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Abstract—Collaborative ad-hoc dissemination of information because of the lack of connectivity or access cost (e.g gurin
has been proposed as an e_fficient means to disseminatg infoam roaming).
tion among devices in a wireless ad-hoc network. Devices el \ye are interested in scenarios where nodes are willing
in forwarding the information channels to the entire network, .
by disseminating the channels they subscribe to, plus other We to_ deV‘?te some amount of their resources to help content
consider the case where devices have a limited amount of sege ~ dissemination. Now the number of information channels can
that they are willing to devote to the public good, and thus hee be very large compared to user’s interest; for example in the
to decide which channels they are willing to help disseminat zune dataset there are 8000+ podcast channels and each user
We are interested in finding channel selection strategies ith g hscribes 6 channels on average [4], [5]. In such a settiag,
optimize the dissemination time across the channels. We firs -
consider a simple model under the random mixing assumption; propose to_“m'_t the amount of resource that a nOd? devotes to
we show that channel dissemination time can be characteride the dissemination of channels other than the ones it sudescri
in terms of the number of nodes that forward this channel. to. This is motivated by the cost for a user in terms of
Then We.ShOW that maximizing a soci_al welfare is equivalent bandwidth usage during meetings, energy consumption, and
to an assignment problem, whose solution can be obtained by ayerhaps also storage. We thus assume that each user device
centralized greedy algorithm. We show empirical evidencehased has to decide which channels to help disseminate, in additio
on Zune data, that there is a substantial difference between . - . ’
the utility of the optimal assignment and heuristics that wee t0 the subscribed ones. We consider a setting where users
used in the past. We also show that the optimal assignment can are cooperative in optimizing the content dissemination, a
be approximated in a distributed way by a Metropolis-Hastings assumption that underlies the prior work [1]. The cooperati
sampling algorithm. We also give a variant that accounts for 414 be induced through various mechanisms like in any
battery level. This leads to a practical channel selectionrad re- . - L T
selection algorithm that can be implemented without any cetal othgr pe_er-to-peer service. One implicit incentive is riedi
control. reciprocity where users expect that other users would help

disseminate the channels subscribed by this user, so the use
. INTRODUCTION may well be willing to reciprocate.

Several applications relying on opportunistic data trarssf We are interested in finding channel selection strategies
between devices have been proposed recently. In [1], twbich optimize channel dissemination times with resped to
authors propose a wireless ad-hoc podcasting system, wheystem welfare objective. The key assumption that fat#iita
in addition to downloading content onto devices while datkeour framework is a relation between the channel dissenainati
to a desktop computer, the content is exchanged betweine and the fraction of the nodes that forward a given chianne
devices while users are on the go. They propose seveBaich a relation can be obtained by modeling or empirical
heuristics for content exchange between devices basedeondhalysis, examples of which we show in this paper. However,
inferred preference of the user owning a device and that ibfis noteworthy that in this paper, we do not advocate
encountered devices. Another related system is CarTorranly specific function to describe the relation between the
[2], a BitTorrent-style content dissemination system gesd dissemination time and the fraction of the forwarding nedes
to exploit the wireless broadcast nature, where the autharghorough analysis of this is left for future work. We cast
propose various solicitation strategies. the problem in the framework of system welfare optimization

We callchannelan abstraction for various information feedsvhere the objective is to optimize an aggregate of the wtilit
that generate content recurrently over time. For examplefumctions associated with individual channels. We show tha
podcast feed is a channel as well as a profile page of fim a broad class of utility functions, optimizing the syste
online social network application (e.g. Facebook or Twjtte welfare is equivalent to an assignment problem whose swluti
While many such services can well be provisioned at mobian be obtained by a centralized greedy algorithm [6]. We
devices by accessing the cloud, it is still of interest toespe provide empirical evidence, based on real-world data about
up information dissemination by augmenting it with devicesubscriptions of Zune [4], [5] users to podcasts, that there
to-device information transfer. Efficient multi-channefar- is a substantial difference between optimal system welfare
mation dissemination through infrastructure and mulip-hoassignment and some heuristics that were used in the past.
wireless transfer would well support various mobile conten Then we consider the problem of defining a practical,
sharing applications, e.g. Serendipity [3], in particular distributed algorithm run by individual nodes to attain aegi
environments where access to the cloud is intermitterfieeit system objective. We show that the optimal assignment can be



approximated in a distributed way by a Metropolis-Hastingsur proofs to Appendix [7].
sampling algorithm. The algorithm requires knowledge @bou
the fractions of nodes subscribed or forwarding given ckeann Il. SYSTEM MODEL AND NOTATION
which can be estimated based on local observations by eackve consider a system ¥ wireless nodes, or users, partic-
individual node. We also identify a class of Metropolisipating in the ad-hoc dissemination dfchannels. We denote
Hastings algorithms that do not require any estimation. Wgith ¢/ and 7 the sets of user and channels, respectively.
show simulation results that demonstrate that our proposedery node, sayy has a listS(u) of subscribedchannels. In
distributed algorithms concentrate near the optimum systehe context of this study, we assume th#t) is fixed for
welfare with the rates of convergence of interest in practic everyw. In contrast, every node maintains a variable list of
Our contributions can be summarized as follows: helpedchannels, i.e. channels that this node keeps in its public
» We propose a framework for optimizing the disseminatiogache in order to facilitate their dissemination.
of multiple information channels in wireless ad-hoc networks. When two nodes meet, they update their cache contents.
The optimization is with respect to dissemination times aflore precisely, if nodes: and v’ meet,« gets fromu’ the
individual channels subject to the end-user cache capadiphtent that is newer at’ for the channels that. either
constraints. To the best of our knowledge, this is the firstibscribes to or helps, and vice-versa. We do not account for
proposal for optimizing dissemination ofultiple information the overhead of establishing contacts and negotiatingeoont
channels in wireless ad-hoc networks with respect to a glohgdates. We assume that when nodes meet the contact duration
system objective. is large enough for all useful contents to be exchanged, i.e.
e The framework enables direct engineeringy allowing we assume that the bottlenecks in the system performance are
derivation of the algorithms that decide which channels atge disconnection times and cache content. In addition, we
helped by which users so as to optimize a given systeiBsume that, once in a while, a node gets direct contact to
objective. the Internet and downloads fresh content for the subscibed
e The framework also allows aeverse engineeringo helped channels.
that for some given channel selection algorithms deployed b At any given point in time, we calk: the global system
individual nodes, we can determine which underlying globgbnfiguration, defined by
system objective is optimized. i
« We show that an optimum system assignment of users to “u.j = 1 < nodeu subscribes to or helps channel

channels for forwarding can be found by a centralized greefi4t r7(y;, 2) be the set of channels helped by nadavhen
algorithm for a broad class of system objectives identifred {he configuration is: and letF(u, z) be the set of forwarded

this paper. o channels, i.e.
e Using the data about subscriptions of Zune users to audio
podcasts, we demonstrate that there exist scenarios wiere f Fu,z) = H(u,2) US(u), ue€l.

given system objective, significant gains can be attainetth&y
optimum system assignment over some heuristics suggegte D to simplify we count it in the number of channels. We

previous work [1]. assume thatC, > |S(u)l, i.e. every node can store all the

e We show that the optimum system objective can B& i ribed channels. The configuration is thus constraiged
well approximated by a distributed algorithm based on the

Metropolis-Hastings sampling run by individual nodes gsin |F(u,z)| < C, forallu € U.
only local observations.

e We show how to incorporate in our framework an
algorithms the objective to optimize the battery experrditu

e assume that every nodehas a maximum cache capacity

he problem is then to find a configuratianthat satisfies
hese constraints and maximizes some appropriate perfor-

ance objective, defined in the next section. Further, wet wan

da;i:xear?;ej:rztoi)gtﬁgfewsrjcl:rtT:;ﬁg/ogf rtﬁzupl)trsog:)aste%rgt\lgig va[g find a method to approximate the optimal configuration in
__a fully distributed way which we do in Sec. VI.

The paper is structured as follows. Sec. Il introduces ourWe use the following notation:
system model and notation. Sec. lll presents modeling and '
empirical analysis about the relation between the chanseld s; = proportion of nodes that subscribe to chanpel
semination time and the fraction of the nodes that forwaed th (z
channel. In this section, we also define the system objective’ 1
the utilities associated to channels, and discuss someeof th = N Z Ty, j-
properties. Sec. IV-A presents the system welfare probietn a ueld

the result that the problem can be solved by a centralizgglthout loss of generality and unless indicated otherwige,
greedy algorithm. Sec. V presents results on the gain of thesume that channels are labeled in nonincreasing order wit
optimum system welfare based on the Zune data. Sec. pdkpect to their subscription popularity, i.e. > --- > s;.
presents our Metropolis-Hastings algorithms. In Sec. Vl WAlso 5= (s4,...,s;) and f= (firoos fa)

show simulation results. Finally, related work is discuksge

Sec. VIl and Sec. IX concludes the paper. We defer some of|A| denotes the cardinality of a finite set

= proportion of users that forward chanrel
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interval [0,¢]. Let ¢;(t) be the proportion of the forwardersby taking each node as a source and repeating for 10 rand@utieat of
of channel; that have received a piece made available Bje forwarding nodes.

the source in the time intervdD,t]. The dynamics of the

system can be described by the following system of ordinaBy Empirical Dissemination Time

differential equations: We consider the dissemination time evaluated from real
d B mobility traces. In particular, we consider (CAM) a datecta
2% = (A +n00;(1)(s; —0;(1)) (@) of human mobility in the area of Cambridge, UK [8] and (SF-
d B TAXI) a data trace of the routes of taxis in the area of San
595 = (A +n06;(0)(f; — ¢5(2)) @ Francisco [9]. The CAM dataset contains information about

where ), is the contact rate between a node and an infrd§ie contacts between 36 human-carried, Bluetooth-eqdippe

tructure able to deliver channg| and is the contact rate devices over slightly more than 10 days. SF-TAXI contains

between nodes. These equations hold under the “random n&eS coordinates for each of about 500 taxis over a month
mixing” assumption and are asymptotically valid whahis period. For the latter trace, we define a contact between two
large. The system (3)-(2) admits a closed-form solutioreHenodes if the distance between two nodes is smaller or equal
we only state the solution,(¢) for ¢ > 0, as this suffices to 0 500 meters [10].

compute the dissemination time of a piécéle have We infer the dissemination times by conducting the fol-
lowing experiment. For given data trace (either CAM or SF-
0;(t) = 0;(0) + (s; — 0;(0))x TAXI), we fix a portion of nodes and then pick uniformly
(Aj +n¢;(0))(1 — e~ (1fitAt) at random the given portion of nodes from the set of all
N 4195 (0) +n(f; — ¢;(0))e=(fi+r)t" 3) nodes and designate them as forwarders. We then inject a

message to one of the forwarders at an instance of time and
then pass through the trace forward in time, recording the
Snstances at which a forwarder first received the message by
encountering a forwarder that already received the message
For the CAM data, we repeat the experiment for each source
and 10 random samples of the set of forwarders. Finally, for
each given portion of the forwarding nodes, we compute the

b = ¢i0)nK; + Ay +16;(0) (4) median dissemination time.

TN+ (Aj +n0;(0))(1 — Kj) Fig. 1 shows the empirical dissemination time versus the

B o (0) o (0) portion of the forwarding nodes for CAM trace. Similar resul

where K; = (O‘ - J—) / (1 J—) hold for the SF-TAXI trace; available as Fig. 2 in [7]. In both
Proposition 1Il.1. The dissemination timg; is a monotonic €@ses, they confirm that the dissemination time is well fitted
nonincreasing, strictly convex function ¢f. by a curve that exhibits diminishing returns with increasin

o _ . _ _ the number of forwarders.
Proofis in Appendix [7] A. Of particular interest is the sinal

injection rate regime, where the dissemination is domuhate C. Utility Function
epidemic content. In this case, we havg0) < \;/n < s;
and¢;(0) < A\;j/n < f; and EQ.(4) becomes

Dissemination Timelet ¢; be the time for a fractior of
the subscribers to channﬁto recieve a piece available at the
source at time) or a more recent piece. We refer tp as
the dissemination time for channglthat is a metric of our
primary interest. Setting;(¢;) = «, it follows

Sj

We assume that for each chanpgethere is an underlying
utility function Uj(t;) that specifies the satisfaction of a
ba 1 I ) nf; (5) subscriber with the channglgiven that the dissemination time
150 < ny Tt by > is t;. It is natural to assume; () is a nonincreasing function

of ¢;. We will discuss later in this section some additional
2The interested reader may find more details in [7]. conditions for a channel utility function.




We denote withV;(f;) = U;(t;(f;)) the utility function times subject to the end-user capacity constraints. Sph¥ia
for channel; with respect to the fraction of the users wheystem welfare problem amounts to finding assignmenbf
forward channelj. It is natural to assume that;(f;) is a users to channels that solves the following problem:
monotonic nondecreasing function gf. This indeed follows
if both U;(¢;) andt;(f;) are noincreasing functions which arg
rather natural assumptions. J N

It remains to discuss what the system welfare utility is, i. maximize ijvj 1 Z Tui
when considering all channels together. We admit standard i Nu=1 ’
definition that the system welfare is a weighted sum of the
utilities over all channels, i.e. for given positive weight =

J
(U}l, Ce ,’LUJ), Sub .
2 ject to T, < Cy
V()= wVi(£;)- ; ’

JjeT

SYSTEM

1%

over  z,; €{0,1}

Tu,j = 1, (U,j) VS S(’U,)

Two special cases may be of interest, which correspond 10 _ . L
different fairness objectives. The former is channel genin ~Defining the system welfare utility as a sum of individual
that it considers each channel as one entity, regardlegseof {Ulilies is rarl]the_r standard in the framework of resour¢:czai—
number of subscribers. This utility is obtained by settirig 0N Note thatin SYSTEMy; are positive constants that can
the weightsw; to 1, hence we have be arbitrarily fixed. In particular, it is of practical intst to

! definew; proportional to the fraction of subscribers to channel
Ven(f) = > Vils) (6) j.Inthis case, the utility/; (-) can be interpreted as the utility

jeg for channel; for a typical subscriber of channgl

where V; is a per-channel metric, for example as in Eq.(4 We show that we can rephrase SYSTEM as an equivalent

or Eq.(5). The latter is user centric and has the weights su dt,'m('jzatl'or;] overl thLe nunb1be;] of usgrs V¥h° helphforr\]/vallrd
thatw; is proportional to the proportion of-subscriberss;, Individual ¢ anng s. LeH; be the number of users w 0 help
hence we consider forward channelj and letH = (H,,...,Hy). Let us define

. v(A) for AC J by
Vus(f) = 2 siVi(fs) (7)
es o(A) =3 min | Y Lesse: Co— IS@)] ] ®

with V; as before. = JEA

In Sec. VI we will show that this utility framework can )
easily be extended to battery saving. and letP(v) be the polyhedron defined by
Sufficient Conditions for a Concave Utilithwe discuss a J <
= : i - .
set of sufficientconditions that ensure the utility;(f;) is a Plv) ={z e Ny ;xﬂ sv(d), A€ T}

concave function off;. This class of utility functions will be ) )
of interest in Section IV-A. We consider the following problem.

Proposition 111.2. Suppose (C1Y/;(t;) is a nonincreasing,
concave function of; and (C2)t;(f;) is a convex function of SYSTEM-H

.. Then,V;(f;) is a concave function of;. _ 4 1
5 i) J; maximize " w;V; (sj + —Hj)
Proof derives from elementary convexity properties and |is =1 N
available in [7]. Con_dition ((_:1) says t_hat t_he utility furost _ over He P).
U;(t;) captures the increasing dissatisfaction of a subscriber
of channel;j with the dissemination time;. This is a realistic The following result establishes a connection between SY S-
assumption that captures the scenarios where users wkeld TEM and SYSTEM-H.
to receive fresh content within some time horizon since thl%eorem IV.1. The optimal value of the solution 6 STEM

cor_ltent g_energtion and become inrea_singly dissatisfiedea_ts i equal to that ofSYSTEM-H.
delivery time increases beyond the time horizon. Condition

(C2) means that the dissemination timgf;) exhibits di- Proof: Proof is based on a reduction to a max-flow
minishing returns with increasing the portion of forwamslerproblem and is available in Appendix [7]. ]
f;- We have already demonstrated cases in Section IlI-A andThe interested reader is referred to Appendix [7] B where
Section 11I-B that support this assumption. we consider a relaxed version of SYSTEM which allows
IV. SYSTEM WELFARE PROBLEM prov_ldmg some characterization of the solution to thigxed
version.
A. The Greedy Algorithm We next provide conditions under which SYSTEM-H can

We consider a system welfare problem where the objectilze solved by a greedyﬁallocation of helpers to channels. et u
is to optimize the aggregate utility of channel dissemorati denote withA;V(5+ H/N) the increment of the aggregate



utility by assigning a user to channgli.e. 3) Pick from Neighbour:We consider channel selection
strategies under which each useupon encountering another

A;V(s tHﬂv) . user v/ picks a candidate channel from the us&r and
= V(s+(H +¢;)/N)=V(5+H/N) then based on some decision process decides whether to
= w; [Vij(s; + (Hj + 1)/N) — Vi(s; + H; /N)] replace a channel to which usercurrently helps with the

candidate channel. The decision process is assumed todie loc
independent of the current assignment of users to channels,
which makes these strategies of quite practical interest.

We will construct one such a scheme, in Sec. VI, based
on the Metropolis-Hastings sampling. We will see that such a
scheme is associated with a system welfare problem with the

wheree; is a vector of dimension7| with all the coordinates
equal to0 but the jth coordinate equal td. We consider the
following greedy assignment.

Algorithm 1 Centralized GREEDY Algorithm for Allocation

OLHEij% Channels. :‘Isiltlﬁwing objective function:Vppx (f) = e VIEEN (1)
2: while 1 do PFN
s FindI € J such thatd + e; € P(v) Vit i) = (o + C)fs + DfsIn s ©)
4 andA;V(§+H/N) > A;V(5+H/N)forallj € J whereC andD are system constants ang > 0 is a constant
5: such thatﬁ+ej € P(v) for channelj, which expresses its relative importance (the
6: higher thec;, the more important the channgl.
7: if there exists no such then break The functionV;"*V(f;) in Eq. (9) is a monotonic nonde-
8 end if creasing function off;. Note, however, that’ " (f;) is a
99 Hy—H;+1 convexunction of f;. Itis thus not concave and hence does not
10: end while validate the condition discussed in Sec. IlI-C, which easur

optimality of the greedy assignment in Sec. IV-A.

Theorem 1V.2. Under assumption tha?;(z) is a concave

function ofx for eachj € 7, the solution ofSYSTEM is _ ) ) _
obtained byGREEDY. In this section, we demonstrate: A system optimal assign-

) ) ) ) ment of channels can yield significantly larger system welfa
Proof is available in [7]; it follows from Theorem IV.1 andian some heuristics suggested by prior work. In particular
showing that SYSTEM-H is a maximization of a concavge compare with the Uniform and Top Popular assignments
function over a submodular polyhedron, so by a genergfined in the preceding section.
result [6], GREEDY provides a solution. We use the subscription assignments of users to channels
B. Particular Channel Selection Strategies that we derive from the subscriptions of the users of Zune

In this section, we introduce three particular channelcseld® podcasts. This dataset consists of 8,000+ distinct mtdca
tion strategies. Under the assumption of random mixing, tfgéds and more than a million of users. The data provides
first two strategies correspond to uniform and most soticité!S With complete information about subscriptions of users t
strategies in [1]. The third strategy is new and arises froen tpodcasts. For our evaluations we use the information about
Metropolis sampling in Sec. VI. user subscriptions to channels. The distribution of the lmem

1) Uniform: Under the uniform channel selection, eac®f subscriptions per user is skewed with the median value of
useru picks a subset of’, — |S(u)| channels by sampling 3 and the mean value of about twice that value [5].
uniformly at random without replacement from the set of We consider the user-centric system welfare with the chan-
channels that usen is not subscribed to, i.e. from the senel utility functions V;(f;) = —t;(f;) wheret;(f;) is the
of channels7 \ S(u). dissemination time given by Eq. (4). For each usgrwe

The uniform channel selection biases to forwarding lesetC, = |S(u)| 4+ C where|S(u)| is specified by the input
popular channels. This is quite intuitive as by the channéata andC' is a parameter. We compute optimum assignment
selection process the users select channels to which tleey ley using the algorithm GREEDY (Sec. IV-A). Uniform and
not subscribed to. The interested reader is referred tolfigfer Top Popular assignments are computed as prescribed by their
more discussion is provided along with making a connection tespective definitions.
an underlying system welfare problem of the uniform channel In Fig. 2, we show the dissemination time per subscription
selection. versus the per node capacify The rate of the access to the

2) Top Popular: Under this scheme, each userpicks infrastructure is fixed td access per day by each user. The
channels from the set of channef \ S(u) without re- rate at which each user encounters other users is fixéd(to
placement in decreasing order of the channel subscriptiosers per day. If the dissemination is solely by direct azces
popularity and random tie break undit, —|.S(u)| channels are to the infrastructure, then the dissemination time is aldiGub
picked or there are no channels left. This is a greedy schehmurs. We note that the dissemination time under the system
that favours popular channels. We consider this schemeadptimum assignment can be reduced for the order of several
numerical evaluations in Sec. V. hours if the dissemination is augmented with the peer-tr-pe

V. SYSTEM OPTIMUM VS. HEURISTICS



14 first give a short description of a centralized version of the

13 Metropolis-Hastings algorithm:
E 12 At every time step, the algorithm picks a tentative configu-
% ration 2/, with probability Q(x,2"), wherez is the current
g1 configuration. We assume that the matri(z,2’) has the
S10 weak symmetry property:
s+
% 9 Q(x,2') > 0= Q(z',x) >0
.g 8 for all x # x’. The tentative configuration is accepted (i.e. be-

- ‘ ‘ comes the new configuration) with probability= min(1, ¢)

0 10 40 50 with

20 )
Helper cache size

_ m(2")Q(a, x)
m(2)Q(z, ')

wherer(-) is a probability distribution on the set of possible

11
Fig. 2. Dissemination time per subscription versus the sizéhe public (1)
cacheC, Cy = |S(u)| + C.

20 configurations. The algorithm does not converge strictesen
. however, after a large number of iterations, the probabilit
S5 - AN ] distribution of the configuration: converges to the a priori
< x distribution 7r(-). Typically, one uses forr(-) a Gibbs distri-
£ \/ TOP bution, given by
S 1o OPT < m(x) = leV(Tw) (12)
g Z
£ 5 \\ whereT is a system parameter (the “temperature”) &hds
.g \\\ the normalizing constant. " is small, the distributionr(-)

o is very much concentrated on the large valuesVgf), so
1 2 3

that the algorithm produces random configurations that tend
to maximizeV (x).

10° 10"

10 10
Encounter rate (per day)

Fig. 3. Dissemination time per subscription versus the odtencounters;.

The cache size for user set asC,, = |S(u)| + C with C' = 20. B. A Distributed Rewiring Algorithm

We use Metropolis-Hastings as follows. We use a Gibbs
. o ) _ distribution, as in Eq.(12) with/(-) the utility function in

dissemination. Perhaps even more mtgrestmgly, we obseE/q_ (10). We consider every meeting between two nodes
that the gap between the system optimum and that of the oo ‘step of the algorithm. When two nodes meet, they
Uniform and Top Popular assignments can be significant. o544 nistically exchange content updates; then oneesfith
_ In Fig. 3 we present the results under the same setting &g, , s selected as leader and attempts to replace one of its
in Fig. 2 but varying the encounter rate and keeping the cachgineq channels by one of the channels forwarded from the
size C fixed to 20. These results show a lack of order for thget helq by the other node, sayas described in Algorithm 2.

Uniform and Top Popular assignments — for some cases QR now turn to the computation of the acceptance probability
is better than the other one and vice-versa in other cases. In

any case, system optimum indeed provides best performanggorithm 2 Distributed Algorithm for Allocation of Helped
Channels

VI. ADISTRIBUTED METROPOLISHASTINGSALGORITHM

1:

We now consider the problem of designing a distributeck:

algorithm. The goal is for each node to control its set of bdlp  3:
channels so that the resulting global configuratianaximizes

a system welfare of the form 4:
Vie) =Y wVi(fi(@) (10)

=4
as discussed in Sec. Il (note that, unlike in Sec. Ill, we enak 6:
the dependence on the global configuratioaxplicit). 7
A. Metropolis-Hastings a:

We propose to use a Metropolis-Hastings algorithm [11].°:

if F(u,z) C F(v,z) then do nothing
else

u selects one channgluniformly at random in the set
H(u,x)

u selects one channgl uniformly at random in the
setF(v,z) \ F(u,x)

compute the acceptance probability = min(1, q)
with ¢ given by Eq.(15)

draw a random numbdy uniformly in [0, 1];

if U < p then drop channe) and adopt channgl as
a helped channel

end if
end if

as it lends itself well to distributed optimization, and was

successfully used in distributed control problems in veissl (line 5 of the algorithm), as given by Eq.(11). First we corgu
networks [12]. Before giving our distributed algorithm, weQ(z, z') wherez’ = x — 1“7 + 1*7" is the new configuration



(1“7 is the configuration vector defined mg;{j/ =1lifu=u" V/FN(.)in Eq.(9) theng in Eq.(15) is given by
andj = j/, 0 otherwise):

By
. , q= (16)
Proposition VI.1. The following holds Bj
licr(v.e . o oy . .
Qa', ) otu o o) e with 3, = e? and 3, = e . In particular, ¢ is thus
Q(z,2') = 1 cr o) (13) independent off;(x), f;(«) and more generally of the con-
’ 2ot TR Flare)] figuration .
Proof: Follows from Eq. (9) and Eq. (15). ]

Proof is in Appendix [7] D.
Q' x)  filx)

With this simplified algorithm, nodes need to know the static
parametersl; > 0 associated with each channel. There is no

Qlz,2') fi(x) (14) global constant, nor it is necessary to evaluter). Higher
i values ofj mean that we give more value to disseminating
We note the following result: channelj more quickly. Note that only the relative values of
Proposition VI.2. Suppose that for a finite constaht > 0, /i matter, as Eq.(16) uses only ratios, afid can thus be
limy_ 400 NT = D. Then, interpreted as the priority level for channgl The resulting
V(') - Vi) ) algonth_r_n is the same as Algorlthm 2 _but with the acceptance
NETOO - =5 (wj/Vj’,(fjf (z)) — ijj’(fj(a:))) _ probability ¢ computed using Eq.(16) instead of Eq.(15).
Proof is available in Appendix [7] F. In view of the IastD' A Battery Saving Algorlthm )
proposition, we have The previous algorithm may be improved to account for
, battery saving. The motivation is that a node may be relactan
qg = Me%(v(w’)—v(w)) to help disseminate channels if its battery level is low. We
Q(x, ") address this issue as follows. Assume that every nddeows
N Q(ﬂf’,IC)eﬁ(w,vj',(fj,(z))fwjvj'(fj(x))) its battery levelb, > 0. The battery is empty wheb, = 0.
T Qx,a) ' Assume to simplify that all nodes measurg in the same

scale, for example, number of remaining hours of operation a
full activity. We can replace the global utility in Eq.(10y b

S wiVif) = Y Walba)

JjET ueU

Combining with (14) we obtain fog the value

- fi(x) o5 (W Vi (0 @) =3 V] (£ () (15)
fir (@)
whereD = NT is a global system parameter.

Algorithm 2 requires node: to estimatef; and f;,. This
can be done by having the nodes exchange, when they m
updates of channel popularity for all channels that theywkn
of, and then performing exponential smoothing. A simplg, b
memory hungry scheme, is as follows. Every nadeaintains
for every channej an estimatefj. When node: meets node

whereW, () is a convex, decreasing function of its argument
gor exampleW,,(b) = %), such thati, (b) expresses the
enalty perceived by user when its battery level i$. We

an apply the Metropolis-Hastings algorithm with this new
unction. The only difference is in the computation of the
acceptance probability. The computation @fin Eq.(16) is

uA', for all channqls that’ helps or subscribe§ to, noduedogs replaced by B
f; « a+(1—a)f; and for all other channel§; « (1 —a)f; q= je_[h”(b”)_h”'(b“’)] a7
where0 < a < 1. J

Furthermore, all nodes need to share the g|0ba| Systémereu andw’ are the two nodes involved in the interaction
variable D, and know the utility function of each channel (thétnd r.(b) > 0 is the marginal cost of exchanging a channel
latter can be contained as meta-information in the chanigien two nodes meet, divided by the temperatiire(an

data). In Section VI-C, we give a simplified algorithm, whicincreasing function ob).
does not require such estimations. The reSUlting algorithm is the same as Algorlthm 2 with

Eq.(15) on line 5 replaced by Eq.(17). The required configu-

o ) ration is (1) every channel has a static priority levet; > 0

C. A Simplified Algorithm and (2) every node: knows its own functior,, (b) for the
It is possible to entirely avoid the estimation of thfe cost of exchanging one channel with a neighbour when this

quantities, albeit at the expense of imposing a family dityti Node’s battery level i$.
functions. The idea is to pick a set of utility functiom3(-) VIl. SIMULATION RESULTS

such thatf; and f;; cancel out in EQ.(15). This results in

a scheme that belongs to the class of schemes pick fromn this section, we present simulation results that address
neighbour that was introduced in Section IV-B3. the fpllqwmg goals: (|)_ demo_nstrate the concentratlc_)n of
the distributed Metropolis-Hastings algorithm to the optm

Theorem VI.1. If for each channe}j, the utility function is system welfare and (ii) demonstrate that optimizing a syste
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welfare under real-world mobility produces good forwaglin  pgr.cHanNEL AND PER-USER DISSEMINATION TIMES IN MINUTES FOR

assignments of channels to users. CAM TRACE.

In order to cover a broad set of parameters, we conducted [ Channel-centricc UNI | TOP | OPT |
simulations by varying the parameters along the following Median 70.2500] 133.1000] 52.1429
dimensions: (i) node mobility either random mixing or using Mean 70.4700| 137.1250| 57.2000
a real mobility trace, (ii) small and large system scale with [ Usercentric | UNI [ TOP [ OPT |
respect to the number of users and the number of channels, Median 70.4028] 97.4528 | 56.9333
(iii) different distributions for the subscriptions peraimel, Mean 70.0578| 102.7284| 59.4089

(iv) the fractions of nodes forwarding or subscribed to a

channel either known or locally estimated, and (v) a range Ber channel, i.e.(3_,. - t;(f;))/J, versus the number of
the temperatures for the Metropolis-Hastings algorithne \ncounters per node. e’ show the results for the Metropolis-
consider random mixing mobility in order to provide result§lastings withf assumed to be either known or locally esti-
for scenarios for which we have a good understanding grated by individual nodes. We observe that the system veelfar
the relation between the channel dissemination time and tader the Metropolis-Hastings algorithm concentrates trea

fraction of the forwarding nodes. We used our own discret@Ptimum system welfare. The results in Fig. 4 indicate aefast
event simulator. concentration in cases whgris globally known. We obtained

qualitatively same results for the user-centric case wheh
A. Random Mixing Mobility omit for space reasons; the reader is referred to Fig. 9 inii7]

We simulate random mixing mobility where each usesummary, our results support the following claim: The syste
encounters other users uniformly at random. In such a systesmelfare under the Metropolis-Hastings algorithm concatets
we indeed have that the dissemination time for any chanmar the optimum system welfare leh (and ' in the user-
depends only on the portion of the nodes that forward tigentric case) either globally known or locally estimated.
channel (Section IlI-A).

We consider a small- and a large-scale system where Ryr
the former the number of users and the number of channeldVe compare the system performance under the assignment
are both set t®0 while for the latter the number of users isof channels to users that optimizes a system welfare (OPT)
200 and the number of channels i90. For the fractions of with that of heuristics Uniform (UNI) and Top Popular (TOP),
subscribers per chann@l), we assume a Zipf distribution with respectively introduced in Sec. IV-B1 and Sec. IV-B2. Oualgo
the scale parameter equal to eit¢B or 1. For the objective is to demonstrate that OPT can do a better job compared to
of the system welfare, we consider both the channel- and uséxe heuristics UNI and TOP.
centric cases with the utility functioir;(f;) = —t;(f;) for We define the system welfare using the dissemination func-
channelj wheret;(f;) is the dissemination time anfj is the tion ¢;(f;) inferred from the mobility trace CAM and letting
fraction of forwardmg nodes. In particular, we admit Eq).(4V; (fJ) = —t;(f;) as in the preceding section. Specifically,

In cases whelf or § are locally estimated, each node uses ame define the logarithm of;(f;) by a concatenation of linear
exponential weighted averaging with the smoothing coristasegments that closely foIIow the empirical data (availahle
(weight of a sample) set as follows. For the estimatimfpf Fig. 7 [7]). We consider a scenario with= 40 channels, ten

the constant is set 1.9. For the estimation of, the constant subscriptions per each user, and ten channels helped by each
is equal to0.1 and0.02 for the channel- and user-centric casajser. We assume that the channel subscription rates follow
respectively. a Zipf distribution with the scale parameter equal 263.

In Fig. 4, we present the results obtained for the channé&ler each setting of the simulation parameters, we repeat the
centric case. The graphs show the mean dissemination timg@eriment five times, each time injecting a message of a

Real Trace Mobility



ool [EEGET , i which essentially correspond to the top popular and uniform
= E—b channel assignment considered in our paper. The approach in
E%® [1] is different from ours in that they evaluate a set of a prio
"§"°°’ ' i defined strategies while we first formulate a global system
E 500/ ; , : welfare objective and then identify a channel selectioatstry
B ool ~ ] to optimize the given system objective. Another closelptesd

ool ‘ n work is CarTorrent [2], a peer-to-peer file sharing designed

RETTTTETTY MMWIMMW“ h [ MI I ‘||h for vehicular network scenarios using epidemic-style ennt
° T dissemination. Further related work is [13]. Our work is gen

. S erally different from the state-of-the art results on epiite
Fig. 5. Mean channel dissemination time under CAM mobilifjhvehannel- style information dissemination in that our g0a| is effitien
centric system welfare (similar results hold for user-gentase; see [7]).

Channels are enumerated in decreasing popularity (charisehost popular, dissemination by controlling the epidemic spreadnafltiple
etc). content streams.

channel to a user picked uniformly at random from the users IX. CONCLUSION

who are either subscribers or helpers for the channel at th

tbheg'gznngftthe tcrjatche't':lr?te that thtere a?dlstlnc;[ f%e(r)zlm formation in wireless ad-hoc networks. The problem amounts
€ ata and that tn€ encounter rates equa tov. to optimizing assignment of users to channels for forward-

per second, i.el.2 users every twq minutes. . .__ing of the content with respect to a global system welfare
. In Table 1 we present the median and mean d'ssem'nat'&gective. We showed that system optimal assignments can
time per channel, an_d per user, for the channel-_and_ussé— found by a centralized greedy algorithm. Moreover, we
_cen_tnc cases, respectively. Eor both mean and medianndiss howed that the optimal assignment can be well approximated
Ination time, OPT subs_tantlally outperf_orms UNI and _TO by a distributed algorithm based on the Metropolis-Hasting
for either channel—cgntrlc or user-centﬂc case. In _paiajc sampling. We also discussed how to optimize other resources
n the_channel-.centr_lc case, OPT achieves OX@rmmutes such as the battery power. There are several interestieg-dir
Ie_ss dlgsemmat!on time than TOP and oierminutes Iess_ tions for future work including the convergence analysithef
dissemination time than UNI for both mean and med'a}ﬁlroposed two-timescale control and extending the framlewor

dlssemlnat|0n tlme._ In th(_a us_er—ce_ntnc case,OPT achieves to heterogenous scenarios with respect to the node mobility
40 minutes less dissemination time than TOP and oMer

minutes less dissemination time than UNI for both mean and REFERENCES
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