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1)  The "plasma dimension" for plasma deposition of μc-Si:H

2)  Direct pumping of a plasma reactor

... and one non-intrusive plasma diagnostic for each.
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1) Plasma-Enhanced Chemical Vapour Deposition of μc-Si:H
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1) PECVD reactor setup
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1) Hydrogen dilution for plasma deposition of μc-Si:H
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Surface diffusion
model

Selective etching
model Chemical annealing

model

Need high ratio of 
H to SiHx fluxes

to deposit μc-Si:H

1) Reason for hydrogen dilution

"Add more hydrogen

than silane"
intuitively



1) ...but the optimal  plasma control parameters are less clear
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1) ...because the plasma is complex.
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1) Consider low pressures (< 2 mbar)
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1) Consider only the majority species
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All reactive species (SiHx, H, and ions) have 
very low density because of their volume 
and surface reactions

H2 and SiH4 have the dominant partial 
pressures in the plasma reactor

Only H2 and SiH4 leave the plasma reactor

The partial pressure of SiH4 (and H2) is ~the 
same in the pumping line as in the plasma

"The plasma 
composition 
(and deposition) 
is determined by 
the partial 
pressures of 
SiH4 and H2
in the plasma"



1) How to measure the silane partial pressure in the plasma?
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1) FTIR in pump line: Non-intrusive diagnostic for SiH4 pressure
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  Silane pressure with plasma < silane pressure without plasma,

                                         <     ,

   due to electron dissociation of silane (  ).

  Hydrogen par

p p

irreversible loss

•

• tial pressure increases with plasma
   (surface recombination, & pump speed adjustment)   

1) Silane partial pressure measurement
a) Silane Q-branch absorbance;   b) Integrate spectrum;  c) Read off a calibrated curve
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silane concentration with plasma, 
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1) Silane concentration with plasma



p
ΦSiH4

ΦH2

−
=

≤ ≤

4 4

4

0
SiH SiH

0
SiH

 

silane fractional depletion, 
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1) Silane depletion due to plasma
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1) Silane concentration in plasma

2 parameters, c & D,
define the plasma
composition



1) The plasma "black box" becomes a {c,D} unit box
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1) Contours of constant plasma composition
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1) Contours of constant plasma composition
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1) Same plasma composition = same film properties

Constant plasma 
composition, cpl, gives 
constant film properties 



1) Same plasma composition = same film properties

transition
material



1) Same plasma composition = same film properties

Microcrystalline silicon can be deposited even with high silane concentration,
provided that the silane depletion fraction is sufficiently high,

because then the plasma is dominated by hydrogen.

cpl = 0.5%

cpl = 1.2%



1) Two regimes of operation
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REGIME 1 "conventional" :
Film crystallinity governed by
hydrogen dilution of silane,
'independent' of plasma.

REGIME 2 "recent" :
Film crystallinity governed by
strong plasma depletion, even
for high silane concentration.
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1) Simple plasma chemistry model
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1) Simple, analytical plasma chemistry model

• A zero-dimensional model is appropriate to showerhead reactors
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1) Simple, analytical plasma chemistry model

• Just one silane dissociation channel here: e + SiH4 SiH2 + 2H + e

• More detailed plasma chemistry only changes the numerical constants:

• ... the general conclusions remain the same. 

Hydrogen and silane are the dominant partial pressures;

so we can expect radical densities to depend on them.

"This shows why the plasma deposition is determined by cpl ,
the silane concentration in the plasma."
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1)  The "plasma dimension" for plasma deposition of μc-Si:H

2)  Direct pumping of a plasma reactor
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2) Plasma chemistry equilibration time to steady-state depletion
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2) OES: Non-intrusive, rapid diagnostic for equilibration time
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2) Time-resolved optical emission spectrum from plasma ignition

Emission from silane radicals, SiH*, falls as the silane becomes depleted

Emission from excited molecular and atomic hydrogen rises as its partial pressure rises

The plasma chemistry equilibration time is less than one second!



Open laboratory reactor 
(axial symmetry)

Closed, directly-pumped plasma box
(lateral view)

Plasma zone (20 cm in diameter)
“Dead” volume

57 cm

Plasma zone

indirect pumping

direct
pumping

t=0-1 s

time to steady-state > 100 s ! time to steady-state < 1 s !

Silane back-diffusion from any intermediate
dead volume increases the equilibration time.

t=0-100 s

2) Compare open and closed reactors (numerical)





But the door is normally 
closed, the amorphous 
incubation layer is then 
thinner than 10 nm. substrate

2) Practical consequence of the pumping configuration
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Two  Conclusions
1.  Plasma composition and deposition depend on the silane concentration in the plasma,

cpl=c(1-D) ,  and not only on the silane concentration in the input flow, c.

Strong hydrogen dilution in the plasma, and μc-Si:H deposition, can be obtained with high input 
concentration of silane.

- monitored non-intrusively by FTIR in the pumping line.

2.  Rapid equilibration of plasma chemistry requires a closed, directly-pumped showerhead

reactor with a uniform plasma - avoid gas circulation between the plasma and any dead volumes.

- monitored non-intrusively by OES in the pumping line.
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