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Abstract. An important application of unique object references is safe and ef-
ficient message passing in concurrent object-oriented programming. However,
to prevent the ill effects of aliasing, practical systems often severely restrict the
shape of messages passed by reference. Moreover, the problematic interplay be-
tween destructive reads–often used to implement unique references–and tempo-
rary aliasing through “borrowed” references is exacerbated in a concurrent set-
ting, increasing the potential for unpredictable run-time errors.
This paper introduces a new approach to uniqueness. The idea is to use capa-
bilities for enforcing both at-most-once consumption of unique references, and
a flexible notion of uniqueness. The main novelty of our approach is a model
of uniqueness and borrowing based on simple, unstructured capabilities. The ad-
vantages are: first, it provides simple foundations for uniqueness and borrowing.
Second, it can be formalized using a relatively simple type system, for which we
provide a complete soundness proof. Third, it avoids common problems involv-
ing borrowing and destructive reads, since unique references subsume borrowed
references.
We have implemented our type system as an extension to Scala. Practical ex-
perience suggests that our system allows type checking real-world actor-based
concurrent programs with only a small number of additional type annotations.

1 Introduction

Message-based concurrency provides robust programming models that scale from multi-
core processors to distributed systems, web applications, and cloud computing. Seam-
less scalability requires that local and remote message send operations should behave
the same. A good candidate for such a uniform semantics is that a sent message gets
moved from the memory region of the sender to the (possibly disjoint) memory region
of the receiver. Thus, a message is no longer accessible to its sender after it has been
sent. This semantics also avoids data races if concurrent processes running on the same
computer communicate only by passing messages.

However, moving messages physically requires expensive marshaling (i.e., copy-
ing). This would prohibit the use of message-passing altogether in performance-critical
code that deals with large messages, such as image processing pipelines or network
protocol stacks [19, 20]. To achieve the necessary performance in these applications,
the underlying implementation must pass messages between processes running on the
same shared-memory computer by reference. But reference passing makes it challeng-
ing to enforce race freedom, especially in the context of imperative, object-oriented
languages, where aliasing is common. The two main approaches to address this prob-
lem are:
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– Immutable messages. Only allow passing objects of immutable type. Examples are
Java-style primitive types (e.g., int, boolean), immutable strings, and tree-shaped
data, such as XML.

– Alias-free messages. Only a single, unique reference may point to each message;
upon transfer, the unique reference becomes unusable [20, 39, 40].

Immutable messages are used, for instance, in Erlang [3], a programming language
created by Ericsson that was used at first in telecommunication systems, but is now also
finding applications in Internet commerce (e.g., Amazon’s SimpleDB1).

The second approach usually imposes constraints on the shape of messages (e.g.,
trees [40]). Even though messages are passed by reference, message shape constraints
may lead indirectly to copying overheads; data stored in an object graph that does not
satisfy the shape constraints must first be serialized into a permitted form before it can
be sent within a message.

Scala [35] provides Erlang-style concurrent processes as part of its standard library
in the actors package [25]. Scala’s actors run on the standard Java platform [31]; they
are gaining rapidly support in industry, with applications in the Kestrel message queue
system2 powering the popular Twitter micro-blogging service, and others.

In Scala actors, messages can be any kind of data, mutable as well as immutable.
When sending messages between actors operating on the same computer, the message
state is not copied; instead, messages are transferred by reference only. This makes the
system flexible and guarantees high performance. However, race safety has previously
neither been enforced by the language, nor by the run-time library.

This paper proposes a new type-based approach to statically enforce race safety in
Scala’s actors. Our main goal is to ensure race safety with a type system that’s simple
and expressive enough to be deployed in production systems by normal users. Our sys-
tem removes important limitations of existing approaches concerning permitted mes-
sage shapes. At the same time it allows interesting programming idioms to be expressed
with fewer annotations than previous work, while providing equally strong safety guar-
antees.

1.1 Background

There exists a large number of proposals for unique object references. A comprehen-
sive survey is beyond the scope of this paper; Clarke and Wrigstad [12] provide a good
overview of earlier work, where unique references are not allowed to point to internally-
aliased objects, such as doubly-linked lists. Aliases that are strictly internal to a unique
object are not observable by external clients and are therefore harmless [48]. Impor-
tantly, “external” uniqueness enables many interesting programming patterns, such as
merging of data structures and abstraction of object creation (through factory meth-
ods [23]). In the following we consider two kinds of alias encapsulation policies:

– Deep encapsulation: [33] the only access (transitively) to the internal state of an
object is through a single entry point. References to external state are allowed.

1 See http://aws.amazon.com/simpledb/.
2 See http://github.com/robey/kestrel/.
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Proposal Type System Unique Objects Encapsulation Program Annotations
Islands (˜ linear types) alias-free full type qualifiers, purity
Balloons (abstr. interpr.) alias-free full type qualifiers
PacLang quasi-linear types alias-free, flds. prim. full type qualifiers
PRFJ expl. ownership alias-free deep/full owners, regions, effects
StreamFlex impl. ownership alias-free, flds. prim. full type qualifiers
Kilim impl. ownership alias-free full type qualifiers
External U. expl. ownership intern. aliases deep owners, borrowing
UTT impl. ownership intern. aliases deep type qualifiers, regions
BR capabilities intern. aliases deep type qual., regions, effects
MOAO expl. ownership intern. aliases full simple owners, borrowing
Sing# capabilities intern. aliases full type qualifiers, borrowing
This paper capabilities intern. aliases full type qualifiers

Fig. 1. Proposals for uniqueness with (a) full encapsulation, (b) internal aliases, or (c) both

– Full encapsulation: same as deep encapsulation, except that no references to ob-
jects outside the encapsulated object from within the encapsulation boundary are
permitted.

Our motivation to study full encapsulation is concurrent programming, where deep en-
capsulation is generally not sufficient to avoid data races. Figure 1 compares proposals
from the literature that provide either uniqueness with internal aliasing, full alias encap-
sulation, or both. (Section 7 discusses other related work on linear types, regions, and
program logics.) We classify existing approaches according to (a) the kind of type sys-
tem they use, (b) the notion of unique/linear objects they support, (c) the alias encapsu-
lation they provide, and (d) the program annotations they require for static (type) check-
ing. We distinguish three main kinds of type systems: explicit (parametrized) ownership
types [14], implicit ownership types, and systems based on capabilities/permissions.
The third column specifies whether unique objects are allowed to have internal aliases;
in general, alias-free unique references may only point to tree-shaped object graphs.
The fourth column indicates the encapsulation policy. We explain the annotations in the
fifth column in the context of each proposal.

Islands [28] provide fully-encapsulated objects protected by “bridge” classes. How-
ever, extending an Island requires unique objects, which must be alias-free. Almeida’s
Balloon Types [1] provide unique objects with full encapsulation; however, the unique
object itself may not be (internally) aliased. Ennals et al. [19] have used quasi-linear
types [30] for efficient network packet processing in PacLang; in their system, pack-
ets may not contain nested pointers. The PRFJ language of Boyapati et al. [8] asso-
ciates owners with shared-memory locks to verify correct lock acquisition. PRFJ does
not support unique references with internal aliasing; it requires adding explicit owner
parameters to classes and read/write effect annotations. StreamFlex [39] (like its suc-
cessor Flexotasks [4]) supports stream-based programming in Java. It allows zero-copy
message passing of “capsule” objects along linear filter pipelines. Capsule classes must
satisfy stringent constraints: their fields may only store primitive types or arrays of prim-
itive types. Kilim [40] combines type qualifiers with an intra-procedural shape analysis
to ensure isolation of Java-based actors. To simplify the alias analysis and annotation
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system, messages must be tree-shaped. StreamFlex, Flexotasks, and Kilim are systems
where object ownership is enforced implicitly, i.e., types in their languages do not have
explicit owners or owner parameters. This keeps their annotation systems pleasingly
simple, but significantly reduces expressivity: unique objects may not be internally-
aliased. Universe Types [17, 16] is a more general implicit ownership type system that
restricts only object mutations, while permitting arbitrary aliasing. Universe Types are
particularly attractive for us, because its type qualifiers are very lightweight. In fact,
some of the annotations proposed in this paper are very similar, suggesting a close
connection. Generally, however, the systems are very different, since restricting only
modifications of objects does not prevent data races in a concurrent setting. UTT [32]
extends Universe Types with ownership transfer; it increases the flexibility of exter-
nal uniqueness by introducing explicit regions (“clusters”); an additional static analysis
helps avoiding common problems of destructive reads. In Vault [21] Fähndrich and De-
Line introduce adoption and focus for embedding linear values into aliased containers
(adoption), providing a way to recover linear access to such values (focus). Their sys-
tem builds on Alias Types [45] that allow a precise description of the shape of recursive
data structures in a type system. Boyland and Retert [9] (BR in Figure 1) general-
ize adoption to model both effects and uniqueness. While their type language is very
expressive, it is also clearly more complex than Vault. Their realized source-level an-
notations include region (“data group”) and effect declarations. MOAO [13] combines
a minimal notion of ownership, external uniqueness, and immutability into a system
that provides race freedom for active objects [51, 10]. To reduce the annotation burden
messages have a flat ownership structure: all objects in a message graph have the same
owner. It requires only simple owner annotations; however, borrowing requires exis-
tential owners [49] and owner-polymorphic methods. Sing# [20] uses capabilities [21]
to track the linear transfer of message records that are explicitly allocated in a special
exchange heap reserved for inter-process communication. Their tracked pointers may
have internal aliases; however, storing a tracked pointer in the heap requires dynamic
checks that may lead to deadlocks. Their annotation system consists of type qualifiers
as well as borrowing (“expose”) blocks for accessing fields of unique objects.

Summary. In previous proposals, borrowing has largely been treated as a second-class
citizen. Several researchers [9, 32] have pointed out the problems of ad-hoc type rules
for borrowing (particularly in the context of destructive reads). Concurrency is likely to
exacerbate these problems. However, principled treatments of borrowing currently de-
mand a high toll: they require either existential ownership types with owner-polymorphic
methods, or type systems with explicit regions, such as Universe Types with Transfer
or Boyland and Retert’s generalized adoption. Both alternatives significantly increase
the syntactic overhead and are extremely challenging to integrate into practical object-
oriented programming languages.

Contribution. We introduce a type system that uses capabilities for enforcing both a
flexible notion of uniqueness and at-most-once consumption of unique references, mak-
ing the system uniform and simple. Our approach identifies uniqueness and borrowing
as much as possible. In fact, the only difference between a unique and a borrowed ob-
ject is that the unique object comes with the capability to consume it (e.g., through
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ownership transfer). While uniform treatments of uniqueness and borrowing exist [21,
9], our approach requires only simple, unstructured capabilities. This has several ad-
vantages: first, it provides simple foundations for uniqueness and borrowing. Second,
it requires neither existential ownership nor explicit region declarations in the type sys-
tem. Third, it avoids the problematic interplay between borrowing and destructive reads,
since unique references subsume borrowed references. This paper also contributes:

– A simple and flexible annotation system. We introduce a small number of source-
level annotations used to guide the type checker (Section 2). The system is simple
in the sense that only local variables, fields and method parameters are annotated.
This means that type declarations remain unchanged. This facilitates the integration
of our annotation system into full-featured languages, such as Scala.

– A simple formal model with soundness proof. We formalize our type system in the
context of an imperative object calculus (Section 3) and prove it sound (Section 4).
(A complete proof of soundness appears in the companion technical report [24].)
Our main point of innovation is a novel way to support internal aliasing of unique
references, which is surprisingly simple. By protecting all aliases pointing into a
unique object (graph) with the same capability, illegal aliases are avoided by con-
suming that capability. The formal model corresponds closely to the annotation
system described in Section 2: all types in the formalization can be expressed using
those annotations.

– A practical design. We extend our system to support closures and nested classes
(Section 5), features that, so far, have been almost completely ignored by existing
work on unique object references. However, we found these features to be indis-
pensable for type-checking real-world Scala code, such as collection classes.
We have implemented our type system as a pluggable annotation checker for the
EPFL Scala compiler (Section 6). We show that real-world actor-based concurrent
programs can be type-checked with only a small increase in type annotations.

2 Overview

As a running example we use the simplified core of partest, the parallel testing frame-
work used to test the Scala compiler and standard libraries. The framework uses actors–
lightweight concurrent processes–for running multiple tests in parallel, thereby achiev-
ing significant speed-ups on multi-core processors.

In this application, a master actor creates multiple worker actors, each of which
receives a list of tests to be run. A worker executes the runTests method shown in
Figure 2, which prompts the test execution. Each test is associated with a log file that
records the output produced by compiling and, in some cases, running the test. These
log files are collected in the logs list that the worker sends back to the master upon
completing the test execution.

Note that log files are neither immutable nor cloneable.3 Therefore, it is impossi-
ble to create a copy of the log files upon sending them to the master. To ensure that

3 LogFile inherits from java.io.File, which is not cloneable.
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def runTests(kind: String, tests: List[Files]) {
var succ, fail = 0
val logs: LogList @unique = new LogList
for (test <- tests) {
val log: LogFile @unique = createLogFile(test)
// run test...
logs.add(log)

}
report(succ, fail, logs)

}
def report(succ: Int, fail: Int, logs: LogList @unique) {
master ! new Results(succ, fail, logs)

}

Fig. 2. Running tests and reporting results.

passing logs by reference is safe, we annotate its type as @unique. Inside the for-
comprehension, we also annotate the log variable, which refers to a single log file,
as @unique; this enables adding log to logs without losing the uniqueness of logs.
(Below we explain how to check that the invocation of add is safe.)

The worker reports the test results to its master using report. The @unique anno-
tation requires the logs parameter to be unique. Moreover, it indicates that the caller
loses the permission to access the passed argument subsequently. In fact, any object
reachable from logs becomes inaccessible to the caller. Conversely, report has the
full permission to access logs. This allows sending it as part of a unique Results mes-
sage to the master. Sending a unique object (using the ! method) makes it unusable, as
well as all objects reachable from it, including the logs.

In the above example we have shown how to use the @unique annotation to en-
sure the safety of passing message objects by reference. In the following we introduce
aliasing invariants of our type system that guarantee the soundness of this approach.

Alias Invariant. The alias invariant that our system guarantees is based on a separation
predicate on stack variables. (Below, we extend this invariant to fields.) We characterize
two variables x, y as being separate, written separate(x, y), if and only if they do not
share a common reachable object.4 In other words, two variables are separate if they
point to disjoint object graphs in the heap. Based on this predicate we define what it
means for a variable to be separately-unique.

Definition 1 (Separate Uniqueness) A variable x is separately-unique iff ∀y 6= x. y
accessible⇒ separate(x, y).

(A variable is accessible if it may be accessed in the current program execution.) This
definition of uniqueness implies that if x is a separately-unique variable, there is no
other accessible variable on the stack that shares a common reachable object with x.

4 For simplicity we leave the heap implicit in the following discussion; we formalize it precisely
in Section 3.
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Fig. 3. Comparing (a) external uniqueness and (b) separate uniqueness. (⇒ unique reference,→
legal reference, 99K illegal reference)

In contrast, this does not hold for external uniqueness [12], which is the notion of
uniqueness most closely related to ours. Figure 3 compares the two notions of unique-
ness. We assume that object A owns object B. This means that references r and i are
internal to the ownership context of A. Ownership makes reference f ′ illegal. u is
a unique reference to A; uniqueness makes reference f illegal. Importantly, external
uniqueness permits the s reference, which points to an object that is reachable without
using u. Therefore, even if u is unusable, the target of s is still reachable. In contrast,
our system enforces full encapsulation by forbidding the s reference. This means that
making u unusable results in all objects reachable using u being unusable. Therefore,
separate uniqueness avoids races when unique references are passed among concurrent
processes (we prove this in the companion technical report [24]). With external unique-
ness, one has to enforce additional constraints to ensure safety [13].

We are now ready to state the alias invariant that our type system provides.

Definition 2 (Alias Invariant) Unique parameters are separately-unique.

Note that this invariant does not require unique variables to be separately-unique. In
particular, unique variables may be aliased by local variables on the stack. However,
it is valid to pass a unique variable to a method expecting a unique argument. This
means that it must always be possible to make unique variables separately-unique. In
the following we explain how we can enforce this using a system of capabilities.

Capabilities. A unique variable has a type guarded by some capability ρ, written ρ . T
(typically, T is the underlying class type). Capabilities have two roles: first, they serve
as static names for (disjoint) regions of the heap. Second, they embody access permis-
sions [44, 9, 11] to those regions. The typing rules of our system consume and produce
sets of capabilities. A variable with a type guarded by ρ can only be accessed if ρ is
available, i.e., if it is contained in the input set of capabilities in the typing rule. There-
fore, consuming ρ makes all variables of types guarded by ρ unusable. The following
invariant expresses the fact that accessible variables guarded by different capabilities
point to disjoint object graphs.

Definition 3 (Capability Type Invariant) Let x be a unique variable with guarded
type ρ . T. If y is an accessible variable such that ¬separate(x, y), then y has guarded
type ρ . S.
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Note that the above definition permits variables z of guarded type δ.U (δ 6= ρ) such that
¬separate(x, z). This is safe as long as δ is not available, which makes z inaccessible.

In summary, the above invariant implies that if x’s type is guarded by some ca-
pability ρ, consuming ρ makes all variables y such that ¬separate(x, y) inaccessible.
Therefore, the separate uniqueness of unique arguments can be enforced as follows:
first, unique arguments must have guarded type ρ.T . Second, capability ρ is consumed
(and, therefore, must be available) in the caller’s context. Third, capabilities guarding
other arguments (if any) must be different from ρ. In Section 3 we formalize the map-
ping between annotations in the surface syntax, such as @unique, and method types
with capabilities.

We have introduced two invariants that are fundamental to the soundness of unique
variables and parameters in our system. In the following we continue the discussion of
our running example, thereby motivating extensions of our annotation system.

Transient and peer parameters. Our discussion of the example shown in Figure 2
did not address the problem of mutating the unique logs list after running a single test.
Crucially, logs must remain unique (and accessible) after adding log to it. This means
we cannot use @unique to annotate the receiver of the add method, since it would make
logs inaccessible. Furthermore, add’s parameter must point into the same region as
the receiver, since add makes log reachable from logs. To express those requirements,
we introduce two additional annotations: @transient and @peer. They are used to
annotate the add method as follows.

class LogList {
var elem: LogFile = null
var next: LogList = this
@transient def add(file: LogFile @peer(this)) =
if (isEmpty) { elem = file; next = new LogList }
else next.add(file)

}

Note that the @transient annotation applies to the receiver, i.e., this. @transient is
equivalent to @unique, except that it does not consume the capability to access the an-
notated parameter (including the receiver). Consequently, it is illegal to pass a transient
parameter, or any object reachable from it, to a method expecting a unique parameter,
which would consume its capability.

The @peer(this) annotation on the parameter type indicates that file points into
the same region as this. The effect on available capabilities is determined by the argu-
ment of @peer: since this is transient, invoking add does not consume the capability
of file.

Note that our system does not restrict references between objects inside the same
region; this means that this and file can refer to each other in arbitrary ways. In the
type system this is expressed by having field selections propagate guards: if this has
type ρ . LogList, then this.elem has type ρ . LogFile. Since file is a peer of this,
its type is ρ . LogFile; therefore, assigning file to elem in the then-branch of the
conditional expression is safe.
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To verify the safety of calling add in the else-branch, we have to check that next
and file have types guarded by the same capability. Moreover, this capability must
be available. Since both conditions are true (the receiver of isEmpty is transient), the
invocation type-checks.

We have introduced the @transient annotation to express the fact that a method
maintains the uniqueness and accessibility of a receiver or parameter. The @peer an-
notation indicates that certain parameters are in the same (logical) region of the heap,
which allows creating reference paths between them. Together, these annotations enable
methods to mutate unique objects without destroying their uniqueness. In the following
section we show how the disjoint regions of two unique objects can be merged.

Merging regions. Recall that the parameter of the add method shown above is marked
as @peer(this), which means that it must be in the same region as the receiver. How-
ever, when using add in the example of Figure 2, the log variable is separately-unique;
this means it is contained in a region that is disjoint from the region of logs, the receiver
of the method call. This is reflected in the types: log and logs have types ρ . LogFile
and δ . LogList, respectively, for some capabilities ρ 6= δ. Therefore, the invocation
logs.add(log) is not type-correct. What we need is a way to merge the regions of log
and logs prior to invoking add.5

In our system, regions are merged using a capture expression of the form
capture(t1, t2). The arguments of capture must have guarded types ρ1.T1 and ρ2.T2,
respectively, such that ρ1 is available. Our goal is to merge the regions ρ1 and ρ2 in a
way that (still) permits separately-unique references into region ρ2, while giving up
the disjointness from region ρ1. For this, capture returns an alias of t1, but with a type
guarded by ρ2 instead of ρ1. This allows t1 and t2 to refer to each other subsequently. To
satisfy the Capability Type Invariant (Definition 3), capture consumes ρ1. This ensures
that t1 can no longer be accessed under a type guarded by ρ1. Therefore, it is safe to
break the separation of t1 and t2 subsequently. Since ρ2 is still available, it is possible
for separately-unique variables to point into region ρ2.

In the example, we use capture to merge the regions of log and logs before in-
voking add:

logs.add(capture(log, logs))

Note that capture consumes the capability of log, while the capability of logs re-
mains available. The result of capture is an alias of log in the same region as logs.
Therefore, the precondition of add (see above) is satisfied.

Unique fields. In the example of Figure 2, we made the simplifying assumption that
the list of log files is stored in a local variable. This is not the case in the original
program, where the log files are stored in a field of the class containing the runTests
method. The main reason is that the lexical scope of runTests is too restrictive. It is
simpler to create the log file in a method transitively called by runTests, at a point

5 This is similar to changing the owner in systems based on ownership; here, ownership of an
object is transferred from one (usually a special “unique”) owner to another [12].
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where more information about the test is available, and close to the point where the log
file is actually used. Consequently, updating the list of log files inside runTests would
be cumbersome, since it would require returning the log file back into the context of
runTests. Keeping the logs in a field avoids passing it around using (extra) method
parameters.

In our system, unique fields must be accessed using an expression of the form
swap(t1.l, t2); it returns the current value of the field t1.l and updates it with the new
value t2. The first argument must select a unique field. The second argument must be a
unique object to be stored as the new value in the field. The object that swap returns is
always unique, guarded by a fresh capability. The capability of the second argument is
consumed, which makes it separately-unique.

In our example, the list of log files can be maintained in a unique field logFiles as
follows.

val logs: LogList @unique = swap(this.logFiles, null)
logs.add(capture(log, logs))
swap(this.logFiles, logs)

First, we obtain the current value of the unique logFiles field, providing null as its
new (dummy) value.6 Then, we add the log file to logs, maintaining the uniqueness of
logs as we discussed above. Finally, we use a second swap to update logFiles with
the modified logs.

We now extend the alias invariant introduced above to unique fields. The only way
to obtain a reference to an object stored in a unique field is to use the swap expression
that we just introduced. Therefore, a property that holds for all (references to) objects
returned by swap is an invariant of unique fields in our system. This allows us to for-
mulate a unique fields invariant that is pleasingly simple.

Definition 4 (Unique Fields Invariant) References returned by swap are
separately-unique.

3 Formalization

This section presents a formalization of our type system. To simplify the presentation
of key ideas, we present our type system in the context of a core subset of Java. We
add the capture and swap expressions introduced in the previous section, and augment
the type system with capabilities to enforce uniqueness and aliasing constraints. Our
approach, however, extends to the whole of Java and other languages like Scala. We
discuss important extensions in Section 5.

Syntax. Figure 4 shows the core language syntax. The syntax of programs, classes,
terms, and expressions is standard, except for the capture and swap expressions, which
are new. A program consists of a sequence of class definitions followed by a single
top-level term. (We use the common over-bar notation [29] for sequences.) Class def-
initions consist of declaring a single super-class followed by a body containing field

6 Note that it is always safe to treat literals as unique values.
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P ::= cdef t program
cdef ::= class C extendsD {fld meth} class
fld ::= α l : C field
meth ::= defm[δ](x : T ) : (T,∆) = e method
t ::= terms

let x = e in t let binding
y.l := z field assignment
y variable

e ::= expressions
new C(y) instance creation
y.l field selection
y.m(z) method invocation
capture(y, z) region capture
swap(y.l, z) unique field swap
t term

C,D ∈ Classes x, y, z ∈ V ars T ::= ρ . C
l ∈ Fields α ∈ {var, unique} ∆ ::= · |∆⊕ ρ
m ∈Methods ρ ∈ Caps

Fig. 4. Core language syntax

and method definitions. Field definitions carry an additional modifier α, which indi-
cates whether the field points to a unique object (α = unique), or not (α = var).
Method definitions are extended with two additional capability annotations that we ex-
plain below. The term language is mostly standard. However, note that terms are written
in A-normal form [22]: all sub-expressions are variables and the result of each expres-
sion is immediately stored into a field or bound in a let. x, y, z are local variables and
x 6= this.

Types and capabilities. In our system, there are only guarded types and method types.
Guarded types T are composed of an atomic capability ρ and the name of a class. ρ can
be seen as the static representation of a region of the heap that contains all objects of a
type guarded by ρ. A compound capability ∆ is a set of atomic capabilities.

Method types are extended with capabilities δ and ∆. Roughly, ∆ indicates which
arguments become inaccessible at the call site when the method is invoked; δ is the
capability of the result type if it is fresh. The annotations introduced in Section 2 corre-
spond to method types in our core language as follows. A parameter x of type C marked
as @unique or @transient is mapped to a guarded type ρ . C, where ρ is distinct from
the capabilities guarding other parameter types. If x is @transient, the method returns
ρ, i.e., ρ ∈ ∆. If x is @unique, the method consumes ρ, i.e., ρ /∈ ∆. A parameter y of
type D marked as @peer(x) is mapped to a guarded type ρ′ . D if x’s type is guarded by
ρ′. @peer has no influence on ∆. The receiver (this) is treated like a parameter. The
capability δ is distinct from the capabilities of parameters. If the result type is marked
@unique, its type is guarded by δ. We have δ ∈ ∆ only if the result type is guarded
by δ, otherwise δ is unused. An unannotated method in the setting of Section 2 has the
following type in our core language: the parameters (including this) and the result are
guarded by the same capability ρ that the method does not consume (ρ ∈ ∆).
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H ::= ∅ | (H, r 7→ C(r)) heap r ∈ RefLocs reference location
V ::= ∅ | (V, y 7→ β . r) envir. (y /∈ dom(V )) β ∈ DynCaps atomic dyn. capability
R ::= ∅ | R⊕ β dynamic capability

Fig. 5. Syntax for heaps, environments, and dynamic capabilities

Note that the mapping we just described establishes a precise correspondence: all
types expressible in the core language can be expressed using the annotation system
of Section 2. This ensures that the formal model is not more powerful than our imple-
mented system.

3.1 Dynamic semantics

We formalize the dynamic semantics in the form of small-step reduction rules. Reduc-
tion rules are written in the form H,V,R, t −→ H ′, V ′, R′, t′. Terms t are reduced
in a context consisting of a heap H , a variable environment V , and a set of (dynamic)
capabilities R. Figure 5 shows their syntax. A heap maps reference locations to class
instances. An instance C(r) stores location ri in its i-th field. An environment maps
variables to guarded reference locations β . r. Note that we do not model explicit stack
frames. Instead, method invocations are “flattened” by renaming the method parameters
before binding them to their argument values in the environment (as in LJ [41]).

We use the following notational conventions. R ⊕ β is a short hand for the disjoint
union R ] {β}. We define R⊕ β := R⊕ β1 ⊕ . . .⊕ βn where β = β1, . . . , βn.

According to the grammar in Figure 4, expressions are always reduced in the con-
text of a let-binding, except for field assignments. Each operand of an expression is a
variable y that the environment maps to a guarded reference location β .r. Reducing an
expression containing y requires β to be present in the set of capabilities. Since the envi-
ronment is a flat list of variable bindings, let-bound variables must be alpha-renamable:
let x = e in t ≡ let x′ = e in [x′/x]t where x′ /∈ FV (t). (We omit the defini-
tion of the FV function to obtain the free variables of a term, since it is completely
standard [38].)

The top-level term of a program is reduced in the initial configuration
(r 7→ Object(ε)), (this 7→ ρ.r), {ρ}. In the following we explain the reduction rules.
The congruence rule for let is omitted, since it is standard; let x = y in t is reduced
in the obvious way.

V (y) = δ . r δ ∈ R
H(r) = C(r)

H,V,R, let x = y.li in t
−→ H, (V, x 7→ δ . ri), R, t

(R-SELECT)

V (y) = δ . r V (z) = δ . r′

H(r) = C(r) δ ∈ R
H ′ = H[r 7→ C([r′/ri]r)]

H,V,R, y.li := z −→ H ′, V,R, y
(R-ASSIGN)

The result of selecting a field of a variable y is guarded by the same capability as y.
Intuitively, this means that objects transitively reachable from y can only be accessed
using variables guarded by the same capability as y. We make this intuition more precise
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in Section 3.2 where we formalize the separation invariant of Section 2. Assigning to a
field requires the variable whose field is updated and the right-hand side to be guarded
by the same capability. The heap changes in the standard way.

V (y) = β . r H ′ = (H, r 7→ C(r)) r /∈ dom(H) γ fresh

H,V,R⊕ β, let x = new C(y) in t −→ H ′, (V, x 7→ γ . r), R⊕ γ, t
(R-NEW)

Creating a new instance consumes the capabilities of the constructor arguments. This
ensures that the arguments are effectively separately-unique. Consequently, it is safe
to assign (some of) the arguments to unique fields of the new instance. In our core
language, creating a new instance always yields a unique object. Therefore, the new
let-bound variable that refers to it is guarded by a fresh capability.

V (y) = β1 . r1 H(r1) = C1(_)
V (z) = β2 . r2 . . . βn . rn β ⊆ R

mbody(m,C1) = (x, e)
H,V,R, let x = y.m(z) in t

−→ H, (V, x 7→ β . r), R, let x = e in t

(R-INVOKE)

The rule for method invocation uses a standard auxiliary function mbody to obtain
the body of a method. It is defined as follows. Let def m[δ](x : T ) : (R,∆) = e be a
method defined in the most direct super-class ofC that definesm. Thenmbody(m,C) =
(x, e).

V (y) = β . r V (z) = γ . _
H,V,R⊕ β ⊕ γ, let x = capture(y, z) in t

−→ H, (V, x 7→ γ . r), R⊕ γ, t

(R-CAPTURE)

Capture merges the regions of its two arguments y and z. It returns an alias of y guarded
by the capability of z. This allows storing a reference to y in a field of z and vice versa
(see rule (R-ASSIGN) above). By consuming y’s capability, we make sure that objects
that used to be in region β remain accessible only through variables guarded by γ,
which is the capability of z. This enforces that all objects are accessible as part of at
most one region at a time. (Recall that variables whose capabilities are not available
cannot be accessed.)

V (y) = β . r H(r) = C(r) γ fresh
V (z) = β′ . r′ H ′ = H[r 7→ C([r′/ri]r)]
H,V,R⊕ β ⊕ β′, let x = swap(y.li, z) in t
−→ H ′, (V, x 7→ γ . ri), R⊕ β ⊕ γ, t

(R-SWAP)

The only way to access a unique field is using swap. It mutates a unique field to point
to a new object, and returns the field’s previous value. The first argument must select a
unique field such that the capability of the containing object is available. The second ar-
gument must be guarded by a different capability, which is consumed. This ensures that
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the new value and the object containing the unique field are separate prior to evaluating
swap. swap returns the field’s old value; the new let-bound variable that refers to it is
guarded by a fresh capability, which allows treating the variable as separately-unique.

3.2 Static semantics

Well-formed programs. A program is well-formed if all its class definitions are well-
formed. Classes and methods are well-formed according to the following rules. (We
write . . . to omit unimportant parts of code in a program P .)

C ` meth
D = Object ∨ P (D) = class D . . .

∀ (defm . . .) ∈ meth. override(m,C,D)
∀α l : E ∈ fld. l /∈ fields(D)

` class C extends D {fld meth}
(WF-CLASS)

All well-formed class hierarchies are rooted in Object. All methods in a well-formed
class definition are well-formed. We explain well-formed method overriding below.
Fields may not be overridden; their names must be different from the names of fields in
super-classes. We use a standard function fields(D) [29] to obtain all fields in D and
super-classes of D.

T = ρ . C x : T ; {ρ | ρ ∈ ρ} ` e : R ; ∆
x1 = this R = δ′ . D δ′ ∈ ∆

δ =
{
δ′ if δ′ /∈ ρ
fresh otherwise

C1 ` defm[δ](x : T ) : (R,∆) = e
(WF-METHOD)

In a well-formed method definition that appears in class C1, the first parameter is al-
ways this and its class type is C1. The method body must be type-checkable in an
environment that binds the parameters to their declared types, and that provides all ca-
pabilities of the parameter types. After type-checking the body, the capabilities in ∆
must still be available. The result type of a method must be guarded by a capability in
∆. If the capability of the result type does not guard one of the parameter types, it is
unknown in the caller’s context. In this case we treat it as existentially quantified; the
square brackets are used as its binder. If the capability of the result type guards one of
the parameter types, the quantified capability is unused.

mtype(m,D) not defined ∨
(mtype(m,D) = ∃δ. (ρ . D, T )→ (R,∆) ∧
mtype(m,C) = ∃δ. (ρ . C, T )→ (R,∆))

override(m,C,D)
(WF-OVERRIDE)

A method defined in class C satisfies the rule for well-formed overriding if the super-
class D does not define a method of the same name, or the method types differ only in
the first this parameter.
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Subclassing and subtypes. Each program defines a class table, which defines the sub-
typing relation <:. In our system, <: is identical to that of FJ [29], except for the fol-
lowing rule for guarded types, which is new. It expresses the fact that guarded types can
only be sub-types if their capabilities are equal.

C <: D
ρ . C <: ρ . D

(<:-CAP)

Type assignment. Terms are type-checked using the judgement Γ ; ∆ ` t : T ; ∆′.
Γ maps variables to their types. The facts that Γ implies can be used arbitrarily often
in typing derivations. ∆ and ∆′ are capabilities, which may not be duplicated. As part
of the typing derivation, capabilities may be consumed or generated. ∆′ denotes the
capabilities that are available after deriving the type of the term t. In a typing derivation
where ∆′ = ∆ we omit ∆′ for brevity.

Γ (y) = ρ . C ρ ∈ ∆
Γ ; ∆ ` y : ρ . C ; ∆

(T-VAR)
Γ ; ∆ ` y : ρ . C

fields(C) = α l : D αi 6= unique

Γ ; ∆ ` y.li : ρ . Di ; ∆
(T-SELECT)

A variable is well-typed in Γ,∆ if Γ contains a binding for it, and ∆ contains the
capability of its (guarded) type. This ensures that the capabilities of variables occurring
in a typing derivation are statically available. Selecting a field from a variable y of
guarded type yields a type guarded by the same capability. The selected field must not
be unique. Because of rule (T-VAR), the capability of y must be available.

Γ ; ∆ ` y : ρ . C Γ ; ∆ ` z : ρ . Di

fields(C) = α l : D αi 6= unique

Γ ; ∆ ` y.li := z : ρ . C ; ∆
(T-ASSIGN)

Assigning to a non-unique field of a variable y with guarded type ρ . C requires also
the right-hand side to be guarded by ρ. The term has the same type as y, which is the
result of reducing the assignment (see Section 3.1).

Γ ; ∆ ` y : ρ . D ∆ = ∆′ ⊕ ρ
fields(C) = α l : D ρ′ fresh

Γ ; ∆ ` new C(y) : ρ′ . C ; ∆′ ⊕ ρ′
(T-NEW)

The rule for instance creation requires all constructor arguments to be guarded by dis-
tinct capabilities, which must be available. Intuitively, this means that the arguments
are in mutually disjoint regions. Therefore, it is safe to assign them to unique fields of
the new instance. By consuming the capabilities of the arguments, we ensure that there
is no usable reference left that could point into the object graph rooted at the new in-
stance; thus, we can assign a type guarded by a fresh capability ρ′ to the new instance
and make ρ′ available to the context. Note that we can relax this rule for initializing
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non-unique fields: multiple non-unique fields may be guarded by the same capability.
(See Section 5 for a discussion in the context of nested classes.)

Γ ; ∆ ` y : ρ1 . D1

Γ ; ∆ ` zi−1 : ρi . Di, i = 2..n
mtype(m,D1) = ∃δ. δ . D → (R,∆m)
σ = δ 7→ ρ ◦ δ 7→ ρ injective ρ fresh

∆ = ∆′ ] {ρ | ρ ∈ ρ}
Γ ; ∆ ` y.m(z) : σR ; σ∆m ⊕∆′

(T-INVOKE)

In the rule for method invocations, the capabilities of all arguments must be available in
∆. We look up the method type based on the static type of the receiver. The capabilities
in method types are abstract, and have to be instantiated with concrete ones. To satisfy
the pre-condition of the method, there must be a substitution that maps the capabilities
of the formal parameters to the capabilities of the arguments. Importantly, the substi-
tution must be injective to prevent mapping different formal capabilities to the same
argument capability; this would mean that the requirement to have two different formal
capabilities could be met using only a single argument capability, which would amount
to duplicating that capability. In our system, capabilities may never be duplicated. The
resulting set of capabilities is composed of the capabilities provided by the method af-
ter applying the substitution (σ∆m) and those capabilities ∆′ that were provided by the
context, but that were not required by the method.

Γ ; ∆ ` y : ρ . C Γ ; ∆ ` z : ρ′ . C ′ ∆ = ∆′ ⊕ ρ
Γ ; ∆ ` capture(y, z) : ρ′ . C ; ∆′

(T-CAPTURE)

The type rule for capture requires the capabilities of the arguments to be present (this
follows from (T-VAR), see above). The capability of the first argument is consumed,
thereby making all variables pointing into its region inaccessible. The result has the
same class type as y, but guarded by the capability of z. Essentially, capture casts its
first argument from its current region to the region of the second argument; in Section 4
we prove that the cast can never fail at run-time.

Γ ; ∆ ` y : ρ . C Γ ; ∆ ` z : ρ′ . Di

fields(C) = α l : D αi = unique
∆ = ∆′ ⊕ ρ′ ρ′′ fresh

Γ ; ∆ ` swap(y.li, z) : ρ′′ . Di ; ∆′ ⊕ ρ′′
(T-SWAP)

The first argument of swap must select a unique field. Recalling the dynamic semantics,
swap returns the current value of this field, and assigns the value of z to it. Therefore,
the field must have the same class type as z (possibly using subsumption, see below).
The arguments must be guarded by two different capabilities, which must be present
in ∆. (Again, ρ is present because of (T-Var).) This means that the arguments point
to disjoint regions in the heap. By consuming the capability of z, we ensure that it is
separately-unique. Since the reference returned by swap is unique, the result is guarded
by a fresh capability.
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Γ ; ∆ ` e : T ; ∆′

Γ, x : T ; ∆′ ` t : T ′ ; ∆′′

Γ ; ∆ ` let x = e in t : T ′ ; ∆′′
(T-LET)

Γ ; ∆ ` e : T ′ ; ∆′

T ′ <: T
Γ ; ∆ ` e : T ; ∆′

(T-SUB)

The rule for let is standard, except for the fact that type derivations may change the set
of capabilities. The subsumption rule can be applied wherever the type of an expression
is derived. In particular, deriving the type of variables is subject to subsumption.

Well-formedness. We require terms to be reduced in well-formed configurations. A
well-formed configuration must satisfy at least the following two invariants, which are
central to the soundness of our system. The first invariant expresses the fact that two
accessible variables guarded by different capabilities do not share a common reachable
object.

Definition 1 (Separation Invariant) A configuration V,H,R satisfies the Separation
Invariant, written separation(V,H,R), iff
∀ (x 7→ δ . r), (x′ 7→ δ′ . r′) ∈ V.
(δ 6= δ′ ∧ {δ, δ′} ⊆ R⇒ separate(H, r, r′))

Note that we can only conclude that the two variables are separate if both capabilities are
present. In particular, capturing a variable y does not violate the invariant even though it
creates an alias of y guarded by a different capability. The reason is that capture con-
sumes y’s capability, thereby making it inaccessible. Therefore, the invariant continues
to hold for accessible variables, that is, variables whose capabilities are present. (The
predicate separate is formally defined in the companion technical report [24].)

Definition 2 (Unique Fields Invariant) A configuration V,H,R satisfies the Unique
Fields Invariant, written uniqF lds(V,H,R), iff
∀ (x 7→ δ . r) ∈ V. H(q) = C(p)⇒ ∀i ∈ uniqInd(C).
δ ∈ R ∧ reachable(H, pi, r

′)⇒ domedge(H, q, i, r, r′)

The unique fields invariant says that all reference paths from a variable x to some object
r′ reachable from a unique field must “go through” that unique field. The reachable and
domedge predicates are based on the following definition of reference paths.

r ∈ dom(H)
[r] ∈ path(H, r, r)

H(r) = C(p)
∃i. P ∈ path(H, pi, r

′)
r :: P ∈ path(H, r, r′)

path(H, r, r′) 6= ∅
reachable(H, r, r′)

Basically, a reference path is a sequence of reference locations, where each reference
(except the first) is stored in a field of the preceding location. The definition of domedge
is as follows.

domedge(H, q, i, r, r′)⇔
∀P ∈ path(H, r, r′). P = r . . . q, pi, . . . r

′ where H(q) = C(p)
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This predicate expresses the fact that all paths from r to r′ must contain the sequence
q, pi, which corresponds to selecting the i-th (unique) field of object q.

Σ ` H
Γ ; ∆ ; Σ ` V ; R
separation(V,H,R)
uniqF lds(V,H,R)

Γ ; ∆ ; Σ ` H ; V ; R
(WF-CONFIG)

Aside from the separation and unique fields invariants, well-formed configurations must
have well-formed environments and heaps.

Σ ` H Σ(r) = C

fields(C) = α l : D Σ ` p : D
Σ ` (H, r 7→ C(p))

(WF-HEAP)

Σ(r) = D D <: C
Σ ` r : C

(HEAP-TYPE)

The rule for well-formed heaps is completely standard: the heap typing Σ must agree
with the heap H on the type of each class instance. Moreover, the types of instances
referred to from its fields must be compatible with their declared types using the (HEAP-
TYPE) rule.

Γ ; ∆ ; Σ ` V ; R
Σ ` r : C ρ ∈ ∆ iff β ∈ R

(Γ, y : ρ . C) ; ∆ ; Σ ` (V, y 7→ β . r) ; R
(WF-ENV)

In the rule for well-formed environments we require the type environment Γ to agree
with the heap typing Σ on the class type of instances referred to from variables. This
rule also contains the key to relating static and dynamic capabilities: the static capability
of a variable is contained in the set of static capabilities if and only if its dynamic ca-
pability in the environment is contained in the set of dynamic capabilities. This precise
correspondence allows us to prove that the reduction of a well-typed term will never get
stuck because of missing capabilities (see Section 4).

4 Soundness

In this section we present the main soundness result for the type system introduced in
Section 3. We prove type soundness using the standard syntactic approach of preser-
vation plus progress [47]. A complete proof of soundness appears in the companion
technical report [24].

In a first step, we prove a preservation theorem: it states that the reduction of a well-
typed term in a well-formed context preserves the term’s type. Moreover, the resulting
context (heap, environment, and capabilities) is well-formed with respect to a new type
environment, static capabilities, and heap typing.
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Theorem 1 (Preservation) If

– Γ ; ∆ ` t : T ; ∆′
– Γ ; ∆ ; Σ ` H ; V ; R
– H,V,R, t −→ H ′, V ′, R′, t′

then there are Γ ′ ⊇ Γ , ∆′′, and Σ′ ⊇ Σ such that

– Γ ′ ; ∆′′ ` t′ : T ; ∆′
– Γ ′ ; ∆′′ ; Σ′ ` H ′ ; V ′ ; R′

This theorem guarantees that reduction preserves the separation and unique fields in-
variants that we introduced in Section 3.2. These invariants are implied by the well-
formedness of the result context H ′, V ′, R′. Also note that the new type environment
Γ ′ and the new heap typing Σ′ are super sets of their counterparts Γ and Σ, respec-
tively. This means that merging two regions does not require strong type updates in our
system.

In a second step, we prove a progress theorem, which guarantees that a well-typed
term can be reduced in a well-formed context, unless it is a value. Variables are the only
values in our language.

Theorem 2 (Progress) If Γ ; ∆ ` t : T ; ∆′ and Γ ; ∆ ; Σ ` H ; V ; R, then
either t = y, or there is a reduction H,V,R, t −→ H ′, V ′, R′, t′.

The progress theorem makes sure that the reduction of a term does not get stuck, be-
cause of missing capabilities; that is, if a term type-checks, all required capabilities will
be available during its reduction. Soundness of the type system follows from Theorem 1
and Theorem 2.

We can formulate a uniqueness theorem as a corollary of preservation and progress.
Formally, separate uniqueness is defined as follows:

Definition 3 (Separate Uniqueness) A variable (y 7→ β . r) ∈ V such that β ∈ R is
separately-unique in configuration H,V,R, let x = t in t′ iff
∀ (y′ 7→ β′ . r′) ∈ V.
(¬separate(H, r, r′) ∧H,V,R, t −→∗ H ′, V ′, R′, e′)⇒ β′ /∈ R′

Intuitively, the definition says that the capabilities of aliases of a variable y are unavail-
able when reducing t′ if y is separately-unique in t. By Theorem 2 and the reduction
rules, none of y’s aliases are accessed after the reduction of t, since β′ /∈ R′.

The following corollary guarantees that a variable passed as an argument to a method
expecting a unique parameter is separately-unique; this means that all variables that are
still accessible after the invocation are separate from the argument.

Corollary 1 (Uniqueness) If

– Γ ; ∆ ` let x = t in t′ : T ; ∆′ where t = y.m(z)
– Γ ; ∆ ; Σ ` H ; V ; R
– Γ (y) = _ . C
– mtype(m,C) = ∃δ. δ . D → (TR, ∆m) where δi /∈ ∆m

then zi is separately-unique in H,V,R, let x = t in t′.
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5 Extensions

In this section we address some of the issues when integrating our type system into
full-featured languages like Scala or Java that we omitted from the formalization for
simplicity.

Closures. A number of object-oriented languages, such as Scala, have special sup-
port for closures. In this section we discuss how our type system handles closures that
capture unique variables in their environment.

Consider the following example: a unique list of books should be inserted into a
hash map in a way that enables fast access to the books in a certain category. The
following code achieves this in an efficient way.

val list: List[Book] @unique = ...
val map = new HashMap[String, List[Book]]
list.foreach { b =>
val sameCat = map(b.cat)
map.put(b.cat, b :: sameCat)

}

For safety, we require the produced hash map to be unique. This means that the capabil-
ity of map must be available after the foreach. Intuitively, this is the case if list and
map are in the same region; the body of foreach only adds references from the hash
map to the books.

Technically, the closure is type-checked as follows. First, we collect the capabilities
of references that the closure captures. We require all captured references to be guarded
by the same capability, say, ρ. The reason is that all of these references are stored in
the same (closure) object, which must, therefore, be guarded by ρ.7 In a second step,
the body is type-checked assuming that the closure’s parameters are also guarded by
ρ. In addition, we require that ρ is not consumed in the body. This check allows us to
associate a single capability, ρ, with the closure. It indicates that ρ must be available
when invoking the closure; moreover, arguments must be guarded by ρ. The type of a
closure guarded by ρ, written ρ . (A⇒ B), effectively corresponds to the method type
ρ . A→ (ρ . B, {ρ}).

Revisiting our example, the foreach method in class List can then be annotated
and type-checked as follows.

@transient def foreach(f: (A => Unit) @peer(this)) {
if (!this.isEmpty) { f(this.head); this.tail.foreach(f) } }

Here, f’s argument, this.head, must be guarded by the same capability as f; this is the
case, since f is a peer of this. It is important to note that this does not break any existing
code: the annotations merely express that the receiver and the variables captured by f

7 Captured references guarded by different capabilities would have to be stored in unique fields
of the closure object; accessing them would require swap. Currently, we do not see a practical
way to support that.
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must be in the same region. Unannotated objects of existing clients are (all) contained
in the global “shared” region, and are therefore compatible with the annotated foreach.

What if a closure does not capture a variable in the environment? In this case, we
assume that the closure’s parameters are guarded by some fresh capability, say, δ, when
checking the body. When a closure of type δ . (A⇒ B) is passed to a method invoked
on an object guarded by ρ, we first capture the closure; this yields a reference to the clo-
sure with type ρ. (A⇒ B), consuming δ. Note that this capturing can occur implicitly,
without additions to the program.

Nested classes. Nested classes can be seen as a generalization of closures; a nested
class may define multiple methods, and it may be instantiated several times. An impor-
tant use case are anonymous iterator definitions in collection classes.

For instance, the SingleLinkedList class in Scala’s standard library provides the
following method for obtaining an iterator (the A type parameter is the collection’s
element type):

def elements: Iterator[A] = new Iterator[A] {
var elems = SingleLinkedList.this
def hasNext = (elems ne null)
def next = { val res = elems.elem; elems = elems.next; res }

}

The nested Iterator subclass stores a captured reference to the receiver in its elems
field. Therefore, the iterator instance cannot be unique, since it is not separate from the
receiver. However, it is safe to create the iterator in the region of the receiver.

In general, new nested class instances can be created in the region of captured ref-
erences if all those references are in the same region, say, ρ (similar to closures). If
there are constructor arguments, they must also be guarded by ρ. Note that creating the
instance does not consume ρ. This means, we are relaxing the rule for instance creation
introduced in Section 3, which requires the capabilities of constructor arguments to be
distinct and consumed; it applies equally to non-nested classes. Note that nested classes
may have unique fields; initializing unique fields through constructor parameters must
follow the same rule as normal instance creation, that is, the arguments must be guarded
by distinct capabilities, which are consumed.

Revisiting the iterator example, we can use the @peer annotation to express the fact
that the iterator is created in the same region as the receiver:

@transient def elements: Iterator[A] @peer(this) = ...

This enables arbitrary uses of an iterator while the capability of its underlying unique
collection is available.

Transient Classes. We say that a class is transient if none of its fields are unique and
all of its methods can be annotated such that the receiver is marked as @transient and
all parameters are marked as @peer(this). This means that the receiver and the pa-
rameters of a method must be guarded by the same capability. It ensures that neither the
receiver nor objects reachable from it are leaked to (potentially) shared objects, since
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(1) shared objects are guarded by the special “shared” capability, and (2) capabilities
of method parameters are universally quantified, making them incompatible with the
shared capability. We have found that most classes used in messages are transient (see
Section 6). This means that most objects only interact with objects from its enclos-
ing aggregate, which is consistent with the results for thread-locality in Loci [50]. To
abbreviate the canonical annotation, we allow classes to be annotated as @transient.

6 Implementation

We have implemented our type system as a plug-in for the Scala compiler developed at
EPFL.8 The plug-in inserts an additional compiler phase that runs right after the normal
type checker. The extended compiler first does standard Scala type checking on the
erased terms and types of our system. Then, types and capabilities are checked using
(an extension of) the type rules presented in Section 3. For subsequent code generation,
all capabilities, capture and swap expressions are erased.

Practical Experience. As a first step we annotated the (mutable) DoubleLinkedList,
ListBuffer, and HashMap classes from the collections of Scala 2.7 including all class-
es/traits that these classes transitively extend, comprising 2046 lines of code. Making
all classes transient (see Section 5) required changing 60 source lines.

In Section 2, we have already introduced the partest testing framework, which is
used to run the check-in and nightly tests for the Scala compiler and standard library.
Although the majority of code deals with compiler/test set-up and reporting, the unique
objects that are transferred among actors are used pervasively throughout large parts
of the code. An example for such a class is LogFile, which receives output from
various sources (compiler, test runner etc.). For creating unique LogFile instances it
is sufficient that the class is transient; However, LogFile inherits from the standard
java.io.File class, which is unchecked. Fortunately, according to the Java version 6
API, “instances of the File class are immutable.”9 We configured our type checker to
skip checking immutable classes. In general, however, this is unsound if such classes
could mutate or leak method parameters. Overall, the most important changes were:

1. Annotating the message classes. We found that all message classes could be anno-
tated as @transient.

2. Handling of unique fields. We had to annotate a field holding a list of created log
files as @unique. Three swap expressions were sufficient to cover all accesses to
the field.

In summary, out of the 4182 lines of code (including whitespace), we had to change
32 lines and add 29 additional lines. The following observation helped interoperability:
passing a unique object to an unannotated method is often unproblematic if the method
expects an immutable type. However, this is unsound in the general case, since instances
of such types could be downcast to mutable types. In our study we allowed passing a
LogFile instance to methods of unannotated Java classes expecting a java.io.File.

8 See http://lamp.epfl.ch/˜phaller/capabilities.html.
9 See http://java.sun.com/javase/6/docs/api/.
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7 Other Related Work

In functional languages, linear types [43] have been used to implement operations like
array updating without the cost of a full copy. An object of linear type must be used
exactly once; as a result, linear objects must be threaded through the computation.
Wadler’s let! or observers [34] can be used to temporarily access a linear object
under a non-linear type. Linear types have also been combined with regions, where
let! is only applicable to regions [46]. Bierhoff and Aldrich [6] build on an expres-
sive linear program logic for modular type-state checking in an object-oriented setting.
It is not clear how their system could be applied to message-based concurrency, since
unique references do not prevent read-only references to the same object. Beckman
et al. [5] use a similar system for verifying the correct use of software transactions.
JAVA(X) [15] tracks linear and affine resources using type refinement and capabilities,
which are structured, unlike ours. The authors did not consider applications to concur-
rency. Shoal [2] combines static and dynamic checks to enforce sharing properties in
concurrent C programs; in contrast, our approach is purely static. Like in region-based
memory management [42, 44, 27, 52], in our system objects inside a region may not re-
fer to objects inside another region that may be separately consumed. The main differ-
ences are: first, regions in our system do not have to be consumed/deleted, since they are
garbage-collected; second, regions in our system can be merged. Separation logic [36]
is a program logic designed to reason about separation of portions of the heap; the
logic is not decidable and does not deal with stack variables, unlike our approach. Bor-
nat et al. [7] study permission accounting in separation logic; unlike our system, their
approach is not automated. Parkinson and Bierman [37] extend the logic to an object-
oriented setting; however, applications [18] still require heavy-weight theorem proving
and involve extensive program annotation. To avoid aliasing, swapping [26] has been
proposed previously as an alternative to copying pointers; in contrast to earlier work,
our approach integrates swapping with internally-aliased unique references and local
aliasing.

8 Conclusion

We have introduced a new type-based approach to uniqueness in object-oriented pro-
gramming languages. Simple capabilities enforce both aliasing constraints for unique-
ness and at-most-once consumption of unique references. By identifying unique and
borrowed references as much as possible our approach provides a number of benefits:
first, a simple formal model, where unique references “subsume” borrowed references.
Second, the type system does not require complex features, such as existential owner-
ship or explicit region declarations. The type system has been proven sound and can be
integrated into full-featured languages, such as Scala. Practical experience with collec-
tion classes and actor-based concurrent programs suggests that the system allows type
checking real-world Scala code with only few changes.

Acknowledgments: Thanks to Rémi Bonnet for discussions on earlier versions of the
type system. Thanks to the anonymous reviewers for detailed and helpful comments.
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