Processes at the surface of Plasmodium falciparum-infected erythrocytes such as antigenic variation and cytoadhesion may be modulated by active signalling between host and parasite. Potential candidates for this role include the putative kinases of the FIKK family. The novel Apicomplexa-specific FIKK gene has expanded in P. falciparum to 20 sequence-related members distributed between 11 chromosomes. Specific antibodies raised against different members indicated that most FIKK proteins locate to punctate foci in the erythrocyte cytoplasm that colocalized with Maurer's clefts proteins. One FIKK member dissociates at the trophozoite stage from the Maurer's clefts and relocates with the erythrocyte cytoskeleton. Another FIKK protein, despite having a PEXEL motif, remains located within the parasite. FIKK proteins possess the essential residues for phosphotransferase activity. We show that protein kinase activity was detected in immunoprecipitates obtained with two anti-FIKK antibodies. Quantitative PCR analysis revealed differential gene transcription of the FIKK paralogues in asexual blood stages parasites. We observed significant changes in the transcription pattern between parasites with different adhesion phenotypes. Our data suggest a role of FIKK proteins in the remodelling of the erythrocyte surface and reveal the existence of an adaptable parasite system able to sense intra- and possibly extracellular changes.