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II. Zero-dimensional model. The "plasma     
dimension". Silane depletion. Importance of 
gas composition in the plasma.

III. Electromagnetic uniformity: finite RF wavelength in large area, VHF reactors.

IV. Uniformity in time: rapid equilibration to steady-state process parameters. Direct pumping of a plasma 
reactor.

V. So where is the problem?  - Causes of non-uniformity. Some recommendations.

A. Howling  ICANS-23 Utrecht  
August 23 (2009)
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An example: Hydrogen dilution for plasma deposition of μc-Si:H
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Surface diffusion
model

Selective etching
model Chemical annealing

model

Need high ratio of 
H to SiHx fluxes

to deposit μc-Si:H

Reason for hydrogen dilution

"Add more hydrogen

than silane"
intuitively
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...but the optimal  plasma control parameters are less clear
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...because the plasma is complex.

p process
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Consider low pressures (< 2 mbar)
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Consider only the majority species

ΦSiH4

ΦH2 { } 2 4molecules               H           SiH 2 4   H     SiH

All reactive species (SiHx, H, and ions) have 
very low density because of their volume and 
surface reactions

H2 and SiH4 have the dominant partial pressures 
in the plasma reactor

Only H2 and SiH4 leave the plasma reactor

The partial pressure of SiH4 (and H2) is ~the 
same in the pumping line as in the plasma

"The plasma 
composition (and 
deposition) is 
determined by 
the partial 
pressures of 
SiH4 and H2
in the plasma"

p process
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How to measure the silane partial pressure in the plasma?

plasma box
• heated
• closed

• showerhead
p
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process

vacuum chamber
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pumping line

"inaccessible"  plasma reactor

substrate loading door



9 aah II 
ICANS23

FTIR in pump line: Non-intrusive diagnostic for SiH4 pressure

p
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Silane partial pressure measurement
a) Silane infrared absorbance;   b) Integrate spectrum;  c) Read off a calibrated curve
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The plasma "black box" becomes a {c,D} unit box
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Contours of constant plasma composition
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Contours of constant plasma composition

0
0 1

1

silane depletion fraction, D

si
la

ne
 in

pu
t c

on
ce

nt
ra

tio
n,

 c

( )= − =pl 1 0.05c c D

5% silane
95% hydrogen

strong input dilution,
weak depletion

5% silane
95% hydrogen
NO input dilution,
95% depletion

( )0.05
0.1

c
D
=
=

( )1
0.95

c
D
=
=

IN THE
PLASMA

IN THE
PLASMA



18 aah II 
ICANS23

Same plasma composition = same film properties

Constant plasma 
composition, cpl, gives 
constant film properties 

Depletion is an intensive 
parameter : same depletion 

gives same plasma conditions
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Same plasma composition = same film properties

Microcrystalline silicon can be deposited even with high silane concentration,
provided that the silane depletion fraction is sufficiently high,

because then the plasma is dominated by hydrogen.

cpl = 0.5%

cpl = 1.2%
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Two regimes of operation
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REGIME 1 "conventional" :
Film crystallinity governed by
hydrogen dilution of silane,
'independent' of plasma.

REGIME 2 "recent" :
Film crystallinity governed by
strong plasma depletion, even
for high silane concentration.
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Based on a reduced set of gas phase reactions…

…and simplified, multi-step, surface reactions.
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p

Simple, analytical plasma chemistry model

• A zero-dimensional model can be appropriate to showerhead reactors (see section I)

• "a" is the inverse residence time, an effective "pumping speed"
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H+H
recombination
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0-dimensional model; first order reaction rate balance for each species.

flow in

lost by electron 
impact 

dissociation

inverse 
residence time 
(pumping loss)

produced 
during 

deposition
flow in

loss rate by 
surface 

association

produced 
by surface 
association

lost by 
dissocation

produced by 
dissocation 

of silane

produced by 
dissocation 
of hydrogen

inverse 
residence time 
(pumping loss)

B. Strahm, A. A. Howling, L. Sansonnens and Ch. Hollenstein,  
Plasma Sources Sci. Technol. 16, 80 (2007).

produced by 
dissocation

lost by 
deposition
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Simple, analytical plasma chemistry model

• Just one silane dissociation channel here: e + SiH4 SiH2 + 2H + e

• More detailed plasma chemistry only changes the numerical constants:

• ... the general conclusions remain the same. 

Hydrogen and silane are the dominant partial pressures;

so we can expect radical densities to depend on them.

"This shows why the plasma deposition is determined by cpl ,
the silane concentration in the plasma."
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Depletion accounts for many of the plasma parameters
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all of these are intensive parameters

Depletion scaling:
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Intermediate Conclusions
• Plasma composition and deposition depend on the silane concentration in the plasma, cpl=c(1-D) ,  and 
not only on the silane concentration in the input flow, c.

Strong hydrogen dilution in the plasma, and μc-Si:H deposition, can be obtained with high input 
concentration of silane and strong depletion.

• The fractional depletion of silane, D, is an intensive parameter.

Depletion measurement could be a useful diagnostic check for the same plasma conditions in the 
transfer of process parameters to an upscaled reactor. Monitored non-intrusively by infrared absorption 
spectroscopy in the pumping line.

• A zero-dimensional model, appropriate for a uniform large-area reactor, can be used to estimate the 
relation between intensive plasma parameters.
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