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Abstract.
Resonant magnetic perturbation (RMP) and error field correction produced by

toroidally and poloidally distributed coil systems can be optimized if each coil is
powered with an independent power supply. A 3D multi-mode geometry-independent
Lagrange method has been developed and appears to be an efficient way to minimize
the parasitic spatial modes of the magnetic perturbation and the coil current
requirements while imposing the amplitude and phase of a number of target modes.
A figure of merit measuring the quality of a perturbation spectrum with respect to
RMP independently of the considered coil system or plasma equilibrium is proposed.
To ease the application of the Lagrange method, a spectral characterization of the
system, based on a generalized discrete Fourier transform applied in current space,
is performed to determine how spectral degeneracy and side-bands creation limit the
set of simultaneously controllable target modes. This characterization is also useful to
quantify the efficiency of the coil system in each toroidal mode number and to know
whether optimization is possible for a given number of target modes.

The efficiency of the method is demonstrated in the special case of a multi-purpose
saddle coil system proposed as part of a future upgrade of TCV. This system consists
of 3 rows of 8 internal coils, each coil having independent power supplies, and provides
simultaneously error field correction, RMP and fast vertical position control.
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1. Introduction

Edge localized modes (ELM) [2], related to the high confinement regime (H-mode) [3],

lead to a degradation of the plasma confinement and a release of energetic particles

towards the vessel walls. Scaling the current experimental data to ITER predicts that

the power flux related to type-I ELMs will cause an intolerable erosion and heat load

on the plasma facing components [4, 5]. Experiments on DIII-D [6, 7] and JET [8] have

demonstrated that the application of resonant magnetic perturbation (RMP) is able

to mitigate or suppress ELMs while keeping sufficient confinement properties. The

current explanation of this phenomenon is based on the overlap of the magnetic islands

created by the RMP that generates an ergodic zone in the plasma edge, itself increasing

the outward transport and thereby limiting the pedestal gradients to values below the

instability limits. This description is however still incomplete as the weak effect of

RMP on the pedestal electron temperature remains unexplained. The limits of the

process, in terms of operation domain, are not yet accurately known, DIII-D being

up to now the only Tokamak where a complete suppression of type-I ELMs has been

successfully obtained. In addition, experiments in different Tokamaks reveal opposite

results for similar conditions, for example RMP can trigger ELMs during ELM-free

phases in COMPASS [9], NSTX [10] and MAST [11]. While a mitigation of type-IV

ELMs has been achieved with external error field correction coils on MAST [11, 12], the

dedicated set of internal coils has not been able to mitigate type-I ELMs up to now,

even though the criterion of edge ergodization was satisfied. With that respect, TCV

(Tokamak à Configuration Variable) unique plasma shaping and positioning capability

could extend the range of accessible magnetic perturbation schemes for a given RMP

coil system geometry and contribute to a clearer description of the conditions required

for ELM suppression.

When applying asymmetric magnetic perturbations to generate RMP, the spectrum

of the perturbation should be optimized for what is thought to be efficient for ELM

mitigation [13, 14]: (a) minimal resonant mode amplitude in the core to avoid triggering

of MHD instabilities, (b) maximal resonant mode amplitude near the edge to obtain

the ergodization of the edge region, (c) minimal non resonant mode amplitude to avoid

parasitic effects such as plasma braking or acceleration due to neoclassical toroidal

viscosity [15–17] and (d) no or minimal side-band modes to avoid parasitic effects that

could impair the interpretation of the experimental results. All these aspects justify the

development of the optimization method presented in this paper.

Error fields are another aspect of toroidally asymmetric magnetic fields. They

are due to construction tolerances in Tokamak coil positions and shapes. These fields,

dominated by low values of the toroidal mode number, induce plasma braking and

locked modes [18], themselves responsible for disruptions. Their effects can be corrected

by applying an asymmetric field of opposite sign. Despite the distinction generally

present in the literature, error field correction (EFC) and RMP are strongly related,

since they both rely on effects due to the component of a non axisymmetric perturbation
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magnetic field perpendicular to the flux surfaces. In the case of EFC, both non resonant

and resonant perturbations are present. In the case of RMP, the focus is on resonant

perturbation, but non resonant ones generally dominates in amplitude. Both concept

can and should therefore be studied with the same set of tools.

When error field correction coils or RMP coil systems are fed with independent

power supplies, the effectiveness of the created perturbation may be enhanced by a fine

tuning of the relative distribution of currents in the coils. Hanson [19, 20] has developed a

method of optimization of the correction coil currents based on a least square approach

and working with Fourier components in the current space, consequently limited to

evenly spaced coil systems. We present here (section 2) a method of optimization of the

currents of generic radial field coil systems based on Lagrange multipliers, working in

real current space. This method is not limited to evenly spaced identical coil systems

and allows simultaneous multi-mode optimization. It would therefore also apply if one of

the coils becomes unavailable. Using a Lagrange method allows to distinguish between

constraints to satisfy exactly – e.g. the corrected error field – and optimization of cost

functions – e.g. the minimization of core islands in the case of ELM mitigation. We

show (section 2.4) that the Lagrange method is an efficient way to minimize parasitic

modes and current requirements while imposing the amplitude and phase of a number

of target modes. For example, the relative amplitude of edge modes can be increased

at the cost of lower absolute amplitudes, demonstrating a degree of controllability on

the localization of the magnetic perturbation. In this process, a figure of merit may be

used to quantify the optimization of the magnetic spectrum. Section 2.3 shows how the

Lagrange method is used to maximize such a figure of merit. The dependence of the

figure of merit on the value of the edge safety factor and the robustness of an optimal

current distribution with respect to a change in the plasma equilibrium are analysed in

section 2.5. Finally, linear optimization methods, as the least square or Lagrange ones,

cannot directly minimize the maximal current required in the coil set but rather the

norm of the vector made of all the coil currents. The implications of this simplification

are described in section 2.2 and a workaround is given. We show that in some cases, up

to 40% of mode amplitude can be gained for the same maximal coil current (section 3.3).

The characterization of a coil system in terms of spectral degeneracy, number of

simultaneously controllable target modes, availability of optimization for a given number

of target modes and efficiency in each toroidal mode is crucial in order to apply the

Lagrange method. The study presented in section 3 describes a simple method to

obtain such a characterization, using a generalized discrete Fourier transform.

The Lagrange method is illustrated in the special case of a multi-purpose saddle coil

system (SCS) proposed as part of a future upgrade of TCV (figure 1 and section 4). This

system consists of 3 rows of 8 internal coils, each coil having independent power supplies,

and provides simultaneously EFC, RMP and fast vertical position control (VC). Other

applications, like resistive wall mode control and controlled plasma rotation, are also

considered for this system. The technical aspects of this upgrade will be presented in a

future publication.
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Figure 1. Perspective view of the TCV saddle coil system project (in blue), drawn on
top of the vacuum vessel (in black). The system consists of 3 rows of 8 internal saddle
coils located on the low field side of the torus.

2. Optimization method

RMP is related to the calculation of magnetic islands generated on resonant flux surfaces

by B⊥, the component of the perturbation magnetic field perpendicular to the flux

surfaces. An analytical derivation of the width of the islands is given in [19, 20] for

non circular Tokamak plasmas. We express it here in a form consistent with [21].

The straight field line coordinates (ρ, θ∗, φ) [22] are used to describe the perturbation:

ρ =
√
ψ01 is the normalized radius (ψ01 being the normalized poloidal flux), φ the

toroidal angle and θ∗(ρ, θ) is such that the equilibrium field B0 follows straight lines

in a (θ∗, φ)-plane. The Biot-Savart law is used to calculate the vacuum perturbation

magnetic field due to the SCS in 3-D. The various coordinate transformations and

vector projections are performed in the framework of the ψ-toolbox [22]. The width of

the islands is then given by:

∆ρs = 4

√
2|b̃(ρs,m, n)|q2

s

|mq′s|
(1)

with m the poloidal mode number, n the toroidal mode number, s the resonant flux

surface index, q′ = dq/dρ the radial derivative of the safety factor q and b̃ the space

Fourier transform of b:

b̃(ρ,m, n) =
1

(2π)2

∫∫ 2π

0

dφdθ∗b(ρ, θ∗, φ)ei(−mθ∗−nφ) (2)
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with b the locally normalized perpendicular vacuum magnetic perturbation due to the

coil system:

b(ρ, θ∗, φ) =
B⊥R‖∇ρ‖

B0,φ

(3)

with R the major radius coordinate and B0,φ the toroidal component of the equilibrium

magnetic field. The Chirikov parameter σ used to characterize the degree of overlapping

of magnetic islands is defined by:

σs+1/2 =
∆ρs + ∆ρs+1

2(ρs+1 − ρs)
(4)

The criterion of ergodization is given by σs+1/2 ≥ 1. Equations (1) and (4) show that |b̃|
is the parameter of interest for studying the efficiency of a given magnetic perturbation.

The cost function f minimized in the Lagrange approach is defined as a linear

combination of the current cost function fcur and the cost functions fk related to sets

of optimized modes Sk:

f({Ic}) = fcur({Ic}) +
∑
k

wkfk({Ic}) (5)

with Ic the coil currents. The weight on fcur is used as reference and is set to 1. wk are

relative weights, with wk > 0 (resp. wk < 0) for a minimization (resp. maximization)

of fk. fk and their normalization factors Nk are defined by:

fk =
1

Nk

∑
p∈Sk

(∑
c

b̃cp,rIc −<(ape
iαp)

)2

+

(∑
c

b̃cp,iIc −=(ape
iαp)

)2
(6)

Nk =
∑
p∈Sk

A2
p (7)

Ap =

(∑
c

|b̃cp,r|
)2

+

(∑
c

|b̃cp,i|
)2
1/2

(8)

with p the index on modes defined by (ρ,m, n), b̃cp,r (resp. b̃cp,i) the real (resp.

imaginary) part of mode p due to coil c and ape
iαp the target value to be approached for

mode p, with amplitude ap and phase αp. Ap is a measure of the natural distribution of

the amplitude of the modes created by the SCS. Note that even though maximization

of fk is possible when using a negative weight, f , as a quadratic form, must remain

positive definite to ensure that its constrained extremum is neither a maximum nor

a saddle point. Consequently, a negative weight should always be chosen so that the

maximized cost function does not dominate the overall cost.

The exact target modes, i.e. the constraints of the Lagrange method, are a set of

chosen modes whose amplitudes at and phases αt must be exactly generated by the coil

system. They are introduced by defining:

gt,r({Ic}) =
∑
c

b̃ct,rIc −<(ate
iαt) (9)

gt,i({Ic}) =
∑
c

b̃ct,iIc −=(ate
iαt) (10)
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with t the index of the target mode. The constraints are fulfilled if:

gt,r({Ic}) = 0 gt,i({Ic}) = 0 ∀t (11)

Note that the constraint part depends linearly on the currents. If the phases of the

approximative or exact target modes are free parameters, the phase combination leading

to the lowest total cost f is selected.

Finally, the Lagrange method requires an auxiliary function h defined by:

h({Ic}, {λt}) = f({Ic}) +
∑
t

[λt,rgt,r({Ic}) + λt,igt,i({Ic})] (12)

with Lagrange multipliers λt. The constrained optimum is found by solving:

∇{Ic},{λt}h = 0 (13)

The solution must then be checked to be a minimum. A simple approach consists

in exploring the affine sub-space of solutions around the optimal coil current vector Iopt.

Defining:

C =

 (
b̃ct,r

)(
b̃ct,i

)  , (14)

the coil current vectors fulfilling the constraints are given by: K + Iopt where

K ∈ ker(C), the null space of C. Iopt is a minimum of f if f(Itest) > f(Iopt) for any

Itest = Iopt ± ε‖Iopt‖ki where ki is the i-th basis vector of ker(C) and ε is small.

If some of the coils have a fixed connection, their magnetic field must be combined

prior to the application of the optimization method. The subset of coils should then

appear as a single equivalent coil within the method.

2.1. Linear approach

In the linear approach, ∇{Ic}f must be a linear combination of the coil currents. The

current cost function is therefore defined as:

fcur =
1

Ncoils

∑
c

I2
c (15)

where Ncoils is the total number of coils. In this case, solving (13) is equivalent to

inverting a full rank linear system of equations.

2.2. Non linear approach

The linear method presented in section 2.1 minimizes the norm of the current vector,

a simplified version of the non linear real technical constraint maxc(|Ic|). A non linear

algorithm has been created to minimize fnl, the non linear cost given by using maxc(I
2
c )

instead of
∑

c(Ic)
2 in f . It is based on the exploration of the affine space of currents

fulfilling the constraints, starting from the solution provided by the linear approach.

It calculates the cost in each orthogonal directions and moves to the combination of

directions minimizing the cost. Note that when using the non linear cost for evenly
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spaced coil systems, side-band modes must be introduced in the cost function to force

their minimization.

If the target mode phases are free parameters, an effective approach consists in

using the linear solution for each phase combination, but using the non linear cost to

select the optimal phase combination. This approach has been retained as the standard

resolution method.

2.3. Maximization of a figure of merit

The choice of the set of weights wk in (5) is usually driven by physical requirements:

low currents or high relative amplitude of a certain region of the magnetic spectrum.

In certain cases, the requirements can be summarized by a figure of merit, qualifying

to which extent these requirements are met. In some ways, this approach replaces the

arbitrary choice of weights by an arbitrary definition of a figure of merit.

In the case of RMP, the spectrum of b must be optimized to obtain minimal resonant

core mode amplitudes, maximal edge ergodization and minimal non resonant mode

amplitudes. These conditions are satisfied with an approach based on two sets of modes:

the first set, Se, consists of the resonant edge modes. The second set, Sg, includes all

the modes of the spectrum. Formally, Se and Sg are written:

Se = {(ρ,m, n) | ρlim ≤ ρ ≤ ρ95, q(ρ) = m/n, n = nt} (16)

Sg = {(ρ,m, n) | ρ ≤ ρ95, −20 ≤ m ≤ 20, n = nt} (17)

with nt the target value of n and ρlim the inner radius of the selected ergodized zone.

The interval [−20, 20] appearing in Sd is chosen as integration boundaries since the

mode amplitudes outside this interval are negligible. ρ95 =
√

0.95 is used as an upper

limit to avoid the singularity due to the X-point at the last closed flux surface. The

optimization of the edge modes is based on the Chirikov criterion. By analogy with (4),

the separate contribution of each mode to the Chirikov parameter may be defined as

Cs = ∆ρs/(ρs+1 − ρs−1), with an equivalent approximative ergodization criterion given

by Cs = 1/2. Using (1), the minimal mode amplitudes required to fulfill the ergodization

of the edge are then given by:

ae =
|mq′e|(ρe+1 − ρe−1)

2

128q2
e

(18)

A possible definition for a figure of merit r quantifying the quality of a spectrum with

respect to RMP is given below:

r =

 |b̃emax|2(
1 + max|b̃e|<ae

{(
(|b̃e| − ae)/ae

)2
})∫

Sg
|b̃|2dρ


1/2

(19)

with emax the index of the resonant edge mode having the highest ae. The main

term in (19) is the ratio between the amplitude of the maximal edge mode and the

integral of the spectrum. This ratio increases as |b̃emax| becomes relatively larger
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and as the spectrum becomes more peaked, so that an increase in r does reflect

an increase of quality of the spectrum, as defined in the frame of RMP. The factor(
1 + max|b̃e|<ae

{(
(|b̃e| − ae)/ae

)2
})

in r is a correction factor which impairs the figure

of merit if one of the resonant edge modes has an amplitude lower than the minimal

amplitude required for ergodization. The normalization by ae in this correction factor

comes from the expression of Cs, when written as a function of ae: Ce =
√
|b̃e|/(4ae).

The link between r and the optimization method is established by associating two

cost functions as defined in (6) to both the main term and the correction factor in r,

respectively fg and fe, and by using emax as unique exact target mode. The total cost

function f is defined here as:

fRMP ({Ic}) = fcur({Ic}) + wefe({Ic}) + wgfg({Ic}) (20)

fe acts on modes included in Se with approximate target amplitudes given by (18) and

fg acts on modes included in Sg with null target amplitudes (ag = 0). fe is active only

on the subset of resonant edge modes having |b̃e| < ae to avoid an unnecessary and

detrimental flattening of the Chirikov parameter in the edge. In addition, a cross-mode

normalization is necessary in fe to minimize the relative distance to ae instead of the

absolute one, consistently with the expression of Ce given above. Formally, fe is written

as:

fe =
1

Ne

∑
p∈Ssub

e

1

a2
p

(∑
c

b̃cp,rIc −<(ape
iαp)

)2

+

(∑
c

b̃cp,iIc −=(ape
iαp)

)2
 (21)

Ne =
∑
p∈Ssub

e

A2
p

a2
p

(22)

where Ssube = {p ∈ Se | |b̃p| < ap}.
The optimization of r is obtained by iteratively calculating r(wg, we). When

increasing wg, the integral of the spectrum decreases whereas |b̃emax | remains constant,

therefore increasing r. In this process, if modes with |b̃e| < ae are detected, fe is

activated on this subset of weak modes to limit their negative impact on r.

The approach described above has several advantages: (a) the iterative process of

weight selection to optimize r is at most bidimensional, independently of the considered

coil system; (b) the minimization of the coil current is included in fRMP , allowing a

direct estimation of the gain in r with respect to the increase in required current; (c)

both fe and fg are minimized in the proposed process, which means that the existence

of a global minimum of fRMP is always guaranteed; (d) the definition of r proposed in

(19) involves only normalized or relative quantities and is therefore a good candidate to

measure the adequacy of a coil system for a range of magnetic equilibria.
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2.4. Optimization method results

In the case of RMP, the toroidal modes of interest for the TCV SCS are n = 2, n = 3

and n = 4. The results presented here are obtained for a standard diverted H-mode

plasma located on the midplane of the machine and characterized by a density on

axis ne = 7.5 · 1019 m3, a plasma current Ip = 415 kA, a toroidal magnetic field on axis

Bφ,axis = 1.4 T, a major radius Raxis = 0.91 m, a minor radius a = 0.22 m, a triangularity

δ95 = 0.4, an elongation κ95 = 1.7, a normalized pressure βp = 0.65 and a safety factor

q95 = 2.6. As described by Fenstermacher [23], an ergodization width of ∆ψ01 = 0.17

of the plasma edge is sufficient to obtain type I ELM suppression on DIII-D. This is

equivalent to setting the ergodized zone limit at ρlim = 0.911.

Figure 2 (solid lines) shows the figure of merit r as a function of the weight wg
for the different values of nt. The maximum of r has an asymptotic character. This

feature is inherent to the method since the current distribution converges to a fixed

distribution as the fe and fg terms dominate in fRMP , leading to a saturation of r. The

asymptotic value will be referred to as the optimal r in the remainder of this paper.

The experimental equilibrium used for the calculation of r shown in figure 2 does not

require the activation of fe because the resonant edge modes stay at amplitudes above

the Chirikov criterion for all values of wg. A synthetic case requiring the activation of

fe is presented in figure 3. The same saturation mechanism occurs, but its location

now depends on the ratio of we and wg. Due to the very small gradient of r around

its asymptotic maximum, any set of weights chosen in this area can be considered as

satisfactory.

The minimal coil current Ireq required to obtain an ergodization of the edge down to

ρlim is a parameter complementary to r, as it reveals whether the optimal r configuration

is technically feasible. The calculation of this current is based on the Chirikov criterion.

At ρlim, a sufficient condition is that the first edge island (ρ > ρlim) overlaps either ρlim
or the last core island (ρ < ρlim). The minimal Ireq is then determined from (1). Figure 2

(dashed-dotted lines) shows Ireq as a function of wg. As expected, the lowest current is

obtained when wg is close to zero. The slight offset in the location of the minimum of the

current, observable for nt = 2 and nt = 3, is a consequence of the semi-linear approach

used to define the current cost function fcur, as described in section 2.2: minimizing the

norm of the current vector does not guarantee to obtain the lowest maximal current.

Figure 2 also shows that Ireq remains within acceptable values when r is optimal. It

must be noted that the edge ergodization criterion is satisfied at much lower currents

if larger non resonant components are allowed, leaving some margin on the coil current

requirement.

In order to assess the efficiency of the method on magnetic spectra, two different

sets of weights are used. In the first case, only the current minimization is present.

This corresponds to the set of weights (we, wg) = (0, 0). In the second case, a set of

weights giving an optimal figure of merit r is determined using figure 2. Since r is

independent of we here, the set (we, wg) = (0, 105) is used in all cases. The current
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Figure 2. Figure of merit r (solid lines) and required current for edge ergodization
Ireq (dashed-dotted lines) as a function of the weight wg in the cases nt = 2, nt = 3
and nt = 4. For these cases, r is independent of we.
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Figure 3. Figure of merit r as a function of the weights for a synthetic equilibrium
case (nt = 3, q95 = 8.3). The dependence of r on we appears for wg > 20.

distributions corresponding to both nt = 2 cases are displayed in figures 4 and 5. In the

case where r is optimized, the bottom and top rows of coils, less efficient in terms of

magnetic perturbation amplitudes, have much stronger contributions. This behaviour

is consistent with the optimization of r, which shapes the perturbation spectrum using

all the available degrees of freedom, without taking the current consumption into

consideration. Figures 6 to 11 show |b̃| for the different values of nt. In each case,

a maximal coil current of 1 At is used to ease the comparison of the perturbation

amplitudes. For each toroidal mode number target, the method proves its efficiency

at either minimizing the currents (observed here by a higher absolute amplitude of the

modes) or optimizing the spectrum, i.e. increasing the relative amplitude of the resonant

edge modes. For nt = 3 (figure 9), the optimization of the spectrum has the side effect

of increasing the relative amplitude of non resonant modes. This reveals that despite
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Figure 4. Current distributions of the 3 coil rows of the TCV SCS for a nt = 2
target and a set of weights minimizing the current amplitude: (we, wg) = (0, 0)
(see figure 2). The current distribution is scaled to satisfy the condition of edge
ergodization: Ireq = 1.4 kAt. r = 0.32.
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Figure 5. Current distributions of the 3 coil rows of the TCV SCS for a nt = 2
target and a set of weights optimizing the figure of merit r: (we, wg) = (0, 105)
(see figure 2). The current distribution is scaled to satisfy the condition of edge
ergodization: Ireq = 3.7 kAt. r = 0.57.

the clear advantage of using the optimization method, the low number of degrees of

freedom imposes limits on the process. Even though n = 3 is not a natural mode of

the coil system, the edge mode amplitudes are comparable to those of nt = 2 (figure 7),

proving the flexibility of the system and allowing this configuration for experimental

studies. It should also be noted that the obtained perturbation is a pure n = 3 mode,

within the limit of the degeneracy described in section 3.

The case nt = 4 (figures 10 and 11) is a special case for the considered coil system

as it corresponds to Ns/2 where Ns is the number of coils per row. In this case, the
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system has a higher order of symmetry (b(−φ) = b(φ)) which results in a symmetrical

spectrum with respect to m = 0, as well as a lower number of degrees of freedom for

the optimization. Using a higher value of n has two downsides in terms of RMP: first

the activated edge modes have a lower amplitude since the values of m required for the

same value of q are higher, second the width of the islands is smaller due to the factor

m in (1). However, in the case nt = Ns/2, each coil of a row is powered with the same

current, resulting in a stronger perturbation than for the other cases, and the number of

resonant flux surfaces, therefore the number of islands, is also larger. Altogether, these

effects compensate each other and result in good performances of the system for nt = 4,

as shown in figure 12. Such a configuration is also interesting as the corresponding

degenerate modes are extremely weak (see section 3).
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∣∣∣. Target: nt = 2 outside ρlim = 0.911. Minimized current
amplitude: (we, wg) = (0, 0). Ireq = 1.4 kAt and r = 0.32 (see figure 2). • : resonant
flux surfaces location, �: symmetrical non resonant counterparts.

2.5. Edge safety factor dependence and robustness analysis

The results shown in section 2.4 have all been generated with the same experimental

equilibrium. It is of interest to study how the optimal figure of merit and its related

required current evolve with respect to a change in the magnetic equilibrium, since

such a study contributes to the assessment of the adequacy of a RMP coil system.

Amongst the different equilibrium parameters that impact the effects of a coil system,

q95 is certainly the most important one since it drives the requirements for the spectral

location of the magnetic perturbation and consequently has a strong influence on r and

Ireq. For this study, a series of synthetic equilibria generated with the free boundary

code FBTE [24] are used to simulate a scan on q95 while keeping other parameters as

constant as possible. These equilibria are characterized by: q95 ∈ [2.0, 8.3], qaxis = 0.8,

Ip ∈ [575, 125] kA, βp = 0.36, δ95 ∈ [0.42, 0.30], κ95 ∈ [1.70, 1.58], Bφ,axis = 1.4 T,

Raxis = 0.89 m and a = 0.23 m.
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Figure 7.
∣∣∣b̃(ρ,m, n = 2)

∣∣∣. Target: nt = 2 outside ρlim = 0.911. Optimized figure of

merit r: (we, wg) = (0, 105). Ireq = 3.7 kAt and r = 0.57 (see figure 2).
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Figure 8.
∣∣∣b̃(ρ,m, n = 3)

∣∣∣. Target: nt = 3 outside ρlim = 0.911. Minimized current
amplitude: (we, wg) = (0, 0). Ireq = 1.8 kAt and r = 0.30 (see figure 2).

The solid lines on figures 13 and 14 show the optimal figure of merit ropt as a function

of q95 and the corresponding Ireq. The main trend of ropt(q95) is its decrease as q95 or nt
increases, consistently with the naturally low amplitude of higher m modes. The small

undulations of ropt along q95 are due to the regular crossing of higher amplitude ridges

naturally appearing in the spectra (see figures 7, 9 and 11) as the locus of resonant

surfaces moves to higher values of m. Ireq(q95, ropt) displays different behaviours as q95

increases. At low q95, Ireq displays oscillations whose amplitudes decrease with nt and

q95. For these values of q95, Ireq is always determined by the first edge island and the

oscillations are hence due to variations in the distance between the ergodized region

limit ρlim and the first island position. These oscillations decrease in amplitude as the

number of islands in the edge increases, consistently with increasing nt or q95. At higher
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Figure 9.
∣∣∣b̃(ρ,m, n = 3)

∣∣∣. Target: nt = 3 outside ρlim = 0.911. Optimized figure of

merit r: (we, wg) = (0, 105). Ireq = 4.4 kAt and r = 0.48 (see figure 2).
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Figure 10.
∣∣∣b̃(ρ,m, n = 4)

∣∣∣. Target: nt = 4 outside ρlim = 0.911. Minimized current
amplitude: (we, wg) = (0, 0). Ireq = 1.2 kAt and r = 0.22 (see figure 2).

q95, Ireq may present some discontinuities. They typically occur when the q profile

passes over an inter-ridge spectral zone within the edge region, therefore leading to a

large required current in order to satisfy the ergodization constraint. When filtering out

the low q95 oscillations and the high q95 discontinuities, Ireq displays a global minimum

at q95 ∼ 7 for nt = 2, at q95 ∼ 4.5 for nt = 3 and at q95 ∼ 3.5 for nt = 4. This reflects a

trade-off between the number of islands, increasing with q95, and the size of the islands,

decreasing with q95. In terms of RMP coil system qualification, the obtained results show

that Ireq(q95, ropt) remains within reasonable range in the typical operational interval of

q95 ∈ [2, 6]. Of course, lower Ireq are possible if an optimal r is not required. The decrease

of ropt when the resonant edge modes have high values of m could only be counteracted

by a modification of the SCS design, for example by increasing the number of rows and
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Figure 11.
∣∣∣b̃(ρ,m, n = 4)

∣∣∣. Target: nt = 4 outside ρlim = 0.911. Optimized figure of

merit r: (we, wg) = (0, 105). Ireq = 4.2 kAt and r = 0.29 (see figure 2).

Figure 12. Ergodization map. Target: nt = 4 outside ρlim = 0.911. Island width
(red) and ergodic regions (dark brown) shown as a function of the maximal current
fed in the SCS for the optimal figure of merit case. Vertical black dashed line: inner
limit of the required ergodic zone according to the ρlim = 0.911 limit. Vertical white
dashed line: ψ01 = 0.95.

decreasing the height of each row, both options leading to technical difficulties related

to the increased current consumption and the higher number of feedthroughs.

Experimental application of the method developed here rises the question of the

robustness of an optimal current distribution with respect to a change in the magnetic

equilibrium, for example a variation of q95. This question is addressed here by taking

a reference equilibrium, q95 = 4.1, calculating its optimal relative current distribution

{Ic}q95=4.1 and applying this distribution to the other equilibria in order to evaluate

its figure of merit and required current. The results are displayed in figures 13 and 14

(dashed dotted lines). Figure 13 shows that the optimum is stable for nt = 2 and nt = 3,
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but only asymmetrically stable for nt = 4. This asymmetry appears because at q95 = 4.1,

the q profile is aligned with the edge of a spectral ridge for nt = 4. Experimentally,

the variation of Ireq, also present for the optimal current distributions case, might

be another source of difficulties. Both observations suggest that the whole space of

possible equilibria should be explored similarly to what has been done above before the

experiments in order to assess the robustness of the chosen current distribution and the

overall required current. Real time control of the coil currents would therefore have to

rely on equilibrium recognition and precalculated sets of optimal currents.
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Figure 13. Solid lines (——): optimal figure of merit ropt as a function of the safety
factor q95 for targets nt = 2, nt = 3 and nt = 4. Dashed-dotted lines (— · —◦):
r(q95) calculated for a constant relative current distribution {Ic}q95=4.1, the current
distribution optimizing r at q95 = 4.1 (vertical dotted line).
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Figure 14. Solid lines (——): required current Ireq as a function of the safety factor
q95 for optimal figures of merit in the cases nt = 2, nt = 3 and nt = 4. Dashed-
dotted lines (— · —◦): Ireq(q95) calculated for a constant relative current distribution
{Ic}q95=4.1, the current distribution optimizing r at q95 = 4.1 (vertical dotted line).
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3. Coil system characterization

This section develops the aspect of the spectral characterization of a coil system. The

questions of spectral degeneracy, number of simultaneously controllable target modes,

availability of optimization and efficiency in each toroidal mode are addressed.

3.1. General coil system

The most general approach to characterize a coil system consists in grouping coils in

sets s of equivalent coils (e.g. identical coils on the same row, with arbitrary toroidal

spacing) and using the first coil of the set to obtain the spectrum for the whole set:

b̃(ρ,m, n) =
∑
s

∑
c

b̃sc(ρ,m, n)Isc =
∑
s

b̃s0(ρ,m, n)Îs(n) (23)

Îs(n) =
∑
c

Isc e
−inφs

c (24)

with φsc the toroidal shift between the coils of the set s and Îs the generalised discrete

Fourier transform of Isc in the current space (φsc does not necessarily describe a regular

grid). From equation (23), it follows that only one target mode can be given per set

of equivalent coils per value of n. This is a determining argument in the question of

allocation of the degrees of freedom related to the independent powering of the coils.

Note that a row of coils could contain different sets, so that the “one mode per row”

statement is not general.

3.2. Evenly-spaced coil system

In the case of evenly spaced coils, φsc = (2π/Ns)c, c ∈ {0, Ns − 1} without necessarily

being complete, degeneracy of modes occur:

Îs(n+ pNs) = Îs(n) ∀p ∈ N (25)

Îs(Ns − n) = Îs∗(n) (26)

In that case, only non degenerate target modes can be set simultaneously for each coil

set. In addition, =
(
Îs(n ∈ {Ns/2, Ns})

)
= 0, therefore limiting arbitrary phase setting

of target modes in these cases.

3.3. Complete evenly-spaced coil system

Finally, in the case of complete evenly-spaced coil sets, Îs is equal to the standard

discrete Fourier transform of Isc , so that modes in different values of n can be

orthogonally activated by using Fourier modes for the currents in each coil row. The

feature of orthogonal activation in even geometries implies the necessity to use a cross-

mode cost function in the implementation of the Lagrange method, such as the cost

based on the current amplitude. In the linear approach, the norm of the current vector

is used. As it is proportional to
∑

s,n |Îs(n)|2 (the Fourier transform conserves the norm),
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it is independent of the phase of the current modes. On the contrary, when using the

non linear cost, based on the maximum of the current, an optimization of this phase is

achieved, generally leading to a localization of the extrema of the current mode in the

middle of two consecutive coils (see figure 4). If the gain due to a coil set is defined by:

gs(n) =
|Îs(n)|

maxc(|Isc |)
(27)

such an optimization can lead to a gain g(2) = 5.6 instead of the expected g(2) = 4, i.e.

an increase of 40% of the mode amplitude for nt = 2, in the TCV SCS case.

3.4. Loss of a coil in an evenly-spaced coil system

The loss of a coil in an evenly spaced coil system is of interest in terms of impact on

the mode spectrum control. From the theory above, the main impact of such a loss

is the loss of the orthogonal activation of modes. In terms of control, this loss can be

compensated by adding a cost function on the side-bands that must be avoided. The

latter cannot be avoided for the classes n = 0 and n = Ns/2 however.

It might be useful to note from (24) that for a single set of coils, whichever their

toroidal spacing, the activation of the different toroidal modes only depends on Îs(n),

which is independent of the plasma parameters. This feature can be used to reduce the

number of parameters for the optimization, for example if fast calculation is required.

For each value of n, one or two current basis vectors can be found and then used in the

optimization algorithm. Of course, for complete sets of evenly spaced coils, these vectors

are made of sine and cosine components. For the other cases, a Lagrange method can

be used to find the basis vectors that minimize coupling with other values of n while

assuring that their generalized Fourier transforms are orthogonal. Mathematically, if nt
is the toroidal mode number of the target mode, the cost function is written:

f =
∑
n6=nt

∣∣∣Îs(n)
∣∣∣2 (28)

and the target Îs(nt) = at exp(αt). The αt leading to the lowest cost is then selected,

giving αt,1. This yields the first basis vector. The second basis vector is given by the

same process but imposing αt,2 = αt,1 + π/2. The case of 1 coil missing out of a row of 8

coils is taken as an example. The generalized spectra of both basis vectors are shown in

figure 15 for the case nt = 2. As expected, the first vector is totally decoupled, since the

phase is automatically adjusted to require a null current on the missing coil position.

The drawback is that the gain is reduced to 4. The second vector, whose phase is

adjusted to force orthogonality in Fourier space, is strongly coupled to the other modes.
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Figure 15. Generalized spectra of coil currents for one row of 8 coils where 1 coil
is missing. The current distribution is optimal for nt = 2, according to the method
described in section 3.4.

4. Comments on the RMP coil set project for TCV

4.1. Choice of coil system geometry

In TCV, a saddle shape has been chosen for the coils. This maximizes the amplitude of

the magnetic field created by the coil, for a given space occupation.

The coil array must be located on the low field side of the Tokamak to take

advantage of the steeper pitch angle of the equilibrium magnetic field lines there. As a

consequence much higher values of m are reached when analysing the perturbation in

straight field line coordinates. The higher value of ‖∇ρ‖ and the lower value of B0,φ

on the low field side also contribute to the maximization of b (see equation (3)). A

comprehensive description of this aspect is given in [21].

The number of coil rows is determined as a trade-off between current requirements

and spectrum shaping. A higher number of rows allow more control on modes with

high values of m, but comes with smaller coils requiring more current. The number of

coils in the toroidal direction defines the higher controllable value of n. Again, a trade-

off between current requirements and coil system features must be chosen. Important

aspects in this matter are the number of feedthroughs available, the cost of power

supplies and the natural geometry of the Tokamak. In TCV, the portholes geometry,

approximately 3 rows of 16 portholes, the maximal length allowed for each coil due

to installation restriction and the flexibility in plasma positioning have driven the coil

system design. The choice of having 8 rather than 4 coils per row has also been based

on the larger variety of possible physical investigations that it allows.
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4.2. Characterization

The considerations made in section 3 allow a characterization of the spectral features

of the TCV SCS: 5 orthogonal classes of n are available (n ∈ {0, 1, 2, 3, 4}), with

main degenerate pairs {0, 8}, {1, 7}, {2, 6} and {3, 5}. For classes 1, 2 and 3, the 3

coil rows allow a maximum of 3 simultaneous targets per class (without simultaneous

spectrum optimization), while for classes 0 and 4, only 1 target per class is allowed (with

simultaneous spectrum optimization). The toroidal periodicity results in maximal gains

for each row as follows: g0,4 = 8, g1,3 = 4.3 and g2 = 5.6. For class 3, the degeneracy

between n = 3 and n = 5 and the small spectral distance between these modes implies

a non negligible effect of n = 5 modes when working in nt = 3 configurations. Figure 16

shows how the small islands created by the n = 5 component of the perturbation overlap

with the larger n = 3 islands and ergodize them.

Figure 16. Ergodization map. Target: nt = 3 outside ρlim = 0.911. Island width
(red) and ergodic regions (dark brown) shown as a function of the maximal current fed
in the SCS for the optimal figure of merit case. Vertical black dashed line: inner limit
of the required ergodic zone according to the ρlim = 0.911 limit. Vertical white dashed
line: ψ01 = 0.95. The small islands are due to the n = 5 degenerate component.

5. Conclusion

A comprehensive study of RMP calculation and optimization, based on vacuum

perturbation field and independent powering of the coils, has been presented. The

efficiency of the method has been proven on a number of experimentally relevant cases:

n = 2, n = 3 and n = 4 targets for a typical H-mode plasma. A general procedure

for spectral characterization of coil systems has been developed and its application to

common special cases detailed. This work could be applied to any existing coil system,

with a special dedicated application to the SCS proposed for ASDEX [25] since two

different subsets of coils are planned for the midplane row.
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The TCV SCS and its design physical basis have been briefly presented. A

subsequent dedicated publication will follow.
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