Journal article

Thermally activated solvent bonding of polymers

We present a thermally activated solvent bonding technique for the formation of embedded microstructures in polymer. It is based, on the temperature dependent solubility of polymer in a liquid that is not a solvent at room temperature. With thermal activation, the liquid is transformed into a solvent of the polymer, creating a bonding capability through segmental or chain interdiffusion at the bonding interface. The technique has advantages over the more commonly used thermal bonding due to its much lower operation temperature (30 degrees C lower than the material's T-g, lower load, as well as shorter time. Lap shear test indicated bonding shear strength of up to 2.9 MPa. Leak test based on the bubble emission technique showed that the bonded microfluidic device can withstand at least six bars (87 psi) of internal pressure (gauge) in the microchannel. This technique can be applied to other systems of polymer and solvent.


Related material