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Abstract 
Silicon-based digital camera sensors exhibit significant sensitivity 
beyond the visible spectrum (400-700nm). They are able to 
capture wavelengths up to 1100 nm, i.e., they are sensitive to 
near-infrared (NIR) radiation. This additional information is 
conventionally treated as noise and is absorbed by a NIR-
blocking filter affixed to the sensor. 
We show that retaining instead of removing NIR information can 
significantly improve certain computational photography and 
computer vision tasks. Indeed, intrinsic properties of the NIR 
wavelength band guarantee that images can be sharper, less 
affected by man-made colorants, and more resilient to changing 
light conditions. The benefits of using NIR images in conjunction 
with standard color images in applications such as haze removal, 
skin smoothing, single and multiple illuminant detection, shadow 
detection, and material classification is discussed. 

1. Introduction 
A digital camera sensor (either CCD or CMOS) is made of 
silicon, a semi-conductor whose photosensitivity ranges from 
roughly 200nm to 1100nm. As current digital cameras’ primary 
goal is to capture and reproduce the visible spectrum, a near 
infrared (NIR) blocking filter, also known as hot-mirror, is placed 
in front of the sensor. Ultraviolet light (200-400nm) is filtered out 
by the optical elements of the camera. 
Thus, most camera sensor sensitivities are limited to the visible 
spectrum only, i.e., a wavelength range of 400-700nm. This is 
suboptimal because the physical differences in the RGB and NIR 
wavebands result in markedly dissimilar images that, when 
compared, offer powerful clues about the real world. The inherent 
differences in RGB and NIR image intensities and frequencies 
allow us much better disambiguating scene elements, which can 
be exploited in image enhancement, image segmentation, object 
recognition, and image classification. Additionally, mathe-
matically ill-determined problems, such as multiple illuminant 
and shadow detection, become manageable. 
In this paper, we present an overview of our current research [1-7] 
on combining RGB and NIR images to enhance photography or to 
extract more accurate information about the visible scene. While 
RGB and NIR-only imaging has been popular for many years in 
scientific, commercial, and consumer imaging [1], the 
combination of the two to improve computational photography 
and computer vision tasks has only recently been introduced [1-
10]. 
The article is organized as follows. In Section 2, we discuss the 
physical properties of NIR that result in different image content. 
In Section 3, we show two applications where NIR images are 
used to enhance image quality of color photographs, namely in 
haze removal and in realistic skin smoothing. Section 4 introduces 
applications where we use NIR images to extract more 
information about the original scene: illuminant, multiple 

illuminant and shadow detection as well as material classification. 
Section 5 concludes the paper.  

2. NIR Properties 
Visible and NIR images of the same scene are, at first regard, very 
similar. We can easily recognize that they are taken from the same 
viewpoint and contain the same scene elements (see Figure 1). On 
second inspection, however, we do notice fundamental 
differences. In the NIR image, the trees in the foreground, for 
example, are much lighter and the mountains in the background 
are much clearer, i.e. they have more contrast.  

 
Figure 1. Visible (RGB) and NIR image of the same scene.  

Some of the physical phenomena resulting in fundamental 
differences between color and NIR images’ intensity, frequency, 
and contrast that we exploit in our research are discussed in the 
subsection below. 

2.1. Light Scattering 
Small particles scatter incident light, which can alter the light 
intensity at specific wavelengths. When the particles’ size is very 
small (< λ/10), radiation behaves according to Rayleigh scattering, 
which states that:  

 
 

i.e., the intensity of the scattered light IS is related to that of the 
incident light IO by the inverse of the fourth power of the 
wavelength λ. As a result, sky appears blue because it is the most 
scattered color due to its relative short wavelength. In comparison, 
NIR at 1000 nm is 40 times less scattered than blue at 400nm. As 
shown in Fig. 1, NIR intensity thus tends to be dramatically lower 
than its RGB counterpart in sky and its reflected components, 
such as water.  
Another effect of Rayleigh scattering can be observed when 
atmospheric haze or pollution is present. NIR images appear 
sharper and contain more details in distant objects than the 
corresponding color photograph. The effect is clearly visible by 
looking at the mountains in Figure 1. We exploit this fact in our 
haze removal algorithm (see Section 3.1). 
With increasing particle size, the physical interactions between 
light and particles change from Rayleigh-type to Mie-type 
scattering. When the particles are large (> λ/10), spherical, and 
diverse, the dependency between scattering intensity and 
wavelength disappears and all wavelengths are equally scattered. 
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Thus, clouds will look similar in RGB and NIR images, but the 
contrast between sky and clouds is enhanced in the NIR image.  

2.2. Molecular Structure 
The interaction of light and particles in the atmosphere is not the 
sole reason why the intensity content of NIR images differs from 
those of RGB ones. In general, different molecular structures and 
complex absorption spectra of natural and man-made materials 
will result in different intensities in RGB and NIR images.  

 
Figure 2. Left: RGB image. Right: NIR image. See text for 

explanation. 
A valuable use of NIR images is to distinguish between surfaces 
that appear identical to the human eye. Indeed, NIR imaging is 
“transparent” to a number of colorants or paints and as such can 
see through that first layer to reveal the surface underneath. There 
are thus surfaces that can be distinguished in the visible spectrum 
but appear the same in the NIR. The converse is also true: some 
surfaces that have the same color in the visible images show 
different intensities in the NIR images, due to different material 
characteristics. We can exploit this “NIR-metamerism” for image 
segmentation and material classification (see Section 4.2). An 
illustration of everyday objects exhibiting this behavior is 
provided in Fig. 2. Note that the red and white scarf pattern 
(middle of the image, green arrow) disappears in the NIR. On the 
other hand, the two black objects (left side of the image, yellow 
arrows) have a very different NIR response. The same applies to 
the turquoise colored scarf and strap in the right side of the image. 

3. Exploiting NIR to Enhance Images 
As discussed above, color and NIR images have different 
intensity and frequency content, given by light and material 
interactions. We can take advantage of these differences in two 
ways. First, by selective registration and fusion of color and NIR 
images, we can enhance certain regions of the color image to 
improve visual quality. Two such applications, haze removal and 
skin smoothing, are introduced below. 

3.1. Haze Removal 
In landscape photography, distant objects often appear blurred 
with a blue colorcast, a degradation caused by atmospheric haze. 
The goal of haze removal, or dehazing, an image is thus to 
enhance its contrast, pleasantness, and information content. 
Current automatic haze removal methods using a single image 
make use of the haze imaging equation, which is the sum of two 
terms, direct attenuation and airlight. Direct attenuation describes 
the scene radiance and its decay in the medium, airlight is the 
ambient light reflected into the line of sight by atmospheric 
particles [12]. As the problem is under-constrained, correct 
assumptions need to be made in order to obtain good results. 
Tan [13] observes that haze-free images have larger local contrast 
and that the airlight is smooth. His results, after maximizing local 
contrast, tend to be oversaturated and can yield halo artifacts. 
Fattal [14] obtains, after assuming that the transmission and 

surface shading are uncorrelated, physically correct dehazed 
images, but his assumption might fail in cases of very dense haze. 
He et al. [12] introduce the dark channel prior, based on the 
observation that very dark pixels exist in every part of natural 
scenes. The additive airlight brightens these dark pixels, 
increasing with distance. A depth map can thus be obtained, 
which is then used to recover the scene radiance. 

 
Figure 3. Comparison of the original image, our visible/NIR 
fusion, Fattal’s dehazing approach (Courtesy of R. Fattal), 

and He et al.’s haze removal (Courtesy of K. He). 
The disadvantage of these proposed based techniques is their 
complexity. Our method, which exploits Raleigh scattering and 
thus the fact that haze is much less present in NIR images, is fast 
and does not need heuristics for haze and airlight detection.  
To fuse visible and NIR images, we first transform the visible 
RGB image into a luminance-chrominance color space. We obtain 
a one-channel NIR image containing intensity data [1]. We apply 
an edge-preserving multiresolution decomposition based on the 
Weighted Least Squares (WLS) optimization framework [15] to 
both the visible luminance and the NIR intensity images. At each 
resolution, a pixel level fusion criterion that maximizes contrast is 
applied, with the exception of the lowest frequency approximation 
image where the visible luminance image is retained to take into 
account the luminance perception of a human observer [3]. 
In Figure 3, we compare our algorithm to He et al.’s [12] and 
Fattal’s [14] single color image haze removers. Our method 
improves any scattering degradation following Rayleigh’s law, as 
NIR image are intrinsically haze-free. As the high frequency 
content of NIR images is otherwise very similar to the visible, our 
algorithm can be applied to any image, regardless of the actual 
presence of haze, without introducing artifacts. Moreover, we do 
not need to generate a correct depth map or to detect the airlight, 
tasks that can be error prone.  

3.2. Realistic Skin Smoothing 
Another photographic enhancement application where NIR 
images can provide essential information is in portrait 
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photography. Large efforts are often undertaken to enhance such 
images. While some artifacts are induced by the capturing 
process, a number of unwanted details are “intrinsic” to the  
photographed person, e.g., pores, wrinkles, freckles, and spots. As 
a result, models and photographers employ many techniques to 
mask or correct these less appealing features, such as make-up, 
image editing software, or print airbrushing. 

 
Figure 4. RGB image, NIR image, and fused image.  

NIR images are mostly free of these artifacts; skin appears much 
smoother (see Figure 4). This is due to the absorption behavior of 
melanin and hemoglobin, the key components of skin color. They 
have little absorption in the near-infrared part of the spectrum; the 
depth of light penetration in the skin is approximately 
proportional to the incident radiation’s wavelength.  As most of 
the unwanted skin artifacts are on or near the skin’s surface, they 
are to a large extend attenuated in the NIR image. 
Our framework [6] thus consists of capturing a pair of 
visible/near-infrared images and separating both of them into base 
and detail layers (akin to a low/high frequency decomposition) 
using the fast bilateral filter [11]. A smooth, realistic, output 
image can be obtained by fusing the base layer of the visible 
image with the near-infrared detail layer. The results look 
realistic, as can be observed in Figure 6.  

4. Exploiting NIR to Extract Information 
In the previous section, we have shown two applications where 
selective fusion of visible and NIR images can enhance a 
photographic image. In this section, we show applications where 
the extra information that NIR images provide can give more 
accurate information about the original scene content. 

4.1. Illuminant and Shadow Detection 
The color signal captured by an imaging system, eye or camera, is 
the product of incident light and the imaged surface's reflective 
properties. The human visual system is, to a certain extent, color 
constant, i.e. it is able to discount the contribution of the 
illuminant and retain the object’s surface color. This is not the 
case for a camera. Thus, objects are not captured and rendered 
properly, e.g., snow illuminated by skylight appears blue in 
photographs even though we see it white. 
In order to make a camera color constant (a process also known as 
white-balancing), one effectively has to separate the incident color 
signal into its illuminant and reflectance components. For regular 
RGB cameras, the problem is ill-posed, and solving for color 
constancy can only be done using either additional information or 
by making assumptions about the imaged scene or the world in 
general [2].  
Using NIR information in conjunction with visible images for 
solving color constancy effectively doubles the wavelength range 

over which the illuminant can be estimated. Camera RGB filters 
have peak sensitivities that are only about 100nm apart, thus 
illuminant detection and estimation is usually performed by 
comparing fairly correlated information. Because of its greater 
distance to the visible spectrum (400nm on average), NIR is less 
correlated and can therefore provide more relevant information for 
illuminant estimation. 

 
Figure 5. Normalized energy of common light sources. Note 

that in the NIR, the curves are monotonic and well separated 
over that part of the spectrum. Fluorescent lights have a very 

limited output in the near-infrared.  
We show that considering R, G, and B to NIR pixel ratios is very 
robust to most commonly encountered illuminants and able to 
retrieve the correct solution [2]. The main advantage of using NIR 
is that for common lighting conditions, it has very large response 
variation with respect to the type of incident light: incandescent 
light bulbs have their emission peak in the NIR, while scattered 
skylight (which is the color of outdoor shadows) and fluorescent 
lighting have virtually no emission in that part of the spectrum 
(Figure 5). This actually enables us to distinguish between 
different lights that have an identical white point, but different 
metameric properties. Using the same observations as above and 
extending the ratio comparisons to image regions also allows 
detecting multiple illuminants in a scene (Figure 6). 

 
Figure 6. Column-wise: RGB image, NIR image, and illuminant 
map. Top row: a cloth lit by an LED and an incandescent light 

bulb. Note how the bright and coherent LED light source 
disappears in the NIR. Middle row: a simple outdoor scene where 
the sky is very well detected from the rest of the sun-illuminated 

scene. Bottom row: out-door shadow detection.  
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Figure 7. The visible image, binary shadow map, and shadow mask obtained by a matting algorithm [16]. 
Shadow detection is a special case of multiple illuminant 
detection. Starting with the observation that in most imaging 
situations (with the exception of carbon black and water), the 
object reflectance times the channel’s quantum efficiency is much 
higher in the NIR than any of the visible R, G, or B channels, we 
can deduct that dark areas in both visible and NIR images are 
prime shadow candidates [7]. This allows us to create a binary 
shadow map that can be input into a matting algorithm [16] to 
create a full shadow mask.  

4.2. Material Classification 
As mentioned above, NIR imaging is “transparent” to a number of 
colorants or paints and as such can see through the first layer to 
reveal the surface underneath (see Figure 2). The NIR intensity 
better reflects the material’s reflective property; it is often not 
influenced by surface colorants. Additionally, texture patterns 
resulting from different colorization of an object disappear. NIR 
images used in conjunction with visible images can thus give us a 
much better understanding of an object’s inherent material 
composition. 
In a first study [5], we have analyzed the classification of four 
material classes (textiles, tiles, linoleum, and wood) with a total of 
51 samples. The features were color, visible lightness versus NIR 
intensity, and texture. We obtained a classification rate of 98% 
compared to 60% using features of the visible images only. 

5. Conclusion 
We showed that combining “invisible” NIR images with color 
photographs improve several computational photography and 
computer vision tasks, such as haze removal, skin smoothing, 
illuminant and shadow detection, and material classification. 
Silicon, the light sensitive material of current digital camera 
sensors, is inherently capable of capturing both visible and NIR 
radiation.    
Widespread adoption of the presented techniques will depend on 
the development of a camera that can concurrently capture RGB 
and NIR images on a single sensor. We have thus started to 
investigate [4] how such a camera system needs to be designed. 
However, by either capturing a scene sequentially and exchanging 
a hot mirror with a visible light-blocking filter between the two 
shots [1], or by using a two sensor and beam-splitter set-up [8,9], 
research in harnessing the power of multispectral image 
acquisition can continue to progress.  
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