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Abstract

Trust management is essential to fostering cooperation and high quality service
provisioning in several peer-to-peer (P2P) applications. Among those applications
are customer-to-customer (C2C) trading sites and markets of services implemented

on top of centralized infrastructures, P2P systems, or online social networks.

Under these application contexts, existing work does not adequately address the
heterogeneity of the problem settings in practice. This heterogeneity includes the
different approaches employed by the participants to evaluate trustworthiness of
their partners, the diversity in contextual factors that influence service provisioning
quality, as well as the variety of possible behavioral patterns of the participants. This
thesis presents the design and usage of appropriate computational trust models to
enforce cooperation and ensure high quality P2P service provisioning, considering

the above heterogeneity issues.

In this thesis, first I will propose a graphical probabilistic framework for peers to
model and evaluate trustworthiness of the others in a highly heterogeneous set-
ting. The framework targets many important issues in trust research literature: the
multi-dimensionality of trust, the reliability of different rating sources, and the per-
sonalized modeling and computation of trust in a participant based on the quality

of services it provides.

Next, an analysis on the effective usage of computational trust models in envi-
ronments where participants exhibit various behaviors, e.g., honest, rational, and
malicious, will be presented. I provide theoretical results showing the conditions
under which cooperation emerges when using trust learning models with a given
detecting accuracy and how cooperation can still be sustained while reducing the

cost and accuracy of those models.

As a another contribution, I also design and implement a general prototyping and

simulation framework for reputation-based trust systems. The developed simulator



can be used for many purposes, such as to discover new trust-related phenomena or

to evaluate performance of a trust learning algorithm in complex settings.

Two potential applications of computational trust models are then discussed: (1)
the selection and ranking of (Web) services based on quality ratings from reputable
users, and (2) the use of a trust model to choose reliable delegates in a key recovery

scenario in a distributed online social network.

Finally, I will identify a number of various issues in building next-generation, open
reputation-based trust management systems as well as propose several future re-

search directions starting from the work in this thesis.

Keywords: trust; reputation; quality of service; computational trust model; trust

learning; peer-to-peer; service selection; service ranking;



Résumé

La gestion de la confiance est essentielle pour encourager la coopération et une
haute qualité de service entre plusieurs applications pair-a-pair (P2P). Parmi ces
applications, on dénote les sites commerciaux client-a-client (C2C), les marchés de
services mis en ceuvre a 'aide d’infrastructure centralisée, les systemes de P2P, ou

encore les réseaux sociaux en ligne.

Au regard de ces contextes d’application, I’état de 'art ne répond pas de maniere
adéquate a ’hétérogénéité des parametres du probleme en pratique. Cette hétérogén-
éité comprend les différentes approches adoptées par les participants a évaluer la
fiabilité de leurs partenaires, la diversité des facteurs contextuels qui influencent la
qualité de services, ainsi que la variété de comportements possibles des participants.
Cette these présente la conception et I'utilisation de modeéles de gestion de la confi-
ance afin de renforcer la coopération et de garantir la haute qualité de service P2P,

tout en tenant compte de 'hétérogénéité des parametres évoquée ci-dessus.

Dans cette these, je vais tout d’abord proposer un framework probabiliste graphique
pour les pairs afin de modéliser et d’évaluer la fiabilité des autres dans un environ-
nement hautement hétérogene. Le framework répond a de nombreuses questions
importantes de la littérature en recherche de gestion de la confiance: la multi-
dimensionnalité de la confiance, la fiabilité des sources, et la modélisation person-
nalisée ainsi que le calcul de la confiance dans un participant basé sur la qualité de

services fourni par ce dernier.

Ensuite, je présente une analyse de l'utilisation efficace des modeles de confiance
dans des environnements ou les participants présentent différents comportements,
par exemple, honnéte, rationnel, et malicieux. Je fournis des résultats théoriques
montrant dans quelles conditions émerge la coopération lorsqu’on utilise des modeles
d’apprentissage avec une précision donnée et comment la coopération peut encore

étre soutenue tout en réduisant le cotit et la précision de ces modeles.



Comme autre contribution, j’ai aussi congu et réalisé un framework de prototypage
et de simulation pour les systéemes de gestion de la confiance basés sur la répu-
tation. Le simulateur mis au point peut étre utilisé & plusieurs fins, comme par
exemple pour permettre la simulation empirique destinée a découvrir de nouveaux
phénomenes en rapport avec la confiance ou pour évaluer la performance d’un algo-

rithme d’apprentissage dans des environnements complexes.

Deux applications potentielles des modeles de confiance sont ensuite discutés: (1) la
sélection et le classement des (web) services basés sur les appréciations d’utilisateurs
de bonne réputation, et (2) l'utilisation d’un modele de confiance pour choisir les
délégués fiables dans un scénario de récupération de clé dans un réseau en ligne
distribués social.

Enfin, j’identifie un certain nombre de questions diverses liées & la construction de
systemes de prochaine génération, aux systemes de gestion de la confiance basés
sur la réputation. Finalement, je propose quelques orientations futures de recherche

dans ce domaine.

Mots-clés: confiance; réputation, qualité de service, modele de confiance, appren-

tissage, pair-a-pair, sélection de services; classement de services;
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Chapter 1

Introduction

1.1 Motivation of the Thesis

Trust is essential for the human society. As an intelligent living species on earth, we make
trusting decisions when doing almost everything in life, sometimes without being aware of it.
Since childhood, we trust our parents in their loving and caring for us. As grown-ups, we trust
our friends and colleagues in assisting and cooperating with us to resolve difficulties in our
personal and professional life. We even need to trust strangers in various complex situations:
we believe that the goods we buy are worth the amount we paid, we trust the motorists to
follow traffic regulations when going to work every morning, and that the laws would protect
us in our daily transactions and business. In short, trust is vital to any human communication
and interaction. Without trust, the (human) society would cease to exist.

According to Niklas Luhmann, a prominent thinker in sociological systems theory, the reason
trust becomes so essential is due to the complexity of the society itself, when human beings face
so many risks and uncertainty in almost every aspect of their daily activities. And thus trust
is called on to reduce the complexity of society, as a result of an evolutionary process (Marsh,
1994).

The technological advances by several civilizations have made the human society become
the most developed one that is known today on earth. As a matter of fact, the human society
nowadays is even more complex and contains more risks and uncertainty than ever. As a result,
it is no longer appropriate that we completely trust each other without any precondition in
every situation. When it comes to more serious business people usually have incentives not to

cooperate and behave towards their own interests, possibly at the cost of others. In a variety



1.1 Motivation of the Thesis

of situations, this opportunistic thinking and the lack of trust lead to the case where each indi-
vidual and the whole community are worse off than if they would cooperate, e.g., the prisoner
dilemma (Axelrod & Hamilton, 1981). To resolve such social dilemmas, it is long known that
certain formal mechanisms are required to protect individuals against possible defections (Mui,
2002). Such mechanisms can be implemented in a variety of ways. For example, centralized au-
thorities such as governments can use their enforcement resources to penalize malicious behavior
and individuals who deviate from the systems of protocols, regulations, and laws specified by
the society. Alternatively, the mechanisms can be implemented by the community as a whole
by rewarding those members who are cooperative and penalizing (isolating) those that alleviate
from the designed protocols and behavioral norms. For example, information on the behavior
of a certain individual can be shared and spread from one member to another, e.g., Word-of-
Mouth, and opinions of the whole community towards a certain member are aggregated into
the so-called reputation of the member. This reputation would then be used by the community
as a means to identify and reward good members as well as to isolate those ones with bad
behaviors. Such above mechanisms are already in place, although informally, from the earliest
times and was shown to be effective, e.g., in enforcing the cooperation and build trust among
ancient Mediterranean traders (Jurca, 2007).

The wide adoption of the Internet, and with it the proliferation of online applications, has
brought numerous opportunities to build business applications across organizational, political,
and geographical boundaries. Examples of popular applications are online auctions, online
shopping, peer-to-peer content sharing, and online social networking platforms, to name just a
few. Along with the emergence of these online applications several challenges occur, of which
one fundamental issue is the reliance of these applications on trust and voluntary cooperation
among participating users. As a matter of fact, participants in any online applications need
appropriate means to evaluate the trustworthiness of their potential partners whenever such
partnerships may result in risky transactions or transactions with uncertain outcomes. For
example, we often need to decide whether it is safe to pay for an article advertised by an
unknown seller on a trading site such as eBay, or whether it is secure to download and install a
piece of software from a content-sharing network. Consequently, more and more trust-related
decisions must be made by users than ever.

Hard security techniques based on cryptographical primitives such as digital signatures may
guarantee the non-repudiation of a participating partner and integrity of transferred informa-

tion. However, these techniques do not help to assure the reliability and competence of the
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partner in successfully carrying out a transaction as expected. Online trust management mech-
anisms, the main subject of study of this thesis, offer a promising alternative and complementary
approach to such issues.

Trust evaluation and management mechanisms, particularly those using reputation and
user opinions (feedback), ensure that transactional partners would cooperate with each other,
as desired by the community, in two different ways. First, the assessment of individual’s trust-
worthiness helps to reveal the capabilities of different participants and enables users to select
cooperative and more reliable partners for their transactions. Second, given the availability of a
trust evaluation mechanism, individuals working in their own interests would find it optimal to
behave according to the community norms, which usually favor cooperation over defection®. In
fact, trust management can be considered as soft security approach that provide an additional
layer of protection to participating users by ensuring the success of transactions carried out
between members of the community.

The management of trust and fostering cooperation in virtual environments, however, is
particularly challenging. First, online communities are usually without any centralized au-
thority to enforce correct behavior and punish malicious participants. Even in systems under
control of a specific provider, legal enforcement across political and geographical borders is
costly and thus virtually impossible. Furthermore, users in online communities are identified
only by pseudonyms, which are usually easy to obtain and change when desired. Consequently,
reputation-based trust management systems are vulnerable to several attacks (A. Baker et
al, 2007). Among these vulnerabilities, the most representative ones are ballot-stuffing and
badmouthing attacks, where numerous Sybil identities (Douceur, 2002) collusively vote for or
against certain users, and whitewashing behaviors exploiting the issue of cheap identities (Fried-
man & Resnick, 2001).

Despite these challenges, feedback-based trust management systems have found their prac-
tical application in almost every online collaborative system, from product comparisons and
recommender systems to Web page ranking and social search (see Chapter 2 for more details).
A large number of commercial initiatives on using trust mechanisms in other settings have been

launched, such as to evaluate credibility of blogs?, preventing spams and viruses®, or to evaluate

1From an economist’s viewpoint, these roles can be attributed to the use of reputation information in a trust
management mechanism to address the issue of adverse selection and moral hazards in a system of self-interest
agents (Dellarocas, 2005b).

2http:/ /www.newscred.com/

Shttp:/ /www.ciphertrust.com/products/trustedsource
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reputation of potential business partners?’.

Research on trust management in decentralized systems, however, lacks of theoretical anal-
ysis to understand a variety of phenomena. For example, the majority of existing reputation-
based trust mechanisms work very well in practice irrespective of their simplicity, e.g., the eBay
rating system. As a matter of fact, current work in the trust research community is narrowly
focused on experiments enlightening only part of the overall picture, while general properties
are not fully understood (Abdul-Rahman, 2005). The goal of this thesis is to provide a more
complete understanding of such phenomena in heterogeneous scenarios with complex settings.
Particularly, I want to understand the principles and nature of these (reputation-based) trust
mechanisms as well as their possibilities and limitations, and to answer fundamental questions
related to the design of trust mechanisms for different practical applications. For example, the
extent to which a trust mechanism should be used, and which properties of a trust measure
are necessary to ensure high cooperation among self-interested agents with various types of

behaviors is one of the key issues addressed in the thesis.

1.2 Scope of Research

This research work focuses on ensuring high quality service provisioning in peer-to-peer (P2P)
environments, where a participating user (a peer) plays different roles in the system: a service
(or resource) provider, a service user, or a rater to evaluate quality of a service. An abstraction

of a P2P application is given in Fig. 1.1.

peer peer

provides buys service O
service

communication
medium

peer/v
service peer

Figure 1.1: Service provisioning in peer-to-peer applications
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A peer may provide a service at different prices and at different quality levels, e.g., either high
or low quality. Only services with high quality are desired to a service user (another peer). Peers
may leave or join dynamically, and in some cases there may exist identity management schemes
to ensure that identities are not cheap. The communication medium to share information among
peers may be centralized, e.g., the case of eBay, or decentralized, e.g., a storage system on top
of a P2P network. Note that even if the communication medium is provided by a centralized
entity, interactions among different participants are still peer-to-peer in nature.

In this thesis, we study the problem of building trust and fostering cooperation among the
participants in a P2P application, in consideration of their possible behaviors in the application
layer. The underlying support layers such as data storage and communication among different
peers are assumed to function correctly. That is, we assume that P2P applications are built on
top of a (decentralized or centralized) data management infrastructure that supports the storage
and retrieval of information efficiently, reliably, and securely. Particularly, we do not consider
the problem of peers maliciously manipulating requests or dropping packets when sending and
receiving messages. Similarly, data stored in the system is assumed not to be tampered with
and can be retrieved relatively easily with insignificant delay, e.g., via the use of (distributed)
search methods and existing cryptographical protocols such as symmetric encryption and digital
signatures. Although trust management mechanisms can also be used to address these types of
misbehavior, solving cooperation and trust-related issues in every layer of the system is beyond
the scope of this thesis.

The above abstraction represents different practical online business applications such as
trading on eBay and on social networks, peer-to-peer content sharing, and markets of (Web)
services. The inherent problem therein is that peers usually have strong incentives not to
cooperate. That is, a peer as a service provider may provide low quality service, by not con-
tributing resources (free rider) or not shipping an item after receiving payment (cheating/fraud
in trading). In such cases simple reputation systems, e.g., by allowing peers rate partners after
transaction, may not be sufficient, since users may be malicious and ratings are thus not always
reliable. In more complex scenarios, certain users are also rational and only cooperate when
necessary to maximize their benefits. Our goal is to understand how reputation builds trust
and enforces cooperation between transactional partners in such an application framework with
heterogeneous settings.

Since the seminal thesis of Marsh (Marsh, 1994), there have been numerous work dedi-

cated to propose different trust evaluation mechanisms and their applications in a variety of
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contexts, resulting in many dissertation works over the recent years, namely (Abdul-Rahman,
2005; Despotovic, 2005; Jurca, 2007; Kohlas, 2007; Krukow, 2006; Levien, 2002; Mui, 2002;
Sabater, 2003a; Teacy, 2006; Xiong, 2005). What differentiates this work from other research is
that I do not focus on developing specific, ad-hoc trust models for a given application scenario.

Instead, the work in this dissertation follows a so-called meta-approach:

e [ survey several existing (reputation-based) trust management systems to identify the
questions addressed by these approaches, their common working principles, and their un-
derlying assumptions. Based on this extensive review I propose an overall probabilistic
framework that can be seen as a generalization of many existing works on building com-
putational trust models. Several approaches can be developed and analyzed under this
umbrella framework.

e Existing gaps between work in the trust management literature are studied and solutions
to complete these gaps are proposed. By studying the relation between accuracy of a
computational trust model and its possibility to enforce trust, my work provides a starting
point to use existing probabilistic computational trust models in systems where users
exhibit both probabilistic and rational behaviors. By analyzing the feasibility of applying
reputation-based trust mechanisms when cheap identities are possible, this thesis proposes
ways to apply existing computational trust models in an even wider range of scenarios.

e [ also study various requirements and suggest solutions for the development of next-
generation, open reputation-based trust management systems based on possible exten-
sions of contemporary systems: by opening them up and combine their capability for
overall performance improvement. Different challenges and opportunities for such possi-

ble extensions are studied in detail as a starting point for future research.

1.3 Research Contributions
This thesis provides the following research contributions:

1. T have proposed a graphical probabilistic framework that helps the personalized modeling
and learning of trust and quality for a given application based on domain knowledge. The
framework is shown to have many advantages: it is generic for many scenarios, such as for

modeling and learning quality of services with multi-dimensional quality properties, the
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output has well-defined semantics and useful meaning for many purposes. The implemen-
tation has scalable performance, computational, and communication cost, and produces

reasonably good estimates, even with a sparse and incomplete recommendation data set.

Besides, this framework gives us two interesting findings. First, it is shown that modeling
is crucial in the design and implementation of a computational trust model, especially
when trust is defined on multi-dimensional qualitative behavior of agents, and where rat-
ings are collected from information sources with unknown reliability. Domain knowledge
and human experts are very important for the design of a good generative model for trust
learning. Second, the proposed framework generalizes many existing computational trust
models: they are in fact developed based on different generative models of the user’s
behaviors, and trust evaluation is done by learning on these models using different heuris-
tics. Therefore, given this umbrella framework many computational approaches to trust

evaluation can be developed and readily analyzed using available machine learning tools.

. I provided the design and implementation of a prototyping and simulation tool for trust
evaluation algorithms, based on the abstraction obtained from the above graphical prob-

abilistic framework. This simulation platform is useful for many purposes.

First, it can serve as a flexible and extensible experimentation platform supporting em-
pirical simulation to discover new phenomena or to test various hypotheses. For example,
I have been using this simulation environment to measure the cooperation level in various
scenarios where peers use different learning algorithms and with various behaviors, in-
cluding honest, malicious and rationally strategic. Second, the simulator can be used as a
competition test-bed, similar to the ART test-bed (Fullam et al., 2005) in AI communities
with much more flexible testing environments. E.g., different application scenarios can be

developed and deployed to test performance of different algorithms.

Third, the framework can be used as a prototyping tool: basic building blocks provided by
the framework help one to develop and test performance of his or her trust learning and
decision making algorithms under a variety of standard and/or customized testing scenar-
ios with much less development effort. The implemented trust management algorithms
can also be used as an application-independent library of reputation-based trust learning
algorithms to be used in a specific scenario. The modular, lego-block design of the trust
simulation framework enables different implementations and even makes emulation of real

scenarios possible.



1.3 Research Contributions

3. I performed a detailed analysis of possibilities of using a computational trust model in open
and decentralized environments where participants exhibit different behaviors, including
intrinsically honest, rationally strategic and malicious. I provide theoretical results that
show under which conditions cooperation emerges when using trust learning models with
given accuracy and how cooperation can be still sustained while reducing cost and accu-
racy of those models. I prove that such a model with reasonable false positives and false
negatives can effectively build trust and cooperation in the system, considering rationality

of participants. These results reveal two interesting observations.

First, the key to the success of a reputation system in a rational environment is not a
particular sophisticated trust learning mechanism but an effective identity management
scheme to prevent whitewashing behaviors. Hence, in such environments it is more impor-
tant for researchers and practitioners to focus on developing better identity management

techniques rather than on complicated computational trust models to detect misbehavior.

Second, given an appropriate identity management mechanism, a reputation-based trust
model with moderate accuracy bound can be used to enforce cooperation effectively in
systems with both rational and malicious participants. In heterogeneous environments
where peers use different algorithms to detect misbehavior of potential partners, coop-
eration still emerges as long as these algorithms have a moderate misclassification error

bound.

4. T proved that even if identities are cheap, there exists mechanisms to deter whitewashing
behaviors with little inefficiency. By using an identity premium-based pricing mechanism,
under certain application-specific assumptions, rational peers find it optimal to cooperate

in providing every but their last service to the system.

5. I proposed two novel and practical applications of computational trust models. The first
application is to rank services based on their quality properties. These quality ratings
are collected from many users, and only reports of reputable users are considered in the
evaluation of the service quality. This work, published in (Vu et al., 2005a), is one of the
earliest work on using reputation-based trust management in service-oriented environ-
ments. It is verified experimentally that if trust is placed correctly on a relatively small
number of users, it is possible to eliminate a large number of malicious users colluding to

manipulate the ranks of certain services.
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The second application of computational trust models is the use of a dedicated trust
models to evaluate and to select potential delegates in a key backup-recovery sharing
scenario on top of a distributed social network. Therein the service provided by each
peer is the secret keeping service, and the trustworthiness of a peer is well correlated
to its reliability in keeping the share secretly from attempts to steal the secret from an

adversary.

6. Possibilities of building next-generation trust management systems are also investigated.
I have given a first systematic study on various challenges and opportunities of integrat-
ing and enabling exchanges of information among similar reputation-based trust systems
to improve the overall system capabilities in detecting malicious behavior and enforcing
cooperation. Many interesting research problems are identified. These include the fair
and privacy-preserving exchange of information among systems, possible ways to inte-
grate malicious behavior detection algorithms with evidences collected from many user
communities, and how different levels of system openness affect the performance of the

integrated reputation system.

1.4 Thesis Outline

This thesis is structured mostly for readers’ convenience: although each chapter addresses
certain issues that are well related to other chapters, each can be read independently.

This first chapter presents the motivations of this thesis, introduces the structure of the
thesis, and gives a list of research contributions. Chapter 2 provides background information,
and briefly surveys the research literature on trust management in open and decentralized
systems. Important open research problems are then identified. Some of these open questions
are the topics this thesis will address.

Chapter 3 studies the design and implementation of a reputation-based computational trust
mechanism from a machine learning perspective. In this chapter first I present a graphical
probabilistic framework that enables personalized modeling and learning of trust and quality
in a given application based on available domain knowledge. Next, I present the design and
implementation of tool for prototyping and simulation different computational trust evaluation
algorithms. This prototyping and simulation framework can be used for many purposes: as a

simulation testbed, a prototyping framework, or as a library of commonly used algorithms.
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Chapter 4 presents an abstraction of different computational trust models and studies the
relation between accuracy of a trust model and its capability to deter bad behaviors and promote
cooperation. This relation is analyzed in the context of an (open and decentralized) peer-to-
peer e-trading system with and without an effective identity management in place, where cheap
pseudonyms may be possible.

Chapter 5 presents some applications of (reputation-based) computational trust models.
The first application is on evaluating service quality and ranking services based on their quality
properties. The second application uses a specialized trust measure as a means to select most
reliable delegates to keep secrets of users in a distributed social networks.

Chapter 6 studies the building of next generation reputation-based trust systems, as part
of my on-going work. I present the challenges and opportunities of building more robust trust
systems via opening and integrating different reputation systems.

Chapter 7 concludes the thesis and provides pointers to future research in decentralized
trust management. In the appendix are some examples of probabilistic inference algorithms,

my resume, and the publications related to this thesis.
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Chapter 2

Overview of Decentralized Trust

Management in Open Systems

This chapter explains the basic concepts of a trust management system and provides an overview
of trust-related research on open and decentralized systems over the recent years. A detailed
review, however, is not given in this thesis, as there are already several such surveys in the
literature (Despotovic & Aberer, 2006; Golbeck, 2006; Jgsang et al., 2007; Wang & Lin, 2008).
In fact, trust management has generated an incredible number of research works over the
recent years across so many diversified areas and a thorough survey deserves a book of its
own. Therefore, the goal of this chapter is to summarize the most common research themes and
point out those research questions that are addressed in this thesis. For each of the forthcoming

chapters the most relevant work will then be presented in the context of each chapter’s topic.

2.1 Fundamentals of Trust Management Systems

The basic operational concepts of a trust management system are given in Fig. 2.1. Three key
actors in any trust system are a trustor, a trustee, and a computational trust model to be used
by the trustor.

A trustor is a participant who needs to evaluate its belief on whether a potential partner (a
trustee) behaves according to its expectation. A computational trust model is a computational
mechanism that operates on the evidences related to the trustworthiness of the trustee and
outputs an appropriate trust measure. This trust measure is interpreted by the trustor as an

indication whether to engage the trustee in a transaction (trust establishment). Trust manage-
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Computational
trust model

(2) trust measure (1) evidences of trustworthiness

(3) trust establishment (4) access or usage resource
Trustor > Trustee > or
service

Figure 2.1: Trust management systems: basic concepts and operations.

ment is a necessity in those systems where the engagement of the trustee in such a transaction
brings the trustee a positive gain at a potential loss of the trustor (Despotovic, 2005).

Any participant in the system may play the role of either a trustor or a trustee in different
contexts. The nature of a transaction between a trustor and a trustee, e.g., by giving the trustee
access to a resource or service, is application-dependent. The mentioned service or resource can
be provided by either a trustor or a trustee in many forms. For example, in an e-trading
application where the trustor is the buyer and the trustee is the seller of an item, the resource
is the payment of the buyer to the seller before the item is shipped. In a company’s computer
network, the trustor is the system manager who evaluates whether to grant the an employee
access to a meeting room or the right to use expensive devices for preparation of the meeting.

Such a trust management system employs several basic conepts, most notably a trust mea-
sure semantics and the implementation of the corresponding computational trust models. Sev-
eral computational representations of trust have been developed: trust can be measured as
a probability (Despotovic & Aberer, 2005), as a (standard or subjective) logical fact in a
knowledge-base (Josang et al., 2006), or as a scalar value to be used as a ranking metric (Kamvar
et al., 2003; Yu & Singh, 2000).

Trust management systems are using different types of trustworthiness evidences. The defi-
nition of such evidences determines how the computational trust model is built and which trust
measures to be used in the system. Trustworthiness evidences can be credentials of the trustee
as demanded by the trustor. For example, digital signatures and keys are main evidences in
policy-based trust management systems, such as PolicyMaker/KeyNote (Blaze et al., 1996).
In reputation-based trust systems (Despotovic, 2005), these evidences are (quality) ratings by
previous users on the service the trustee provides, and related information relevant to the evalu-

ation of the trustee’s trustworthiness. Examples of such information are the (social) relationship
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between the trustor and the trustee, or the popularity of the provided service or resource.

A trust management system can be either centralized or decentralized depending on the way
the computational trust model is implemented. In centralized trust management systems, there
exists a single computational trust model used by a central management entity to evaluate the
trustworthiness of every participant in the system. This central management entity is implicitly
trusted by every user in the system in its ability to collect and estimate the trustworthiness
of every other user, e.g., in access-control systems (Chapin et al., 2008). On the other hand,
participants in a decentralized trust management system use a variety of computational trust
models, possibly implemented with different trustworthiness evidences according to preferences
of each participant to evaluate the trustworthiness of a potential partner.

In this thesis, we consider the problem of ensuring that services provided by a trustee to a
trustor will be of high quality via the usage of appropriate trust management approaches. Such
service provisioning is done in a P2P fashion, that is, a participant can be either a provider or
a consumer of a service in different transactions. Trust is understood and interpreted in this
thesis as the the probability that estimated by a trustor that a trustee behaves as the trustor
expects. We consider a heterogeneous system, where different computational trust models can
be implemented and used by different participants. Each computational trust model can either
be a centralized entity or a local computational mechanism employed by the trustor to evaluate
the trustee’s trustworthiness. The main parts of this thesis focus on designing and implementing
a computational trust model, study its main desired properties, the way to use it effectively
in environments where participants (both the trustors and trustees) have different types of

behavior, including honest, strategic, and malicious.

2.2 Decentralized Trust Management Approaches

A (somewhat coarse) taxonomy of existing decentralized trust management systems is given
in Fig. 2.2. Depending on whether the trustor uses only the identification of the trustee as
the major decisive factor in trust evaluation, trust systems are roughly classified into two main
categories: credential or policy-based vs. reputation-based trust systems.

In a policy-based trust management systems, a trustor establishes its trust on a trustee if
and only if the trustee has shown to possess certain credentials, e.g., keys, digital signatures,
or certificates. Provided its credentials satisfy requirements of the system security policies,

a participant may gain access to the defined resources. Tools and techniques used in the
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Decentralized
Trust Management

Policy-based systems Reputation-based systems

access control models and
technologies,

credential chain management
Performance prediction Performance enforcement
(reputation for signaling) (reputation for sanctioning)
probababilistic models, game-theory,
collaborative filterings, mechanism design,
social network analysis, ... risk analysis, ...

Figure 2.2: A taxonomy of decentralized trust management systems.

development of policy-based trust management systems are credential-chain management and
access control models and technologies. Popular approaches for this type of trust management
system are PolicyMaker and its descendant KeyNote (Blaze et al., 1996).

Policy-based trust management systems are not the focus of this thesis and thus we will not
review research issues related to this type of systems. For interested readers, a thorough survey
of trust management systems based on policy and security measures can be found in (Chapin
et al., 2008).

A major disadvantage of policy-based trust management systems is their inflexible approach
to estimate trust between participants. Trust between a participant to another is usually defined
based on the claimed identity and credentials of the latter, rather than on its actual performance
and reliability. Such a trust model limits applications of policy-based systems to those scenarios
where the policy maker is trusted to always issues perfect rules to capture behaviors of every
participant. This is not always true in dynamic environments where participants possessing
certain credentials usually have incentives to deviate from the cooperation protocol to maximize
their benefits. For example, using a policy-based trust system, it is possible and reasonably
safe to state that in a hospital, someone proven to be a doctor has the right to access and
use all medical equipments in the operation rooms. Such a policy is simple to formulate via
deterministic rules given a description of the resources and actors in the system, as well as the
(mostly static) relation among them. However, it would be more difficult to write similar policies
to determine which groups of the available doctors at the present time have the best experience

and expertise to supervise or carry out a sophisticated surgery on a specially important person.
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The second scenario mandates that the system must use a more sophisticated mechanism to
evaluate the trustworthiness on those doctors available. In such cases the decision to trust a
doctor should be based on much more information, namely on their experience, their actual
performance, and even their (professional) relationship with other doctors in the surgery team.
More expressive languages (normally logic-based) can be used to develop more complex security
and trust policies, yet the possibly high complexity of their evaluation is the main challenge in
many existing systems (Chapin et al., 2008).

Reputation-based trust systems offer a more complete alternative solution by enabling a
trustor to evaluate and place trust on different other trustees according to various performance-
oriented metrics based on historical data on the behavior of these trustees.

Note that in practice, hybrids of reputation and policy-based trust systems are possible: a
production system may employ both policies and reputation information for trust evaluation.
For example, historical performance statistics of different entities can be collected and stored
in a system-wide (and distributed) database. With the help of expressive high-level query and
(normally logic-based) policy languages, entities can be evaluated in terms of reliability and
then be authorized to do critical tasks, e.g., as in QCM and its successor SD3 (Jim, 2001).
Similarly, computational trust models used in a reputation-based system can be implemented
to incorporate those policies determined by a policy-based trust system to ensure that the
security policies of the system are also complied with.

Reputation-based trust management has attracted lots of research efforts over the recent
years across several research domains, from sociology to (micro)-economics, and computer sci-
ence. A large body of literature has developed around the notion of using computational trust
models in open and decentralized systems (Dellarocas, 2005b; Despotovic & Aberer, 2006; Ding
et al., 2009; Golbeck, 2006; Jgsang et al., 2007; Wang & Lin, 2008). Roughly speaking, there
are two solution classes for reputation-based trust management systems, based on different

viewpoints (Dellarocas, 2005b; Despotovic & Aberer, 2006) (see Fig. 2.2).

e Performance prediction approach: systems using this solution class assume proba-
bilistic behavior of the participants. They focus on development of computational models
that are capable of learning these behaviors to predict performance of individuals or
groups of participants. Various machine learning tools and heuristics such as probabilistic
networks, collaborative filtering, social network analysis, are employed to predict future
performance of participants and to select the best potential partners for forthcoming trans-

actions. For example, peers behaving as honest over time are considered to be honest in
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future transactions with certain positive probabilities. Detecting malicious behaviors is
also one of the main targets of works in this class. Therefore, reputation information
is used in those systems as a means to signal the community on the performance of a
participant. Representative seminal work in this category includes (Aberer & Despotovic,

2001; Kamvar et al., 2003; Xiong & Liu, 2004).

e Performance enforcement approach: This solution category comprises those ap-
proaches that address the rational behaviors of the participants. The main assumption
herein is that participants behave to maximize their expected utilities, and following game-
theoretical reasoning rules. Thus, research works in this class aims at designing games
or interaction protocols where full cooperation is the only (Nash/Pareto-optimal) equilib-
rium for every participant. Game theory, mechanism design, and risk analysis methods
are usually used in works of this category. Reputation information is mainly used as a tool
to sanction bad behavior and to promote cooperation. Examples of representative work

following this direction are (Dellarocas, 2004, 2005a; Jurca, 2007; Miller et al., 2005).

The majority of work on trust management over the recent years focuses on developing ded-
icated computational trust models for a variety of application scenarios. These works are tested
and evaluated via several ad-hoc experiment tools and simulators and in most cases, no major
theoretical foundation and analysis have been developed. We will not focus on reviewing these
works in this chapter, as such an attempt has been made in several existing surveys (Dellarocas,
2005b; Despotovic & Aberer, 2006; Ding et al., 2009; Golbeck, 2006; Jaosang et al., 2007; Wang
& Lin, 2008). Instead, we are going to focus on the most major and new issues that have
been addressed by the trust-related research over the recent years. Base on these observations,
we will identify the most important and recent issues to be addressed in this thesis. A (non-
exhaustive) summary of research issues targeted over the recent years, since the start of this

thesis, includes work on:

e Incentive-compatible trust management mechanisms: An interesting approach to
reputation-based trust management is to discourage non-truthful reporting using game-
theoretic principles. Milller, Resnick and Zeckhauser (Miller et al., 2005) propose to re-
ward reputation reports as a function of their estimated truthfulness, and show that this
makes truthful reporting an equilibrum strategy. These results have been significantly
strengthened by Jurca and Faltings to minimize the payments and make truthful report-

ing the highest-paying Nash equilibrum (Jurca, 2007). However, collecting real data for
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empirical experiments on the effectiveness of these approaches on real human users, e.g.,
their rational choice and preferences, is an interesting problem not fully investigated. For
example, (Schosser et al., 2008) performs some controlled experiments on groups of people
and concludes that humans tend to find it difficult to resort to the strategies expected by

the system designer.

Model-based trust learning: Several computational trust models have been developed
using a variety of machine learning techniques. The problem of trust modeling is identified
to be more important, especially when trust is a multi-dimensional concept and domain
knowledge should be incorporated to improve the learning (Vu & Aberer, 2007, 2009).
Along this research line, various works propose the learning and evaluation of trust based
on building appropriate generative models of user behaviors (Hsu et al., 2006a; Regan
et al., 2006; Wang et al., 2006). (Rettinger et al., 2008) models interaction among agents
according to a Hidden Markov model and predicts best actions of agents according to the

model, which is trained from the system transaction logs.

Reputation trust models for groups: In many naturally formed robust community-
based networks, for example, “swarms” in P2P file sharing systems, organizational struc-
tures of many online environments (forums, e-markets, etc.), one can easily observe a
much higher level of trust and cooperation within a community than with the outside.
An interesting approach is proposed in (Gupta & Somani, 2004), where the authors view
reputation of a group or individual as currency to be exchanged in the network. Other
work defines groups of users based on various heuristics, such as based on their common

interests and transactions (Ashri et al., 2005).

Comparing performance of different computational trust models: Since most
existing computational trust and reputation models use similar principles, they can be
compared to determine the most effective mechanism under different attack models. To-
wards this direction we mention the development of the ART testbed (Fullam et al., 2005)
as a competition venue for comparing many trust evaluation algorithms. (Bryce et al.,
2005; Kinateder et al., 2005) define general trust metrics to quantify the effectiveness of
the results as a basis for determining the theoretical/practical limitation of a reputation
mechanism. (Suryanarayana et al., 2006) proposes a software architecture framework to
enable the easy realization and integration of a reputation system into a new application.

(Liang & Shi, 2008; Schlosser et al., 2005) analyze the effectiveness of different reputation
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mechanisms via empirical simulations. (von der Weth & Bohm, 2007) compares different
centrality measures, i.e., different computational models, to rank individuals based on
feedback and concludes that no single measure excels in most cases. Modeling and gen-
erating malicious attacks for empirical simulations and testing the robustness of a trust

systems are also studied recently in (A. Baker et al, 2007; Yang et al., 2009).

e Sybilproof and cheap identities in reputation systems: (Landa et al., 2009) studies
the ability of a reputation system to counter Sybil attacks (Douceur, 2002) and provides
some negative results. This means identity management still remains as the major open

issue in designing and implementation of future reputation-based systems.

Beside, a large number of research works over the recent years have focused on finding practical

applications of computational trust models, among which the most representatives are:

e Quality-based ranking and selection of services and resources: reputation-based
trust models have been used both in service-oriented architectures to benefit for the se-
lection and composition of services based on their quality properties (Kalepu et al., 2004;
Maximilien & Singh, 2002, 2005; Vu et al., 2005a). A similar application is in Grid resource
discovery and selection (von Laszewski et al., 2005).

e Quality-based information retrieval: these works include several attempts to use
user’s trust management to enhance the correctness of business recommender systems,
namely (Avesani et al., 2005; Jamali & Ester, 2009; Massa & Avesani, 2004), to discover
most reliable information Web sources, such as (Yin et al., 2007). Search engines such as
Google have also integrated feedback into their search results by enabling users to rate
and modify ranking results.

e Eliminating malicious behaviors in various applications, such as filtering of mail and
web spamming (Golbeck & Hendler, 2004; Gyongyi et al., 2004), and in estimation of
the reliability of Wikipedia entries (Adler & de Alfaro, 2007). Other types of softwares,
such as antivirus programs, have begun to use reputation information to identify most
vulnerable files and system components in their recent releases.

e Enforcing cooperation in open protocols: Reputation and trust management has
been shown to be effective in enforcing cooperation in many system where participants
find it easy and have strong incentives to deviate from the designed protocols. These
works include the following (non-exhaustive) application areas: routing in mobile/ad-

hoc/sensor networks (Buchegger & Boudec, 2004; Galuba et al., 2007; Twigg, 2003),
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sensor position estimation (Kiyavash & Koushanfar, 2007), WiFi deployment (Salem et al.,
2005), network selection and ranking (Shubha Kher & Somani, 2005), avoiding free riders
in P2P file sharing, Web caching and Web sharing systems, human-network based filtering
system (Liang & Shi, 2005), Grid task scheduling (Zhao et al., 2005), etc.

2.3 Research Issues Addressed in the Thesis

Heterogeneity in computational trust models employed by participants

The first open issue that is addressed in this thesis is the heterogeneity in the approaches
employed by the participants to evaluate trustworthiness of their partners. This heterogeneity
origins from many reasons. Peers may have different personalized preferences, different available
information and prior beliefs on the trustworthiness of the rating users. The decentralized nature
of a system implies that peers may develop a variety of personalized computational trust models
based on the available information.

Additionally, in a heterogeneous environment, peers can also offer various types of services
to the others, each with different quality attributes. Service provisioning quality is influenced
by a diversity of contextual factors. In this case trust in a peer is mostly based on the quality it
offers to the others, and thus is a multi-dimensional concept. Correctly modeling and predicting
trustworthiness of peers (in terms of service quality) is non-trivial, as observations and ratings
on the service quality on a peer could only be collected from many different observers with
different reliability and possibly with many missing values. It is our interest to study the
existing approaches and generalize them into a framework that allows the easy development
and analysis of different learning algorithms to model and evaluate quality of services provided
by different peers. This problem is presented and studied in detail in Chapter 3 of the thesis.
Given the availability of this framework, depending on the available information, computational
resources, and preferences, each peer in a heterogeneous system can easily apply a suitable
learning algorithm to accurately model and predict service quality of others whenever such an

evaluation is necessary to select the best partner for future transactions.

Heterogeneity in possible behavioral patterns

Besides the diversity in trust evaluation approaches employed by peers in the system, par-
ticipating users may also have different behavioral patterns. The majority of work on trust

management considers only malicious or rational participants in a rather homogeneous system.
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The diversity in the (bounded) rationality and maliciousness of peers in the system, is still
not fully explored. Therefore, it is also important to study whether under such heterogeneous
settings whether cooperation also emerges. The second question this thesis addresses is the
effective usage of computational trust models in such an environment. Specifically, we consider
the case where participants exhibit different behavioral patterns, including intrinsically honest,

opportunistically rational, and malicious (Chapter 4).

Building a general simulation framework for trust-related research

Another issue in decentralized trust management is the simulation and evaluation of various
computational trust models. The main reason is that most existing works on trust research
rely on simulation to verify their performance and effectiveness. Even if a data set from a real
reputation and recommender system can be used, usually additional synthetic data need to
be generated, e.g., to simulate various attacks and to discover possible vulnerabilities of the
system. Such experiments are usually conducted in different ad-hoc simulation environments,
making comparison of existing solutions extremely difficult. As another contribution, I designed
and implemented a general prototyping and simulation framework for reputation-based trust
systems. The developed simulator can be used for many purposes, such as to enable empirical
simulation to discover new phenomena or to test various hypotheses in complex settings. Addi-
tionally, the basic building blocks provided by the framework may help researchers to test the
performance of their trust learning approaches, under a variety of customized testing scenarios,
with minimal development effort. This work is a first step towards building a test benchmark

for the trust-related research communities (Chapter 3, Section 3.2).

Developing open trust management systems

Current reputation-based trust management systems that are used across different applications,
e.g., e-trading systems, recommender systems, social networks, are closed in the sense that they
do not share any information on the user communities, the computational trust models being
used, etc. among each other. This is in stark contrast with the openness of the Internet ar-
chitecture and its ecosystems. In fact, by sharing information among reputation-based trust
systems with other online communities, users’ digital footprints can be detected. This helps
in the development of more effective identity management mechanisms that is less affected by
the issue of cheap pseudonyms, i.e., prevents whitewashing behaviors. In this thesis, I also

present a study of various research issues for building next-generation, open reputation-based
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trust systems. I study the sharing of information and combination of computational trust mod-
els from different reputation systems to achieve better performance in detecting misbehavior.
Furthermore, I explore several possibilities and challenges in the development of such open
trust management systems, and provide initial solutions to some of these problems identified

(Chapter 6).
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Chapter 3

A General Framework for

Decentralized Trust Management

In this chapter, I propose a probabilistic framework targeting three important issues in the
computation of quality and trust in decentralized systems. This approach addresses the multi-
dimensionality of quality and trust, taking into account credibility of the collected data sources
for more reliable estimates, while also enabling the personalization of the trust computation.
I show that domain knowledge on structure of service provided by peers and related con-
straints, such as causal dependencies among quality attributes and contextual factors, while
widely available, can be exploited to effectively address the above issues in a theoretically-
sound framework. Specifically, I use graphical models to represent peers’ qualitative behaviors
and exploit appropriate probabilistic learning and inference algorithms to evaluate their qual-
ity and trustworthiness based on related reports. My implementation of the framework uses
the Expectation-Maximization algorithm to learn parameters of the model and the Junction
Tree Algorithm to infer from them the estimation of quality and trust. The framework high-
lights the importance of modeling in trust management, as several existing computational trust
approaches can be shown to apply certain heuristic parameter learning algorithms on simple
generative models identified in the framework.

The experimental results validate the advantages of my approach: first, using an appropriate
personalized quality model, my computational framework can produce good estimates, even
with a sparse and incomplete rating data set; second, the output of this solution has well-
defined semantics and useful meanings for many purposes; third, the framework is scalable

in terms of performance, computation, and communication cost. Furthermore, my solution
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can be understood as a generalization or serve as the theoretical basis of many existing trust
computational approaches.

The second part of this chapter presents the design and implementation of a generic trust
prototyping and simulation engine, named ARTS. This simulator enables the fast development
of different trust learning algorithms based on the concepts identified by the above probabilistic
framework. The current implementation of the simulator can be used to comparatively test
performance of different reputation-based trust evaluation algorithms, and in fact it is used as
the foundation of the experiments in the later chapters. The modular design of the simulator
makes it possible to use different implementations of the simulation engine, e.g, a distributed
simulation engine and even enable emulation of real application scenarios.

The work in this chapter is published at (Vu & Aberer, 2006, 2007, 2009; Vu et al., 2005a).

3.1 A Graphical Probabilistic Approach to Decentralized
Trust Modeling and Learning

Quality and trust are inter-related concepts that have become increasingly important factors
in both our social life and online commerce environments. In many e-business scenarios where
competitive providers offer various functionally equivalent services, quality is often the most
decisive criterion that helps to build trust among participants in the system and influences their
selection of most prospective partners. For example, between two file hosting service providers,
a user would aim for the one allowing the storage of larger files in longer periods, offering
higher download and upload speed under better pricing conditions. Similarly, there are several
other types of services that are highly differentiated by their quality of service (QoS) features
such as Internet TV /radio stations, online music stores or teleconferencing services. Therefore,
appropriate mechanisms for accurate evaluation of service quality have become highly necessary.

In large scale decentralized systems with no central trusted authorities, past performance
statistics are usually considered as indicative of future quality behaviors (Resnick et al., 2000).
An autonomous agent (or peer) acting on behalf of its users often uses ratings or recommen-
dations from other peers to estimate QoS and trustworthiness of its potential partners before
involving into costly transactions. Such scenarios necessitate appropriate solutions to the fol-

lowing important issues:

23



3.1 A Graphical Probabilistic Approach to Decentralized Trust Modeling and
Learning

The credibility of observation data: collected ratings from various sources can either be
trustworthy or biased depending on the inherent behaviors and motivation of the ones sharing
the feedback. Thus the understanding and evaluation of malicious reporting behaviors need to
be taken into consideration adequately (Dellarocas, 2005b; Despotovic & Aberer, 2006; Jgsang
et al., 2007).
The multi-dimensionality of quality and trust: QoS and trust are multi-faceted, inter-
dependent, and subject to many other factors. This issue further complicates our estimations
of peer service quality and peer rating behaviors, because we have to take into account various
dependencies among quality parameters and related factors, whose values can only be observed
indirectly via (manipulated) ratings. The incompleteness of the observation data set is an
additional issue to be considered.
The subjectivity of quality and trust: the evaluation and perception of quality and trust
information strongly depend on the view or the execution context of the evaluating user. For
example, according to its personalized preferences, a peer may estimate the trustworthiness
of another based on certain quality dimensions of the latter. Generally peers have different
interpretations on the meaning of a trust value, therefore computing a globally-defined trust
value for each peer may not be appropriate. A more suitable approach is to enable a peer to
evaluate the well-defined quality attributes of the others based on collected experience, from
which to personally evaluate the trustworthiness of its prospective partners.

The three above issues are inter-related and even inseparable for many application scenarios.
In this perspective, I believe that more generalized results are still missing, as most research ef-
forts are either ad-hoc in nature or only focus on specialized aspects. Many trust computational
models in the literature either rely on various heuristics (Aberer & Despotovic, 2001; Xiong &
Liu, 2004) or produce trust values with ambiguous meanings based on the transitivity of trust
relationships (Kamvar et al., 2003; Yu et al., 2004). Other probabilistic-based trust evaluation
approaches, e.g., (Buchegger & Boudec, 2004; Despotovic & Aberer, 2004b; Mui et al., 2002;
Patel et al., 2005; Whitby et al., 2005), are still of limited applications since they do not appro-
priately take into account the effects of contextual factors, the multi-dimensionality of trust,

quality, and the relationships among participating agents®.

1This statement holds at the time I started working on this framework. Later, I also found other probabilistic
framework similar to mine that are developed independently somewhere else (Hsu et al., 2006b; Regan et al.,

2006). Please refer to section 3.1.7 for a comparison of these approaches.
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This solution is a probabilistic framework to support the subjective computation and per-
sonalized use of trust and quality information. This approach addresses the above questions

adequately by offering several advantages:

e Support personalized modeling of quality and trust: using graphical models, our
framework enables a peer to describe the quality and behaviors of the others flexibly
according to personalized preferences. To the best of my knowledge, this work is among
the first ones taking into account natural dependencies among QoS parameters, related
contextual factors, and inherent behaviors of peers for the reliable estimation of trust and
quality.

e Offer a general decentralized approach to evaluate quality and trust: this so-
lution facilitates the use of various probabilistic learning and inference algorithms to
evaluate quality and behaviors of peers. In the current implementation, I introduce the
Expectation-Maximization (EM) and the Junction Tree (JTA) algorithms enabling a peer
to estimate quality and behaviors of others locally and independently. These algorithms
produce reliable estimates without using ad-hoc heuristics as in many other approaches.
As a side effect, my framework can be seen as a generalization or a theoretical basis of
many representative trust computational models in the literature, namely (Buchegger &
Boudec, 2004; Despotovic & Aberer, 2004b; Mui et al., 2002; Patel et al., 2005; Wang &
Vassileva, 2003; Wang et al., 2006; Whitby et al., 2005; Xiong & Liu, 2004).

e Provide informative results with well-defined semantics: since I use probabilistic
graphical models to represent quality and trust, the trust computation produces outputs
with clear and useful meanings, for example, it evaluates the probability that a peer is
honest when reporting or the probability that another peer offers, for example, a data
hosting service, with high download speed for a client with a certain type of Internet
connection and willing to pay a certain price. This output can be used by the evaluating
peer in many ways: (1) for its subjective trust evaluation, i.e., compute its trust on
another according to various preferences, given the estimated values of different quality
dimensions of the latter; (2) to choose the most appropriate service for execution given
many functionally equivalent ones offered by the different peers in the system; and (3)
to decide to go for interactions with other peers knowing their reporting behaviors, e.g.,
sharing and asking for experiences from them.

e Have good performance and scalability: the current implementation yields good

performance even with reasonably high level of malicious rating users in the system. It is
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also applicable and works well in case the collected multi-dimensional recommendations
data set is incomplete. Additionally, my analysis and empirical experimentations have
shown that the implemented framework is scalable in terms of performance, computation

and communication cost.

In the next section I will describe our general framework for the personalized modeling
and evaluation of trust and quality. Sections 3.1.3 and 3.1.4 present my implementation of
this framework for the learning and inference of quality and trust. Section 3.1.5 presents
the analytical and experimental results clarifying the advantages of my proposed approach.

Section 3.1.7 summarizes the related work and Section 3.1.8 concludes my findings in this work.

3.1.1 Problem Description

Suppose that we are concerned with the values of the QoS parameters Q = {¢;,1 < i < m},
of a service s provided by a peer P in the system. Generally the value of ¢; depends on many
factors: other QoS attributes and certain environmental conditions. For example, given a file
hosting service such as sendspace, megaupload, up-file.com, etc., the following QoS parameters
are relevant: the offered download and upload speed, the time the server agrees to store the
files, the allowed number of concurrent downloads, and so forth. The environmental factors
that could affects those above quality attributes include: the price of the service, the location
and the Internet connection speed of the user and so forth.

Whenever a new peer Py with no experience enters the system and wants to estimate the
various quality properties Q of s, it needs to ask those peers j, where 1 < j < n, who have
used the service s of P for their experiences. Figure 3.1 shows such interactions where each j
observes the quality level ¢;; = u;,q;; € Q under the environmental conditions ¢;. Depending
on its innate behavior and motivation, P; reports the value ¢;; = v; as its perception on the
quality parameter g;, of s (or generally P), where v; may be different or the same as u;. In
this work I will assume that these reports from the peers js can be retrieved efficiently via
appropriate routing mechanisms in the network, and peers have used available cryptography
techniques, e.g., digital signatures, to ensure that these reports are authentic and can not be
tampered with by unauthorized parties.

Suppose that we have collected many observations on various QoS parameters of P from
several other peers. Fach of these observation represents a (possibly biased) report on the

quality of the target peer P under a certain environmental setting. Note that a peer j may
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Figure 3.1: Sharing experience in a distributed setting.

submit several reports on different quality attributes v;’s to Fy. Given the above information,
basically Py needs to estimate:
e the probability p(q; = c|¢;,) that the peer P offers ¢; with quality level ¢ under the
environmental condition ¢, (or more generally the joint probability distribution of some
quality parameters g¢;);

o the probability p(b;) of the real behavioral model of a reporting peer j.

The answers to the above questions can be used for several purposes. For example, the
output states whether the peer P performs better than another in terms of its QoS parameter
q; and under Py’s environmental settings, so that Py can select the more appropriate service to
use. Also, given the estimated quality ¢;’s and based on its own preferences, Py can build its
personalized trust on P flexibly. The evaluated behavior p(b;) of a peer j is also an indication of
its trustworthiness and thus can be utilized by P, to decide whether to accept future interactions

with j or not, e.g., for sharing and asking for experiences.

3.1.2 General Framework Architecture

My proposed framework (Fig. 3.2) has the following components to support the computation

and personalized use of trust and quality information:

Modeling: since trust and quality are multi-faceted and subject to the personalized view of
a user, the modeling of trust and quality is of high importance. Such modeling enables the
personalization and reusability of the computational approach in many different application
scenarios, given that the user can obtain necessary domain knowledge to formalize their prob-

lems appropriately. I propose the use of probabilistic graphical models, e.g., Bayesian networks,
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for the following important reasons:

e Reality and generality: such an approach models the reality elegantly: on one hand,
the nature of quality and trust is probabilistic and dependent on various environmental
settings; on the other hand, those dependencies can be easily obtained in most application
domains, e.g., as causal relationships among the factors, which increase the reusability of
our solution.

e Personalized support: user preferences and prior beliefs can be easily incorporated
into a model, e.g., via the introduction of observed variables representing the behavior
of trusted friends and hidden variables representing the quality and trustworthiness of
unknown partners.

e Tool availability: algorithms to learn and inference on graphical models are widely

available for implementation and analysis of the obtained results.

Let us take the file hosting scenario as an example. With certain helps from the user, a peer
can identify most relevant QoS properties of such service (download, upload speed, maximal
number of concurrent downloads, etc.) as well as related environmental factors (Internet con-
nection speed, subscription price) to build an appropriate quality/trust model. These variables
and dependencies among them can be easily obtained as causal relationships among correspond-

ing factors in the domain, or even from the service description published by the provider peer.

Learning: given the quality model of the target peer, the evaluating peer selects a suitable
learning algorithm to estimate the quality and trustworthiness of its target based on col-
lected recommendations and own experience. Specifically, recommendations are ratings by
other peers/users on certain quality dimensions of the peer being evaluated, e.g., the download
and upload speed of its service. The selection of a learning algorithm usually depends on the
constructed model, properties of the observation data set, and user preferences. For example,
given an incomplete observation data set on a model with many hidden variables, the EM al-
gorithm (Neal & Hinton, 1998) is a potential candidate. If the model is less complex and if
the user prefer a full posterior distribution of the quality and behavior of the target peer, a
Bayesian-based learning approach is more suitable. Subsequently, the computation of quality
and trustworthiness of the target peer can be done by (probabilistically) inferencing on this

learned model.
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Decision making: the results of the learning process provide inputs for a user to evaluate his
utility and choose the most appropriate actions, e.g., to select a file hosting provider or not.
The actions of an agent may also lead to a refinement of its model on the others’ quality and

behaviors.
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Figure 3.2: The probabilistic quality and trust computational framework

I implemented the above probabilistic framework with the following components. For the
modeling step, I used directed acyclic graphical models, i.e., Bayesian networks, since I believe
that they are sufficiently expressive to represent the causal relationships among various factors
in our scenario, e.g., quality parameters, contextual variables, and peer behaviors. 1 apply the
EM algorithm (Neal & Hinton, 1998) to learn the conditional probabilities of the constructed
models and use the Junction Tree Algorithm (JTA) (Huang & Darwiche, 1996) to inference on
them for the estimation of peer quality and behaviors. The trust-based decision-making step is

not included in the current implementation, yet it can be incorporated easily.

3.1.3 Personalized Quality and Behavior Modeling

Denote Q the set of quality parameters of a service provided by a peer, where each ¢ € Q
is assumed to have discrete values. While this assumption largely simplifies our problem and
subsequent analysis, it is both realistic and advantageous. First, many quality attributes either
have categorical values or are best represented with ranges of values due to their uncertain
nature. Second, a rating on service quality is in fact the conformance between the quality
values promised and delivered by the provider, as evaluated by the user. Such ratings are
best modeled as discrete grading scales, as normally used in rating hotels or travel planning
services. Similarly, let € be the set of contextual factors affecting values of quality parameters

in Q, where for simplicity only the case of contextual factors with discrete/categorical values
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are considered. The same methodology, however, applies in the case of continuous contextual
factors and quality signals.

A peer (the learning peer) estimate quality of another peer (the target) by collecting and
aggregating reports (ratings) on service quality of the target peer. Such reports come from a
set 3= {j,1 < j < n} of other peers (previous users of the service) in the system. Among those
rating peers, the learning peer trusts only some of them as reliable. Reliable (trusted) reporting
peers T C J may include, for example, those peers who provide commercial QoS monitoring
services. Untrusted peers J\T are the set of previous service users, normally unknown to the
learning peer. The set of trusted peers and those quality attributes to be monitored by them
shall be private information of the learning peer. Otherwise, an adversary may disguise as an
honest reporter to manipulate the QoS prediction of the learning peer effectively. For example,
the adversary can provide reliable information only on those quality attributes monitored by
trusted peers, while reporting biased feedback on the others.

Let U be the set of variables in a QoS generative model of a service provided by the target
peer. A node x € U represents either a quality attribute, a contextual factor, the trustworthiness
of an information source, or the rating on a quality attribute. The domain value of x, or its
state space, is denoted D,. A directed edge from one node to another denotes a probabilistic or
causal dependency between two variables. For brevity, let us denote 7, the set of parent nodes
of x. If x represents a quality attribute in Q, the set of contextual factors in € that x directly
depends on is ¢, = m, N E.

The realization of = to some value v € D, is denoted as = v (x # v is defined similarly).
Whenever it is irrelevant to mention v, we use the brief notation z*. Similarly, for any given
set & of random variables, we denote 8* the joint event in which each variable s € § is assigned
certain value in Dg. The conditional probability that x gets some value given states of its
parents 7, or a conditional probability table (CPT) entry of the node z, is simply Pr(z* | 7).

We then introduce the following important concepts.

Definition 1 The QoS generative model of a service (by the target peer) is a Bayesian network
(U, D, 0) with node set U, edge set D, and parameter 6. The tuple (U, D) is a directed acyclic
graph where D = {(p,x),x € U,p € 7.} defines probabilistic dependencies among nodes in U.

The parameter 6 is the set of unknown conditional probability table (CPT) entries Pr(z* | 7%)
of each node z € U.

Definition 2 A QoS rating by a peer j € J at time ¢ on a service is defined as (j, ¢, \7;)7 where

V7 denotes a set of reported values of j on a subset V; C QU €. Specifically, Vi = {z = rjt(z) |
x € V;}, where rje(x) € D, is the reported value of j on z at time ¢.
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In general a peer j may report only on a number of quality attributes or contextual factors V.
Thus values of several quality attributes and contextual factors may be missing in a QoS rating.
To estimate the unknown parameter 6 of a QoS generative model, related QoS ratings from
many peers are combined to build a training set, which includes many observations (samples)
on the model (Def. 3).

Definition 3 An observation or a sample on a QoS generative model is defined as v, = {x =
xt x € O}, where x* € D, is a rating value on a node z € O, and the set O C QU € is a subset

of quality attributes or contextual factors whose values during a measurement epoch p can be

obtained by combining ratings from certain peers. The set O maybe different for each sample.

Depending on its personalized preferences and prior beliefs on the outside world, an evalu-
ating peer Py can model its view on the quality of a target peer P accordingly. We identify the

following most typical models that a peer may use for various scenarios:

e The basic QoS model (Fig. 3.3a) is built on the assumption of the evaluating peer that
all recommending peers are honest in giving feedback. Thus, those values reported by
a peer are also its actual observations on the service quality. The nodes ¢;, 1 <[ < ¢
represent those execution environmental (or contextual) factors influencing those quality
attributes ¢;, 1 < i < m of the service provided by peer P. This model is most useful in
case the learning peer only collects rating from its trusted friends in the network.

e The simplified QoS model (Fig. 3.3b) extends the basic one to the case where P,
believes that the collected recommendations are possibly biased. The node b denotes the
reporting behavior of all recommenders, and v; denotes their reported values on a quality
attribute ¢;. This model only considers the overall distribution of all peers’ behaviors and
is useful in case there are few reports on quality of the target peer P for the trust and
quality evaluation step.

e The extended QoS model (Fig. 3.3c) extends the previous model to the case where P,
believes that each reporter j may exhibit a different behavior b;, 1 < 7 < n. The variable
v;; denotes a rating value by a peer j on a quality attribute g; of P. This extensive model
is used if the learning peer Py also wants to evaluate the individual trustworthiness of
each peer j in terms of giving recommendations.

A rounded square surrounding a node in Fig. 3.3 represents similar variables with the same

dependencies with the others. Shaded nodes are variables whose values are observable and blank
nodes are hidden (latent) variables to be learned from the collected reports. The numbers ¢, 1, m

are respectively the number of contextual factors, reporting peers, and QoS attributes that will
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Figure 3.3: a. The basic QoS model of a service/peer; b. The simplified QoS model; ¢. The
extended QoS model; d. Example personalized QoS model with some observed QoS properties
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be used in later analysis. Using such probabilistic graphical models enable us to compute the
probabilistic quality of a peer only by analyzing and traversing on corresponding graphs, thus
widening the applicability of our approach.

A peer can include other prior beliefs and preferences to build its personalized QoS model
based on the three typical models above. For example, let us assume that Py can collect
correct observations on certain quality parameters gs of the target peer P, either via its own
experience or via the ratings of its trusted friends in the network. In that case Py can model
those nodes ¢s in the extended QoS model of P as visible to reduce the number of latent
variables (Fig. 3.3d). There may also be dependencies among the different quality attributes ¢;
and among the nodes e;, which are not shown for the clarity of presentation. The dynamic of
various quality factors can be taken into account by considering time as a contextual variable
in the models. Furthermore, it is possible to model the collusive groups in P; by introducing
further latent variables in the simplified and extended QoS models, but the learning will then
be much more complicated. Consequently, in this chapter I will limit my analysis to the case
where the evaluating peer collects random feedback from the network such that the behaviors

of P;j can be assumed as approximately independent to each other.

3.1.3.1 Peer quality modeling example

Consider a system where peers are clients or providers of a data hosting service. The following

quality attributes of a service are of our interests: its maximal number of concurrent downloads
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M, its download speed D and its upload speed U. Values of these attributes are decided by
the subscription price P and the Internet connection type I of the service consumer. In other
words, P and I define the context, or the client-side setting in which the provider promises to
offer its data hosting service with specific quality level of M, D, and U.

Fig. 3.4(a) shows a Bayesian network-based model of quality of the data hosting service
with state spaces of all nodes and probabilistic dependencies among them. Such information is
well-known in the data hosting domain and may even be declared by the provider in his service
advertisement. Fig. 3.4(a), with conditional probabilities of each variable given state of parent
nodes, is example of a QoS generative model (Def. 1) of the data hosting service provided by a

peer in the network.

Price model P Internet type | Behavior b,

Download Speed D ° 0
high ( > 500KB/s)

acceptable (> 100KB/ s)

premium (10 euros/month) T1/LAN honest

economic ( 2 euros/month) modems 54.6Kbps

free (0.0 euro/month) %i advertising low (< 100KB/s ) \

Max # downloads M Download Speed D Upload Speed U Reported Download Speed D4

badmouthing

high (> 10)

high ( > 500KB/s)

high ( > 200KB/s)

high ( > 500KB/s)

acceptable (> 2)

acceptable ( > 100KB/ s)

(> 10KB/s)

acceptable (> 100KB/ s)

low (=1)

low ( < 100KB/s )

low (< 10KB/s )

low ( < 100KB/s )

(a)

(b)

(4

®
<z
o

(c)

Figure 3.4: (a) Example quality attributes and related contextual factors of a data hosting
service, state spaces of each node, and dependencies among them; (b) Dependencies among
the trustworthiness (reporting behavior) of an untrusted feedback source and its corresponding
reported values; (c) The QoS generative model of the data hosting service in simple form.

Suppose that feedback on the quality U is provided by a trusted peer, and feedback on
M, D, and U is obtained from an untrusted peer with reporting behavior b;. We use My,
D1, and U; to denote reported values by the untrusted source on M, D, and U, respectively.
P,I,U, My, Dy, and Uy are marked observable. Fig. 3.4(b) shows possible dependencies between
the trustworthiness b; of a source and reported values U; on the download speed of the data
hosting service. A feedback source observing a certain quality level may either report the same
value, or deliberately give higher or lower rating value. E.g., a peer may give a bad rating
on service of its competitors irrespective to the quality it actually perceives. These reporting
behaviors are denoted as reliable, advertising, and badmouthing respectively, i.e., the feedback

source is reliable with some unknown probability. Fig. 3.4(c) shows the QoS generative model

after the second modeling step.
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3.1.3.2 Using domain expert knowledge

Well-known constraints among values of variable nodes can be exploited to define certain CPT
entries of a QoS generative model in Fig. 3.3. Particularly, one may set Pr(v;; = v | b; =
reliable, ¢; = v) = 1, and Pr(v;; = v | b; # reliable,¢; = v) =0 for any ¢; € Q,v € D, ,j € N\T.
Other value constraints of quality and contextual attributes can be exploited to set CPT entries
of related nodes. Formally, a constraint may be of the form A _, 2" — y* or A\ 2" — (y #
v), for some X C U, some y € U, and some v € D,,.

Define XB be the domain knowledge built from those constraints. For each x € U, the
following rules apply: if KB |= {n} — 2%}, we define Pr(z* | n%) = 11 If KB |= {7} — (v #
v)}, set Pr(x =v | nk) = 0. Prolog programs can help to analyze such complex constraints to
set values of related CPT entries.

As an illustration, consider the basic QoS generative model for the previous data hosting
service of a peer (Fig. 3.4a). We can exploit the following constraints to define some CPT
entries of the model. Given the above reporting behavior model, for any u € Dy we have
Pr(Uy = u | by = reliable,U = u) = 1.0, Pr(U; = high | by = advertising,U = u) = 1.0, and
Pr(U; = low | by = badmouthing, U = u) = 1.0. Also, if the maximal number of downloads is
deterministically defined by the price, we set Pr(M = high | P = premium,I*) = 1, Pr(M =
acceptable | P = economic, I*) = 1, and Pr(M = low | P = free,I*) = 1. Thus after the third
modeling step we have an extended QoS generative model for the data hosting service with
certain known CPT entries. The unknown parameter 6 of the model consists of the remaining
unknown CPT entries of by, M, and D.

Many existing works use certain instances of the above generative models for their QoS
prediction, though the modeling step is not stated explicitly. For example, those approaches
considering a number of independent quality attributes (Liu et al., 2004) consider a generative
model of independent nodes ¢;. Some other work assuming the total reliability of feedback
sources, such as (Maximilien & Singh, 2005; Shao et al., 2007), and simply use the basic QoS
generative model and propose a training algorithm based on some heuristics to estimate the
model parameter §. As a result, this work provides a framework to apply various probabilistic
machine learning techniques to evaluate service quality which generalizes existing approaches.

The above steps result in a (personalized) QoS generative model of the service provided by

the target peer, with some pre-defined CPT entries. Normally, in a given application, such a QoS

I'We use the notation = to represent the deduction (provability) of a fact from a knowledge-base in a
Hilbert-style deduction system
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generative model is set up once for each service type, with possible help of domain experts. It is
also possible to include dependencies among quality attributes ¢;, or among contextual factors
e; in Fig. 3.3 according to the domain knowledge into the quality modeling and subsequent
learning steps. These dependencies are not shown for the presentation clarity. However, my
proposed algorithms in coming sections are generic enough to handle these cases. Also, I assume
that values of contextual factors are verifiable and thus are observable variables. This is not
a strong assumption since there is no direct incentive for feedback sources to manipulate such
values, but only values of concerned quality parameters. Nevertheless, whenever contextual
values are subject to manipulation, it is trivial to extend the above models and use the same
approach with contextual factors marked as hidden nodes. It is also noteworthy that available
domain constraints are very useful as they help to define many conditional probabilities of the

model and thus reduce the size of the parameter set 6 to be estimated in later steps.

3.1.4 Learning of Quality and Trust

Before using the QoS generative model for the estimation of service quality of a peer, we need
to train the model to learn its unknown parameter 6. Specifically, collected QoS ratings from
many sources (reporting peers) are used as training data to update and estimate remaining

unknown CPT entries of the model.

3.1.4.1 Training data preparation:

A training data set includes many samples on the QoS generative model, each sample is obtained
by combining related QoS ratings from different peers during a measurement epoch (Def. 3).

As in the modeling, the knowledge base KB built from domain constraints can also be used
to filter out impossible observations in the report data set. For example, if we know that in the
data hosting service domain, the maximum concurrent number of downloads for a subscribed
user must be greater than 1, it follows that Pr(M = low | P # free) = 0. Thus any report by
a peer j of the form {M = low, P = economic} or {M = low, P = premium} is impossible and
should be filtered out.

Consider a QoS rating (j,t,{z = ri(z) | « € V;}) submitted by a peer j (see Def. 2). This
report is removed if it violates certain domain constraints in KB. Such a violation is formally

equivalent to:

KB, () {y =)} E (o # @) (3.1)

yeV; y#x
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Violations as (3.1) can be detected by Prolog programs to eliminate invalid ratings of a
source j. As j is likely to be unreliable, its related nodes in Fig. 3.3b. (bj,v;; : ¢; € Q) are
also eliminated. This preprocessing reduces the learning cost in many ways: it reduces the
size of the training data set, while preserving most relevant information for the learning phase.
Also, many nodes related to unreliable sources are eliminated, thus simplifying the model and
reducing the number of parameters to be estimated.

Ratings on quality of the target service are transformed into observations on the QoS gen-
erative model as in Algorithm 1. The function selectRatingsInEpoch(u, R) returns those QoS
ratings in the set R whose timestamps ¢ are within a measurement epoch u. The function
findReportedNode(j, ) returns the node v that represents the reported value by j on the node
x, which will be different depending on the type of the QoS generative model (c.f. Fig. 3.3).

Algorithm 1 PrepareTrainingData(reportData R): trainingData T
1: for p =0 to NumMeasureEpochs do

vy = 0; R, = selectRatingsInEpoch(p, R);

for each report (j,t,{z =ri(z) | z € V;}) in R, do

N

3

4 if j € T { reports from a trusted source } then
5: vy =vu U{z =r(z)};

6: else

7 for each z € V; do

8 v = findReportedNode (j, x);

9: v = vy U{v=ri(z)};

10: end for

11: end if

12: end for

13:  Add a sample v, to T
14: end for

3.1.4.2 Learning parameter of the QoS generative model

Given a training data set appropriately filtered, there are two well-known approaches for esti-

mating the parameter 6 of the QoS generative model:

e Frequentist-based approach: methods of this category estimate the model parameters
such that they approximately maximize the likelihood of the observation data set, us-
ing different techniques such as Maximum Likelihood Estimation (MLE) or Expectation-
Maximization (EM) algorithm. In this solution class, the EM algorithm appears to be a
potential candidate in our case since it works well on a general QoS model whose log like-

lihood function is too complex to be optimized directly. In addition, the EM algorithm
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can deal with incomplete data and is shown to converge relatively rapidly to a (local)
maximum of the log likelihood. However, the disadvantages of an EM-based approach are
its possibility to reach to a sub-optimal result and its sensibility to the sparseness of the
observation data set.

e Bayesian method: this approach considers parameters of the model as additional unob-
served variables and computes a full posterior distribution over all nodes conditional upon
observed data. The summation (or integration) over the unobserved variables then gives
us estimated posterior distributions of the model parameters, which are more informative
than the results of frequentist-based methods. Unfortunately, this approach is expensive
and may lead to large and intractable Bayesian networks, especially if the original QoS

model is complex and the observation data set is incomplete.

The current implementation of the framework use the frequentist-based approach, in partic-
ularly the MLE method and EM algorithm to learn the quality and behavior of peers encoded
as unknown variables in a QoS model. This application of an EM algorithm in the implementa-
tion is mainly due to its generality and promisingly practical execution cost. The use of other
learning methods in this framework, e.g., an approximate Bayesian learning algorithm, and

compare them with an EM-based approach is subject to future work.

3.1.4.3 Maximum Likelihood Estimation (MLE) learning

The unknown parameter of a QoS generative model can be estimated with traditional MLE
techniques. This applies when all nodes of the model are observable, e.g., the case of a basic
QoS generative model, or if training samples do not contain missing values, e.g., every reporting
peer rates on all quality attribute of the service being evaluated. Consider a simpler version
of the example data hosting service with two QoS attributes D and U as shown in Fig. 3.5.
Assume that feedback on D and U is collected from an untrusted source with behavior b, and
feedback on U is also provided by a trusted source.

As explained before in section 3.1.3.1, for any value d of D, Pr(D; =d | by = reliable, D =
d) = 1, Pr(D; = high | by = advertising, D = d) = 1, Pr(D; = low | b = badmouthing, D =
d) = 1. Similarly, for any u € Dy: Pr(U; = u | by = reliable,U = u) = 1, Pr(U; = high |
b1 = advertising,U = u) = 1,Pr(U; = low | by = badmouthing,U = u) = 1. Unknown
CPT entries of the model in Fig. 3.5 are: Pr(b; = reliable) = h, Pr(b; = advertising) = a,
Pr(D = high) = z, Pr(D = low) = m, and Pr(U = high) = p, Pr(U = low) = ¢. The unknown
parameter of the model is thus 6 = {h, a,z, m,p, q}.
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Behavior by Download Speed D Upload Speed U
honest high (> 500KB/s) high (> 200KB/s)
badmouthing acceptable ( > 100KB/ s)

acceptable (> 10KB/ s)

advertising low ( < 100KB/s ) low ( < 10KB/s )
Reported Download Speed D4 Reported Upload Speed U,
high ( > 500KB/s) high ( > 200KB/s)
acceptable ( > 100KB/ s) acceptable (> 10KB/ s)
low (< 100KB/s ) low ( < 10KB/s )
(a) (b)

Figure 3.5: The generative QoS model of a data hosting service with two QoS parameters D

and U, monitored by two group of reporting peers, one of which is untrusted with behavior b;.

Suppose that we have a training data set € = {v,,1 < y < N} from feedback on D, U built
according to Algorithm 1. Each observation v, is the combination of ratings from the trusted
source (on U) and the untrusted source (on D and U), so v, = {U = u#, Uy = uf, Dy = d{'}.

The probability of getting an observation v, is:

Pr(v,10) = Pr", uf,d!|0)
= Y Pr(by)Pr(D)Pr(u")Pr(d{ | by, D)Pr(u} | by,U)

b1,D

We select § maximizing the log likelihood LL(6) of obtaining the training set ¥, i.e., § =

argmaxy LL(0) = >, Pr(v, | ). Basic transformations give ust:

LL(O) = Z logp + Z logq + Z log(1 —p —q)
put=high putt=low piut =acceptable
+ Z 1Og[1{u1:u’f}xh + 1{u‘f:high}a] (32)
p:di =high
+ > log[lpy,—yrymh+ L ciony (1 — a — )] (3.3)
prdy =low
F Y gl (1 -z —m (3.4)

p:d} =acceptable

One may readily estimate 6 from reported values u”,uf’,d} from (3.4). E.g., we have p =

W and ¢ = W’ similar to standard majority voting techniques for ratings
”w ”w

on U. The reliability of the feedback source (h) can be estimated numerically via standard

optimization techniques such as gradient descent. This results in an estimate of h based on

1The indicator function 14 evaluates to 1 if A is true and 0 otherwise
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similarity between ratings u* of the unknown source and ratings uf’ of the trusted one, similar

to intuition.

3.1.4.4 Learning by EM algorithm:

For the case the target peer provides services with many quality attributes and contextual
variables, the resulting QoS generative models are more complex. Additionally, the training
data set is likely to contain many missing values since each source may report on only a number
of quality attributes. Direction maximization of the log likelihood function LL(f) as above
becomes non-trivial and does not give a closed-form solution of the estimated parameter 6.

Many approaches for estimating the parameter # under such situations are applicable (Bun-
tine, 1996). In this paper, we propose the Expectation-Maximization (EM) algorithm (Neal &
Hinton, 1998) to estimate # for its many advantages. First, it works well on any QoS genera-
tive model and is especially useful if the log likelihood function is too complex to be directly
optimized. Furthermore, it deals with incomplete data and converges rapidly. Its main disad-
vantages are the possibility to reach to a sub-optimal estimate (a local maximum of the log
likelihood) with a bad initialization. However, we believe that it is possible to have an accept-
ably good initialization of 6 to compensate these disadvantages, given personalized beliefs of
the learning user on the behaviors of service providers and raters. The EM algorithm is given
in Algorithm 2.

Algorithm 2 outlines the EM parameter learning on a general QoS graphical model with
discrete variables, i.e., any model in Fig. 3.3. Algorithm 2 is run locally and independently by
each learning peer in the system to evaluate the quality and behaviors of other peers, after the
evaluating peer has constructed an appropriate QoS model of its targets and collected sufficient
QoS ratings to build a training data set.

Algorithm 2 LearnParameter(model M, trainingData T = {v,,1 < u < N})

1: Init unknown Pr(z* | 7%) for each node = of M; /*Initialize 6*/

2: repeat

3:  for each observation v, in ¥ do

4: Compute Pr(z*,n} | vy, 0), Pr(n} | vy, 0) for each node «;
5: end for

6 Bupe = ¥, Pr@*,ms | Vi, 0); Bpe = X, Pr(es | vy, 0);

7:  for each node = do

8: Pr(z* | 7}) = Egpz/Eps; /* Update 6 */

9:  end for

10:  Recompute LL(0) = 3=, logPr(v, | 0) with new 6;
11: until convergence in LL(6) or after a maximal number of iterations;

Line 1 of Algorithm 2 initializes unknown CPT entries of the generative model. Each
conditional probability Pr(z* | n%) can be initialized in many ways depending on available
information: from prior beliefs of the user, as in the service advertisement by the provider, or as
completely random. For the data hosting service, the learning user may assign Pr(b;) with his or
her subjective belief on the trustworthiness of the source j providing the feedback. CPT entries
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of M, D,U in the data hosting service may be initialized as in the service advertisement. Lines
3—6 implement the Expectation step of the EM algorithm, where the expected counts F,,, and
E,. of two joint events (z*,7}) and 7 are computed, given each observation v, in collected
reports and the current parameter set #. Any exact or approximate probabilistic inference
algorithm can be used to compute the posterior probabilities Pr(n} | v,,6) and Pr(z*, 7} |
v, 0). The Junction Tree Algorithm (JTA) (Huang & Darwiche, 1996), is a good candidate
as it produces exact results, works for all QoS generative models, and is still computationally
scalable as shown in our later analysis.

The Maximization step of the EM algorithm is implemented in lines 7 — 9 of Algorithm 2,
therein we update the model parameters Pr(z* | 7¥) such that they maximize the training
data’s likelihood, assuming that the expected counts computed in lines 3 — 6 are correct. The
two Expectation and Maximization steps are iterated till the convergence of the log likelihood
LL(0) of the training data set ¥, which gives us an approximation of unknown CPT entries
Pr(z* | 7%) of the QoS generative model.

The set of observable variables in the QoS generative model may be changed after a user
runs Algorithm 2, uses the service, and updates statistics of some quality attributes ¢; with
his own experience. Thus the learning of the model parameters is a reinforcement process
with increasing accuracy over time, given availability of more training data to estimate a fewer
number of unknown parameters.

We do not consider possible optimization techniques, e.g., adjust the weight of each sample
v, according its recency, to accelerate the learning convergence. The use of other parameter
learning algorithms, e.g., a Bayesian learning method, is also possible. These issues are subject
to future work and thus beyond the scope of this thesis.

Subjective computation of quality and trust

After the model parameter learning step, it is possible to compute automatically the following
joint probability Pr(D* | ®*). Such a probability quantifies at which level the peer offers the
service with a set D C Q of quality attributes at a desired level D* = {¢*,q € D}, given the
setting of a client ®* = {e* |[e € ® C E}.

This probability implies whether a peer provide a better service than another in terms of the
quality features D* under environmental setting ®*. Thus, the result can be used for ranking
and selection of appropriate services among functionally equivalent ones given their expected
quality levels. The trustworthiness of an untrusted feedback source j (i.e., group of reporting
peers), i.e., Pr(b;), is also of our interests, as this helps to select more reliable sources for future
estimation, especially it is costly to obtain information from such feedback sources.

Given a generative QoS model with a known parameter 6, the computation of the above
probabilities using probabilistic inference algorithms is straightforward (Huang & Darwiche,
1996) as follows. Values of contextual variables in ® are defined according to setting of the
user, then a probabilistic inference algorithm, such as JTA (Huang & Darwiche, 1996) is run on
the model to compute the probability Pr(D* | &*). Regarding the trustworthiness of feedback
sources, all probabilities Pr(b;) are already computed during the parameter learning step.
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For example, suppose that we want to estimate the probability that the service with the
QoS generative model in Fig. 3.4(c) provides data hosting service with download speed level
D = high. Also assume that the user wants a free service. The probability Pr(D = high | P =
free) can be done automatically with available probabilistic inference algorithm, given a QoS
generative model with known CPT entries. Due to space limitation, we refer readers to (Huang
& Darwiche, 1996) for a comprehensive tutorial on possible inference algorithms. An example
use of this algorithm to inference on a QoS generative model is given in Appendix A. The most
important aspect is that the whole above inference procedure can be done fully automatically

with an acceptable computational cost (Section 3.1.5).

3.1.5 Analysis of the Approach
3.1.5.1 Computational cost

I provide in this section some theoretical results showing the possibilities of my approach.
These results are for the candidate algorithms in this work and generally suitable to any service
domain. Many optimizations, however, can be used to increase their effectiveness and efficiency.

We will estimate the most significant computational cost in the framework, which is of the
parameter learning and probabilistic inferences on a QoS generative model. Consider a worst
case scenario where each of m quality attributes has ¢ contextual factors as parent nodes. There
are n feedback sources being used, none of which are trusted. Suppose that every node has a
k-ary state space. In a specific domain and for a certain service, t,m, and k are fixed values,
known to the service user, and typically much smaller than n. The Bayesian network of such a
generative model has a total of ¢t + m 4+ n + mn = O(n) nodes. The number of unknown CPT
entries Pr(z* | w2) in the parameter set 0 is at most ng = (k — 1)t + (k — 1)k'm + (k — 1)n +
(k—1)k*mn = (k—1)(k*mn+n+k*m+t) = O(n). The term k — 1 is due to the normalization
constraints as each variable has a k-ary state space.

Assume that a peer j sends N reports on some quality attributes of the target peer whose
service quality model is given in Fig. 3.6(a). In fact, N approximates the number of mea-
surement epochs, or the number of samples IN obtained from Algorithm 1. The functions
selectRatingsInEpoch and findReportedNode can be implemented with computational cost O(1),
e.g., with hash-based storage techniques.

Since the cost of three loops in lines 1, 3,7 of Algorithm 1 are respectively O(N), O(n), and
O(t +m), the computational cost of Algorithm 1 is O(Nn(t+m)) = O(Nn). Even better, this
step can be done off-line. The computation that needs to be done on-demand is the estimate
of Pr(D* | ®*), which has a cost of O(n) (Proposition 1).

Proposition 1 The computational cost of one probabilistic inference on the worst-case QoS
generative model using the Junction Tree Algorithm (Huang & Darwiche, 1996) is O(n).

Proof 1 The result of the moralization and triangulation steps of the Bayesian metwork in
Fig. 3.6(a) is shown in Fig. 3.6(b). The corresponding junction tree of this Bayesian network
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€1...€(J1...0m

Figure 3.6: (a) The extended QoS generative model in worst-case scenario; (b) The extended

QoS generative model after the moralization and triangulation step; (¢) The junction tree of
the extended QoS generative model.

is giwen in Figure 3.6(c). This junction tree has nm+n edges and the mazimal clique size with
t +m nodes. Thus the computational complezity of each inference using the JTA algorithm is
O(2(nm + n)2tT™) = O(nm2'T™), where the factor 2(nm + n) corresponds to the number of
messages passed during the inferences, and the complexity 2'T™ is the computational cost for
marginalization of variables in the maximal clique ey ...etq1 ... qm of the constructed junction
tree. Therefore, one probability inference of the JTA algorithm cost O(nm2t™™) = O(n) for
fized (and usually small) t, m.

From Proposition 2, the cost of one EM iteration is O(Nn?). Given the fact that in prac-
tice the EM algorithm converges fast, and we consider a limited number of feedback sources,

Algorithm 2 is scalable in terms of computational cost with respects to the training data size
N.

Proposition 2 The computational cost of one EM iteration of Algorithm 2 is O(Nn?).

Proof 2 From Proposition 1, the cost of computing the probability Pr(z* | C*), where C*
denotes the setting of some variables in the generative model to certain states, is O(n). This
cost is higher than the cost of computing either Pr(z*,n} | v,,0) or Pr(mk | v,,0) in line 4 of
Algorithm 2, as the first requires an additional sum over all unwanted variables.

Using the above result, one can verify that the computation cost for lines 3—6 of Algorithm 2
is O(Nn%k) = O(Nn?), with N is the number of observation cases. The computation cost for
the loop in lines 7—9 is O(n), since there are ng = O(n) CPT entries Pr(x* | %) in the model.

The computation of the log likelihood LL(6) = >_  logPr(v, | 0) (line 10 of Algorithm 2)
involves the summation over all hidden variables h,, (variables whose values not reported) for
each observation v,. Since the nodes b;j,1 < j < n are independent, each sum Pr(v, | 0) can
be implemented with the cost O(k!T™*n) = O(n) as follows:

Pr(v,[0) = ZPT(thu | 6)
h,
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= Z Pr(q} | mgn,0)Pr(e; [ men,0)

by \{b1,....bn}
X ZPr(bj | 0)Pr(vi; | bj,q;',0)
Jj=1 b;

The terms Pr(q; | mq=,0), Pr(e)’ | men,0), Pr(b; | 0), and Pr(vi; | bj,q}',0) are known
CPT entries of the current parameter set 6, which are already computed after the Mazximization
step (line 7—9 of Algorithm 2).

Consequently, the total computation cost of each EM iteration in Algorithm 2 is O(Nn?) +
O(n) + O(n) = O(Nn?) for n contributing sources and N training samples.

3.1.5.2 Communication cost

The communication cost required by the learning peer P is linearly dependent with the number
of sources j (1 < j < n) that provide ratings on the peer P. Assuming that each source j
provides N reports on the quality of P, the total communication cost is O(N Z;l:l 7;), where T;
is the cost for retrieving a report from j. Using a structured routing overlay, e.g., Chord (Stoica
et al., 2001), the complexity of 7; is O(log|V]), where |V| denotes the number of all peers in
the system. The complexity of the communication cost is therefore O(Nnlog|V|), which mainly
depends on the number of direct rating sources n. Thus one important question is to estimate
n and N required for an acceptably accurate estimation of the quality of the target peer P.
Note that n maybe much smaller than the actual number of rating peers: many of them maybe
considered by the learning peer as having similar behaviors and thus can be encoded as one

single rating source in the QoS generative model.

3.1.5.3 Learning errors and sample complexity

The sample complexity to learn the parameter of a fixed-structure Bayesian network, i.e.,
the asymptotic bound required number of samples IN to learn 6 with optimal error, is well-
known (Buntine, 1996; Dasgupta, 1997; Wocjan et al., 2002). In fact, the required number of
samples in our framework is exponential in terms of the in-degree bound of nodes and grows
less than linearly with the network size (Dasgupta, 1997; Wocjan et al., 2002). For the QoS
generative model in our worst-case scenario with a bound of node’s in-degree of O(t + m) and
network size of O(n), the sample complexity is IN = O(n2!*™). This complexity implies that
our approach is feasible for estimating QoS of services with a small number ¢ + m of quality

attributes and contextual factors.

3.1.6 Experimental Results
Experimental setting

I implemented the presented computational framework using the BNT toolbox (Murphy, 2007)
and tested it extensively under various conditions. Experiments were performed with the afore-
mentioned file hosting scenario to study the accuracy of the estimated values under various
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practical settings: (1) the evaluating peer uses different ways to model the service quality of
its target, e.g., using the basic, simplified, and extended QoS models; (2) there are different re-
porting behaviors; and (3) the recommendation set is incomplete and sparse. On one hand, the
conditional probabilities of the QoS parameters of the service were set according to some (small)
deviations from advertised QoS values to simulate possible cheating behavior of a provider peer.
On the other hand, the observation data set was generated as samples on the visible variables of
the QoS model according to various reporting behaviors of the service users, i.e., the reported
quality values have different probabilities. A fraction of reported values were further hidden to
create an incomplete recommendation data set.

The cost and performance of the algorithm are measured for the three cases where the
learning peer uses the basic model Mj, the simplified model My, and the extended one M for
its subjective evaluation of quality and trust on the others. In the most complicated setting
with the extended QoS graphical model, the number of nodes in the probabilistic network is
2 + 3 + n + 3n, in which the two first visible nodes denote the two environmental factors,
the three next hidden nodes represents the three QoS attributes whose values depend on two
previous environmental variables. There are n latent nodes representing the behaviors of n
peers and 3n observable nodes storing the reported values of those n peers on three invisible
QoS parameters. These 3n reported nodes are used to generate the various reports of several
peers on the peer P with the service s being evaluated, which may also contain missing data
and whose values are different to the actual QoS values the peers observed due to either the
uncertainty in observation or the dishonesty of reporters.

The EM algorithm is initialized as follows: the conditional probability of each QoS param-
eter is set randomly and behaviors of all reporting peers are unknown. From the model with
parameters learned by the EM algorithm, I estimated the distributions of the reporting behav-
iors of the peers and the QoS features of the service. I deliberately used the above setting since
it is of the worst case scenario where the evaluating peer has no information of any other peer
and no trusted friends. The experiments in other cases where the evaluating peer has different
preferences and certain trusted friends are subject to our future work. However, I believe that
even better results could be obtained in those cases, since there would have been more evidences
to learn on models with fewer hidden variables.

The accuracy of the approach is measured as the normalized square root error of the quality
and behavior estimations. The range of the normalized square root errors is [0.0, 1.0] in which
lower values implies higher estimation accuracy and vice versa. The experimental settings and
corresponding results are summarized as in Table 3.1. Each experiment type consists of 20
experiments, each of which is averaged over 20 run times. These experimentations give us the

following conclusions:

Computational cost scalability: Figure 3.7 shows the run time cost (in seconds) and the
number of EM iterations used by the algorithm vs. the number of reporting peers for the three
different QoS graphical models used by the learning peer Py. In case of the basic model, the
cost is very low, since the evaluation of different quality values is performed on a Bayesian
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Table 3.1: Summary of experimental settings and results. f., f, represent the percentage of
cheating and probabilistic reporting peers with varied behaviors. The column f; denotes the
percentage of missing data in the observation data set

Experiment goal n N fe(%)  fu(%)  fi(%)  Results
Cost vs. # of raters 1 to 100 5 45 5 0 Fig. 3.7
Perf. vs. # of raters 1 to 100 5 45 5 0 Fig. 3.8
Perf. vs. # of reports 15 1 to 20 45 5 0 Fig. 3.9
Perf. vs. effective attacks 15 5 0 to 95 0 0 Fig. 3.10
Perf. vs. incomplete data 15 ) 50 ) 0to 95 Fig. 3.11
Results obtained with Results obtained with Resullts obtained with
the basic QoS graphical model the simplified QoS graphical model the extended QoS graphical model
180 180 180
160 *  mean execution time 160 *  mean execution time 160 *  mean execution time
——&— fitting line —&—fitting line —8—fitting line
140 —6— mean number of EM iterations 140 —©&— mean number of EM iterations 140 —&— mean number of EM iterations
120 120 120

100 100 100

80 80 80

Run time cost
Run time cost
Run time cost

60 60 60
40 40 40
20 20 20
okReeseeesesssBERRNES 0 o
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Number of reporting peers Number of reporting peers Number of reporting peers

Figure 3.7: Run time cost vs. number of reporting peers.

network of fixed size and with no hidden nodes. That means the EM learning reduces to the
MLE parameter estimation on fully observable Bayesian network, which is simple counting
(Section 3.1.5.1) . For the simplified and the extended QoS models, the experimental results
confirm that the computational cost is linearly proportional to number of reporting peers n, as
previously shown in Section 3.1.5.1. We also observe that given a fixed number of reports NV
by each j, the number of EM iterations is bounded irrespectively of n. Note that with a given
n, N, the number of samples for the simplified QoS model is larger than that of the extended
QoS models, which explains the higher execution time of learning on simplified QoS model.
Performance scalability: generally the number of direct reporting peers n does not have any
major influence in the performance of the algorithm (Fig. 3.8), but the number of observation
cases does (Fig. 3.9). A peer only needs to get the reports from a certain number of other
peers (chosen randomly) in the system to reduce the total learning time and communication
cost without sacrificing much in the accuracy. Practically, in some other experiments, we only
choose a set of n = 15 reporting peers randomly chosen in the network to reduce the total
running time of the learning algorithm.
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Figure 3.8: Estimation errors vs. the number of raters, f. = 45% cheating raters.
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Figure 3.9: Estimation errors vs. the number of reports per peer, f. = 45% cheating raters.

The importance of modeling (Fig. 3.8, 3.9, 3.10): the simplified QoS model yields best
estimation results given only a few (IV = 3 to 5) reports per peer (Fig. 3.9). Using the extended
QoS model requires more reports to be collected for the learning step, otherwise its results are
less accurate and more uncertain. This is reasonable since the extended model is much more
complex and has many hidden variables to be learned. Thus simpler model is more preferable.
The result of the basic QoS model is the least accurate and more vulnerable to malicious reports,
since in this case the modeling peer trusts all raters completely. This observation confirms the
necessity of an approach which enables the subjective modeling and evaluation of quality and
trust. Depending on the availability of the reports from others, its prior beliefs on other peers
and personalized preferences, a peer can choose an appropriate model for its personal estima-
tions of quality and behaviors of prospective partners. To be specific, the performance of the
estimation using the basic QoS generative model becomes worse and worse with increasing levels
of cheaters in the reporting peers (see the leftmost of Fig. 3.10). The reason is that the basic
model does not include the maliciousness of the reporting peers into any computation. On the
other hand, using the simplified and extended QoS generative models, which explicitly consider
the possible manipulation of ratings, the estimates are better and better with the increasing
percentage of cheating raters, since these models become better fit to the reality (c.f. the middle
and rightmost of Fig. 3.10). This observation suggests that a learning peer should select a model
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Figure 3.11: Estimation errors vs. percentage of missing data, f. = 50% cheating raters.

to estimate performance of a target peer most fitted to the environment vulnerability. Such
information can be even learnt from experience, e.g., by updating the model after making a
decision. I conjecture that an adaptive learning approach to estimate the quality and trust, i.e.,
by revising the QoS generative model over time given more knowledge about the environment
vulnerability, and by collecting of feedback from more reliable reporting peers, would have a
much better performance. A more detailed evaluation of this approach, is subject to future work.

The effectiveness of the EM algorithm: the performance of the EM algorithm is tested
extensively with respect to the following dimensions: (1) the average number of reports N
submitted by each peer j; (2) the incompleteness of the observation data set; (3) and the
percentage of honest reporting peers among js. Given enough observation data, generally using
the EM learning algorithm on the simplified and the extended models can yield respectively
good or acceptable estimation, even with a reasonably high number of malicious users and
with an incomplete observation data set (Fig. 3.11). The result obtained via the use of the
simplified QoS model is the most accurate, which is reasonable since this model also takes the
various cheating behaviors of reporting peers into account appropriately. Using the extended
QoS model gives us less accurate evaluations as the number of observation cases in this case
is insufficient (N = 5) for learning on such a complex model. The result from of the basic
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QoS graphical model is the less accurate, since this case means that the learning peer trust all
reporting peers js completely.

3.1.7 Related Work

This work is mostly related to research efforts in development of reputation-based computational
trust models surveyed in (Dellarocas, 2005a; Despotovic & Aberer, 2006; Jgsang et al., 2007;
Resnick et al., 2000). The probabilistic framework presented in this chapter is different from the
existing work in many aspects. Available approaches are based on various heuristics (Aberer &
Despotovic, 2001; Xiong & Liu, 2004) or social network analysis techniques (Guha et al., 2004;
Kamvar et al., 2003; Yu et al., 2004). However, most of them are either ad-hoc in nature (Aberer
& Despotovic, 2001), have high implementation overhead (Kamvar et al., 2003) or do not
produce estimates of trust with well-defined semantics (Xiong & Liu, 2004; Yu et al., 2004).
Other probabilistic-based trust evaluation approaches, such as (Buchegger & Boudec, 2004;
Despotovic & Aberer, 2004b; Mui et al., 2002; Patel et al., 2005; Wang & Vassileva, 2003; Whitby
et al., 2005) do not appropriately take into considerations the effects of contextual factors and
preferences of users, the multi-dimensionality of trust and quality, and the relationships among
participating users.

This work, on the other hand, can be shown as the generalization of many existing ap-
proaches, e.g., (Despotovic & Aberer, 2004b; Hsu et al., 2006a; Mui et al., 2002; Patel et al.,
2005; Regan et al., 2006; Wang & Vassileva, 2003; Wang et al., 2006; Whitby et al., 2005).
For example, (Despotovic & Aberer, 2004b) is a special case of the solution presented in this
chapter if the reports and quality are one-dimensional and the EM algorithm is applied on the
simplified QoS model to find those model parameters best fitting to the observation data set.
PeerTrust(Xiong & Liu, 2004) evaluates the quality and trust value of a peer given its ratings
by other peers and credibility of individual raters, therefore it is similar to the learning on an
extended QoS model in my framework, where the reliability of a rater is assumed to be de-
pending on the similarity of its reports with the report of the learning peer. Yet, my solution is
well-supported by the probabilistic learning and inferencing techniques and relies on no ad-hoc
heuristics. The approaches in (Buchegger & Boudec, 2004; Mui et al., 2002; Patel et al., 2005;
Whitby et al., 2005) are similar to my computational framework under the assumption that
user ratings and peer quality are one-dimensional, binary-valued, and the learning of peers’ be-
haviors is done using a Bayesian-based approach to inference on the extended model given the
observation data set. Comparing to the work in this chapter, (Wang & Vassileva, 2003; Wang
et al., 2006) do not take into account the dependencies among different quality dimensions of
the peer as well as the relationships between the observed and reported values of peers in the
system with respect to their behaviors for an accurate estimate of quality and trust. In (Regan
et al., 2006) the authors propose modeling e-market services as a Bayesian network and use
a Bayesian learning approach to estimate distribution of the model parameters. (Hsu et al.,
2006a) uses a simple Bayesian network to learn the trustworthiness of a party by the EM algo-

rithm. These approaches do not exploit domain knowledge on service structure and presence

48



3.2 On Prototyping and Simulation of Decentralized
Reputation-based Trust Systems

of trusted parties to reduce the cost of probabilistic learning and inference on the models. As a
side-effect, my framework, though independently developed, appears to subsume these specific

approaches.

3.1.8 Conclusion

I have proposed a general probabilistic framework to support the personalized computation of
quality and trust in decentralized systems. This framework gives us several interesting findings.
Most importantly, it is shown that modeling is very crucial in the design and implementation
of a computational trust model, especially if trust is built on multi-dimensional qualitative
behavior of agents, and where ratings are collected from information sources with unknown
reliability. Domain knowledge and human experts are very important for the design of a good
generative model for trust learning.

The first implementation of the framework using Bayesian network modeling, the EM and
JTA algorithms have been shown to be scalable in terms of performance, run-time, and com-
munication cost. Additionally, it exhibits several advantages: it works well given few and
incomplete feedback data from the service users; it considers the dependencies among QoS at-
tributes and various related factors to produce more accurate estimations; the computed results
have well-defined semantics and are useful for many application purposes.

Additionally, many existing computational trust models are in fact built on different gen-
erative models of the user’s behaviors, where trust evaluation is done using simple learning
heuristics. Therefore, it is possible that similar approaches can be developed and better an-
alyzed under this umbrella theoretical framework, e.g., by comparing which approaches yield
optimal error in learning the model parameter via well-known machine learning performance

metrics.

3.2 On Prototyping and Simulation of Decentralized
Reputation-based Trust Systems

Although decentralized trust management has attracted substantial research efforts over the
recent years, existing computational trust models mainly rely on simulation results to verify
their performance and effectiveness. Such experiments are usually conducted in different ad-hoc
simulation environments, making comparison of existing solutions extremely difficult.

Given this observation, another goal of this thesis is to provide a generic and powerful
framework to assist researchers in their development and evaluation of novel trust management
approaches while minimizing implementation efforts. Specifically, one only needs to focus on
the development of the core algorithms, not on setting up of the simulation environment. Since
there is no open and well-known accepted simulation and experimentation framework for trust-
related research at the moment, this framework is an important contribution to the research

community. The ultimate goal is to establish a standardized powerful simulation test-bed for the
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trust-related research communities. More specifically, such a simulation framework is expected
to be useful for trust-related researchers in several aspects:

e as a powerful experimentation platform to enable empirical simulation to discover
new trust and cooperation-related phenomena. For example, we may want to use this
simulator to test the emergence of trust and cooperation in various scenarios where peers
use different learning algorithms and with various behaviors, including honest, malicious
and strategic.

e as a competition test-bed with rich testing environment. The testbed can be
used with similar purpose as the ART test-bed (Fullam et al., 2005) to test comparative
performance of different trust learning algorithms. To this extent, the developed simula-
tor should be more flexible than the ART test-bed, which only simulates a painting art
appraiser scenarios. My goal is to design a generic simulation framework where differ-
ent application scenarios can be set up, and simulation parameters can be defined more
flexibly.

e as a prototyping tool: the basic building blocks provided by the developed simulation
framework can also help one develops and tests performance of his or her trust learning
and decision making algorithms under a variety of standard and/or customized testing
scenarios with minimized development efforts. The implemented trust management algo-
rithms can also be used as an application-independent library of reputation-based trust
learning algorithms to be used in a specific scenario.

This simulation framework is used in two scenarios, each of which is a research work pre-
sented in detailed in Chapter 4 and Chapter 5.

3.2.1 Requirements of a Simulation Platform for Trust Management
Research

For most research work focusing on testing performance of a computational trust model, testing
with real systems is often an infeasible option. First, real data set is not usually available.
Second, although many work obtained data set on real reputation and recommender systems to
back up their experiments, it is always the case that more synthetic data need to be generated,
e.g., to simulate an attack and to discover different vulnerabilities of the system. The reason is
that we typically do not know the ground truth of data obtained from real reputation systems,
e.g., the collected data set does not include the information on the genuine outcome of historical
transactions or which rating values on which transactions are correct.

Reputation-based computational trust models are frequently used in dynamic and complex
systems. This makes analytical solutions on these systems’ performance are difficult to obtain
without introducing many simplifying assumptions. For example, qualitative behaviors of ser-
vices provided by peers are usually considered as one-dimensional signals, or that the system
in homogeneous in terms of peer preferences. Consequently, the validity and/or applicability of
such analytical approaches is rather limited. Therefore, whenever a more thorough study of the

system is needed, simulations and experimental approaches are common practices. Simulation
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are good for testing complex analytically intractable models, and for verifying analytical result.
Therefore, simulation models would need to be built on real world data set and observations in
real systems.

Beside some common features of a simulation tool, such as the ease of use, the reproducibil-
ity of the results, good documentation and clean API code, I have identified following main
requirements of a generalized trust simulation and prototyping platform for the trust-related

research community.

e Extensibility: results shall be expressive and easy to process and to reproduce. The
system must be design to facilitate the demonstration and simulation of various similar
interaction scenarios with different degrees of centralization. The design shall maximize
the reusability of code and minimize the efforts spent to develop a new simulation for
another application scenario. For example, we can model peer to represent any active en-
tities (agents) system stands for any open systems with different degrees of centralization.
It is also expected that users can easily define new metrics and plug new algorithms into
the system for evaluating without much effort.

e Practicability: the simulation model shall be built on many data sets and observations
from real running systems. I try to obtain as much parameter distributions from real
system as possible, e.g., the distribution of uptime and arrival time of peers, number of
average transactions, content distribution. Those parameters that can not be observed
directly (such as peer behaviors) can be drawn from similar networks/systems (trace-
driven).

e Scalability: the system must support simulation of a large number of peers and can be

decentralized to support large-scale simulation.

My design of the trust simulation framework are focused on satisfying the above requirements

as much as possible.

3.2.2 Existing P2P and Trust Simulators

Much effort has been spent in the development of simulators of P2P systems, some of which
are ProtoPeer (Galuba et al., 2009), PeerSim!, FADA?, JXTA3. More complete review in this
area can be found in existing surveys (Naicken et al.,, 2006). Also related to this line of re-
search is the development of experimentation environments for research on network attacks and
defenses?. PACE (Suryanarayana et al., 2006) presents a software architecture to incorporate
trust management algorithms in to peer applications. Those are complementary to the work in
this chapter.

The most extensive and representative work in this area is the PeerSim project by Hales et al.
This work focuses on simulation of communication among peers rather than the social behaviors

of participants, which is more important for trust management research. A restriction of this

Thttp://peersim.sourceforge.net/
2http://fada.sourceforge.net /p2psim/
Shttp://www.sun.com/software/jxta,/
4http://www.truststc.org/testbeds.htm
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work is it mainly supports simple cycle-based simulation model, whereas the more realistic
event-based simulation has not been gained much attention.

There exits a number of tools for simulating reputation system and decentralized trust
models in the literature. Most tools are designed to simulate a single application scenario and
do not provide extensive simulation and development support.

The most widely known tools for comparing different trust learning models is the ART test-
bed (Fullam et al., 2005). This testbed is designed for competition among rational agents in an
art appraisal domain and has attracted participants of many researchers over the recent years.
A limitation of this testbed is that it is only applicable to testing performance of different trust
approaches in the well-defined art appraisal domain. Furthermore, it is more suitable for limited
number of agents rather than for experimentation effectiveness of trust learning algorithms in
larger-scale environments.

Other work on simulation of reputation-based trust systems are those simulators developed
for special purpose of individual research work, namely the SuppWorld framework (Sabater,
2003b), (Schlosser et al., 2005), or Liang and Shi (Liang & Shi, 2008).

The main difference of my simulation framework from other works is its extensive supports
for development and experimentation of trust management approaches. This framework is more
generic and application-independent: support intelligent decision making, behavior modeling,
learning and inference on multidimensional, context-dependent trust models, etc. Practically,
the implemented framework has many useful features and provides several supports for the
development and testing of new trust management approaches. First, the framework is designed
to help fast prototyping and simulation a reputation system in any application scenario, thus
it is much more powerful. Specifically, beside the possibilities of plugging in different learning,
decision making algorithms as supported by ART testbed., in my framework various scenarios
can be setup, e.g., peers may join and leave dynamically, peers provide services with multi-
dimensional quality attributes. Thus the presented framework serves as a generic simulation
platform, which can be easily configure to empirically test a specific learning algorithm under
various designed attack scenarios. At the same time, the simulator can also be configured to
use as a testbed without major effort.

3.2.3 Basic Design Concepts

To develop a generic platform that is capable of simulate different application scenarios, I
consider the generalized interaction scenario introduced in Section 1.2. The system consists
of many peers who provide or obtain resources of different prices and quality to and from the
others. This abstraction makes it possible to tweak our system to simulate a range of similar
applications, e.g., a C2C trading scenario, resource provisioning in Grid systems, or a market
of services. This scenario represents several different practical P2P applications where trust
and reputation information play an important role and are used extensively to improve the
cooperation in the system. The simulation platform is built with a number of fundamental

application-independent concepts as follows.
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First of all, ResourceDescriptor is an abstract view of a resource in an application, which
represents any object being evaluated, e.g., a service in service-oriented systems, a contact
in a social networking site, a resource in Grid environments. FEach resource has a number
of quality properties with certain dependencies among them. Note that even reputation and
trustworthiness can be viewed as a quality parameter as well. This modeling helps the simulation
framework applicable for a wide variety of application scenarios where peers provide services or
resources of different types to each other.

A peer (Peer) is an autonomous agent participating and interacting with other peers in the
system. Thus a peer may simulate a real user, an intelligent agent, or a computer in the network
depending on the application we want to simulate. Each individual peer can be either a provider,
requestor, or rater of certain resources (ResourceDescriptor) and exhibits different behaviors,
e.g., honest, dishonest, or strategic, in different contexts (ReportingBehavior, ServingBehavior).
Behaviors of peers in the system are defined and configure by the system-wide data structure
PeerSociety. Peers are identified by a unique address and has many preferences (PeerPreference).
Example preference information is: which trust model, learning or decision algorithms to be
used, the prior beliefs the peer has about the environment vulnerability, etc.

A peer may issue different Requests of various types to search for resource, look up ratings
on a certain resource, and ask for using a selected resource. Upon the receiving of a request,
the recipient can send back corresponding RequestResponse depending on its own reporting or
serving strategy.

TrustModel is a data structure representing how a peer models its notion of trust on a certain
resource. Depending on the application, one can build a trust model based on the list of quality
parameters of the associated resource. A TrustModelNode is a node in the trust model, which
actually represents a quality parameter of a resource. This comes from my observation that
in many (if not almost) system, the trust value on a resource is generally defined based on its
certain quality parameters. A TrustModelNode takes a TrustModelNodeState value. Note that
in a report on quality of a resource may consists of many quality values. Values of quality
properties in an observation can be either provided or not depending on the rater’s willingness.

To make the simulation platform generic, the trust management subsystem is design follow-
ing the holistic approach presented in Section 3.1.2. Specifically, I design the TrustManagement
layer as composition of three subcomponents TrustModeler, TrustLearner, and DecisionMaker.
Such design helps generalize the operation of almost all personalized/local reputation/trust
management models in the literature. Fig. 3.12 shows the structure of the TrustManagement

subsystem. The role of each component is specified as follows:

e the TrustModeler component formalizes the notion of trust and reputation of an object (a
peer or one of its resources) via appropriate modeling. E.g., it may define trust as a joint
probability that a peer offers resource with certain quality values. Given a trust model,
the reputation of the described resource can be evaluated accordingly.

e TrustLearner: an abstract of a local trust learning algorithm of a peer. A peer uses
collected observations and its own experience to revise its trust model, e.g., to change the
parameter of the model to fit well to its beliefs and preferences. The revised /learnt trust
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model will be used to evaluate the trustworthiness of the object the model describes.

e DecisionMaker: this component supports a peer in its intelligent trust-based decision mak-
ings. For strategic peers, this comprises those algorithms of a peer to maximizing the it
long-term utilities. For naive/honest/cooperative peers, this component may be some
simple deterministic rules. Examples decisions to be made are:

(i) how to select a best partner in a certain transaction to maximize the long-term
utilities;
(ii) whether to accept, ignore, or serve a certain resource request and with which level

of effort;

(iii) how to share the collected ratings and with whom, e.g., only share ratings with its
neighbors, trusted friends, other members in the same group;

(iv) which learning algorithm to choose for estimating the quality and trustworthiness of
the potential partners.
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Figure 3.12: Details of the trust management subsystem in our prototyping and simulation
framework. These subcomponents corresponding to the modeling, learning, and decision making
steps presented earlier in Section 3.1.2.

3.2.4 Framework Architecture

Fig. 3.13 shows the overall architecture of the framework, which is composed of the following
modular components. PeerApplication layer is an abstraction of the P2P application to be
simulated. Such application is defined as an interaction scenario where peers provide or obtain
resources of different prices and quality to and from the others.

The TrustManagement layer serves as a trust management subsystem supporting peers in
modeling and learning trustworthiness of other targets, as well as supporting them in their
trust-based decision making processes. Standard APIs and many basic building blocks are
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provided for users to develop and plug-in their own computational trust (learning) models and
decision making algorithms into the system.

Another intermediate layer, the ServiceSupport layer encapsulates the distributed informa-
tion storage, retrieval, and routing mechanisms being used. Particularly, this layer provides
upper-layers with capabilities of sending requests and receiving responses among the peers, as
well as searching and retrieving information on resources and related ratings on them for the
trust computation. This layer separates the trust management subsystem from the mechanisms
of identity handling, searching and retrieval of information. Thus the layer facilitates the in-
tegrating and testing of a certain trust management approach on top of different distributed
information management mechanisms.

The SimulatedNetwork layer represents the underlying communication network, which can be
implemented as a centralized or decentralized system depending on the system being simulated.
Since we only emphasize on the simulation and study of social and strategic behavior of peers in
the application layer for a certain trust management approach, only a basic implementation of
this layer is provided. Specifically, the layer is implemented as a network of nodes with latencies
among them following the King latency data set (Gummadi et al., 2002), where peers join and
leave the system according to a realistic churn model (Stutzbach & Rejaie, 2006). In fact, the
system can be configured to use other message passing protocols or underlying communication
networks with any latency models as needed, besides the default implementation.

The SimulationManager takes care of all back-end supports for the simulation, e.g., cap-
turing, inspecting, controlling, and collection of measured data in both interactive and batch
modes. RePastJ (North et al., 2006) is used as the base to develop this component, as this
library provides several useful tools for setting up the environment, dynamically controlling of
simulation parameters, result visualization and analysis, etc.

Thanks to the modular designed and well-specified API of the subcomponents, each layers
can be replaced by different implementations (simulated or real) according to the experimenta-
tion requirements of the application.

For example, it is possible to develop a decentralized implementation of the SimulationManager
layer layer to support larger-scale simulations or even to emulate an application scenario on a
real network, given participation of real users. Similarly, though implementation of the service
support and communication layers are also provided for the completeness of the simulation
framework, they can be easily replaced with current peer-to-peer simulation tools such as Peer-

Sim!.

3.2.5 Formal Models of the Simulation Framework

To have a better understanding of the operation of the presented simulation framework, I
provide in this section a formal model of those concepts used above in the framework.
The semantic of trust and reputation in my simulator is interpreted as follows. Reputation

of a resource is the personalized belief (e.g., subjective probability) of getting certain quality

Thttp://peersim.sourceforge.net/
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Simulated Network Manager

Figure 3.13: Architecture of the trust prototyping and simulation framework

under a known context and considered as past performance of the objects being evaluated.
This belief is initialized with the learner’s prior belief and revised with under the presence of
personal experience and ratings from the others. The trust level on a resource is the prediction
performance of a peer, e.g., the belief that a peer will offer a resource with desired quality level
under a particular context, given the posterior belief and assumptions of the learner on the
environment.

This interpretation helps us to build the following formal models of different concepts in
the simulation framework. Let A be the set of all peers (agents) in the system who provide a
set of resources (or services) S to each other. For a given resource s € S, denote Q)5 the set
of all of its quality attributes ¢, each taking values in a domain D,. Similarly, let Cs be the
set of related contextual factors ¢, each taking values from a domain D.. Let 7(z) C Qs U Cy
be the set of quality attributes and contextual factors that may influence value of a certain
quality /contextual variable z € Qs U Cs. The domain D, and D, are application- and system-

dependent, e.g., D, can be a binary set {0,1} or a subset of real values R.

3.2.5.1 Resource Modeling

Consider a resource s € S with the set of quality attributes Qs and the set of related contextual
factors Cs.

A quality model My of this resource is a directed graph (Qs U Cy, DE) with the directed
edge set DEs = {(¢,q) | ¢ € Qs UCs, ¢ € w(q)}.

The advertised quality level L of this resource, as claimed by its provider is As = {{, | ¢ €
Qs}. Each mapping ¢, : I, (q) D2 — Dy corresponding to a claim of the provider to provide
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this resource with a specific level of quality attribute ¢ under a defined context m(q). This
advertise quality As can be defined explicitly by the provider, e.g., as part of its service level
agreement (SLA) description, or implicitly, e.g., ¢, is understood as having good values in the
domain D, irrespectively of the context.

A resource s € S provided by a peer p is formally defined by its resource descriptor Ry =
(p, M, Lg).

3.2.5.2 Trust Modeling

Suppose we have a resource descriptor Ry = (j, M, Ls). A potential consumer peer i defines its
personalized trust model T¢ on that particular resource s as 7! = (M, Dy), where Dy = {§, | ¢ €
Qs} is the expected-to-deliver quality level of a resource s. Each mapping 0, : Hyer(q)De — Dy
corresponds to the personalized belief of peer ¢ on the fact that the resource s will be provided
with a specific level of quality attribute ¢ under a defined context 7(gq).

In general, this expected-to-deliver quality level Dy is different from those defined in its
advertised quality level A; and thus shall be learned by the modeling peer i¢. Such definition
comes from our view that in many (if not almost) application scenarios, the trustworthiness of
a resource is mainly defined based on its certain quality parameters.

A model M’ can also be encoded as a Bayesian network relating the various quality pa-
rameters of the resource (as in the probabilistic framework of Section 3.1.2). Alternatively,
it can also be a visual representation of an ontology specifying relationships among different

qualitative facets of the service/resource being described.

3.2.5.3 Peer Interactions

I adapt the formalism defined in (Schlosser et al., 2005) to describe the simulation scenario.
The time domain is discretized to T = {1, ..., W}, where W is the window-size of observations
to be used by various peers.

Define E the set of all transaction (or encounters) between peers until now. A transaction
e € E is denoted as a 5-tuple (i,7,s,C,t), where i € A is the resource consumer, j is the
provider, s is the resource being provided, C € Il ec, D, defines the context of the transaction,
t € T is the associated transaction timestamp.

The set of quality values the resource consumer i observes after the transaction e constitutes
an observation o, = {vqy € Dq | ¢ € Qs} on that transaction.

A rating (or a report) of a peer i on a transaction e is defined as p(i,e), where p: A x E —
IIgeqeDy. The set Q° C @, includes those quality attributes of the resource s rated by the
consumer 1.

For later uses, we define S; the set of resources provided by peer j. Also, we define E; the
set of transactions in which j is a resource provider and E; ; C E; the set of all transactions
between a consumer peer ¢ and a provider peer j. Formally, E; = {e € E | e = (i, j,s,¢,t),1 €
AseSjceCiteTtand E;j ={e€ E|e=(i,j,s,ct),s€Sj,ce C;t €T}
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3.2.5.4 Trust Learning Algorithm

Suppose that we have a resource s with descriptor R = (j, M, L). Let T = (M, D) be the initial
trust model of s formulated by the peer i. Normally, we have D = L. _

A (personalized and reputation-based) trust learning algorithm TA takes input values (G, Q, T}
and outputs an updated trust model 7% = (M, D) of that resource, where:

e (G = {P, B} is the social relationship graph among those peers P that the peer i considers
as relevant for its computation of the trust model J%. B is the friend (buddy) relationships
between peers in P, if available.

o Q= {p(i,e)|i€ Pec E,;;,j€ P} is the set of all ratings among peers the set P, which
can include all ratings in peer serving or rating behaviors.

e F'is a rating aggregation function that operates on G, 2, and outputs estimated values of
the function §, for each quality attribute ¢ of the resource given every defined context m(q).
That is, the function F' estimates the expected-to-deliver quality level 6, : Tl cr(q) D —
D, for every q € Q.

The above trust learning algorithm estimates the personalized belief of the peer i on the
provider peer j in providing its resource s with a certain quality level. Indeed, it is the formal
description of several well-known trust evaluation algorithms in the literature, depending on
how we define the social graph G and the aggregating algorithm F'. Specifically, let PJQ ={z e
A| E,; # 0} and Pf ={xeA|le Pf‘l,Em,l # 0}, k > 1. Then P} actually denotes
the set of all peers ever do some transactions with j and Pf encompasses all peers whose
transactions may be considered as relevant to the computation of j’s trustworthiness. Most
reputation systems, for example (Xiong & Liu, 2004) and other weighted average approaches,
only consider P = PjQ as the set of peers relevant for the reputation computation. Some other
approaches that are based on social network analysis define P = Pf“ N{zr e A|E;,, # 0}
with higher values of k, e.g, Yu and Singh (Yu et al., 2004). The relationships B between
peers in P, which can be learned from the transaction history amog peers, are also used for the
reputation estimation (Ashri et al., 2005). Some global trust metrics like EigenTrust (Kamvar
et al., 2003) and complaint-based algorithm (Aberer & Despotovic, 2001) consider all peers P

in the networks and consider the recommendation/ratings among each pair of them.

3.2.5.5 Peer and Behavior Modeling

The serving behavior of a peer ¢ for a specific request to one of its provided resource s € S; at
a time ¢t € T is a random variable sa taking values in its serving action space SA = {gs, bs, is}.
Each of individual serving actions gs, bs, is respectively corresponds to the action of the peer to
provide a resource with high effort (good behavior), with low effort (bad behavior), or simple
ignore the request. The distribution of such serving behavior at a time ¢ € T is modeled as
probability distribution DistS(i, s;,t).

Similarly, the rating behavior of peer i on a transaction with another peer j providing
a resource s; at time ¢ is a random variable ra taking values in a rating action space RA =
{hr,ar,br,ir}. Each rating action hr, ar, br,ir means that the peer provides honest, advertising,
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badmouthing ratings or simply doesn’t leave any rating after its transaction. The distribution
of such rating behavior over time is DistR(i, s;,t) for a time t € T

The arrival time and up time of peers in the system can be modeled as two probability
distributions DistArr and DistUp, respectively. To model the distribution of resources pro-
vided by peers and the requests by peers for certain resources, we need to come up with a
content distribution DistC(t) and associated request distribution DistReq. These distribu-
tions can be observed from real networks, for example from current observations in file sharing
P2P systems (Klemm et al., 2004; Stutzbach & Rejaie, 2006) and applied in the simulation
correspondingly. The simulation framework also enables plugging of different distributions for
each of those models flexibly.

3.2.5.6 Decision Making Algorithms

Let US; : S x 8A — R be the payoff function of a peer serving a resource. That is, US;(s, sa)
is the gain of the provider ¢ when providing a resource s with a certain behavior sa. The
function US; depends much on the price of the resource and the provider’s cost when offereing
it with a certain level of efforts. In generally, with every peer ¢ and for every resource s,
USi(s,bs) > US;(s,gs) > US;(s,is) = 0.

Similarly, we denote UU; : S x 8A — R the payoff function of a peer using a resource.
Thus UU,(s,sa) is the gain of the resource user i when using a resource s with a certain
behavior sa, depending how the peer values the resource. For every peer ¢ and every resource s,
UU;(s,bs) > US;(s,is) =0 < UU;(s,gs). The cost of a rating on a transaction e is cr(e) > 0.

Given the above payoff functions, cost and price of resources, the other domain knowledge
about the operation of the system, a strategic (rational) peer need to make the fundamental

decisions:

e DS: estimate the level of effort (a serving action a € SA) a peer should exert given a
request from a consumer.

e DR: estimate ehavior should a rating peer exhibit (a rating action a € RA) after a
transaction with a provider.

e Sel: select a provider i € A among the set of providers offering similar resources.

3.2.6 Implementation

A full-fledged implementation of the presented simulation framework is developed using the
Repast library (North et al., 2006). The underlying simulated network layer is implemented
as realistic churn behavior and King latency model. This simulated network can be easily
overridden to implement a specific communication network with different topologies, churn and
latency models with little efforts.

At the PeerApplication layer, many abstract classes implementing basic functionalities of a
peer, associate learner and decision makers are provided to facilitate the simulation of different

applications. The system is highly flexible, e.g., distributions on various input such as arrival
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time, uptime, resource/content and peer behaviors can be easily created by overridden the
base/abstract classes.

I have implemented several trust learning algorithms in the TrustManagement subsystem:
complaint-based algorithm (Aberer & Despotovic, 2001), EM (Vu & Aberer, 2007) (a generaliza-
tion of MLE (Despotovic & Aberer, 2005)), OnlyLastRating (Dellarocas, 2003), PeerTrust (Xiong
& Liu, 2004). Other baseline algorithms like weighted average algorithms and ideal algorithms
for easy comparison of their effectiveness are also provided and more algorithms are being added.
Some decision making algorithms to support strategic peers in choosing the best strategy of
reporting and serving are also developed.

The following features are supported in the current framework, a more detailed overview of

which is available online!:

e Support online visualization and automatic collection of simulation results;

e Highly flexible simulation environments with many standard and/or extensible input pa-
rameters and performance metrics;

e Ability to dynamically control the simulation environment via GUI and during runtime;

e Simulation can be done interactively or in batch mode with (nested) range of input pa-
rameters (thanks to RePast);

e Easy and flexible plugging of customized trust learning and decision making algorithms

for empirical evaluation of their performance.

Fig. 3.14 shows some screenshots of our prototyping and simulation framework in action.
Further details can be found online. Some more advanced features are being planned, such as

the modeling and simulation of dynamic attack scenarios.

3.2.7 Using the Simulation Platform in this Thesis and Beyond

The simulation framework developed is used extensively in the research work done in this
thesis. The two concrete use cases of this simulation framework are the two works presented
in Chapter 4 and Section 5.2. In each case I use the framework to simulate various complex
interaction scenarios, which are intractable analytically.

First, the simulation framework is used in a later work (Chapter 4) to study whether co-
operation emerges under many different conditions: (1) peers may join and leave dynamically
with realistic churn models; (2) there are different types of peers with different reporting and
serving behaviors: including strategic, malicious, and honest; and (3) peers may use different
reputation-based trust learning algorithms to estimate the potential trustworthiness of their
partners before committing in a transaction.

The simulator is then reused in Section 5.2 to simulate a secret sharing scenario. Peers are
delegates keeping shares of a secret key and our goal there is to select the most reliable peers
in the system to minimize the number of keys lost. There, peer trustworthiness is defined by a

different trust model, depending on their social relationships with the others.

Thttp:/ /Isirpeople.epfl.ch/Ihvu/download /repsim/
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There are many further applications of the simulation platform that are subject to future
work and beyond the scope of this thesis. For example, it is straightforward to use the simulator
to study the competition of peers with diverse behavioral models to see the effectiveness of a
trust learning algorithm and emergence of trust under (1) limited availability of information
(2) in presence of communities and trust.

It is also interesting to study in dynamic environments with few interactions and limited
information available, which strategy is better for rational peers: simple probabilistic learning
algorithms or complex strategic (reinforcement learning) ones.

Several extensions can be made to the framework. The first important extension is to model
common, serious attacks on a reputation-based trust system to help testing the robustness of
new trust model against them. With extensive collection of such attack models under different
simulation settings, the building of a trust benchmark, e.g., similar to the TREC benchmark in
information retrieval community, is possible.

The simulation manager can be implemented with a distributed simulation engine to sup-
port larger-scale, more realistic simulation of real applications. Even more, emulation of real
applications to measure performance of a trust model is also possible. This can be done by im-
plementing an attractive interactive game in which both real people and intelligent agents using
newly developed trust models can participate and compete with each other. As the system is
totally under control of the simulation manager, from such an emulation the researcher may
easily collect reliable and realistic data on behavior of people and ground truths of transaction
outcomes among these users. Such data is an invaluable resource for the research community
in understanding rationality of users in complex environments.

The current implementation of the simulation tool is flexible, e.g., various simulation inputs
can be configured and input during run-time. At the same time the tool can be easily extended to
support more features, e.g., new trust learning algorithms can be plugged-in relatively effortless.
Scalability is an issue the current implementation has not yet resolved: it is possible to simulate
up to roughly 2000 of peers with small trust models, and thus improvements to that regard are
desirable.
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Figure 3.14: Screenshots of the trust prototyping and simulation framework in GUI (interac-
tive) mode. The system can be used to simulate interactions and cooperation among peers in
different application scenarios by implementing a peer to provide appropriate services. Users
can configure various settings of the environments (right panel) such as fraction of peers with
different behaviors, computational trust models to be used. The trust relationships among peers
are shown in the network of the top-left panel. E.g., in the screenshot honest participants are
blue peers with many trust relationships. One can inspect and change behavior of certain peers
during simulation time interactively. System performance over time is shown in the bottom-
left panel. Most simulation settings such as distribution of different peer types with various
behaviors and definitions of (new) system performance metrics can be done programmatically
via provided APIs.
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Chapter 4

Effective Usage of Computational
Trust Model in Heterogeneous

Environments

Computational reputation-based trust models using statistical learning have been intensively
studied for distributed systems where peers behave maliciously. However practical applications
of such models in environments with both malicious and rational behaviors are still very little
understood. As the main performance criteria of computational trust models are their statistical
accuracy in detecting malicious behaviors, it is my interest in this chapter to study the relation
between their accuracy measures and their ability to enforce cooperation among participants and
discourage selfish behaviors. I provide theoretical results that show the conditions under which
cooperation emerges when using computational trust models with given estimation accuracy
and how cooperation can be still sustained while reducing the cost and accuracy of those models.

Specifically, I propose a peer selection protocol that uses a computational trust model as a
dishonesty detector to filter out unfair ratings. I prove that such a model with reasonable false
positives and false negatives in estimating rating reliability can effectively build trust and coop-
eration in the system, considering rationality of participants. These results reveal two interesting
observations. First, the key to the success of a reputation system in a rational environment
is not a sophisticated trust learning mechanism, but an effective identity management scheme
to prevent whitewashing behaviors. Second, given an appropriate identity management mech-
anism, a reputation-based trust model with moderate accuracy bound can be used to enforce
cooperation effectively in systems with both rational and malicious participants. In hetero-
geneous environments where peers use different algorithms to detect misbehavior of potential
partners, cooperation still emerges as long as these algorithms have a moderate misclassifica-
tion error bound. I verify and extend these theoretical results to a variety of settings involving
honest, malicious and strategic players through extensive simulation. These results will enable

a much more targeted, cost-effective and realistic design for decentralized trust management
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systems, such as needed for peer-to-peer, electronic commerce or community systems.

More extensively, I prove that even if cheap pseudonyms are possible, there exist certain
pricing mechanisms to foster cooperation among rationally opportunistic providers when of-
fering their services in most of their transactions. Subject to certain application-dependent
conditions on the temporary gain by cheating of each provider, the mechanism yields small
inefficiencies and less risks for participants.

The work in this chapter is published in (Vu & Aberer, 2008a,b, 200x).

4.1 Introduction

Reputation information has long been shown as an effective tool to enforce cooperation and
build trust among participants in a variety of e-commerce systems and online forums such as
eBay!, Yahoo Auction?, or recommender systems®. Due to the open nature of such applications,
participants usually have incentives not to cooperate, e.g., not to ship the items after receiving
payments in an auction site, or not to contribute any resource to others, i.e. free-riding in
content sharing systems. In those cases reputation based on user feedback can be an effective
measure to isolate bad participants and promote good behaviors.

A reputation mechanism itself relies on truthful feedbacks from participants to be successful.
Therefore, it is also vulnerable to many types of attacks, most notably resulting from malicious
and rationally opportunistic behaviors. Malicious users (malicious peers) are those wanting
to take the system down at any cost with strategic attacks. For instance, malicious peers
may submit biased ratings to confuse the system and to make it less accurate in learning
peers’ behaviors. Rational (and sometime opportunistic) peers are intelligent agents who are
neither completely dishonest nor fully cooperative but opportunistic and adapt their behaviors
strategically to maximize their expected life-time utilities.

Existing reputation system designs can be generally classified into two classes depending on
which of these two behaviors they counter. The first solution class includes computational trust
models that predict peers’ behavior, e.g., whether and to which extent a peer offers high quality
services and gives reliable recommendation on the others, based on their historical performance.
Such methods are designed to be resilient against different types of strategic attacks from
malicious users. The second solution category comprises game-theoretical approaches that use
reputation as a sanctioning tool to enforce cooperation and establish trust among rational
participants, e.g., by penalizing bad peers and rewarding good ones. The system is designed
as a game whose structure ensures that being cooperative is the strategy in equilibriums of all
rational peers who want to maximize their life-time expected utilities.

Computational trust models propose statistical or ad-hoc heuristic methods to aggregate
ratings on past transactions of a peer and related participants, from which to compute a trust
metric as indication of a target’s trustworthiness. Work in this class typically exploits the

Thttp:/ /www.ebay.com
2http://auctions.yahoo.com/
Shttp://www.amazon.com/
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signaling role of reputation: peers learn participants’ behavior from their reputation as a form
of collective social knowledge. The main principle of such models is to predict the future
behaviors of peers by examining their past behavioral patterns. Peer behaviors are assumed
to follow certain probabilistic models, that is, peers behaving well in the past are likely to
continue doing so in forthcoming transactions. For example, a peer may estimate the reliability
of another as proportional to the similarity between its own experience with ratings reported
by the latter (Xiong & Liu, 2004). The EigenTrust model (Kamvar et al., 2003) evaluates
the trustworthiness of a peer according to a global trust metric similar to a PageRank-like
value applied on a graph with nodes as peers and edges as peers’ recommendations to each
other. Alternatively, a learning peer may assume behaviors of a target to follow a certain
probabilistic distribution. The trustworthiness of the target is then revised as the posterior
probability it provides good services, using ratings by others as evidences to update the original
probabilities (Patel et al., 2005; Whitby et al., 2005).

On one hand, computational trust models have been intensively studied and demonstrated
to be robust under various (strategic) attacks by malicious peers, e.g., ballot-stuffing, bad-
mouthing, or collusion among participants. In fact, statistical learning models and appropriate
heuristics can effectively filter out biased information to obtain a correct picture of the peer’s
historical quality, as empirical evidences have shown (Anceaume & Ravoaja, 2006; Despotovic,
2005; Sun et al., 2006). On the other hand, such computational trust models strongly assume
the probabilistic nature of all participants, ignoring the fact that many of them have economic
incentives and behave rationally.

In the presence of rational peers, who adapt their behaviors strategically to maximize their
expected life-time utilities, it is still unclear how well a computational trust model can enforce
cooperation in the system. As a typical example, strategic peers can first cooperate to build
reputation and then start cheating to increase their life-time utilities. Although some simula-
tions (Liang & Shi, 2008; Schlosser et al., 2005) suggest that these algorithms may also enforce
cooperation in presence of both rational and malicious behaviors, no theoretical analysis has
been performed to justify this.

Game theoretical approaches to trust management, the second solution class, mainly deal
with rationally opportunistic participants, who have full knowledge of the solution being used
and behave strategically to maximize their life-time utilities. Promising solutions include giving
monetary incentives to peers to motivate their good service provisioning and truthfully reporting
behavior (Jurca & Faltings, 2006; Miller et al., 2005). Reputation is mostly used as a sanctioning
tool: peers with lower reputation are less likely to be selected (Dellarocas, 2005a). However,
these solutions usually rely on many assumptions, such as peers being fully rational and having
unlimited computational power to find complex equilibriums of the designed mechanism. More
importantly, such solutions do not consider malicious behaviors of attackers.

Since both rationally opportunistic and malicious behaviors can be present in real envi-
ronments, an effective reputation management approach to minimize the influence of these
unwanted behaviors is of paramount importance. A natural question is how we can exploit
well-tested and accurate computational trust models to effectively establish trust among part-
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ners in environments where peers may exhibit various behaviors, including honest, malicious,
and rationally opportunistic. More concretely, it is important to know whether and under which
conditions computational trust models that are resilient against malicious attackers can also
motivate cooperation of rationally opportunistic players.

The works of (Friedman & Resnick, 2001) and (Douceur, 2002) give us an initial result:
it is a must to have an effective identity management mechanism with high-entrant cost for
any participant. Otherwise any reputation model would be vulnerable to Sybil attacks and
whitewashing behavior due to cheap identities. However, it is still unknown that given a system
with an effective identity management scheme, whether and under which sufficient conditions
a reputation-based computational trust model can enforce trust effectively, given the presence of
both malicious and rationally opportunistic behaviors. As the main performance criteria of such
models are their statistical accuracy in detecting malicious behavior, it is our main interest in
this chapter to study the relation between such statistical accuracy measures and their ability
to enforce cooperation among peers and discourage selfish behaviors.

Another question is related to the optimized usage of computational trust models, as such
mechanisms can be costly to deploy and maintain. To effectively learn of bad behaviors and
minimize their influence, various costs are incurred, namely the cost to retrieve recommenda-
tions, to filter out biased information, to evaluate and update reputation scores of peers (Liang
& Shi, 2008). In fact, given the rationality of peers, it may be unnecessary to always use ac-
curate yet costly learning algorithms to encourage truthful behaviors. The reason is rationally
selfish peers make use of their knowledge about the deployed algorithm(s) to avoid having bad
reputation and maintain their high benefits from the system. Being aware of the existence
of such learning algorithms that can reliably detect bad behaviors, peers have little incentives
to cheat and thus expensive learning can be avoided. Consequently, accurate yet costly trust
learning mechanisms may be needed as an inspection tool to detect past cheating behaviors,
in order to punish bad agents appropriately, e.g., by not selecting them for later transactions.
Such punishment meted out to peers found cheating can be used to provide sufficient incentives
for cooperation of peers. Exploiting this fact, we want to minimize the cost of using expen-
sive computational trust models in environments where most peers are rational. A solution
to this question implies many benefits for various applications, e.g., where peers have limited
resources and quick decisions are generally preferred to avoid missing opportunities, especially
in competitive scenarios.

This chapter proposes and analyzes a simple but effective way of using a computational
trust model to minimize the influence of malicious peers and at the same time, keep rational
peers being cooperative during most of their transactions. Specifically, I propose a peer selec-
tion protocol that consists of two steps. First, a computational trust model is used to estimate
the reliability of the most recent rating on a peer, based on the rating’s credibility of the rater
and the trustworthiness of the peer being evaluated. It is interesting that such consideration of
the most recent rating gives sufficient incentives for rational peers to cooperate most of their
transactions. Well-experimented computational trust models, e.g., (Patel et al., 2005; Xiong &
Liu, 2004) can be used to identify malicious rating behaviors with certain accuracy in this step.
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The result of learning is then used to decide whether to include the target peer for selection
or to ignore/blacklist the peer being rated. It is noteworthy that this work is only specific in
its assumption of the selection protocol. Though better protocols are feasible, the current one
allows us to study the dependencies of the accuracy of learning and cooperation in the system
in a general way. Thus, results obtained in this work are generally applicable in case of any
computational trust mechanisms being used and in presence of many realistic user behaviors.
Also, many existing reputation-based trust approaches are in fact covered by the proposed se-
lection protocol. Thanks to its simplicity, this protocol can be applied easily in various open
e-markets or online communities with different degree of centralization. Theoretical analysis

and extensive simulation under various scenarios provide the following results:

e sufficient conditions on statistical accuracy of a computational trust model to enforce
cooperation: 1 prove that if statistical accuracy measures of the chosen computational
learning algorithm in the first step are good enough, rational peers find it most beneficial
to cooperate in all but some of their last transactions. These conditions also show that
in rational environments, even simple and naive algorithms may lead to a good social
outcome with high cooperation level in the system. According to extensive simulations,
such results are still applicable if peers join and leave dynamically, provided most of
them staying long enough. The key to enforcing cooperation in such environments would
be the existence of an identity management scheme to effectively prevent whitewashing
behaviors, rather than the trust learning algorithm being used.

e a cost-efficient trust management approach: given cost/accuracy trade-off among different
computational trust learning algorithms, I propose a way to combine them to maximize
cooperation and build trust in the system, while minimizing cost. Inspired by an inspec-
tion game-theoretic approach (Avenhaus et al., 2002), I prove that for the evaluation of
rating reliability, under certain assumptions it is sufficient to use an accurate (and ex-
pensive) computational trust model with only a low probability while still maintaining
high cooperation in the system. As a result, the total implementation cost of the whole
selection protocol can be reduced significantly.

e an identity premium-based pricing mechanism to enforce cooperation: 1 prove that even if
cheap pseudonyms are possible, with the use of an appropriate pricing scheme that allows
peers staying longer in the system to sell services and products at higher prices, the above
peer-selection protocol also ensures that rational peers find it optimal to cooperate and
provide good services in most but the last of their transactions. Under certain assumptions
on the size of a temporary gain by cheating, such a pricing mechanism also yields little
inefficiencies to the participants and less risky for the peers who buy the products or
services. This result is important, as it offers a countermeasure to whitewashing behaviors
given the possibilities of cheap identities in several online business applications.

To the best of my knowledge, this is the first work studying the relation between estimation
accuracy of a trust learning model and its ability in enforcing cooperation in open environments
where peers exhibit both malicious and rational behaviors. As a theoretical contribution, this
work bridges the gap between (Douceur, 2002; Friedman & Resnick, 2001) and existing works
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studying properties of various computational trust models. I show that beside the necessity
of an effective identity management to avoid whitewashing behavior, in rational environments
bounded error rate of the computational trust models being used is sufficient. Therefore, in
rational environments, researchers and practitioners may want to focus more on developing
better identity management scheme rather than on more complicated computational models to
detect misbehavior: the accuracy requirement of the misbehavior detection model only comes
second. As a practical contribution, the methods presented in this chapter can be applied to
ensure full cooperation of rational sellers either by (1) by explicitly imposing a sufficiently high
entrant cost for newcomers, or (2) by implementing an identity premium-based pricing scheme
in which a user with longer interaction history is given more opportunities, e.g., is introduced to
more buyers, thus implicitly increasing the value of his identities overtime, which demotivates
the user from cheating, leaves and rejoins under new identities (whitewashing).

This analysis also implies that any existing trust learning algorithm in the literature, if shown
to have a moderate error bound, shall achieve similar effect: formulating the social optimum
point in the system where rational participants mostly cooperate. In practice, this means
cooperation is possible in heterogeneous environments, where peers may use different learning
algorithms to learn trustworthiness of their potential partners. Cooperation still emerges as
long as these algorithms guarantee such an accuracy bound. The work most related to this
one is by Dellarocas (Dellarocas, 2005a) that studies some design parameters of a reputation
system and its effectiveness. However, his work does not include the analysis of the influence
of malicious behaviors and the optimization of the cost of the reputation mechanism being
deployed. The work of this chapter analyzes the impact of these factors, comprises extensive
simulations on a variety of scenarios, and is also applicable for any open system with different
degrees of centralization. In a larger context, the presented peer selection protocol establishes an
umbrella framework to use reputation information effectively in decentralized and self-organized
systems by exploiting both its signaling and sanctioning roles (Dellarocas, 2005a).

Section 4.2 of this chapter presents a typical example scenario and then gives a formal
definition of the system model. In Section 4.3 I study the relation between accuracy of a
computational trust model and its incentive-compatibility with a detailed theoretical analysis.
I then propose a way to combine different trust models to minimize their usage cost while
retaining their efficiency in enforcing cooperation among rational participants in Section 4.4.
Section 4.5 proposes an approximate approach to use computational trust models in scenarios
with peers joining and leaving dynamically overtime. The simulation and experimental results
are presented in Section 4.6. I summarize related work in Section 4.8 before giving some

discussions and concluding the chapter in Section 4.9.
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4.2 System Model

4.2.1 Example applications and assumptions

Throughout the chapter, the following running example is used to illustrate different concepts
and results of this work. We consider a decentralized (peer-to-peer) market of products or
services, where each participant can be provider and/or client of certain services. As a concrete
example, any person in the Internet can advertise and sell their services in a peer-to-peer system
and/or an online social network like Facebook! or MySpace?. Another realistic showcase of this
is the recent launch of Neighborhoods? that enables eBay users to do shopping via their social
networks. Henceforth, we use the notions of a client, a provider, or a service to illustrate our
concepts in a market of services. In other application contexts such as in auction sites, these
notions may also mean a seller, a buyer, and resources/products/articles advertised by a seller
respectively.

Given the above application scenario, clients can search and buy available services that
match their needs and interests. As a common rule, a client has to pay for the service first.
Only after receiving the payment, the provider may provide the service with either low or high
quality, e.g., in eBay this means either the seller cheats by not shipping the articles or the
articles are not of good quality as described. The traditional way to enforce the cooperation
of the provider via reputation mechanism is to allow a client to rate a provider as honest or
cheating after finishing a transaction with him (Resnick et al., 2000). Other clients can search
for available recommendations or ratings on the provider and decide whether they should go into
transaction with this provider. In this case, a computational mechanism may is very helpful in
effectively eliminate unreliable ratings and minimize influences of malicious rating users. Other
incentive mechanism to elicit sufficient truthful reports from clients for such computational
mechanism or trust learning algorithm are also necessary.

Whereas the problem of trust and cooperation is ubiquitous and may be present cross all
layers of the system, in this work we would focus on the cooperation among participants in the
application layer. That is, we assume the existence of a (possibly decentralized) storage system
that supports efficient storage and search for publicly available information, namely information
on resources and related ratings. Such storage system must ensure that advertisements of
provided services, published ratings, and transaction information are authentic and can not be
tampered with. That is, peers can neither fake transactions nor modify feedback data submitted
by others. Although addressing these security goals are beyond the scope of our paper, I believe
existing solutions are available. For example, these goals can be met by using a DHT-based
storage (Aberer et al., 2003a) and cryptographic tools such as digital signatures based on a
decentralized PKI infrastructure (Datta et al., 2003). Also, centralized storage solutions such
as provided by eBay can be considered sufficiently secure.

We would also assume that peers know the lower bound of prices of a service (or a service or a

Thttp://www.facebook.com
2http://www.myspace.com
Shttp://neighborhoods.ebay.com
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resource) u, and they can estimate the gain v of a cheating provider peer after each transaction.
For example, v approximates the service value as evaluated by the provider plus the shipping
cost. Such an assumption is realistic: a centralized system can define those values u, for each
category of services or products, or peers can learn these values by looking at trading history
of other peers in the system. Note that v may be less than the service value u, e.g., the client
still receives the service, which has worse quality than as that of the original description.

The final assumptions are that peers stay in the system long-enough so that reputation
information has any effects. This assumption can be relaxed under certain circumstances, e.g.,
in centralized environments where it is possible to impose an entrant fee for a newly joined peer.
In practice, this assumption also holds since identities are not cheap: users must invest time and
money to build relationships with others before they can participate in business transactions
with others. Therefore, it is better for most users to stay as longer in the system rather than
departing and start everything all over with a new identity. Such an extension of the analysis
will be considered later on (Section 4.7).

The above simplifying assumptions are standard and well-accepted in the trust and reputa-
tion research communities (Despotovic, 2005). More importantly, the system model is rather
realistic: it is in fact an abstraction of many practical P2P application scenarios with different
degrees of centralization and where participants are rational to a certain extent. Such a sce-
nario can represent, for example, a centralized eBay-like trading site, a social-network based
system for selling and buying goods, or a decentralized markets of computational or storage
services (Buyya et al., 2001; Papazoglou & Georgakopoulos, 2003). Consequently, the proposed

solution can be used in all these applications.

4.2.2 System model

The above applications can be formulated as a P2P application where each participant plays the
role of a provider or a client of certain services, namely a sellable article or a computational or
storage service, with certain prices and quality. Denote P the set of all peers and W : P x P —
Dy the social relationship among them, where Dy is the domain to represent the relationship
values between two peers. For example, Dy may represent the relationship type between two
friends in a social network (family/close/normal/stranger) or the weight of an edge between
two nodes in a trust network!, whichever is applicable.

Denote as O the set of outcomes of a transaction between peers. In this work, we consider
0 ={0,1} as a binary set corresponding to a bad or a good outcome. A peer provides a service
with price u for its clients, where u lies within a range of minimal price u, and maximal price
u*. Thus we name u the “legitimate” payoff (or gain) of a provider peer in a transaction if it
behaves honestly, e.g., providing a service with high quality. The transaction in this case is
considered as having a good outcome to the client?. In the opposite case if the provider cheats,

Thttp://trust.mindswap.org/
2A user’s rating on a transaction may be different from the real transaction outcome because of two reasons:

on purpose if the user is not honest, or accidentally if there is observation noise. For simplicity, we do not consider
the noise in this analysis. However, if there is a (small) probability that a provider with honest behavior still
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namely it provides a bad service, the provider gains a further “illegitimate” amount v, where
0 < v < v* < oo and the transaction outcome is considered as bad. The upper bound v*
typically depends on the maximal price u* of a service, and is only necessary in our theoretical
analysis. In practice rational peers need to know only v for each transaction they involve in.
Define 2 the set of all transactions in the system and Q(z,y) the set of all transactions
where the peer x is a client and the peer y is the provider. For convenience, let S(z) be the set
of peers having provided services to z. Let r(z,y,tr) € O = {0,1} be a binary rating from a

peer x on another peer y on a transaction tr € Q(y).

4.2.3 Computational trust models as dishonesty detectors

A peer (the learning peer) may use a computational trust model to learn behavior of another (the
target) via various statistical or heuristic methods and based on various information sources.
The first source comes from the performance statistics of the target in past transactions. These
statistics are possibly collected from recommendations/ratings by previous partners and from
personal experience of the learning peer on the target. Other information includes intrinsic
features of the target itself, e.g., frequencies of posted ratings and involved transactions, location
of the raters (Cornelli et al., 2002), relationships with other peers in the systems (Ashri et al.,
2005). The behavior that can be learned from such information include both service and rating
behavior of a peer: the former represents the likelihood that the peer offers a high quality
services to its clients. The latter means the trustworthiness of the peer in rating a transaction,
that is, whether a client truthfully reports its experience.

In this work, a computational trust model is used as a dishonesty detector to effectively
evaluate the trustworthiness (reliability) of a rating, similar to a conventional spam filter (Gra-
ham, 2002). From this perspective, a trust mechanism can be abstracted as in Definition 4 (see

Section 4.2.2 for the meanings of related concepts).

Definition 4 A (personalized) reputation-based computational trust model used by a peer i to
estimate the trustworthiness of a rating by another peer j is a 5-tuple R = (P;,V;,F;, A, D)
where:

e P, C P is a set of peers that i considered relevant to the evaluation of j’s rating reliability.

o Vi C{r(z,y,tr) | x € PNy € P, tr € Qx,y)} is set of ratings related to peers in P;.

e J; is a set of properties of the target peer j, for instance, its location, frequencies of
posted ratings, number of involved transactions, etc.

o A is a function that operates on Py, W, V;,F; and outputs a trust value Tj;, where W is
the social relationships among peers as introduced earlier. The value Tj; is understood as
the estimated trustworthiness of j in giving the current rating. T;; may take binary, real,
or discrete values.

e D is some decision rule(s) with binary outcome {1,0}, stating whether i should trust the

rating by j given the (personalized) trust metric T;;.

yields a bad transaction outcome to the client, inclusion such a probability in our approach is straightforward.
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Definition 4 is an abstraction of several (if not most) well-known heuristic or statistical trust
evaluation algorithms in the literature. This formal model includes all approaches studying trust
on peer-to-peer systems (Despotovic & Aberer, 2006), on social networks (Golbeck, 2006), in
e-commerce systems and other online communities (Dellarocas, 2005b; Jgsang et al., 2007).

The set of relevant peers and related ratings P; and V; constitutes the actual feedback
retrieval mechanism of the computational trust model and contributes the main cost of the
mechanism, as explained later on. Examples 1 and 2 specify two typical trust learning models
proposed by (Xiong & Liu, 2004) and (Vu & Aberer, 2007) using the formalism of Definition 4.

Example 1 The personalized trust model PeerTrust (Xiong € Liu, 2004) can be used to eval-
uate rating reliability via the following formalism:

o P, = S>i)NS(j). In other words, the set of relevant peers P; includes those peers k
having provided services to both i, j.

o V= {r(x,k,tr)|xec{i,j},k e P,treQU,k)UQ,k)}, that is, V; consists of those
ratings by i and j on service behaviors of other peers k in the relevant peer set P;.

o the relationship W among peers and the features of the target F; are not considered.

> Y i,€006,k) Tk tin) e e,k TR GR)
° Tij —1— keP; 12, k)l 2GR

A be a measure of similarity between
possible ratings (i, k, ti) and r5(j,k,ti) on those transactions t;, € Q(i, k) and tj;, €
Qj, k).

o A rating by j is considered as reliable if Tij > T and as unreliable otherwise, where
Trin 15 a (possibly global) system design threshold. Alternatively, we can normalize Tj;
into [0,1] and trust the rating with probability T;;. With probability 1 — T;;, the rating is

distrusted (evaluated as unreliable).

Example 2 Another approach to estimate peer’s trustworthiness is to assume peers to behave
according to a probabilistic model: similarity in rating on one target leads to similarity in rating
on another target (Vu & Aberer, 2007). From the viewpoint of the learning peer i, the target
peer j has a probability T;; of reporting truthfully what its observes. This model is specified
similar to Example 1, except the definition of T;; and the decision rule D; to estimate rating
reliability. We formally define:

ZkEPz’,tikGQ(i,k),tjkEQ(j,k) I(r(i, k, tix) = (5, k. i)
151 > kep, 1205 B X opep, 1205, F)l

where the indicator function I(c) evaluates to 1 if the boolean condition c is true. Thus T;j is

7"1;,:

(4.1)

defined by the fraction of ratings by j having the same values as ratings by i. This T;; is an
estimate of the probability the peer j being honest when rating, and such an estimate maximizes
the likelihood of having the observation set V; by the set of relevant peers P;. The decision
rule D; is usually probabilistic, e.g., trust the rating with probability T;; and distrust it with
probability 1 — Tj;.

Another simple yet important computational trust model is considered in Example 3.
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Example 3 The naive computational trust model is defined as N = (0,0,0,3, Dy), where algo-
rithm A =7 always outputs T;j = 1 and the set of decision rules Dy stating that a rating by j
18 always considered as reliable. In other words, the naive model N simply trusts all ratings by

any peer.

Other computational trust models can be represented similarly. Global trust metrics like
EigenTrust (Kamvar et al., 2003) and complaint-based algorithm (Aberer & Despotovic, 2001)
consider all peers in the networks, thus P, = P, and consider the recommendation/ratings
among each pair of them.

Considering a computational trust model as a dishonesty detector, we define its statistical
accuracy measures similar to those of a conventional spam filter (Graham, 2002) in Definition 5.

Definition 5 The (estimation) accuracy of a computational trust model R formulated in Def-
inition 4 in estimating the reliability of a rating is defined by its two misclassification errors,
0 < a,8 < 1. Specifically, « =Pr(rating estimated as reliable by R | rating is actually unre-
liable), and B = Pr(rating estimated as unreliable by R | rating is actually reliable). We also

refer to a and [ respectively as false positive and false negative rate henceforth.

The accuracy of a computational model also implies its resilience to possible malicious
attacks that manipulate ratings, by estimating the trustworthiness of a rating using the combi-
nation of performance statistics of both the rating peer and the provider peer to estimate the
trustworthiness of a rating. Note that the actual value of a, 3 of a dishonesty detector may
change (possibly improved) over time, depending on the learning capability of the computational
trust model being used.

4.2.4 Strategic peer-selection protocol

We propose the following approach for a a rational peer (client) to select a provider among
candidates (Definition 6). The concrete implementation of this mechanism in a general dynamic
setting will be presented later on in Section 4.5.

We note that the goal of this protocol is to enable us study the relation between the accuracy
measures of a computational trust model being used and its abilities to enforce cooperation in

a general way. In fact better selection protocols may be available.

Definition 6 A peer (a potential client) uses the following peer-selection protocol 8 = (R, k)

to evaluate the eligibility of a provider for its transactions:

1. the client gets the most recent binary rating r on the provider, considering the absence of

a rating as the presence of a positive one.
2. the binary reliability t of r is evaluated with the computational trust model R.

3. ift=1Ar=0o0rt=0Ar=1, the client publishes this information (detect of a reliable
negative rating) to a shared space (a global black list).
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4. the provider is included for selection if in the shared space there are less than k > 1

published cheating detections about the provider. Otherwise the client ignores the provider.

Please refer to Table 4.1 for the most frequently used notations. Fig. 4.1 shows the sequence
diagram of the above peer-selection protocol, which relies on two hidden assumptions. Firstly,
at each steps, it is assumed that there are a sufficient number of potential clients (at least
k) for each provider. This is realistic since otherwise there is very little incentive to peers to
participate in the system anyway. Secondly, a globally blacklisted provider can not do any
further transaction with his current identity. The second assumption limits the current analysis
to the case identities are costly to obtain for peers and will be relaxed later on in this chapter.

a clien peer Share public space a provider peer
T I T
I 1 ]
| L |
- 1

query if provider blacklisted by k peers

yes/no

if yes, ignore the provider

|

estimate if provider defects in the
> the most recent transaction
of this provider (with error bound €)

if defect=yes, notify my blacklisting of the provider

if defect=no, add provider for selection

post a rating on the provider

Figure 4.1: Sequence diagram for the peer-selection protocol in Def. 6.

The above peer-selection protocol 8y is tough for bad players, including malicious and ra-
tionally opportunistic providers. It assures that a globally blacklisted provider has no further
chance to provide services and gains revenues from the system. The evaluation of rating relia-
bility by a computational trust model in step (2) aims to reduce influences of strategic manipu-
lation of ratings by rational or malicious peers. The goal here is to eliminate as much malicious
providers as possible when they start cheating and incentivize rationally opportunistic providers
to cooperate. The use of the above peer-selection protocol with a global computational trust

model mimics the behavior of a centralized reputation system in practice. The parameter k > 1
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4.3 Accuracy of Computational Trust Models as Their Capabilities to Foster
Cooperation

represents the cautiousness of a peer in trusting cheating detections published by others. We
do not directly consider the incentives to leave any feedback after a transaction in detail in this
work. Nevertheless, the absence of a rating after a transaction as a positive one s.t. in case of
few ratings, appropriate decisions can still be made. In fact, it is possible to integrate existing
incentive mechanisms, e.g., via side-payment (Miller et al., 2005) into our system without major
effort. Furthermore, clients have other indirect incentives to leave reliable ratings after trans-
actions. First, such behaviors help to eliminate bad providers. Second, providers are motivated
to cooperate with honestly reporting clients as shown in a later analysis (Corollary 2), which
also give additional motivation for peers to leave truthful feedback.

Similarly to the above issue, providing incentives to share data for the learning step (eval-
uation of the rating reliability) is an orthogonal issue to the current analysis. In fact, such
incentives for sharing the learning results are not much of an issue: in case all clients do not
share the learning results, a client can still do the learning by itself and our approach still
holds if the evaluation of rating reliability is verifiable so that writing wrong learning results
can be easily detected. Generally such an assumption is realistic, e.g., the learning at step (2)
is verifiable in case of global computational trust models such as EigenTrust (Kamvar et al.,
2003) or complaint-based (Aberer & Despotovic, 2001). Otherwise, it is possible to design the
system so that peers also post data related to their learning on the defection of a provider in
the most recent transaction to the shared public space, or provides such data on-demand for
the querying peer(s).

Thus the main problem is the badmouthing attack, when many peers collude to badmouth
a certain provider to eliminate it. To reduce the effect of this attack, a robust algorithm R
should consider the trustworthiness of both the rater and the provider being rated to estimates
whether a rating is reliable, to reduce the undesired impact of observation noise. The accidental
blacklisting of a good peer is of no harm to a client and as we will analyzed later on, can be
reduced by both increasing k£ and lowering the error bound of the second step by using a more

expensive and sophisticated trust model.

4.3 Accuracy of Computational Trust Models as Their

Capabilities to Foster Cooperation

In this section, we study the relation between the accuracy of a computational trust model
and its capabilities to enforce cooperation. That is, we analyze the possibility to effectively use
a computational model with reasonably good accuracy for boosting trust and cooperation in

decentralized environments.

4.3.1 Quantifying the accuracy of a computational trust model

Misclassification errors of a given computational model depend on several factors, one is the
design of the computational model itself. Other important factors are personal experience of
the learning peer, feedback retrieval aggregation strategies, and underlying probabilistic model.
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Cooperation
Table 4.1: Commonly used notations
Notation | Definition
Use minimal price of offered services/resources/services, u, > 0
u* maximal price of offered services/resources/services u* > u.
U legitimate gain of provider when cooperating, u, < u < u*
v additional gain of provider when cheating in a transaction, v > 0
v* maximal additional gain of provider by cheating, 0 < v, < oo
R a computational trust model to estimate reliability of a rating,

explained in detail in Definition 4
N the naive computational model in Example 3
! Pr(rating estimated as reliable | rating is actually unreliable)
I3 Pr(rating estimated as unreliable | rating is actually reliable)
k # of posted cheating detection on a provider
before it is globally ignored by other clients
Sk = (R, k) | a peer-selection protocol specified in Definition 6

€ upper-bound of @ and 3, 0 <e <1

A # of remaining transactions for which a rational provider
does not have incentives to cooperate, A € IN

Also influencing the accuracy are certain exogenous factors such as behaviors of participants
(malicious, rationally opportunistic, or voluntarily cooperative) and system dynamics (such as
the volumes of transactions and participation levels over time).

We present the following results on quantifying accuracy measures of a computational trust
model used by a rational peer to estimate the reliability of a rating. These results can be seen as
guidelines to design and select suitable computational trust models as appropriate dishonesty
detectors in this work.

Proposition 3 Given a computational trust model R = (P;,V;,F;, A, D) as in Definition 4,
where R is publicly known to every peer. Suppose that raters are rational and want to mazximize
the misclassification errors of the detection. If D yields a deterministic, publicly known outcome
at each evaluation step, in equilibrium o = 3 = 0.5. Thus the use of the model R as a dishonesty

detector in this scenario yields no better result than random guessing.

Proof 3 Lett and t be the binary reliability of a rating, as exhibited by the rater and as esti-
mated by the learning peer, respectively. Denote H = (P;, W, V;, F;) the input of the algorithm
A (c.f. Definition /), we have:

a=Prit=1|t=0,H) x Pr(t=1,t=0] X) (4.2)

If the model R is publicly known and the decision rules D are deterministic, a rational rater
knows exactly whether the rating is estimated as reliable given the history H. Therefore, the

rater can strategically provide rating with an opposite reliability to maximize misclassification
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errors of the dishonesty detector. The game between a learning peer and the rater is shown in
Fig. 4.2.

t=0 t=1
(1,0) —(0,1)

t=0

~ o0 (1,0)

=1

Figure 4.2: The game between a learning peer (the row player) and the strategic rater (the
column player). The notation (z,y) means that the payoff of the learning peer is x and the
rater is y. Since the goal of a rational rater is to maximize misclassification errors of the
dishonesty detector, we give a rater a payoff 1 if ¢ # ¢t and 0 if ¢t = ¢. The payoff of a learning
peer is the opposite.

The arrows in Fig. 4.2 denote the possible moves of each player to mazimize its payoff,
showing that the game has no pure Nash equilibrium. The only mized equilibrium of the game
is: the rater exhibits a random rating strategy Pr(t = 1) = Pr(t = 0) = 0.5 and the learning
peer estimate the rating reliability as Pr(t = 1) = Pr(t =0) = 0.5, so a = 3 = 0.5.

Example 4 quantifies misclassification errors of the naive dishonesty detector introduced in
previous section.

Example 4 Consider the simple computational model N that uses a naively optimistic algo-
rithm: trust all ratings and consider the absence of a rating as a positive one. We claim that
misclassification errors of N are « = ag =1 and § = By = 0. In fact, let 0 < dp,0;,0; < 1,
where 0y + & + 0; = 1 be respectively the probabilities that the rating peer provides a reliable
rating, an unreliable one, and no rating after a transaction with a specific provider. Denote
est+ (resp. est—) the events that the most recent rating is evaluated by the learning peer as
reliable (resp. unreliable), and let real+ (resp. real—) be the events that the rating is actually

reliable (resp. unreliable). There are two possibilities:

e the provider did cooperate in the last transaction, thus the absence of a rating is equivalent
to the presence of a reliable positive rating. So «g = Pr(est+,real—)/Pr(real—) =
01/61 =1 and By = Pr(est—,real+)/Pr(real+) = 0/(5n + 6;) = 0.

e the provider did not cooperate in last transaction, thus the absence of a rating implies the
presence an unreliable positive rating. Still, we have oy = Pr(est+,real—)/Pr(real—) =
(0; +6;)/(6; + 6;) =1 and By = Pr(est—,real+)/Pr(real+) = 0/6, = 0.

Actually, misclassification errors «, 5 of a computational trust model may change (possibly
improve) over time, depending on the learning capability of the trust computation algorithm.
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In this work, we generally do not care about actual values of those errors a, 3 but only their
upper-bound ¢, and we are concerned with those computational models with accuracy better
than random guess, i.e., € < 0.5. Although Proposition 3 show cases where such bounds can not
be achieved, practically accurate learning with «, g upper-bounded by some & < 0.5 is feasible in
most application scenarios. Such scenarios include those where details of algorithm A, e.g., the
rating history to be used for the trust estimation, or the decision rule D are private information
of the learning peer, and there are various types of raters, even with deterministic and irrational
behaviors. It is noteworthy that the learning peer still can prove the correctness of its estimation
t of the reliability of a rating (as a clarification of results posted in Step 2 of the selection protocol
in Def. 6). This proof can be done simply by revealing relevant information it has used in the
trust model R to the querying peer. In those cases misclassification errors of the associated
computational trust model as a dishonesty detector can be measured by empirical experiments.
This question has already been extensively studied in several previous work, namely (Kamvar
et al., 2003; Levien, 2002; Xiong & Liu, 2004), most of which having been shown to have low «, 8
under various attack scenarios. Several measurements on «, 3 of the computational trust models
of Examples 1 and 2 have also been performed under different conditions, which confirmed that
achieving an accuracy bound € < 0.5 is possible when estimating the reliability of ratings (c.f.
Section 4.6.3).

Another example of an accurate yet expensive method to estimate reliability of ratings by
peer on a provider is to perform full monitoring on performance of the provider to learn its real
past behavior. Such monitoring can be implemented in many ways: in an e-commerce system,
monitoring is possibly done via legal investigations on suspicious transactions conducted. In a
market of Web services, one can deploy monitoring agents to periodically probe and test the
service being offered by a provider to estimate the real offered quality level offered by that
provider during a specific period.

4.3.2 Using computational trust models with certain accuracy for co-

operation enforcement

Recall from Section 4.2 that providers have a minimal legitimate gain u, and a maximal illegit-
imate cheating gain v*, and their possible strategies at each transaction are either to cooperate
or cheat. Given a bound ¢ for «, § of the computational trust model(s) being used by clients in
the system, Theorem 1 shows the relation between the error bound e of a computational trust
model and its effectiveness in enforcing cooperation of a provider during its life-time.

Theorem 1 Given the peer-selection protocol 8 = (R, k) where the computational trust model
R has misclassification errors «, 3 upper-bounded by e < 0.5. Suppose that identities are difficult
or very costly to obtain for any participants. If we have in addition:

€ < Emaz(k) = 1/(1 + /1 +v*/u.) (4.3)
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A =maz{l, |

1. it is optimal for a rational provider to cooperate in all but its last A transactions'.

2. it is optimal for a rational provider to cooperate in the current transaction whose illegit-
imate gain is v, if it stays for more than A, further transactions, where A, is computed
as in Eq (4.4) with v in place of v*.

3. let Nj, be the number of transactions where an a fully cooperative (honest) provider can
participate till it is mistakenly blacklisted, and let N, be the number of bad transactions
a malicious provider can benefit from the system until it is globally eliminated from the
system respectively. We have E[Ny] > 1/e¥ and E[N.] < 1/(1 —¢)*.

The above results hold even in presence of strategic manipulation of ratings by providers.

Proof 4 We first prove (1). Rational providers apparently do not find incentives to cooperate
in the last transaction. Consider those rational providers staying in the system for A > 1 more
transactions after the current one.

Let 0 < h,s,l,i < 1 respectively be the probabilities that the current client exhibits following
rating behaviors after the transaction: honest (provides reliable ratings), advertising (posts posi-
tive ratings on the provider), badmouthing (rates the provider negatively), and non-participating
(does not leave any rating), where h + s+ 1+ i = 1. Note that possible strategic rating ma-
nipulations by any raters colluding with the current provider are all considered by the above
probabilities. For example, consider the case where the provider may use a fake identity to
stuff a positive rating with a newer timestamp to hide its cheating in a transaction. In this
case, the provider still has additional gain v in the transaction, and the dishonesty detection
is applied on the fake rating whose rater is a client with completely advertising behavior, i.e.,
h=i1=101=0,s=1.

The probabilities that an honest provider obtains a positive (resp. negative) rating after a
transaction are h™ = h+s+1i=1—1 (resp. 1 —h*). The honest provider is blacklisted if
either the true positive rating is not accepted by the computational trust model as reliable (with
probability 3), or the wrong negative rating is accepted as reliable (with probability ). Thus the
probability that the provider will be blacklisted by a forthcoming client is: xp = h™3+(1—h1)a =
(1-0f+la<e since0<I<land0<a<e0<p<e.

The probability the provider is globally blacklisted after the current transaction is then x’g <
e¥. This inequality holds even in presence of malicious or strategic manipulation of ratings by
any raters with different h,l, s, 1, provided that misclassification errors o, 3 of R are less than
€.

Similarly reasoning, if the provider is cheating in this transaction, the probability it obtains

a positive rating is [T = s+i=1—h — 1. With probability 1 — IT such a provider receives a

I'With small ¥, we have A = maxz{1, [v*/(u+((1 — €)* — ¥))]}, as in previous work (Vu & Aberer, 2008a)
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negative rating. In this case, the provider will be blacklisted by a future client with probability
y=I1T1-a)+(1—-IN1-8)=0-h—-0)(1—a)+ (h+1)(1—03) > 1—e. Thus the probability
the provider is globally blacklisted is yl’f > (1—e)".

Let U be the current (accumulative) utilities of a rational provider and uy, be its best (mawi-
mized) expected utilities for the remaining time in the system if it is not globally blacklisted after
the current transaction. Denote Uponest (and Ucheat) as the best (mazimal) expected life-time
utilities of the provider if it is honest (respectively cheating) in the current transaction, it follows
that:

Uhonast - U+U+Uh(1 —Jﬁf)
Ucheat = U+ (U+’(})—|—Uh(1 _yllf)
(Shc = Uhonest - Ucheat =—v+up (yl])C - x]lf)

> —v* up((1—e)* — k)

One can verify that the above reasoning is applicable in the following two situations: first,
identities are very difficult to obtain and thus the provider can not rejoin under a new identity.
Second, the cost of obtaining a new identity outweighs the (maximal) temporary benefit gained
by cheating in a transaction. We will reconsider the case of cheap identities later on.

As an honest user is still blacklisted with probability xf < €*, one can verify that the fully
cooperative strategy of a provider during A > 1 transactions leads to a total utility of at least

kA kA
17(11%) Uy > 17(1;: )", > 0. Note that for small ¥, up > Au, approzimately.

b
I v*ek

In[]l——2<=
It follows that 8 > 0 iff A > 1’:1*51“:;,2;“5“], where € < €maz(k) = 1/(14+ /1 4+ v* Ju,) <
0.5 so that the logarithm is well-defined.

Therefore, a rational provider considers cooperation as the dominant strategy in any trans-

v*ek

In[1- —v"eh
action except in its last A = maz{1,[ ol 1“:]*(({1:;,3;’5’“)]1} ones. Thus (1) is proved. The proof

of (2) is then straightforward from the above analysis.

To prove (3), note that after each transaction, the probability that by accident, an honest

k" In the worst case ever, Ny, is a geometric random

provider is globally blacklisted is xf <
variable with probability *, hence E[Ny] > 1/&*.
By similar reasoning, the probability a malicious provider is globally blacklisted is y{f >

(1 —¢)k, and thus E[N.] < 1/(1 —¢)*

Theorem 1 also holds for the case peers use different computational trust models with
different inputs and personalized settings to evaluate the trustworthiness of the last rater, and
the probability of detecting a bad rater is different for each peer. Furthermore, it is possible
to take into account noise in observations. In fact there are (small) probabilities that an
intrinsically honest provider appears as cheating to a client, e.g., a good seller may be rated
negatively if the article is lost when being shipped to the buyer, and a cheating provider satisfies
the client, e.g., a seller sends a low-quality item yet still pleases the client. The inclusion of

such probabilities in the above analysis is straightforward.
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According to Theorem 1, if the temporary gain v* is very high, such as the case of selling
of expensive items, the parameter A — oo. This means that enforcing the cooperation of a
rational provider in such a transaction is impossible, which is intuitive. In other cases, a relation
between A and the error upper-bound e can be drawn. For example, Fig. 4.3 shows the relation
between A and ¢ for v* = u, and different k, e.g., peers sell and buy items of comparable prices.
We have the following observations. First, the required accuracy upper-bound .. (k) reaches
to 0.5 with larger k values, yet the incentive of cooperations decreases rapidly (A becomes very
large). Even so, for rational long-term providers who stay in the system infinitely, the number
of the last A transactions plays no role and thus any trust model with reasonably good accuracy
€ < Emaz(k) can be used as an effective sanctioning tool to motivate providers’ cooperation.
Given an approximate value of €, one should select the threshold & appropriately such that
€ < €maz(k). For a given € < €140 (k), smaller threshold & is preferred.

12 T T
—o— Iong for k=1
- - = Iong for k=2

e (k=10)

max

—_— Iong for k=5
10H B
— Iong for k=10

Iong
(=]
T

Figure 4.3: The relation between the upper-bound e of misclassification errors of a computa-
tional trust model and incentives of rational providers to cooperate for different values of k
where u, = v*. Rational providers find it most beneficial to cooperate during all but their last
A transactions.

In certain application contexts where providers only participate in a limited number of trans-
actions, or in case of high k values, very high levels of accuracy (¢ < 0.05) are required to reduce
the parameter A, i.e., to ensure cooperation of providers in most transactions. Consequently,
the study of the selection protocol 8y = (R, k) gives us the following observation on those suffi-
cient conditions to use a computational trust model R to effectively boost cooperation among
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rational entities (Corollary 1).

Corollary 1 It is possible to use any computational trust model with misclassification errors
upper-bounded by some € < €pqr < 0.5 to effectively enforce cooperation of rational providers
who participate infinitely or in a very large number of transactions, even in presence of strategic

rating manipulation by participants.

The possibility of eliminating malicious providers and wrongly blacklisting honest ones is
given in Fig. 4.4. It is observed that the system behaves much better with lower e, as intu-
itively expected. The higher the accuracy of the computational trust model being used (lower
e), the lower the probability an honest provider is accidental blacklisted (higher E[N;]) and
the higher the probability malicious providers are eliminated from the system (lower E[N.]).
Higher thresholds k reduce the possibilities of wrongly blacklisting honest providers yet also
increase the incentives of malicious behaviors. Hence, given a known ¢, it is recommended to
choose the value of k appropriately depending on the prior information on the environment
vulnerability. In environments with more malicious behaviors, it is better for rational clients
to choose smaller k£ values to eliminate bad providers quickly, at the cost of ignoring good
providers. In less vulnerable environments where most providers are likely good, higher £ is
recommended. Note that the given trends in Fig. 4.4 are for the worst case scenario in an ex-
tremely vulnerable environment, where an honest provider is repeatedly badmouthed by other
users, and a malicious provider has enough resources for disguising her cheating activities by
posting many positive ratings to the system consecutively.

The analysis in this section applies in the assumption that there exists an effective identity
management scheme that ensures blacklisted providers have to pay a very high cost to enter the
system again, and hence identities are not cheap. This is realistic in many practical application,
e.g., in our running scenario of trading on a social network such as Facebook, users have to
spend time and money to build relationships with other users, and it is non-optimal for them
to simply cheat, discard their long-time investment on current identities to simply start all over
again.

The analysis in this section also provides us a starting point to design a mechanism to ensure
full cooperation of rational providers, either by (1) by explicitly imposing a sufficiently high
entrant cost ¢ > Av* for newcomers, where A is defined from the system parameters ¢, k, or (2)
by letting a provider with longer interaction history more valuables, e.g., allows the provider
to be introduced to more clients, thus increases the value of his long-time identities, which
unmotivates him from cheating and escape). This extension regarding (2) will be presented
later in Section 4.7.

4.3.3 Capability of the naive trust model in fostering cooperation

We want to further consider one very simple case of the naive trust model N (Example 3).
Corollary 2 shows the relation between the capability of such naively optimistic algorithm N

in enforcing cooperation and the client’s truthfully reporting probability h, in case there is
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Iog2 E[NC]

Figure 4.4: The relation between the upper-bound e of misclassification errors of a computa-
tional trust model and a worst case lower-bound of E[Ny] (left side). On the right hand side
is the relation between e and the worst case upper-bound of the E[N.]. Plots are drawn with
u, = v* and different k values.

no strategic manipulation of ratings in the system. The peer-selection protocol (N, 1) for this
special case is actually equivalent to the reputation system considering only the last rating
studied by Dellarocas (Dellarocas, 2005a)

Corollary 2 Suppose that 1 > h > hupin, = (1 +v*/u)/(1 4+ 20* /u.) is the average probability
that a client leaves an honest rating after a transaction. With the exception of strategic rating
manipulation by the provider, the peer-selection protocol (N, 1) makes it optimal for a rational
provider to cooperate in all transactions but its last A = maz{1,[™ {1_(1_13/(%_1)]]} ones.
Such a selection mechanism also gives direct incentives for long-term clients to leave truthful

ratings after their transactions.

Proof 5 The naive computational model N has misclassification errors a = 1 and § = 0
(Example /). Proceed as in the analysis of Theorem 1, we have dp. > —v* +up(h— (1 —h)) =
—v* +up(2h — 1) > —v* + (1 — h?)(2h — 1) /(1 — h) (herein up, > (1 — h?)/(1 —h)).

Thus a rational provider would cooperate with a client if Ope > 0, or A > In [1_(1_1:,)/(%_1)].
The condition 1 > h > hpin = (1 4+ v*/us) /(1 + 20" /u.) is make sure the logarithm is well-
defined.

Note that 6pe > —v* + (1 —h2)(2h — 1)/(1 — h), where the right hand side is monotonically

increasing of h. This fact gives direct incentives for a long-staying client to leave a correct rating

after a transaction so as to increase the overall probability of reporting truthfully h of any client
as estimated by subsequent providers. This mazximizes the chance of this current client to have
successful transactions in the future even with other rational providers (for larger h, Op. gets

larger and thus it is more favored for the future provider to cooperate than to cheat).
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The assumption of no strategic rating manipulation in Corollary 2 implies that users follow
probabilistic behavior, e.g., whether they leave a good or bad rating depends on their (erroneous)
evaluation of a provider’s behavior, e.g., due to possible shipping delays or loss. Thus one can
estimate overall truthfulness reporting probability h of users in the system. In the presence of
(strategic) manipulation of the reports, a client must use a sophisticated trust learning algorithm
to evaluate the reliability of the rater, as presented in the previous Section 4.3.2. Otherwise
a selection protocol based on only the latest rating can be attacked easily: after cheating in a
transaction the provider can collude with another client to immediately stuff a positive rating
with newer timestamp in the system.

Fig. 4.5 shows the relation between the overall probability i that a peer is a honest reporting
peer and the number of A last transactions for which providers may not find incentives to
cooperate, with different settings of v* and u,. Those cases where v*/u, < 1 can be explained
as a provider gives items with bad quality than the description.

For example, let us consider the previous trading scenario where peers sell and buy services
of similar prices (u. =~ v*). If provider is a long-term player, and the truthfully reporting
probability h > A, =~ .8 (a highly noisy environment), even the naive algorithm makes it
optimal for a provider to behave honestly for most of his transactions (except the last two).
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Figure 4.5: The relation between the truthful reporting rate h and the number of last trans-
actions during which providers have no incentive to cooperate in case clients use the selection
algorithm (N, 1).

84


IncentiveLearning/figures/theoretical/naiveoptworks.eps

4.4 Cost-efficient Reputation Management

It is important to note that Theorem 1 and Corollary 2 state only those sufficient, not
necessary conditions for a computational trust model to be incentive-compatible. In general,

there maybe other designs better than the proposed selection protocol Sj.

4.4 Cost-efficient Reputation Management

4.4.1 Implementation cost of computational trust models

Accurate computational trust models are costly to build and to maintain. Several sources may
contribute to their cost, as summarized in Definition 7.

Definition 7 The implementation cost of a computational trust model (P;,V;,F;, A, D), as in

Definition 4 consists of the following component cost:

e communication cost T, to explore the peers P; and retrieve relevant ratings V;. Associated
with this cost is the storage cost Ts to store and to maintain rating information and
historical performance of potential partners/raters.

e computational cost T, of the algorithm A and decision making algorithm D to aggregate,
analyze ratings and make appropriate decisions.

e possible monetary cost 7., since reliable ratings can be considered as sellable goods offered
by third-party monitoring agents in the system, buying them incurs certain cost. This cost
may also include the payment for participants in system with any side-payment mechanism
to elicit truthful reporting behaviors, such as (Miller et al., 2005).

e hidden/opportunity cost T,: time-consuming learning algorithms may lead to late deci-

sions and hence more costly than fast algorithms, especially in competitive scenarios.

A detailed study of the cost model of each computational model is much dependent on
the system and application on which we apply the algorithm. For example, the estimation of
opportunity cost 7, during the lifetime of a peer is non-trivial, though it maybe significant. Such
a thorough study of all cost types of existing algorithms is out of the scope of this work. Instead
we only focus on the most obvious and measurable cost of communication 7.. Evaluations of such

communication cost 7. of well-known trust learning algorithms will be presented in Section 4.6.

4.4.2 Using a computational trust model cost-effectively

This section studies the cost and benefits of using different trust learning algorithms and inves-
tigates the possibilities of minimizing the cost while still maintaining a high level of cooperation
in the system. While an algorithm with better accuracy is generally preferable (see Theorem 1),
it usually comes with higher cost. For instance, an algorithm relying on the retrieval /buying
of reliable information from trusted third-party agents may give us more accurate informa-
tion about the providers, yet it is apparently more expensive than a simple majority voting
algorithm.

Consider the case of a peer that can choose either a computational trust model R, or another
model Ry to evaluate the trustworthiness (reliability) of a rating on some provider. Suppose
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that R, is an accurate algorithm with misclassification errors a, 3, both upper-bounded by some
€ < €maz(k = 1), and with an expected cost 1. A typical example of R; is to buy information
from some third-party monitoring agents to get correct estimate of the behavior of the last
client/rater. Let Ry be the naive computational trust model N in Example 3 (always trusts all
ratings) with misclassification errors ap = 1, 83 = 0, and a negligible cost Co < €;. The cost
C; and G2 may compose of certain component cost in Definition 7.

On one hand, since «, § are less than € < g,,4,(k = 1), the computational model R; can
be used to motivate the cooperation of a provider in most transactions (Theorem 1), yet this
approach is costly to deploy. On the other hand, the use of the model N is much cheaper and
more preferable. However, it is impossible to use only the naive model Ry = N for the same
purpose since the provider can strategically manipulate ratings easily, e.g., by colluding with
others to submit biased ratings.

If we assume that a client uses the computational model Ry with probability ¢ and model Ry
with probability 1 — ¢ when evaluate rating reliability, Theorem 2 proposes a way to optimize
the cost of using the expensive computational model R; while still ensuring cooperation in the
system.

Theorem 2 Consider the selection protocol 81 = (R, 1), in which the dishonesty detector R
1s implemented by using the trust model Ry with probability ¢ and the naive model N with
probability 1 — c. Suppose that € is small, and the incentive for badmouthing is negligible, e.g.,
where providers provide services of different categories with few competition. The provider finds
it optimal to cooperate in all but its last A transactions, where A = max{1, [MH, under

the condition that ¢ > ¢, = where § > A is the number of remaining transactions of

the rational provider. This :e?éllt ;Z)lds in presence of strategic manipulations of ratings.
Proof 6 Let§ > A be the number of remaining transactions of the provider at the current step.
Proceed as in Theorem 1 withk =1, o/ = ca+(1—c)ag = 1—c+ca, and ' = ¢+ (1—c)PB2 = ¢f,
we get Ope > —v* 4up(h(l1—c)+e(l—a—pF—(8—a)h)). Here, the probability an honest provider
is blacklisted is xp = (1 — 1) + 1o/ = c(1 = 1) + (1 — ¢ + ca), where 1 is a small probability
someone badmouths the provider. Thus we have x, = (1 — )l + ¢[(1 — 1) + la] < max (I, ¢),
which is small. Therefore, approzimately, up > dus. As a result, dpe > —v* + dus(h(1 —¢) +
c(l—a—=p-(8-ah)).

Since 0 < h < 1, it follows that a+B+(8—a)h < a+B+max {3 — o, 0} < 2max {8, a} < 2e.
Thus, h(l —¢) +¢(l —a — = (8 — a)h) > ¢(1 — 2¢) for ¢ € [0,1]. This makes Ope >
—v* + dusc(l — 2¢). Equivalently, op. > 0, or being cooperation is a dominant strategy for the

v*

duy(1—2¢) "
According to Theorem 1 (k=1) with small £, using only the algorithm Ry can ensure cooper-

provider if and only if ¢ > ¢, =

ation of a rational provider in all transactions but its last A ones. That is dpe > —v* + Auy (1 —
2e) > 0, or equivalently A >
valid probability.

3 Since 6 > A, one can verify that c. < 1 and thus is a

ECAN
uy (1—2¢

Fig. 4.6 shows the minimal probability ¢, of using the expensive trust model R; depending
on the estimated remaining transactions ¢ of the provider, with u, = v* and € = 0.01. If most
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providers staying in the system infinitely or long enough, the mixture of two computational trust
models help to reduce the total implementation cost significantly, as derived from Fig. 4.6.
Hence, given the rationality of participants, the accurate computational trust algorithm Ry
mostly plays the role of a sanctioning tool rather than the role of learning trustworthiness of
potential partners.
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Figure 4.6: The minimal necessary probability ¢, to use the expensive algorithm R; depending
on the number of remaining transactions d of a rational provider for € = 0.01, u, = v*.

4.5 Using Reputation Information in Dynamic Scenarios

The above analysis shows that if rational peers staying in the system infinitely, cooperation is
ensured relatively easily. Based on this result, this section presents a peer-selection protocol to
be used by rational peers (as clients) that ensures cooperation of rational providers for most
transactions in dynamic scenarios, where peers join and leave dynamically.

Considering peer rationality, solving the problem of cooperation in this scenario is non-
trivial, even impossible. Corollary 1 reveals that the key to ensure cooperation is not the
accuracy of the computational trust learning algorithms being used but an identity management
mechanism that is effective in preventing white-washing behaviors. This is in accordance with
previous work (Friedman & Resnick, 2001). Thus in this section we must restrict the problem to
the case where the cost of establishing identity is sufficiently high such that a peer is motivated

to use one identity for all its transactions. For centralized/distributed e-trading systems where
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trusted parties are present, a simple yet effective solution to ensure cooperation of all rational
participants even in the last A transactions is to require each provider to deposit an approximate
amount Av* to the third trusted party before being able to join the system. This deposited
sum will only be returned to the provider if it intends to quit the system and only if it has not
been detected as cheating by k or more others peers. Alternatively, providers can be further
introduced to more clients over time, thus making identities with long history more valuable.
As a result, rational peers have little incentives to cheat, leave the system, and start all over
again with new identities.

Given the above restriction, the following information can be learnt by peers: first, the
distribution of number of life-time transactions of providers, which is observable. Similarly,
peers can estimate worst case values or upper-bound ¢ of misclassification errors «, 3 of the
learning algorithm R being used. In fact, such statistics can be learnt from experience of each
participant or available as common knowledge.

Rational peers can use all available information and behave strategically to maximize their
long-term benefits. Thus, a rational client has to make decision based on the expected number
of remaining transactions of each candidate provider. We approximate the algorithm for a
rational (strategic) client to select a provider before each transaction as in Algorithm 3.

Algorithm 3 selectProvider(providers S, alg R, threshold k)
1: Eligibles = @;

2: Retrieve the global blacklist L;

3: for each s € S\ L do

4:  Get worst case values € of errors a, 8 of algorithm R;

5:  Estimate benefit us and current cheating gain v of s;

6:  Compute Ay as in Eq (4.4) with v instead of v*;

7:  p[s] = Pr[provider s stays at least A, further transactions];

8:  Get binary rating r; by peer 7 on the latest transaction of s;

9:  Run R to evaluate the reliability (binary trust) ¢; of r;.

10:  if r;, == t; then

11: Eligibles = Eligibles U {s, p[s]};

12:  else

13: Post the negative detection result r; # t; on the shared space;
14: Put s in the blacklist L if there are at least k£ such negative results;
15:  end if

16: end for

17: Select provider s from Eligibles with probability p(s)/ > p(s);

Algorithm 3 follows the peer-selection protocol 8 = (R, k) in Definition 6 and computes the
involved quantities in a straight forward way. For example, in an e-trading system, the minimal
legitimate gain wu. of a provider (a seller) is the minimal value of an article accepted for trading
in the system. The gain v is the value of the current item plus the shipping cost announced by
the seller. A, is the minimal number of remaining transactions that a rational provider finds
incentives to cooperate for the worst level of «, § (claim (2) of Theorem 1). Since we assume
that the distribution of number of transactions by providers can be learnt from trading history
of various providers in the system, it is possible for the client to estimate the probability p[s]
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that a provider stays in A,,;, further transactions. This estimation is personalized to each client
and dependent on his own belief on the continuation of the game of the provider with future
clients. It is important to note that such an estimation is not known to the provider himself,
otherwise the end-game situation would occur: a provider knowing that the client knows of
his last transactions would never cooperate. This probability can be seen approximately the
probability that this strategic provider cooperates in the current transaction compared and thus
is used as a selection criteria (line 17).

According to Theorem 1, the best strategies of rational providers are described as in Algo-
rithm 4. That is, a strategic provider will cooperate in all transaction except its last A, ones.
Similar to a client, the provider estimates its A, parameter based on the global knowledge of
misclassification errors «, 3 of the learning algorithm being used, its current temporal gain v
and minimal legitimate gain u, at each step.

Algorithm 4 bestServiceStrategy(alg R, threshold k): servingStrategy

1: Get worst case values € of errors «, 8 of algorithm R;
Estimate the minimal own benefit u, and illegitime gain v in the current transaction;
Compute Ay as in Eq (4.4) with v instead of v*;
Estimate own remaining number of transactions §;
if 6 > A, then
Return cooperative;
else
Return cheating;
end if

Using the above peer-selection protocol, the number of successful transactions, or coopera-
tion level, in the system generally depends on how accurate clients can estimate the number of
remaining transactions of a provider in order to select the right one still having incentives to
cooperate. More concretely, a strategic provider is motivated to cooperate if 6 > A,.

The algorithm for a strategic client to use a mix of two algorithms R and N to select
a provider (Theorem 2) is then implemented as follows. A client estimates the number of
remaining transaction .., of a provider from expected number of transactions of all providers

in the system. Next, it computes the minimal probability ccjent = it needs to

use R in the current transaction. On the other hand, the best thing a strategic provider
can do is to also estimate those values ccjent,Oclient, and computes the minimal probability
Cprovider = M*(fi_%) for its actual remaining number of transactions §. The provider cooperates
only if it stays more than § > A, and cciient > Cprovider-

Since it is very difficult to perform a rigorous analysis on the peer cooperation in such
dynamic scenarios with various possible parameters of the join and leave processes of peers, we
defer the measurement and analysis of cooperation level in the system until Section 4.6, where
extensive simulation with various input parameters obtained from real case studies is performed

for such analysis purposes.
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4.6 Experimental Results

I use the generic trust prototyping and simulation framework as presented in Chapter 3 as the
simulation tool for all experiments in this section. This tool enables the rapid development and
testing of many trust computational models under a variety of environment settings. Particu-
larly, new algorithms for peers and appropriate performance metrics can be easily defined and
integrated into the framework without major efforts.

4.6.1 Simulation goals and setting

In practice full rationality is usually impossible to implement, but may be approximated by
strategic behaviors. In our simulation, I do such an approximation where peers gather all
available information in the system to make the best decision in order to maximize their life-
time utilities. My purpose is to answer the following question: given that the one implementing
rational peers has the knowledge of the above theoretical results and implement their rational
peers accordingly, whether the cooperation in the system still emerges.

The goal of my simulation is then to investigate whether (1): in approximately rational
environments, reasonably good trust learning algorithms may help to enforce cooperation in
many transactions, even with small observation noise, and (2): in such an approximate rational
setting, costly learning algorithms can be used with a small fraction of time, without much
affecting the cooperation.

An example P2P trading application is simulated with the prototyping and simulation frame-
work, presented in Chapter 3. The details on the modeling, implementation, and configuration
files for all experiments in this chapter are also available.

Peers are modeled as sellers and/or buyers of many articles and exhibit different behaviors.
Cooperation level and accumulated utilities of different peer types who sell and buy goods of dif-
ferent prices are then measured and analyzed under various simulations settings: first, peers can
leave and join dynamically, thus having different number of transactions during their lifetime.
Second, buyers use different computational trust models with different personalized inputs and
settings to evaluate the rating trustworthiness of others. Third, peers exhibit several behav-
iors, both irrationally malicious and/or strategic, details to be presented in coming sections.
To more accurately model the delay of information propagation in the network, the routing of
messages is implemented so that the search cost in the system similar to that of a logarithmic
P2P routing overlay, i.e., it takes time O(logn) to lookup a data item in system with n peers.
The latencies among nodes in the network are set up with the King latency data set provided
by (Gummadi et al., 2002), which measured the real latencies between nodes in the Internet.
The dynamic joins and leaves of peers in the system are simulated according to statistics from
real-life case studies on many live peer-to-peer systems (Stutzbach & Rejaie, 2006). Specifically,
I schedule the inter-arrival time of peers to follow a Weibull distribution with shape parameter
0.53, and generate the up-time of peers to follow a Weibull distribution with shape parameter

Thttp:/ /Isirpeople.epfl.ch/Ihvu/download /repsim/

90


http://lsirpeople.epfl.ch/lhvu/download/repsim/

4.6 Experimental Results

0.34 (Stutzbach & Rejaie, 2006). The scaling parameters of these Weibull distributions are set
so that all peers live long enough to send and receive many messages during their up-time.

Since I do not have statistics of the number of transactions a peer performs in a real peer-
to-peer trading scenario, such a distribution is approximated in my experiments as follows: I
compute the number of transactions a seller participates from its up-time by using a scaling
factor K. K is set such that those peers with up-time approximating the mean of the overall
uptime distributions participate in fiyyqns transactions, where fiyyqns is a parameter of the sim-
ulation. The rationale behinds this choice is that the number of transactions a peer involves is
assumed to be proportional to the user’s participating time in the system. Experiments with
other distributions of the number of peer transactions are subject to future work.

4.6.2 Implementation of peer behaviors

Since it is impossible to implement full rationality, in our simulation rational peers are approx-
imated as strategic ones who use all available information to find the best strategy for them
at each step. A (strategic) buyer first searches for the available articles satisfying its require-
ments and then selects one according to Algorithm 3 and its variant introduced previously in
Section 4.5.

A good seller ships the article after receiving the payment with a very high probability
(7T = 0.99) of satisfying the buyer and get a good rating. A bad seller generally either doesn’t
ship the article or ship a low quality item to the buyer, resulting in a very low probability
(v~ =~ 0.05) of meeting buyer’s anticipation and thus likely to get a bad rating afterwards.
Other sellers are strategic and use all available information to find the best strategy to follow,
e.g., whether it should ship the item or not, so as to maximize its long-term utilities, following
the strategy described in Algorithm 4 (Section 4.5). It is also possible that the observation
noise v, ¥~ may vary depending on other factors, e.g., subject to the buyer’s viewpoint given
the price of an item. The inclusion of these details into the analysis and in my simulation is
feasible. However, these issues are subject to future work.

Regarding rating behaviors, peers consist of the following types: honest (always reports
correctly about what it has observed), badmouthing (always reports negatively), advertising
(always reports positively), ignoring (does not report), and strategic. Strategic raters can
provide correct, incorrect ratings or do not leave any rating depending on the situation. To
reduce the complexity of the simulation, in this work the rating behavior of strategic peers is
limited to the following safe strategy. The reporting strategy of a peer A on its own estimate
of the trustworthiness of another peer X when asked by a peer B is determined based on the
relationships between A and B, and between A and X. Specifically, if the querying peer B is
unknown to A, where the target peer X is a trusted peer, a blacklisted, or unknown peer of
A, A would respectively report positively, negatively, or honestly. If a trusted peer B asks A
about trustworthiness of another peer X, A always reports honestly. Requests from blacklisted
peers are ignored. This reporting strategy is chosen for two reasons. First, the cost of reporting

after a transaction in our current application is negligible. Second, this strategy helps peers to
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Table 4.2: Experimental settings of representative simulation scenarios with different types of
sellers and buyers. Seller types consist of: s% strategic, g% good, and b% bad. There are five
rater types modeled: h% honest, sr% strategic, a% advertising, b% badmouthing, the rest are
those peers leaving no reports after a transaction. a > b since in most case studies of current
reputation-enabled systems, majority of collective feedback are positive ratings, thus it is likely
that advertising behaviors are popular than badmouthing. In each scenario by default £ =1 if

it is not specified otherwise.

Scenario s g b h sr a b Result
C1. No strategic sellers, most seller bad 0 15850 to 100 1222 2(100 D] 100-h Rig. 4.7
C5. No strategic sellers, half seller good 0 5050/0 to 100 10% h (100 h) 1005”1 Fig. 4.7
Cs5. No strategic sellers, most seller good 0 85 15|0 to 100 10057’1 (100 h) 10057’1 Fig. 4.7
Cy. Few sellers strategic, most bad 10 5 85|0 to 100 1005_h (100 h) 1005_h Fig. 4.8
Ck. Similar to Cy with k =1,2,5 10 5 85/0 to 100 100=L <100 h) 100-h pig. 4.9
Cs. Most sellers strategic 85 5 10/0 to 100 1005_h 2(100 h) 1005_h Fig. 4.8
Ce. Approximately equal seller types 33 3433)0 to 100 209=" 2(100 h) 100-h pig. 4.8
Ck. Same as Cs, thresholds k = 1,2,5 33 3433[0 to 100 1202 2“00 h) 100-h pig. 4.9
Cy. All sellers strategic 100 0 00 to 100 220 @ 1 Fig. 4.10

rapidly build up and extend its trust relationships with many other peers in the system, thus
intuitively most beneficial to them.

Experimental settings and corresponding results are summarized in Table 4.2. The trading
system is simulated in most cases with dynamically leaves and joins of peers, starting with
n = 256 peers. In the stationary regime the number of peers approximately double this initial
number with our churn model. The simulator is able to run with up to 1024 initial peers, and
the results are similar. Each simulation is run until stationary regime and the measures of each

metric are their medians over at least 35 different runs (to avoid outliers).

4.6.3 Accuracy of example computational trust models

Three computational trust models are implemented and used in the simulation as dishonesty
detectors to evaluate the reliability of the most recent rating on a seller. Provided the error
bound of the trust model and environment vulnerability satisfy required conditions by Theo-
rem 2, the computational trust model them would also be combined with the naive algorithm
N to save cost.

The first tested computational trust model is the PeerTrust PSM/DTC algorithm proposed
by Xiong and Liu (Xiong & Liu, 2004), which is presented earlier in Example 1 and henceforth
mentioned as L. With this algorithm, a peer ¢ estimates the trustworthiness of another rater
j based on the similarity between i’s and j’s ratings on some other sellers which both ¢ and j
have contacted with. The second model uses the maximum likelihood estimation-based learning
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algorithm as in Example 2 with a probabilistic decision rule. Given this computational model,
abbreviated as X, a peer i estimates the probability that a rater j is trustworthy so as to
maximize the likelihood of getting the current set of ratings from 7 and j on those sellers with
whom both 4,5 have experience. I also implemented a dishonesty detector A with very good
misclassification errors: both «, § are less than ¢ = 0.01, and with a high cost of each time being
used. In practice, a peer implements such an accurate detector by asking for information from
the third party monitoring or consulting agents before buying things. The dishonesty detector
A simulates a global computational trust model and is used to verify the relation between the
learning accuracy and the cooperation level in the system with peers having the same input when
learning the reliability of raters. The two algorithms £ and X were used to test the efficiency of
the peer-selection protocol in a more relaxed environment where peers used different algorithms
with personalized inputs and settings to estimate rating behaviors. For the sake of readability,
in the following experiments only the results for model £ are shown, unless specified otherwise.
The results for the model X are similar to those of £, and the results of A are even better. The
use of other global trust learning models like complaint-based algorithm (Aberer & Despotovic,
2001) or EigenTrust (Kamvar et al., 2003) instead of the algorithm A is subject to future work.

As a base for other experiments, first the overall misclassification errors «, 5 of the com-
putational trust models L and X under a variety of scenarios are estimated depending on the
fraction of honestly reporting users h in the system. The most representative scenarios Cy, Cs,
and C5 for this experimentation are given in Table 4.2. These scenarios are designed based on
the observation that it is not necessary to measure precisely the accuracy of a learning algo-
rithm but only the overall trend and worst case misclassification errors «, 0 depending on the
percentage of honest reporting peers h in the system. Furthermore, strategic selling behaviors
could be excluded when estimating these misclassification errors for the reason that learning
uses only historical data, and outcome of strategic selling behaviors can be assumed to follow
one of the overall trends of these three extreme cases C1, Co, and C3. These statistics are mea-
sured under three cases with different fractions of good and bad sellers in the systems (scenarios
Cq, C, and C3 in Table 4.2). Note that the accuracy of these algorithms have already been
extensively studied in related work (Despotovic & Aberer, 2004b; Xiong & Liu, 2004), most of
which having been shown to have low «, 8 under various attack scenarios. In this paper, the
only difference is that such computational trust models are used to evaluate the reliability of
the last rating on a seller, instead of estimating the trustworthiness of the seller. This reliability
was determined based on reputation information of the user giving that very rating. Hence,
the goal of the simulation here was to verify that misclassification errors of these trust models,
when used in this new context, are still sufficiently low, so that the theoretical analysis on the
relation between error bound and cooperation is applicable. That is, I need to verify that an
approximate bound ¢ of the misclassification error rates «, 3 of the computational trust model
being used satisfy the requirements to use Theorem 1, i.e., € < €4, for a chosen threshold k.
The obtained error bound ¢ would then be used as common knowledge in later experiments
with various combination of strategic, bad, and good sellers.

Fig. 4.7 shows estimated maximal values of «a,( of the learning algorithm L based on
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PeerTrust PSM/DTC approach (Xiong & Liu, 2004), where fitrans = 50, and in three extreme
cases (1, (o, C3 of Table 4.2. Generally, the false positive errors o of £ are much lower where
most peers staying in the system longer (tt¢rans = 50) and in less malicious environments (higher
levels of honest reporters and good sellers), as we expected. With higher number of honest
raters in the system, false negatives however can not be improved as much significantly as false
positives. This may be due to my non-optimized implementation of the PeerTrust approach
to estimating rating reliability, which could not learn from previous false negative errors in a
noisy environment, e.g., good sellers may yield bad transaction outcomes from time to time. It
is expected that in practice optimized implementations of such a model would be much more
resilient and yield significantly lower false positives and false negative errors.

Nevertheless, even in the worst case of the simulation, max{c«, 3} was well bellow 0.4, and
thus there existed a threshold & for which Theorem 1 was applicable ( Fig. 4.3 requires k > 2
in this case). However, it is more interesting to consider more representative cases with all
different types of sellers, thus I mainly focused on the average case Co and C'5, where it may be
approximated that max{a, 8} < e = 0.25. This error bound ¢ well satisfies the maximal error
bound &4, required by Theorem 1, with any threshold k > 1 (c.f. Fig. 4.3). These max{c, 5}
statistics were then used in our later experiments as the global knowledge ¢ of all peers. I also
observed the same trend of these accuracy statistics in the presence of strategic peers in later
experiments.

Different values of piy,qns are tested, for which I observed that when most sellers only par-
ticipate in very few transactions (f4rans < 10), the trust learning algorithm could not collect
enough historical data for accurate learning, resulting in high errors o, § > 0.5 and thus using

a trust model for learning the last rating was ineffective in enforcing cooperation.

4.6.4 Cooperation in various environments

The levels of cooperation in the system with different types of sellers and raters are given in
Fig. 4.8 for pirans = 50 (cases Cy, Cs, Cg of Table 4.2). The case of all strategic sellers shows
even a better trend. Experiments are also performed in other extreme cases, e.g., all sellers,
buyers, and raters strategic, yet the result was similar and thus are not given here. For small
Lrans < 10 the cooperation dropped significantly, as the learning of rating reliability has no
values at all.

When there are many types of rating and service behaviors (cases Cs,Cg of Table 4.2),
accumulated utilities of strategic peers, who follow serving strategies designed by the theoretical
analysis, are also measured. Utilities of strategic sellers are close to those of good ones and
significant higher than bad sellers. The reason is that strategic peers are enforced to cooperate
most of their life. In fact, fully cooperative sellers have slightly better utilities. This was due to
my pessimistic implementation of strategic peers, conjecturing that they needed not cooperate
during their last A transaction. What happened during the simulation was that during these last
A transaction, several strategic peers who cheated were also blacklisted. Therefore, under the

proposed peer-selection mechanism it would be better off for those strategic peers to cooperate
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Figure 4.7: Detailed misclassification errors of the PeerTrust model L used to evaluate the
reliability of the last rating (a) and approximate error bound e(b) in three scenarios C1, Co, C3
of Table 4.2 with different fraction of bad sellers and malicious raters, fitrqns = 50.

more even in their last transactions. The proposed approach still works even with dynamic
joins and leaves of peers in the system, given that most sellers stay in the system long enough
(fttrans > 10 in our simulation).

The impact of selecting the threshold k is shown in Fig. 4.9 (for cases C§, C¥), which gives
us the following observations. First, for a given €, lower k£ means higher fraction of cooperation
in the system (see Fig. 4.9 a), yet results in lower accumulative number of good transactions
(Fig. 4.9b). Thus, with lower k values and higher &, total number of good transactions in
the system is lower due to the selective of buyers and some good buyers wrongly blacklisted.
However, as the fraction of good transaction is high, the majority of those transactions taken
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Figure 4.8: Relation between cooperation (fraction of good transactions) and accuracy of a
trust learning model in environments with mixed behaviors: honest, malicious, and strategic.
In two cases where most sellers strategic (Cs) and with approximately equal seller types (Cg) of
and is very high since the learning accuracy is reasonably good. When most sellers are bad (Cy)

fraction of good transaction is lower due to much less accurate evaluation of raters’ behaviors.

place are successful. For the cases with small ¢ = 0.25, threshold k can be increased to accelerate
the transaction rate in the system without worrying of selecting a bad provider and resulting in
bad transactions, e.g., case Cg,e =0.25,k =1,2,5. Note that the measurement in Fig. 4.9(b)
is an accumulated number of good transactions per peer. Such numbers would be increasing
overtime, and hence their absolute values are less important. We sample it at the time where
the simulation reached stationary regime only to compare the difference between the number
of good transactions completed of different selection schemes with various k.

In case of all strategic peers C7, we can also use a combination of two computational trust
models to minimize the total learning cost (as in Theorem 2). Fig. 4.10 compares the cost
of two approaches: the first one uses only the accurate yet expensive model (hypothetic) A,
the second uses A with a low probability. Therein, the cost of a computational trust model
is measured as average number of sent and received messages for a good transaction. It is
interesting to see that the learning cost can be reduced significantly by using the expensive
model with a very low probability while still maintaining a high level of cooperation in the
system. Furthermore, the approach combining two computational trust models learns faster
and thus during the same simulation time, the total number of good transactions in the whole

system (not shown in Fig. 4.10) is also much higher.
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Figure 4.9: Cooperation in the system with different ¢ and k. Results are given for scenarios
CY and Cf of Table 4.2.

4.7 The Issue of Cheap Pseudonyms and Possibilities of
Deterring Whitewashing Behavior

So far, we have only considered the cases where it is difficult (or costly) for a participant to
obtain a new identity and thus it is not optimal for a rational provider to simply cheat and
rejoin under a new pseudonym without being punished. This section extends the work to the
other cases where cheap identities are possible. We will study possible approaches of using

computational trust models to enforce cooperation in scenarios where it is relatively easily for
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Figure 4.10: Comparison the learning cost between two approaches: the use of a single accu-
rate, expensive algorithm A, and the mix of A and the naive algorithm N (a). Though both
approaches have very high level cooperation (b), the second one that uses a mix of two different

models has a significantly lower cost.

an existing provider to rejoin the system under a new identity, i.e., when an entrance cost is
not easily imposed on participants. Hence, the sanctioning via global blacklisting as in Def. 6
has little impact on any provider with whitewashing behavior: such a provider may cheat and
rejoin under a new identity, thus effectively avoiding the punishment.

I will prove that there exist dynamic pricing mechanisms to motivate cooperation of providers
in all but some of their last transactions, even if cheap identities are possible. As soon as

participants conform to these pricing mechanisms, cooperation is enforced even in the presence
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of strategic rating manipulation by malicious and rational players.

4.7.1 Identity premium-based pricing mechanisms

The key idea of the proposed approach is the use of an identity premium function (Def. 8). This
premium allows a provider to sell its services, products, or resources at higher prices depending
on the number of transactions it has completed in the system. Under this pricing scheme, an
initially cheap identity (pseudonym) of a provider would have an increasingly significant value
to the provider overtime. This implicit value of the current identity effectively eliminates the

incentive of whitewashing for any rationally opportunistic providers.

Definition 8 A provider who has finished L > 0 transactions in the system has a monotonically

increasing identity premium f(L). That is, every participant agrees that:
e a newly joined provider must sell services at some (low) price ug, i.e., f(0) =0.

e a provider having completed L > 0 transactions may sell services at a higher price of
uo + f(L), where f(L) > 0.

The identity premium is similar to the notion of a reputation premium (Bhattacharjee &
Goel, 2005) yet simpler to verify, since the latter requires that the reliability of a reputation value
is estimated and included in the analysis. An identity premium can also be readily implemented
in different ways beside using a direct pricing mechanism. For example, a system may use a
ranking function s.t. a long-staying provider is matched with more clients and thus gains more.
This implementation specially applies to the case where providers offer non-depleting resources,
i.e., the same resource can be sold to many clients at the same cost as to a single client.

We will study the properties of the identity premium function f(L) in relation to the initial
price ug to ensure that rational providers are motivated to cooperate in most of their trans-
actions, irrespective of the cost of cheap pseudonyms, and in presence of strategic or malicious
manipulation of ratings by participants.

To this end, a first step is to use the identity premium function f(.) to specify a pricing

mechanism as in Def. 9.

Definition 9 Consider a service with an original price u, < u < u*, which is publicly known.
A provider who has completed L > 0 transactions in the system sells this service at the price
determined by the following pricing scheme P(¢, f):

P(¢, f) =u(l =)+ f(L) (4.5)

where f(L) is the identity premium of the provider. At L =0, or at zero identity premium, the
provider has to sell a service at an initial price u(1 — ¢) + f(0) = u(l — ¢) < u. This price is

determined by a parameter 0 < ¢ < 1, which may depend on the original price w.

Apparently, under the pricing scheme P(¢, f), a new provider must sell a service at a much
lower price u(l — ¢) than the actual value u of the service. A provider staying in the system
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for many transactions may sell services and resources at higher prices. Being able to stay
in the system and sell services at higher prices in later transactions compensates the loss of
the providers during earlier transactions where they have zero or small identity premiums.
Therefore, even if establishing new identities are relatively cheap, it is expected that every
rational provider finds it optimal to keep the same identity for the whole life-time rather than
cheating, leaving, and joining with new identity. In other words, whitewashing is not optimal
for any rational provider.

Given a bound € for «, 3 of the dishonesty detector being used by peers in the system,
Theorem 3 shows the relation between the error bound e and its effectiveness in enforcing
cooperation of a provider during its life-time in the case with possible cheap pseudonyms.

Theorem 3 Given the peer-selection protocol 8y, = (R, k) where the dishonesty detector R has
misclassification errors «, 3 upper-bounded by € < 0.5.

Consider any rational provider with N services to sell. Let uy < u; <u*,i=1,...,N be the
original prices of services sold by the provider in the i-th transaction. Suppose that the pricing
scheme P(¢, f) is used. The cheating gain when selling a service of price u; is assumed to be
Yu;, where 0 <y <1 does not depend on u;. Define A = (1—6)+s’“

(i) If u;s are different and X\ > 1, the following identity premium ensures that cooperation is
always the best response strategy of the provider in any transaction i = 1,....N — 1, for
any 0 < ¢; < 1:

f(L) = Z AT (1 — ¢) (4.6)

(ii) If u; = 1,i=1,..., N, or providers sell services of similar original values, with any A > 0
the following identity premium function is sufficient to enforce cooperation for a provider
in selling every but the last service:

1 -
1—X\

L

FL) = Y AT -9)=(1-9)A (4.7)
i=1

The above results hold even in presence of strategic manipulation of ratings by peers and

even if cheap pseudonyms are possible.

Proof 7 We first prove (i). A rational provider apparently does not have incentives to cooperate
when selling the last service. Consider a rational provider who still has at least A > 0 services
to sell after it finishes selling the current one.

Suppose that the provider has finished L — 1 > 0 transactions with the current identity
and gained an utility of U > 0. In the current L-th transaction, the provider has an identity
premium of f(L —1). Let uy < uyp, < u* be the actual price of the current service, the provider
may sell the service at a price ur(1 — @) + f(L —1).

Denote as U(L, A) the best (mazimized) expected utilities a provider with an identity pre-

mium f(L) may get for the remaining A transactions. U(0,A) thus corresponds to the case
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when the provider has no identity premium: e.g., a newly joined provider or a provider who just
left and then re-joined under a new identity.

By similar reasoning as that of Theorem 1, the probability that the provider is globally black-
listed after the current transaction is some x’g < eF. This inequality holds even in presence
of malicious or strategic manipulation of ratings by providers, provided that misclassification
errors «, 3 of R are less than €. A globally blacklisted provider with more services to sell has
to join the system under a new identity with a zero identity premium. On the other hand, the
probability the provider is globally blacklisted is some y{f > (1—e)".

Let Unonest [resp. Ucheat] as the best expected life-time utilities of the provider if she is honest
[resp. cheating] in the current transaction, it follows that:

Unonest = U4ur(l1—¢)+ f(L—1)4+ 1 —zf)U(L, A —1)+zpU(0,A — 1)
Ueheart = Ufur(l—¢)+ f(L =11 +7)+ (1 —y)U(L,A 1) +ysU(0,A 1)
= 0ne = Unonest — Usheat = —[ur(1 — @) + F(L — D]y + (¥ — 25) (UL, A — 1) — U(0,A — 1))
> —[ur(1—=¢)+ fF(L—Dly+((1—e) —")UE,A-1)-U0,A-1)) (4.8)

Suppose that in the next transaction the provider sells another service whose original price
is u'. If the provider is honest in the next transaction, we have:

ULA-1) = o/(1-¢)+fL)+Q—z)UL+1,A—2)+zfU(0,A—2)
UO0,A-1) = /(1 -¢)+1—-aH)UQ,A=2)+2U0,A—2)
UL,A-1)—-UO0,A=1) = fL)+ 0 —zp)(UL+1,A-2)-U(1,A—-2)) (4.9)

On the other hand, if the provider is cheating in the next transaction:

UL,A=1) = [W(1=¢)1+7)+ L)+ 1 —y)UL+1,A—-2)+yU®0,A-2)
UO0,A-1) = [(1—¢)(1+7)+ FO)1 - UL A —2) +4EU0,A - 2)
UL, A=1)—UO0,A=1) = f(L)+(1—yS)UL+1,A—-2)—U(1,A—2)) (4.10)

From Equations (4.9,4.10), and note that x’g <efF<(1-e)f < yl’f <1, we have:
UL,A-1)-U(0,A-1) > f(L)— f(0) —|—min(1—y{f,1 —xf)(U(L—&-LA—Q) -U(1,A-2)
SULA-1)—UO0,A=1) > fL)+(1—y¥)UL+1,A-2)—U(lL,A-2) (4.11)

By similar reasoning the following recurrence relation can be found for 1 <i < A —2:

UL+i,A—i—1)—U@A—i—1)> f(L+i)— f6)+ (1 -y UL +i+1,A—i—2)—
Ui+ 1,A—i—2) (4.12)
and U(L + A,0) — U(A —1,0) = f(L+A) — f(A—1) (4.13)

From the recurrence relations of Equations (4.11,4.12,4.13) we find":

A—1
U(L,A=1)-U0,A-1) = [f(L)+ Z(l — ) (F(L+1i) = (@) (4.14)

1Rigorously, the probabilities x’g, yf may be different in each equation (4.12), and thus in (4.14), yl’f shall be
the largest one among these yﬁ. However, to simplify the notation we will ignore such differences.
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Let f(L) be a monotonically increasing function of L, then f(L + i) — f(i) > 0. From
Equations (4.8,4.14), it follows that:

6hc - Uhanest - Ucheat 2 _[UL(l - ¢) + f(L - 1)}’}/ + ((1 - e)k - ek)f(L)

Cooperation in this (L-th) transaction is a dominant strategy for the provider iff op. > 0,

or:
N S 7 A Gl e
Denote A = (1—e)+ek > 0. By similar reasoning, cooperation is the dominant strategy in
all transactions 1, ..., L iff:
JL)=Af(L=1) > un(l— g\ (4.16)
fFIL=1) =Af(L-2) > wur—1(1—¢r-1)\ (4.17)
f)=Ar(1) = u2(l—d2)A (4.18)
F(1) > wui(l—¢1)A\, where f(0) =0 (4.19)
L
= f(L) > Y M- (4.20)
1=1
The following identity premium function satisfies every above constraint:
L .
FL) = DN (1 - ) (4.21)
i=1

Furthermore, this identity premium is an increasing function of L with any X > 1, hence the
requirement f(L +14) > f(i) in (4.14) is met.

Therefore, provided that the client chooses to buy the service, cooperation is always the best
response strateqy of the provider in any transaction after which the provider still has A = N —
L > 0 services to sell. In other words the provider is motivated to cooperate at every transaction
L=1,..,N —1 and thus (i) is proved. For the simple case where all u; = 1,i =1,...,N, the

requirement of A > 1 is unnecessary, which means the proof of (ii) follows immediately.

The identity premium f(L) determines the additional amount the client must pay to mo-
tivate the provider. This cost of by the client to motivate cooperation of rational providers in
the system is an inevitable cost in any open system where cheap identities are possible. Ap-
parently, a smaller identity premium f(L) results in lower prices and thus is more encouraging
participation of clients. Regarding the constraint of (4.20) in the analysis, the f(L) defined in
Theorem 3 is the smallest possible identity premium.

Providers, on the other hand, need to sell their first services at very low prices to gain
identity premium before selling other services at higher prices. If providers have many services
to sell, eventually they would be able to sell at very high price thanks to their gained identity

premiums.
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In general small values of A\ = % < 1 are preferable, such that eventually providers

(1—¢
do not get a so much high price, as from (4.21). The parameter A depends on the nature of the

gain :
rice < 1 and the system design parameters ¢, k.

problem domain 0 < v =

For example, in eBay-like systems, cheating means that the provider (seller) may gain the
whole price paid to the article, ¥ = 1 and A = 1/((1 — &)k — &¥) > 1 for any k > 0, < 0.5.
This means that a completely open (i.e., with cheap identities) and decentralized version of an
eBay-like system is likely impractical if everyone is rational: buyers must have to pay very high
prices to ensure the cooperation of the sellers, otherwise sellers simply cheat to gain more and
then whitewash the bad behavior. In another example of service provisioning, providing bad
services has a lower but non-zero value to the client, it is acceptable to assume that v < 1.
Given the availability of a sufficiently accurate trust learning mechanism with small € and with
appropriate k, it is still possible that A < 1.

With A > 1, the price of services ad infinitum can not be bounded and depends on the
number of services the provider wants to sell during its whole life-time. With A\ < 1, it is
possible to design a pricing mechanism based on the identity premium concept so that the price
ad infinitum L — oo is bounded as follows.

Ifu; =1,i=1,..,N, as in item (ii) of Theorem 3, it is clear that lim;_,~ f(L) = ’\(11:A¢)7

thus the price ad infinitum is naturally bounded. A similar result can be obtained even if u;s
are different. Noting that u; < u*,2 = 1,...,N. Use the same ¢ = ¢; for i = 1,..., N, then an

alternative for the identity premium in (4.21) is:

L - 1— AL
FL) = w'(1=¢) Y AT =ut(1- 9T (4.22)
=1
= lim f(L) = %}Cp) (4.23)

With this identity premium the price ad infinitum is also bounded by 1—¢-+ W? for A < 1.

Understanding identity-premium as probability of defection: with A\ < 1, let us rewrite
the price P(¢, f) as:

PO.f) = u(l-¢)+ f(D)=ult - (6 L2y
LA w1910 w1 9)
L—oo U o L—o00 u(l — )\) o U(]. — )\)
) !
1+ U(l——Af\) 1+ u(i*,\A)

0<dmin <1 & A<1

Therefore, with A < 1 and 1 > ¢ > ¢uin > 0, ¢ — f(L) can be interpreted as the probability
the client believes the provider would defect in the current transaction, and the price of the
service being transacted is determined based this defection probability. Under the proposed
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identity premium-based pricing framework, the probability of defection is considered as smaller
for those providers having stayed longer in the system.

In the next section, we will study whether such the use of an identity premium concept
brings significant advantages or disadvantages to the providers and based on that to find an

optimal setting for the pricing mechanism P(¢, f) to minimize these (dis) advantages.

4.7.2 Inefficiency of an identity premium-based pricing mechanism

Theorem 3 puts a requirement on the shape of the identity premium function f(.), yet it places
no special requirements on the parameter ¢ that decides the initial price of a service.

Under the pricing scheme P(¢, f), a provider initially must sell a service at some price lower
than its actual value, and increase the price over time to compensate for previous losses. It is
important to understand whether a provider may gains or loses a significant amount from such
a pricing scheme. Compared to a usual system not employing the identity-premium concept,
the additional benefit g(N) that the pricing scheme P(¢, f) gives a provider with N services to
sell is defined as:

N N N
gIN) = [us(L =) + f(i =] =D wi =Y (f(i = 1) — wicy) (4.24)
i=1 i=1 i=1
where u, < u; < u* is the actual price of the service sold in i-th transaction, ¢; is the parameter
deciding the initial price at zero identity premium, and f(4) is the identity premium of the i-th
transaction.
We formally define such additional (dis)advantages, or sum of gains or losses of all providers

as the efficiency of the pricing scheme in a system (Def. 10).

Definition 10 The inefficiency of a system with an identity premium-based pricing mechanism
is define as ) gs(N), where gs(N) = Efvzl(f(z — 1) — u;¢;) is the individual (dis)advantage

of a provider s.

Depending on the nature of the problem and the sequence of services sold by a provider,
the total gain g(N) of the provider from his identity premium can be positive or negative. If
g(N) > 0, in the current system clients pay higher prices for services compared to a system
without an identity premium-based pricing mechanism. As a result, higher values g(N) may
deter clients from participating in the system, as services are generally more expensive. On
the other hand if g(/N) < 0, providers must accept selling services at lower prices compared
to normal systems where no identity premiums are used. Negative values of g(N) may deter
participation of providers since they generally get less revenue.

Thus collectively, the average gain g(INV) reflects the inefficiency of the system using an iden-
tity premium-based pricing scheme P(¢, f) in encouraging participation of clients and providers.
g(N) is the cost inherent to the problem of cheap identities and unfortunately can not be further
reduced as it does not rely much on system wide setting, e.g., ¢;, but on other domain specific
variables, such as the values u; of the services and the corresponding gains v; by cheating.
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Theorem 4 Consider a simple case where providers sell services of the same original price of
1. We have:

e For any provider with N services to sell and N is known, the identity premium-based
pricing mechanism has no inefficiency to the system w.r.t this provider, i.e., g(N) =0, if
the initial price is set at 1 — ¢ where:

ANTENAZ 4 (N = 1)\

¢ T O (NFIATN (4.25)

o [f all providers have infinitely many services to sell and A < 1, the identity premium-based
pricing mechanism has a small bounded inefficiency of —ﬁ to each provider if the initial

price for a service is 1 — \.

Proof 8 Since u; =1,i=1,..., N, we have a simplified identity premium function:

L) = SN —g) = (- T (426)
The inefficiency of the pricing mechanism to the provider is:
N N 1— \i—1
g(N) = D (fi-1)-9) =) (1-oA—F——9) (4.27)
=1 =1
oM =9) =1 =N A1 —¢)(1-AY)
- N 5 - aoy (4.28)
_ AT NN A (VDA gAY — (N4 DA+ N) (4.20)
(1=A)?
B AV N2 (N-DX A
IN)=0 & b= Fa N IpsN B (4.30)
It is observed that for any A > 0:
A = MWH N L (N-DA=NAN1-X) = A1-\Y) (4.31)
= M1=XN[N-(1+A+...+X""H>0 (4.32)
B = MW (N+DA+N=N(1-X)-x1-2Y) (4.33)
= (1=XN[N-A1+A+...+2¥ >0 (4.34)
and A—B = —N(1-X?<0 (4.35)

Therefore, with any X\ > 0, in (4.30) we always have 0 < ¢ < 1.
For N — oo and A < 1, it follows that ¢ — % = )\, and the initial service price is 1 — \.
The price ad infinitum in this case is 1 — X+ X1 —A) — 1. We can verify that for this specific

N
setting, the inefficiency of each provider is imy_o g(N) = — limy_ o )‘(11:1 ) = —ﬁ, thus

the theorem holds naturally.
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4.7.2.1 Considering the risks of clients

It is also important to estimate and compare the risk of a client when participating in two
systems: one using an identity premium-based pricing mechanism, and one without such pricing
scheme. By convention, the risk of a client in buying a service with a price p and with a
probability ¢ that the provider cheats in the transaction is defined as pc.

We consider the following two cases. First, if providers are rational and sell infinitely many
services, according to Theorem 3, the probability that a provider (in a system using an identity-
premium) cheats in any transaction is zero. Thus the risk of a client when participating in a
system with identity premium-based pricing is also zero, irrespectively of the price of the service.
This is true for every client in any transaction and for any A > 0. The price may be very large for
A > 1 or may be bounded if A < 1. In the former case, the application of an identity premium-
based concept may be not preferable as high prices would naturally deter the participation of
potential clients.

In the second case, suppose that each provider sells a limited number of services, and the
distribution of number of services N of providers is known, with a cumulative distribution
function F'(N). From Theorem 3, in a system with price determined based on identity premium,
a rational provider would only defect in selling the very last service. Consider the transaction
on a service with original price u offered by a provider who has finished L transactions. The
probability this provider cheats would be the probability that this provider has no more services
to offer after the current transaction, which is:

¢c = 1-F(L+1)

The risk of the client in transacting with this provider is thus:

riski(u, L) = u(l—qH—%)(l—F(L—&—l))
= uw(l-FL+1)1-¢+ “*A(luzlq?(i)_ )
L’ _ y(u' _qy
LI O (et e I

On the other hand, in a system without identity premiums and with possible cheap identities,
anytime the provider may defect and rejoin with new identities without being punished. All
other factors! being equal, the risk of the client would be:

riska(u, L) =u.l=u

We compare the two risks riski(u, L) and risks(u, L) in two following cases. First, as proven
in Section 4.7.1, for A < 1 and ¢ > ¢in = @, it is apparent that 1 — ¢ + %L) <1 It
follows that with any L > 0, riski(u, L) < u = riska(u, L). In other words, the system with
identity premium is always better for the clients in terms of minimizing the risk of being cheated

when \ < 1.

Isuch as the rationality of the provider and his malicious intention
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Second, for A > 1, one may verify that there always exists some L,,;, > 0 such that for
L > Lyyin, risk1(u, L) > riska(u, L). In this case, it is more risky for client to buy services from
providers with larger L compared to a system not using an identity premium concept. This
is intuitive since while their services are priced more highly, it is still more likely that these
providers may finish trading very soon.

In summary, a system with identity premium may be much better for clients in terms of
minimizing their risks under certain conditions, namely in those application scenarios with

A < 1, or where providers have infinitely many services to sell to their potential clients.

4.8 Related Work

A large number of works in the trust research literature focus on developing appropriate compu-
tational models for learning peer behaviors based on their historical performance information,
for example (Kamvar et al., 2003; Levien, 2002; Srivatsa et al., 2005; Xiong & Liu, 2004).
Comparative surveys of research literature on this subject can be found elsewhere (Dellarocas,
2005b; Despotovic & Aberer, 2006; Golbeck, 2006; Josang et al., 2007). These works are com-
plementary to the work in this chapter, since any robust and accurate computational learning
models can be used in the reputation-based peer selection protocol.

This work is inspired by the analysis of Dellarocas (Dellarocas, 2005a), which studies various
design parameters of reputation mechanisms. Some conclusions in the work of Dellarocas (Del-
larocas, 2005a) coincide with the analysis in this chapter, e.g., the robustness of the naive
trust model algorithm (Section 4.3.3). However, this work has considered many more aspects
of a reputation-based computational trust model, namely its accuracy and cost, from which I
propose an approach to use such model in an incentive-compatible and cost-efficient way, as
well as performed empirical experimental studies of reputation effects on strategic agents in
decentralized and dynamic environments.

The cost-efficient reputation management solution in Section 4.4 is an application of in-
spection game theory (Avenhaus et al., 2002), wherein an accurate yet expensive trust learning
algorithm plays the role of an inspector detecting dishonest behaviors of sellers who take the
role of an inspectee of the game. The provided results confirm the important role of an effec-
tive identity management scheme, as earlier identified by Friedman and Resnick (Friedman &
Resnick, 2001). To the best of my knowledge, this work is the first work to apply inspection
game theory in reputation systems. The most related work to the proposed cost-effective rep-
utation management approach is (Agrawal & Terzi, 2006), yet it addresses another problem
of how to control the behaviors of agents in a centralized sovereign information sharing sce-
nario. They propose to use an auditing device as a trusted centralized agent and decide the
appropriate frequency of auditing. The notion of punishment amount and frequency are similar
to the notion of probability to use the accurate and expensive computational trust models in
the peer-selection protocol of this chapter. My work, on the contrary, studies the possibility
of using computational trust mechanisms in a cost-effective way and provides general results

applicable to a wider range of applications with different degrees of centralization.
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4.9 Discussion and Conclusion

Many interesting observations can be derived from this analysis. First of all, by showing that
there exist certain sufficient conditions for a computational trust model to be effective in enforc-
ing cooperation, this work provides an initial positive answer to the question whether existing
computational trust models in the literature can be used effectively to enforce cooperation in
environments where both malicious and rational behaviors are present. It also implies that in a
heterogeneous environment where peers use different learning algorithms with certain accuracy
to learn trustworthiness of their potential partners, cooperation also emerges.

Secondly, depending on the presence of rationality from participants of the scenario being
studied, either simple or sophisticated trust learning algorithms are appropriate: in environ-
ments with fully rational peers caring about their utilities, simple trust models are sufficient to
stimulate cooperation in the system. In other scenarios where bad peers have the only goal of
bringing the system down at any cost, sophisticated learning algorithms are necessary to filter
out malicious agents.

The presented peer-selection protocol is based on the idea to use a computational trust
model to evaluate the reliability of a most recent report on a seller. Such a model plays the role
of an inspector to detect only past malicious behaviors of raters and sellers. The introduction
of such a simple selection protocol that punishes bad peers creates a social control mechanism
to stimulate cooperation of rational peers in the next transactions. This is different from other
systems that mainly use sophisticated learning algorithms to predict future peer performance
from the past. The inclusion of well-tested learning algorithms with high accuracy to filter out
malicious partners also helps the system to perform well even in mixed environments with var-
ious malicious and rational behaviors. To a larger extent, the presented protocol establishes an
umbrella framework to use reputation information effectively by exploiting both its sanctioning
and signaling roles (Dellarocas, 2005a) in decentralized and self-organized systems.

The theoretical result of this chapter proves that the key to ensure cooperation is not the
accuracy /errors of the trust learning algorithm being used, but on the management of identities:
establishing a new identity must be costly so that peers want to stay in the system for many
transactions rather than changing their identities and start over. Such whitewashing behaviors
can be prevented by using many existing techniques, for example, to impose an entrant fee on
newly joined peers. For those applications where peers may get very large temporary gains
for cheating, it is very hard to design any totally decentralized incentive-based mechanism to
motivate short-term peers to be fully cooperative, and reputation information may not be an
effective tool anyway.

I have also analyzed possibilities of enforcing cooperation in the case where cheap identi-
ties are possible. This analysis reveals that for certain applications where cheating gains are
bounded, the problem of cheap identities can be solved effectively. Under certain conditions, a
pricing mechanism based on the notion of an identity premium is beneficial to both providers
and clients in the system. Such an identity premium-based pricing mechanism ensures that ra-

tional providers are better-off cooperative in all but their very last transaction, even in presence
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of possible strategic manipulation of ratings and the cheap cost of identities. This is the very
first work on solving the problem of cheap pseudonyms by using decentralized trust management
mechanisms in practical application scenarios.

As future work, it is my interest to derive some theoretical bounds on the cooperation level
in the system using the proposed reputation management approach, given arrival and up-time
distributions of peers. An implementation of various serving strategies of bounded rational peers
in the simulation framework may be also necessary. Such empirical simulations may give us
more insights to the effectiveness of different trust learning algorithms in enforcing cooperation
and building trust in presence of bounded-rational peers with limited available information.
At the end of the day, this analytical and simulation approach would help us to provide a
“cookbook” for the application of different trust learning algorithms in open and decentralized

systems.
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Chapter 5

Applications of Computational
Trust Models

This chapter presents two practical applications of computational trust models in two different
areas. In the first application, I propose using a reputation-based trust management approach
to enable better selection and ranking of (Web) services in a service-oriented architecture based
on quality of the services (QoS). In this approach, ratings on different service quality attributes
are collected from many users, while trust management techniques are applied to select and use
only reports of reputable users in the quality evaluation.

The second application of computational trust models presented in this chapter is the use
of an appropriate trust measure to evaluate and select most potentially reliable delegates in a
key backup and recovery scenario in a distributed social network. Therein the service provided
by each peer is the storing of a share of some secret keys, and the trustworthiness of a peer is
well correlated to its reliability in keeping those shares secretly.

The work in this chapter is published in (Vu et al., 2005a, 2009a). The QoS-based service
selection and ranking algorithm described in this chapter is a part of my other work on Semantic
Web service discovery in framework of the European research project DIP (dip, 2004), which is
published elsewhere (Vu et al., 2005b, 2006, 2007)

5.1 QoS-based Service Ranking and Selection

QoS-based service selection mechanisms will play an essential role in service-oriented archi-
tectures, as e-Business applications want to use services that most accurately meet their re-
quirements. Standard approaches in this field typically are based on the prediction of services’
performance from the quality advertised by providers as well as from feedback of users on the
actual levels of QoS delivered to them. The key issue in this setting is to detect and deal with
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false ratings by dishonest providers and users, which has only received limited attention so far!.
This work presents a new QoS-based selection and ranking for online services, using a novel
technique of trust and reputation management to filter out biased reports. Specifically, the
proposed approach relies on a number of reports from trusted agents as reference reports and
additionally use clustering to identify group of related raters. Only quality ratings proven to
be reliable are included in the quality evaluation of the services. I give a formal description
of the approach and validate it with experiments which demonstrate that the solution yields

high-quality results under various realistic cheating behaviors.

5.1.1 Introduction

Practical applications of service oriented architectures (SOA) are ubiquitous and have grown
much beyond organizational and application domain boundaries. Among prominent examples
are workflow management systems (wmf, 2008), e-Science applications on the Grid (Foster &
Kesselman, 2003), and computing infrastructures for commercial sites on the Cloud computing
platform (Varia, 2008).

While provisioning of services has to take place electronically or traditionally depending
on the service application domain, eventually any service can be described, discovered and
requested electronically via the Internet. Therefore, most of them can be effectively represented
by associated Web services. Among them, services can be described, requested and executed
over the Internet are becoming an essential part of business applications. For instance, several
commercial systems have built their computing infrastructures using available data storage
services (ama, 2008), software-on-demand (salesforce.com), and online computational services
(Google App Engine, Amazon EC2). Examples of traditional services that can be published as
Web services are even more numerous, from hotel booking, travel planning to house building
or accommodation services (O’Sullivan et al., 2005).

Quality of service (QoS) is of paramount importance in SOA environments. Thanks to its
loosely coupled properties, composing services of an SOA-based system can be implemented by
different (and possibly unknown) providers. Therefore, it is highly important to assure that
quality of those services to be integrated in the system is satisfactory.

In business scenarios with competitive providers, QoS is amongst the most decisive criteria
influencing a user in the selection of a certain service among several functionally equivalent
ones. Thus it is the key to a provider’s business success. Therein a key issue is to enable e-
Business applications to discover services which best meet their requirements in terms of quality,
i.e., performance, throughput, reliability, availability, trust, etc. Thus QoS-based Web service
selection and ranking mechanisms will play an essential role in service-oriented architectures,
especially when the semantic matchmaking process returns lots of services with comparable
functionalities.

This work presents a QoS-based Web service selection and ranking approach which uses trust

IThis work, published in (Vu et al., 2005a), is among the earliest work using trust management in quality-
based service discovery and has received numerous citations since then.
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and reputation evaluation techniques to predict the future quality of a service. The work is
based on requirements from a real-world case study on virtual Internet service providers (VISP)
from an industrial partner in one of research projects in my lab (http://dip.semanticweb.org/).
In a nutshell, the idea behind the VISP business model is that Internet Service Providers (ISPs)
describe their services as Semantic Web services (Berners-Lee et al., 2001), including QoS such as
availability, acceptable response time, throughput, etc., and a company interested in providing
Internet access, i.e., becoming a VISP, can look for its desired combination of services taking into
account its QoS and budgeting requirements, and combine them into a new (virtual) product
which can then be sold on the market. This business model already exists, but is supported
completely manually. Since many ISPs can provide the basic services at different levels and with
various pricing models, dishonest providers could claim higher QoS level to attract interested
parties. The standard way to prevent this is to allow users to evaluate a service and provide
feedbacks. However, the feedback mechanism has to ensure that false ratings, for example,
badmouthing about a competitor’s service or pushing one’s own rating level by fake reports or
collusion with other malicious parties, can be detected and dealt with. Consequently, a good
service discovery engine would have to take into account not only the functional suitability of
services but also their prospective quality offered to end-users by assessing the trustworthiness
of both providers and consumer reports. According to several empirical studies (Despotovic &
Aberer, 2004a; Josang et al., 2007), the issue of evaluating the credibility of user reports is one
of the essential problems to be solved for online service provisioning.

The QoS-based service selection approach is developed under two basic assumptions which
are reasonable and realistic in e-Business settings: First, we assume probabilistic behavior of
services and users. This implies that the differences between the real quality conformance
which users obtained and the QoS values they report follow certain probability distributions.
These differences vary depending on whether users are honest or cheating as well as on the
level of changes in their behaviors. Secondly, we presume that there exist a few trusted third
parties. These well-known trusted agents always produce reliable QoS reports and are used
as trustworthy information sources to evaluate the behaviors of the other users. In reality,
companies managing the service searching engines can deploy special applications themselves
to obtain their own experience on QoS of some specific Web services. Alternatively, they can
also hire third party companies to do these QoS monitoring tasks for them. For example,
sites specializing in QoS monitoring (AlertSite.com, Dot-Com Monitor, Empirix) provide such
a service. In contrast to other models (Maximilien & Singh, 2002; Ouzzani & Bouguettaya,
2004; Patel et al., 2003; Ran, 2003; Tian et al., 2003) we do not deploy these agents to collect
performance data of all available services in the registry. Instead, we only use a small number
of them to monitor QoS of some selected services because such special agents are usually costly
to setup and maintain.

The QoS-based service selection and ranking algorithm we describe in this paper is a part
of our overall distributed Semantic Web service discovery approach, which is published else-
where (Vu et al., 2005b, 2006, 2007). During the service discovery phase, after the functional
matchmaking at a specific registry, a list of Web services with similar functionalities is obtained
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from the matchmaking of a service discovery framework, i.e., the services fulfilling all user’s
functional requirements. These services are then selected and ranked based on their predicted
QoS values, taking into consideration the explicit quality requirements of users in the queries.
The output of the selection and ranking algorithm is the list of Web services fulfilling all qual-
ity requirements of a user, ordered by their prospective levels of satisfaction of the given QoS
criteria. So as to perform this selection and ranking accurately, the quality prediction is based
on user reports on QoS of all services, which are collected periodically over time, on the quality
levels promised by the providers, as well as the reliability of this information.

The main contribution of this work is a QoS-based Web service selection and ranking ap-
proach which is expected to be accurate, efficient and reliable. First, the issue of trust and
reputation management has been taken into account adequately when predicting service per-
formance and ranking services based on their past QoS data. Experimental results have shown
that the newly proposed service selection and ranking algorithm yields very good results under
various cheating behaviors of users, which is mainly due to the fact that the use of trusted
third parties observing a relatively small fraction of services can greatly improve the detection
of dishonest behavior even in extremely hostile environments. This is particularly important
as without cheating detection, service providers would have much incentives to generate lots
of false reports in order to obtain higher ranks in the searching results, thereby having higher
probability to be selected by clients and gain more profits. Second, the proposed algorithm is
semantic-enabled by offering support for the semantic similarity among QoS concepts adver-
tised by providers and the ones required by users. This allows the QoS-based service selection
process to work more flexibly and produce more accurate results.

The presentation of this work is organized as follows. First, I briefly mention the related
work in section 5.1.2. Section 5.1.3 presents the general trust and reputation management
model in a Web service discovery scenario. The proposed QoS-based service selection and
ranking approach is described in detail in section 5.1.4. I will discuss various experimental

results in section 5.1.5 and conclude the paper in section 5.1.6.

5.1.2 Related work

Although the traditional UDDI standard, at the time of this work is version 3.0.2', does not
refer to QoS for Web services, many proposals have been devised to extend the original model
and describe Web services’ quality capabilities, e.g., QML, WSLA and WSOL (Dobson, 2004).
The issue of trust and reputation management in Internet-based applications has also been a
well-studied problem (Despotovic & Aberer, 2004a; Josang et al., 2007).

(Chen et al., 2003) proposes the UX architecture that uses dedicated servers to collect feed-
back of consumers and then predict the future performance of published services. (Bilgin &
Singh, 2004) proposes an extended implementation of the UDDI standard to store QoS data sub-
mitted by either service providers or consumers and suggests a special query language (SWSQL)
to manipulate, publish, rate and select these data from repository. Kalepu et al (Kalepu et al.,

Thttp://uddi.org/pubs/uddi-v3.0.2-20041019.htm
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2004) evaluate the reputation of a service as a function of three factors: ratings made by users,
service quality compliance, and its verity, i.e., the changes of service quality conformance over
time. However, these solutions do not take into account the trustworthiness of QoS reports
produced by users, which is important to assure the accuracy of the QoS-based Web service
selection and ranking results. (Liu et al., 2004) rates services computationally in terms of their
quality performance from QoS information provided by monitoring services and users. The au-
thors also employ a simple approach of reputation management by identifying every requester to
avoid report flooding. In (Emekei et al., 2004), services are allowed to vote for quality and trust-
worthiness of each other and the service discovery engine utilizes the concept of distinct sum
count in sketch theory to compute the QoS reputation for every service. However, these reputa-
tion management techniques are still simple and not robust against various cheating behaviors,
e.g., collusion among providers and reporters with varying actions over time. Consequently, the
quality of the searching results of those discovery systems will not be assured if there are lots of
colluding, dishonest users trying to boost the quality of their own services and badmouth about
the other ones. (Day & Deters, 2004) suggests augmenting service clients with QoS monitoring,
analysis, and selection capabilities, which requires each service consumer would have to take
the heavy processing role of a discovery and reputation system. Other solutions (Maximilien
& Singh, 2002; Ouzzani & Bouguettaya, 2004; Patel et al., 2003; Ran, 2003; Tian et al., 2003)
use third-party service brokers or specialized monitoring agents to collect performance of all
available services in registries, which would be expensive in reality. Though (Maximilien &
Singh, 2002) also raises the issue of accountability of these service brokers in their system, the
evaluation of trust and reputation of these agents is still an open problem.

The presented QoS provisioning model is grounded on previous work of (Chen et al., 2003;
Kalepu et al., 2004; Liu et al., 2004; Ran, 2003; Tian et al., 2003). The trust and reputation
management of this work is most similar to that of (Guha et al., 2004; Richardson et al.,
2003), yet the idea of distrust propagation is exploited more concretely by observing that trust
information from a user report can also be used to reveal dishonesty of other reporters and by
allowing this distrust to be propagated to similar ones. Other ideas of the trust and reputation
management method are based on (Aberer & Despotovic, 2001; Cornelli et al., 2002; Whitby
et al., 2005).

5.1.3 A reputation-based service quality management approach

Fig. 5.1 depicts a systematic view of the Web service management life-cycle with respect to
quality evaluation. Service providers publish advertisements of their services with promised
QoS levels on a variety of publishing media. Popular media are public and corporate (private)
UDDI business registries, professional forums and social networks, or traditional Web portals.
Potential service consumers typically use a search engine to discover functionally-matched ser-
vices with a desired QoS level and select one among them to invoke. In practice, such a search
engine in Figure 1 may represent either a dedicated Web service search engine, e.g., Seekda!

Thttp:/ /seekda.com/
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Figure 5.1: An overview of the reputation-based approach to Web service quality management.

or a manual search process performed by the user, possibly with traditional Web search tools.
A search engine collects feedback on different QoS properties of available Web services from
various information sources, including trusted monitoring parties. It then estimates the QoS
of available services, performs the ranking and recommends the selection of the best services
according to user’s QoS criteria.

The interaction among participants in a QoS-based service selection and ranking system is
represented in Fig. 5.2 where Sy,..,S,, are Web services, Uy,...,U,, are service users, RPy,...,RP},
are registries from which quality advertisements on different services are collected. Tp,...,T, are
the trusted QoS monitoring agents providing reliable QoS ratings (possibly at certain cost) that
will be used as referenced sources for the trust evaluation approach later on.

A user (U;) who observes a normalized QoS conformance value x;; (see Definition 11 in the
following section) from a service S; may report a value y;; to a registry RPj, which manages the
quality description of S; as advertised by its provider. This registry will collect users’ quality
feedbacks on all of its managed Web services to predict their future performance and support
the QoS-enabled service discovery based on these data. Note that a user generally reports a
vector of values representing its perception of various quality parameters from a service. Also,
x;58 and y;;8 are QoS conformance values, which already take into account the quality values
advertised by providers (see Definition 11 in the next section). In this work, only the selection
and ranking of services with reputation management in one registry peer is considered. The
study of interaction among different registries is subject to future work.

Given the above interaction model, a number of observations can be made. An honest user
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Figure 5.2: The system model of a QoS-based service discovery scenario

will report y;; = 2;; in most cases (in reality, they may not report if not willing to do so). On
the other hand, a dishonest reporter who wants to boost the performance of S; will submit a
value y;; > x;;. Similarly, cheating reports generated by S;’s competitors will report y;; < ;;
to lower its QoS reputation. In addition, (colluding) liars may sometimes provide honest reports
and behave dishonestly in other cases (Despotovic & Aberer, 2004a). Accordingly, we presume
that the differences between y;;s and wz;;s follow certain distribution types whose expected
values depend on the behavior of the user, i.e., approximate to 0 for honest users and different
from 0 in the case of liars. We use this assumption since in general dishonest users are likely
to change their actions over time in order to hide their cheating behaviors with occasionally
reliable reports. Moreover, as the quality parameter values of a service really depend on many
environmental factors, even trusted agents and honest users may obtain and report those values
a little different to each other when talking about the same service. However, the expected
value of trustworthy reports on QoS of S;, e.g., the average of corresponding reliable y;; values,
will reflect its real quality capability. The expected values of these distributions, e.g., means,
normally represent the behaviors of users, whereas other parameters, e.g., standard deviations,
will represent the uncertainty in actions of users, either accidentally or by purpose. My goal is
not only to evaluate whether a user is honest but also to compute the expected conformance
values from the reports of the most honest users, e.g., the average of values y;;s by the most
reliable reporters, from which the future quality of S;s will be predicted.

5.1.4 QoS-based service selection and ranking

In this approach, quality properties of (Semantic Web) services are described by concepts from
a QoS ontology and then embedded into service description files using techniques suggested
by WS-QoS (Tian et al., 2003) and Ran (Ran, 2003). The value of a quality parameter of
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a Web service is supposed to be normalized to a non-negative real-valued number regarding
service-specific and call-specific context information where higher normalized values represent
higher levels of service performance. It is noteworthy that in practice, the issue of normalizing
the values of various quality attributes is complicated and deserves another work of its own.
However, with most frequently used QoS concepts, e.g., reliability, execution-time, response-
time, availability, etc., the answer is well-defined and straight-forward. For instance, a Web
service with a normalized QoS parameter value for reliability of 0.90 will be considered as more
reliable to another one with a normalized reliability value of 0.50. In this case the normalized
reliability is measured as its degree of being capable of maintaining the service and service
quality over a time period 7. The ontology language used to describe service semantics and to
define the QoS ontology is WSMO!, but other models, e.g., OWL-S2, would also be applicable.
For experimental evaluations, a simple QoS ontology has been developed for the VISP use
case including the most relevant quality parameters for many applications, i.e., availability,
reliability, execution time, etc. Users and providers are assumed to share a common ontology
to describe various QoS concepts. This QoS-enabled Semantic Web service discovery framework
is described in detail elsewhere (Vu et al., 2005b, 2006, 2007).

5.1.4.1 Predicting service performance

In order to predict the quality of a service S;, QoS feedbacks on its performance over a time
period W are collected and a linear regression approach is used to predict its future quality

conformance from past data. First let us begin we two basic concepts.

Definition 11 The quality conformance value cfj of a service S; in providing a quality attribute
dk. _pk . A

fj = ”T.jp” where dfj is the normalized value of g;; that S; actually

delivers to a specific user at time k and pfj is the corresponding normalized QoS value promised

gi;j at time k is defined as ¢

by S;’s provider at k.

Definition 12 A user QoS report R, either by a normal service consumer or by a trusted
monitoring agent, is a vector {u, S;,t, L}, where u is the identifier of the user that produced
this report, S; is the corresponding service, ¢ is the timestamp of the report and L is a quality
conformance vector of {g;;,cf;} pair values, with g;; being a QoS attribute offered by S; and

cgj being ¢;;’s quality conformance that S; provides to this user at time ¢.

Note that a normalized QoS conformance value already considers the discrepancies between
quality level advertised by the provider and the actual quality experienced by the use, the
quality prediction in this work already covers possibly cheating behaviors of providers. In order
to filter out as much dishonest reports as possible and to take only the most reliable ones in the
QoS prediction, a reputation-based evaluation of trustworthiness of different reports is applied
via two steps: a report preprocessing and a report clustering phase. The first phase evaluates

the reliability of collected reports by applying a trust-and-distrust propagation approach, which

Thttp://www.wmso.org/
%http://www.daml.org/services/owl-s/
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relies on some initial trusted reference reports produced by special monitoring agents. Two QoS
reports are considered as comparable if they are related to the same service during a specific
time interval §; and as incomparable otherwise. Generally, this §; can be set as big as the length
of the period during which the corresponding service provider does not change the promised
quality values of this service. Two comparable QoS reports are considered to be similar if the
squared Euclidean distance between their conformance vectors is less than a specific threshold.
On the contrary, they are regarded as dissimilar if this distance is greater than another threshold
value.

The report preprocessing step follows a trust-distrust propagation approach as shown in
Algorithm 5. n., and np1,np2 (np1 < npe) are threshold values to estimate a user as cheating
or honest regarding to the similarity of its reports to other cheating/honest ones (line 9,17 and
18). N and T represent for how long and how frequent a user stay in and submit QoS reports to
the system. The values of np1, np2, nen, N and T are design parameters to be chosen depending
on properties of the collected reports after running the algorithm several times. Generally,
higher values of these parameters stand for higher level of caution when estimating behaviors
of users regarding current evidences against them. Note that the algorithm always terminates
since the number of users is finite and since after each iteration of this algorithm (line 11 or 19),

either the behavior of one more user (as cheating or honest) is revealed or the loop terminates.

Algorithm 5 QosReportsPreprocessing()

: all trusted agents are marked as honest users;
: all reports of trusted agents are marked honest;
: repeat

all unmarked reports of each cheating user are marked cheating;

1
2
3
4
5:  for each unmarked report do
6 if this report is dissimilar from an honest report then mark it cheating;
7 if this report is similar with a cheating report then mark it cheating;

8 end for

9

users with at least n.j, reports similar with cheating ones are marked cheating;

10:  users with at least N reports in at least T' different time are marked frequent;

11: until there is no new cheating user discovered;

12: repeat

13:  all unmarked reports of each honest user are marked as honest;

14:  for each unmarked report and each report marked cheating do

15: if this report is similar with an honest report then mark it honest;

16:  end for

17:  unmarked users with at least nj; reports similar with honest ones are marked honest;

18:  users marked as cheating and having at least npo reports similar with honest ones are re-marked honest;

19: until there is no new honest user discovered;

After the preprocessing phase finishes, a certain number of cheaters and honest users are
identified. However, this trust-distrust propagation phase may not be able to evaluate the
reliability of all reports, i.e., certain users may use only some services that are not popular to

other users, and as if the values of np1,np2 and n., are set too high in Algorithm 5.
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Therefore, in the next step we have to estimate the trustworthiness of the remaining reports
whose reliability has not been evaluated. To achieve this, it is assumed that collusively cheating
users will cooperate with each other in order to influence the system with their dishonest
feedbacks. As a result, users within each group will produce similar values and naturally form
different clusters of reports. Thus it is possible to apply well-known data-mining techniques in
this situation to discover various existing clusters of reports related to those user groups. In
this work, a standard convex k-mean clustering algorithm is used on each set of QoS reports
related to a service during the time interval §; with the following metrics: the distance between
two comparable reports is defined as the Euclidean squared distance between two corresponding
quality conformance vectors and the distance between two incomparable ones is assigned a large
enough value so that these reports will belong to different clusters.

After the trust and reputation evaluation in the two above phases, for each service .S;,
we will have a list G; of groups of reports on QoS of S5; over time. Generally, G; includes
the groups containing those reports that were previously marked as honest/cheating during the
trust-distrust propagation phase, as well as other clusters of reports obtained after the clustering
step. We will assign the credibility w? of a report group g; € G; as follows. Firstly, all dishonest
ratings are eliminated: we would assign w? = 0.0 for those report groups marked as cheating
during the trust-distrust propagation. If there exists the group ¢? of reports previously marked

honest during that step, we assign w{® = 1.0 whereas letting w{ = 0.0 for the remaining groups.
g

Otherwise, w] is estimated proportional to the probability that the group g; is trustworthy
among all the other groups. The used heuristic is to assign higher weight to clusters that are
more densely populated, having bigger size and with more frequent users. This assumption
is reasonable, as the reports of independent cheaters are likely to be scattered. In the case
liars cooperate with each other to cheat the system, there would be strong correlation among
reports of such colluding cheaters. The size of their corresponding clusters will not exceed
those consisting only of honest reports as it would be too costly to dominate the system with
numerous and clustered dishonest ratings. Even if dishonest providers try to produce lots of
more well-similar reports so that they could get high influences to the final ranking results, these
values will be separated from honestly reported values and therefore are likely to be discovered
during the distrust-propagation phase (line 3 to line 11 in Algorithm 5), provided there are
sufficient trusted reports to use as reference.

Specifically, w¢ could be estimated based on the following information: the number of users
in the cluster g; (size?), the number of users producing reports in all clusters of G; (allusers;),
the number of frequent users in this cluster (frequent?), the total number of frequent users in
all clusters of G; (all frequent;), as well as the average distance df from the member reports
of cluster g; to its centroid values. Based on the model in section 5.1.3, the reliability of a
report would depend on the distance between its conformance vector and that of an honest
report. Therefore, the similarity among reliability of different reports in one cluster g; would be
inversely proportional to its dY value. Furthermore, a report in g; would be honest in two cases:
(1) it is submitted by a frequent and honest user; (2) it is produced by an infrequent and honest
user. Let Ppreq [and P, freq] be the probability that this report is of a frequent user [and an
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infrequent] user, respectively, and let Pfreqr [r€SP. Pinfreqr] be the probability that frequent
[resp. infrequent] users report reliably, then we have w{ = & .(Pfreq.Prregr + Pinfreq-Pinfreqr),

where Ppreq = % and Piufreq = 1 — Ppreq- Prreger and Pipfreqer could be estimated by
comparing reports of trusted agents with those of sample frequent/infrequent users. The value
of C represents the belief in the relation between the density of a report cluster and the reliability
of its member reports, which is considered as a system parameter to be set by experience.

The future quality conformance éij of a service S; in providing a QoS attribute g;; is
predicted using linear regression. Specifically, we have: éij = LinearRegression(Ufj), t e
{0,1,...,(W—=1)}, where U:j is the evaluated QoS conformance value of the quality parameter
¢ij at time ¢, and W is the window size of the service historical performance.

We compute 6; as the average of conformance values reported by various user groups in
the system at that specific time point, using the evaluated credibility w{s as weights in the
computation. In other word, Uzj = Zf%cwgcﬁ where C}; is the mean of conformances of a
report group g; on S;’s quality attributeglqij ’Latltime t, i.e., a centroid value of a cluster/group
of reports produced after the trust and reputation evaluation phase. Given the assumption on
probabilistic behavior of users and services as in section 5.1.3, éij is seen as an estimate of the

expected value of S;’s QoS conformance in providing quality attribute ¢;; to users.

5.1.4.2 QoS-based service selection and ranking

The QoS requirements in a user query are definedas a vector @ of triples {g;,n;j,v;} where
q; represents for the required QoS attribute, n; is the level of importance of this quality at-
tribute to the user and v; is the minimal delivered QoS value that this user requires. To rank
services according to its prospective level of satisfying user’s QoS requirements, the Simple
Additive Weighting method is used. This method, despite its simplicity, has been empirically
shown to produces ranking results very close to those of more sophisticated decision making
techniques (Ouzzani & Bouguettaya, 2004).

Thus, the QoS rank of a service S; in fulfilling all quality criteria depends on the weighted

Y eqni-Piy

o in which P;; = wij.ﬁaij represents the capability of S; in providing
LIjE

sum 1; =

the quality parameter g;; for users at the query time. The value 'r/l?lij = djv—:”] evaluates the

difference between the QoS value cfij of the quality attribute g;; that .S; is able to offer to its users
according to the prediction and the quality v; of g; required by the user. From Definition 11,

%7 where Cj; is the predicted QoS conformance value for

we can compute ﬁ?iij = ;
quality attribute g;; and p;; is the corresponding QoS value promised by provider of S; at
current time. w;; is a weight proportional to the semantic similarity m;; between g;; and the
QoS ontology concept g; required by the user, i.e., the degree of match as in (Paolucci et al.,
2002). In other words, higher ranks are given for services offering the most similar QoS concepts

at the higher levels compared to the ones required by users. In our program we simply use the
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following definition to evaluate w;;:

1.0 if myj=ezact; (i.e., g;; is equivalent to g;)
wi; = ¢ 0.5 if myj=pluggin; (i.e., ¢;; is more general than g¢;) (5.1)
0.0 if my; € {subsume, failed}; (i.e., otherwise)

In order to avoid the time-consuming semantic reasoning step and to accelerate the selection
of only services fulfilling all required QoS parameters, an inverted QoS matching table is used
to store the matching information for frequently accessed quality attributes, similar to the idea
proposed by Srinivasan et al (Srinivasan et al., 2004). With each attribute g; in this table, a
list Lgos; of records {Sij, w;j, az”} is computed where w;, ciij are estimated as above and Sy;
identifies a service having certain support for ¢;. Given the list L of services with similar func-
tionalities, the discovery engine performs the QoS-based service selection and ranking process
as in Algorithm 6.

Algorithm 6 QosSelectionRanking(ServiceList L, ServiceQuery Q)
1: Derive the list of QoS requirements in Q: Lq = {[q1,n1,v1], ..., [qs, s, Vs] }

2: Initialize Score[S;;] = 0.0 for all services S;; € L;
3: for each quality concept q; € Lq do

4 for each service S;; € L do

5 Search the list Lgos of g; for Sy;;

6: if S;; is found then

7 Score[S;;] = Score[S;;] + %(d”v—;%),
8 else

9: Remove S;; from L;

10: end if

11:  end for

12: end for

13: Return the list L sorted in descending order by Score[S;;] s;

5.1.5 Experimental results and discussion

The presented service selection and ranking algorithms are implemented as a QoS evaluation
module in a Semantic Web service discovery component (Vu et al., 2006). The effectiveness of
these algorithms are then studied under various settings. Three representative quality param-
eters are chosen, namely availability, reliability and ezecution-time taken from the VISP case
study.

I then observed the dependency between the quality of selection and ranking results and
other factors, such as the percentage of trusted users and reports, the rate of cheating users in
the user society and the various behaviors of users. Specifically, the effectiveness of the service
discovery is measured by estimating differences in the quality of results when running evalua-
tions in four different settings: In the ideal case the discovery engine has complete knowledge,
such that it knows correct QoS conformance values of all published services in the system over

a time window W and performs the selection and ranking of services from this ideal data set.
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In the realistic case, the presented algorithms with the proposed approach of trust propagation
and report clustering to filter out biased reports are run to evaluate the reliability of every re-
port. The optimistic case corresponds to the selection and ranking services without considering
any trust and reputation issues, i.e., the system simply uses the average of all reported confor-
mance values to predict services’ performance and to perform the QoS ranking. The naive case
corresponds to the selection of services based only on quality values promised by the providers,
i.e., the system trusts all providers completely. The goal of experiments in this section is to
show that the obtained results of the QoS-based service discovery process are more accurate
and reliable in the realistic case with various cheating behaviors of users, they would be much
worse in the optimistic case, and the worst with the naive method thus clearly showing the
contribution of my approach.

The quality of selection results produced by a selection and ranking algorithm can be mea-
sured by four parameters, namely recall, precision, R-precision and Top-K precision, of which
the R-precision is the most important quality parameter as recognized by the Information Re-
trieval community. Recall that R-precision is the fraction of truly relevant results in the R
highest ranked results, where R is the number of truly relevant results obtained with a perfect
service search engine. In this work, these parameters generally represent the fraction of ser-
vices that are most relevant to a user among all returned services in terms of their real QoS
capabilities. Apparently, the results would be the best in the ideal case with a perfect search
engine, i.e., its recall, precision, R-precision and Top-K precision parameters are all equal to
1.0. Therefore, the results of the ideal case are used as a reference to compare with the quality
parameters in the other three situations. Due to space limitations only the R-precision values
are shown as the most representative experimental results in this section. The other perfor-
mance measures and the weighting Spearman’s correlation between the ideal ranking result and
the ranking vector returned by my method are also measured. Similar performance trends were
observed.

The experiments were prepared with the probabilistic assumption on the behavior of service
providers and consumers. In this work I only present the experiments with Gaussian (normal)
distributions. The extension to other probabilistic distributions is subject to future work. The
community of service consumers was modeled as a collection of different types of users. As
mentioned in section 5.1.3, honest users and trusted agents would report values with the dif-
ference D), ~ Normal(0,0?%) to the real QoS conformance capabilities of services. On the
contrary, cheaters would report values with the difference D. ~ Normal(M,,c.?) to the real
quality conformances that they had obtained. The values of the mean M, varied according to
the purpose of the cheaters, i.e., to advertise or to badmouth a service. The values of o, rep-
resented the variation in reported values of users among different quality attributes of different
services. Users with higher values of o, had higher levels of inconsistency in their behaviors and
therefore were harder to be detected. These liars are then further divided into three sub-types:
badmouthing users who mostly reported badly about services of their competitors, advertising
users who usually exaggerated performance of their own services and uncertain users with in-

deterministic actions and who might act as advertising, badmouthing or even as honest users.
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The values of M, for each type of cheaters were set in the most pessimistic situation, making
the testing environment highly hostile. Specifically, cheaters had their corresponding M.s set
to high/low enough values such that badmouthing users would succeed in pushing services of
their competitors out of the ranking results and advertising users would be able to raise the
QoS ranks of their own services, provided that their reports had been taken into the predicting
process of the QoS-based service discovery engine. This setting is realistic because in business,
companies generally have knowledge of the base requirements of their users as wells as owning
certain statistics of their competitors’ capabilities. More complicatedly, uncertain users had
their M, values belonging to N, specific values each of which was a randomized real value, with
N, was the number of groups of cheaters with varied behaviors. These types of liars would be
harder to be detected since their M, values were uniformly distributed around 0.0. Though
they did not contribute directly to the boosting and lowering the reputation of certain services,
their reports were not so dissimilar from honest reports in most cases and therefore they would
act as good recommenders for other badmouthing/advertising guys. The scalability of the ap-
proach was also tested by increasing number of services, users and QoS reports while keeping
the percentage of user types and other parameters the same. The remaining experiments were
run with 1000 users who produced a total of 50000 QoS reports on 200 services during a time
window of length W = 5. The results of each experiment were averaged over 10 runs.

As a first question, the effects of the trusted reports on the quality of results in the realistic
case are studied. Specifically, I wanted to observe the effects of the percentage of the services
monitored by trusted agents Fispeciq; to the results of the QoS-based service selection and rank-
ing algorithm expressed by R-Precision values. I increased Flpeciar from 1% to 10%, letting the
percentage of trusted users/reports increase from 0.1% to 1% with the increment of 0.1% each
step. The results of this experiment are shown in Fig. 5.3.
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Figure 5.3: Fypecial vs. R-Precision

Correspondingly, Fig. 5.4 shows the percentage of cheating and honest reports correctly

identified during the report preprocessing phase with the trust-distrust propagation method.

In this experiment, a very high number of cheaters are assumed (74% of the total users)
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Figure 5.4: Fypecial vs. Effectiveness of the trust-distrust propagation.

consisting of badmouthing users, advertisers and five different groups of uncertain users. Various
experiments were also carried out to study the effects of o.’s and o},’s values: it turns out that
the trust-based selection and ranking algorithm performed very well with different settings of o,
provided the ratings of the honest user population had small uncertainty, i.e., o, < 0.1. When
the reports from trusted and honest users have higher uncertainty the misclassification errors
by using the trust and distrust propagation became higher and thus the quality of the service
selection and rank in terms of R-precision deteriorated. However even in such worst cases the
results are still comparable with those of the optimistic approach and still much better than
those of the naive approach. The variances of values in cheating reports did not have clear
influence on the result, and the proposed trust management approach is good against those
cheating users whose reports have different values with high uncertainty. This effect is intuitive,
since my proposed approach relies on correlation among ratings from trusted and honest users
to discover reliable ratings and isolate unreliable ones. Given the fact that the QoS conformance
values in the simulation are in the interval [—1,1], the standard deviations of cheating reports
are kept very high (0. = 0.5) and those of trusted and honest users are kept at an acceptably low
level (o5 = 0.01). With the increase of Fipeciar, almost all cheating reports and an increasing
percentage of honest reports can be correctly identified. Accordingly, the quality of the service
selection and ranking results was significantly increased as well. The clustering phase was
actually not performed with Fypeciar > 1% because above this threshold, using only the trust-
distrust propagation was enough to evaluate the credibility of all reports. Although a lot of
honest reports were wrongly identified as cheating, which was due to the cautious approach in
estimating report reliability, the quality of the results was always very good if Fpeciar Was kept
high enough (about 5%). The results were the worst with Fipeciqr around 2% and 3%. In these
cases, as the trust-propagation was not effective and did not identify enough honest reports, and
the quality prediction had to (partly) use the quality values advertised by providers instead.
When Fipeciar was very small (1%), the result was still acceptable (R-Precision = 0.8), since in
this situation the algorithms actually still benefit from the use of the report clustering phase.
i.e., there were enough reports with unknown reliability after the preprocessing of reports such
that the clustering step had enough input data to process. Given this assumption, to maximize
the effectiveness of the proposed trust management approach, it is recommended that we either

124


TrustModelApps/ServiceRanking/figures/e1numws2estimatedReports.eps

5.1 QoS-based Service Ranking and Selection

use only the clustering phase (if Fspecias is small), or if we want to use the trust-distrust
propagation, Fspeciqr should be sufficiently high (Fypeciat = 3 — 5%). As a whole, the result of
the proposed selection and ranking algorithm with trust and reputation management in place
is much better than that of the optimistic and the naive cases, as expected.

The next question to be investigated is the effects of the fraction of cheaters to the quality
of results. I gradually increased the total percentage of all types of cheating users (Fepeating)
which consists of badmouthing, advertising and uncertain users, from as small as 4% to as much
large as 94%p. More specifically, the percentage of badmouthing and advertising users/reports
are raised from 3.33% to 78.33%. Malicious reports from these dishonest users form five dif-
ferent groups of uncertain users with corresponding percentage of dishonest reports increased
from 0.67% to 15.67%. This setting represents the realistic case when there are various types
of dishonest providers colluding with the generated cheating users to boost the reputation of
their own services and badmouth other ones, which could be considered as the most impor-
tant case when there are various types of users with changing behaviors. The results for this
experiment are shown in Fig. 5.5. We kept the percentage of trusted reports at 0.5% and let
Fopecial = 5.0%, as an acceptable fraction collected from observations in the first experiment.
The standard deviations of of cheating and honest reports were kept at 0. = 0.5 and o5, = 0.01

respectivelv.
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Figure 5.5: Fipeating vs. R-Precision

With the reduction of honest users and the corresponding increase of Fepeating, R-Precision
was also reduced. However, the quality of the results in the realistic case was always much
better than that of the optimistic case and the naive case. Even when the fraction of cheaters
Feneating wWas very high (0.84), the R-Precision parameter value in the realistic case was still
acceptable (higher than 0.8). On the other hand, the quality of results without taking into ac-
count trust and reputation management issues, i.e., the optimistic and the naive case, dropped
dramatically in hostile settings. This phenomenon was due to the fact that in a user community
with a very high cheating rate, the proposed trust management mechanism could help discover

and filter out almost all unreliable reports, as shown in Fig. 5.6.

From these experiments a number of conclusions can be drawn. Regarding its efficiency and
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Figure 5.6: Fipeating Vs. Effectiveness of the trust-distrust propagation.

effectiveness, as the trust and reputation evaluation phase uses a trust-distrust propagation and
a data-mining (report clustering) methods, the computational cost can be relatively high. For-
tunately, in the current application scenario, the necessary computations involve mainly local
processing and thus does not require much communication overheads. Additionally, they could
be done off-line on a periodical basis and therefore will not affect much to the system perfor-
mance. Another important observation is that almost no cheating report was wrongly evaluated
as honest even in very hostile settings due to the cautious reputation evaluation mechanism.
Therefore, in reality one can observe the results of the trust-distrust propagation step and incre-
mentally adjust the parameters of the system, e.g., increase Fipeciqr, in order to collect enough
honest reports for the performance prediction phase. We observe that the use of trusted third
parties monitoring a relatively small fraction of services can greatly improve the detection of
dishonest behavior even in extremely hostile environments. However, this effectiveness mainly

depends on the following properties of the set of service users and their corresponding reports:

1. The overlaps in the set of users for each service, i.e., whether the services monitored by

trusted agents have many users who are also consumers of other services.

2. The inconsistency in the behavior of users, i.e., whether a user is honest while reporting
on a service but behaves dishonestly on other cases.

3. The high level of certainty in reports of trusted and honest users, since our approach relies
on the correlation among ratings of honest users to identify reliable reports and eliminate

potentially biased ones.

These factors suggest that trusted agents should be used to monitor the QoS of the most
important and most widely-used services in order to build a good reference data set for the
estimation the behaviors of other users. Currently as the user reports are distributed uniformly
for services in all experiments, this factor has not been taken into account. Additionally, other
techniques can also be utilized to make this method more robust. For example, it is possible to

pre-select the important services to monitor and increase the number of them as well as keep the
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identities of those specially chosen services secret and change them periodically. Thus, cheaters
are not aware of which services they should report honestly in order to become highly-reputable
raters. Such cheaters have to pay a very high cost to have great influences over other raters
in the system. In reality, this also help us to reduce the cost of setting-up and maintaining
trusted agents as we only need to deploy them to monitor changing sets of services at certain
time periods.

5.1.6 Conclusion

This first part of the current chapter presents an application of reputation-based trust manage-
ment techniques in a QoS-based service selection and ranking scenario. A novel reputation-based
trust management approach to evaluate reliability of reports from different users has been pro-
posed. It has been shown that such a trust management mechanism may help the selection
and ranking of services to produce very good results in most cases. As the proposed reputation
management mechanism is robust against various cheating behaviors, the results are generally
of good quality even in hostile situations in which many different types of cheaters make up a
high percentage of the overall users and report values with remarkable variances. By combining
a trust-distrust propagation approach with a clustering method, a majority of cheaters and
honest reports can be correctly identified to be used in the quality prediction. However, there
are a lots of open issues and improvements that need further investigation in the current model.
First of all, the selection of services to be monitored by trusted agents is an interesting point
not yet to be mentioned. Another open problem is how to accurately predict the performance
of newly published services with only few QoS reports and how to motivate users to evaluate
services’ performance and submit their feedback to the service search engine. The selection
of an optimal configuration for many design parameters of the proposed solution is also an

important question that needs to be investigated.

5.2 Secret Sharing in Distributed Online Social Networks

The second part of this chapter studies the use a computational trust model in a very differ-
ent context. We will consider the application of trust management to enhance security of a
threshold-based secret sharing protocol in a distributed online social network (DOSN), where
users need a means to back up and recover their private keys in a network of untrusted servers.
In this scenario, peers acting on behalf of users play the role of delegates that offer secret keeping
services to each other. Selection of reliable delegates plays an important role in such a setting,
as this directly affects the security of the system: delegates keeping shares of the secret may
collude to steal the user’s private keys.

I propose using two techniques to improve the system security: by selecting the most reliable
delegates for keeping these shares and further by encrypting the shares with passwords. A
mechanism is developed to select the most reliable delegates based on an effective trust measure.
Specifically, relationships among the secret owner, delegate candidates and their related friends
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are used to estimate the trustworthiness of a delegate. This trust measure minimizes the
likelihood of the secret being stolen by an adversary and is shown to be effective against various
collusive attacks. Extensive simulations show that the proposed trust-based delegate selection
performs very well in highly vulnerable environments where the adversary controls many nodes
with different distributions and even with spreading of infections in the network. In fact, the

number of keys lost is very low under extremely pessimistic assumptions on the adversary model.

5.2.1 Introduction

A threshold-based secret sharing scheme is a multi-party cryptographical protocol to enable a
user to share her secret with only intended recipients in a distributed system (Schneier, 1995).
A traditional (k,n)-threshold secret sharing protocol splits a secret into n parts (shares), any k
of which (minimum) suffices to reconstruct the secret, e.g., the Shamir approach (Shamir, 1979).
This approach can be well adapted to match the properties of peer-to-peer environments, and
online social networking applications, where a user can not totally trust any other user, and no
other single user is told the whole secret.

I propose a new application of a threshold-based secret-sharing protocol in a distributed
online social network (DOSN). Such a system uses a distributed or a P2P infrastructure for its
users’ data management and storage, while providing functionalities of conventional (central-
ized) social networking sites such as Facebook.com or Orkut.com. There are various motivations
for such a decentralized architecture, foremost among these being users’ privacy and autonomy
from not only fellow users but also from service providers. The vision of DOSN platforms has
been presented in several recent works, e.g., (Buchegger & Datta, 2009; Buchegger et al., 2009;
Cutillo et al., 2009; man Au Yeung et al., 2009), or Tribler.org.

The application of threshold-based cryptographical protocols will be described through a
concrete usage scenario. This scenario comes from the experience in the development of such
a DOSN (Buchegger et al., 2009), where users need a means to back up and recover their

private keys in a network of untrusted servers!

. This example will be also used to elaborate
on the problem studied in this paper, as well as to define the scope of intended solutions for
the problem. A practical realization of this scenario and its related solutions is the recovery of
user’s passwords in a distributed storage system such as Wuala.com.

Private key recovery example: Alice’s computer crashed, so she must use another computer.
She wants to log in to her online social network (a DOSN) from the new computer, retrieve
associated data and resume her life online.

When Alice first created her account using the previous computer, the system generated a
private key as a means of authentication associated with her username. The private key of Alice
is the ultimate secret enabling her to manage her personal data, e.g., to edit a blog entry or
to configure her privacy setting. In contrast to conventional web-based online social networks
such as Facebook.com, where user data are stored at servers owned by the service providers, a

DOSN platform enables Alice to store her personal data mainly on her computer to ensure her

1The two terms secret and private key will be used interchangeably henceforth
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total control on these data. However, anticipating a future crash of the original computer and
loss of the data stored locally on it, and also to increase data availability, Alice’s data is also
encrypted and replicated in other machines. As the private key is difficult to remember and can
also be lost, it is also backed up: Alice split the key according to a (2,3)-threshold cryptography
approach, and stored that in the network itself.

For enhanced security, each part of the key was encrypted by a passphrase chosen by Alice,
resulting in n = 3 encrypted shares. Each of the three delegates Bob, Carol, and Dora is asked
by Alice to keep a different encrypted share. These delegates are expected to only send a share
to the user proven to be Alice.

Since the delegates may not know Alice a priori or they may not be able to meet in person,
they need to verify Alice’s identity (and thus ownership of the secret). Automatic verification,
such as security questions/answers are applicable. These questions/answers can be possibly
different for each delegate and digitally signed by Alice to prevent forgery. Upon successful
verification of Alice’s identity, a delegate sends back to Alice the locally stored encrypted share
of Alice’s secret. Alice recovers her private key by getting any two shares from three delegates,
which she can decrypt using her private passphrase.

Unfortunately, there are several practical problems in using such a secret sharing scheme in
a DOSN scenario.

e Users may be untrustworthy (malicious) when acting as delegates. An untrustworthy user
may keep the shares to steal the secret for her own purposes, e.g., to control and steal
Alice’s private data. A user is untrustworthy either because she is curious or because her
computer is controlled by a malicious software (an adversary). In the above example, the
key of Alice is lost if (and only if) any k > 2 delegates among Bob, Carol, and Dora, are
untrustworthy.

e The original secret can not be recovered without enough trustworthy delegates available,
e.g., both Bob and Carol are on vacation and turn off their computers. Also, delegates
may send invalid shares to reject the owner’s requests, either intentionally or accidental
due to software bugs, network errors, etc.

e The secret owner may forget the passphrase or answers to secret questions, and cannot
recover the secret. The passphrase or these answers may also be lost (weak passwords)

and thus an adversary can easily use this information to steal the secret (identity theft).

The main focus of this work is on the first issue, as in online social networks the collusion
among malicious delegates is even more feasible and detrimental. An adversary can control a
large number of malicious users appearing as legitimate to coordinate the attack and steal the
user’s key. Having the private key, the adversary may tweak security options on the victim’s
machine, enabling malicious applications to control and use that machine for further attacks.
The situation is even worse as a user usually trusts her friends, unaware of whether their
machines are already under control of an adversary. This viral infection may spread through
social links rapidly, potentially leading to an epidemic that may, at worst case, makes the whole
system eventually collapse.

Towards the above problem, most enhancements of threshold-based secret sharing schemes
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include the possibility to verify the validity of a share, to change the threshold dynamically, or
to improve the computational and communicating efficiencies of the approach (Schneier, 1995).
Current solutions to protect keys are to encrypt shares with passwords or to use verifiable
credentials. The resilience of such protocols under collusive attacks of malicious nodes are not
yet sufficiently studied. There has been little study of how to select the most reliable delegates
under various adversary distributions in a large distributed network and understand the impact
of such selection to the security level of the whole system. The main reason for such limitations
is that threshold cryptography is mostly used on systems under control of a single centralized
provider, which is different from the current application context.

To improve security of the secret sharing protocol in such distributed scenarios, this work
proposes a mechanism to select the most trustworthy delegates. Delegate trustworthiness is
estimated by exploiting relationships among the secret owner, delegate candidates, and their
related friends. This trust measure minimizes the likelihood of the secret being stolen by an
adversary and is shown to be effective against various collusive attacks. Extensive simulation
shows that compared to other approaches, e.g., (Xu et al., 2008), such a trust-based selection
performs very well in a variety of scenarios with several nodes under control of the adversary,
with different distributions of adversarial nodes, and even with the spreading of infection from
malicious nodes.

To the best of my knowledge, this approach is among the first ones applying threshold
cryptographical protocols to enable secure secret sharing on distributed social networks. The
improved secret sharing scheme also has other practical applications, such as to enable delegated
access control on other distributed systems. For instance, in a P2P-based content sharing
system, a peer may rely on trustworthy delegates to distribute the data encryption key to those
peers whose identities are unknown beforehand!' yet proven to be from a subscribed reader
group. With the given key, authorized readers can then decrypt any data replica by the original
author even if the author is unavailable.

To reduce the work scope, I do not focus much on the second issue: the impacts of delegate
availability to reconstruct the backed-up secrets. In fact, delegate unavailability is not a major
problem in a key recovery scenario, as recovery is assumedly unfrequent. Thus, if there are not
enough delegates available at the moment to rebuild the secret, the owner may simply wait.

The third issue is related to the user’s security awareness, which is orthogonal to the current
problems being studied. Nevertheless, with a threshold cryptographical approach, even if a user
may choose weak passwords, an adversary must collect at least k shares and successfully decrypt
them to steal the key. Therefore, using threshold cryptography for key backup is a generalized
and more secured backup procedure compared to conventional approaches, e.g., to backup the

whole key on a single server on the network.

1Otherwise, a traditional PKI-based approach can be used, e.g., by encrypting the key with the public key
of the authorized readers.
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5.2.2 System model
5.2.2.1 Notations

Denote as U the set of users and let D¢ be the set of possible types of relationships among them,
e.g., family, close friends, colleagues, or acquaintances. Define the mapping f: U x U — Dy as
relationships among these users U. A distributed online social networking platform is formally
defined as follows.

Definition 13 A distributed online social network, or DOSN for short, is a triple (U, f, RP),
where U is the set of users or computers and f denotes the social relationships among them.
The mapping RP : U — 2Y is the data replication strategy that defines the set of nodes in the

system to store the data R, of a user u € U.

Def. 13 associates each user with a node, e.g., her main working computer, in the underlying
distributed storage system. This assumption simplifies the problem and subsequent analysis
while still being realistic as most users primarily use one computer to work. Henceforth, the
notations peer, node, or user will be used interchangeably. It is the focus of this work to build
a mechanism to share a secret key in a DOSN platform, with any replication strategy, securely

and effectively under various adversarial attacks.

5.2.2.2 Adversary model

The adversary who wants to steal secrets of users is assumed to have the following capabilities.

A; The adversary can compromise many nodes (computers of users). Compromised nodes
know and collaborate well with each other to achieve their goal: to steal as many secrets
as possible.

Ao Delegates of a user maybe public and thus may also be known to the adversary.

A3 The adversary has computational power to perform dictionary-attacks to decrypt the
shares if she obtains it and can reconstruct the secret successfully. Furthermore, the
adversary is cost-insensitive and has as much time as she wants to complete the attacks.

Ay A user losing her secret may be infected and under control of the adversary. This leads
to the spreading of infection (more peers become a bad choice as delegates) that may

contaminate the whole network.

The assumption As is to enable easy reconstruction of the secret without requiring each
secret owner to remember her list of delegates. On the negative side, it reduces the attack cost
of an adversary: she may not need to probe many users to steal a specific key. A practical
system can put a few extra safe-guards such as not making the delegates public knowledge, at
the cost of increased system design complexity. In summary, the above adversary is extremely

powerful and my security analysis will be done under such pessimistic assumptions.
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5.2.2.3 Security of the threshold-based secret sharing

The security and correctness of a (k, n)-threshold-based secret sharing protocol depend on the
number of trustworthy and corrupted delegates in the delegate selection. A trustworthy delegate
sends correct shares only to authorized requesters. Additionally, trustworthy delegates do not
steal the secret by colluding with others to steal the original secret. A delegate who is not
trustworthy is defined as corrupted or malicious.

Given the above adversary model, it is possible for an adversary to decrypt any encrypted
share. Thus a (k, n)-secret-sharing scheme is secured if and only if there are: (1) at most k£ — 1
bad delegates; and (2) at least k trustworthy delegates available in a user’s delegate selection to
restore the secret. Therefore, the remaining and most important concern of a user is to choose
her delegates to prevent corrupted delegates from stealing her secret by colluding with others.
An approach to this problem is proposed and analyzed in Section 5.2.4.

A number of other assumptions are also made in the subsequent analysis:

e A message from the owner to an off-line delegate can be pending. When online again,
the delegate pulls all these off-line messages and processes them accordingly. Such a
message storage feature can be implemented by any decentralized storage mechanism.
For example, in PeerSON (Buchegger et al., 2009) the feature is implemented by using an
implementation of a DHT lookup service (Rhea et al., 2005).

e It is assumed that the compromise of a node by an adversary does not jeopardize its
availability, similar to (Xu et al., 2008). This is realistic since if infected machines become
unavailable, e.g., cannot boot up or cannot connect to the network, this can signal to the

owner to scan and clean her computer from malicious software.

5.2.3 Problem formulation and a preliminary analysis

The delegate selection of different users in the DOSN implicitly establish a following directed
delegate graph G = (U, &), where:

e U is the set of users in the DOSN

o & = {(u,v),u,v € U} is the set of directed edges of the graph, in which the edge (u,v)
implies that u selects v as one of his or her delegates.

Fig. 5.7(a) shows the illustration of a social graph. The delegate graph given in Fig. 5.7(b)
is constructed on top of the social graph and implies that, for example, node B uses A and D
as its delegates.

Define N (i) = {j : (i,j) € €} as the set of delegates of 7, and let 0 < & = n/k < 1 be the
threshold of the secret sharing scheme. Denote I(t,G),t = 0,...,T be the set of nodes in the
delegate graph G that are under control of the adversary at time ¢, where | I(0,G) |= ¢ is the
number of nodes under control of the adversary at the beginning, or its initial cost. For each
node i € U, let the binary variable z;(t) = 1 if ¢ € I(¢,G) and 0 otherwise. By controlling the
nodes I(t,G), the adversary has access to the shares kept by these nodes. At time ¢ + 1, the
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Figure 5.7: (a) Social graph; (b) Delegate graph; (c¢) Example in Problem 2.

adversary can steal all keys of those nodes I(t + 1, G) where:

It+1,G)=I(t,G)U{i e U: (z;(t) =0) A ( Z zi(t) > & N@E) D} (5.2)
JEN(9)
Therefore, the most powerful attack of the adversary is the solution of the following opti-
mization problem

Problem 1 Find I(0,G) to mazimize | I(T,G) |, subject to a fized cost | I(0,G) |= c.

Note that in the above notations, 7' > 1 means the case where infection may spread, i.e., a
node losing the key eventually becomes under control of the adversary. 7' = 1 means there is
no such spreading of infection.

Consider a special case of Problem 1, for T'= 1, £ = 1. We will show that solving this small
problem is already difficult. A simple proof of this is given as follow.

First, we consider the following two related problems.

Problem 2 Consider the directed delegate graph G = (U,E). For a given integer number
s<| W\, find V1,Va CU where | Va |= s, Va = inneighbors(Vy) = {u: (u,v) € E,v € Vi }, such

that | Vi | is minimized.

Problem 3 The vertex expansion ¢,(G) of an undirected graph G = (V, E) is defined as:

, | N(X) |
&)= v Bham TXT (5:3)

In Problem 2, V; is the minimal set of nodes the adversary must control initially so that it
can steal s keys of a given set of nodes (V2), as illustrated in Fig. 5.7(c).

Second, we will show that the special case of Problem 1 with 7" = 1, £ = 1 can not be
solved in polynomial time by contradiction. In fact, suppose that the Problem 1 with with
T =1, & =1 can be solved in polynomial time, we can find max | I(T,G) | for a given ¢, and
T =1,¢£ =1 in polynomial time. This solution can then be used to solve Problem 2 easily, also
in polynomial time. In fact, we may find maxz | I(T,G) | for each ¢ =1 to | V2 |. The solution
of Problem 2 is the set V4 = I(0,G) such that mazx | I(T,G) |=| V2 |= s.
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Next, it is observed that Problem 2 reduces to the computation of the vertex expansion
of an undirected graph (Problem 3). Consider a special directed delegate graph where each
delegate v of a node u also uses v as a delegate, i.e., (u,v) € € implies that (v,u) € €. Thus this
special delegate graph G is equivalent to an undirected graph. For this graph G, the solution
of Problem 2 gives us two sets Vi, Vo, where N (V) = V4. For each s = 1 to | V' |, we can use
the solution of Problem 2 to find the minimal set V; such that | V5 |= s. By doing this we
eventually compute the vertex expansion ¢,(G) trivially: ¢,(G) is simply the minimum of the
ratio | Vi | /| Va|over 1 <s<|V |

Therefore, Problem 3 can be solved in polynomial time. This is in contrast with what is
known about Problem 3: it is NP-hard and there is no known approximate algorithm to find
a solution with up to a constant approximation factor (Alon, 1998; Bui & Jones, 1992). As a
result, Problem 1, for general 7" and £ can not be solved in polynomial time and there exists
no good approximate algorithm for it.

Consequently, the best delegate selection algorithm is to build the optimal delegate graph
G = (U, &) among all possibilities G such that:

G = argmingegmaz | I(T, Q) | (5.4)

where I(T, Q) is defined for a given delegate graph G as in Equation (5.2).

Since the problem of finding the optimal attack strategy maz | I(T, G) | of a delegate graph
G is hard, it is also very difficult to develop the theoretically-optimal delegate selection strategy
according. As a result, we need to investigate different heuristics to select the delegates and
to construct the adversary attack strategy accordingly. In the following section we study a
possible greedy solution to select the most reliable delegates and perform various experiments
to test its effectiveness against different attack strategy of the adversary.

Another approach is to study robustness of different topologies of a delegate graph under
various adversarial attacks to identify the most attack-resilient topologies. Then, users in the
social network would collaboratively construct an overlay delegate graph on top of the social
graph. Available decentralized topology construction algorithms can be used for this purpose.
This is another promising direction I have yet to study in this work.

5.2.4 Selection of reliable delegates: a heuristic approach

Due to various privacy and security settings, it is generally impossible for a user to crawl
the whole network and gather all important information to best select the delegates. For
example, personal data of a user and her relationships with others in most cases are not publicly
available. Therefore, a user can only use her local knowledge and available public information
in the network when selecting the delegates. Such a selection approach is formally described as
follows.

Consider a DOSN (U, f, RP) as in Def. 13. Denote as F,, = FL the set of direct friends of
a user u. The set of k-hop-away friends of u, where k > 1 is recursively defined as: F* = {w |
w € Fy,v € FE1} The set of all indirect friends of u is F° = | J;=, F*.
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Let PS° be public personal information of users in F;° C U and denote as f;° the set of
connections among them. A (personalized) algorithm for a user u to select her delegates is
given in Def. 14.

Definition 14 A delegate selection of a user w is defined as an algorithm operating on the
user’s personalized view (F°, f° PS°) on the social network and outputs a list of delegates
D, € 27 .

Let D be a set of delegates selected by u for a (k,n)-secret-sharing scheme!. Denote as D
and D, be respectively the number of corrupted and available delegates in the set D. Also,
define D,; the number of trustworthy and available delegates in D. 1 will present in this
section a heuristic-based delegate selection approach via the use of a trust model that evaluates
trustworthiness of each individual delegate candidate. This approach relies on the following

concept of e-security, given in Def. 15.

Definition 15 (e-security) The selection D is said to be e-secured (to the secret owner) if and
only if the probability that at least k trustworthy delegates are available in D is Pr(Dg > k) >
1—¢, where 0 <e < 1.

We want to study the way u selects her set of delegates D to ensure the availability and
secured access to her backed-up secret. For simplicity, fix the number k& and the security
parameter 0 < e < 1. Let D = {i,1 <i < n}. We want to select D based on k,e such that the
resulting (k,n)- secret sharing scheme is e-secured (Def. 15).

Denote T'(n,k — 1) = Pr(D. < k —1) and A(n,n — 2k + 1) = Pr(D, > 2k — 1)= Pr (at
most n — 2k + 1 are offline). Assume that the probabilities that a user 7 is trustworthy and
available, are 0 < ¢; < 1 and 0 < a; < 1, respectively. One can verify that 7'(¢,0) = H;Zl t; and
T(i,i) = 1. The following recurrence relations can be obtained using basic probability update
rules:

T(i+1,0+1) =t T, 1+ 1)+ (1 — tis)T(0,10), 1<i<n (5.5)

Similarly, for 1 <i < n, A(i,7) =1, A(:,0) = H;Zl a;, and:

A(Z + 17 l =+ 1) = ai+1A(i, l =+ 1) + (]. — ai+1)A(i, l) (5.6)

Given our adversary model in Section 5.2.2.2, availability and trustworthiness of nodes are
assumed to be independent. Therefore, the probability of at least k trustworthy delegates
available among n delegates is:

Pr(Da>k) > Pr(De>2k—1,D.<k—1)
= An,n—-2k+1)T(n,k—1) (5.7)

Proposition 4 gives us some properties of the probabilities T'(n,k — 1) = Pr(D, < k —1)
and A(n,n — 2k +1) = Pr(D, > 2k —1).

Proposition 4 For anyn >k > 0:

Ithe index w is omitted for presentation clarity
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(i) Irrespective of the selection D, T'(n,k —1) and A(n,n — 2k + 1), where n > 2k — 1, are
increasing functions of k and decreasing functions of n.
(i1) T(n,k—1) is maximized where D is n delegates with highest trustworthiness t; among

the candidates.

Proof 9 (i) We prove the monotonicity of T'(n,k — 1) first. The proof for A(n,n — 2k + 1)
can be done similarly. From its definition, it follows that T(n,k) > T(n,k — 1). The proof
of T(n+ 1,k) < T(n,k) is also trivial. In fact, T(n + 1,k) — T(n, k) = tpn1T(n, k) + (1 —
tns1)T(nk—1)—=T(n, k) = (1 —tpy1)(T(n,k—1) —T(n,k)) <0, since T(n,k—1) < T(n,k)

from the above result.

(11) Suppose that the delegate set D has n delegates, where each i € D hast; > t;,7 € [N]\ D.

Consider another delegate set D' different from D by one delegate. Define D' = suce(D) =
(D\{i})U{j}, where j € [N]\D andt; > t;,1 <i<n—1. We will show Pr(D. <k—1)>
Pr(D, <k-1).

As delegates have equal roles, the order of putting a user i in a delegate set D does not
influence the probability Pr(D. < k —1). Let us select the user i at the last step to form the
set D and select j at the last step to form D’.

It follows that Pr(D., <k—-1)=tTn—1,k—=1)+ (1 —¢t)T(n— 1,k —2) and Pr(D’, <
E—=1)=tTn—-1,k-1)+1—t;)T(n—1,k—1). SinceT(n—1,k—1)>T(n—1,k—2)
according to (i), and t; > t; from the definition of D', we have:

Pr(D.<k—1)—Pr(D,<k—-1) = (ti—t;)(T(n—1,k—1)
~T(n—1,k—2))
> 0

More generally, given any selection D" different from D by J < n users, one can verify
that there exist a series of delegate selection DI, 1 < j < J such that D" = D/ DIl =
suce(DI),1 < j < J -1, and D' = succ(D) = D'. Since D' = succ(D) implies Pr(D’, <
k—1) < Pr(D. < k—1), it follows that Pr(D?” < k—1) < Pr(D. < k—1). Therefore,
Pr(D. <k—-1)=T(n,k—1) is mazimized with the delegate set D.

5.2.4.1 Measuring trustworthiness of delegate candidates

Let ¢ be a possible delegate candidate for u. In practice, ¢ may be a friend of u, or a third-party
provider offering data storage services. The measurement of the trustworthiness ¢; of a user
1 is non-trivial. In our scenario, the notion of trust between two users is beyond the social
trust between people, since the computer of a highly reliable and trustworthy friend may still
be compromised by an adversary without the friend’s awareness. Therefore, a user needs a
more appropriate measure to evaluate the trustworthiness of a user before selecting her as a
delegate. More precisely, t; is the personal belief of u on whether i is likely to be controlled by
an adversary. Such a value ¢; depends on the following influential factors:
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e whether the node i is a well-known trusted entity. For example, nodes from third-party
providers offering data storage services can be seen as less vulnerable as they are usually
equipped with up-to-date security patches and latest virus definitions.

e whether i has potential to collude and steal a secret, since curious friends may collude to
get illegitimate access to unauthorized data. Also, if a user’s friend is compromised by
an adversary, other friends of hers are also vulnerable to attacks by the same adversary.
In practice, viruses are likely to spread from one friend to another since people generally
trust files or links sent by their friends. To minimize the influence of such attacks, we
should give less trust to those delegates ¢ with more chances to collude with each other.
Informally, we should select delegates from different sets of friends to reduce the possibility
of a collusive attack and minimize the influence of such a collusion.

e whether i is an attractive target for an adversary: since an adversary can minimize her
attack cost by compromising nodes holding more keys, ¢ is more attractive to an adversary
if she is a delegate of many users. Hence, less trust should be put on those candidates 4
currently keeping more shares.

Given the above observations, the following heuristic is suggested to evaluate the trustwor-
thiness of a user. The key idea is to explore social relationships among users to prevent the
spreading of infection from malicious nodes already under adversary control, as well as reducing
the chance of colluding among these malicious nodes. More concretely, we define:

1 ifi € DY
i { 1—6(b;) —o(l;) ifie[N]=5F,\D° (5:8)
where b; =] F° N F, | and [; is the number of shares held by i. The candidate delegates
[N] ={i,1 <i < N} are from the set of friends of the user F,. In Equation (5.8), D is a set
of m < k preferred/trusted delegates chosen by the secret owner u. For instance, a good choice
of D° include nodes from third-party providers offering data storage services.

Note that b; =| F° N F, | is the number of all indirect friends of ¢ who are also in &, \ D°.
Thus 0 < §(b;) < 1 quantifies two influential factors: (1) how i is able to collude with her friends
to compromise a shared secret; and (2) the influence ¢ and her friends may have on the owner u
if 4 is compromised by an adversary. Thus u puts higher trust on a friend 7 with less connection
with others of her friends. Given this observation, in the delegate selection algorithm, I set
k > max;c;n){b;i} (Algorithm 7).

The term 0 < o(l;) < 1 determines the attractiveness of ¢ to an adversary, e.g., how many
keys the adversary gets by compromising i. Note that 0 < §(b;) < 1 reach the maximal value of
1 at b; > b* = k — m and be at the minimum 0 at b; = 0. Similarly, o(l;) is defined to achieve
the maximal value of 1 — d(b;) at I; = I* = max{l;,7 € [N]} and be 0 at [; = 0. That means
currently we care more on the impact of §(b;) than of o(l;). The testing of different impact
weights by §(b;) and o(l;) is subject to future work. Depending on user’s prior belief on the
environment vulnerability, the following functions can be used:

o cxponential: e.g., §(b;) = 1, >p-y + 1{bi§b*}% and o(l;) = (1 — 5(bl))22;—j These
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functions® are appropriate for vulnerable environments with potentially a lot of malicious
users. Hence, the possibility that a node 7 would be compromised increases exponentially
with the number of shares she keeps I; and the number of common friends b; between i
and u.

e logarithmic: e.g., 6(b;) = 1y, spey + 1{@51;*}% and o(l;) = (1 — 5(bi))%.
These functions are appropriate in more secured environments with fewer malicious users,

thus the possibility j being compromised increases less than linearly with /; and b;.

o linear: 6(b;) = lgp,>p+y + 1{b,i§b*}g—i and o(l;) = (1 — 5(bi))ll—i, which are applicable in
neutral environments with a moderate number of malicious users.

5.2.4.2 A trust-based delegate selection algorithm

According to Proposition 4, the probability T'(n,k — 1) = Pr(D. < k — 1) is maximized by
choosing D as n delegates with highest trustworthiness ¢; from the candidates [IV]. Tt is assumed
that messages to unavailable delegates can be kept pending and processed later on when they
go online (Section 5.2.2). Hence the unavailability of delegates do not affect the computation of
the probability T'(n, k—1)A(n,n—2k+1), and we can approximate T'(n,k—1)A(n,n—2k+1) =
T(n,k—1).

With the trust measure in Section 5.2.4.1, the selection of delegates to maximize the prob-
ability T'(n,k — 1) is given in Algorithm 7. Roughly speaking, we sequentially pick a user 4
with the highest trust value ¢; from remaining candidate delegates. Thus Algorithm 7 forms a
delegate set D approximately maximizing T'(n,k — 1). Since Pr(Dy > k) > T(n,k — 1), we
expect this algorithm to maximize the probability that the delegate set achieved the desired
security level ¢.

Algorithm 7 stops in two cases: first, all available N candidates are selected to be delegates;
second, we achieve the desired security level 1 — €. In the first case, the actual security level of
the selection is Pr(Dgy > k) > Pr(D. < k—1) = T(n,k—1). This lower bound T'(n,k—1) also
reflects the vulnerability of the environment and may be used by the user to decide whether to
share her secret. In later experiments, a user backs up her secrets only if the achieved security

level is Pr(Dgy: > k) > 7, where 0 < 7 < 1 — ¢ is a parameter of the experiments.

5.2.5 Experiments

The DOSN is simulated as a discrete event-based system with the agent-based simulation toolkit
Repast (North et al., 2006). A social network in an experiment is a graph of of 1028 users.
The network topology follows Watts-Strogatz small world model (Watts & Strogatz, 1998),
with connection radius 2 and rewiring probability 0.8 (thus this network has short average
path length and a small clustering coefficient). This model was due to its simplicity and small

world properties of social networks. Larger scale simulations are possible, yet smaller networks

IThe function 1(a) evaluates to 1 if A is true and to 0 otherwise.
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Algorithm 7 selectDelegates(candidates [N], trustworthiness ¢; for each i € [N], threshold k,

security parameter €): selected delegates D, achieved security level T'[n, k — 1]
1: n=0; D=g; L=[N]; /* L is the current candidate list */

2: T[n,0] = T[n, 1] = 1;

3: while (n < N and T'[n,k—1] <1—¢) do

4:  Pick user 7 with highest ¢; in L;

5 n=n+1;D=DU{i}; L=L\{i};

6:  T[n,0] =tTn—1,0; T[n, k] =1,

7. forl=1 tomin(n —1,k— 1) do

8: T =tTn—1,]+ (1 —t;)Tn—1,1—1];
9: end for

10: end while

[y
—

: Return D and expected lower bound of security level T'[n,k — 1];

were used to reduce the simulation time. Another reason is that a DOSN is likely to be self-
organized in ad-hoc manner, e.g., among people within a geographical vicinity. Hence its size
should be much less than traditionally centralized social networks. Experiments with other
types of topologies are subject to future work (this is in fact a limitation of this work). A
message-passing system was implemented where messages arriving at an unavailable recipient
are made pending and processed later when the recipient goes back online. Such properties
can be realized in practice with distributed storage techniques: messages are encrypted and
stored in a DHT look up system (Stoica et al., 2001) built on top of the user’s computers. User
unavailability hence, does not affect their being selected as delegates: a user sending a request
for a share to an off-line delegate simply waits till the latter is available.

5.2.5.1 Implementation of delegate selection approaches

Different delegate-selection approaches were implemented, each of which uses only local knowl-
edge to select delegates, as in Def. 14.

o FRIENDBASED: a user selects all her friends as delegates. This approach was studied in
a previous related work (Xu et al., 2008) for a different application (document signing)
and in a limited case (without spreading of infection from malicious users).

¢ RANDOMWALK: a user random walks on the (public) social network graph and picks a
delegate after T'T'L = 7 steps. This approach selects those delegates connected with many
friends who also have high connectivity, e.g., nodes with higher PageRank-like values.

o TRUSTBASED: the trust-based delegation selection algorithm described in Algorithm 7,
Section 5.2.4. T used a reasonably small security parameter ¢ = 0.001, and with o(.) and
0(.) as exponential functions, i.e, users believe the environment is vulnerable. A user only
decides to share a secret if and only if the achieved security level is Pr(Dg, > k) > T,

where 0 < 7 < 1 — ¢ is an experiment parameter.
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5.2.5.2 Experiment design

The system was tested with two following performance metrics: fr and f,. 0 < fr <1 is the
fraction of secrets (private keys) lost among those backed up by using the threshold-based secret
sharing scheme. A smaller f; implies a more secured system and thus is preferable. 0 < f, <1
is the fraction of users (among all) who can back up their secrets successfully. A higher f,
means higher usability of the system and thus is better. Note that f;, is only meaningful to the
TRUSTBASED selection algorithm, since only this algorithm requires that a secret is backed
up only if the achieved security level is Pr(D,; > k) > 7, where 0 < 7 < 1 —e&. Other selection
approaches (FRIENBASED or RANDOMWALK) have f, = 1. The TRUSTBASED approach
was tested with different values of 7, for which in most cases f, > 0.9, and 7 does not clearly
affect f;. Therefore, I will focus on the performance metric f; in later experiments with a
given value 7 = 0.75.
Given the above metrics, the system load model consists of the following factors:

e inf: whether there is an infection spreading in the network, i.e., whether a user having
lost her secret also becomes under adversary control.

e pmal: the percentage of initially malicious users, i.e., the number of users already under
adversary control at the beginning of the simulation before the adversary commands them
to initiate the coordinated attack. A higher pmal means a more vulnerable environment.

e adv: the distribution of the initially malicious users in the network. The distribution can

be random or based on certain criteria, e.g., number of friends of a user.

Beside the load factors and their intensities, the major factors influencing the system per-

formance are:

e select: the algorithm to select delegates for the secret sharing protocol, which includes the
three algorithms FRIENDBASED, RANDOMWALK, and TRUSTBASED as described
in Section 5.2.5.1.

e 0 < ¢ < 1: the threshold k/n of a (k,n)-threshold secret-sharing scheme being used.

The goal of the experiments is to measure the effects of two factors select and & to the
system performance f; under various load intensities inf, pmal, and adv.

Each simulation was run with appropriate parameters and each performance metric was
measured when the simulation reached the stationary regime. The result (not shown) confirms
that the distribution of fr is approximately Gaussian and perfectly iid. Therefore, for later
experiments, I only ran each simulation with N=35 replications (sufficiently large sample size)
and summarized the measurements of f; with its means and confidence intervals at level 95%.
As data is roughly normal iid, this summarization shows both accuracy and variability of the
obtained results.

5.2.5.3 Effects of the threshold values ¢

The influence of the cryptographical threshold £ = k/n to system security was measured under
various load intensities. For this goal £ was varied from 0.1 to 1.0 for each of the delegate
selection approaches FRIENDBASED, RANDOMWALK, and TRUSTBASED. The influence
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of &€ on the fraction of secrets lost fr for each selection algorithm is given in Figure 5.8, where
the Y-axis shows the mean of f; and 95%-confidence intervals of the mean of fr.

For each given delegation-selection algorithm, the load intensity was varied as follows. First,
pmal was increased from 0.1% to 50% to simulate environments with different numbers of mali-
cious users under adversary control. To reduce the simulation parameter space, the distribution
of these initially malicious users in the network was randomized (adv=RANDOM). Each ex-
periment was carried out with both cases (inf = false and inf = true).

Generally f1, is expected to be lower with higher values of £. In fact, two main observations
can be drawn from the results in Figure 5.8. Firstly, for any delegate-selection algorithm and
for any case of infection spreading, the smallest fraction of keys lost fr, is achieved with £ = 1.
This is intuitive: given a secret sharing scheme with £ = 1, the adversary must successfully
attack all delegates of a user to be able to steal the victim’s secret. For values of £ < 1.0 the
differences are not substantial.

Secondly, the system security with an infection spreading (left pane of each figure) is much
lower than without infection spreading (right pane). Figures 5.8(a, c, e), left panes, show that
the adversary can steal a large fraction of secrets (from 50% up to 100% of secrets in most
cases) by initially controlling a small number of malicious users (from 0.2% if £ < 1 and from
5% if £ = 1). The influence of the infection spreading is minimal in two cases: (1) with £ = 1.0
and the delegate-selection approach FRIENDBASED as in Figure 5.8(a, left), and (2): for
the TRUSTBASED delegation selection algorithm, as in Figure 5.8(left side of e, ). These
observations will be verified in the next section.

5.2.5.4 Effects of delegate selection algorithms

As the next step, effects of different delegate-selection algorithms (FRIENDBASED, RAN-
DOMWALK, and TRUSTBASED) to the system security were measured under various load
intensities.

Specifically, the first load factor pmal was varied from 0.1% to 50% to simulate different
environments with small (0.1% to 1%) and large (1% to 50%) numbers of malicious users under
adversary control. Initially malicious users were randomly distributed in the network and each
experiment was carried out in both settings: with or without infection spreading (inf = false
or true).

From previous experiments (Section 5.2.5.3), only two critical values (£ =1 and £ < 1) of
threshold ¢ are of interests. The results are given in Figures 5.9.

It is observed that the selection approach TRUSTBASED is the best or comparable with the
best in most cases, as shown in Figure 5.9(a, b, d). In the only case with a very small number of
initially malicious users, and with £ = 1 of Fig. 5.9(c), the selection algorithm FRIENDBASED
is the best. In practice, using the maximal threshold £ = 1 may not be preferable, as the
secret owner may have to wait for every delegate to be online to reconstruct her backed-up
secret. Omne possible reason why the TRUSTBASED selection algorithm performs less well in
this case is the difference between the actual vulnerability of the environment and the use of
exponential functions o(.) and 6(.) to evaluate the trustworthiness measure of available delegate
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Figure 5.8: Influence of the crypto threshold £ on the fraction of secrets lost f;, with different
delegate-selection algorithms. The two critical values of £ are £ = 1.0 and £ < 1.0

candidates. Nevertheless, performance of the TRUSTBASED algorithm is still reasonably good
in this case: fr, < 0.018 for pmal =~ 1% and inf = true as in Fig. 5.9(c). Remember that [,
is the system performance metric measured under a very pessimistic estimation, where the
adversary had unlimited computational power to decrypt any protected share it ever stole, the
attained performance is acceptable.

The RANDOMWALK delegate selection approach, though intuitively appealing, is not su-
perior. Its performance is somehow better where there is no infection spreading and the ad-
versary controls a very small number nodes, as shown in Figure 5.9(c) and in the right pane of
Figure 5.9(a).

Considering different adversary distributions

Another interesting question is how well different delegate selection algorithms perform under
different adversary distributions. Specifically, we may want to know whether the adversary may
exploit her knowledge of the current delegate selection of users to focus her attack in a number
of well-chosen users in the system.

Since the delegate selection algorithms FRIENDBASED, RANDOMWALK, and TRUST-
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BASED all use connectivity of users as a selection criteria for a delegate, an adversary may
attempt the following attacks:

e LINKBASED: initially, the adversary tries to control nodes with higher numbers of links.
These nodes are likely to be chosen by many users as their delegates, thus controlling
these nodes help the adversary to steal more secrets at a lower cost.

o KEYBASED: the adversary focuses on compromising nodes currently keeping higher num-
bers of shares. This attack is even more powerful, as apparently controlling these nodes
gives the adversary the highest likelihood of stealing the maximal number of secrets.

Various experiments were also performed to measure the influence of the above adversarial
attack strategies. Load intensities are set up as in previous experiments, with varied numbers
of initially malicious users: pmal varied from small (0.1% to 1%) to larger (1% to 50%). Both
cases of (inf = false or true) are considered, each with two representative threshold values:
¢£=0.5and £ = 1.

Figure 5.10 shows the performance of different delegate-selection approaches under the ad-
versary attack using the LINKBASED distribution. The result is similar to the previous case.
The selection approach TRUSTBASED still performs either best or comparable to the best
approach in almost all cases. Similar to the previous experiment with randomly distributed ad-
versary, the TRUSTBASED algorithm performs less well than the FRIENDBASED approach
where there is a very small number of initially malicious users and the threshold is £ = 1. The
algorithm RANDOMWALK is not superior in majority of cases we studied. Experiments for
the adversary distribution KEYBASED are more complicated, as they requires detailed time-
variant modeling of distributions of adversarial attacks and the selection of delegates. This
experiment is subject to future work.
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5.2.6 Related work

Applications and usability of threshold cryptography in P2P and mobile ad-hoc networks are
discussed in detail in (Saxena et al., 2007). This work mostly focuses on evaluating computa-
tional and communications overhead of different threshold cryptographical protocols. Security
properties of such protocols under collusive attacks of many malicious nodes are not discussed.

There are several improvements of the original threshold-based secret sharing scheme, e.g.,
produce verifiable shares, change the threshold dynamically, improve the protocol’s computa-
tional and communication efficiencies (Schneier, 1995). The selection of reliable delegates to
minimize the influence of collusive attacks, however, has not been the focus of the security re-
search community. Various security solutions mostly protect secret shares by encrypting these
shares with passwords. These works are complementary to my work, since we can use any
enhanced threshold cryptographical approach for a delegated key recovery scenario.

To the best of my knowledge, my approach is the first one applying threshold cryptography
to enable private key backup and recovery in distributed social networks. Another novelty of
this work is the proposal of appropriate trust measures based on social relationships among
users. This solution is shown to be effective against possible infection spreading, and resilient
under presence of various malicious nodes with different distributions.

The work most related to this one is (Fran et al., 2008; Xu et al., 2008), where the authors
apply threshold cryptographical approaches for a different problem on social networks. (Xu
et al., 2008) considers the application of threshold cryptographical protocols for signing docu-
ments, which is a different problem since it requires the secret owner to be available to issue the
digital signature. Regarding the technical approach, my work is also different from (Fran et al.,
2008; Xu et al., 2008). First, I study the effectiveness of many delegate selection approaches
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given the presence of various numbers of malicious users and with possible infection spreading.
The FRIENDBASED delegate selection algorithm that we analyzed is the same as the approach
of using trusted friends to store the cryptographical keys proposed by (Xu et al., 2008). Sec-
ond, the adversary model I am considering is more powerful with its capability of spreading
its infection to many nodes. My simulations also consider many possible attack models of the
adversary. (Fran et al., 2008) proposes to create certificates based on agreement of a number ¢
of nodes in the network determined dynamically. The main result is a preliminary analysis on
the probability of nodes being attacked. The issues of infection spreading and the selection of
reliable delegates, however, are not yet studied.

In a wider context, this work is also related to credential-based access control in P2P and
social networks. Credentials can be generated by specialized hardware such as the Trusted Com-
puting Platform (Sandhu & Zhang, 2005), or based on certain attributes of the requesters (Palo-
mar et al., 2008). Most work in this direction addresses the general problem of access control
with the assumption that access is granted to authorized users with identities known before-
hand. This assumption is not valid in the key backup and recovery scenario and thus these
approaches are not applicable. In other works, such as (Carminati & Ferrari, 2008; Chakraborty
& Ray, 2006; Domingo-Ferrer et al., 2008; Palomar et al., 2008), heuristic measures are used to
evaluate trust between the resource owner and the requester before the credential is granted.
For example, (Carminati & Ferrari, 2008) assigns each edge between users a trust level and a
relationship type and uses a central node for registration and management. (Domingo-Ferrer
et al., 2008) proposes to grant access to resources based on chain of trust relationships be-
tween the resource owners and the requesters. An open problem of these solution approaches
is a detailed analysis of their correctness and security under collusive attacks and spreading of

adversarial infection in the network.

5.2.7 Conclusion and future work

The question of secure backup and recovery of secrets in (distributed online social) systems
is an important and challenging issue. This work provides a promising first step toward an
appropriate technical solution to this problem. I have studied the application of threshold-
based secret sharing protocols for this purpose and suggested potential mechanisms to improve
the security of these protocols. Specifically, I have proposed an algorithm to select the most
reliable delegates to enable such a secure secret sharing in a network of untrusted nodes. This
approach selects delegates based on a simple trust measure that exploits social relationships
among the secret owner, delegate candidates, and their friends, to minimize the probability
that a set of delegates collude to steal the secret. Such an approach has been shown to perform
very well under a variety of scenarios, even with a large number of initially malicious users with
possible spreading of infection in the network.

A limitation of this work is that it only considers a small-world network topology with ho-
mogeneous degree distribution. It would be important to also measure and analyze performance

of various selection algorithms in larger scale heterogeneous networks, e.g., with heavy-tailed
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node degree distributions. The dynamics of networks with a growing number of users is also an
important factor yet to be studied.

As part of future work, I plan to study realistic cost models of an adversary to integrate with
the design of potential delegate selection mechanisms. This issue is important since the attack
by a rational adversary may be well-related to its endured cost. The self-healing capability of
the distributed social network via the detection and cleaning of malicious and infected nodes is
also an interesting issue we plan to study as part of future work.

A potential approach to this problem is to rely on the existence of a number of highly
immune nodes in the system. These nodes may actively scan their friends periodically to detect
if these users are compromised by an adversary, e.g., by checking for spyware and malware on
these nodes. Thus a compromised computer of a user can be detected and cleaned to become
a trustworthy delegate. In practice, such users with high immunity can be Antivirus centers
or (storage) service providers (which provide periodical virus definition updates and latest
security patches), and whose connections can be their subscribed customers. I want to analyze
the minimally optimal number of such immune nodes and their placement in the network such

that it is most effective to defense users from various collusion attacks from an adversary.
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Chapter 6

Open Reputation-based Trust

Management Systems

Reputation-based trust management systems are omnipresent and increasingly become essential
to several Internet applications, from e-trading systems, e.g., eBay.com or uBid.com to various
online fora such as Epinions.com or Digg.com. However, architectures and implementations
of these systems are typically closed: specifically, each system is developed to use its own
approach to derive trust from reputation ratings given the available observation data collected
from within its own user communities. Such a closure is not in accordance with the open nature
of the Internet and its ecosystem. In practice, several similar applications have overlapping user
bases, such as different trading sites on the same geographical region, and users move freely
from one site to another. Furthermore, many trust management systems on related domains
have similar working principles of deriving trust from analyzing user behaviors and activities,
especially systems in the same or similar application domain with similar business processing
logics. Therefore, the trust management systems being used by each system may use data from
very related operational contexts and thus these systems may gain significant benefits from each
other by sharing this data.

This chapter presents my on-going work related to the building of an open architecture model
for reputation-based trust management systems. This open approach can be implemented and
deployed by different applications across domains. I propose that similar systems can exchange
and use their knowledge and information to benefit each other in many aspects. It is shown that
under certain assumptions, the combination of different reputation-based trust management
systems together may help each system achieving better performance in detecting misbehavior,
thereby indirectly promoting more cooperation of users. I explore several possibilities and
challenges related to this research direction, and provide an outline or an initial solution to
these research questions.

Part of the work in this chapter is published in (Vu et al., 2009b).
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6.1 Introduction

As reputation is a well established means to determine trustworthiness in online systems, a large
number of reputation-based trust systems have been proposed (Golbeck, 2006; Jgsang et al.,
2007; Wang & Lin, 2008). Several commercial initiatives have also been proposed based on the
concept of assessing participants’s trustworthiness and performance based on based on their
reputation and historical actions, such as auction sites (eBay.com, ePier.com), recommender
systems (Amazon.com), or e-mail spam fighting (TrustedSource, Trend Micro Email ).

However, typically these systems are “closed” to each others: very little information about
the user communities and the reputation mechanisms being used are exchanged with other
systems. For example, the set of participants in most cases is known only within one system.
In addition, possible actions of users, the evaluation of their behaviors, and the mechanism to
derive trust from such user interactions are predetermined in the system design. Hence, each
system exploits the history of users’ actions in a closed environment. This is in stark contrast
to the open nature of the Internet where no firm system boundaries and stable specifications of
actions and information exist. Existing information is hardly reused among systems and thus
the trust evaluation on a newly joined identity is usually very difficult (the “cold start” issue).

Nowadays, new online communities dynamically emerge in various contexts through the
exchange of views and services among systems. The trustworthiness of the members of these
communities is evaluated from scratch. This is not socially optimal, as the members of these
communities are often also members of existing communities, possibly employing different vir-
tual identities, and their trustworthiness in these contexts has already been evaluated.

A reputation system in a closed community is able to recognize specific untrustworthy be-
havior patterns within that context, given the structure of the community, the structure of the
reputation system, and the history of actions in the context. However, people actively par-
ticipate in various online communities, such as social networks (e.g. LinkedIn.com, myExperi-
ment.org, Facebook.com), online transaction environments or product review sites. Reputation
and behavior of a user in a system may well be related to his reputation and behavior in an-
other. Combining reputation information for the same members from different contexts may
be more effective a mechanism for identifying additional patterns of malicious behavior within
each individual context. Thus, reputation systems should take advantage of not only diverse
information sources in the Internet, such as social networks, recommender systems, content
sharing systems, or semantic search engines, but also other reputation systems.

This chapter sketches the design of the next generation, open reputation-based trust systems.
The main design principle is to enable a system to exchange existing trust-related information
such as reputation from different contexts across applications and system boundaries. The goal
of this information sharing is to effectively enhance the learning of trustworthiness of partic-
ipants. I provide a detail discussion on related challenges, namely identification, mapping of
reputation semantics, contextual distances between application settings, reputation disclosure

(dis)incentives and privacy. For example, the critical issue of identification can more effectively

Lwww.trendsecure.com/portal /en-US /tools/security_tools/emailid
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be dealt with based on entity-matching and the social structure of different systems. It is
argued and theoretically proven that even naive combinations of reputation values from two
different communities can result in a system capable of detecting misbehavior more effectively
than the individual trust mechanisms themselves under certain conditions on trust and repu-
tation semantics. This work is the first attempt to develop an open trust management system
architecture and the first one systematically defines and studies the challenges and benefits of
such an architecture for information sharing among different reputation-based trust systems.

6.2 Motivation and Opportunities

An open trust management system offers several advantages compared to existing systems
with a closed architecture. Such advantages come from the fact that an open system may
reuse much information from another. Generally there is much knowledge that a system may
offer and benefits from another system, especially among those used for similar applications.
For example, two commercial auction sites operating in a same geographical region such as
ricardo.ch and ebay.ch may have a considerate overlapping user base. Sharing and exchanging
identities of these common users may may help to discovery common user behavioral patterns
in both system more effectively. It is expected that the reuse and combination of reputation and
trust-related information across systems would give us benefits even beyond of them individually

achieved by each system for several reasons:

1. The trust learning and evaluation in an open system does not solely rely on data such as
reputation of users in its own user community, but also take advantage of diverse infor-
mation sources in the Internet, such as from other systems: social networks, community
platforms, recommender systems, content sharing systems, or search engines. By adopting
an open architecture, reputation data and related relevant information that are shared
from one system to another can be used as prior knowledge to learn user behaviors across
systems. The problem of “cold start” when estimating trust worthiness of a newly joined
participant can be mitigated.

2. Regarding the management of user identities, an open trust system does not exclusively
rely on system-internal identity but also on Web-based entities, which are digital foot-
prints left by users on the Web and therefore not easily manipulated. Also, by employing
appropriate data mining techniques, an open trust system has much better potential to
counter identity attacks, which are a major problem in current closed systems. Therefore,
aggregating reputation information from different contexts is expected to more effective in
discovering collusive groups and in dealing more effectively with “Sybil” attacks (Douceur,
2002). An open trust system is therefore more resilience to whitewashing behavior than
a system working only with its predefined identity management mechanism.

3. In dynamically formed emerging communities, self-organizing community processes form
an agreement on the instantiation of the computational trust model for a given context.
These processes involve identifying and structuring sources of reputation data, extracting
and agreeing on behaviors of interest (in particular specify malicious behavior) and their
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evaluation, and establishing shared evaluation metrics. The obvious source for building
trust and reputation metrics is relevance feedback from participants to determine cate-
gories of behavior and their evaluation. In this process, a community norm is compared
and adapted based on the norms of other communities, such as existing recommender
systems, emergent semantic systems and web-ranking systems, and it can identify sub-
communities with shared interests. To this end, a trust evaluation model cannot be applied
in these communities a priori, without hindering their formation. An open system can
inherit and address trust-related issues based on the norms on expectable behavior and
community assumptions from the other similar systems in the same application domain.
Shared but hidden assumptions of communities on values and evaluations of actions can
be discovered by aggregation ratings and other reputation information across communities
that otherwise would be hard to discover and specify.

4. Beneficial attributes of each computational trust model employed by different systems on
different communities can be combined together. Such combination of different models,
with availability of more data from many systems help the trust learning and evaluation
process becomes more resilient against various attacks from users with malicious behav-

iors. This possibility will be analyzed in detail in later sections of this chapter.

6.3 Related Work

One of the first initiatives (2008) to build an open reputation systems is that of the OASIS
standardization forum. Specifically, an Open Reputation Management Systems (ORMS) tech-
nical committee! has been founded to propose appropriate standards for representing reputation
data and standard definitions of reputation scores across different systems. The standards will
provide the means for understanding the relevance of a rating score within a given transaction
across communities. However, the means of exchanging and combining computational trust
models or exploiting the identity management mechanisms among different systems have not
been considered.

(Pingel & Steinbrecher, 2008) introduces a software prototype to store ratings of users
participating in different online-discussion fora. This work assumes the complete trustworthiness
of the identity provider and the users have full-control on the disclosure of actions and reputation
information across communities.

The building of open reputation systems is also well-related to existing works on federated
identity management (Bhatti et al., 2007). For example, (Gutscher, 2007) defines a PKI frame-
work for secure referral dissemination across communities. (Rehdk & Pechoucek, 2007) proposes
a generalized approach to model contextual environment of an agent and compute its trust val-
ues in a new context based on distance with the related situations. Emerging standards such

as OpenID? and OpenAuth?® enable the creation of portable identities and allowing community

Thttp:/ /www.oasis-open.org/committees/orms
2www.openid.net
3www.openauth.net
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managers to delegating access to users across system boundaries.

The issues of knowledge representation and information sharing across different systems also
attract much research efforts. For example, the use of Semantic Web RDF models as FOAF
(Friend Of A Friend)! to weave online social networks, as the SIOC initiative (Semantically-
Interlinked Online Communities)? to weave social activities such as blog comments could provide
a complete interlinked graph of user profiles on top of existing applications. Also, different
community semantics can be expressed in meta-models such as OWL2. However, the adoption
of common ontologies or schemas is still relatively slow. Moreover, the process of community
building is highly dynamic. Emergent communities may dynamically form within existing ones
with different interactions and objectives. As explained in (Aberer et al., 2004), semantic
interoperability should be viewed as an emergent phenomenon constructed incrementally, and
its state at any given point in time depends on the frequency, the quality and the efficiency
with which negotiations, such as those defined in (Aberer & Hauswirth, 2003; Aberer et al.,
2003b), can be conducted to reach agreements on common interpretations within the context of
a given task. Specifically, in (Aberer & Hauswirth, 2003), semantic interoperability is addressed
by means of local schema agreements between data sources through queries and gossiping of
schema mappings. The quality of semantic mappings is gradually improved by a feedback
algorithm until to finally achieve global agreement selecting the right data sources for schema
translation.

Commercial solutions for aggregating online reputation information related to a person are
also available and becoming increasingly popular, such as Online Reputation Monitor*, Rep-
utation Manager®, or Reputation Defender®. However, these are mainly entity matching Web
search engines (Shen et al., 2005a) that neither automatically check the accuracy of information
nor aggregate it into a single trustworthiness metric.

To the best of my knowledge, this work is the first attempt to systematically study and
analyze the benefits and challenges of developing open trust management systems. It is also
the first work on studying benefits of information sharing among across trust management
systems and opportunities of combining different computational trust models to enhance the
system capabilities in detecting misbehavior.

6.4 Reference Architecture

Based on the common working principles of reputation-based trust management systems avail-
able in existing applications, a reference architecture for an open trust system can be developed
such as in Fig. 6.1.

A traditional (reputation-based) trust management system, as shown in the left most of the

1
2

www.foaf-project.org
www.sioc-project.org
3http://www.w3c.org/TR/owl-ref/

4http:/ /reputation.distilled.co.uk/
5

6

www.reputationmanager.com
www.reputationdefender.com
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6.5 Challenges in Developing Open Trust Systems

architecture, include various components for the modeling, learning, computation of trust, as
well as for the collection of trust-related data, the conventional (relational) database systems
for storage and processing of data related to user actions and activities.

An open trust management system extends the traditional architecture with three addi-
tional components: a knowledge acquisition, a knowledge sharing, and a data adaptation layer.
The data adaptation layer acts as an intermediate component for transforming data into stan-
dardized concepts to share to other systems, and to transform acquired knowledge from other
systems to be used by the legacy system.

The knowledge acquisition layer contains various modules to enable an open system to collect
various types of data from other systems on the Web. This information may include data related
to credentials and activities of users who participate in this system and also actively participates
in other systems under different identities. Also, knowledge such as behaviors of malicious uses,
their attack strategies, and corresponding counter-measures on other similar trust management
systems can be collected and integrated into the current system. The computational trust model
of an open system should also be able to integrate these collected information and perform
estimation on trustworthiness of participants accordingly. Furthermore, it can be inferred that
data to be used by an open trust system needs not be stored locally but can be from various
sources on the Web (hence for data storage and processing in an open system a Web DBMS
might be better suitable). Due to privacy issues, these sources may only reveal anonymized or
encrypted version of the necessary data to the current system when being required and thus
the computational trust model needs to operate on such data in a privacy-preserving way.

The knowledge sharing layer offers data and information of the current system to other via
appropriate services. Information to be shared may include user identification service (iden-
tity resolution service), reputation and trust-relation information on the user (reputation data
sharing), known adversarial models and corresponding solutions, as well as the computational
trust model service to other systems.

An open trust system may integrate with similar systems at different levels, such as depicted
in Fig. 6.2. The key advantage of an open trust system is that its capabilities can be effectively
combined with that of different open systems via the exporting of user identities, reputation
data, and attack models as a service. Such a combination, however, relies on the semantic
interoperability among the systems. That is, how an open system interprets semantics of
information and services provided by the other systems, e.g., the meaning of transactions,
ratings, reputation, and trust on users. Again, due to security and privacy reasons, privacy-
preserving methods of data integration should be applied in this knowledge sharing process.

6.5 Challenges in Developing Open Trust Systems

The possible benefits of building open reputation-based trust systems are not without signifi-
cant challenges. This section will identify and discuss several of these most important issues.
These questions are presented in order of relevance and importance in my opinion, most of
which however are inter-related. Any solution to a specific question should be developed giving
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Figure 6.1: Architecture of an open reputation-based trust management system

consideration of the other issues.

6.5.1 Opening systems for knowledge sharing

The building of open trust systems assumes that a system may acquires reliable and semantically
interpretable data, including user identity and reputation data from the other systems, namely
community portals, search engines, social networks, and other (open or closed) reputation
systems. The opening up existing (reputation) systems and combing them for synergic benefits
are not without fundamental challenges.

Incentives of sharing knowledge: Aggregating reputation within a community is a
costly process. Furthermore, reputation information can be considered as a feature of the
community and a public good for the community members. Therefore, it is not straightforward
that community managers have sufficient incentives to disclose reputation information or any
knowledge to other communities, especially when such information may goes competing systems.
For example, an existing e-trading system with very large userbase, namely eBay.com is unlikely
to be willing share reputation data with another smaller system, such as ricardo.ch.

Usually, online communities do not provide any inside information to outsiders for free.
The reason is that the disclosure of information on identities and their relations are of high
importance. Even raw transaction data could also be useful as various data mining can be used
to discover various user preferences and correlation among them. Besides their intended usage

for anomaly and misbehavior detection, these discovery may also be valuable for other purposes.
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Figure 6.2: Different levels of knowledge sharing among open reputation-based trust systems

For example, Facebook’s user profile data are valuable information to market researchers and
thus can not be given for free by Facebook.

Peering agreements among communities to share reputation-related information could cre-
ate externalities for both communities by increasing their credibility to the users. This scenario
particularly makes sense for federated small communities that are thus able to calculate trust-
worthiness more effectively over a larger user and transaction base and alleviate the “cold start”
problem. Therefore, smaller communities are expected to be more willing to reciprocate. On
the other hand, large well-established communities are not expected to be willing to disclose
reputation-related data for free. Economic incentives can be provided to them by means of
side-payments to provide reputation, identity or raw transaction data. However, in that case,
competition among reputation-related information providers would arise. The accuracy of rep-
utation or identity information, the size of the community, the number of competing providers
and the number of clients would determine actual prices. A federated group of many small
communities can eventually be a strong reciprocative partner for a large system. For example,
eBay may eventually lose members if ricardo.ch exchanges data with eBay’s competitor, such
as alibaba.com. Consequently, community manager of systems of different scales may only be
willing to share data if the data exchange is fair and equivalently benefit to them. Automatic
protocols for privacy-preserving and fair data exchange among different systems are thus highly
required.

Reliability of shared data: An inherent problem of each reputation system are unreliable
(biased) ratings posted by users with different motives. A similar problem emerges when such
knowledge is shared between different communities. Community managers may have the incen-
tive to improperly manipulate reputation information. To this end, a trustworthiness metric
should be attached to each community regarding the accuracy of reputation or any information
reported. Also, incentives for accurate reputation information exchange have to be provided,

i.e. exchange on a reciprocative basis or buying/selling reputation information (Tadelis, 1999).

154


OpenTrust/IntegrateRepsys/figures/integrationlevel.eps

6.5 Challenges in Developing Open Trust Systems

User privacy and reputation protection: The Internet exposes personal information
without providing any incentive for accountability. This information is subject to aggregation
on-demand by various commercial systems. For example, systems such as Spokeo.com make
deal with several systems, search and provide almost a lot of information such as photos, blog
entries, visits to different sites, of any people knowing only his or her nickname in one online
communities. These systems for aggregating such personal information may thus (accidentally)
use unreliable information sources and even fake data, which may severely affect the reputation
of a person (hence defamation attack). However, the aggregation of even accurate reputation
information and its linkage to a person may raise privacy concerns for the members of online
communities. Given such an observation, sharing user data across systems may deter participa-
tion level of privacy-aware users. Community managers thus have another reason not to share
their data to keep their system growth steadily.

To mitigate the above problem, the sharing of information and knowledge shall ensure that
individual actions and interactions inside a community should not be linkable to real identities,
but only to pseudonyms. Moreover, only relevant reputation information should be commu-
nicated across communities. Appropriate techniques, such as cryptography and obfuscation
should be employed to protect user data and minimize information leakage. In addition, im-
proving reliability of information sources may be a substantial aid in fighting malicious publica-
tion of personal information, defamation attacks and contribute to better protection of personal
privacy and integrity.

6.5.2 Knowledge acquisition and system integration

An apparently challenging issue in the knowledge acquisition of an open trust system is to
address the semantic interoperability among different systems. Even with a certain level of
semantic agreement, for example, the case of sharing information and knowledge from two
systems on the same application domain, data integration is also non-trivial. Apart from these
challenges, there are also several other issues relevant to the knowledge acquisition process that
need to be address while building any open trust system.

Which knowledge to be shared and acquired: The extent to which data to be shared
between systems may well depend on the openness of each system. Possible levels of informa-
tion sharing include: sharing user identities and reputation data, sharing computational trust
models, sharing knowledge regarding of user behavioral patterns and malicious activities, vul-
nerabilities, adversarial attacks and corresponding detection and appropriate counter measures.
It is expected that with more shared and acquired knowledge, the performance of the system
shall improve. However, quantifying measurements of such improvements given the knowledge
level acquired in practical applications are not easy and deserve further studies.

It is also a question whether it is best to integrating raw transaction data or reputation
information from another system. When integrating ratings and trust values rather than raw
transaction data, the underlying semantics of generating these rating have to be taken into

account. It is interesting that, depending on the trust evaluation model employed, the same

155



6.5 Challenges in Developing Open Trust Systems

reputation data can lead to quite diverse evaluations (Despotovic & Aberer, 2006). Furthermore,
the dynamics and the structure of a certain community have to taken into account, e.g. kind
of transactions, frequency, etc. Also, the credibility of feedback for raw transactions and the
reliability assigned to a community for the reputation information provided is very important.

Identity resolution issues: One of the most critical short-comings of closed reputation-
based trust systems is the possibility of whitewashing behaviors by acquiring cheap identities.
In an open trust system, the virtual identities of the participants can be related to existing
contexts in a variety of other systems where the users may present, such as social networks
or Semantic Web entities. However, an emerging question is how to resolve identities when
integrating reputation systems from different communities.

An appropriate solution to the above fundamental question requires the combination of dif-
ferent techniques to detect of digital footprints of users across communities. First, certain online
communities may employ membership based on real-life attribute credentials. E.g., ricardo.ch
is an auction site that uses physical addresses as a means of verification of user identities. Some
online social networks may even employ real identities or real life addressing for membership
registration. Second, users may employ the same credentials across several communities and
may even exhibit similar behaviors. Thus indirect identity resolution techniques by analyzing
correlated patterns of actions across different contexts to disambiguate the identity of partici-
pants can be well applicable. Besides, the Semantic Web is increasingly providing more ways to
manage entities, including users, more easily and systematically, by relating information from
widely spread resources to a subject of trust evaluation via Friend-Of-A-Friend networks, (Shen
et al., 2005a). Such entity traits, credentials and behavioral patterns of users on the Web con-
stituent their digital footprints, which cannot be easily created or changed. For example, an
indirect way for identity resolution would be to combine information from different trust and
rating graphs. This is analogous to the use of social network analysis. It has been proved
in (Backstrom et al., 2007; Narayanan & Shmatikov, 2009) that if only the a limited number
of links are known in an anonymous social network, it is possible to discover the true identities
of all other nodes of the network. Also, employing graph relations from different communities
and complex network metrics (e.g. clique), it is possible to discover collusive groups and deal
more effectively with “Sybil” attacks. In short, discovering digital footprints of users and build-
ing an effective identity management mechanism based on these footprints are challenging yet
promising issues in the implementation of an open trust management model.

Accuracy of identification and incentives of cooperation: The resolution of user
identities among different contexts may be inaccurate. In this case, reputation and trust graph
information is improperly mapped into the integrated system, which introduces some noise
in estimation of trustworthiness of its users. Therefore, the incentives to users to exhibit
an acceptable behavior may get distorted. The relation between the accuracy of the identity
resolution and the resulting incentives for users after aggregation of reputation information from
different communities has to be investigated. Also, the aggregation of reputation information
across communities and the subsequent trust evaluations also influence the dynamics inside

communities. For example, a member evaluated as untrustworthy by other communities will be
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regarded as less trustworthy inside a community where it behaves cooperatively. As a result,
the member’s dominant strategy in the latter community is not to cooperate. It thus requires
much more effort from the particular member than others to be regarded as trustworthy in an
emerging community.

Reputation semantic, community structure and system dynamics: Reputation
within a certain context is calculated based on the specific metrics of reputation within that
context (i.e. how is good reputation defined, how is rated), the specific computational trust
model in use (Vu & Aberer, 2008b), the community structure and dynamics (i.e. interactions),
the community norms on what is good or bad behavior (i.e. reputation semantics) and evalu-
ation criteria. Past transactions may be rated or not, by one or both transacted parties, and
with quantitative or qualitative feedback. The feedback messages are aggregated based on dif-
ferent computational trust models that may also weight the significance of the ratings by the
credibility of the raters and take into account other factors, such as the transaction context
factor (i.e. size and type of each transaction) and the community context factor (e.g. common
incentives or beliefs) (Xiong & Liu, 2004). Rating, reputation, credibility metrics and the met-
rics of any other factor for reputation calculation and their semantics may have to be shared
across different communities for reputation transferability.

To this end, OASIS standards® will provide the means for representing and understanding
the relevance of a reputation score across communities, but not the algorithms for computing the
scores. However, the context of a community also has to be effectively modeled and described.
The semantic distance of the contexts has to be calculated in terms of relativeness or usefulness
(as opposed to lexicographical, linguistic or physical) distance between their attributes (Roddick
et al., 2003).

Different communities may have different norms on which behavior is acceptable or not.
Therefore, a physical entity with consistent behavior across communities may have high rep-
utation in one community and low reputation in another. The evaluation criteria are also
affected by the community norms but also from the context structure and community assump-
tions. Also, different communities have different assumptions on the way they derive trust from
reputation and activities of the users. As a result, even the same physical entity, being member
of different communities may act differently. For example, consider a member of eBay that is
reluctant of giving negative feedback fearing provider’s retaliation, while in Amazon, the same
person is very strict in her evaluation and mostly provides negative book reviews. Therefore,
the assumptions and the structure of each community have to be taken into account when
aggregating reputation from different contexts. A knowledge representation language that is
sufficiently expressive and possibly light-weight for the description of the reputation semantics,
its context, context structure and the related assumptions is strongly required.

How to best combine different computational trust models: An open trust sys-
tem may employ different computational trust models provided by several similar systems to
detect misbehavior. Furthermore, the system is also provided with more data via appropriate

knowledge sharing and acquisition process.

Thttp://www.oasis-open.org/committees/orms
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As each individual system may employ a specialized computational trust model that is most
robust against some certain adversarial attack, it is expected that the open trust system that
uses a combination of different trust models would outperforms existing closed systems in various
aspects. First, the open system should be resilient to almost every attacks as each individual
system that provides computational models and reputation-related data for the system. The
open system shall also be able to detect various misbehavior patterns more than each individual
system does.

Given the above expectation, the most interesting research question is how to combine dif-
ferent computational trust models provided by other systems in the most effective way. A
potential approach to effectively address this question is to use weighting and boosting tech-
niques in machine learning literature (Freund & Schapire, 1995). Such techniques help to build
an open computational trust model that is provably much more robust than individual models
under any malicious behaviors. Such an improvement in detection accuracy of the trust models
also implies increased incentives for cooperation in the system (Vu & Aberer, 200x).

Integration cost vs. benefits: Given the aforementioned issues, aggregation of reputation
information across different communities requires identity resolution, collection of reputation
information and trustworthiness estimation and thus is potentially costly.

Therefore, one should consider various integration cost and assess potential benefits of dif-
ferent levels of integration, for example, which data to be shared and in what ways, when
implementing such an open trust system. For example, as it involves considerable communica-
tion and processing latency, it is not considered as feasible for an (open) trust system to use
knowledge and information from other systems for its trust evaluation on demand. Also, it is
very costly in terms of communication to continuously exchange reputation information with
other communities for every user or to continuously run crawlers for this purpose. A hybrid
approach combining proactive crawling over other communities for the reputation information
of selected members of the community and on-demand reputation information requests for some

members to other communities seems to be more appropriate.

6.6 Naive Combination of Computational Trust Models

This section presents a generic model that evaluates the benefits of combining the computation
trust models of two similar systems. Herein, we consider the two reputation systems being used
in a similar application contexts. Therefore, ratings and reputation values in one system are
well-defined and relevant (i.e. meaningful) to the other. An example of two such systems are the
online e-commerce sites eBay.com and ePier.com, which employ similar reputation mechanisms.

My goal is to evaluate whether such a combination of two reputation systems leads to any
improvement of the robustness of each individual system against user misbehavior. Specifically,
the resilience of the combination of two trust models, each of which is designed to be resilient
against a certain misbehavior model will be measured and compared to the resilience of indi-
vidual models. The goal is to quantify the improvement (in terms of overall resilience) of the

combined trust model as compared to each individual and to measure the synergy effect of such
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a combination, if any.

It is assumed that community managers and initiators provide basic support for identify-
ing and structuring relevant reputation data for mapping it into a representation with shared
semantics. Therefore, exchanges of reputation data and combination of information from dif-
ferent systems can be done effectively. For simplicity, each community manager is assumed to
be trustworthy.

A reputation-based trust system can be formally described as in Def. 16. As defined
therein, only single-dimensional reputation values with common and well-defined semantics are
considered.

Definition 16 A reputation-based trust management system R is a 6-tuple R = (U, id, K, I, T, A)
where:

o U is the set of usernames in the system. This information is usually public.

o X is the set of credentials to verify user identities. In most cases K is private, i.e., only
known by the owning user and the community manager. Fxample credentials are emails,
public keys, or even physical addresses.

e id : U — X is the system identity verification method (which may be done during the
registration phase).

o H = {h":u € U} is historical performance data of all users.

e T is the set of completed transactions among users.

o A:UxT xH — {trustworthy, undecided} is an algorithm operating on H and outputs

a value determining if a user uw € W is trustworthy for a given transaction t € T.

Let B = {b*,u € U} be the overall behavior model of all users, where b* is the behavior
of a user u on the probability space. We will make no assumption on each individual behavior
b*, thus the overall model B summarizes any possible malicious and opportunistic behaviors of
any participants, including any collusive actions of a group.

The misclassification error rate of a reputation system R = (U, id, X, H, T, A) given a user
behavior model B is defined as the expectation that the system misclassifies behaviors of any
user for a transaction (Def. 17). A lower misclassification error rate implies a higher resilience
under malicious behaviors of users.

Definition 17 Let 0 < e(u,t | A, B,h*) < 1 be the probability the algorithm A misclassifies a
user u as trustworthy for a transaction t € T, given the rating history of the user h* and the
overall behaviors of all users B. The misclassification error rate of the system given the user

) -+ e(u,t|A,B,h" . .
ZuEUYtEJlrul(l‘:r“ ), The system resilience under the behavior model

behavior model B is s =

Bisr=1-—s.

Denote h* || A" the integration of two historical performance data sets h* and A" of a
user u. In this work, the analysis is limited to those algorithms A satisfying the following
Hypothesis 1. Such a hypothesis is practically reasonable with a wide range of algorithms, since
a better learning result is usually expected given more data.
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Hypothesis 1 e(u,t | A, B,h") is a monotonically decreasing function of | h* |. In other
words, d(A*, A, B) = e(u,t | A, B, ht* || A*) — e(u,t | A, B, h*) <0

Let us combine two systems R; and Ry with the same identity credential set K. Denote
Ri = (W, id;, K, 3, Ty A), where H; = {h¥ : v € U;}, ¢ = 1,2, our goal is to combine R
and Rs in order to achieve an overall resilience that is better or, at least, not worse than, each
individual system under any misbehavior model B;, j = 1,2. The integration of more than two
systems can be done similarly.

For example, let A; be a dishonesty detection algorithm designed to discover collusive groups
of malicious users who consistently vote in favor for each other (possibly for a limited group
size). Let Ao be another algorithm that detects periodical changes in behaviors of users, where
period is finite. We will investigate if by sharing information and combining the two systems R;
and Ry together, the final system is able to detect both collusively malicious and periodically
changes of behaviors more accurately. Moreover, we want the resilience of the integrated system
to be higher than the resilience of each individual system.

I will show that such synergies can be achieved by combing the knowledge of two systems.
Particularly, I exploit the fact that many users participate in both systems and their behaviors
can be derived by aggregating their historical performance statistics in both systems. The detec-
tion of common participants of the two systems is related to the problems of alias detection and
entity resolution in security and database research communities. For example, in (Narayanan
& Shmatikov, 2009), the authors managed to identify a large number of user identities from
anonymized Flickr and Twitter data sets by analyzing their relationships with others with a
very high accuracy, even if the two data sets are not strongly overlapped.

Basically, such an identity equivalence mapping can be done based on many information
sources: First, many users use the same credentials in both system that uniquely identify them
from the others (a.k.a. their digital footprints). For example, a user may use the same e-
mail address to register as participants in the two systems. Other typical credentials can be
detected from similarity in IP source addresses, correlations in posting timestamps, etc. An
example solution to automatically detect such identity equivalences from various information
sources is presented in (Cudré-Mauroux et al., 2009). Second, even if users use different cre-
dentials, equivalence among their usernames in two systems can be derived by analyzing the
(trust) relationships among these users with the others. For example, methods to look for
matching hidden patterns and structural stenography among users in the trust graphs of two
systems (Backstrom et al., 2007; Narayanan & Shmatikov, 2009) can be applicable. Figure 6.3
illustrates the possibilities of such an identity equivalence mapping. Suppose three users u, v, w
forms a collusion group in the first system Ry, and other users v/, z, y form another collusion in
Ro. By combining the two systems, algorithm A; can be used in both communities to detect
the two collusive groups effectively. Since u and v’ actually use the same credential, e.g., the
same email for identity verification, they are revealed to be associated to the same user. We
can then estimate that v, w is related to x,y with certain probability.

In this work, specific solutions to this problem of identity resolution will not be investigated.

We will assume the availability of an appropriate identity equivalence mapping mechanism for
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Figure 6.3: Inferring identity equivalence in the two reputation systems based on known knowl-
edge and relationship analysis.

the integration of the two reputation systems. We define as 7 = {u € Uy : Jv € U, id;(u) =
ida(v)} the set of usernames with the same identity credential in both systems. Similarly we
can define 7/ = {u € Uy : Jv € Uy, idi(u) = ida(v)}, and | 7 |=| 7/ |. Def. 18 formally introduces
the notion of identity equivalence mapping between two user communities.

Definition 18 An identity equivalence mapping between the user communities of two systems
Ry and Rs is defined as:
ide : Uy x Uy x 7 — [0, 1] (6.1)

The function ide(u,v,T) gives the probability that user uw € Uy is the same as user v € Us,

knowing the relationship among users and the initial set of equivalent identities 7.

We denote as 7 the set of users that can be reliably detected as common in both system
by identity equivalence mapping given 7. Formally, 7% = {u € Uy : Jv € Uy, ide(u,v,7) = 1},
and presumably 7F D 7.

Similarly, we have 7/* = {u € Uy : Jv € Uy, ide(u,v,7’") = 1}, where 7* D 7/, and
| 7 |=| 7" | (see Figure 6.4).

Figure 6.4: Combination of two reputation systems

Given the above notations, we introduce and analyze the resilience of the following naive
combination of the two reputation systems (Def. 19).
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Definition 19 The naive combination of two reputation systems R;,i = 1,2 is a reputation
system R = (U, id, K, H, T, A) defined by:

e U="U; UlUy —7*.

o H = H,y || He is the combination of historical data from Ry and Ra. Specifically: H =
Y| Ry cuer ULy tue Uy — 7" FU{RY 1 u e Uy — 77*}.

e T=T,U7Ts

o A = Ay oAy is the combination of two algorithms Ay, and As. Under A, a user u is
evaluated as trustworthy iff given the same history of u, each Ay and As independently

evaluates u as trustworthy.

gt ALB h? . . . .
Let s;; = zueui’teﬁf‘(‘i;,l‘ - )7 be the misclassification error rate of R; given that the

user behavior is B;, where ¢, € {1,2}. Suppose that A; is designed to be more robust against
the behavior model B; than to the model By, j # i, it follows that s;; < min {s;;,7 # j}, where

i,je{1,2}.

_ “ e(u,t|A10A2,B;,hY||hy
Denote 5, — Suciscs et PRt R)

Ry
bination of two systems (Def. 19) given the user behavior model B;,i = 1,2. Proposition 5

the misclassification error rate of the naive com-

gives us the estimation of the resilience of the combined system.

Proposition 5 Let | Uz |=a |Us |, | T2 |= 8| T1 |, and | 7% |= v | Uz |, where 0 < o, B,y < 1.

An upper-bound of the worst-case misclassification error of the combined system is given by:

= s11+afBs2
(@) 51 < =) m

— saatafs
(b) 32 < wEa -

Proof 10 Due to symmetry, we only need to prove (a). We note that under any user behavior
model Bj,j = 1,2, Def. 17 and Def. 19 give us:

e(u,t| Ay oAz, B, h") =e(u,t| A1, Bj,h")e(u,t | Az, Bj, h") (6.2)
From Hypothesis 1:

d(d”JLi}'Bj) = e(u,t ‘ .A“Bj7h: || 5“) - e(u7t | ‘Ai}Bj7h:) S 0 (63)

where 1,7,k € {1,2}.

Let T* C T (resp. T C Ty) be the set of transactions where estimates of behavior of users
in T (resp. ™) are made, the total misclassification error TME by the combined systems is
given by:

TMEZ 3 e(u,t| A 0As, Br,hY || hY) =
uwel,teT

> elut| A Bi by | hi)e(u, t | As, Ba, Y || hg)
weT* teTH

> e(u,t | Ay, Br,hi)e(u,t | Az, Bi,hy) +
uEU —T* tET) —T*
> e(u,t | A1, Bi, hy' || hy)e(u,t | Az, Ba, b || hy)  +
weT!* teT*

3 e(u, t | A1, B1, hy)e(u,t | Az, B1, hY) (6.4)
u€Ug—7/* teTo—T/*
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On the other hand, considering the two trust management systems separately, the sum SME of

their misclassification errors is given by:

SME £ S e(ut| A, Bi,hY)
ueT* teTH
+ > e(u, t | A, Bi,ht)
u€WUy—7* ,te€Ty —T*
+ 3 e(u,t | Az, B1,hy)

wer!* teTI*

+ > e(u,t | Az, By, hY)

u€Ug—7/* ,t€Tog —T/*

Since 0 < e(.) < 1, each term in Eq. (6.4) is less than the corresponding term in Eq

Using Eqs. (6.2),(6.3), we then have:

TME — SME

IA

> d(hy, A1, B)
ueETH teTH*
+ > 0

UEU —T* ,tET| —T*
+ > d(hY, Az, By)

wer!* teT!*

+ > 0

u€lUg—7/* teTg—T/*

= > d(hy, AL Br)

ueT*, teT*

+ > d(hy, Az, By)

wer!* teTl*

1>

@(T*,T*,T/*,‘JJ*) S 0

The left-hand size of (6.4) can be rewritten as:

TME = (| Wi |+ Uz [ = [ 7" (I T2 |+ ] T2 )51
We also have:
SME = |Uy || Ty | s+ | Uz || T2 |s21
= | Ui || T1 | (s11 + afs21)

Thus (a) follows naturally.

(6.5)

. (6.5).

(6.6)

(6.7)

(6.8)

Suppose s;; > 0 and let s;; = 0;54,%,j € {1,2},j # i, where §; > 1. Given Proposition 5,

it is apparent that the combination of the two systems results in a better system if and only if

S; < sy,1=1,2. This is equivalent to the following condition:

(I+a-y0+0)

fi= 1+ ajs;

>1,i=1,2

The condition (6.9) is satisfied if and only if:

a+pB+ab—(1+0)y and ~ < a+p

1<§; < B 1+ 5

for 0 < a,B8 < 1.
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The combined system has a benefit factor of f; = W

model B; compared to the individual system. Figure 6.5 shows the benefit factor for some

under the user behavior

example «, 3, and ~ values, i.e., a lower bound on the expected effectiveness improvement by
combining different reputation systems.

Thus, the benefit factor reaches the maximal value for §; — 1,7 = 1,2. This condition is
equivalent to s11 & s21 and s12 = S99, or that the two systems have approximate resilience
under any behavior model By and Bs. In other words, it is best to combine two systems with
comparable performance against different behavior models to achieve the highest synergy among
them.

From Eq. (6.7), one can also derive a tighter bound between 5; and s11, $21 than the one
of Proposition 5. This new bound depends on the function ®(7*, T, 7"*,T"*), which can be
estimated numerically given certain assumptions on the shape of the error function e(.) (Def. 1).
In such a case, it it apparent that the resilience of the combined system (represented by s1,32)
is even better. The synergy achieved in this situation is dependent on the set of common users

7* and related transactions T*. The thresholds of 7* and 7'* to ensure the combination is

meaningful and effective, as clearly shown, are | 7* |=| 7/* |> 0.
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Figure 6.5: Benefit factor f; vs. §;,i=1,2

In summary, the total benefit (i.e, overall system resilience improvement under a mixture of
behaviors) achieved by exchanging information and combining two computational trust models
of two similar systems is contributed by two main factors: (1) The combined accuracy of two
misbehavior detection algorithms, and (2) the effectiveness of the mechanisms for the reliable
discovery of common users 7" that enables effective reuse of user historical performance data
for better evaluation of their behaviors.
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6.7 Conclusion

The current analysis uses only a naive combination of two computation trust models from
similar systems. There are also several effective methods of combining different computational
trust models to guarantee better improvement in terms of evaluation user behaviors. Partic-
ularly promising solutions are the weighted majority algorithm (WMA) and boosting tech-
niques (Freund & Schapire, 1995). The study of the usefulness of such techniques is beyond the
scope of this chapter and subject to future work.

6.7 Conclusion

This chapter presents a first step towards the development of the next generation reputation-
based trust management systems. Such systems are open in nature and are capable of acquiring
and integrating knowledge from other similar systems to significantly improve its own perfor-
mance in terms of detecting misbehavior and motivating higher level of cooperation among the
users.

The chapter provides a systematically study on several opportunities of the development of
these open systems. I have analyzed and quantified (based on a simple model) possible benefits
of the combination of reputation data from two similar reputation systems and found that a
synergy in performance of the two systems can be achieved even with a naive combination of
their trust models. This synergy comes from two main factors. The first source of performance
improvement is from the combination of the trust evaluation mechanisms of the two systems,
which yields an overall higher accuracy in detecting different types of misbehavior. The second
comes from the discovery of common participants in the two systems, which contributes to the
more reliable estimation of these users’ trustworthiness. This work provides a starting point to
the effective reuse and integration of trust-related data from many similar systems to improve
the accuracy in the evaluation of user behaviors. I have also provided an extensive discussion of
many challenges related to the development of an open approach to design a trust management

system, which open up several interesting research questions for the trust research community.
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Chapter 7

Conclusion and Future Work

7.1 What Has Been Done in this Thesis

Since the seminal work of (Marsh, 1994) that first attempts to formalize trust as a computational
concept, trust management in open and decentralized systems such as peer-to-peer and social
networks has become an active research area over the recent years. The research on trust and
reputation in general has even a longer history, considering the enormous number of work in
related disciplines, most notably sociology and economics research (Rousseau et al., 1998).

Regarding the amount of existing works in these highly developed research areas over such
a long time, the contributions of this thesis are in fact modest. These contributions should only
be viewed and evaluated from the angle of developing and applying trust management tech-
niques in online systems, and particularly in applications where participants are heterogenous
computational agents with a pre-defined level of intelligence, e.g., with known goals and type
of behaviors. Given the above research scope, this thesis provides and extends existing under-
standing of trust management in open peer-to-peer applications with respect to the following
aspects.

First of all, the thesis provides an understanding of the different computational trust models
from a machine-learning perspective (Chapter 3). Several (if not most) of existing computa-
tional approaches to trust evaluation can be seen as specially designed learning algorithms to
estimate unknown parameters of different generative models of participant behaviors. Such
generative models are usually built with expert domain knowledge and other ad-hoc heuristics.
Under this new perspective, it is clarified that the design of computational trust models is in
fact a subdiscipline of the development of machine learning techniques that are robust under
different adversarial attacks. In other words, trust management research can be seen as Al
research on security and robustness of machine learning techniques in presence of intelligent
adversaries. Towards the comparison and evaluation of effectiveness of computational trust
evaluation approaches, the thesis also discusses the prototyping and simulating of reputation-
based trust systems in complex scenarios. An implementation of a general simulation framework
for such purposes is also provided.

Secondly, my analysis on the relation of accuracy measures of a computational trust model
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and its capability to foster cooperation and establish trust among participants (Chapter 4) helps
us to understand the key role of an identity management scheme in a heterogeneous environ-
ment where participants exhibit various types of behaviors and uses different trust management
mechanisms to evaluate each other’s reliability. The analysis in the case where cheap identities
are possible reveals that pseudonyms, even though acquired at a low cost, actually have a high
value to participants and thus appropriate pricing mechanisms can be implemented to enforce
their cooperation in a variety of application scenarios where temporary gains by cheating are
sufficiently bounded. This work also provides an approach to effectively use any existing com-
putational trust mechanism with a given learning accuracy to promote cooperation in systems
with mixed types of behaviors and possibilities of obtaining cheap identities.

Thirdly, I have shown that computational trust models can find applications in many differ-
ent areas (Chapters 2 and 5). In the thesis two novel applications are introduced, namely the
selection and ranking of services based on feedback of reputable users, and the use of special-
ized trust measures to choose reliable delegates in a key backup-recovery scenario in distributed
online social networks.

Last but not least, the possibilities and challenges of building next-generation, open trust
management systems are systematically studied (Chapter 6). This discussion and preliminary
analysis has shown several possibilities of building such open systems, one of which is that in-
formation sharing among similar reputation-based trust systems may be beneficial in increasing

the overall capability of individual systems sharing such information.

7.2 Open Issues and Future Directions

The work done in this thesis, like as any other research work, is by no means complete. Some
of the open issues and future research directions are identified below, mostly as follow-up work
of this thesis.

7.2.1 Towards an experimental approach to trust-related research

Trust management in more sophisticated systems, such as in those with real human participants,
is of both practical and theoretical interest to the research community. These sophisticated
systems may have an even higher level of heterogeneity and uncertain factors whose nature is not
fully understood. More often participants are bounded rational, more indeterministic, and under
the influence of numerous emotional and psychological factors. Given such complex settings,
usually the problems become too complex and no long tractable mathematically. To discover
and understand in-depth the various issues related to the cooperation and trust establishment
in these practically sophisticated systems, an experimental approach is much more realistic.
Towards this research direction, there are various research issues related to the design, devel-
opment and deployment of a large scale simulation platform that offers powerful and extensible
capabilities of simulating various practical application scenarios with realistic assumptions. For

example, the modeling of different attack models (Yang et al., 2009) and their counter-measures
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should be sufficiently generic to simulate a wide range of behaviors and helps to discovery vari-
ous vulnerabilities of the systems. This work can be based on existing work on attack modeling
and simulation in network security, such as the Integrated Testbed project at CMU®.

Furthermore, for enabling a realistic experimental approach to trust management, the em-
ulation of practical and large scale usage scenarios is also highly desirable. Approaches to
perform such large emulations automatically with reasonable deployment cost are needed. To
this end, novel methods of using existing user communities on social networks and virtual envi-
ronments such as Second Life? for emulation are a promising direction. These emulations, with
participation of both real people and intelligent agents competing together, may provide better
understanding of user behaviors and reveal more insights into the nature of cooperation and
trust building in complex societies beyond the simple experiments usually conducted in current
research work.

7.2.2 Towards open trust management systems

As discussed in Chapter 6, next-generation trust management systems are likely to follow an
open architecture approach in terms of their capability to share, acquire, and integrate knowl-
edge from other systems such as online social networks, recommender systems, search engines
or similar trust systems.

Among the benefits of open systems, information sharing among similar trust management
systems may help increase the overall capabilities of individual systems to detect malicious
behaviors (Vu et al., 2009b). Also, under realistic assumptions, this sharing may help to increase
the total adversarial cost to attack the systems and thus strengthening significantly (Vu et al.,
2010).

There are several research issues related to the building of such open systems, as discussed
in detail in Chapter 6. A number of these open questions are readily answered with known
approaches and techniques while having the potentials to provide good results with practical
impacts. First, a promising direction is to study the combination of different computational
models from different systems to improve their capabilities of detecting malicious behavior,
using conventional machine learning techniques such as the Weight Majority Algorithms and
boosting (Freund & Schapire, 1995).

Second, it is possible to extend existing entity resolution techniques, e.g., entity matching
and detection of user’s digital footprints via Friend-of-Friend networks (Shen et al., 2005b), to
build a Web identity management that is robust against cold start and whitewashing behaviors.
The reason is a Web identity management may exploit information from many information
sources and thus it becomes much more difficult for users to manipulate their activity trails.

Third, it is also interesting to analyze users’ incentives of cooperation, considering the
privacy concerns, where similar systems exchange information among each other. Privacy-
preserving data collection and mining techniques (Clifton et al., 2004; Lindell & Pinkas, 2002)
may be applicable for such purposes. Certain cryptogrphic techniques such as homomorphic

Thttp://www.truststc.org/testbeds.htm
2secondlife.com
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encryption (Prabhakaran & Rosulek, 2008) can also be used, for example as in (Domingo-Ferrer
et al., 2008). However, regarding their high computational cost, lighter weight approaches such

as anonymized techniques based on obfuscation may be preferable.

7.2.3 Trust management in the digital economy and beyond

The human society has become more and more sophisticated with the increasing merge between
the virtual realms and the physical realities. Business transactions are increasingly carried out
on the Web across the boundary of virtual society and real environments, e.g., considering
the economy in massively multi-player online games such as Second Life or World of Warcraft.
Moreover, the next generation of the Internet itself may evolve into a social system that relies on
social relationships among people on the application layer rather than on the physical network
level, e.g., the Davis Social Links project (Banks et al., 2007). This vision may become closer
to reality, given that with the current technological advances, the binding between users and
devices is much tighter. The management of online identities (or avatars somedays) and real-
life identities in doing business-related transactions will become more comfortable, yet with
potentially higher risks. The notion of a digital economy will become ubiquitous and more
social than ever.

Trust mechanisms have been used in various Internet business applications and virtual com-
munities such as online social networks, e.g., (Caverlee et al., 2010), to determine the reliability
of prospective business partners. In an ubiquitous digital economy research on trust manage-
ment would be more than a necessity to provide in-depth understanding and to predict various
phenomena regarding the cooperation among participants. Trust management in these new ap-
plication contexts will pose much more significant challenges as the systems under study have
an even higher level of heterogeneity, and the environments exhibit extremely high uncertainty
whose nature may yet be fully understood.

Among the questions that need to be addressed when applying trust-related research in
the digital economy, the most relevant one is possibly the study of the incentive structure of
participating users. User incentives can be analyzed via emulation of the systems in realistic
conditions (see Section 7.2.1), or by other formal methods such as eliciting user preferences via
intelligent user interfaces. Understanding and giving the right incentives to users plays a key
role in ensuring their cooperation. It also helps to build a secure and robust system against
possible malicious behaviors, as users simply reject security guidelines according to their own
rational analysis (unknown to the system designer) (Herley, 2009).

Privacy is another important issue that has not been considered in this thesis. As information
on activities of participants should be shared in order to enable any users to estimate reliability
and trustworthiness of another, certain privacy concerns emerge. There are few works (Pavlov
et al., 2004; Xiong, 2005) that attempt to answer some aspects of the question, particularly on
how to aggregate and compute reputation in a privacy-preserving way, e.g., using homomorphic
encryption. It is still not understood how much reputation information should be shared among
peers so as to achieve highest cooperation with the least information leakage. The question is

even more challenging if users have different levels of privacy awareness and exhibiting different
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types of behaviors, including rational and strategically malicious.

Even though the study of trust and cooperation in a general human society is highly complex,
we can rely on a large amount of work from other related disciplines regarding these issues. For
example, sociologists and economists have spent significant amount of effort studying various
issues related to reputation and cooperation in different types of economies (Rousseau et al.,
1998). In a variety of online applications things may be simpler as autonomous intelligent
agents acting on behalf of users, e.g., the vision of the Semantic Web (Berners-Lee et al., 2001),
are eventually available, and as humans may behave more rationally (optimally) in a near
future. Given that computational means for humans are becoming more available, decision-
making tools are ubiquitous and people are educated to think and act more rationally when
finding solutions to their everyday tasks (the computational thinking paradigm (Wing, 2006)).
Therefore, we may expect that several existing analysis and mechanisms from micro-economics
and operations research, e.g., the idea of using a market of reputation (Tadelis, 1999, 2002),

may be reusable in these new contexts.
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Appendix A

Appendix: Example of
Probabilistic Inference Using the
Junction Tree Algorithm

In this appendix we briefly describe the Junction Tree Algorithm (JTA) to do the probabilistic
inference on a directed acyclic graphical model to compute the distribution of certain variables.
For this example, we use the example model of the dependencies among the different QoS
parameters and on the different contextual factors as in Figure A.1 (a).

Suppose that the peer Py (on behalf of a user) would like to know the probability that the
peer P providing the file hosting service with the download speed level D = high, given that
the user only pays for the most economical type of service, P = economic. This is equivalent
to the computation of the conditional probability: p(D=high |P=economic), or briefly written
as p(D = high|P*). The notation P* denote the claiming of the variable P to its associated
evidential state P = economic. The computation of such probability is done via the JTA as
follows. Firstly, we create the Junction Tree from the original model in Figure A.1 (a) via the

four steps:

e Moralization of the dependency graph: add a link between any two parents with the same
child node and having no direct link between them; afterwards, make the graph to be
undirected. This is done as in Figure A.1 (a).

e Triangulation of the moralized graph: any loop of length 4 or more must have a link
between its two non-consecutive vertices. The moralized graph in Figure A.1 (b) has
been triangulated by itself.

e Building the Clique Tree: identify any clique (maximal complete sub-graph) of the trian-
gulated tree and the intersection between any two cliques (called a separator). This will
form a clique tree, as in Figure A.1 (c).

e Building the Junction Tree: Remove any redundant edges with the same separator in any
loop such that in the resulted tree, for each pair of vertices x and y , all vertices on the

path between them contain the intersection z Ny (the Running Intersection Property).
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This step is illustrated in Figure A.1 (d).

Figure A.1: The example graphical model for QoS parameters of the file hosting service (a)
before and (b) after the moralization step and the triangulation step. (¢) The building of the
clique tree; (d) We remove the redundant edge PM-P-UPN to get the junction tree of the
model.

Secondly, the joint distribution of the original network of Figure A.1 (a) could be written
as in Equation (A.1), where X* stands for the set of all variables P*, N,U, D, M:

p(X™) = p(P*)p(N)p(D|P*N)p(U|P*N)p(M|P") (A1)

On the other hand, we could also write this distribution in terms of the potentials ¢(.) of
the cliques and separators of the junction tree in Figure A.1 (d):

$(DP*N)(UP*N)¢(P*M)
P(P*)p(P*N)
One way to assign the initial potentials for the cliques and separators in (A.2) such that they
also satisfy (A.1) is: ¢(DP*N) = p(P*)p(N)P(D|P*N);$(UP*N) = p(U|P*N); p(P*M) =
p(M|P*); and ¢p(M*) = ¢(P*N) = 1.0.

We then perform the message passing on the built junction tree as illustrated in Figure A.2.

p(X™) =

(A.2)

During the passing of the messages, the potential functions of the cliques and separators will
be modified as follows: message 1 corresponds to the absorbtion of the clique DP*N from the
clique UP*N via the separator P*N, leading to the following potential updates:

¢"(P*N) = > ¢(UP'N)=> p(U|P*N)=1.0
UP*N\P*N U
5 (DP*N) = ¢<DP*N>—ﬂf(§*fVV; = p(PIP(N)P(DIP* N) 10 = p(P*)p(N)P(DIP*N)

a2
@@=
44——3>

Figure A.2: The running of the JTA by the passing of messages in the specified order.
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The process is performed similarly with the other messages 2,3 and 4 (in this order). For
example, message 2 corresponds to the updates:

¢*(PY) = Y G(PM)=> p(M|P*) =10
P* M\ P~ M
6 DPN) = (PN ST = p(P I NPDLPN) L = p(P (V) PDIP003)

At the end of the algorithm, the value of the potential function of each clique and separator
would be the marginal probability of that very clique (or separator). Thus the probability that a
user has a high download speed, given that it only pays an economical price is p(D = high|P*)
> nP(D = high, P*N) =%\ ¢**(D = high, P*N), where the term ¢**(D = high, P*N) has
already been computed after the passing of message 2 in Equation (A.3). One important aspect
is that the whole above procedure can be done automatically with any pre-defined dependency
graph, given the conditional probability entries of all nodes, of which the learning can be done
automatically as well. This enables the use of our quality and trust computational framework
in much wider application scenarios.
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