Broken symmetries in macromolecular crystallography: phasing from unmerged data

The space-group symmetry of a crystal structure imposes a point-group symmetry on its diffraction pattern, giving rise to so-called symmetry-equivalent reflections. Instances in macromolecular crystallography are discussed in which the symmetry in reciprocal space is broken, i.e. where symmetryrelated reflections are no longer equivalent. Such a situation occurs when the sample suffers from site-specific radiation damage during the X-ray measurements. Another example of broken symmetry arises from the polarization anisotropy of anomalous scattering. In these cases, the genuine intensity differences between symmetry-related reflections can be exploited to yield phase information in the structure-solution process. In this approach, the usual separation of the data merging and phasing steps is abandoned. The data are kept unmerged down to the Harker construction, where the symmetry-breaking effects are explicitly modelled and refined and become a source of supplementary phase information.


Published in:
Acta Crystallographica Section d Biological Crystallography, 66, 4, 447-457
Year:
2010
Publisher:
International Union of Crystallography
ISSN:
0907-4449
Keywords:
Laboratories:




 Record created 2010-04-12, last modified 2018-01-28

External links:
Download fulltextURL
Download fulltextn/a
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)