}
,

H1
0 (Ω) =

{
v ∈ H1(Ω) | v∂Ω = 0

}
,

and
L2(Ω) =

{
vmeasurable |

∫
∂Ω

v2 is finite
}
.

4

1.2 ELLIPTIC COERCIVE PARAMETRIC PDES: COMPLIANT CASE

We associate to Xe an inner product and a norm, equivalent to the H1 norm,
denoted by (·, ·)Xe and ‖·‖Xe respectively. The definitions of these quantities
will be defined below.

Let a : Xe ×Xe ×D −→ R be a continuous coercive parametric bilinear
form. Let f be a continuous parametric linear functional.
We consider the following problem: Given µ ∈ RP evaluate

se(µ) = `(ue(µ);µ),

where ue(µ) ∈ Xe(Ω) satisfies

a (ue(µ), v;µ) = f(v;µ), ∀v ∈ Xe.

(1.10)

The superscript e refers to exact. Here µ is the input parameter, se is the
scalar output, ` is the linear output functional and u(µ) is the field variable.
Under the hypothesis on the forms a and f the problem(1.10) has a unique
solution.
Moreover, we assume that f and ` are bounded over Xe and that we have
the following affine developments

`(v;µ) =

Ql∑
q=1

θql (µ)`q(v) ∀v ∈ Xe, ∀µ ∈ D, (1.11)

f(v;µ) =

Qf∑
q=1

θqf (µ)f q(v) ∀v ∈ Xe, ∀µ ∈ D, (1.12)

a(w, v;µ) =

Qa∑
q=1

θqa(µ)aq(w, v) ∀w, v ∈ Xe, ∀µ ∈ D, (1.13)

for finite and relatively small Ql, Qf , Qa. We consider that the θqk for 1 ≤
q ≤ Qk, k = l, f, a are simple algebraic expressions that can be readily
evaluated in O(1) operations. Till the end of this section, we will consider
compliant problems, i.e. we assume that
(i) a is symmetric
(ii) ` = f

We will extend to the non-compliant case in section 1.6 with the intro-
duction of a dual problem .

5

1.2 ELLIPTIC COERCIVE PARAMETRIC PDES: COMPLIANT CASE

Then, the problem (1.10) can be reformulated as: Given µ ∈ RP evaluate

se(µ) = f(ue(µ);µ)

where ue(µ) ∈ Xe(Ω) satisfies

a (ue(µ), v;µ) = f(v;µ), ∀v ∈ Xe.

(1.14)

1.2.2 Truth approximation

In this section, we built the truth approximation on which we will con-
struct our reduced basis (RB) approximation. Moreover, we will measure the
error in the reduced basis approximation relative to this truth approximation,
see Section 1.5.

We now introduce the space XN ⊂ Xe such that dim(XN) = N < ∞,
and we take the Galerkin projection of our problem 1.14: Given µ ∈ RP

evaluate
sN (µ) = f(uN (µ);µ),

where uN (µ) ∈ XN (Ω) satisfies

a
(
uN (µ), v;µ

)
= f(v;µ), ∀v ∈ XN .

(1.15)

Typically, we take N large to obtain |se(µ)− sN (µ)| small.
Then, the reduced basis will be built on this truth approximation. Before

introducing the reduced basis approximation, we define the inner product
and the norm over the space XN and Xe and the energy norm given by the
coercive bilinear form a.
For w, v ∈ Xe, we define the energy inner product and the energy norm as

(w, v)µ = a(w, v;µ) (1.16)

‖w‖µ =
√

(w,w)µ. (1.17)

Moreover, for a given µ ∈ D, we define the Xe-inner product and the
Xe-norm for w, v ∈ Xe as

(w, v)X = (w, v)µ + τ(w, v)L2(Ω) (1.18)

‖w‖X =
√

(w,w)X , (1.19)

6

1.2 ELLIPTIC COERCIVE PARAMETRIC PDES: COMPLIANT CASE

where τ is a non-negative real parameter and (w, v)L2(Ω) =
∫

Ω
wv dΩ. Since

XN ⊂ Xe, the inner products and the norms define above are the same for
the space XN .

Remark 1.9. The choice of µ and τ will affect the quality and efficiency of
our reduced basis a posteriori error estimators, but will not affect directly
our reduced basis output predictions (see [20]).

Now, we can define precisely the exact and finite element coercivity re-
spectively as

αe(µ) = inf
w∈Xe

a(w,w;µ)

‖w‖2
X

(1.20)

αN (µ) = inf
w∈XN

a(w,w;µ)

‖w‖2
X

. (1.21)

From the coercivity hypothesis, we have that αe(µ) ≥ α0 > 0, ∀µ ∈ D, and
from hypothesis on XN (conforming space), we have that αN (µ) ≥ αe(µ),
∀µ ∈ D. In the same way, the continuity constants are defined as

γe(µ) = sup
w∈Xe

sup
v∈Xe

a(w, v;µ)

‖w‖X ‖v‖X
(1.22)

γN (µ) = sup
w∈XN

sup
v∈XN

a(w, v;µ)

‖w‖X ‖v‖X
. (1.23)

From hypothesis, γe(µ) is finite ∀µ ∈ D and that γN (µ) ≤ γe(µ), ∀µ ∈ D.

1.2.3 Reduced basis approximation

Roughly speaking, the reduced basis discretization is a Galerkin pro-
jection on a N -dimensional approximation space that focuses on a low-
dimensional, smooth, parametric manifold MN = {u(µ) |µ ∈ D}, induced
by the parametric dependence. The space XN is too general because it ap-
proximates all members of Xe. So, to approximate a solution uN (µ) it is suf-
ficient to be able to approximate only functions inMN . In the case of one pa-
rameter (P = 1), the manifoldMN is a one dimensional filament Fig.1.1(a).
Then, the idea is to choose and compute N functions ξN1 , . . . , ξNN ∈ MN ,
called snapshots and then, for an arbitrary value µ∗ ∈ D, we compute the
solution associated to this parameter (denoted uNN (µ∗)) taking a good linear
combinations of ξNk , k = 1, . . . , N .

7

1.2 ELLIPTIC COERCIVE PARAMETRIC PDES: COMPLIANT CASE

MN ≡ {uN(µ)|µ ∈ D}

XN

(a) Low-dimensional smooth
parametric manifold.

(b) Approximation of uNN (µ∗)
taking a linear combination of
ξN1 · · · ξNN .

Figure 1.1:

More precisely, let Nmax be an integer. For N = 1 . . . Nmax, let XNN be
a N -dimensional subspace of XN . We assume that these spaces satisfy the
nested or hierarchical condition, i.e.

XN1 ⊂ . . . ⊂ XNNmax
⊂ XN . (1.24)

The condition (1.24) is very important for efficiency and for reducing the
computational cost. There are several spaces that satisfy the hierarchical
solution, for example Taylor, Lagrange [20] and Hermite spaces, and more
recently POD spaces [15]. In this work, we will focus on Lagrange spaces and
POD spaces. These spaces will be introduced later (see Section 1.3). Now, we
consider the Galerkin projection to obtain our reduced basis approximation:

Given µ ∈ D, evaluate

sNN (µ) = f(uNN (µ);µ),

where uNN (µ) ∈ XNN ⊂ XN satisfies

a
(
uNN (µ), v;µ

)
= f(v;µ), ∀v ∈ XNN .

(1.25)

From coercivity and continuity hypothesis on a and f , our conforming re-
duced basis XNN ⊂ XN , problem (1.25) admits a unique solution. Moreover,
we can demonstrate the well known Galerkin optimality results:

8

1.2 ELLIPTIC COERCIVE PARAMETRIC PDES: COMPLIANT CASE

Proposition 1.10. See [15].. For any µ ∈ D and uNN (µ) and sNN (µ) satis-
fying (1.25)∥∥uN (µ)− uNN (µ)

∥∥
µ

= inf
wN∈XNN

∥∥uN (µ)− wN(µ)
∥∥
µ
, (1.26)

∥∥uN (µ)− uNN (µ)
∥∥
X
≤

√
γe(µ)

αe(µ)
inf

wN∈XNN

∥∥uN (µ)− wN(µ)
∥∥
X
, (1.27)

and furthermore for the output:

sN (µ)− sNN (µ) =
∥∥uN (µ)− uNN (µ)

∥∥2

µ

= inf
wN∈XNN

∥∥uN (µ)− wN
∥∥2

µ
,

(1.28)

as well as

0 < sN (µ)− sNN (µ) ≤ γe(µ) inf
wN∈XNN

∥∥uN (µ)− wN(µ)
∥∥2

X
. (1.29)

1.2.4 Offline-Online procedure

The Offline-Online procedure is essentially efficient thanks to the affine
parameter dependence of a (1.13). First of all, we introduce a base for
spaces XN and XNN to obtain an algebraic system instead of (1.25). Then,
let (φFE1 , . . . , φFEN) a base for XN and (ξ1, . . . , ξN) a base for XNN such that

ξj =
N∑
k=1

ξjkφ
FE
k j = 1, . . . N. (1.30)

Remark 1.11. In the following, we will omit the superscript N in the reduced
basis approximation of the solution, i.e. uNN ≡ uN .

If we express uN(µ) =
N∑
j=1

uN j(µ)ξj, problem (1.25) can be rewritten as:

given µ ∈ D evaluate, sN(µ) = f(uN(µ)) =
N∑
j=1

uN j(µ)f(ξj;µ)

where
N∑
j=1

uN j(µ)a(ξj, ξi;µ) = f(ξi;µ) 1 ≤ i ≤ N.

9

1.2 ELLIPTIC COERCIVE PARAMETRIC PDES: COMPLIANT CASE

Now, using the affine parameter dependence of a and f we obtain the follow-
ing problem:

given µ ∈ D evaluate, sN(µ) =
N∑
j=1

Qf∑
q=1

uN j(µ)θqf (µ)f q(ξj)

where

N∑
j=1

uN j(µ)θqa(µ)aq(ξj, ξi) =

Qf∑
q=1

θqf (µ)f q(ξi) 1 ≤ i ≤ N.

The Offline stage is now clear. We must form and store values of aq(ξj, ξi)
for 1 ≤ i, j ≤ N , 1 ≤ q ≤ Qa, and the values of f q(ξj) for 1 ≤ j ≤ N ,
1 ≤ q ≤ Qf .

In the Online stage, we form the sum
Qa∑
q=1

θqa(µ)aq(ξj, ξi) for 1 ≤ i, j ≤ N

and then we solve the RB linear system to obtain the uN j(µ).
For convenient reasons for the operation count, we introduce some ma-

trices and vectors:
- the matrix

ZN ∈ RN×N ,

which ith-column is the vector of components ξik, 1 ≤ k ≤ N of the function
ξi, 1 ≤ i ≤ N ;

- the parameter-independent matrices

Aq = a(φFEn , φFEm), 1 ≤ n,m ≤ N ,

and
AqN = a(ξn, ξm), 1 ≤ n,m ≤ N,

where 1 ≤ q ≤ Qa.
- the parameter-independent vectors

F q = f q(φFEn), 1 ≤ n ≤ N ,

and
F q
N = f q(ξn), 1 ≤ n ≤ N,

where 1 ≤ q ≤ Qf .

10

1.2 ELLIPTIC COERCIVE PARAMETRIC PDES: COMPLIANT CASE

- the assembled FEM stiffness matrix and load vector

A(µ) =

Qa∑
q=1

θqa(µ)Aq,

and

F (µ) =

Qf∑
q=1

θqf (µ)F q,

- the assembled RB stiffness matrix and load vector

AN(µ) =

Qa∑
q=1

θqa(µ)AqN ,

and

FN(µ) =

Qf∑
q=1

θqf (µ)F q
N .

Then, using

a(ξn, ξm;µ) =
N∑
i=1

N∑
j=1

ξmi a
q(φFEi , φFEj ;µ) 1 ≤ n,m ≤ N,

we have the following relations between the matrices and vectors defined
above:

AN(µ) = ZT
NA(µ)ZN , (1.31)

AqN = ZT
NA

qZN , 1 ≤ q ≤ Qa, (1.32)
FN(µ) = ZT

NF (µ)ZN , (1.33)
F q
N = ZT

NF
qZN , 1 ≤ q ≤ Qf , (1.34)

where all these quantities are defined for 1 ≤ N ≤ Nmax.

1.2.5 Operation count and storage

The cost of the Offline stage depends on N , Nmax, Qa and Qf , while the
Online stage depends on Nmax, Qa and Qf . The most important thing here

11

1.3 SAMPLE/SPACE ASSEMBLING STRATEGIES

is that the cost of the Online stage is independent of N . Then, the evalua-
tion µ→ sN(µ) is very quick and very important in the real-time and many
query context.
More precisely, the Offline stage is of the order O(N) (expensive). For the
Online, we haveO(QaN

2
max) andO(QfNmax) operation for assembling AN(µ)

and FN(µ) respectively. We need O(N3
max) operations to solve the RB lin-

ear system (see [17]) and finally, the evaluation of the output requires N
operations.

1.3 Sample/space assembling strategies

In this section, we will presents two sampling strategies to obtain our
reduced basis. The first is the Proper Orthogonal Decomposition, (POD)
and the second is the Greedy Lagrange. In section 3.4.4 of this work, we will
compare these two strategies with some examples.

Let Ξtrain = {µ1
train, . . . ,µ

ntrain
train } be a finite sample set, called test sample

of point in D. These parameter are often chosen by Monte Carlo methods
with respect to a uniform or log-uniform density. We assume that the car-
dinality of |Ξtrain| = ntrain is very large to cover all the set D. Now, we
define the following norms that will be useful for the next: for a function
y : D −→ R,

‖y‖L∞(Ξtrain) = max
µ∈Ξtrain

|y(µ)|,

and

‖y‖Lp(Ξtrain) =

(
|Ξtrain|−1

∑
µ∈Ξtrain

|y|p(µ)

)1/p

.

For a function z : D −→ XN (or Xe) we then define in the same way,

‖z‖L∞(Ξtrain;X) = max
µ∈Ξtrain

‖z(µ)‖X ,

and

‖z‖Lp(Ξtrain;X) =

(
|Ξtrain|−1

∑
µ∈Ξtrain

‖z(µ)‖pX

)1/p

.

12

1.3 SAMPLE/SPACE ASSEMBLING STRATEGIES

1.3.1 POD RB spaces

The proper orthogonal decomposition (POD) approach is popular most
notably in time-domain reduced order modelling (see [24]). The technique
can also be applied within the parametric context, as we now describe (see
[15]).
Given Ξtrain, we define the POD RB spaces XN POD

N as the solution of the
optimization problem

XN POD
N = arg inf

XN POD
N ⊂span{uN (µ) |µ∈Ξtrain}

∥∥∥uN − ΠXNN
uN
∥∥∥
L2(Ξtrain;X)

,

(1.35)
where ΠXNN

: XN −→ XNN refers to the projection in the X-inner product.
Now, we define the correlation matrix CPOD ∈ Rntrain×ntrain given by

CPOD
ij = |Ξntrain|−1

(
uN (µitrain, u

N (µjtrain)
)
X

1 ≤ i, j ≤ ntrain. (1.36)

Now, if we express uN (µktrain) as

uN (µktrain) =
N∑
q=1

uq(µktrain)φFEq , ∀1 ≤ k ≤ ntrain,

and if we define the vector u(µktrain) = [u1(µktrain), . . . , uN (µktrain)]T and the
matrix XN ∈ RN×N is such that

XNij =
(
φFEj , φFEi

)
X
,

we have that

CPOD
ij = |Ξ|−1

(
u(µitrain)

)T
XN

(
u(µjtrain)

)
. (1.37)

We then solve the following eigenproblem: find (ψPOD, k, λPOD k) ∈ Rntrain ×
R∗+, 1 ≤ k ≤ ntrain such that

CPODψPOD, k = λPOD, kψPOD, k,
(
ψPOD, k

)T
XNψPOD, k = 1. (1.38)

Arranging the eigenvalues in descending order λPOD, 1 ≥ λPOD, 2 ≥ . . . ≥
λPOD,ntrain ≥ 0, we define ΨPOD, k ∈ XN , 1 ≤ k ≤ ntrain as

ΨPOD, k =

ntrain∑
m=1

ψPOD, km uN (µmtrain), 1 ≤ k ≤ ntrain. (1.39)

13

1.3 SAMPLE/SPACE ASSEMBLING STRATEGIES

We define Nmax as the smallest N such that√√√√ ntrain∑
k=N+1

λPOD, k ≤ εtol,min. (1.40)

We then construct our POD RB spaces as

XN POD
N = span{ΨPOD,n, 1 ≤ n ≤ N}, 1 ≤ N ≤ Nmax. (1.41)

We then take XN = XN POD
N our reduced basis space for the choice ξn =

ΨPOD,n, 1 ≤ n ≤ N .
The POD is an extremely expensive method. Indeed, we have to compute

all solution uN (µ) for all µ ∈ Ξtrain. The most expensive part is the construc-
tion of the correlation matrix and then the resolution of several eigenproblems
(1.38). But the POD is very useful for some small ntrain that is why it is
used in time domain application.

1.3.2 Greedy Lagrange spaces

The idea of this strategy is starting with Ξtrain, we select N parameters
µ1, . . . ,µN and we form the reduced basis space

XN = span
{
ξn = uN (µn), 1 ≤ n ≤ N

}
(see [20]).

More precisely, for the greedy approach, we need a sharp, rigorous and effi-
cient bound ∆en

N (µ) for the reduced basis error
∥∥uN (µ)− uN(µ)

∥∥
X
, where

uN is our RB approximation associated with the space XN . To quantify the
sharpness and rigor properties, we introduce the effectivity:

ηenN (µ) =
∆en
N (µ)

‖uN (µ)− uN(µ)‖X
, (1.42)

and we require

1 ≤ ηenN (µ) ≤ ηenmax,UB ∀µ ∈ D, 1 ≤ N ≤ Nmax, (1.43)

where ηmax,UB is finite and independent of N . The rigor property is illus-
trated by the left inequality, i.e. the error bound ∆en

N is never less than the
true error. The right inequality illustrates the sharpness, i.e. ∆en

N is not

14

1.4 GEOMETRIC VARIATIONS

too much larger than the true error. Efficient means that the evaluation
µ→ ∆en

N (µ) is independent of N . In section 1.5 we will explain the Offline-
Online procedure for compute ∆en

N (µ).
Now, we present the greedy algorithm. We define Nmax an upper bound for
Nmax, εtol,min a tolerance of the error.
Given Ξtrain, S1 = {µ1} and X1 = span

{
uN (µ1)

}
,

For N = 2 : Nmax

µN = arg max
µ∈Ξtrain

∆en
N−1(µ);

εN−1 = ∆en
N−1(µN);

if εN−1 ≤ εtol,min

Nmax = N − 1;

end;

SN = SN−1 ∪ µN ;

XN = XN−1 + span
{
uN (µN∗)

}
;

end.

With POD we have to compute the snapshots for all µ ∈ Ξtrain, here we only
have to compute Nmax snapshots. In this strategy we use a posteriori error
bound ∆en

N (µ) to approximate the expensive true error
∥∥uN (µ)− uN(µ)

∥∥
X
.

Remark 1.12. Note that in theory, the Greedy minimize the error |uN−uN |
in the L∞-norm while the POD minimize the projection error in L2-norm.

1.4 Geometric variations

In this section, we will explain how to operate if the domain is parameter-
dependent. Indeed, the reduced basis method described above requires that
Ω be a parameter independent domain. If we want to consider geometric
variations of the domain, we have to assume that the reference domain Ω is
the pre-image of the parameter-dependent original domain Ωo(µ). For more
details, the reader can refer to [20] and [21].

We shall assume that, for all µ in D, we have a domain decomposition of
Ωo(µ),

Ωo(µ) = ∪Kdom
k=1 Ω

k

o(µ) , (1.44)

15

1.4 GEOMETRIC VARIATIONS

where the Ωk
o(µ), 1 ≤ k ≤ Kdom, are mutually non-overlapping open subdo-

mains,
Ωk
o(µ) ∩ Ωk′

o (µ) = ∅, 1 ≤ k < k′ ≤ Kdom . (1.45)

This coarse domain decomposition will be denoted reduced basis (RB)
triangulation.

We now choose a value µref ∈ D and define our reference domain as
Ω ≡ Ωo(µref). It is easy to see that

Ω = ∪Kdom
k=1 Ω

k
, (1.46)

Ωk ∩ Ωk′ = ∅, 1 ≤ k < k′ ≤ Kdom , (1.47)

We will build a very fine finite element (FE) subtriangulation of the RB
triangulation of Ω. This FE subtriangulation ensures that the FE approxi-
mation accurately treats the perhaps discontinuous coefficients (arising from
property and geometry variation) associated with the different subdomains
and the subtriangulation also plays an important role in the generation of our
affine representation (1.13). We emphasize that µref only affects the accu-
racy of the underlying FE approximation upon which the RB discretization
and a posteriori error estimator is built.

A necessary condition for the affine representation (1.13) is the so called
Affine Geometry Precondition. This condition says that for any original
domain Ωo(µ) that admits a domain decomposition (1.44) there exists affine
mappings T aff,k(·;µ): Ωk → Ωk

o(µ), 1 ≤ k ≤ Kdom, that are
(i) individually bijective, and
(ii) collectively continuous, i.e.

T aff,k(x;µ) = T aff,k′(x;µ), ∀ x ∈ Ω
k ∩ Ω

k′

,
1 ≤ k < k′ ≤ Kdom ,

(1.48)

∀µ ∈ D and such that

Ω
k

o(µ) = T aff,k(Ωk
;µ), 1 ≤ k ≤ Kdom. (1.49)

Note that we purposely define Kdom with respect to the exact problem,
rather than the FE approximation: Kdom can not depend on N (to be mean-
ingful).

16

1.4 GEOMETRIC VARIATIONS

We now define our (bijective) affine mappings more explicitly: for 1 ≤
k ≤ Kdom, any µ in D, and any x ∈ Ωk,

T aff,ki (x;µ) = Caff,k
i (µ) +

d∑
j=1

Gaff,k
i j (µ) xj, 1 ≤ i ≤ d , (1.50)

for given Caff,k: D → Rd and Gaff,k: D → Rd×d. We can then define the
associated Jacobians

Jaff,k(µ) = |det(Gaff,k(µ))|, 1 ≤ k ≤ Kdom , (1.51)

where det denotes the determinant. Note that the Jacobian is constant in
space over each subdomain. We further define, for any µ ∈ D,

Daff,k(µ) = (Gaff,k(µ))−1, 1 ≤ k ≤ Kdom ; (1.52)

this matrix shall prove convenient in subsequent derivative transformations.
We may interpret our local mappings in terms of a global transformation.

In particular, for any µ ∈ D, the local mappings (1.49) induce a global
bijective piecewise-affine transformation T aff (· ;µ): Ω → Ωo(µ): for any
µ ∈ D,

T aff (x;µ) = T aff,k(x;µ), k = min
k′∈{1,...,Kdom} | x∈Ω

k′
k′; (1.53)

note the one-to-one property of this mapping (and, hence the arbitrariness
of our min choice in (1.53)) is ensured by the interface condition (1.48).

Below (Sec.1.4.1), we first consider a single subdomain. Finally, in Sec-
tion 1.4.2, we discuss the incorporation of these affine mappings into our
weak form.

1.4.1 Affine Mappings: Single Subdomain

As we consider a single subdomain in this section, we shall suppress the
subdomain superscript for clarity of exposition. We shall focus on the three-
dimensional case (d = 3). The 2-dimensional case is detailed in [20].

Then, the affine transformation (1.50) can be rewritten as

T affi (x;µ) = Caff
i (µ) +

3∑
j=1

Gaff
i j (µ) xj, 1 ≤ i ≤ d ; (1.54)

17

1.4 GEOMETRIC VARIATIONS

we shall refer to Caff (µ) ∈ R3 and Gaff (µ) ∈ R3×3 as the mapping coef-
ficients. In this case we have 12 mapping coefficients that entirely define
the affine transformation (1.54). Under our assumption that the mapping is
invertible we know that our Jacobian, Jaff (µ) of (1.51), is strictly positive,
and that the derivative transformation matrix, Daff (µ) = (Gaff (µ))−1 of
(1.52), is well defined.

The mapping coefficient can be identified by the relationship between
4 non-colinear pre-image points, or nodes,

(z1, z2, z3, z4) ≡ ((z1
1, z

1
2, z

1
3), (z2

1, z
2
2, z

2
3), (z3

1, z
3
2, z

3
3), (z4

1, z
4
2, z

4
3)),

in Ω, and 4 parametrized image nodes,

(z1
o(µ), z2

o(µ), z3
o(µ), z4

o(µ)) ≡ . . .

. . . ≡ ((z1
o 1, z

1
o 2, z

1
o 3), (z2

o 1, z
2
o 2, z

2
o 3), (z3

o 1, z
3
o 2, z

3
o 3), (z4

o 1, z
4
o 2, z

4
o 3))(µ)

in Ωo(µ). In particular, for given µ ∈ D, application of (1.54) to the selected
nodes yields

zmo i(µ) = Caff
i (µ) +

3∑
j=1

Gaff
i j (µ) zmj , 1 ≤ i ≤ 3 ,

1 ≤ m ≤ 4 ;
(1.55)

(1.55) constitutes 12 independent equations by which to determine the 12 map-
ping coefficients.

To be more explicit in our construction, we first form the matrix Baff ∈
R12×12 (more generally, R(d2+d)×(d2+d)),

Baff =



1 0 0 z1
1 z1

2 z1
3 0 0 0 0 0 0

0 1 0 0 0 0 z1
1 z1

2 z1
3 0 0 0

0 0 1 0 0 0 0 0 0 z1
1 z1

2 z1
3

1 0 0 z2
1 z2

2 z2
3 0 0 0 0 0 0

0 1 0 0 0 0 z2
1 z2

2 z2
3 0 0 0

0 0 1 0 0 0 0 0 0 z2
1 z2

2 z2
3

1 0 0 z3
1 z3

2 z3
3 0 0 0 0 0 0

0 1 0 0 0 0 z3
1 z3

2 z3
3 0 0 0

0 0 1 0 0 0 0 0 0 z3
1 z3

2 z3
3

1 0 0 z4
1 z4

2 z4
3 0 0 0 0 0 0

0 1 0 0 0 0 z4
1 z4

2 z4
3 0 0 0

0 0 1 0 0 0 0 0 0 z4
1 z4

2 z4
3



.

18

1.4 GEOMETRIC VARIATIONS

We further introduce the vector V aff (µ) of image nodal locations,

V aff =



z1
o 1(µ)
z1
o 2(µ)
z1
o 3(µ)
z2
o 1(µ)
z2
o 2(µ)
z2
o 3(µ)
z3
o 1(µ)
z3
o 2(µ)
z3
o 3(µ)
z4
o 1(µ)
z4
o 2(µ)
z4
o 3(µ)



.

We obtain our affine mappings

Caff
1 (µ)

Caff
2 (µ)

Caff
3 (µ)

Gaff
11 (µ)

Gaff
12 (µ)

Gaff
13 (µ)

Gaff
21 (µ)

Gaff
22 (µ)

Gaff
23 (µ)

Gaff
31 (µ)

Gaff
32 (µ)

Gaff
33 (µ)



=
(
Baff

)−1
V aff (µ)

note that Baff is non-singular under our hypothesis of non-colinear pre-image
nodes.

The matrix Baff is independent of µ; the parametric dependence derives
from V aff (µ). To illustrate how the parametric dependence propagates from
the (desired) parametrized domain to the mapping coefficients, we give the
example of a tetrahedra.

We note that parallelepipeds are the most intuitive subdomains by which
to effect transformations by hand, invoking the usual translation, dilation,

19

1.4 GEOMETRIC VARIATIONS

rotation, and shear primitives. However, we can state a parallelism with
the 2D case and consider curvy tetrahedra or curvy tetrahedra instead of
triangle and curvy triangle. Here, we shall thus focus only on tetrahedra
building blocks.

So, let be a tetrahedra as in figure 1.2(a) with vertices z1 = (1, 0, 0), z2 =
(0, 0, 0) z3 = (0, 1, 0) and z4 = (0, 0, 1) that are pre-images nodes of points
z1
o = (1, 0, 0), z2

o = (0, 0, 0), z3
0 = (0, 1, 0) and z4

o = (0, 0, µ1) (Fig.1.2(b)).
The reference domain and the original domain are respectively denoted by
Ω and Ω(µ1). The pre-images nodes correspond to the image node for a
particular value µref of the parameter. Here, µref = 1, i.e (z1, z2, z3, z4) =
(z1

o(µref), z2
o(µref), z3

o(µref), z4
o(µref))

(a) Reference domain Ω. (b) Original domain Ωo(µ1).

Figure 1.2: Variation on a tetrahedra

20

1.4 GEOMETRIC VARIATIONS

Then, we find that

Caff
1 (µ)

Caff
2 (µ)

Caff
3 (µ)

Gaff
11 (µ)

Gaff
12 (µ)

Gaff
13 (µ)

Gaff
21 (µ)

Gaff
22 (µ)

Gaff
23 (µ)

Gaff
31 (µ)

Gaff
32 (µ)

Gaff
33 (µ)



=
(
Baff

)−1
V aff (µ)

=





1 0 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 0
1 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1





−1 

1
0
0
0
0
0
0
1
0
0
0
µ1



=



0
0
0
1
0
0
0
1
0
0
0
µ1



.

21

1.4 GEOMETRIC VARIATIONS

Consequently, we have that Caff (µ1) = 0 and

Gaff (µ1) =

 1 0 0
0 1 0
0 0 µ1


It follows that

Jaff (µ1) = µ1

and

Daff (µ1) =

 1 0 0
0 1 0
0 0 1

µ1

 .
1.4.2 Bilinear Form

Here, we will focus on the transformation that we have to operate on the
weak form to if our domain Ωo(µ) allows the Affine Geometry Precondition
described in the previous section.

Formulation on Original Domain

Our problem is initially posed on the original domain Ωo(µ). We shall
assume for simplicity that Xe

o(µ) = H1
0 (Ωo(µ)), which corresponds to homo-

geneous Dirichlet boundary conditions over the entire boundary ∂Ωo(µ).
Given µ ∈ RP evaluate

seo(µ) = fo(u
e
o(µ);µ)

where ueo(µ) ∈ Xe
o(Ω) satisfies

ao (ueo(µ), v;µ) = fo(v;µ), ∀v ∈ Xe
o .

We now place conditions on ao and fo such that, in conjunction with
the Affine Geometry Precondition, we are ensured an affine expansion of the
bilinear form.

In particular, we require that ao(·, ·;µ): H1(Ωo(µ)) × H1(Ωo(µ)) → R

22

1.4 GEOMETRIC VARIATIONS

can be expressed as

ao(w, v;µ) =

Kdom∑
k=1

∫
Ωk

o(µ)

[
∂w
∂xo1

∂w
∂xo2

∂w
∂xo3

w
]
Ko,k ij(µ)


∂v
∂xo1

∂v
∂xo2

∂v
∂xo3

v

 ,
(1.56)

where xo = (xo1, xo2, x03) denotes a point in Ωo(µ). Here, for 1 ≤ k ≤ Kdom,
Ko,k : D → R4×4 is a given symmetric positive definite matrix (which in turn
ensures coercivity of our bilinear form): the upper 3× 3 principal submatrix
of Ko,k is the usual tensor conductivity/diffusivity; the (4, 4) element of Ko,`
represents the identity operator (mass matrix); and the (4, 1), (4, 2), (4, 3)
(and (1, 4), (2, 4), (3, 4)) elements of Ko,`, which can be set here to zero thanks
to our current restriction to symmetric operators, permit first derivative (or
convection) terms.

Similarly, we require that fo: H1(Ωo(µ))→ R can be expressed as

fo(v) =

Kdom∑
k=1

∫
Ωk

o(µ)

Fo,k(µ)v ,

where, for 1 ≤ k ≤ Kdom, Fo,k: D → R.

Formulation on Reference Domain

We now apply standard techniques to transform the problem statement
over the original domain to an equivalent problem statement over the refer-
ence domain.

Given µ ∈ RP evaluate

se(µ) = f(ue(µ);µ)

where ue(µ) ∈ Xe(Ω) satisfies

a (ue(µ), v;µ) = f(v;µ), ∀v ∈ Xe.

We may then identify se(µ) = seo(µ) and ue(µ) = ueo(µ)◦ T aff (·;µ).

23

1.4 GEOMETRIC VARIATIONS

The transformed bilinear form, a, can be expressed as

a(w, v;µ) =

Kdom∑
k=1

∫
Ωk

[
∂w
∂x1

∂w
∂x2

∂w
∂x3

w
]
Kkij(µ)


∂v
∂x1

∂v
∂x2

∂v
∂x3

v

 , (1.57)

where x = (x1, x2, x3) denotes a point in Ω. Here the Kk : D
→ R4×4, 1 ≤ k ≤ Kdom, are symmetric positive definite matrices given
by

Kk(µ) = Jaff,k(µ) Gk(µ)Ko,k(µ)(Gk(µ))T , ∀ 1 ≤ k ≤ Kdom , (1.58)

the Gk: D → R4×4, 1 ≤ k ≤ Kdom, are given by

Gk(µ) =

 Daff,k(µ)
0
0

0 0 1

 ; (1.59)

Jaff,k(µ) and Daff,k(µ), 1 ≤ k ≤ Kdom, are given by (1.51) and (1.52),
respectively; and T denotes transpose.

Similarly, the transformed linear form can be expressed as

f(v) =

Kdom∑
k=1

∫
Ωk

Fk(µ)v .

Here Fk: D → R, 1 ≤ k ≤ Kdom, is given by

Fk = Jaff,k(µ)Fo,k(µ), ∀ 1 ≤ k ≤ Kdom .

We note that, in general, the Kk(µ) and Fk(µ), 1 ≤ k ≤ Kdom, will
be different for each subdomain Ωk. The differences can arise either due
to property variation or to geometry variation, or both. We thus require,
as already indicated earlier, that the FE approximation be built upon a
subtriangulation of the RB triangulation: discontinuities in PDE coefficients
are thereby restricted to element edges to ensure (more) rapid convergence;
and identification/extraction of the terms in the affine expansion (1.13) is
more readily effected, as we now discuss.

24

1.5 A POSTERIORI ERROR BOUND

Affine Form

We focus here on a, though f admits a similar treatment. We simply
expand the form (1.57) by considering in turn each subdomain Ωk and each
entry of the diffusivity tensor Kkij, 1 ≤ i, j ≤ 3, 1 ≤ k ≤ Kdom. Thus,

a(w, v;µ) = K1
11(µ)

∫
Ω1

∂w

∂x1

∂v

∂x1

+

K1
12(µ)

∫
Ω1

∂w

∂x1

∂v

∂x2

+ · · ·+KKdom
44 (µ)

∫
ΩKdom

wv .

(1.60)

We can then identify each component in the affine expansion: for each term
in (1.60), the pre-factor represents Θq(µ), while the integral represents aq.

Taking into account the symmetry of the bilinear form, there are (at most)
Q = 10Kdom terms in the affine expansion. Indeed, since the form is symmet-
ric, the entries Kkij and Kkji, i 6= j of the matrix Kk for 1 ≤ k ≤ Kdom multiply
the same integral then these two factors can be assembled. The θq(µ) are
given by (for the obvious numbering scheme) θ1(µ) = K1

11(µ), . . . , θQ(µ) =
KKdom

33 (µ); the aq(w, v) are given by

a1(w, v) =

∫
Ω1

∂w

∂x1

∂v

∂x1

,

a2(w, v) =

∫
Ω1

∂w

∂x1

∂v

∂x2

,

...

aQ(w, v) =

∫
ΩKdom

wv .

1.5 A posteriori error bound

A posteriori error bounds are one of the most important part of the re-
duced basis methodology. They are crucial for both efficiency and reliability
of reduced basis approximations. As regards efficiency, error bounds play a
role in Offline and Online stage. In the Greedy algorithm for example, the
application of error bounds permits larger training sample at reduced Offline
computational cost. Hence, we have a better accuracy of the reduced ba-
sis approximation which can be obtained with a smaller number N of basis
functions, and hence we have a reduced Online cost. In short, a posteriori

25

1.5 A POSTERIORI ERROR BOUND

error estimation permits us to control the error which in turn permits us to
minimize the computational effort (see [15]).

As regards reliability, our Offline sampling procedures can not be exhaus-
tive. For a large number of parameters P , there is a large portion of the
parameter space D which remains unexplored. So, the error of a large parts
of our parameter domain D is uncharacterised. The a posteriori error bounds
permit to bound the error for all new value of parameter µ ∈ D. We can
be sure that constraints are satisfied, feasibility conditions are verified, and
prognoses are valid (in each case not only for the reduced basis approximation
but for the truth finite element solution). So we do not loose any confidence
in the solution compared to the underlying FE solution while exploiting the
rapid predictive power of the RB approximation (see [20]).

As mentioned earlier, the a posteriori error bound must be rigorous
(greater or equal to the true error) for all N and all parameters values in the
parameter domain D. Non-rigorous error indicators may suffice for adaptiv-
ity, but not for reliability. Second, the bound must be reasonably sharp. An
overly conservative error bound can yield inefficient approximations, typi-
cally for N too large. Third, we require efficiency, i.e, the cost of the Online
evaluation and storage must be N -independent and should be comparable
to the cost of the RB output prediction (see [15]).

1.5.1 Preliminaries

First of all, let us introduce some quantities that will be useful for the
next.

We define the residual r : D −→
(
XN

)′
as

r(v;µ) = f(v)− a(uNn , v,µ), (1.61)

where
(
XN

)′
is the dual space of XN . We also introduce the function ê :

D −→ XN , the Riesz representation of r(v,µ)

(ê(µ), v)X = r(v,µ) ∀v ∈ XN . (1.62)

Introducing the error eN (µ) = uN − uNN ∈ XN , we have from (1.62) and
(1.61) that

a(e(µ), v;µ) = r(v,µ) = (ê(µ), v)X , ∀v ∈ X. (1.63)

26

1.5 A POSTERIORI ERROR BOUND

Indeed, it follows directly from the problem statements for uN (µ) (1.15) and
uNN (µ) (1.25).

We still introduce the dual norm

‖r(:,µ)‖X′ = sup
v∈X

r(v,µ)

‖v‖X
= ‖ê(µ)‖X . (1.64)

Note that the second equality follows from the Riesz representation theorem.
This definition trough the Riesz representation is crucial for the Offline-
Online procedure which will be developed below.

We recall the definition of the coercivity and continuity "constants" (see
(1.20)-(1.21) and (1.22)-(1.23))

αe(µ) = inf
w∈X

a(w,w;µ)

‖w‖2
X

, αN (µ) = inf
w∈XN

a(w,w;µ)

‖w‖2
X

, (1.65)

γe(µ) = sup
w∈Xe

sup
v∈Xe

a(w, v;µ)

‖w‖X ‖v‖X
, (1.66)

γN (µ) = sup
w∈XN

sup
v∈XN

a(w, v;µ)

‖w‖X ‖v‖X
, (1.67)

such that
αN (µ) ≥ αe(µ) ≥ αe0 > 0, ∀µ ∈ D.

In Section 1.5.3, we will give an algorithm to find lower bound for αN (µ), i.e
a function αNLB : D −→ R such that

0 < αNLB(µ) ≤ αN (µ), ∀µ ∈ D (1.68)

and such that the evaluation µ→ αNLB(µ) is independent of N .
We define now the energy, the output and the relative output error bound

estimators as

∆en
N (µ) =

‖ê(µ)‖X
(αNLB(µ))

1
2

, (1.69)

∆s
N(µ) =

‖ê(µ)‖2
X

αNLB(µ)
, (1.70)

∆s, rel
N (µ) =

‖ê(µ)‖X
αNLB(µ)sNN (µ)

(1.71)

=
∆s
N(µ)

sNN (µ)
,

27

1.5 A POSTERIORI ERROR BOUND

respectively (see [15]).
We introduce now the effectivities of these errors

ηenN (µ) =
∆en
N

‖e(µ)‖µ
, (1.72)

ηsN(µ) =
∆s
N(µ)

sN (µ)− sNN (µ)
, (1.73)

and

ηs, relN (µ) =
∆s, rel
N (µ)

(sN (µ)− sNN (µ))/sN (µ)
. (1.74)

The effectivities are a measure of the quality of the estimators. We give a
proposition that show that these estimators are rigorous and sharp.

Proposition 1.13. See [20]. For N = 1, 2, . . .

1 ≤ ηenN (µ) ≤

√
γe(µ)

αNLB(µ)
, ∀µ ∈ D (1.75)

1 ≤ ηsN(µ) ≤ γe(µ)

αNLB(µ)
, ∀µ ∈ D (1.76)

Proof. We first prove that if (1.75) is true then (1.76) is also true. Indeed,
since sN (µ)− sNN (µ) = ‖e(µ)‖2

µ and since ∆s
N(µ) = (∆en

N (µ))2, we have that

ηsN =
∆s, rel
N (µ)

(sN (µ)− sNN (µ))/sN (µ)
=

(∆en
N (µ))2

‖e(µ)‖2
µ

= (ηenN)2.

So the result follows.
We now prove (1.75). It follows from (1.63) for v = e(µ) and the Cauchy-

Schwarz inequality that

‖e(µ)‖2
µ ≤ ‖ê(µ)‖X ‖e(µ)‖X . (1.77)

Moreover by the coercivity of the bilinear form(
αN (µ)

) 1
2 ‖e(µ)‖X ≤

√
a(e(µ), e(µ);µ) = ‖e(µ)‖µ

and hence from (1.77) we obtain

(
αN (µ)

) 1
2
‖e(µ)‖2

µ

‖ê(µ)‖X
≤ ‖e(µ)‖µ

28

1.5 A POSTERIORI ERROR BOUND

and so we have
‖e(µ)‖µ ≤ ∆en

N ,

and hence ηenN (µ) ≥ 1.
We provide now the proof for the upper bound. For v = ê(µ) and using

(1.63) and the Cauchy Schwarz inequality, we have

‖ê(µ)‖2
X ≤ ‖ê(µ)‖µ ‖e(µ)‖µ . (1.78)

Moreover from the definition of the continuity constant

‖ê(µ)‖µ ≤ (γe(µ))
1
2 ‖ê(µ)‖X

and from (1.78)

ηenN =
∆en
N (µ)

‖e(µ)‖ µ
=

(αNLB(µ))−
1
2 ‖ê(µ)‖X

‖e(µ)‖µ
=

(αNLB(µ))−
1
2 ‖ê(µ)‖2

X

‖e(µ)‖µ ‖ê(µ)‖X

≤
αNLB(µ))−

1
2 ‖ê(µ)‖µ ‖e(µ)‖µ

‖e(µ)‖µ ‖ê(µ)‖X
≤ αNLB(µ))−

1
2 (γe(µ))

1
2

=

√
γe(µ)

αNLB(µ)
.

Remark 1.14. See [20]. Note that we have the following estimation for
the upper bound in (1.75)√

γe(µ)

αNLB(µ)
≤

√
αN (µ)

αNLB(µ)

√
γe(µ)

αe(µ)
, ∀µ ∈ D (1.79)

1.5.2 Offline-Online procedure

The main component of the error bound is the computation of the dual
norm of the residual ‖ê(µ)‖X . To develop the Offline-Online procedure, we
introduce the residual expansion

r(v;µ) =

Qf∑
q=1

θqf (µ)f q(v)−
Qa∑
q=1

N∑
n=1

θqa(µ)uNN n(µ)aq(ξn, v), ∀v ∈ X. (1.80)

29

1.5 A POSTERIORI ERROR BOUND

This expansion follows from our affine assumption (1.13) and from the RB
representation uNN (µ) =

∑N
n=1 uN nξn.

Moreover, we have from (1.63) and (1.80) that

(ê(µ), v)X =

Qf∑
q=1

θqf (µ)f q(v)−
Qa∑
q=1

N∑
n=1

θqa(µ)uNN n(µ)aq(ξn, v), ∀v ∈ X.

(1.81)
Consequently,

ê(µ) =

Qf∑
q=1

θqf (µ)F q +

Qa∑
q=1

N∑
n=1

θqa(µ)uNN n(µ)Aqn, (1.82)

where ∀v ∈ XN

(F q, v)X = f q(v), 1 ≤ q ≤ Qf (1.83)

(Aqn)X = −aq(ξn, v), 1 ≤ n ≤ N, 1 ≤ q ≤ Qa. (1.84)

Remark that (1.83) and (1.84) are parameter-independent Poisson-like prob-
lems. So, F q and Aqn are computed Offline. Then, we obtain the following
expansion

‖ê(µ)‖2
X =

 Qf∑
q=1

θqf (µ)F q +

Qa∑
q=1

N∑
n=1

θqa(µ)uNN n(µ)Aqn, •


X

=

Qf∑
q=1

Qf∑
q′=1

θqf (µ)θq
′

f (µ)
(
F q,F q

′)
X

+

Qa∑
q=1

N∑
n=1

θqa(µ)uNN n(µ)
{

(1.85)

2

Qf∑
q′=1

θq
′

f (µ)
(
F q
′

,Aqn
)
X

+

Qa∑
q′=1

N∑
n′=1

θq
′

a (µ)uN n′ (µ)
(
Aqn,A

q
′

n′

)
X

}
.

The Offline-Online procedure is clear. In the Offline stage, we first compute
F q, 1 ≤ q ≤ Qf and Aqn, 1 ≤ q ≤ Qa and 1 ≤ n ≤ Nmax. After that, we form
and store the quantities(

F qf ,F q
′
f

)
X
,
(
F q
′
f ,Aqan

)
X
,
(
Aqan ,A

q
′
a

n′

)
X

30

1.5 A POSTERIORI ERROR BOUND

for 1 ≤ qf , q
′

f ≤ Qf , 1 ≤ qa, q
′
a ≤ Qa and 1 ≤ n, n

′ ≤ Nmax.
In the Online stage we evaluate the sum (1.85).

1.5.3 Coercivity lower bound

In this section we present the Successive Constraint Method (SCM) that
is an algorithm to construct lower bounds for the coercivity (and in the
non-coercive case, inf-sup stability) constants (see [20], [11] and [15]). This
method is also based on an Offline-Online procedure and it reduces consid-
erably the Online calculation.

We recall the definition of the FE coercivity constant (1.1)

αN (µ) = inf
w∈XN

a(w,w;µ)

‖w‖2
X

, ∀µ ∈ D

and we assume that αN (µ) > 0, ∀µ ∈ D so a is coercive. However, the
SCM can be extended to the non-symmetric operator and for non-coercive
problems.

As anticipated previously, we want to compute αNLB(µ) such that 0 <
αNLB(µ) < αN (µ), ∀µ ∈ D and the evaluation µ → αNLB(µ) must be N -
independent. Let us introduce an objective function J obj : D × RQa −→ R
given by

J obj(µ, y) =

Qa∑
q=1

θqa(µ)yq, (1.86)

where y = (y1, . . . , yQa). The coercivity constant may be express as

αN (µ) = inf
y∈Y
J obj(µ, y), (1.87)

where the set Y ⊂ RQa is defined by

Y =

{
y ∈ RQa | ∃wy ∈ XN s.t. yq =

aq(wy, wy)

‖wy‖2
X

, 1 ≤ q ≤ Qa

}
. (1.88)

We next introduce the continuity constraint box

B =

Qa∏
q=1

[
inf

w∈XN

aq(w,w)

‖w‖2
X

, sup
w∈XN

aq(w,w)

‖w‖2
X

]
, (1.89)

31

1.5 A POSTERIORI ERROR BOUND

that is bounded from the continuity hypothesis. Finally, we introduce the
coercivity constraint sample as

CJ =
{
µ1
SCM ∈ D, . . . ,µJSCM ∈ D

}
. (1.90)

We denote by CM,µ
J the set of M(≥ 1) points in CJ closest to a given µ (in

the Euclidean norm). If M > J then CM,µ
J = CJ .

Lower bound

The idea is to construct the lower bound set YLB(µ, CJ ,M) for given
CJ ,M ∈ N and any µ ∈ D such that Y ⊂ YLB(µ, CJ ,M). This set is cheap
to compute and is defined as

YLB(µ, CJ ,M) =

{
y ∈ RQa | y ∈ B,

Qa∑
q=1

θq(µ′)yq ≥ αN (µ′), ∀µ′ ∈ CM,µ
J

}
.

(1.91)
We obtain the wanted result

Lemma 1.15. Given CJ ⊂ D and M ∈ N

Y ⊂ YLB(µ, CJ ,M), ∀µ ∈ D. (1.92)

Proof. Let y ∈ Y . We want to show that y ∈ YLB.
- Since y ∈ Y , it exists wy ∈ XN such that yq = aq(wy ,wy)

‖wy‖2X
, 1 ≤ q ≤ Qa.

Moreover

inf
w∈XN

aq(w,w)

‖w‖2
X

≤ aq(wy, wy)

‖wy‖2
X︸ ︷︷ ︸

=yq

≤ sup
w∈XN

aq(w,w)

‖w‖2
X

,

i.e. Y ∈ B.
- We have also that, ∀µ ∈ D

Q∑
q=1

θq(µ)
aq(wy, wy)

‖wy‖2
X

=
a(wy, wy;µ)

‖wy‖2
X

≥ αN (µ).

Consequently, y ∈ YLB.

32

1.5 A POSTERIORI ERROR BOUND

Finally, we define our coercivity lower bound as

αNLB(µ, CJ ,M) = min
y∈YLB(µ,CJ ,M)

J obj(µ, y). (1.93)

Moreover, we have:

Proposition 1.16. For given CJ ⊂ D, M ∈ N,

αNLB(µ, CJ ,M) ≤ αN (µ), ∀µ ∈ D. (1.94)

Proof. It is a direct consequence of (1.87),(1.92) and (1.93).

The most important thing here is that the operation count to evaluate
µ→ αNLB(µ) is independent of N .

Upper Bound

The SCM needs the construction of an upper bound αNUB(µ, CJ ,M) for
given CJ , M ∈ N and any µ ∈ D. We proceed in a similar way we did for
the lower bound. We construct a set easy to compute YUB(µ, CJ ,M) ∈ RQa

as
YUB(µ, CJ ,M) =

{
y∗(µ′) |µ′ ∈ CM,µ

J

}
, (1.95)

where
y∗(µ) = arg inf

y∈Y
J obj(µ, y).

We then define the upper bound as

αNUB(µ, CJ ,M) = min
y∈YUB(µ,CJ ,M)

J obj(µ, y). (1.96)

We can show the followings results

Lemma 1.17. For given CJ , M ∈ N

YUB(µ, CJ ,M) ⊂ Y ∀µ ∈ D (1.97)

Proposition 1.18. Given CJ , M ∈ N

αNUB(µ) ≥ αN (µ), ∀µ ∈ D. (1.98)

33

1.5 A POSTERIORI ERROR BOUND

1.5.4 The successive constraint method

The task of the SCM is given a sample set

Ξtrain, SCM =
{
µ1
train, SCM , . . . ,µ

ntrain, SCM

train, SCM

}
⊂ D

of ntrain, SCM parameter points, to select (greedy) parameters in Ξtrain, SCM

and construct the sets C1 = {µ1
SCM}, . . . , CJmax = {µ1

SCM , . . . ,µ
Jmax
SCM}. We

now give the algorithm.
Given a tolerance εSCM ∈ (0, 1) we choose for J = 1, the set C1 = {µ1

SCM}
arbitrarily. We then perform

While max
µ∈Ξtrain, SCM

[
αNUB(µ, CJ ,M)− αNLB(µ, CJ ,M)

αNUB(µ, CJ ,M)

]
> εSCM ;

µJ+1
SCM = arg max

µ∈Ξtrain, SCM

[
αNUB(µ, CJ ,M)− αNLB(µ, CJ ,M)

αNUB(µ, CJ ,M)

]
;

CJ+1 = CJ + µJ+1
SCM ;

J = J + 1;

end

Set Jmax = J ;

Remark 1.19. - Note that we choose αUB in the denominator and not αLB
since αLB may be negative or zero.

- the choice of stopping criterion εSCM permits to estimate the upper
bound for the output effectivity in (1.79) by 1

1−εSCM
. Indeed,

αN (µ)

αNLB(µ, CJmax ,M)
=

αN (µ)

αNUB(µ, CJmax ,M)− (αNUB(µ, CJmax ,M)− αNLB(µ, CJmax ,M))

≤ αN (µ)

αNUB(µ, CJmax ,M)

1

1− εSCM

≤ 1

1− εSCM
, ∀µ ∈ Ξtrain, SCM .

34

1.5 A POSTERIORI ERROR BOUND

And so we have that

ηenN (µ) ≤

√
γe(µ)

(1− εSCM)αe(µ)
, ∀µ ∈ D.

Usually we set εSCM = 0.75 which is a crude lower bound but that has little
deleterious effect on our error bounds.

- For the SCM algorithm, in the case where a is not symmetric, we have
to consider only the symmetric part of a in the lower bound calculation.

Offline-Online procedure

In the Offline stage, we have to construct the set B that needs 2Qa eigen-
problems over XN and we need to solve Jmax eigenproblems to form the
set
{
αN (µ′ |µ′ ∈ CJmax)

}
. We still have JmaxQa inner products over XN to

form {y∗(µ′ |µ′ ∈ CJmax)} and ntrain, SCMJmax linear optimization problems
of size 2Qa + M to perform the arg max. The computational cost depends
of course of N . However, there is not "cross-terms" like O(ntrainN). So,
we can choose ntrain and N very large. The eigenproblems associated with
the calculation of the αN (µ′), µ′ ∈ Cj can be treated very efficiently bay the
Lancsoz method. In particular, for the choice of the parameter τ in (1.18)

τ = inf
w∈XN

a(w,w;µ)

(w,w)L2(Ω)

, (1.99)

it can be shown that λmin = λ1 is well separated from λ2, where these λi are
the eigenvalues of the problem (1.4). The latter ensures rapid convergence
of the Lanczos procedure. As anticipated in Remark 1.9 the choice of the
norm (1.18) will affect the quality and cost of the a posteriori output error
bound. We understand now that the choice of µ affects the effectivity while
the choice of τ affects Offline efficiency.

In the Online stage, for each evaluation µ → αNLB(µ, CJ ,M), we have
O(MJmax) operations to chose Jmax points in CJmax to determine the set
CM,µ
Jmax

. We have O((M + 1)Qa) operation count to evaluate µ′ → θqa(µ
′),

1 ≤ q ≤ Qa and finally extract the selected M members of the pre-computed
set

{
αN (µ′ |µ′ ∈ CJ)

}
and solve the resulting linear optimization problem

to obtain αNLB(µ, CJ ,M). In conclusion, we note that the cost of the Online
evaluation is N -independent.

35

1.6 NON-COMPLIANT ELLIPTIC PROBLEMS

1.6 Non-compliant elliptic problems

In this section, we treat briefly the case of non-compliant elliptic problems.
We recall the the formulation of our problem in that case

se(µ) = `(ue(µ);µ),

where ue(µ) ∈ Xe(Ω) satisfies

a (ue(µ), v;µ) = f(v;µ), ∀v ∈ Xe.

(1.100)

We assume that ` 6= f and that a is a coercive not necessarily symmetric
bilinear form. We called the problem (1.100) the Primal problem.

The RB formulation for the non-compliant state

sNN (µ) = `(uNN (µ);µ),

where uNN (µ) ∈ XNN satisfies

a
(
uNN (µ), v;µ

)
= f(v;µ), ∀v ∈ XNN .

(1.101)

We can develop an a posteriori error bound for sNN (µ).

Proposition 1.20. See [23]. For any µ ∈ D and uNN (µ) and sNN (µ) satis-
fying (1.101)

|sN (µ)− sNN (µ)| ≤ ‖`‖(XN)′ ∆N(µ), (1.102)

where ∥∥uN (µ)− uNN (µ)
∥∥
X
≤ ∆N(µ). (1.103)

Moreover,

∆N(µ) =
‖ê(µ)‖X
αLB(µ)

. (1.104)

Proof. We have that

a(e(µ), v;µ) = r(v,µ) = f(v)− a(uNN (µ), v;µ)

= a(uN (µ), v;µ)− a(uNN (µ), v;µ) = (ê(µ), v)X .

36

1.6 NON-COMPLIANT ELLIPTIC PROBLEMS

Hence for v = e(µ) and using Cauchy-Schwarz and the definition of the
coercivity we obtain

αLB(µ) ‖e(µ)‖2
X ≤ ‖ê(µ)‖X ‖e(µ)‖X

⇐⇒ ‖e(µ)‖X ≤
‖ê(µ)‖X
αLB(µ)

.

Consequently,

|sN (µ)− sNN (µ)| = |`(uN (µ))− `(uNN (µ))| = |`(e(µ))|

=
|`(e(µ))|
‖e(µ)‖X

≤
(

sup
v∈XN

`(v)

‖v‖x

)
︸ ︷︷ ︸

‖`‖
(XN)′

‖e(µ)‖X ≤ ‖`‖(XN)′ ∆N(µ)

= ∆s, nc
N (µ).

For a lot of problems (and for many of outputs), we can consider the
Primal only. But for many output, we can do better. Indeed, if we solve
the Primal only we lose the quadratic convergence for our output in the
non-compliant case (see 1.20) while in the compliant case the convergence is
quadratic (see Proposition 1.10). Moreover, the effectivities

ηs, ncN =
∆s, nc
N (µ

|sN (µ)− sNN (µ)|
(1.105)

can be unbounded.
To remedy these problems, we introduce a Dual problem.

sN , duN (µ) = f(ΨNNdu
(µ);µ),

where ΨNNdu
(µ) ∈ XN , duNdu

satisfies

a
(
v,ΨNNdu

(µ);µ
)

= −`(v;µ), ∀v ∈ XN , duNdu
.

(1.106)

where the script du indicates the dual membership. Note that if a is sym-
metric, we have that Ψ = −u.

37

1.6 NON-COMPLIANT ELLIPTIC PROBLEMS

Remark 1.21. Now, we will omit the superscript N for more readability.
Analogously with the Dual problem we will indicate with the script pr the
quantity relative to the Primal problem.

We introduce now the Primal-Dual output correction as

sNpr,Ndu
(µ) = `(uNpr)− rpr(ΨNdu

;µ), (1.107)

where

rpr(v;µ) = f(v;µ)− a(uNpr , v;µ),

rdu(v;µ) = −`(v)− a(v,ΨNdu
;µ).

Offline-Online procedure is the same we made before but now we have to
consider also the Dual problem. In this Primal-Dual approach, we recover
the quadratic output effect. Indeed,

|s− sNpr,Ndu
| = `(u− uNpr) + rpr(ΨNdu

;µ)

= −a(epr,Ψ;µ) + a(epr,ΨNdu
;µ) = −a(epr, edu;µ).

Applying the Galerkin optimality to Primal and Dual we obtain that

|s−sNpr,Ndu
| ≤ C

(
inf

wpr
N ∈X

pr
Npr

‖u− wprN ‖X

)(
inf

wdu
N ∈X

du
Ndu

∥∥u− wduN ∥∥X
)
. (1.108)

The Offline-Online procedure is similar to the Primal only, however we just
have to evaluate the residual dual norm for Primal and Dual. Indeed, we can
derive an a posteriori error bound for the output as

|s− sNpr,Ndu
| ≤ ∆s, nc

N , (1.109)

where
∆s, nc
N =

∥∥rduN ∥∥(XN)′
∆N(µ). (1.110)

38

Chapter 2

Overview of the Reduced
Basis Method: Parabolic

problems

In this chapter, we will treat linear parabolic problems. We will focus
only on the primal problem. A primal-dual formulation exists and is similar
to the elliptic case (see 1.6). The main references for this chapter are [23],
[24] and [25]. We recall briefly the main definitions that we need. The
parameter domain will be denoted by D and it is a subset of RP for P ∈ N.
The time domain shall be denoted by I = [0, tf] where tf is the final time.
The physical domain is denoted by Ω ⊂ Rd with boundary ∂Ω and where
d is the dimension. We may define Xe = Xe(Ω) the function space such
that (H1

0 (Ω))ν ⊂ Xe ⊂ (H1(Ω))ν , where ν = 1, respectively d, for scalar,
respectively vectorial problems.

2.1 Reduced Basis and a posteriori error bound
We introduce now the weak form of the µ-parametrized linear parabolic

PDE:
Given µ ∈ D, evaluate:

s(t;µ) = `(ue(t;µ);µ),

where ue(t;µ) ∈ Xe satisfies

m
(
∂ue

∂t
(t;µ), v;µ

)
+ a (ue(t;µ), v;µ) = g(t)f(v;µ), ∀v ∈ Xe,

(2.1)

with initial condition ue(x, t = 0;µ) = ue0(x;µ), where a(·, ·;µ) is bilinear,
Xe-continuous and coercive, m(·, ·;µ) is bilinear, L2-continuous and coercive

39

2.1 REDUCED BASIS AND A POSTERIORI ERROR BOUND

and f(·;µ) is linear bounded. The output functional `(·;µ) is linear and
bounded while g(·) ∈ L2(0, tf) is a control input. Moreover, the forms a, m,
f and ` are affine in µ, i.e.,

a(v, w;µ) =

Qa∑
q=1

θqa(µ)aq(w, v), ∀w, v ∈ Xe,∀µ ∈ D, (2.2)

m(v, w;µ) =

Qm∑
q=1

θqm(µ)mq(w, v), ∀w, v ∈ Xe, ∀µ ∈ D, (2.3)

`(v;µ) =

Q∑̀
q=1

θq` (µ)`q(v), ∀v ∈ Xe,∀µ ∈ D, (2.4)

f(v;µ) =

Qf∑
q=1

θqf (µ)f q(v), ∀v ∈ Xe,∀µ ∈ D, (2.5)

u0(x;µ) =

Qu∑
q=1

θqu(µ)uq0(x), ∀µ ∈ D. (2.6)

Remark 2.1. We may also consider another type of output

se(t;µ) =

∫ tf

0

h(t, t′)`(ue(t′;µ);µ) dt′ (2.7)

for h(t, ·) ∈ L2(0, tf) and `(·;µ) ∈ (Xe)′, where (Xe)′ is the dual space of
Xe.

We now discretize the problem (2.1) in space (FE) and in time using a
Euler backward discretization. We introduce ∆t the time step and nt =

tf
∆t

the number of time steps. We still define tk = k∆t, 0 ≤ k ≤ nt, T =
{t0, . . . , tnt} and K = {1, 2, . . . , nt}. Let us introduce XN ⊂ Xe the finite
element space. Then, we obtain the discretized problem, ∀k ∈ K, ∀v ∈ XN :

sN k(µ) = `(uN k(µ);µ),

where uN k(µ) ∈ XN satisfies

m
(
uN k(µ), v;µ

)
+ ∆ta

(
uN k(µ), v;µ

)
= ∆tg(tk)f(v;µ) +m

(
uN k−1(µ), v;µ

)
,

(2.8)

40

2.1 REDUCED BASIS AND A POSTERIORI ERROR BOUND

with initial condition u(x, t0;µ) = u0(x;µ), where u0(x,µ) is the L2-projection
of ue0(x;µ). Here, sN k(µ) ≈ se(tk;µ) and uN k ≈ ue(tk;µ).

Now, the theory we introduced for elliptic problem can be used for the
parabolic. More precisely, we can express our problem in a parameter-
independent domain using affine mappings (see 1.4) and we perform a RB ap-
proximation (Section 1.2.3). Then, we obtain the reduced problem: ∀k ∈ K,
∀v ∈ XN

sN k
N (µ) = `(uN k

N (µ);µ),

where uN k
N (µ) ∈ XNN satisfies

m
(
uN k
N (µ), v;µ

)
+ ∆ta

(
uN k
N (µ), v;µ

)
= ∆tg(tk)f(v;µ) +m

(
uN k−1
N (µ), v;µ

)
,

(2.9)
where XNN is the reduced basis space and dim(XNN) = N << N .
Now, as in the elliptic case, we compute an αLB(µ), such that

0 < αLB(µ) < αN (µ)

using the SCM algorithm (see Section 1.5.4). We define two a posteriori error
bounds ∆k

N and ∆s k
N as:

∆k
N(µ) =

√
∆t

αLB(µ)

∑k
k′=1 (ε2N(tk′ ;µ)(1 + ∆tαLB(µ))k′−1)

(1 + ∆tαLB(µ))k
, (2.10)

∆s k
N (µ) =

(
sup
v∈XN

`(v)

‖v‖X

)
∆k
N(µ), (2.11)

where εN(tk;µ) =
∥∥rk(·;µ)

∥∥
(XN)′

and rk(v;µ) is the residual defined as

rk(v;µ) = g(tk)f(v)+m
(
uN k−1
N (µ), v;µ

)
−m

(
uN k
N (µ), v;µ

)
−∆ta

(
uN k
N (µ), v;µ

)
,

∀v ∈ XN , ∀k ∈ K. Then, we have the rigorous and sharp result as in
Proposition 1.13

Proposition 2.2. For all N ∈ N and for all k ∈ K, µ ∈ D:

1 ≤ ∆k
N (µ)

‖uN k(µ)−uN k
N (µ)‖

L2

≤ C1 (2.12)

1 ≤ ∆s k
N (µ)

|sN k(µ)−sN k
N (µ)| ≤ C2, (2.13)

41

2.2 POD(T)-GREEDY(µ) SAMPLING PROCEDURE

where C1 and C2 are two constants. Moreover,

∥∥uN k(µ)− uN k
N (µ)

∥∥
L2 ≤ ∆k

N(µ), (2.14)

|sN k − sN k
N (µ)| ≤ ∆s k

N (µ) (2.15)

The last thing that we have to explain is the construction of the spaceXNN .
The idea is to consider the set K as a "small" (time-)parameter sample and
the set Ξtrain the space-parameter sample (see 1.3) and to combine the POD
(Section 1.3.1) and the Greedy (Section 1.3.2) algorithm. More precisely,
with use the POD for the time-parameter and the Greedy for the space-
parameter, so we have a POD-GREEDY sampling procedure (see [24]). In
the next section we will explain in details this strategy.

2.2 POD(t)-Greedy(µ) sampling procedure

Remark 2.3. In all this section we will omit the superscript N for the
reduced basis approximations.

The algorithm is composed of two stages of POD and one stage of Greedy.
As mentioned before, the POD is used in time while the Greedy is used in
space. We recall that, given L elements wj ∈ XN , the POD returns P X-
orthogonal functions {Ψj, 1 ≤ j ≤ P} such that XPOD

P = span{Ψj, 1 ≤ j ≤
P} is optimal in the sense that

XPOD
P = arg inf

XPOD
P ⊂span{wj , 1≤j≤L}

(
1

L

L∑
j=1

inf
v∈YP

‖wj − v‖2
X

) 1
2

.

For simplicity, we will write

XPOD
P = POD ({wj, 1 ≤ j ≤ L}, P) .

We introduce the parameter sample Ξtrain and an initial parameter µ0 ∈
Ξtrain and set S = {µ0}. We give now the algorithm:

42

2.2 POD(T)-GREEDY(µ) SAMPLING PROCEDURE

Set Z = ∅;
Set N = 1 and µ0 = µN ;

While N ≤ Nmax

{Ψj, 1 ≤ j ≤ P} = POD
(
{uN (tk;µN), 1 ≤ k ≤ nt}, P

)
;

Z ←− {Z, {Ψj, 1 ≤ j ≤ P}};
N ←− N + 1;

{ξn, 1 ≤ n ≤ N} = POD(Z,N);

XN = span{ξn, 1 ≤ n ≤ N};
µN = arg max

µ∈Ξtrain

∆K
N (µ);

S ←− {S,µN};
end.

Set XN = span{ξn, 1 ≤ n ≤ N}, 1 ≤ N ≤ Nmax.

Remark 2.4. Notice that the complexity remains O(N) +O(ntrain) and is
not O(Nntrain)

Roughly speaking, the Greedy selects parameter µ ∈ Ξtrain and then we
have to compute all the state solution uN (tk;µ) for 1 ≤ k ≤ nt and apply
the POD procedure. Then the second POD procedure gives us spaces of
dimension N .

43

Chapter 3

The 3D thermal fin problem

This chapter is dedicated to the resolution of our first 3 dimensional prob-
lem: the thermal fin (see [3], [5], [10]). This problem has already been solved
in the two dimensional case in [1] (see also http://augustine.mit.edu/workedPro-
-blems.htm). As mentioned in the Introduction, to extend to the 3-dimensional
case, we used COMSOL [2] linked with the rbMIT software [1]. We want to
show that the reduced basis method can be used with success to solve more
complex problems.

3.1 Problem description

In this section we will describe the Thermal Fin problem. We will explain
the physics and introduce the different parameters which we consider. The
main reference is [10] where there is a description for the 2D case.

3.1.1 Heat Sink

This problem considers the performance of a heat sink designed for the
thermal management of high-density electronic components. The main func-
tion of a heat sink is to transfer heat from an object at a higher temperature
to another at a lower temperature with greater heat capacity. The heat sink
comprises of a base/spreader which in turn supports a number of plate fins
exposed to flowing air (see Fig. 3.3). The high density of the heat sink com-
bined with its large aera, due to fins, results in the rapid transfer of thermal
energy to the surrounding cooler material. Then, the heat sink is cooled and
whatever is in direct contact with is also cooled. In our analysis, we shall
consider one half of one fin for symmetry reasons (see Fig. 3.1, [10] and [5]).
We model the flowing air through a simple convection heat transfer coeffi-
cient. Our interest is in the temperature at the base of the spreader.

45

3.1 PROBLEM DESCRIPTION

Figure 3.1: Respective Domain for a periodic heat sink.

From the engineering point of view, this problem illustrates the appli-
cation of conduction analysis to an important class of cooling problems :
electronic components and systems. Examples of systems that require a heat
sink to reduce their temperature are microprocessors and refrigeration. On
figure 3.2, we show an example of microprocessor with heat sink and a fan
that produce an airflow.

Figure 3.2: Example of heat sink.

3.1.2 Parametrized geometry and parameters

In this section, we introduce the different quantities which describe our
problem. The quantities with a tilde ∼ correspond to dimensional quantities
and the absence of a tilde denotes non-dimensional quantities.
We assume that the spreader has thermal conductivity k̃sp and the plate fin
has thermal conductivity k̃fin. The ratio of these conductivities is denoted

46

3.1 PROBLEM DESCRIPTION

by

k =
k̃sp

k̃fin
.

The distance between two fin is d̃per and the height of a fin is denoted by L̃.
We characterize the heat transfer from the fin to the air by a heat transfer
coefficient h̃c. We consider P = 3 parameters, two of them are physical and
one is geometrical. The geometrical parameter is

µ2 =
L̃

d̃per
,

the non-dimensional fin height. We have two other physical parameters. The
first physical parameter is the Biot number defined as

µ1 = Bi =
h̃cd̃per

k̃fin
;

the second one is given by the conductivity ratio

µ3 = k.

The parameter domain is given by D = [0.01, 0.5]× [2, 8]× [1, 10]. We denote
by µ the vector of parameters, i.e.

µ = (µ1, µ2, µ3).

Figure 3.3: Heat Sink.

47

3.1 PROBLEM DESCRIPTION

The temperature T̃ is measured relative to the temperature of the air at
infinity, T̃air, and non-dimensionalized with respect to eq edperekfin

where q̃ is the
dimensional heat flux into the spreader. Then, we have that

T̃ = uo
q̃d̃per

k̃fin
+ T̃air,

where uo is the non-dimensional temperature distribution. It follows from the
previous equation that uo =

eT−eTaireq edperekfin

. The spatial coordinate x̃ = (x̃o1, x̃o2, x̃o3)

is non-dimensionalized with respect to d̃per.
We identify in Figure3.4 the points defining the geometry and the different
subdomains Ωk

o(µ), for 1 ≤ k ≤ 2 considered. We define the global domain
Ωo(µ) as

Ωo(µ) = Ω1
o(µ) ∪ Ω2

o(µ).

Since we have only one geometric parameter, µ2 and since Ω1
o is parameter-

independent, we can write Ωo(µ) = Ωo(µ2) = Ω1
o ∪ Ω2

o(µ2).

(a) Parametrized Ge-
ometry.

(b) Domain Bound-
aries.

Figure 3.4:

48

3.2 MATHEMATICAL DESCRIPTION

3.2 Mathematical description
The non-dimensional temperature uo(µ) satisfies the conduction equa-

tion in Ωo(µ2). We impose continuity of temperature and heat flux at the
spreader-fin interface. Moreover, we impose zero heat flux on the horizontal
exposed surfaces of the spreader and fin; uniform heat flux on the spreader
base and heat-transfer convection (Robin) boundary conditions on the verti-
cal face of the fin: the surface exposed to the flowing air.

3.2.1 Strong formulation

Mathematically, uo(µ) satisfies

−∇ ·

 µ3 0 0
0 µ3 0
0 0 µ3

∇uo(µ)

 = 0 in Ω1
o,

−∇ ·

 1 0 0
0 1 0
0 0 1

∇uo(µ)

 = 0 in Ω2
o(µ2),

µ3
∂
∂n
uo(µ) = 1 on Γo2,

∂
∂n
uo(µ) = 0 on Γo1,3,4,5,7,8,9,11,12,

∂
∂n
uo(µ) + µ1uo(µ) = 0 on Γo10 (Robin),

where n denotes the unit outward normal and ∇ =
(

∂
∂xo1

, ∂
∂xo2

, ∂
∂xo3

)T
. On

Γo6, we impose continuity of temperature and heat flux.
The output of interest is

s(µ) = 2

∫
Γo2

uo(µ),

which represents the average of the temperature on the base of the spreader,
(taking into account the symmetry of the fin configuration, we just consider
a half of the fin).

49

3.3 REFERENCE GEOMETRY

3.2.2 Weak formulation

In this scalar problem we take Xe = H1(Ωo(µ)). The weak formulation
reads as follow : for all v ∈ Xe, find uo(µ) ∈ Xe such that

µ3

∫
Ω1

o

∇uo(µ)∇v +

∫
Ω2

o(µ2)

∇uo(µ)∇v + µ1

∫
Γo10

uo(µ)v =

∫
Γo1

v. (3.1)

Introducing the bilinear form

ao(u, v,µ) = µ3

∫
Ω1

o

∇u(µ)∇v +

∫
Ω2

o(µ2)

∇u(µ)∇v + µ1

∫
Γo10

u(µ)v

and the linear functional

Fo(v,µ) =

∫
Γo1

v,

we can rewrite (3.1) as : find uo(µ) ∈ Xe such that

ao(uo(µ), v,µ) = Fo(v), for all v ∈ H1(Ωo(µ)). (3.2)

The coercivity and the continuity of the bilinear form ao and the continu-
ity of the functional Fo can be proved. So the Lax-Milgram theorem ensure
the existence and unicity of the solution (see [18]).

3.3 Reference geometry

This section is dedicated at the construction of affine mappings in or-
der to obtain the affine decomposition of the bilinear form ao and to work
with parameter-independent geometry. We take µ = (0.3, 2, 5) as refer-
ence parameter vector (see Section 1.2.2).Then, our reference domain will be
Ω = Ωo(µ2 = 2). Note that we have the following splitting for Ω

Ω = Ω1
o ∪ Ω2

o (µ2 = 2) = Ω1 ∪ Ω2,

where Ω1 = Ω1
o and Ω2 = Ω2

o (µ2 = 2).

50

3.3 REFERENCE GEOMETRY

3.3.1 Construction of affine mappings

Now, we want to construct an affine mapping T aff,k(:;µ) : Ωk −→ Ωk
o(µ),

with k = 1, 2. We remind that these mappings have to be individually
bijective, collectively continuous and each mapping has the general form

T aff,ki (x,µ) = Caff,k
i +

d∑
j=1

Gaff,k
ij (µ)xj, 1 ≤ i ≤ d

for given Caff,k : D −→ R3 and Gaff,k : D −→ R3×3, k = 1, 2 (see 1.50).
Since Ω1

o does not depend of any parameters, we have that

T aff,1 = Id1,

where Idk : Ωk ×D −→ Ωk
o(µ) is the identity operator, k = 1, 2.

To construct T aff,2, we choose four non-colinear points in Ω2

z1 = (0,
3

5
, 0),

z2 = (
3

20
,
3

5
, 0),

z3 = (
3

20
,
3

5
,−1),

z4 = (
3

20
,
13

5
, 0),

and four parametrized image node in Ω2
o(µ)

z1
o = (0,

3

5
, 0),

z2
o = (

3

20
,
3

5
, 0),

z3
o = (

3

20
,
3

5
,−1),

z4
o = (

3

20
,
3

5
+ µ2, 0).

51

3.3 REFERENCE GEOMETRY

Then, we construct the matrix Baff, 2 ∈ R12×12 and the vector V aff, 2 ∈ R12

as

Baff, 2 =



1 0 0 0 3
5

0 0 0 0 0 0 0
0 1 0 0 0 0 0 3

5
0 0 0 0

0 0 1 0 0 0 0 0 0 0 3
5

0
1 0 0 3

20
3
5

0 0 0 0 0 0 0
0 1 0 0 0 0 3

20
3
5

0 0 0 0
0 0 1 0 0 0 0 0 0 3

20
3
5

0
1 0 0 3

20
3
5
−1 0 0 0 0 0 0

0 1 0 0 0 0 3
20

3
5
−1 0 0 0

0 0 1 0 0 0 0 0 0 3
20

3
5
−1

1 0 0 3
20

13
5

0 0 0 0 0 0 0
0 1 0 0 0 0 3

20
13
5

0 0 0 0
0 0 1 0 0 0 0 0 0 3

20
13
5

0



,

and

V aff, 2 =



0
3
5

0
3
20
3
5

0
3
20
3
5

−1
3
20

3
5

+ µ2

0



.

52

3.3 REFERENCE GEOMETRY

And we obtain the coefficients of our affine mapping :

Caff, 2
1 (µ)

Caff, 2
2 (µ)

Caff, 2
3 (µ)

Gaff, 2
11 (µ)

Gaff, 2
12 (µ)

Gaff, 2
13 (µ)

Gaff, 2
21 (µ)

Gaff, 2
22 (µ)

Gaff, 2
23 (µ)

Gaff, 2
31 (µ)

Gaff, 2
32 (µ)

Gaff, 2
33 (µ)



=



0
3
5
− 3

10
µ2

0
1
0
0
0
µ2

2

0
0
0
1



=
(
Baff, 2

)−1
V aff, 2(µ).

Finally, the affine mapping reads :

T aff,2(x,µ) =

 0
3
5
− 3

10
µ2

0

+

 1 0 0
0 µ2

2
0

0 0 1

x.
3.3.2 Affine decomposition

In order to find the affine decomposition, we start to compute the Ja-
cobian and the matrix Daff,k, k = 1, 2. For k = 1, all these quantities are
trivial, i.e. Jaff,1 = 1 and Daff,1 = I, where I ∈ R3×3 is the identity matrix.
For k = 2, we easily compute

Jaff,2(µ2) =
µ2

2

and

Daff,2 =

 1 0 0
0 2

µ2
0

0 0 1

 .

Now, using the transformation (1.56), we obtain the bilinear form expressed
in the reference domain :

53

3.3 REFERENCE GEOMETRY

a(u, v,µ) = µ3

(∫
Ω1

∂

∂x1

u
∂

∂x1

v +

∫
Ω1

∂

∂x2

u
∂

∂x2

v +

∫
Ω1

∂

∂x3

u
∂

∂x3

v

)
+

∫
Ω2

∂

∂x1

u
∂

∂x1

v +
2

µ2

∫
Ω2

∂

∂x2

u
∂

∂x2

v +

∫
Ω2

∂

∂x3

u
∂

∂x3

v

+
µ1µ2

2

∫
Γ10

uv.

In the same way, we obtain the linear functional

F (v) =

∫
Γ2

v.

The affine decomposition is now clear, we have

a(u, v,µ) =
7∑
q=1

θqa(µ)aq(u, v), (3.3)

F (v,µ) = θ1
f (µ)f 1(v), (3.4)

where

θ1
a = θ2

a = θ3
a = µ3, θ

4
a = θ6

a = 1, θ5
a =

2

µ2

and θ7
a =

µ1µ2

2
,

and
θ1
f = 1,

while

aq(u, v) =



∫
Ω1

∂u

∂xq

∂v

∂xq
for q = 1, 2, 3,

∫
Ω2

∂u

∂xq

∂v

∂xq
for q = 4, 5, 6,

∫
Γ10

uv for q = 7,

and
f 1(v) =

∫
Γ2

v.

54

3.4 RESULTS AND VISUALIZATIONS

3.4 Results and Visualizations
In this section, we present some results that we obtain linking COMSOL

and rbMIT. More precisely, thanks to COMSOL, we drew the reference ge-
ometry of the problem and we generated a mesh. The different matrices
Aq which are needed in the Offline stage (see Section 1.2.4) are extracted
with COMSOL too. After that, we used the rbMIT software as in the 2-
dimensional case but without the use of the symbolic part.
First we will give some properties about the mesh. After that, we will focus
on the SCM (Section 1.5.4) and on two sample strategies, the Greedy (Sec-
tion 1.3.2) and the POD (Section 1.3.1). We will then compare these two
strategies computing the error in L2 and L∞-norm (see Remark 1.12). We
will also be interested in the behaviour of the output sN when we make vary
the parameters and we will compare these results with the 2D case. Finally,
we will represent some solutions and give their respective error.

3.4.1 Mesh

In the table 3.1, we represent the different properties of the meshes that
we used. The meshes have been generated by COMSOL [2]. We used P2

element and we have 1440 and 11340 DoFs for the first and second mesh
respectively.

Mesh properties Mesh 1 Mesh 2
Vertices 251 1724
Vertex 14 14
Edge 91 176

Triangle 470 1726
Tetrahedra 712 7052

DoFs 1440 11340
Element type P2 P2

Table 3.1: Properties of the mesh 1 and 2 for the reference geometry.

55

3.4 RESULTS AND VISUALIZATIONS

(a) Mesh 1. (b) Mesh 2.

Figure 3.5: Meshes for the reference geometry.

3.4.2 SCM

For the SCM, we took a train sample Ξtrain of size ntrain = 3000 and a
tolerance εSCM = 0.85 (see Section 1.5.4). In Figure 3.6, we show the αUB
(green) and the αLB (blue) for different J = 1 (Fig. 3.6(a)) and Jmax = 3
(Fig. 3.6(b)). Graphically we see that we have good results because the

(a) First iteration of the SCM. (b) Last iteration of SCM.

Figure 3.6: Representation of αUB (green) and αLB (blue) for the 3D Thermal
Fin problem.

lower bound and the upper bound are very close (Fig. 3.6(b)).

56

3.4 RESULTS AND VISUALIZATIONS

3.4.3 Greedy

In this section, we give the result of the Greedy algorithm (Section 1.3.2).
Here, the sample size is ntrain = 500, the tolerance εtol,min = 0.01 and the
Nmax = 120. In the figure 3.7(a), we have represented for each N the param-
eter µ = (µ1, µ2, µ3) that was chosen automatically by the algorithm. We
have obtained Nmax = 12 for the primal problem. In the figure 3.7(b), we
represent the error bound ∆N(µ) for 1 ≤ N ≤ Nmax. We see that the error
is decreasing as we except in theory. We can see that few basis function are

(a) Chosen parameters. (b) Error bound ∆N .

Figure 3.7: Sample and error bound for the Greedy.

needed to build a good reduced basis approximation (Nmax = 12).

3.4.4 Comparison between the POD and the Greedy

In this section, we compare two reduced order methods: the Greedy and
the POD. We recall that theoretically the Greedy-RB has to minimize the
RB error in L∞-norm while the POD minimizes the projection error in L2-
norm (Remark 1.12). In figure 3.8(a) we represent the error in L2-norm for
Greedy-RB and POD approximations while in figure 3.8(b), we represent the
error in L∞-norm.

57

3.4 RESULTS AND VISUALIZATIONS

(a) ‖uN − uNN ‖L2 . (b) ‖uN − uNN ‖L∞ .

Figure 3.8: Sample and error bound for the Greedy.

We see that the plot 3.8(a) confirms the theoretical expectation, i.e. the
error of the Greedy-RB approximation is bigger that the error of the POD
approximation since we are considering POD in its natural environment, i.e.
by considering L2 norm (and not L∞).

3.4.5 Output

Here, we present the variation of the output sN , i.e, the average of the
temperature on the base of the spreader, in function of the different param-
eters in 3D and 2D case (see Fig. 3.9 3.10 3.11). Graphically, the result of
Figure 3.9 corresponds to results expected by the theory. Indeed, if the Biot
number (µ1) increases, then there is a bigger heat transfer and so the temper-
ature at the base decreases. Moreover, we see that the 3D case is similar to
the 2D case. Since µ1 is a physical parameter, this similitude is quite logical
and expected. When we change the Biot number, the temperature decreases
if the Biot number increases and this fact is independent of the dimension of
the problem.

58

3.4 RESULTS AND VISUALIZATIONS

(a) Output sN for different values of µ1 in
the 3D case.

(b) Output sN for different values of µ1 in
the 2D case.

Figure 3.9: Output with µ2 = 2 and µ3 = 4.

In Figure 3.10, we note a difference between the 3D and 2D problem
when we vary µ2. In 3D, the temperature decreases and then it increases
while in the 2D case the temperature always decreases. In this case the
difference is due to the fact that 3D problem is characterized by a more
complex geometrical configuration where there is one more dimension (the
depth) influencing the conduction.

(a) Output sN for different values of µ2 in
the 3D case.

(b) Output sN for different values of µ2 in
the 2D case.

Figure 3.10: Output with µ1 = 0.3 and µ3 = 4.

59

3.4 RESULTS AND VISUALIZATIONS

(a) Output sN for different values of µ3 in
the 3D case.

(b) Output sN for different values of µ3 in
the 2D case.

Figure 3.11: Output with µ1 = 0.3 and µ2 = 2.

In Figure 3.11, we still have a similitude between the 3D and 2D problem.
Here µ3 is also a physical parameter, so the same explanation as above works.

3.4.6 Computational time

In this section, we will give some computational times that show the
efficiency of the method. We define two kind of computational time :

tOffline(N) =
Offline time to perform SCM & Greedy

time to evaluate µ→ sN (µ)
,

that compute the break-even, i.e. the maximal number of solutions that we
may evaluate with the FE method without using the RB.

tOnline(N , N) =
Online time to evaluate ∂t(µ→ sN)

time to evaluate µ→ sN (µ)
,

where, ∂t is the time we need to evaluate µ → sN(µ). This computa-
tional time shows the gain of time using the RB method for the solution of
parametrized problems.
In this problem, we compute these computational time for the two meshes.
We define N1 and N2 the dimension of the first and second mesh respectively.

60

3.4 RESULTS AND VISUALIZATIONS

So, we have :

tOffline(N1) =
140.1

0.05
= 2802

tOffline(N2) =
706.3

0.61
= 1157.8

tOnline(N1, N) =
0.004

0.05
= 0.08

tOnline(N2, N) =
0.004

0.61
= 0.006

For the first mesh, we obtain a break-even = 2802. So, it is not convenient
to use the RB if we have to compute less than 2802 solutions. Here, looking
at tOnline, we see that the use of the RB method is very gainful. We can get
faster Online evaluation (8% of computational costs in the Online evaluation)
.
For the second mesh the break-even = 1158 and tOnline(N2, N) is 0.006 then
the computational costs for the RB is 150 times less expensive than the one
for the FE. So here it is more gainful to use RB.

3.4.7 Visualization

This section is dedicated to the visualization of some representative re-
duced basis solutions. On the left figures, we show the solution for different
value of the parameter µ. On the right side, we represent the error between
the RB approximations and the FE solution.

61

3.4 RESULTS AND VISUALIZATIONS

(a) ∆s
N = 3.36e−6. (b) Error uN (µ)− uN (µ).

Figure 3.12: Example of representative solution and error for µ =
(0.5, 2.75, 10).

(a) ∆s
N = 8.2e−5. (b) Error uN (µ)− uN (µ).

Figure 3.13: Example of representative solution and error for µ = (0.01, 8, 1).

We note that the error bound is in the order of 10−4 and so there is a
good approximation.

62

Chapter 4

The 3D Time-Dependent
Graetz Problem

In this chapter, we will treat a 3D time-dependent non-compliant prob-
lem: the Graetz problem (see [4], [5] and [22]). The case 2D has also be
treated in [1] (see also http://augustine.mit.edu/workedProblems.htm). This
problem and the thermal fin Chapter 3 show that the RB method can be used
to solve also 3D steady and unsteady problems.

4.1 Problem description

The reader can refer to [1] for a description in 2D case.
This is a classical problem in literature dealing with forced heat convection
combined with heat conduction in a duct . The duct is separated in two
parts. This first one is made up of cold walls whereas the second part has
hot walls. The temperature at inlet is imposed and the flow has a known
given convective field. In Figure 4.1, we can see the duct with the cold and
hot portion.

Figure 4.1: A channel with cold and hot portion.

The physical domain Ωo(µ) = Ω1
o(µ) ∪ Ω2

o(µ) is defined in Figure 4.2(a).
We will adopt the same notation as in chapter 3, i.e. the quantity with a tilde

63

4.2 MATHEMATICAL DESCRIPTION

are dimensional quantity. A point x = (xo1, xo2, xo3) is non-dimensionalized
with respect to h̃ the width of the channel (in the xo3-direction). We intro-
duce also k̃ as the dimensional conductivity coefficient for the air flowing in
the channel, ν̃ the dimensional diffusivity and Ũ the reference velocity for
the convective field. We introduce the Péclèt number defined as Pe = Ũ h̃

ν̃
.

We consider 3 parameters. We denote by µ1 and µ2 the geometric param-
eters that represents the height of the cold portion and the length of the hot
portion, respectively (see Figure 4.2(b)). The last one is the Péclèt number
that is a physical parameter, i.e. µ3 = Pe. The parameter domain is given
by D = [1, 2]× [2, 10]× [0.1, 10]. We denote by µ the vector of parameters,
i.e.

µ = (µ1, µ2, µ3).

The temperature uo(µ) is non-dimensionalized and defined as

uo(µ) =
T̃ − T̃inlet
T̃hot − T̃inlet

,

where T̃ is the dimensional temperature, T̃inlet is the dimensional temperature
at inflow and T̃hot is the dimensional temperature of the hot walls.

(a) Domain Boundaries. (b) Parametrized Geometry.

Figure 4.2:

4.2 Mathematical description

The non-dimensionalized temperature uo(x, t;µ) satisfies the unsteady
advection-diffusion equation in Ωo(µ). The time interval is [0, T], where T
is the final time. We impose continuity of temperature and heat flux on all

64

4.2 MATHEMATICAL DESCRIPTION

internal faces. At the inflow and on the cold walls, we impose homogeneous
Dirichlet boundary condition. On the hot walls, we have non-homogeneous
Dirichlet boundary condition and at the outflow we impose zero heat flux
(homogeneous Neumann boundary condition).

Notation 4.1. For convenience, we will not indicate the x-dependence of
uo, i.e. we will write uo(x, t;µ) as uo(t;µ).

4.2.1 Strong formulation

Mathematically, uo(µ) satisfies

∂uo(t;µ)
∂t
−∇ ·

 (µ3)−1 0 0

0 (µ3)−1 0

0 0 (µ3)−1

∇uo(t;µ)

+ xo2(1− xo2) ∂
∂x1
uo(t;µ) = 0

in Ωo(µ), t ∈ [0, T]

uo(t;µ) = 0 on Γo1,2,3,4,5, t ∈ (0, T]

uo(t;µ) = g(t) on Γo7,8,9,10, t ∈ (0, T]

∂
∂n
uo(t;µ) = 0 on Γo11, t ∈ (0, T]

uo(t = 0;µ) = 0 in Ωo(µ) (Initial condition)

where n denotes the unit outward normal and g(t) is the control input. On
Γo6, we impose continuity of temperature and heat flux. The convective field
is U = xo2(1− xo2).

Notation 4.2. - The homogeneous Dirichlet boundaries will be denoted by
ΓDh i.e.

ΓDh = Γo1,2,3,4,5

and the non-homogeneous Dirichlet boundary will be denoted by ΓDnh, i.e.

ΓDnh = Γo7,8,9,10

65

4.2 MATHEMATICAL DESCRIPTION

We denote by ΓD = ΓDh ∪ ΓDnh.
- The Neumann boundary will be denoted by ΓN = Γo11.
We are interested in two kinds of output. The first one is

s1(t;µ) =

∫
Ωo(µ)

uo(t;µ) dx (4.1)

which is a vector and the ith component of the vector represents the average
of the temperature at the ith timestep. The second one is

s2(t;µ) =

∫ T

0

(∫
Ωo(µ)

uo(t;µ) dx

)
h(t) dt (4.2)

where h(t) is a function of time. This output represents the average temper-
ature.

4.2.2 Weak formulation

Let us introduce the space V = {v ∈ H1(Ωo(µ)) | v = 0 on ΓD}. We will
also introduce a lifting of g(t), Rg ∈ H1(Ωo(µ))× [0, T] such that Rg|ΓDnh

=
g(t) and uo(t;µ) = uo(t;µ) + Rg(x, t) where uo ∈ [0, T] × V . We can now
give the weak formulation.

For all v ∈ V , find uo(t;µ) ∈ [0, T]× V such that

mo(
∂uo
∂t

, v;µ) + ao(uo, v;µ) = g(t)Fo(v;µ) (4.3)

where

ao(uo, v;µ) =
1

µ3

∫
Ωo(µ)

∇uo(t;µ)∇v +

∫
Ωo(µ)

xo2(1− xo2)
∂uo(t;µ)

∂xo1
v,

mo(
∂uo
∂t

, v;µ) =

∫
Ωo(µ)

∂uo(t;µ)

∂t
v,

and

Fo(v,µ) = −
∫

Ωo(µ)

∂Rg

∂t
v − 1

µ3

∫
Ωo(µ)

∇Rg∇v −
∫

Ωo(µ)

xo2(1− xo2)
∂Rg

∂xo1
v.

66

4.3 REFERENCE GEOMETRY

The function g ∈ L2(0, T) is called the control input . The coercivity and
the continuity of the bilinear form ao and the continuity of the functional Fo
can be proved. So the Lax-Milgram theorem ensure the existence and unicity
of the solution (see [18]).

4.3 Reference geometry
As we did for the thermal fin, we will construct the affine mappings

to obtain the affine decomposition of the bilinear form ao and Fo. In this
case our reference domain is given for the reference parameter µ = (1, 2, 1),
i.e. the reference domain is Ω = Ωo(µ) and the reference subdomains are
Ωk = Ωk

o((µ)), k = 1, 2.

4.3.1 Construction of affine mappings

We want to construct an affine mapping T aff,k(:;µ) : Ωk −→ Ωk
o(µ), with

k = 1, 2. We remind that these mappings have to be individually bijective,
collectively continuous and each mapping has the general form

T aff,ki (x,µ) = Caff,k
i +

d∑
j=1

Gaff,k
ij (µ)xj, 1 ≤ i ≤ d

for given Caff,k : D −→ R3 and Gaff,k : D −→ R3×3, k = 1, 2. (see (1.50)).

In this problem the two subdomains depend on the parameters. So we
start to chose 4 non-colinear points in Ω1

z1 = (0, 0, 0),

z2 = (0, 1, 0),

z3 = (1, 0, 0),

z4 = (0, 0, 1),

and four parametrized image node in Ω1
o(µ)

z1
o = (0, 0, 0),

z2
o = (0, µ1, 0),

z3
o = (1, 0, 0),

z4
o = (0, 0, 1).

67

4.3 REFERENCE GEOMETRY

Then, we construct the matrix Baff, 1 ∈ R12×12 and the vector V aff, 1 ∈ R12

as

Baff, 1 =



1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 0
1 0 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0
1 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1



,

and

V aff, 1 =



0
0
0
0
µ1

0
1
0
0
0
0
1



.

68

4.3 REFERENCE GEOMETRY

And we obtain the coefficients of our affine mapping :

Caff, 1
1 (µ)

Caff, 1
2 (µ)

Caff, 1
3 (µ)

Gaff, 1
11 (µ)

Gaff, 1
12 (µ)

Gaff, 1
13 (µ)

Gaff, 1
21 (µ)

Gaff, 1
22 (µ)

Gaff, 1
23 (µ)

Gaff, 1
31 (µ)

Gaff, 1
32 (µ)

Gaff, 1
33 (µ)



=



0
0
0
1
0
0
0
µ1

0
0
0
1



=
(
Baff, 1

)−1
V aff, 1(µ).

Finally, the affine mapping reads :

T aff,1(x,µ) =

 1 0 0
0 µ1 0
0 0 1

x.
Now we do the same things to find T aff,2. We chose 4 non-colinear points

in Ω2

z1 = (1, 0, 0),

z2 = (3, 0, 0),

z3 = (3, 1, 0),

z4 = (1, 0, 1),

and four parametrized image node in Ω1
o(µ)

z1
o = (0, 0, 0),

z2
o = (µ2 + 1, 0, 0),

z3
o = (µ2 + 1, µ1, 0),

z4
o = (1, 0, 1).

Then, we construct the matrix Baff, 2 ∈ R12×12 and the vector V aff, 2 ∈ R12

69

4.3 REFERENCE GEOMETRY

as

Baff, 2 =



1 0 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0
1 0 0 3 0 0 0 0 0 0 0 0
0 1 0 0 0 0 3 0 0 0 0 0
0 0 1 0 0 0 0 0 0 3 0 0
1 0 0 3 1 0 0 0 0 0 0 0
0 1 0 0 0 0 3 1 0 0 0 0
0 0 1 0 0 0 0 0 0 3 1 0
1 0 0 1 0 1 0 0 0 0 0 0
0 1 0 0 0 0 1 0 1 0 0 0
0 0 1 0 0 0 0 0 0 1 0 1



,

and

V aff, 2 =



1
0
0

µ2 + 1
0
0

µ2 + 1
µ1

0
1
0
1



.

70

4.3 REFERENCE GEOMETRY

We obtain the coefficients of our affine mapping:

Caff, 2
1 (µ)

Caff, 2
2 (µ)

Caff, 2
3 (µ)

Gaff, 2
11 (µ)

Gaff, 2
12 (µ)

Gaff, 2
13 (µ)

Gaff, 2
21 (µ)

Gaff, 2
22 (µ)

Gaff, 2
23 (µ)

Gaff, 2
31 (µ)

Gaff, 2
32 (µ)

Gaff, 2
33 (µ)



=



1− µ2

2

0
0
µ2

2

0
0
0
µ1

0
0
0
1



=
(
Baff, 2

)−1
V aff, 2(µ).

Then, the affine mapping reads :

T aff,2(x,µ) =

 1− µ2

2

0
0

+

 µ2

2
0 0

0 µ1 0
0 0 1

x.

4.3.2 Afiine decomposition

In order to find the affine decomposition, we start to compute the Jaco-
bian and the matrix Daff,k, k = 1, 2. We easily obtain that

Jaff, 1(µ) = µ1 and Jaff, 2(µ) =
1

2
µ1µ2,

and

Daff,1 =

 1 0 0
0 1

µ1
0

0 0 1

 and Daff,2 =

 1
µ2

0 0

0 1
µ1

0

0 0 1

 .

Now, using the transformation (1.56), we obtain the time-independent
bilinear form expressed in the reference domain:

71

4.3 REFERENCE GEOMETRY

a(u, v,µ) =
µ1

µ3

∫
Ω1

∂

∂x1

u
∂

∂x1

v +
1

µ1µ3

∫
Ω1

∂

∂x2

u
∂

∂x2

v +
µ1

µ3

∫
Ω1

∂

∂x3

u
∂

∂x3

v

+
2µ1

µ2µ3

∫
Ω2

∂

∂x1

u
∂

∂x1

v +
µ2

2µ1µ3

2

µ2

∫
Ω2

∂

∂x2

u
∂

∂x2

v

+
µ1µ2

2µ3

∫
Ω2

∂

∂x3

u
∂

∂x3

v + µ1

∫
Ω1

x2(1− x2)
∂u

∂x1

v (4.4)

+µ1

∫
Ω2

x2(1− x2)
∂u

∂x1

v.

In the same way we obtain the time-dependent bilinear form

m(
∂u

∂t
, v;µ) = µ1

∫
Ω1

∂u

∂t
v + µ1

∫
Ω2

∂u

∂t
v, (4.5)

and the linear functional

F (v;µ) = −µ1

µ3

∫
Ω1

∂

∂x1

Rg
∂

∂x1

v − 1

µ1µ3

∫
Ω1

∂

∂x2

Rg
∂

∂x2

v − µ1

µ3

∫
Ω1

∂

∂x3

Rg
∂

∂x3

v

− 2µ1

µ2µ3

∫
Ω2

∂

∂x1

Rg
∂

∂x1

v − µ2

2µ1µ3

2

µ2

∫
Ω2

∂

∂x2

Rg
∂

∂x2

v

−µ1µ2

2µ3

∫
Ω2

∂

∂x3

Rg
∂

∂x3

v − µ1

∫
Ω1

x2(1− x2)
∂Rg

∂x1

v (4.6)

−µ1

∫
Ω2

x2(1− x2)
∂Rg

∂x1

v − µ1

∫
Ω1

∂Rg

∂t
v − µ1

∫
Ω2

∂Rg

∂t
v.

We obtain the affine decomposition

a(u, v;µ) =
8∑
q=1

θqa(µ)aq(u, v), (4.7)

m(
∂u

∂t
, v;µ) =

2∑
q=1

θqm(µ)mq(
∂u

∂t
, v;µ), (4.8)

F (v;µ) =
10∑
q=1

θqff
q(v;µ). (4.9)

72

4.4 RESULTS AND VISUALIZATION

Consequently, we have that Qa = 8, Qm = 2 and Qf = 10. We will not
indicate explicitly what are the θqaa , aqa , θqmm ,mqm , θ

qf
f , f

qf for qa ∈ [0, Qa],
qm ∈ [0, Qm] and qf ∈ [0, Qf], but these quantities can easily be deduced
from equations (4.4)-(4.6).

4.4 Results and Visualization

4.4.1 Mesh

In the table 4.1, we represent the different properties of the mesh that we
used. The mesh has been generated by COMSOL [2]. We used P2 element
and we have 2977 DoFs.

Mesh properties Value
Vertices 458
Vertex 12
Edge 92

Triangle 604
Tetrahedra 1779

DoFs 2977
Element P2

Table 4.1: Property of the mesh for the reference geometry.

Figure 4.3: Mesh for the reference geometry.

73

4.4 RESULTS AND VISUALIZATION

4.4.2 SCM

For the SCM, we took a train sample Ξtrain of size ntrain = 3000 and a
tolerance εSCM = 0.85 (see Section 1.5.4). In Figure 4.4, we show the αUB
(green) and the αLB (blue) for different J = 1 (Fig. 4.4(a)) and Jmax = 3
(Fig. 4.4(b)). Graphically, we can see we have good results because the lower

(a) First iteration of the SCM. (b) Last iteration of SCM.

Figure 4.4: Representation of αUB (green) and αLB (blue).

bound and the upper bound are very close (Fig. 4.4(b)).

4.4.3 POD-Greedy

In this section, we give the result of the POD-Greedy-RB algorithm de-
scribed in Section 2.2. Here, the sample size is ntrain = 500, the tolerance
εtol,min = 0.01 and the Nmax = 120 (Section 2.2). Since the problem is non-
compliant, we have to do the POD-Greedy for the primal and dual prob-
lem (Section 1.6). In the figure 4.5(a) and 4.6(a), we have represented for
each N the parameter µ = (µ1, µ2, µ3) that was chosen by the algorithm.
We have obtained Npr,max = 24 for the primal problem and Ndu,max = 6.
In the figure 4.5(b) and 4.6(b), we represent the error bound ∆N(µ) for
1 ≤ N ≤ Npr/du,max.

74

4.4 RESULTS AND VISUALIZATION

(a) Chosen parameters. (b) Error bound ∆N .

Figure 4.5: Sample and error bound for the primal problem.

(a) Chosen parameters. (b) Error bound ∆N .

Figure 4.6: Sample and error bound for the dual problem.

4.4.4 Output

In this section, we study the output s2(t;µ) =

∫ T

0

(∫
Ωo(µ)

uo(t;µ) dx

)
dt;

the average temperature in the duct, for different parameters µ. As we did
for the thermal fin, we compare these outputs with the 2D case. For the
computations, we took ∆t = 0.05 and nt = 150 timesteps, then tf = 7.5.

75

4.4 RESULTS AND VISUALIZATION

Figure 4.7: Output sN for different values of µ1 in the 3D case. µ2 = 2 and
µ3 = 1

In Figure 4.7, we represent the evolution of the average temperature when
the height of the "block" grows up. Looking at the values, we can consider
that this graphics is a straight line. Physically, if we change the height only
the geometry changes, but the average temperature is the same. Then if we
normalize we obtain a straight line. In Figure 4.8, we see that the average

(a) Output sN for different values of µ2 in
the 3D case.

(b) Output sN for different values of µ2 in
the 2D case.

Figure 4.8: Output with µ1 = 1 and µ3 = 1.

temperature increases when the length of the hot portion grows up. This
result agrees with the physics. Indeed, if the hot zone is bigger, then the
temperature will be bigger too.

76

4.4 RESULTS AND VISUALIZATION

(a) Output sN for different values of µ3 in
the 3D case.

(b) Output sN for different values of µ3 in
the 2D case.

Figure 4.9: Output with µ1 = 1 and µ2 = 2.

The Figure 4.9 shows that the average temperature decreases when the
Péclèt grows up. Physically, if the Péclèt is bigger then there is more trans-
port and then the temperature is lower. Here, we see a difference between
the 3D and the 2D case. We can observe that the 3D case in less sensible to
the variation of the Péclèt (looking at the difference between the first and the
last value in the two cases). This difference is maybe due to two things: the
difference between the geometries and the form of the convective field. Here,
the convective field is a parabola which stretch out over the z-axis, then there
is more transport than if we had a "dome" for the convective field.

4.4.5 Computational time

As in Section 3.4.6, we compute the different computational time that we
defined. Here N = 2977 and so :

tOffline(N) =
313.7

9.68
= 32.4,

tOnline(N , N) =
0.05

9.68
= 0.005.

Then, if we want more than 32 solutions, the use of the RB method is more
efficient and recommended. Here, looking at tOnline, we see that the use of
the RB method is very gainful. We can get faster Online evaluation (5h of
computational costs in the Online evaluation).

77

4.4 RESULTS AND VISUALIZATION

4.4.6 Visualization

This section is dedicated to the visualization of reduced basis solutions.
On Figure 4.10, we represent on the left the solution for µ = (1, 2, 10) for
different timesteps and control input g = 1. On the right side, we represent
the error between the RB approximations and the FE solution. We can see
that the error is very small and that the temperature on Γo 11 is getting close
to 1.

(a) Visualization at t0 = 0. ∆s
N = 0. (b) Error uN (µ)− uN (µ).

(c) Visualization at t6 = 0.3. ∆s
N = 0.0131. (d) Error uN (µ)− uN (µ).

Figure 4.10: Example of representative solution and error for µ = (1, 2, 10).

78

4.4 RESULTS AND VISUALIZATION

(e) Visualization at tf = 7.5. ∆s
N =

0.0708.
(f) Error uN (µ)− uN (µ).

Figure 4.10: Example of representative solution and error for µ = (1, 2, 10).

On Figure 4.11, we have taken a slice in the x− y plan and we represent
(on the left) a solution with dominant transport (µ3 = 5) and one with
dominant diffusion (µ3 = 0.1).

(a) Dominant transport t1 = 0.05. (b) Dominant diffusion t1 = 0.05.

Figure 4.11: Figures on the left represent the solution for a dominant trans-
port (Pe = 5) with µ1 = 1 and µ2 = 2. Figures on the right represent the
solution for dominant diffusion (Pe = 0.1) with µ1 = 1 and µ2 = 2.

79

4.4 RESULTS AND VISUALIZATION

(c) Dominant transport t10 = 0.5. (d) Dominant diffusion t10 = 0.5.

(e) Dominant transport tf = 7.5. (f) Dominant diffusion tf = 7.5.

Figure 4.11: Figures on the left represent the solution for a dominant trans-
port (Pe = 5) with µ1 = 1 and µ2 = 2. Figures on the right represent the
solution for dominant diffusion (Pe = 0.1) with µ1 = 1 and µ2 = 2.

80

Appendix A

Appendix

Here, we will provide some details about the implementation of the two
problems treated in this work, i.e. the Thermal Fin and the Greatz problem,
with the rbMIT and COMSOL software. Our attention will focus on two
aspects: the running of the Offline part which concerns the programmer and
the running of the Online part which concerns the user.

A.1 Offline part

Here, we will briefly explain how to use COMSOL and MATLAB to run
the Offline part for elliptic and parabolic problems, more specifically how to
run the Offline part of the Thermal Fin (for elliptic problem) and the Graetz
problem (parabolic problem). The main task of COMSOL is to construct the
different matrices Aq (and M q for parabolic problems). The function which
does this task is probname_Get_matrix.m, for the problem named probname.
This function has to be modified at hands for each new problems. Once we
have done this, we use the function probname_Step1_coernoncompliant.m
to specify some properties/settings about the problems as the parameter
numbers, the parametric set D and the problem type (’elliptic’ or ’parabolic’)
through the field pr_PROBDEF.type. Then, we call the routine
probname_Step2_1_coer_noncompliant.m to execute the SCM. Now, if we
want to use the Greedy we use the probname_Step2_2_coer_noncompliant.m,
otherwise to use the POD (only for elliptic problems), we use the function
probname_POD_Step2_2_coer_noncompliant.m. For the dual problem we
use probname_outputname_Step2_2_coer_noncompliant.m or
probname_POD_outputname_Step2_2_coer_noncompliant.m for the Greedy
or the POD respectively, where outputname is the name of the output (in our
case ’average’). Before doing this, we have to create a file probname_Get_The-
-ta_q.m and probname_outputname_Get_Theta_q.m where we have to spec-

81

A.2 ONLINE PART

ify the coefficients θa,f,m,l.
Then, to launch the Offline procedure, we can call the function rbU_probname.m
and all the steps mentioned are launched.

A.2 Online part
The idea here is to give a little tutorial about the different functions that

are available for output or visualizations for steady problems (as Thermal
Fin) or time-dependent problem (as Graetz problem).

A.2.1 Elliptic problem

In this section, we will focus on steady problem. We will present the
different function to evaluate the output or to visualize the solution. We will
take as example the Thermal Fin problem.

Output

For stationary problems as the Thermal Fin, we can use the function
Online3D to evaluate the output sN and the error bound DeltaN. More pre-
cisely,

[sN,DeltaN]=Online3D(probname,mu,outputname),

where probname is the name of the problem, in our case ’TFIN3D ’, outputname
is the name of the output, here ’average’, the variable mu is the vector of the
parameter, for example mu=[0.3, 2, 5]. A full syntax of Online3D is

[sN,DeltaN]=Online3D(probname,mu,outputname,type_res,N_pr,
N_du),

So, the user can also specify the size of the primal and dual basis through
the variable N_pr and N_du. The variable type_res is a double (1, 2 or 3)
which specify different kind of output :

- if type_res= 1, then sN and DeltaN are the standard output and error
bound of our problem (here the average on the base of the spreader). We
can use this function to evaluate the output if we have used the Greedy or
the POD.

- if type_res= 2, then

82

A.2 ONLINE PART

[u_RB, u_RB_FEM]=Online3D(probname,mu,outputname,2,N_pr, N_du),

returns the reduced basis approximation of the state solution, u_RB and also
the reduced basis approximation of the state solution expressed in the FE
basis, u_RB_FEM. Then, u_RB is a vector of dimension N_pr and u_RB_FEM is
a vector of dimension N .

- if type_res= 3, then

[u_FEM]=Online3D(probname,mu,outputname,3)

returns the FE solution u_FEM.

Visualization

- To visualize the RB approximation for the problem named probname,
the output named outputname and for a parameter mu, just do

Vis_RB3D(probname, mu, outputname,1).

- To visualize the FE solution, just do

Vis_RB3D(probname, mu, outputname,2).

- Finally, to visualize the error between the RB approximation and the
FE solution, write

Vis_RB3D(probname, mu, outputname,3).

A.2.2 Parabolic problem

Now, we will focus on functions about time-dependent problems. The
example that we consider is the Graetz problem.

Output

Since the resolution of the system (2.9) is the same in 2D and in 3D, then
the function to evaluate the output is Online_RB the same that is in the
rbMIT library. For an explanation see the documentation in [7]. Note that
for the elliptic case we could use this function too with some modifications.

83

A.2 ONLINE PART

Visualization

- To visualize the RB approximation for the problem named probname,
the output named outputname and for a parameter mu, write

Vis_TRB3D(probname, mu, outputname).

By default, the control input is equal to 1. If we want to specify another
control input, we do

Vis_TRB3D(probname, mu, outputname,gt).

where gt is a time-dependent function.
- To visualize the FE solution write

Vis_TRB3D(probname, mu, outputname,gt,2).

- To visualize the RB solution at time tk, write

Vis_TRB3D(probname, mu, outputname,gt,3,nk).

where nk is a double which indicates the timestep.
- Finally, to visualize the the error at time tk, just do

Vis_TRB3D(probname, mu, outputname,gt,4,nk).

84

Bibliography

[1] Reduced Basis at MIT. http://augustine.mit.edu/methodology.htm,
c©MIT, 2009.

[2] Comsol Multiphysics 3.5a. Guide available at
http://math.nju.edu.cn/help/mathhpc/document.htm.

[3] V.S. ARPACI. Conduction Heat Transfer. Addison-Wesley, Reading,
UK, 1966.

[4] V.S. ARPACI, P.S. LARSEN. Convection Heat Transfer. Prentice Hall,
Englewood Cliffs, US, 1984.

[5] F. INCROPERA, D. DeWITT, T. BERGMANN, A. LAVINE. Funda-
mentals of Heat and Mass Transfer. John Wiley & Sons, 2007.

[6] B.O. ALMORTH, P. STERN, F.A. BROGAN. Automatic choice of
global shape functions in structural analysis. AIAA Journal, 16: 525-
528, 1978.

[7] D.B.P. HUYNH, N.C. NGUYEN, G. ROZZA, A.T. PATERA. Docu-
mentation for rbMIT Software: I. Reduced Basis (RB) for Dummies.
c©MIT, available at http://augustine.mit.edu. 2007.

[8] D.B.P. HUYNH, N.C. NGUYEN, G. ROZZA, A.T. PATERA. Docu-
mentation for rbMIT Software: II. Time dependent problems. c©MIT,
2008.

85

BIBLIOGRAPHY

[9] D.B.P. HUYNH, N.C. NGUYEN, G. ROZZA, A.T. PAT-
ERA. rbMIT Software. c©MIT, Cambridge, 2007. Available at
http://augustine.mit.edu/methodology/methodology_rbmit_system.htm.

[10] G. ROZZA, D.B.P. HUYNH, N.C. NGUYEN, A.T. PATERA. Real-
Time Reliable Simulation of Heat Transfer Phenomena. ASME Summer
Heat Transfer Conference, San Francisco, California, Paper HT2009-
88212, 2009.

[11] D.B.P. HUYNH, G.ROZZA, S. SEN, A.T. PATERA. A successive con-
straint linear optimization method for lower bounds of parametric coer-
civity and inf-sup stability constants. Comptes Rendus Mathématique,
Volume 345: 3362-3366, 2007.

[12] A. MANZONI. Shape Optimization and Optimal Control Problems in
Viscous Flows Using Reduced Basis Method. A Short Guide for Pro-
gramming with rbMIT and MLife, Internal documentation, 2009.

[13] C. GUNTHER. Reduced basis mathod for the shape optimization of rac-
ing car components. EPFL, Master thesis, Chair of Modelling and Sci-
entific Computing (CMCS), September 2008.

[14] A.K. NOOR, J.M. PETERS Reduced Basis technique for nonlinear sys-
tem analysis of structures. AIAA Journal, 18(4): 455-462, 1980.

[15] A.T. PATERA and G. ROZZA. Reduced Basis Approximation and A
Posteriori Error Estimation for Parametrized Partial Differential Equa-
tions. To appear in MIT Pappalardo Graduate Monographs in Mechan-
ical Engineering, c©MIT, 2006-2009, Version 1.0.

[16] A. QUARTERONI. Numerical Approximation of Partial Differential
Equations. Springer-Verlag, Berlin, 1997.

[17] A. QUARTERONI, R. SACCO, F. SALERI. Numerical Mathematics.
Springer, Berlin, 2007.

[18] A. QUARTERONI. Numerical Models for Differential Problems. MS&
A, Volume 2, Springer, 2009.

[19] A. QUARTERONI, G. ROZZA. Numerical solution of parametrized
Navier-Stokes equations by reduced basis methods. Numerical Methods
for PDEs, 23(4): 923-948, 2007.

86

BIBLIOGRAPHY

[20] G. ROZZA, D.B.P HUYNH and A.T. PATERA. Reduced Basis Approx-
imation and a Posteriori Error Estimation for Affinely Parametrized
Elliptic Coercive Partial Differential Equations : Application to Trans-
port and Continuum Mechanics. Archives of Computational Methods in
Engineering, 15(3):229-275, 2008.

[21] G. ROZZA. An Overview on Reduced Basis Approximation for
Parametrized PDEs. Institut d’Analyse et Calcul scientifique (IACS),
Nr 04.2009, February 2009.

[22] G. ROZZA, N.C. NGUYEN, A.T. PATERA, S. DEPARIS. Reduced ba-
sis method and a posteriori error estimators for heat transfer problems.
ASME Summer Heat Transfer Conference, San Francisco, California,
Paper HT2009-88211, 2009.

[23] G. ROZZA. Computational mechanics by reduced basis method. Doctoral
course given at EPFL in spring 2009.

[24] N.C. NGUYEN, G. ROZZA, A.T. PATERA. Reduced Basis Approxima-
tion and A Posteriori Error Estimation for the Time-Dependent Viscous
Burgers’ Equation. Calcolo, 46(3):157-185, 2009.

[25] N.C.NGUYEN, G. ROZZA, D.B.P.HUYNH, A.T.PATERA. Reduced ba-
sis approximation and a posteriori error estimation for parametrized
parabolic PDEs; Application to real-time Bayesian parameter estima-
tion. c©MIT, Department of Mechanical Engineering, Cambridge MA,
USA. To appear (2010) in Computational Methods for Large Scale In-
verse Problems and Uncertainty Quantification, John Wiley & Sons,
UK. 2010.

87

Index

Affine
geometry precondition, 16
mapping, 16
representation, 3

Break-even, 60

Coercive
form, 2
parametrically, 4

Coercivity
lower bound, 33
upper bound, 33

Continuous form, 2
Control input, 40, 67
Convection heat transfer coefficient,

45

Dual problem, 37

Effectivity, xi
Efficiency, xi, 15
Energy inner product, 6
Error bound, 14

a posteriori, 25
energy, 27
output, 27
relative, 27

Graetz problem, 63
Greedy, 12

Heat
conduction, xi, 63
convection, xi, 63

Hierarchical/Nested condition, 8

Input parameter, 5

Many-query context, ix
Mapping coefficient, 18
Matrix

stiffness
FEM, 11
RB, 11

Norm
dual, 27
energy, 6

Number
Biot, 47
Péclet, 64

Original domain, 15
Output

compliant, 5
non-compliant, 5, 36

88

INDEX

Parametric bilinear form, 1
Piecewise affine transformation, 17
POD-Greddy sampling procedure, 42
Positive

definite form, 2
semidefinite, 2

Primal problem, 36
Proper Orthogonal Decomposition, POD,

12

RB triangulation, 16
Real-time context, ix
Reference domain, 15
reliability, 26
Residual, 26
Rigor, 14

Sharpness, 14
Skew-symmetric, 2
Successive constraint method, SCM,

31
Symmetric, 2

Test sample, 12
Thermal conductivity, 46
Thermal Fin, 45

89

	Acknowledgements
	Introduction
	1 Overview of the Reduced Basis Method: Elliptic Problems
	1.1 Parametric bilinear forms
	1.1.1 Coercivity eigenproblem
	1.1.2 Affine parameter dependence and parametric coercivity

	1.2 Elliptic coercive parametric PDEs: compliant case
	1.2.1 Problem formulation
	1.2.2 Truth approximation
	1.2.3 Reduced basis approximation
	1.2.4 Offline-Online procedure
	1.2.5 Operation count and storage

	1.3 Sample/space assembling strategies
	1.3.1 POD RB spaces
	1.3.2 Greedy Lagrange spaces

	1.4 Geometric variations
	1.4.1 Affine Mappings: Single Subdomain
	1.4.2 Bilinear Form

	1.5 A posteriori error bound
	1.5.1 Preliminaries
	1.5.2 Offline-Online procedure
	1.5.3 Coercivity lower bound
	1.5.4 The successive constraint method

	1.6 Non-compliant elliptic problems

	2 Overview of the Reduced Basis Method: Parabolic problems
	2.1 Reduced Basis and a posteriori error bound
	2.2 POD(t)-Greedy(bold0mu mumu NGOC) sampling procedure

	3 The 3D thermal fin problem
	3.1 Problem description
	3.1.1 Heat Sink
	3.1.2 Parametrized geometry and parameters

	3.2 Mathematical description
	3.2.1 Strong formulation
	3.2.2 Weak formulation

	3.3 Reference geometry
	3.3.1 Construction of affine mappings
	3.3.2 Affine decomposition

	3.4 Results and Visualizations
	3.4.1 Mesh
	3.4.2 SCM
	3.4.3 Greedy
	3.4.4 Comparison between the POD and the Greedy
	3.4.5 Output
	3.4.6 Computational time
	3.4.7 Visualization

	4 The 3D Time-Dependent Graetz Problem
	4.1 Problem description
	4.2 Mathematical description
	4.2.1 Strong formulation
	4.2.2 Weak formulation

	4.3 Reference geometry
	4.3.1 Construction of affine mappings
	4.3.2 Afiine decomposition

	4.4 Results and Visualization
	4.4.1 Mesh
	4.4.2 SCM
	4.4.3 POD-Greedy
	4.4.4 Output
	4.4.5 Computational time
	4.4.6 Visualization

	A Appendix
	A.1 Offline part
	A.2 Online part
	A.2.1 Elliptic problem
	A.2.2 Parabolic problem

	Bibliography

