II. Zero-dimensional model. The "plasma dimension". Silane depletion. Importance of gas composition in the plasma.

- III. Electromagnetic uniformity: finite RF wavelength in large area, VHF reactors.
- IV. Uniformity in time: rapid equilibration to steady-state process parameters. Direct pumping of a plasma reactor.
- V. So where is the problem? Causes of non-uniformity. Some recommendations.

An example: Hydrogen dilution for plasma deposition of µc-Si:H

2 aah II ICANS23

Reason for hydrogen dilution

Need high ratio of H to SiH_x fluxes to deposit μ c-Si:H

"Add more hydrogen than silane"

...but the optimal *plasma* control parameters are less clear

...because the plasma is complex.

Consider low pressures (< 2 mbar)

Consider only the majority species

How to measure the silane partial pressure in the plasma?

"inaccessible" plasma reactor

FTIR in pump line: Non-intrusive diagnostic for SiH₄ pressure

Silane partial pressure measurement

a) Silane infrared absorbance; b) Integrate spectrum; c) Read off a calibrated curve

Silane pressure with plasma < silane pressure without plasma,

$$p_{SiH_4} < p_{SiH_4}^0$$

due to electron dissociation of silane (irreversible loss).

 Hydrogen partial pressure increases with plasma (silane dissociation product, surface association,
 8 pump speed adjustment)

Silane input concentration (without plasma)

$$\left.egin{aligned} oldsymbol{arPsiH_4} \ oldsymbol{\mathcal{P}_{SiH_4}} \end{aligned}
ight\}$$

$$p_{SiH_4}^0 + p_{H_2}^0 = p_{process}$$

$$p_{SiH_4}^0 + p_{H_2}^0 = p_{process}$$

process

Define

silane *input* concentration,
$$c = \frac{p_{SiH_4}^0}{p_{process}} = \frac{\Phi_{SiH_4}}{\Phi_{total}}$$

Note $0 \le c \le 1$

11 aah II ICANS23

Silane concentration with plasma

 $p_{SiH_4} + p_{H_2} = p_{process}$

 $p_{SiH_4} + p_{H_2} = p_{process}$

Define

silane concentration with plasma, $c_{\rm pl} = \frac{p_{\rm SiH_4}}{p_{\rm process}}$

process same pressure by feedback adjustment to throttle valve

silane input concentration, $c = \frac{p_{SiH_4}^{g}}{p_{process}}$

Silane depletion due to plasma

Silane concentration in plasma

 $p_{SiH_4} + p_{H_2} = p_{process}$

 $p_{SiH_4} + p_{H_2} = p_{process}$

Therefore

silane concentration in plasma, $c_{pl} = c(1-D)$

silane fractional depletion, $D = \frac{p_{SiH_4}^0 - p_{SiH_4}}{p_{SiH_4}^0}$

silane concentration with plasma, $c_{\rm pl} = \frac{p_{\rm SiH_4}}{p_{\rm process}}$

silane input concentration, $c = \frac{p_{SiH_4}^0}{p_{process}}$

2 parameters, c & D, define the plasma composition

The plasma "black box" becomes a $\{c,D\}$ unit box

Contours of constant plasma composition

Contours of constant plasma composition

17 aah II ICANS23

weak depletion

CRPP ÉCOLE POLYTECHNIQU FÉDÉRALE DE LAUSANN

Same plasma composition = same film properties

Constant plasma composition, $c_{\rm pl}$, gives constant film properties

Depletion is an intensive parameter: same depletion gives same plasma conditions

Same plasma composition = same film properties

Microcrystalline silicon can be deposited even with high silane concentration, provided that the silane depletion fraction is sufficiently high, because then the <u>plasma</u> is dominated by hydrogen.

Two regimes of operation

REGIME 2 "recent":

Film crystallinity governed by strong plasma depletion, even for high silane concentration.

Simple plasma chemistry model

Based on a reduced set of gas phase reactions...

$$e + SiH_4 \xrightarrow{k_1} SiH_2 + 2H + e$$

$$e + H_2 \xrightarrow{k_H} 2H + e$$

$$\stackrel{\text{e}}{\bullet}$$
 + \bigcirc \longrightarrow \bigcirc + $\stackrel{\text{e}}{\bullet}$

...and simplified, multi-step, surface reactions.

$$SiH_2 \xrightarrow{S} Si_{surf} + H_2$$

$$H + H_{surf} \longrightarrow H_2 + vacancy$$

$$H + vacancy \longrightarrow H_{surf}$$

$$H \xrightarrow{R} \frac{1}{2} H_2$$

Simple, analytical plasma chemistry model

- A zero-dimensional model can be appropriate to showerhead reactors (see section I)
- "a" is the inverse residence time, an effective "pumping speed"

0-dimensional model; first order reaction rate balance for each species.

Si
$${
m H_4}$$
: $\Phi_{
m SiH_4}$ - $(kn_{
m e}+a)n_{
m SiH_4}=0$

$${
m SiH_2:}~kn_{
m e}n_{
m SiH_4}^{
m produced by}-Sn_{
m SiH_2}^{
m lost by deposition}=0$$

Simple, analytical plasma chemistry model

- Just one silane dissociation channel here: e + SiH₄ → SiH₂ + 2H + e
- More detailed plasma chemistry only changes the numerical constants:
- ... the general conclusions remain the same.

radical flux ratio
$$\frac{\Gamma_{H}}{\Gamma_{SiH_2}} = \frac{Rn_{H}}{Sn_{SiH_2}} = 2\frac{k_{H}}{k} \left(\frac{n_{H_2}}{n_{SiH_4}}\right) + 2 = 2\frac{k_{H}}{k} \left(\frac{1}{c_{pl}} - 1\right) + 2$$

Hydrogen and silane are the dominant partial pressures; so we can expect radical densities to depend on them.

"This shows why the plasma deposition is determined by $c_{\rm pl}$, the silane concentration <u>in the plasma."</u>

Depletion accounts for many of the plasma parameters

plasma black box $f[MHz] P_{RF}[W]$ gap area $\Phi_{tot} p[mbar]$

all of these are intensive parameters

$$D = \left(1 + \frac{a/kn_e}{(1+c)}\right)^{-1}$$

$$a[s^{-1}]$$
 = inverse residence time = effective pumping speed = $6.1 \cdot 10^{-6} \frac{I_{gas} \mathcal{P}_{total}}{p \cdot gap \cdot area}$;

$$kn_e[s^{-1}]$$
 = silane dissociation rate = plasma dissociation frequency = $F(P_{RF}, f[MHz])$;

$$c = \text{ silane input concentration, } \frac{\Phi_{\text{SiH}_4}}{\Phi_{\text{total}}}$$

Depletion scaling:

 D_{l}^{\uparrow} if any of $\{p, \text{ gap, area, } c, P_{RF}, f\}_{l}^{\uparrow}$ &/or $\{\Phi_{\text{total}}, T_{\text{gas}}\}_{l}^{\downarrow}$

Intermediate Conclusions

• Plasma composition and deposition depend on the silane concentration in the plasma, $c_{pl}=c(1-D)$, and not only on the silane concentration in the input flow, c.

Strong hydrogen dilution in the plasma, and μc -Si:H deposition, <u>can</u> be obtained with high input concentration of silane and strong depletion.

• The fractional depletion of silane, *D*, is an *intensive* parameter.

Depletion measurement could be a useful diagnostic check for the same plasma conditions in the transfer of process parameters to an upscaled reactor. Monitored non-intrusively by infrared absorption spectroscopy in the pumping line.

• A zero-dimensional model, appropriate for a uniform large-area reactor, can be used to estimate the relation between intensive plasma parameters.

Refs. B. Strahm, A. A. Howling, L. Sansonnens and Ch. Hollenstein, *Plasma Sources Sci. Technol.* **16**, 80 (2007).

A. A. Howling, B. Strahm and Ch. Hollenstein, Thin Solid Films (2009), doi:10.1016/j.tsf.2009.02.053

R. Bartlome, A. Feltrin and Ch. Ballif, Appl. Phys. Lett. 94, 201501 (2009) - Quantum Cascade Laser

