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Abstract 

Impurities are known to have a significant impact on materials properties. In particular, the 

presence of impurities can change mechanical properties and stabilize the microstructure by 

reducing grain growth and recrystallization processes. 

 

In the past atomistic simulations, in particular molecular dynamics, have contributed a lot to the 

understanding of deformation mechanisms in nanocrystalline metals. Especially, insights into 

details of dislocation/GB interactions have been gained. Additionally, simulations on coupled 

grain boundary migration in bicrystalline samples have played an important role in 

understanding stress assisted grain growth in nanocrystalline metals. However, all these 

simulations have been performed on monatomic systems. This means that the role of impurities 

has not yet been considered in these simulations. 

 

Some of the important difference between experiments and simulations could be removed by 

introducing dilute O distributions to computational Al samples. For this purpose, a simulation 

method is required which can deal with the oxidation of Al atoms around the O impurities and 

which can simulate the ionic and metallic nature of bonding simultaneously.  

 

Here, a method is suggested which fulfills the requirements by modifying the variable charge 

method of Streitz and Mintmire [Phys. Rev. B 50, 11996 (1994)]. A local chemical potential 

approach which optimizes the charge on only those atoms expected to be ionic is developed. 

Additionally the EAM potential for the non-electrostatic interaction given in the publication of 

Streitz and Mintmire is substituted by empirical potentials which treat the Al-Al interactions 

with a well-known Al potential. The Al-O and O-O interactions in these EAM potentials are 

fitted for the simulation of dilute O impurities in Al and additionally for the simulation of 

corundum in case of a second potential. 

 

The aforementioned developments are applied to study the effect of O impurities on the 

deformation of nc Al. A fully three-dimensional nc sample containing 15 grains of 12 nm grain-

size is deformed with a dilute O content in the triple junction lines. The impact of O impurities 

on dislocation propagation is also considered in a sample which consists of a single grain 

extracted from a large molecular dynamics simulation. This simulation geometry contains a 

perfect dislocation, which is pinned at the surrounding grain boundary network. Therefore it 

allows the study of pinning strength and after unpinning the propagation behavior of the 
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dislocation under various O impurity distributions. Additionally, the role of O impurities on 

coupled GB migration is investigated by studying two bicrystalline samples with different O 

distributions in both of them. 

 

In the discussion, the emphasis is on the simulation method. Especially, the significance of the 

samples, simulation conditions and the performance of the method in the different applications 

are discussed. Additionally, the different developments (local chemical potential approach and 

EAM potentials) are critically analyzed and improvements for future simulations of impurities 

are suggested.  

 

Keywords: Variable charge molecular dynamics, impurities, nanocrystalline aluminium, 

dislocation propagation, coupled grain boundary migration 
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Zusammenfassung 

Verunreinigungen sind für ihren bedeutenden Einfluss auf Materialeigenschaften bekannt. Im 

Speziellen kann die Anwesenheit von Verunreinigungen mechanische Eigenschaften verändern 

und die Mikrostruktur durch die Verminderung von Kornwachstums- oder 

Rekristallisationsprozessen stabilisieren. 

 

In der Vergangenheit haben atomistische Simulationen, insbesondere 

Moleküldynamiksimulationen, viel zum Verständnis von Verformungsmechanismen in 

nanokristallinen Metallen beigetragen. Vor allem hat man Einblick in Details von Versetzungs-

korngrenzinteraktionen gewonnen. Zusätzlich haben Simulationen zu gekoppelter 

Korngrenzbewegung in bikristallinen Proben eine wichtige Rolle für das Verständnis von 

spannungsgetriebenem Kornwachstum in nanokristallinem Metallen gespielt. Allerdings, sind 

all diese Simulationen in einatomigen Systemen durchgeführt worden. Das heisst, die Rolle von 

Verunreinigungen ist bis jetzt in diesen Simulationen nicht berücksichtigt worden. 

 

Ein Teil dieses wichtigen Unterschiedes zwischen Experimenten und Simulationen könnte 

durch das Einführen von verdünnten O-Verteilungen in numerischen Al-Proben beseitigt 

werden. Zu diesem Zweck wird eine Simulationsmethode, welche die Oxidation von Al-

Atomen in der Nähe von O-Verunreinigungen handhaben und die gleichzeitig die ionischen und 

die metallische Bindungsart simulieren kann, benötigt. 

 

Hier wird eine Methode vorgeschlagen, die diese Anforderungen durch das Modifizieren der 

Variablen-Ladungs-Methode von Streitz und Mintimire [Phys. Rev. B 50, 11996 (1994)] erfüllt. 

Ein Ansatz für lokale chemische Potentiale wird entwickelt, der die Ladung nur für jene Atome 

optimiert, welche als ionisierbar angenommen werden. Zusätzlich wird das „EAM“-Potential 

für die nicht-elektrostatische Wechselwirkung in Streitz und Mintmires Publikation durch 

empirische Potentiale, welche die Al-Al-Wechselwirkung mit einem bekannten Al-Potential 

modellieren, ersetzt. Die Al-O- und die O-O-Interaktionen werden in diesen „EAM“-Potentialen 

für die Simulation von verdünnten O-Verunreinigungen in Al und zusätzlich für die Simulation 

von Korund im Falle des zweiten Potentials, gefittet. 

 

Die erwähnten Entwicklungen werden zum Studium des Einflusses von O-Verunreinigungen 

auf die Verformung von nanokristallinem Al eingesetzt. Eine dreidimensionale nanokristalline 

Probe mit 15 Körnern von 12 nm Grösse wird mit einer verdünnten O-Verteilung in den 
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Tripellinien der Korngrenzen verformt. Der Effekt der O-Verunreinigungen auf die 

Versetzungsbewegung wird an Hand einer Probe, die aus einem einzigen Korn besteht, das von 

einer grossen Moleküldynamiksimulation extrahiert wurde, untersucht. Die 

Simulationsgeometrie beinhaltet eine perfekte Versetzung, die am umgebenden 

Korngrenznetzwerk verankert ist. Darum erlaubt diese Probe das Studium der Festhaltestärke 

und das Bewegungsverhalten der Versetzung nach deren Loslösen unter dem Einfluss von 

verschiedenen O-Verunreinigungsverteilungen. Zusätzlich wird die Rolle von O-

Verunreinigungen auf die gekoppelte Korngrenzbewegung durchs Studium von zwei 

Bikristallen untersucht, wobei in beiden Proben mehrere O-Verteilungen eingesetzt werden. 

 

In der Diskussion liegt der Schwerpunkt auf der Simulationsmethode. Im Speziellen, werden die 

Bedeutsamkeit der Proben, die Simulationsbedingungen und die Leistung der Methode in den 

verschiedenen Anwendungen besprochen. Zusätzlich, werden die Entwicklungen (Ansatz vom 

Lokalen-chemischen-Potential und die „EAM“-Potentiale) kritisch analysiert und 

Verbesserungen für die zukünftige Simulationen von Verunreinigungen vorgeschlagen. 

 

Schlüsselwörter: Moleküldynamik mit variablen Ladungen, Verunreinigungen, nanokristallines 

Aluminium, Versetzungsbewegung, gekoppelte Korngrenzbewegung  
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Résumé 

Les impuretés sont connues pour avoir un impact significatif sur les propriétés des matériaux. 

En particulier, la présence d’impuretés peut drastiquement changer les propriétés mécaniques ou 

stabiliser la microstructure en réduisant les mécanismes de grossissement de grains ou de 

recristallisation. 

 

Dans le passé, les simulations atomistiques, en particulier par dynamique moléculaire, ont 

beaucoup contribué à la compréhension des mécanismes de déformation des matériaux 

nanocristallins. Elles ont notamment permis une meilleure connaissance des interactions entre 

dislocations et joints de grains. De plus, les simulations du déplacement couplé des joints de 

grains dans des bi-cristaux ont joués un rôle important pour la compréhension de la croissance 

des grains dans les matériaux nanocristallins sous contraintes. Cependant, ces simulations ont 

été restreintes à des systèmes monoatomiques et le rôle des impuretés toujours négligé.  

 

Une partie des différences observées entre les expériences et les simulations pourrait être 

supprimée en introduisant une faible concentration d’oxygène dans les échantillons 

d’aluminium. Dans ce but, il est nécessaire de disposer d’une méthode de simulations pouvant 

traiter l’oxydation des atomes Al autour des impuretés O et pouvant décrire simultanément des 

liaisons ioniques et des liaisons métalliques,  

 

Ici, une méthode répondant à ces exigences est proposée en modifiant la méthode des charges 

variables de Streitz et Mintmire [Phys. Rev. B 50, 11996 (1994)]. Une approche de potentiel 

chimique local, qui optimise seulement les charges des atomes attendus à devenir ionique, est 

développée. De plus, les potentiels «EAM» utilisés par Streitz et Mintmire pour décrire les 

interactions non-électrostatiques sont substitués par de nouveaux potentiels empiriques bien 

connus pour représenter les interactions Al-Al. Pour ces potentiels «EAM», les interactions Al-

O et O-O furent déterminées pour la simulation d’impureté d’O dans Al et pour la simulation de 

la structure corindon dans un second temps. 

 

Les développements mentionnés ci-dessus sont appliqués à l’étude de l’effet des impuretés d’O 

sur la déformation de Al nanocristallin. Un échantillon nanocristallin tridimensionnel contenant 

15 grains de 12 nm est déformé en présence d’O dilué aux lignes de jonctions triples entre les 

joints de grains. L’impact des impuretés d’O sur la propagation des dislocations est également 

considéré dans un échantillon consistant d’un grain extrait d’une simulation par dynamique 
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moléculaire à grande échelle. Cette géométrie contient une dislocation parfaite qui est ancrée 

aux joints de grains environnants. Elle permet donc l’étude de la force d’ancrage et du 

comportement de la propagation de la dislocation après sa libération pour différentes 

distributions des impuretés d’O. De plus, le rôle des impuretés d’O sur le mouvement des joints 

de grain est analysé en étudiant deux échantillons bicristallins contenant différentes distributions 

d’O.  

 

Dans la discussion, l’accent est mis sur la méthode de simulation. Surtout, les significations des 

échantillons, des conditions de simulations et la performance de la méthode pour différentes 

applications sont discutés. De plus, les différents développements (méthode du potentiel 

chimique local et des potentiels «EAM») sont analysés de façon critique et des améliorations 

pour de futures simulations des impuretés sont proposées.  

 

Mots clés: Dynamique moléculaire à charges variables, impuretés, aluminium nanocristallin, 

propagation de dislocations, mouvement couplé de joints de grains. 



 ix 

Abbreviations 

Sample description 

nc nanocrystalline 

fcc face center cubic 

hcp hexagonal close packed 

GB/GBs grain boundary/boundaries 

  

Methods  

TEM transmission electron microscope/microscopy 

EELS electron energy loss spectroscopy 

  

MD molecular dynamics 

MS molecular statics 

EAM embedded-atom method 

MEAM modified embedded-atom method 

  

DFT density functional theory 

LDA local density approximation 

GGA generalized gradient approximation 

  

Units  

nm nanometer (= 10-9 m) 

Ang. angstroms (= 10-10 m) 

ps/fs pico- or femtoseconds (=10-12 or 10-15 s) 

MPa/GPa mega- or gigapascal (= 106 or 109 N/m2) 

K kelvin 

E elementary charge (= 1.602 x 10-19 C)  

eV electronvolt (= 1.602 x 10-19 J) 
 

Local crystallinity classes 

Color-code used in visualizations 

Grey fcc atoms 

Red hcp atoms 

Green other 12 coordinated atoms 

Blue non 12 coordinated atoms 

  

Yellow O atoms 
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“Most properties of solids depend on the microstructure […]” 

       H. Gleiter, 2000. 
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1 Introduction 
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1.1 Deformation of polycrystalline metals 

In polycrystalline metals, i.e. metals consisting of several crystals or grains with different 

orientations, numerous and often competing mechanisms can occur during the plastic 

deformation depending on the temperature, the strain rate and/or the applied stress. For 

example, it is known that at higher temperatures (> 0.4 mT , where mT  is the melting point of the 

material) an anelastic deformation can occur under smaller applied stresses than the yield stress 

of the material. This time-dependent deformation of the material is known as creep. Different 

mechanisms are known which contribute to creep, e.g. Coble creep (vacancies diffuse along 

GBs), Nabarro-Herring creep (vacancies diffuse through the lattice) or dislocation climb 

(dislocation climb is driven by the diffusion of point defects). All the mechanism can be 

assigned to diffusion processes. Due to the time-scale restriction of classical MD simulations 

diffusion based mechanisms are difficult to access by simulations. Therefore, a restriction to the 

lower temperature regime (below 0.4 mT ) where the deformation of coarse grained 

polycrystalline metals is dominated by dislocation glide is made for this work. Additionally GB 

processes, especially coupled GB migration, are introduced because it is studied in one of the 

applications for the newly developed method. 

 

Dislocations, i.e. line defects of the regular crystal lattice, determine the deformation behavior 

via their interaction with point defects, other dislocations and/or interfaces such as GBs. 

Dislocation-dislocations interactions are very diverse and can even lead to dislocation networks 

during the deformation of coarse-grained polycrystals. However these interactions and 

dislocation networks are less relevant in nc materials (see section 1.2). Therefore these 

interactions are not explained in this introduction.  

 

Dislocations are present in the as-prepared state of a coarse grained polycrystalline metal due to 

stresses (mechanical, thermal, …) coming from the materials processing. If a coarse-grained 

metal is plastically deformed, the dislocation density increases and more dislocations have to be 

generated. If a crystal is defect free dislocations would have to nucleate in a homogenous way 

which requires very high stresses as e.g. Hirth and Lothe calculated 1. Homogenous dislocation 

nucleation is rather unlikely due to the high stresses and the pre-existing defects. Nucleation 

stresses are reduced by the presence of stress concentrations in the crystal. Stress concentrations 

can be found at defects such as precipitates, interstitials or vacancies. However the classical 

mechanism for dislocation generation in a polycrystalline metal is the Frank-Read source where 

dislocations are bulged out between two existing pinning points. After bowing around the 
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existing pinning point, two parts of the dislocation can annihilate and form a dislocation loop 

and a new segment between the existing pinning points. The stress required to bow a dislocation 

is proportional to one over to the distance between the pinning points. Frank-Read sources can 

cease their operation if the distance between the pinning points becomes too small because the 

stress to bow out dislocations can ultimately reach the value of the theoretical shear stress 2. 

Dislocations can be nucleated from GBs, too. Stress concentrations such as triple junctions, 

ledges or “GB dislocations” are possible nucleation sides. Dislocation nucleation from GBs was 

predicted already in the sixties in a theoretical approach by Li 3. 

 

In fcc materials, dislocations usually dissociate in two partials: A leading and a trailing partial 

dislocation. Between the two partials, there is a stacking fault. If a leading partial propagates 

without nucleation of a trailing, an extended stacking fault is formed. If in this case a second 

partial dislocation nucleates on adjacent plane and moves also through the whole grain, a twin 

faults is formed.  

 

Dislocations propagate during the deformation and produce slip. They can e.g. propagate as 

expanding loops which are produced by Frank-Read sources. As a dislocation can never end in 

the perfect crystal, GBs or other defects act as dislocation sinks and dislocations can be attached 

to them. In general GBs are strong barriers for dislocation propagation. By the reduction of the 

grain-size the interface density increases. Grain refinement leads to an increase in yield strength 

which scales with one over square-root of the grain-size in coarse-grained crystalline materials. 

This relationship is known as the Hall-Petch law4, 5 and is traditionally explained by the pile-up 

of dislocations at GBs.  

 

For the interaction of dislocations with defects other than interfaces and/or dislocations, the 

interaction with point defects, solute atoms, precipitates, dispersions or voids can be considered. 

The interaction of dislocations with voids and vacancies will not be addressed here. However 

the interaction with solute atoms and precipitates is relevant as later the effect of O impurities 

on dislocations is investigated. 

 

Solute atoms are present in a metallic matrix as substitutions, i.e. at lattice sites, if they are of 

roughly the same size as matrix atoms or as interstitials, i.e. between the matrix atoms, which is 

usually the case for smaller solute atoms. A solute atom induces a strain and/or stress field 

which can hinder the mobility of dislocations. The difference in size causes a so-called 

parelastic effect and the difference in shear modulus induces a so-called dielastic interaction 

between impurities and dislocations. Both parelastic and dielastic stress fields around the 

impurities and combinations of them interact with the stress field caused by dislocations. 
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However there is no parelastic interaction with screw dislocations because the screw has no 

hydrostatic stress field. The dielastic interaction between solutes and dislocations is of short-

range and the parelastic is long-range. There are other types of interaction between dislocations 

and solute atoms such as the chemical or the electrical. For the chemical interaction, the Suzuki 

effect, where the stacking fault energies are reduced by the presence of impurities, is well 

known. The electrical effect in a metal is caused by the conduction electrons, which are 

rearranged due to the variation in hydrostatic pressure around an edge dislocation. This leads to 

the formation of an electrical dipole at the dislocation which can interact with the electronic 

charge of the impurities. 

 

The presence of obstacles such as solute atoms hinders dislocation motion and extra stresses are 

required to overcome these obstacles. Dislocations can be imagined as flexible bands which are 

pinned at the obstacles and bow between them (Figure 1.1). The additional stress required for 

the bowing is inversely proportional to the interparticle distance analogous to the case of Frank-

Read sources. The increase in strength due to small particles is proportional to the square root of 

the particle concentration.  

 

 

Figure 1.1 In crystals, the obstacles (blue spheres) are arranged in an irregular pattern. The orange 

line represents a pinned dislocation. Taken from Ref. 6 

 

If the mobility of the impurities is high enough, they can cluster and even form second phases, 

so-called precipitates. The interface between the precipitate and the matrix can either be 

coherent, semicoherent or incoherent. The interaction with a dislocation can happen in several 

ways: Dislocations can be pinned at precipitates as it was seen in TEM experiments 7, they can 

cut through precipitates (Figure 1.2b) or they can navigate around them (Figure 1.2a). Cutting 

means that a dislocation moves through the precipitates and shears it (Figure 1.2b). For this, a 

coherent interface between the matrix and the precipitate is required to have a continuous slip 

plane. If the dislocation bypasses the obstacle, this can for instance happen by an Orowan 

mechanism (Figure 1.2a). In this mechanism, the dislocation bows between the particles leaving 
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a dislocation loop about each particle. Alternatively, dislocations overcome obstacles by climb 

or cross-slipping (Figure 1.2c). Whether an Orowan mechanism or cutting is observed is 

determined by the precipitate size, its strength and the interfacial energy. The cutting strength is 

dependent on the square root of the precipitate size whereas the Orowans strength (bowing) is 

inversely dependent on precipitate size. Therefore a change of mechanisms can be expected 

depending on the precipitate size. A precipitate has a maximal strength if its size is at the 

crossover between the two mechanisms. This change in mechanism is observed for Al-Sc alloys 

where Al3Sc precipitates are formed. In case of precipitate sizes around 1.4 nm cutting is 

observed and for size of 5.9 nm the precipitates are bypassed according to the Orowan 

mechanism 8.  

 

 

Figure 1.2 Different interaction mechanisms between dislocation and precipitates. The number 

correspond with the temporal evolution. (a) Orowan bowing mechanism in which a dislocation loop 

is left behind. (b) Cutting of a precipitate by passage of an edge dislocation. (c) Bypass of an 

obstacle via dislocation climb. Extracted from Ref. 6. 

 

The load applied on a polycrystal acts also on GBs (Figure 1.3a). Different non-diffusion based 

responses can be expected such as dislocation emission into the grains (Figure 1.3b), interface 

sliding (Figure 1.3c), interface migration coupled to shear deformation (Figure 1.3d), crack 

nucleation and propagation or combinations of them. Stress induced GB motion has e.g. been 

observed by ab initio 9-11, MD simulations 12-16 and experiments on low angle 17, 18 and high 

angle GBs 19-27.  

 

Coupling means that a GB responds to shear deformation or other driving forces tangential to 

the interfacial plane with motion normal to the GB plane. Cahn and Taylor 28 constructed a 

theory which shows that coupling is a feature which is valid for a lot of GBs. Coupled GB 

motion has been observed in many GBs using simulations 29-32, and experiments in bicrystalline 

metals 21, 22, 25-27, 33, 34 and ceramics 24. From theory 28 it is known that for curved GBs the 

coupling effect induces grain rotation which has been confirmed by simulations in columnar 

structures 35. There are also exceptions for coupling: It is not possible to have coupling for pure 

twist GBs 29, as the dislocation content of the twist GB induces GB sliding under shear 

a b c
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deformation. Simulations have shown that triple junctions and other defects can shutdown 

coupling 35. In simulations of Cu bicrystals it has also been observed that high temperatures 

(above 0.7 mT ) can activate sliding mechanisms with lower critical stresses 29. So sliding 

instead of coupled GB motion is then the dominant response to the applied shear stress. 

Independent of this, coupled GB migration is considered as possible source for stress driven GB 

motion or stress induced grain growth (see section 1.2 on nc metals ). 

 

The mechanism of coupled GB motion is not based on diffusion. It is determined by the 

transformation of the structural units which form the GBs. Usually it is observed as a stick-slip 

process (see e.g. Figure 4.33) where the shear stress rises until a critical value is reached and 

drops then rapidly. At the critical stress the migration event is triggered. The value of the critical 

stress scales with the tangential velocity parallel to the GB and depends on the temperature 29.  

 

 

Figure 1.3 Possible mechanical responses of a plane GB to applied shear stresses. (a) Initial 

bicrystal with a dotted line showing a set of inert markers. (b) The GB initiates slip by emitting a 

dislocation. (c) Rigid GB sliding with a grain translation velocity IIv ; note the discontinuity of the 

marker line. (d) GB motion coupled to shear deformation ( nv  is the normal GB velocity). Extracted 

from Ref. 36. 

 

Geometrical conditions determine the coupling constants, i.e. the ratio between the tangential 

velocity of the bicrystal parallel to the GB over the normal velocity of the GB. Simulations have 

shown that these coupling constants are independent of the tangential velocities or temperatures 

and depend only on the geometry 29. The Frank-Bilby equation 37, which determines the Burgers 

vector content of a GB, can be used to determine such coupling constants. Due to symmetry of 

crystals the Frank-Bilby equation can have multiple solutions which can result in more than one 

coupling constant or mode for a given system. Multiple coupling modes for one bicrystal can 

also be observed in simulations 29. Which coupling mode is active depends on the critical 

resolved shear stress of the present modes 29. Recently a generalization of the concept for 

coupling constants was proposed by Caillard 38 with which many more coupling constants can 
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be derived. They can be used to rationalize recent TEM investigations on coupled GB migration 
26.  

 

Impurities interact also with GBs, which is in the simplest case an elastic interaction. However 

also electronic interactions have to be taken into account: The energy of the elastic stress field 

of the GB and the impurity is lower if the impurity is present in the GB instead of the 

undisturbed lattice 39. This causes an attractive force between impurities and GBs which can 

lead to segregation of impurities to GBs. If a GB which contains impurities starts to move, the 

foreign atoms will be left behind. However the attractive force between the GB and the 

impurities gives the diffusion of the impurities a net direction towards the new GB position. In 

case of slow enough GBs the impurities are able to follow or move with the GB. The 

segregation of impurities to GBs leads to a drag effect on the GB mobility 39-41 which arises 

from the fact that the mobile dislocation has to overcome the attractive force due to the 

impurities.  

 

Solute segregation of impurities to GBs is also related to mechanical behavior of materials 

through embrittlement effects 36. For some impurities (e.g. H, O, S and P) it is known that 

segregation to GBs reduces their cohesion which can turn otherwise ductile materials to brittle 

materials. For other elements (e.g. B and C) an increasing GB cohesion or an expelling of 

harmful elements from GBs by site competition can be expected which improves mechanical 

behavior. In Al it is Ga which is known from ab initio simulations 42, 43 to cause severe GB 

embrittlement. In reference 44 it is expected that embrittling impurities should have a stronger 

binding to surfaces than to GBs. The opposite is expected for GB-strengthening elements. 

Electronic effects such as charge transfer towards the impurities are possible reasons for 

weakening of the bonding in impure interfaces which can lead to the aforementioned 

embrittlement. As chemical effects are involved in these segregation and embrittlement 

mechanisms, ab initio simulations are more successful in uncovering atomistic process than MD 

simulations which rely on empirical potentials. However, MD simulations of impurities in GBs 

are emerging as it will be shown at the end of section 1.2.2. 

1.2 Nanocrystalline face centered cubic metals 

Nc fcc metals are conventionally defined as polycrystalline metals with a mean grain-size below 

100 nm. These materials have very appealing properties such as an ultra-high strength but also a 

reduced elongation to failure. If the ultra-high strength of nc materials is explained with the 

Hall-Petch law one implicitly assumes the existence of dislocations in nc materials. However in 

small grains the stress to bow out a dislocation increases significantly and might reach even the 
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theoretical shear strength 45. So a limitation in the usual dislocation multiplication processes 

must be expected due the reduced grain sizes 46.  

 

With further grain-refinement a break-down of the Hall-Petch law is observed. Sometimes 

materials with very small grains become even softer. This indicates that a different mechanism 

then the conventional dislocation generation from Frank-Read sources is present and that 

dislocation-dislocation interactions and dislocation pile-up at GBs are less relevant in nc 

materials. It is envisioned that GBs become more effective as the interface density increase 

significantly in nc metals. 

1.2.1 Experimental work 

Postdeformation analysis in compressed or indented nc Ni does not show major dislocation 

debris 2, 47. In contrast, there are TEM observations which show twinning in nc Al at low 

temperature and high strain 48. Twinning indicates the operation of partial dislocations. 

Additionally, there are high-resolution TEM experiments for cold-rolled nc Ni where 

dislocation activity and even dislocation accumulation inside grains was observed under severe 

plastic deformation 49. So dislocation activity is also observed in nc materials although the 

operation of Frank-Read sources in small grains such as nanocrystals is questioned. 

 

Insitu X-ray deformation experiments showed that the broadening of the diffraction peak is 

reversible after unloading at room temperature 50, but not at lower temperatures 51. The 

broadening of the peak width is determined by limitations in the spatial extent of the coherent 

scattering volumes and by the presence of inhomogeneous strain. Lattice dislocations can be a 

possible source for inhomogeneous strain because it is known that an increasing dislocation 

density in coarse grained metals contributes to peak broadening 52. One interpretation of the 

observation of the reversibility of the peak broadening is that there is no dislocation network 

built up at room temperature. The irreversibility of the peak broadening after unloading at lower 

temperatures could indicate that there are residual dislocations after unloading. Furthermore it is 

observed that the broadening of the peak width can be reversed by heating the sample up.  

 

The role of impurities on the dislocation activity in nc metals could not yet be directly observed. 

However, from experiments on nc Al thin films 53 it is known that a variation in the base 

pressure during sample production influences the impurity content in the samples. A significant 

change in the mechanical behavior is observed and attributed to the presence of impurities in the 

sample.  
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Stress assisted grain growth is a feature which can be observed in many experiments on pure nc 

metals. Grain coarsening has e.g. been observed in nanoindentation of Cu 54, high pressure 

torsion of Ni 55, compression of Ni and Cu 56 or tension of Al 53. As Mishin 36 explains stress-

assisted grain growth exists independently from the temperature. In experiments on nc Cu at 

cryogenic temperatures it was even found that the grain coarsening is more pronounced than at 

room temperature 54. Grain coarsening in nc metals is a serious issue, because a degradation of 

the mechanical properties e.g. a reduction in strength would happen during testing or service 36. 

According to Rupert 57, stress assisted grain growth in nc materials is governed by coupled GB 

migration described above although the role of triple junctions is not so well understood. The 

observation of grain growth during deformation in many nc metals is one of the driving forces 

for the current research on the basic mechanisms of coupled GB migration.  

 

From Gianola’s experiments on Al thin films 53 it is known that purer samples show more grain 

growth than impure ones produced under higher base pressure. This corresponds to the article of 

Koch and co-workers 58 where the stabilization of the nc grain sizes is reviewed under the 

presence of solute additions. As the authors write, there are mainly two mechanisms to reduce 

grain growth: a kinetic approach by pinning of GBs or reducing their mobility and a 

thermodynamic approach by reducing the GB energy. In the first case mainly drag effects e.g. 

due to solutes or second phases come into play and in the second case solute segregation is the 

main driving force. So, impurities could contribute to both effects. 

 

Impurities are inherently present in all experiments because of the exposure to an atmosphere 

during production or testing which leads to impurity contamination. The impurity content 

caused by the sample production can vary depending on the applied technique. For 

electrodeposited Ni, chemical analysis revealed predominantly metallic impurities coming from 

the anode material and S impurities because S is present as a bath additive in the production 59. 

3D atom probe of the same material has demonstrated that impurities are mostly present as 

solute atoms and only annealing showed a small tendency for segregation of impurities to GBs 
59. In case of ionic gas condensed Cu and magnetron sputtered Al impurities can be incorporated 

to the metal according to the conditions in the vacuum chamber used in both techniques. 

Gianola 53 investigated the effects of a varying base pressure (see above) on nc Al thin films. He 

found out the impurity distribution is rather homogenous: No oxygen segregation at GBs was 

measured with EELS nor was there any “buried” O layers found using Auger depth profiling 60. 

1.2.2 Molecular dynamics simulations 

MD simulations of fully three-dimensional nc metals have provided a lot of insight into 

deformation mechanisms and especially into details of dislocation/GB interactions in fcc metals 
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61-72. Based on these simulations, it is generally believed that the dislocations are nucleated from 

stress concentrations at GBs, propagate through the grain and are absorbed at the GBs. 

Atomistic simulations have also shown that the nucleation is usually accompanied by atomic 

shuffling and stress-assisted free volume migration 67. Furthermore, it has been shown that 

dislocations which have been nucleated in GBs can be temporary pinned at GB ledges and their 

associated stress intensities during propagation 66, 70. The time until a dislocation unpins is 

dependent on the simulation temperature. Instead of being pinned at stress concentrations it has 

also been observed that perfect screw dislocations circumvent these stress intensities by a 

mechanism called “cross-slip” 68, 72. Cross-slip is found to be initiated by the stress signature of 

the local GB structure. With this, the dislocation propagates through the sample along a more 

favorable path and the dislocation can overcome potential pinning sites such as GB ledges or 

misfit regions using this mechanism. The dislocation propagation is a different process from 

dislocation nucleation however both nucleation and propagation are temperature dependent.  

 

The described deformation mechanism for nc materials, based on GBs as sources and sinks for 

dislocations and strong interactions of local GB structures with propagating dislocations, gives a 

possible interpretation for the findings of the insitu X-ray-experiments in section 1.2.1: At room 

temperature, individual dislocations nucleate at GBs, travel through grains and are absorbed in 

neighboring GBs, which might also explain the lack of a dislocation network after deformation 

as it is observed for nc Ni 2, 47. The residual dislocations which are mentioned in the case of the 

irreversible peak broadening after unloading at lower temperature could in fact be dislocations 

which are pinned at stress concentrations neighboring GB structure. The reversibility of the 

peak by heating the sample up can be interpreted by the temperature dependence of the pinning 

suggested by MD: The dislocations which are still pinned after unloading can unpin at higher 

temperature. Beside this detailed mechanism, MD simulations of fully three-dimensional nc 

samples also suggested the concept of the strongest size 73. This means, a change in deformation 

mechanism is proposed on the basis of simulations on nc Cu samples 62. According to this 

concept, the deformation is characterized by dislocation plasticity in larger grains and more GB 

mediated process in smaller grains.  

 

Although nc structures have contributed to many important results they have also disadvantages. 

It is e.g. “difficult to predict when and where dislocation activity will occur, which precludes a 

systematic study of the dislocation/GB interaction…” as Bitzek and co-workers write 69. 

Alternative simulation structures are therefore used to study dislocation/GB interaction such as 

bicrystals 74-81 or isolated grains from nc structures 72 especially for the study of dislocation 

propagation and cross-slip. The bicrystal simulation geometry neglects however important 



 - 11 - 

details of polycrystals which can affect the resulting plasticity e.g. no triple junction lines are 

present which have a significant impact on the stability and on the slip accommodation in GBs. 

 

The phenomenon of grain growth in nc metals has also been explored using MD simulations. It 

was shown that in nc Ni grains grow with a GB mobility which is linear in time 82. It was further 

shown that the mobility of GBs is grain-size dependent and that more grain growth can be 

expected for smaller grains 82. Additionally it was observed, that the growth process includes 

grain rotation and a reduction of GB energy. For simulations in columnar structures of Pd at a 

much higher temperature (800 K) it was seen that diffusion can be in concurrence with GB 

mobility and that triple junctions between grains are obstacles for the mobility of interfaces 83. 

In other simulations on nc Cu samples it was seen that grain growth is connected to dislocation 

emission into the grain 84. However, there is only little statistics on these events because only a 

few dislocations were emitted. The latter publications questioned, whether stress driven GB 

migration could be driving force for grain growth in nc metals. This has been verified by the 

work of Rupert and co-workers 57. 

 

The MD simulations are not directly comparable to experiments. A first obvious difference is 

the time-scale issue. MD simulations can explore a time-frame of at most a few nanoseconds. 

For this reasons the observed processes and/or deformations have to happen in a very limited 

time-frame which leads to very high process and/or deformation rates. The second issue is, that 

MD simulations for nc metals are usually performed in monatomic systems. The effect of 

impurities on mechanical properties is hardly ever addressed. Only the role of impurities on the 

stabilization of grain growth is mentioned a few cases e.g. for dopants in GBs of fcc Cu 85-88, or 

Fe in fcc Cu 89 or more recently Sb in nc Cu 90. The effect of these artificial particles or foreign 

atoms on the grain growth behavior is generally retardation. Publications on simulations of light 

elements in nc metals are very rare. 

1.3 A method for oxygen impurities in aluminum 

Impurities are present in nearly all pure metallic samples used in experiments at least as traces 

of foreign atoms. In a few cases, the impurity distribution and their effect have been explored 59, 

60. For nc Al thin films it has been observed, that impurities can affect mechanical properties 

and/or the grain growth behavior53. In contrast, MD simulations are performed in most cases on 

pure samples, only. Pure means here monatomic systems without any impurities and with no 

change in properties due to them. Especially simulations of dilute impurity concentrations of 

light elements are nearly not present in the literature maybe because of a lack of models for the 

description of impurities as Zhou 91 assumes.  
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The MD simulation of polyatomic samples has to consider at least the difference in masses of 

the elements. Also the bonding nature between the elements is crucial and can be cumbersome if 

different bonding natures are present in one system. This is the case for dilute nonmetallic 

impurity concentrations in nc metals: The metallic matrix should be modeled using a metallic 

bonding and the model for the impurity-metal interactions has to account for the ionic nature of 

the bond due to the oxidation of matrix atoms around the impurities.  

 

For the scenario of mixed interactions (metallic and ionic) only a few possible approaches exist. 

One example is bond order potentials which are used to model all kind of interactions (metallic, 

ionic or covalent) and can be used in simulations of mixed bonding conditions. It has been 

shown by Brenner 92 that there is a relationship between bond order potentials and EAM 

potentials which are successfully used to model metals. The interaction in EAM potentials is 

determined by a pair function and an embedding function which determines the energy for 

inserting the atom into the local electron density at the atom’s position. A modified embedded 

atom method (MEAM) 93-95 is fitted for the interaction of many different impurities in metallic 

matrices. The method is based on embedded atom potentials with additional tensor treatment of 

the electron densities and a many-body “screening” procedure. In both methods, EAM and 

MEAM, the ionic nature of the systems is treated implicitly. To simulate ionic interactions e.g. 

in UO2  for the research of nuclear materials, several potentials have been developed over the 

last decades 96, 97. Usually they consist of sums of pair potentials e.g. a Buckingham potential 98 

which is added to a Coulomb potential. The Coulomb part models the interactions between 

charges which are usually fixed in magnitude. Shell-model potentials 99, 100 are developed to 

simulate ionic systems including polarization effects. In this shell-core approach, ions (with 

constant charges) are described as a mass less charged shell bound to a massive core (charge on 

spring). A drawback of the ionic methods mentioned above is that they are not flexible enough 

to handle the changing ionicity in case of dilute impurities in nc metals. Similar shell model 

potentials with fixed charges for each ion type can also be found for Al-O systems 101. A large 

improvement can be found in the work of Streitz and Mintmire 102, which fitted a potential for 

the metal/oxide interfaces or surfaces. This approach includes variable charges and was 

published for O in Al. The charges depend on the environment of each atom and are derived 

from an electronegativity equalization scheme. Using the feature of variable charges, the 

potential can be used to simulate the local change in bonding nature across the metallic/ionic 

interface and can calculate the energy, force and stress contributions, which come from the 

electrostatic interaction. Later the two approaches of bond orders and charge equilibration were 

merged in a new concept by Yasukawa 103 104 which is called reactive force field (ReaxFF) 105, 

106: The study of systems with metal/ionic and metal/covalent interfaces is then possible. A 

recent simulation technique for ionic systems is proposed by Zhou: the embedded ion method 
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(EIM) 91. It includes the charge transfer features with environmental dependence of the ionic 

bonding without solving the charges explicitly and was published for La-Br systems. This 

model promises access to the modeling of nonstoichiometric ionic systems and can be a future 

candidate for the simulation of impurities.  

 

The method developed in this work is based on Streitz and Mintmire’s approach which has 

successfully been used in many different contexts. Its description and a few examples can be 

found in section 2.3. As already mentioned Streitz and Mintmire’s potential was developed for 

metal/oxide interfaces or surfaces, therefore modifications of the EAM potentials are necessary 

for the simulation of dilute O impurities in Al or nc Al. Additionally, an adaptation of the 

charge update procedure should increase the computational performance in the scenario of 

dilute O impurities in Al. Studying the effect of O in Al has several reasons: First the Streitz and 

Mintmire’s potential is published for this system; second, a lot of experience on pure nc Al 

simulations is present in the Materials Science and Simulation group107 which can be used for 

comparison and third, Gianola investigated nc Al thin films and showed interesting results for 

the effect of O impurities.  

 

In the rest of this thesis the development of the method and its application are described and 

discussed. In the next chapter, existing methods are summarized: a glance at ab initio 

simulations and a detailed explanation of MD and the potential of Streitz and Mintmire will be 

given. Then, the major results, which are the development of the new simulation method and its 

applications, will be elaborated. After this, the method will be discussed. At the very end 

conclusions and an outlook will be provided. 
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2.1 Ab initio 

The method developed during this thesis is an addition to classical molecular dynamics. Ab 

initio calculations are used to produce reference structures for the fitting of empirical potentials. 

Therefore a brief introduction to ab initio, primarily density functional theory, is given here.  

 

A calculation which is “ab initio” or “from first principle” relies on basic and established laws 

of nature without assuming empirical data. Hence, ab initio calculations in atomistic simulations 

investigate the quantum state of molecules, crystalline solids or other collections of atoms by 

solving the corresponding Schrödinger equation  EH   using basic laws, natural constants 

and assumptions. The motion and interactions of electrons and nuclei of a physical system are 

expressed by a Hamilton operator H which determines the temporal evolution of the state 

represented by the wave-function   and corresponding energy E. The Hamilton operator is a 

collection of terms which stand for kinetic and potential energies of nuclei and electrons. The 

Schrödinger equation is an Eigenvalue problem for the given Hamilton operator with 

Eigenstates (wave-functions  ) and energies E  as corresponding Eigenvalues. For the ground 

state problems considered here it is sufficient to solve the time-independent Schrödinger 

equation.  

 

The exact solution of the many-body Schrödinger equation is not known even for the time-

independent case. For this reason, further assumptions are made and numerical methods are 

developed to approximate its solution. The Born-Oppenheimer (also known as adiabatic) 

approximation decouples the nuclear and electronic motion due to large differences in mass 

which gives a clear separation of time-scales. Using Born-Oppenheimer, the electronic problem 

can be solved with the nuclear positions as parameters. As a result one obtains a Born-

Oppenheimer energy surface which is determined by the electronic structure. Solving the 

electronic problem is the key issue in ab initio calculations. Different classes of methods exist, 

e.g. wave-function approaches based on the Hartree-Fock method. Another approach focuses 

more on the electron density  , where         NNN drdrrrrrNr 2
* ,...,,...,  . This 

approach is called “density functional theory” or short DFT and is very common in many fields. 

It will be explained in the section 2.1.1 as it is used in this work. 

 

The electronic structure can be used to determine forces in an atomic configuration by applying 

the Hellmann-Feynman theorem. Nuclei can be moved to energetically more favorable 

positions. Consequently, the atomic structure can be optimized by moving nuclei to a 
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configuration where the forces between them vanish. This configuration is at least a stationary 

point of the Born-Oppenheimer energy surface. Thus the initial configuration of the system has 

to be sophisticated enough to find a minimum of interest. Alternatively one can use sampling 

techniques such as ab initio molecular dynamics to find energetically more favorable 

configurations. The Car-Parrinello method 108 is one popular example.  

2.1.1 Density functional theory 

The concept of DFT is based on two famous theorems by Hohenberg and Kohn 109. The first one 

claims that there exists an one-to-one mapping between the ground-state electron density 0  

and the ground-state wave-function 0  of a many-particle system. The second one states that 

there exists a universal energy functional  E , whose minimum corresponds to the exact 

ground-state energy 0E . The second Hohenberg-Kohn Theorem proves the existence of the 

functional  E  and a variation principal for the case of the known functional. What is missing 

is the exact form of the functionals. Many approximate functionals have been proposed. The 

accuracy, especially for the kinetic energy is for applications often not sufficient.  

 

Kohn and Sham 110 overcome this latter difficulty by recasting the problem via a variational 

approach into a Schrödinger-like problem. They described the system as a set of non-interacting 

electrons moving within an effective potential. For this problem it is possible to find the kinetic 

energy contributions to the total energy as they are exactly known from Hartree-Fock theory. 

The effective potential represents the external potential and the effects of the Coulomb 

interactions between the electrons, e.g. the exchange and the correlation interactions. The 

electronic interaction, the so-called exchange-correlation remains difficult and is approximated. 

Many empirical approximations for the exchange-correlation functionals have been suggested 

by now. However this is still a major source of errors as it is not possible to systematically 

improve this exchange-correlation functional. Different classes of approximate exchange-

correlation functionals are used: local density approximation (LDA) or generalized gradient 

approximation (GGA) or hybrid functionals. In LDA the exchange-correlation depends solely 

on the electronic density at each point in space whereas in GGA the density and its gradient are 

taken into account. Hybrid functionals mix the exact Hartree-Fock exchange with LDA or GGA 

approximants. Expressions for the different exchange correlation functionals can be found in 

textbooks, e.g. 111, 112.  

 

The description of the wave-functions, which are used to compute the electron density, is 

essential. Their choices together with the selection of the exchange-correlation functional and 
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the treatment of the core electrons determine the accuracy and efficiency of the calculations. In 

periodic systems e.g. in crystalline solids, the use of plane-waves is common as it leads to 

simple formulations of Kohn-Sham equations. The plane-wave representation of a one electron 

wave-function is given by Bloch’s theorem, which states that a wave-function of an electron in a 

periodic potential can be written as a product of a lattice periodic part and a wavelike part. The 

wave-function is then represented as sum of plane-waves where the wave vector k can be related 

to the energy. An infinite number of plane-waves are necessary for an exact calculation. 

However, not all the plane-waves are of the same importance in the description of the kinetic 

energy. Therefore the number of plane-waves can be reduced by setting an energy cutoff, which 

determines the accuracy of the calculation. Plane-waves are weak in describing wave-functions 

with large curvature. In this case a large number of plane-waves is necessary. Therefore the core 

region, where the wave-function oscillates a lot and which is relatively unaffected by the 

chemical environment of an atom, can be modeled by using a pseudopotential approximation. 

The strong Coulomb potential and core electrons are replaced by an effective pseudopotential 

which is much weaker. The rapidly oscillating wave-functions in the core region are represented 

by pseudo-wave functions which vary smoothly in the core region. A further development of the 

pseudopotential concept is Blöchl’s projector augmented wave method 113.  

 

Using pseudopotentials, only the valence region is modeled as plane-waves. In case of real-

space integration over infinitely extended periodic systems, a replacement by an integral in 

reciprocal-space over the confined first Brillouin zone can be found. In theory, still an infinite 

number of points in reciprocal space, i.e. k-points, are necessary for the calculation, however in 

practice, a finite number of k-points, i.e. points on a mesh, with a given distribution is normally 

sufficient. Often, the point group symmetry of atomic configurations is used to restrict the set of 

k-points to a smaller subset in the interest of computational efficiency. A plane-wave DFT 

calculation is characterized by the selection of an exchange-correlation functional, the choice of 

a pseudopotential, the number of k-points, their distribution and the energy cutoff used.  

 

In case of systems with limited periodicity or symmetry (e.g. if there are defects) the precision 

and the efficiency of the plane-wave approach can be reduced if the number of k-points and the 

energy cutoff is not increased enough. The computational efficiency decreases significantly if 

the point group symmetries can not be exploit anymore. 

 

During this work the VASP code 114-117 is used with projector augmented wave potentials 113, 118 

using the PBE functional 119, 120. 
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2.1.2 Limitations of ab initio methods 

Ab initio methods are generally very limited in the number of atoms which can be simulated 

however they offer a more accurate description of the many-body system, e.g. a more accurate 

description of materials cohesion than empirical models. Systems are of the order of ten to one 

thousand atoms depending on the method and/or the accuracy.  

 

DFT is useful to model groundstate properties or properties of a system in thermal equilibrium. 

Ab initio methods include approximations. In case of DFT this leads to errors in the calculated 

properties which are not predictable. The accuracy of a DFT calculation is not systematically 

improvable.  

2.2 Molecular dynamics 

2.2.1 Basics 

Emprical molecular dynamics (MD) solves the classical many-body problem of N  interacting 

particles. Systems, which can be simulated, range from atomic or molecular systems such as 

gases, liquids, condensed matter to non-atomic systems such as traffic scenarios with cars as 

entities. Textbooks are written on the method and on specific application dependent topics. 

References 121-123 show a small selection which has been used during the PhD work. In what 

follows particles represent atoms since this is how the MD method is used here. 

 

MD is an iterative method, which derives forces in Newton’s equation of motion (equation 1) 

from an empirical potential for a static configuration of atoms and integrates the left hand side 

for a small time increment t  using the previously calculated forces and numerical techniques. 
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The interaction potential is then characterized by a multi-atom energy function totV . Some 

important examples are described in sub-section 2.2.2. The knowledge on the positions and the 

velocities of the previous time-steps is used in the integration. As a result of the integration new 

positions and velocities are obtained. The new atomic configuration is used to calculate 

properties and to obtain new forces. Repeating the iteration of the update of forces and the 

integration of Newton’s equation of motion (equation 1) many times gives trajectories for the 
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atomic motion. To make the method complete, MD requires a start configuration which consists 

of the atomic positions and velocities. The basic algorithm looks as Figure 2.1. 

 

Figure 2.1 MD algorithm 

 

Considering Figure 2.1, several explanations can be made: The box at the top of Figure 2.1 

mentions the initial positions and velocities for all the atoms in the system. The initial particle 

distribution should be compatible with the simulation geometry of interest and determines the 

initial volume of the simulation sample. The initial velocities can be assigned to the atoms 

according to the initial temperature. A velocity distribution, in this work an uniform 

distribution, is used to assign each atom a random velocity. The equipartition theorem, which 

relates the system temperature with average system energies, can be used to determine the 

instantaneous temperature from the kinetic energy. A rescale of the atomic velocities, i.e. 

multiplying atomic velocities by a factor actualdesired TT /  to get the desired temperature 

( desiredT ), can be used to match the desired temperature. 

 

Furthermore simulation boundary conditions are mentioned: They can either be of geometrical 

or thermodynamical nature. The most important geometrical boundary treatment is the periodic 

boundary condition because a computer can simulate a limited amount of atoms only. 

Consequently, the size of the simulation samples is limited and the surface to volume ratio for 

such samples is rather high. Therefore surface effects can dominate simulations. To avoid this, 

the sample is periodically repeated in all directions (Figure 2.2). Under these so-called “periodic 

boundary conditions” a sample has no more free surface and represents a bulk-like simulations 
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represents the potential energy function for the given atomic configuration. 

Move atoms by integrating Newton’s equation for given forces over a time 

increment t . 

Compute and/or output sample properties. 
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specimen. If free surfaces are desired in the simulation it is possible to have periodic boundary 

conditions only in one or two dimensions. This leads to either bar or slab geometries. It is also 

possible to have not periodic boundary conditions at all. The limited sample sizes can also be 

enlarged by the usage of parallel computers. Different approaches are known for efficient 

parallel MD simulations 124, e.g. domain or force decomposition.  

 

 

Figure 2.2 Periodic boundary conditions. The original simulation box (in the middle) is replicated 

in all the three (here two) dimensions. The GB network fulfills the periodicity. Taken from Ref. 125. 

 

The time-step, which can be chosen, has to be small enough to guarantee numerical stability and 

to be able to resolve the relevant processes in the considered system. In atomic systems, these 

are atomic vibrations. Therefore time-steps are usually of the order of one femtosecond (i.e.  

10-15 s) for simulations at room temperature. If it is assumed that the execution of one entire MD 

step takes in the order of a second on an average computer, it is obvious that at most the 

nanosecond time-scale is accessible in a reasonable amount of simulation time, which is a major 

limitation of molecular dynamics simulation. The most common solution to access longer time-

scales and with this access also less frequent events is the use of more sophisticated sampling 

techniques such as accelerated MD 126, 127. However these methods are only efficiently 

applicable in systems with rather simple transitions between a limited number of states. 

 

The second box in Figure 2.1 shows the force evaluation for each particle which is done by 

numerical evaluation of the negative gradient of the interaction potential at each particles 

position. The quality of the interatomic potential determines the accuracy of MD simulation 

considerably (see section 2.2.2). The evaluation of the forces can be a bottleneck for the 

computational efficiency if too many interactions have to be evaluated. As many interactions 

rapidly decay to zero with increasing distance between the atoms, force evaluation can be cut-

off at a given distance: the so-called cutoff radius. So a restriction of the interactions to smaller 
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subsets of neighboring atoms can be made. The gain in efficiency by the introduction cutoff 

distances can be enhanced by using either a neighbor list or a link-cell list. In the third box in 

Figure 2.1, the integration scheme for Newton’s equation of motion (equation 1) is mentioned. 

As already written, numerical methods are used to integrate the second order differential 

equation, for the given time increment t . Integration schemes are e.g. the Verlet integrator 128 

or the Gear integrator also known as “Backward Differentiation Formula” BDF 129. Here, these 

integration schemes are used in a predictor corrector notation. As a result new positions and 

velocities are obtained. The instantaneous temperature of the simulation system can be modified 

by rescaling the velocities using the equipartition theorem for the kinetic energy.  

 

The box at the bottom in Figure 2.1 mentions the computation and/or output of sample 

properties. These can simply be the atomic positions to follow trajectories of the atomic motion 

or properties which have to be calculated such as energies, stresses, atomic coordination or the 

local crystallinity class. The computation of some of these properties is explained in sub-section 

2.2.3 and 2.2.4. 

 

The iteration over the force computations and integration of Newton’s equation of motion 

allows for sampling of ensembles. For energy conserving forces these ensembles are micro 

canonical (NVE = constant number of particles N, constant volume V and constant total energy 

E). However some effort has been spent to be able to sample other ensembles such as the 

canonical NVT, i.e. constant temperatures T or the isobaric NPE or NPT ensemble (constant 

pressure P). In this work velocity rescaling is applied to maintain the desired temperature and 

Parinello-Rahman method (see section 2.2.3) is used for pressure or stress constraints. 

2.2.2 Interaction potentials 

The interaction potentials totV  which are empirical substitutes for the energy surface given by 

the adiabatic approximation of ab initio calculations are a key element of MD simulations. The 

quantum nature e.g. of the neglected electrons has to be considered in the description of the 

potential which is usually done by the form of its empirical description and/or by the choice of 

parameters. One or more equations represent usually the assumptions of the physical model 

using a set of adjustable parameters. These parameters have to be fitted to reproduce materials 

properties of interests by comparing to experiments or ab initio data. In the interest of energy 

conservation and efficiency the interactions should smoothly vanish at the defined cutoff 

distance which is of as short range as possible. 
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Depending on the approach the potential energy function can be modeled as a sum of sums 

which describe two-body, three-body, four-body … interactions in an atomic system to which 

an atomic energy (  irV1 ) may be added.  

 

      ...,,, 321   
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where V  is the total potential energy of the system. The difference between the potential energy 

of an atom ( NV / ) and its atomic energy (  irV1 ) is its cohesive energy. 

 

In the closed shell system (e.g. for noble gases) without much influence of the electrons on 

bonding a two-body potential is sufficient to describe the interactions. Normally only the long-

range Van der Waals force and short-range repulsive forces due to Pauli repulsion are modeled. 

A well-known two body potentials is the Lennard-Jones potential 130: 
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For this potential, the first term represents the short range repulsion and the second term 

describes the long range attraction. The parameter   represents the depth of the potential well 

and   describes the finite distance at which the potential is zero. Parameters are known for 

more materials than just noble gases. However, the Lennard-Jones potential can not model the 

directional nature of metallic bonding 131. In fact, the Lennard-Jones potential is not capable to 

correctly reproduce the Cauchy relationship of the elastic constants, vacancy formation energies 

or surface relaxation 132 for a cubic system because of the simple pair potential interactions 131, 

132. 

 

In case of the metallic bonding the interaction model must combine a screened ion-ion type 

interaction (pair term) and an electronic band-energy term. This band term can be represented 

by a square root of bond overlap integrals between neighboring atoms. This approach is usually 

called “2nd moment tight binding method” 133, 134. In 1983, Daw and Baskes 135 introduced a 

more general type of potential which also solves the problem of the elastic constants in cubic 

systems. The theoretical foundation of the method has its origin in DFT. This model is called 

“embedded atom model” (short EAM) and has got the following form 
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    
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The function   is a pair potential for the short range interaction between atom i  and j , i  

represents the local electron density at atom i  and is constructed from contributions of 

surrounding atoms   j iji r  and F  is the embedding function which represents the 

change in energy of inserting atom i  into the electron density at its position given by i . In the 

case of the 2nd moment tight binding model, e.g. the Finnis-Sinclair potential, F  is simply a 

negative square root function. With the additions of  F  a non-zero Cauchy pressure is 

possible. 

 

For the simulation of monometallic systems, the functions  ,   and F  have to be described. 

They are defined in an analytical description based on parameters or by a spline fit which 

reproduces the properties of interest. EAM potentials for a lot of materials can be found in the 

literature. In case of binary systems the potential has obviously to be extended from three to 

seven functions: three functions for the pair interaction, two electron density functions and two 

embedding functions 136.  

2.2.3 Additional simulation techniques 

Molecular statics 

The method of molecular statics (MS) can be used to relax the atomic positions to a local 

minimum of the potential energy. Atoms without initial velocities are displaced according to the 

forces which act on them at the given positions. Integrating Newtons equations of motion 

(equation 1) in an iterative way analogously to MD simulations leads to increasing atomic 

velocities. These velocities are from time to time removed in the simulation which is called 

“quenching”. This is done according to a quench condition. In the existing MS code, a local and 

a global quenching condition are implemented. The global condition, i.e. simultaneous removal 

of all the velocities in the system, is fulfilled when a maximum in kinetic energy is reached. The 

local condition, where the velocity of a single atom is removed, is true if the dot product 

between the atoms velocity and acceleration vectors is negative.  

 

The size of the integration step controls the displacement of the atoms and with this the 

convergence rate of the method. In addition to the final relaxed structure one obtains a series of 

intermediate configurations which are connected through a causal series of physical events. 
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With this, it is possible to follow the processes of the relaxation. If a quench condition would be 

applied in every step a steepest decent minimization of the potential energy is obtained. 

 

Parrinello-Rahman method 

In some simulations it is required that system shape and/or size can adapt to the applied 

conditions such as temperature or stress. The key method for these simulations is the 

“Parrinello-Rahman” method 137, 138 which is used to maintain isobaric simulation conditions. 

For the application of the method the periodic system with box vectors zyx bbb


and,  has to be 

transferred to internal coordinates  iii  ,, . The position vector ir


 is then equal to 

 

z
i

y
i

x
ii bbbr

    (5.) 

 

In the internal representation of the system the coordinates have to fulfill -0.5 < iii  ,, < 0.5. 

Parrinello and Rahman introduced a Lagrangian which contains the internal coordinates, the 

interatomic potential, the external stress state as well as a term which determines the motion of 

the MD box. This Lagrangian is solved for the internal coordinates, which gives the equations 

of motion and analogously the box coordinates which gives the change in box volume or shape.  

 

An uniaxial deformation of rectangular MD sample at a given strain-rate can be done by 

straining one box vector and using the internal coordinates given by equation 5. To adapt the 

box length in the directions perpendicular to the tensile direction, the Parrinello-Rahman 

method is used to obtain a zero stress-state in these directions. The stress in the deformed 

direction can be recorded to plot stress-strain data. 

 

Static atoms 

For some purposes, e.g. the relaxation of a structure with a fixed interstitial at a given site or to 

simulate free surfaces which maintain the simulation geometry, it is useful to freeze the motion 

of some atoms in. The frozen atoms are then called static atoms. Making the atoms static is 

achieved by not assigning them an initial velocity and by removing the force acting on the 

corresponding atom in each time-step of the MD scheme. Although static atoms do not move, 

they interact with neighboring atoms. The calculation of global system properties in a system 

with static and unstatic atoms has to account for the fact that the number of degree of freedoms 

is reduced. So for global properties such as kinetic energy, temperature or global stresses, only 

mobile atoms have to be taken into account. 
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Instead of freezing the motion of atoms completely it is also possible to freeze only some 

degrees of freedom of atoms. For example, an atom at the surface can be allowed to move only 

parallel to the surface but not perpendicular to it. Also here, the calculation of system properties 

has to be adjusted to the number of global degrees of freedom.  

2.2.4 Atomic properties and visualization 

Atomic coordination 

The coordination of an atom can be obtained by counting neighboring atoms which are closer 

than a predefined distance. This distance corresponds to a value between the first and second 

nearest neighbor spacing in the perfect lattice. This measure can identify additional atoms in the 

lattice, e.g. interstitials, or high energetic distortions in GBs. However the coordination of a lot 

of atoms in GB regions and atoms in stacking faults (i.e. hcp atoms) are not different from 

atoms in the regular fcc crystal because it is twelve in all cases. So, identifications of GB 

regions or dislocations is difficult using atomic coordinations. 

 

Local crystalline order 

This method examines the type of local crystallinity for each atom using the topological analysis 

developed by Honeycutt and Andersen 139. According to the method the local environment of a 

pair of atoms is characterized by four indices lkji and,, . The index i  denotes the bond 

relation of two atoms. Two atoms are bonded if 1i  and not bonded if 2i . Index j  

indicates the number of common nearest neighbors between the two bonding atoms. Index k  

provides the number of bonds among the common nearest neighbor atoms. The last index l  

indicates the number of bonds in the longest continuous path that goes through the common 

neighbors. This procedure provides a distinction between fcc and hcp structures, taking only the 

nearest-neighbor pairs into account. For example, an arbitrary atom in the perfect fcc structure 

forms only 1421-type quadru-pairs with its twelve nearest-neighbor atoms, while in the case of 

the hcp lattice six 1421 and six 1422 quadru-pairs are found (Figure 2.3). 

 

 

Figure 2.3: Examples of the 1421 (a) and the 1422 (b) quadru-pairs. Image taken from Ref. 140 
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Using this analysis, one can assign each atom a class of local crystallinity and color them 

accordingly. The standard color-code used here is grey for fcc, red for hcp, green for other 12-

coordinated atoms and blue for non-12-coordinated atoms. This coloring is useful to identify 

defects in visual inspection of simulation data. The perfect fcc lattice appears as grey atoms 

whereas GBs are usually mixtures of blue and green atom with some randomly distributed red 

(hcp) atoms. For dislocations, the core atoms in the leading and the trailing partial are colored 

blue and green, the stacking fault between leading and trailing is red (see Figure 2.4). 

 

 

Figure 2.4 A grain with neighboring atoms containing a perfect dislocation. Using the color-code in 

the text one sees the fcc grain interior (grey), the GB consisting largely of non-12-coordinated (blue) 

and other 12-coordinated atoms (green) as well as the dislocation with the hcp atoms (red) in the 

stacking fault. 

 

Pressure and stress calculations 

For the investigation of the global pressure the expression 6 found in the MD textbook 122 can be 

used. 
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In equation 6 the summation is over all atoms in the volume V  which is usually the simulation 

box volume.   represents an ensemble average or a long enough time average. In the 

thermodynamic limit of large enough volumes V , the expression represents the true bulk 
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homogeneous hydrostatic pressure. Analougously, an expression for the local pressure  

(equation 7) can be obtained by changing the global volume V  into a representative mean 

atomic volume   ( NV /  where N  is the number of atoms in the system). 
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Instead of computing pressures it is also possible to compute the stress tensor st  for a given 

reference coordinate-system where s  and t  represent the coordinate directions (e.g. x, y and z).  
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In equation 8, it is important to note that  ijrF  is the scalar force magnitude which depends on 

the interatomic distance ijr  and is also used to compute the force vector F


 by multiplying each 

directional position difference s
ijr  to it.  

 

Equations 6 to 8 are valid for the central face model only. It is known that the volumetric 

partition of the pressure in equation 7 lacks of momentum conservation across its corresponding 

surfaces 141. This can lead to non-negligible artifacts such as oscillatory behavior or strongly 

inhomogeneous behavior when one goes to small volumes, e.g. atomic volumes in equations 7 

and 8. However these atomic calculations can still be used to estimate the spatial pressure or 

stress variation. The alternative, is to use another scheme 142 which can represent the local 

pressure (or stress) more accurately via  
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.        

In equation 9,   represents a volume of a region of interest, i  is unity if atom i  is within the 

volume element and zero otherwise, and ijl  is the fraction of the length of the bond between 

atoms i  and j  that lies within the volume element  . This method can now rigorously satisfy 

conservation of linear moments for a chosen volume, e.g. a sphere centered at each atom 

(atomic pressure equals pressure of the local sphere). The disadvantage of the present method is 
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that the local atomic stress/pressure does not necessarily have to sum up to the global 

stress/pressure. This follows from the partitioning of the global volume into volume elements 

which is non-volume conservative. In this case this is not required. Additionally, problems for 

the convergence of the local pressure to the correct thermodynamic grain pressure exist. These 

two weaknesses are not present in the previous method described by equations 7 and 8. A 

comparison of the methods in use can be found in 143. 

 

In this work the methods described by equations 6 to 8 are used to visualize simulation data. It 

accentuates the presence of crystalline defects such as impurities, dislocations or grain-

boundaries. As it is explained above the magnitudes of stress should generally be understood as 

qualitative and not as quantitative measure. 

2.3 Molecular dynamics with charged atoms 

If different metallic and nonmetallic atoms appear in the same system oxidation happens and 

ionic bonds are formed which means that electrons migrate from the electron donating metal to 

the electron accepting nonmetal. If the stoichiometric ratio of metallic to nonmetallic atoms is 

optimal both elements are in the end in the closed shell configuration. Alumina in the corundum 

structure consists for example of forty atomic percents three times positively (+3e) charged Al 

ions and sixty atomic percents twice negatively (-2e) charged O ions.  

 

2 Al (s) + 3/2 O2 (g)→ 2 Al3+
(s) + 3 O2-

(ads) → Al2O3 (s)  (10.) 

 

If the mixture of atomic specicies is non-stochiometric or inhomogeneous oxidation and with 

this the charge transfer will happen only in a limited extend. Partial atomic charges can occure 

which depend on the local environment of each atom. Only a few methods can determine and 

simulate such variable charges within the framework of MD (see introduction). Streitz and 

Mintmire’s method 102 is  one successful approach. It is developed to simulate metal-oxide 

interfaces and the underlying assumption is that the atomic charges are not unique in the bulk 

metal, in a metal-oxide or in the interface. Variable charges in the context of Streitz and 

Mintimire’s work means that atomic charges are updated according to environment of each 

atom during an MD simulation to obtain the charge transfer between anions and cations. In what 

follows Streitz and Mintmire’s approach for variable charges is explained in detail. 
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2.3.1 Streitz and Mintmire’s potential 

Streitz and Mintmire’s method assumes a classical electrostatic energy esE  for a set of 

interacting atoms with atomic charges iq  and positions ir  which is represented as a sum of 

atomic energies iE , and the electrostatic interaction energies  jiijij qqrV ,;  between all pairs of 

atoms, 
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The atomic energy  ii qE  is given by the Taylor series expansion of the neutral atom i’s energy 

where the first derivative is traditionally denoted as the electronegativity 0
i  144, 145 and the 

second derivative is called atomic hardness 145 or self-Coulomb repulsion 146 0
iJ : 
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The classical electrostatic interaction energy  jiijij qqrV ,;  between the pairs of atoms can be 

written as  
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where  ij qr;  stands for the charge density around atom i  at r  with the total charge iq . 

There are several possible charge distributions such as point charges or spherically symmetric 

Slater-type orbitals. Streitz and Mintmire are using the latter type according to the suggestion of 

Rappe and Goddard 146. The atomic charge density looks like 

 

       iiiiiiij rrfZqrrZqr   ;  (14.) 

 

and is linear in atomic charge iq . The first term represents the effective core charge as a point 

charge, where iiZ 0 , with i  the total nuclear charge of the atom. The second term 

describes the valence charge distribution where if  represents its spatial extend. Streitz and 
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Mintmire use for “mathematical convenience” a simple exponential which can be constructed 

from Slater 1s orbitals.    ii
i

ii rrrrf  



2exp
3

. However Streitz and Mintmire point 

out that “more complicated (and perhaps more realistic) distribution functions” could be used 

for the formulation of the model. 

 

If one inserts the atomic charge densities into the formula for the electrostatic interaction one 

obtains  
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If the terms are summarized according to the multiplicity of the charges iq  one obtains 
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where 
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The notation  ba  |  and  ba |  stand for the Coulomb interaction integral between charge 

densities a  and b  and the nuclear-attraction integral, respectively. Using Roothaan’s 

calculations 147 yields the following results for the 1s charge density: 
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where    2222 / baba   .        

 

oE  in equations 16 and 17 is independent of atomic charges iq . oE  depends on the nuclear 

coordinates only and behaves as a sum of pair potentials. The expression for oE  as well as the 

others derived so far are based on classical electrostatics only and can not be used for the 

description of electronic contribution to bonding. Streitz and Mintmire propose to implicitly 

incorporate the oE  term in the non-electrostatic potential (i.e. an EAM potential) which is 

described further down and to exclude it from the electrostatic interaction. 

 

Using equations 18 derived from Roothaan 147 it is obvious that the leading term is of order 

ijr/1 . Consequently one has to take long-range interactions into account and one has to use an 

appropriate numerical scheme to achieve a reasonable computational efficiency. Streitz and 

Mintmire have chosen Ewald summation as a long-range method.  

 

To determine the atomic charges iq , the classical electrostatic energy esE  is minimized under 

the constraint of global charge neutrality since a well-defined minimum should exists for “well-

behaved” parameters 0
iJ  and functions  rf i . This approach is algebraically equivalent to the 

equalization of the electronegativity which means that electrostatic chemical potentials i  can 

be introduced which are identical to the global chemical potential   and it holds 
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If equation 19 is plugged into expression 16 and one rearranges the expression the following can 

be obtained: 
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The solution of this set of equation is not straight forward. Streitz and Mintmire suggest that one 

should use the inverse 1
ijV  of matrix ijV  so that one can solve for atomic charges iq  and the 

chemical potential  : 
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Note that Streitz and Mintmire original approach all the atoms are allowed to be ionized. 

Consequently all the atoms are involved in this charge optimization procedure. 

 

As pointed out above, an empirical potential is necessary to simulate the core-core interactions. 

To maintain a physically reasonable internuclear distance Streitz and Mintmire propose a 

potential of their own which is fitted together with the electrostatic interactions. Moreover, 

Streitz and Mintmire found out, that strictly pair-wise potentials for the non-electrostatic 

interactions can lead to unphysical behavior near the oxide surface which means surface atoms 

with a different coordination are too weakly bound due to the insensitivity on coordination of 

pair potentials. Streitz and Mintmire write further that except from the facts mentioned above, 

any standard empirical potential can be used to model the non-electrostatic interaction. They use 

an embedded-atom method (EAM) approach as described in section 2.2.2. As pointed out there, 

EAM interatomic potentials are especially well suited to model metallic bonding.  

 

The total energy of the ionic system should be understood as a sum of the electrostatic energy 

and the contribution of the EAM potential energy  
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The formulas for the embedding energy  iiF  , the local atomic density i  and the pair 

potential  rij  as they are used by Streitz and Mintmire are given here: 
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Some comments on this potential: 

1. The potential is of Finnis-Sinclair 133 form. 

2. The charge density i  given in equation 23 is different from the charge densities used 

in the electrostatic formulation. So, there is no unique charge density explaining the 

whole metal or ionic system. 

3. The form of  rij  should fulfill that the system behaves as a universal equation of state 

plus an electrostatic term.  

 

The parameters for the whole Streitz and Mintmire formalism have been produced by fitting a 

range of structural parameters of Al and  -alumina, i.e. the cohesive energy, lattice parameters, 

elastic constants for both species, as well as surface energies. The parameters found by Streitz 

and Mintmire are given in Table 2.1. 

 

Atomic parameters 

  eV   eVJ   1.A ng    eVA    

Al 0.000000 10.328655 0.968438 0.746759 0.7638905 0.147699 

O 5.484763 14.035715 2.143957 0.000000 2.116850 1.000000 

Pair parameters 

  År   -1.Ang  -1Ang.   eVB   eVC   

Al-Al 3.365875 1.767488 2.017519 0.075016 0.159472  

O-O 2.005092 8.389842 6.871329 1.693145 1.865072  

Al-O 2.358570 4.233670 4.507976 0.154548 0.094594  

Table 2.1 Parameters for Streitz and Mintmire’s potential (ES and EAM) according to Ref. 102. 

 

2.3.2 Ewald summation 

As mentioned above the Streitz and Mintmire method 102 involves partially charged atoms. This 

has some severe implications as the interaction of charges can be of long-range nature. 
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Considering the simplest form of Coulomb potentials between a charge iq  at position ir  and 

charge jq  at position jr  and the corresponding potential energy  
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The interaction energy decays with one over the distance ijr  where ijij rrr  .  

 

In a many body system the computation of properties which depend on pair terms requires 

)1(  NN  operations. Although one can reduce this to half the amount of operations due to 

symmetry it is still an asymptotically  2NO  scaling. As it is explained in the MD section 

(2.1.1) one usually introduces cutoff distances which give a linear scaling. In the case of long-

range interactions this is hardly possible, because the interactions are even for long distances not 

negligible. 

 

Since the beginning of the 1980s several ways have been found to incorporate long-range 

effects at a more reasonable computational effort which means scaling of  2/3NO  down to 

 NO  have been achieved. Here the Ewald summation method is explained because it is 

suggested by Streitz and Mintmire’s publication. More details on Ewald summation and other 

(faster) methods, e.g. particle-particle particle-mesh method or fast multipole methods can be 

found in MD textbooks such as 121 and 122, in the comprehensive article of the John von 

Neumann Institute for Computing in Juelich, Germany 148 or in the survey on Ewald summation 

techniques by Toukmaji and Board 149.  

 

The key idea of Ewald summation is to recast the sum with unpleasant converging behavior into 

two rapidly converging series: a real-space sum and another one in the reciprocal-space plus a 

self-energy term. This looks like: 
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For the separation into real- and reciprocal space the following facts are exploited: 

 

1. The error function )(erf x  and its complimentary erfc( x ) sum up to one. 

2. The product of the function with the error function and its complementary is made. 

Then, the product with the complementary converges quickly in the real-space. 

3. The error function term which slowly converges in the real-space is Fourier transformed 

to the reciprocal-space, where it also converges quickly. 

4. A self-energy term is needed to correct for self-interaction which are implicit in the 

reciprocal space summation. 

 

All the convergence and scaling properties are dependent of the parameter   which determines 

the width of the Gaussian distribution in the error functions. Furthermore the real-space and the 

reciprocal-space cutoff play a major role. They are interdependent and correlated to the   

parameter for a given error tolerance. A wide discussion on the choice of these parameters can 

be found in the literature 149, 150. The scaling of Ewald summation is in the best case  2/3NO . 

2.3.3 Application and improvements of Streitz and Mintmire’s 

method 

Streitz and Mintmire’s potential 102 is more than one hundred times cited. It is applied mainly in 

the context of oxidation and growth of oxide scales 151-155. Nevertheless, the method has some 

limitations, e.g. the restriction to Al and its oxide and in terms of computational efficiency a 

rather long cutoff for the EAM potentials or long-range treatment (Ewald summation). The 

original method has been further developed. First, the method itself was improved in the sense 

of computational efficiency: parallelization, application of preconditioners in the solution of the 

linear systems of equations 156 and fast multipole codes 157 were implemented. Then the method 

is transferred to other element such as Ti 158 or Zr 159 and to nc composites such as fcc 

Al+ Fe2O3 
160, and even non-metallic systems such as Si/SiO2 

161. Among the groups which 

apply the method still on Al and its oxide several reparameterizations can be found, e.g. in 

references 159, 162 and 160. Often these works aim for potentials which are more transferable, i.e. 

applicable for a wider range of simulation geometries than metal/oxide interfaces or surfaces, or 

computationally more efficient. 
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The group based around Vashishta, Nakano, Campell and Kalia are using the Streitz and 

Mintmire framework the most. They developed the fast multipole method, the preconditioned 

conjugate gradient methods and heavily parallel codes. In the year 2000 the group presented a 

work where they simulated more than one million atoms 163 using variable charge  MD with all 

sorts of computational improvements. The link between this group and this work is Dr. Olivier 

Politano from the Interdisciplinary laboratory Carnot de Bourgogne (ICB) at the Burgundy 

university in Dijon, who spent three months with the Vashishta group to develop his own 

variable charge MD code in 2002. This implementation is the basis for the present 

implementation of Streitz and Mintmire’s method at the Paul Scherrer Institut. 

 

Also Zhou and Wadley developed Streitz and Mintmire’s pioneering work further. They wanted 

to generalize the model to use more than one metallic element at the time (i.e. in the simulation 

of interfaces between different metal alloy oxides). However this is not straightforward with the 

original version of the variable charge method because it produces charge fluctuations in a 

purely metallic alloy. Additionally, instabilities in the charges can prevent the variable charge 

model from being combined with other existing EAM potentials (for Al or other elements). In 

the analysis of the problems, the authors show that the absolute values of the charges on 

neighboring anions and cations increase without any limitations when the distance between 

them is reduced. In fact, this produces enormous attractive Coulomb forces between ions with 

opposite charge which reduces the distance further. The solution proposed by Zhou and Wadley 

is the introduction of lower and upper bounds on atomic charges. This is achieved by adding 

penalty terms to the electrostatic energy which keep the charge for a given weight between the 

barriers. Unfortunately the linear nature of the derivate of the electrostatic energy with respect 

to the charges breaks down with this. Obtaining the charges cannot be done any more by solving 

linear systems of equations but has to be done by algorithms for non-linear systems. Zhou and 

coworkers suggest applying a Newton-Raphson method 164. The computational effort increases 

in this case quadratically with the number of charges whereas the solution of linear systems 

scales linearly. Zhou and coworkers have also published a potential for Zr and ZrO. More 

recently they published potentials for many different metal elements such as Al, Co, Ni, Fe in 

combination with O 162. The work of Zhou and coworkers is also applied in the context of 

oxidation, especially for field enhanced oxidation of Al and Zr 165, 166. 
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3 Results on developments 
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3.1 Development I - Local chemical potential approach 

3.1.1 Motivation 

Streitz and Mintmire’s approach presented in section 2.3.1 has been developed to study the 

interface between Al and its oxide where mainly the  -Al2O3 state of oxidation has been 

considered. It produces average charges for the corundum structure which are for the O ions  

-1.9 e and for the Al ion about +2.85 e. This is within the range of literature values which 

predict cation charges between +1.09 and +3.0 e in the corundum structure 167-171.  

 

Although the charges for the corundum structure are well reproduced the method has some 

drawbacks e.g. artificially high charges in case of small interatomic distances and interactions 

with large cutoffs. The major limitation considering the charge update is the fact that all atoms 

in the simulation sample are assumed to be ionizable which means, that all of them are included 

in the charge optimization procedure. However it is clear that Al atoms in the bulk metallic 

region far enough away from the interface or surface do not carry any charge as it can be seen 

from a simulation of oxidation of an Al surface 153 where the Al/AlO interface is visible (Figure 

3.1).  

 

 

Figure 3.1 Charges in distance of an alumina/Al interface. Positive charges represent Al and 

negative charges O atoms where the charges are given in atomic charges units e. Source: Ref. 153.  

 

Small fluctuations due to positional changes can also be represented by bond order potentials or 

EAM potentials. Still, charges on all atoms especially also on neutral metallic atoms are time 

intensively computed. This becomes worse in the case of dilute O impurity distributions where 

the large majority of atoms are Al atoms. In this case only a few Al atoms close to the O 
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impurities are oxidized. Only those atoms and the impurities themselves are significantly 

ionized. This fact can be seen in Figure 3.2 which shows the radial charge distribution with 

increasing distance from a single substitutional O atom in bulk fcc Al relaxed with Streitz and 

Mintmire’s potential 102. Nonetheless, Streitz and Mintmire’s approach computes charges for all 

the atoms also in this scenario.  

 

The situations of isolated O atoms or clusters of O atoms in bulk fcc Al are more likely 

scenarios for dilute concentrations of O impurities which are simulated here. Consequently, 

charges have to be calculated in local environments of these O impurities only. A large fraction 

of Al atoms can be treated as neutrally charged which allows for excluding them from the 

charge optimization procedure. This promises an improvement of the performance. Around the 

O impurities a lot of small neutrally charged regions are formed for the charge update. All of 

these regions have their own local chemical potential. So, the approach developed for this 

purpose is called “local chemical potential approach” and is described in this section.  
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Figure 3.2 Charges with increasing distance from an isolated O atom in fcc Al. The charge at 

distance 0 represents the O atom’s charge. 

 

3.1.2 Streitz and Mintmire’s approach reconsidered 

Streitz and Mintmire’s charge optimization problem minimizes the electrostatic energy under 

the constraint of global charge neutrality using a electronegativity equalization scheme. Since 

the electrostatic energy is a quadratic expression in the charges and the problem deals with one 

linear constraint, this is a so-called “quadratic program”. (Quadratic programs are a class of 

optimization problems with a quadratic objective function and linear constraints.) 
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In mathematics, quadratic programs are solved by using a Lagrange multiplier approach. 

 

















 

N

i
i

N

ji
ijji

N

ji
ii

q
qVqqq

i

0
2

1
min

,,
,




 (28.) 

 

The Lagrange multiplier   in equation 28 corresponds exactly to the global chemical potential 

in the previous solution (see section 2.3.1 equation 19) which is necessary to achieve the 

electronegativity equalization. The solution of the Lagrange approach is usually obtained by 

minimizing the modified objective function (expression 28) using partial derivatives for the 

variables (here iq ) and for the Lagrange multipliers (here )  and equating the set of 

derivatives with zero. The equations can be arranged in a linear system of equations. In block 

notation it looks like expression 29. 
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The V
~

 matrix contains the element for the pair interactions ijV  in expression 17. The vectors q


 

and 


 contain the atomic charges or electro-negativities as elements. The vector C


 contains all 

ones and is necessary to obtain the equivalent system as the one given by the derivation of 

equation 28. The solution of the system is straight-forward and many numerical tools exist to 

solve such linear systems of equations. However, the system contains a fully occupied (dense) 

matrix as all atoms are considered in the charge optimization and interact via a long-range 

terms. The dense matrix gives serious limitations in terms of computational efficiency and 

memory usage. 

3.1.3 Charge optimization for the dilute oxygen limit 

The strategy of solving the quadratic program with one linear constraint through Lagrange 

multipliers and linear systems of equations offers new possibilities for the situation of dilute O 

in Al described in the beginning of the chapter. As it is shown in section 3.1.1 in case of a single 
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O in a bulk Al matrix only a few Al atoms in the neighborhood of this O atom are charged 

significantly differently from zero. In other words it is sufficient to solve the charge 

optimization problem for those atoms only. Instead of using one constraint for charge neutrality 

which holds for the whole system it is assumed that each sub-region around an isolated O atom 

or around a cluster of O atoms is neutrally charged. A neutrality constraint is assigned to each 

sub-region: the local chemical potentials. Following this idea, one can classify each atom in one 

of three categories: 

 

1. Atoms which are closer to the O atom than a certain cutoff distance (including the O 

atoms) have to get a charge and need to be charge optimized under a constraint of local 

charge neutrality. (Green atoms in Figure 3.3) 

2. Atoms which are far enough away from all the O atoms are completely neglected in the 

charge optimization and a fixed value of 0 e is assumed for their charge. (Grey atoms in 

Figure 3.3) 

3. Between class 1 and class 2 atoms there lies the third class of atoms. They form buffer 

regions for the charges in the optimization processes. This is required because of the 

artificial interface at the cutoff distance. As these atoms lay outside of the main cutoff 

for charge optimization their charge in absolute value should be as small as possible. 

Therefore these atoms are included in the charge optimization however their charge is 

constrained to zero. (Red atoms in Figure 3.3) 

 

 

Figure 3.3 Optimization regions around a single O atom (yellow). Green atoms in the inner circle 

are chargeable and therefore fully optimized. Red atoms are considered in the optimization, 

however their charge is constrained to zero. Grey atoms outside the outer sphere are not considered 

in the charge optimization. 

 

In practice atoms are classified into the three groups via two cutoff radii. The smaller cutoff is 

used for the region of full charge optimization and the larger cutoff is used for the separation 

between constrained and neglected atomic charges. In case of several impurities more than one 

neutral region can be formed. If two or more O atoms are closer than the larger cutoff the 
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regions around them are merged to one neutral region. If the distance between the O atoms 

exceeds the larger cutoff, separate neutral regions are formed. In both cases each of these 

neutral regions has got its own charge neutrality constraint.  

 

The classification of the atoms is done by mapping the O positions into a graph, i.e. a 

construction used in computer science which consists of vertices and edges. Here, each O atom 

is assigned to a vertex and edges are drawn in the graph if two O atoms are closer than twice the 

larger cutoff distance. A depth-first search algorithm can be used to determine the connected 

subgraphs which represent the merged neutral sub-regions. By the determination of the 

subgraphs each O atom can be assigned to its sub-region. Al atoms can be labeled as chargeable, 

constrained or neutral, depending on the distance to the closest O atoms. In case of chargeable 

or constrained Al atoms the sub-region-label corresponds to the label of the closest O atom and 

is assigned accordingly. 

 

The charge optimization problem turns into a solution of a minimization problem which has got 

now fewer variables, because in the ideal case a lot of atoms should be neglected from the 

charge optimization. Simultaneously, a lot more constraints have to be fulfilled, i.e. one for each 

region (charge neutrality) and one for each constrained atom (atomic charge equal to zero). All 

these constraints are still linear. So the problem is still a quadratic program with this time 

multiple linear constraints. The solution is analogous to the solution discussed above: 1) 

Introduction of Lagrange multiplier; 2) Minimization for both charges and Lagrange multipliers 

which leads to the solution of the following system of linear equations: 

 


















































0

0

00
~

00
~

~~~

0

0 










q

C

C

CCV

T
b

T
b

 (30.) 

 

Here the block matrix V
~

 represents the pair interaction ijV  between charges equivalently to 

expression for ijV  in expression 20. The rank of quadratic matrix V
~

 is equal to 'N  the number 

of atoms which are considered in the optimization procedure, i.e. the number of chargeable and 

constrained atoms. Hence this is also the rank of the vector q


. The number of disconnected 

neutrally charged regions 0N  determines the size of the matrix of the local charge neutrality 

constraints 0

~
C  ( 0' NN  ) and the rank of the vector  . The matrix 0

~
C  contains zero and one 

elements to link the atoms to the corresponding neutral region. Finally, the matrix bC
~

 which is 
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the key for constrained charges on atoms is of size bNN '  where bN  stands for the number of 

constrained atomic charges. This matrix contains at most one non-zero element per column and 

row which is then equal to unity and fixes the constraint.  

 

The final system of linear equations which has to be solved is of the order bNNN  0' . To 

improve the speed of the solution of the system this sum has to be much smaller than the 

number of atoms in the system. So, in the dilute O limit it should hold, bNNN  0'  << N  

( N  is the total number of atoms). 

3.1.4 Optimization of long-range interaction 

As explained in section 2.3.2, long-range interactions are in the nature of systems with atomic 

charges. They affect the energy evaluation which is used to determine the charges as well as the 

final electrostatic properties (energy, forces and stresses). In the previous section it is the pair-

interaction determined by the V
~

 matrix which has to be treated with the Ewald summation 

method.  

 

As described in section 2.3.2 the Ewald summation or its accuracy and convergence behavior is 

determined by three interdependent parameters: The real-space cutoff cr , the reciprocal-space 

cutoff ck  and the Ewald convergence parameter  . Ultimately, the two cutoff values are 

connected to the   parameter and the speed of convergence of the whole summation is 

controlled with this. An increase of the real-space cutoff for a given   value decreases the 

contribution of the reciprocal space significantly. For the Al simulations containing O an   

value of 0.25 is assumed. If the O concentration is dilute, e.g. a few O atoms in bulk Al, and a 

large enough real-space cutoff (bigger than 13 angstroms) is chosen the contribution of the 

reciprocal-space to the energy is smaller than a percent. In other words the real-space 

summation and the self-energy correction give the major contributions to the Ewald summation. 

This leads to the idea, to neglect the reciprocal-space summation in scenarios of dilute charges. 

However, this is unneeded and therefore it makes more sense to go back to the direct 

summation. 

 

The fact that it is possible to compute charges in the dilute regime without any long-range 

method can be understood in two ways. First, there is no repeating charge distribution in the 

configuration which causes a conditional convergence as reported in section 2.3.2. The second 

fact is that the multipole expansion of the charge distribution of such a neutral region has got no 

r/1 -contribution since the monopole vanishes in this case. As at most terms of order 3/1 r  are 
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present in the expansion all functions should decay rapidly to zero. This makes the long-range 

treatment negligible.  

 

To verify these considerations, a test sample containing two separated, neutrally charged sub-

regions with one and three O atoms (Figure 3.4) is charge optimized using four different 

approaches and the local chemical potential approach in every case. The charges for the atoms 

a, b, c and d as well as the electrostatic energies are given in Table 3.1 

 

 

Figure 3.4 Sample with two separated, neutrally charged sub-regions with three or one O atoms, 

respectively.  

 

The four different approaches are: 

1. Full Ewald summation with real- and reciprocal-space contributions. The   value is set 

to 0.25.  

2. Same as “1.” without the reciprocal-space contribution 

3. Direct real-space summation which includes all Coulomb interactions between atoms 

within the simulation cell and its nearest neighbors. 

4. Same as “3.” however only Coulomb interactions within each neutral region are 

considered. 

 

 Approach 1 Approach 2 Approach 3 Approach 4 

Charge a -1.1643  -1.1658  -1.1641  -1.1643  

Charge b -1.2105  -1.2128  -1.2105  -1.2105  

Charge c -1.2533  -1.2562  -1.2532  -1.2533  

Charge d -1.2105  -1.2128  -1.2105  -1.2105 

Electrostatic Energy -15.393 -15.425 -15.392 -15.393 

Table 3.1 Values of converged charges on O atoms and the total electrostatic energy for the system 

considered in Figure 3.4. The unit of the charge is e, the energy is in electron volts (eV). 

b 

c 

d a 
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As a consequence of this result one can think of optimizing all the charges in a direct 

summation within each neutrally charged sub-region separately. As there are no more 

interactions between the sub-regions (fourth approach) a large part of the electrostatic pair-

interaction matrix V
~

 is equal to zero. In other words, the system of equations which has to be 

solved to obtain the charges in the local chemical potential approach is sparse. Solving sparse 

matrix problems is a rather standard problem, which has two major advantages: First it is less 

memory consuming and second it is much more efficiently doable in the sense of time. As the 

problem of solving a sparse linear system of equations is so frequently used and well studied, 

there exist different advanced software packages. To improve the charge optimization in this 

project, the direct solver UMFPACK 172-175 is implemented as a library. 

3.1.5 Timing of the approach 

To illustrate the power of the local chemical potential approach as well as the huge saving in 

time which comes from the modification of the long-range computation, four samples are tested. 

The samples contained 500, 4000 or 13500 Al atoms and one O atom. In case of the sample 

with 13500 Al atoms the four O atoms distribution presented in the previous example is added 

(Figure 3.4). For each of the systems the charges are optimized using Streitz and Mintimre 

original technique including Ewald summation, the local chemical potential approach using still 

the full Ewald summation (LCP1), equivalent to approach 1 in the previous section, and the 

local chemical potential using direct summation (LCP2), which refers to approach 4. All the 

calculations are done on the same machine. Time is given in Table 3.2 in seconds.  

 

 Streitz and Mintmire LCP1 LCP2

500 Al + 1 O 0.78 1.37 0.10

4000 Al + 1 O 85.47 8.27 0.17

13500 Al + 1 O 1357.23 26.06 0.32

13500 Al + 4 O 1350.49 232.16 1.52

Table 3.2 Wall-clock time in seconds for the charge update for four fcc Al systems with interstitial 

O atoms. Streitz and Mintmire is the original method, the version LCP1 is the one discussed in 

section 3.1.3 (analogous to approach 1 in Table 3.1) and the LCP2 version contains direct 

summation and the UMFPACK 172-175 solver (analogous approach 4 in Table 3.1).  

 

As one can see form Table 3.2 the local chemical potential approach is in this dilute O regime 

several orders of magnitudes faster than the original approach. However there are some 

interesting aspects: The Streitz and Mintmire approach is competing with LCP1 when the 

system is rather small. LCP1 looses some time in the determination of the atomic labels 

(chargeable, constrained or neutral). Furthermore it happens for too small systems that all atoms 
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are included in the optimization scheme, which again gives no improvement compared to Streitz 

and Mintmire or even increases the effort due to the additional variables in the optimization. 

The other interesting aspect is the nearly linearly increasing time in LCP2 for systems 

containing one O atom: Here the time is increasing also because more atoms have to be 

considered in the determination of the neutral regions. Additionally, one sees that the time for 

the charge optimization with four O atoms is five times bigger than in the case with one O atom 

which fits to a linear increase in the computational costs. 

3.1.6 Implementation 

The serial implementation is introduced in the standard MD code used in the Materials Science 

and Simulation group 107 at Paul Scherrer Institut which is based on the program Moldy 176. 

Additional subroutines are added for the determination of the neutrally charged sub-regions, for 

the determination of the electronegativity, for the build up of the V -matrix, for the solution of 

the system of equations using UMFPACK 172-175 as a library and for separated energy, force and 

stress calculations for the electrostatic contributions. To improve the computational efficiency, 

the possibility of updating the charge not in every step is implemented into the code. Like this, 

the still time-consuming charge update can be done in every n th step where n is an integer 

number bigger than zero. The size of n  as well as the cutoffs described in Figure 3.3 for the 

determination of the neutral charged regions can be adjusted before a run to have a good balance 

between energy conservation and computational efficiency. Usually n in chosen between 1 and 

10 and the cutoffs are set to values between 8 and 10 angstroms for the inner and to values 

between 12 and 16 angstroms for the corresponding outer cutoff. The smaller radii were used 

for tests with single O impurities in bulk fcc Al environment. For waste majority of the 

simulations the larger cutoffs of 10 angstroms for the inner and 16 angstroms for the outer  are 

used. Beside these cutoffs for the charge optimization, a cutoff for the electrostatic force and 

stress calculation is used. This cutoff is set to 13 angstroms which is the same value as Streitz 

and Mintmire’s cutoff for the real-space interaction. 

 

To apply the local chemical potential in parallel simulations a good load distribution between 

computing instances has to be found without increasing communication costs too much. For the 

parallel implementation it is assumed that a dilute O concentration is present. This means that 

many small neutral sub-regions around O atoms are present in the sample. These neutral regions 

are isolated and not interacting with each other. Under this assumption, the charge optimization 

is distributed by assigning neutral sub-regions to threads. In the beginning of each charge 

optimization, every thread sends the positions of all its O atoms to the root process. Here the 

clustering for the O atoms according to the graph theory procedure above is performed. 

Afterwards each neutral region is assigned to a single core. The data of all the atoms within the 
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neutral region are sent directly to the corresponding core. Charges are found by using the same 

solver as in the serial case (UMFPACK) for each thread separately. Before the charges are sent 

back to the core of origin of each atom, electrostatic properties such as energies, forces and 

stresses are calculated for all the charged atoms on the charge optimization cores. The 

computing cores for the charge optimization are the same as the cores for the execution of the 

rest of the MD code. 

3.2 Development II - First potential 

3.2.1 Motivation 

Streitz and Mintmire delivered a full potential for the simulation of Al and AlO interfaces: All 

the electrostatic interactions are included in the functions used in the variable charge method. 

All non-electrostatic interactions, i.e. interactions independent from charges, are included in a 

potential of Finnis-Sinclair type. 

 

The Streitz and Mintmire potential uses a rather long cutoff (about 13 angstroms) and is 

therefore not very efficient. It can even give serious limitations if one wants to simulate larger 

samples. This is also reported by Tomar and Zhou 160 who refitted for different reasons the 

EAM potentials including this point of large cutoffs using the software package GULP 177. 

 

Another issue is the specific simulation of dilute O impurities. As it is described in section 2.3.1 

Streitz and Mintmire’s EAM potential is fitted to bulk properties of fcc Al and  -Al2O3, i.e. the 

corundum structure. Both are very regular crystalline structures. However little attention is 

given to isolated O defects which have to be considered, when it comes to dilute O impurities in 

bulk Al.  

 

The third reason to change the EAM potential is the comparison to existing work. Particularly, 

this is work published by Prof. Yuri Mishin and Dr. Vladimir Ivanov 31 from George Mason 

University in Fairfax VA which is subject of section 4.3. For this purpose it is required that the 

Al-Al interactions can be simulated using Mishin and Farkas Al potential 178. Consequently a 

new potential is developed with a given Al-Al interaction and Al-O and O-O interactions which 

have to be defined and fitted.  

3.2.2 Simulation of defect structures 

In order to fit the new atomic potential, dilute O in Al structures and corresponding energies are 

searched in the literature. Unfortunately, it has not been possible to find any data on isolated O 
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defects in a perfect fcc Al matrix at the time. So, a small database containing O defects in the 

fcc Al is produced by ab initio calculations using the software package VASP 114-117.  

 

In these ab initio simulations, the aim is not to generate energies which are of highest quality as 

empirical potentials, for which the data is used, are anyway limited in accuracy. The goal is 

more to have an optimized atomic structure around the defect and a moderate energy estimate 

for the given structure, which can be reproduced by the fitting. As high quality ab initio results 

are not an aim, it is possible to handle configurations which contain more than one hundred 

atoms. The rather large simulation samples have the advantage that interactions between defects 

in the configuration and its periodic replicas are reduced. As an initial, pure configuration an fcc 

Al lattice containing 108 atoms is used. This corresponds to 333   fcc unit cells containing 

four atoms each. In this fully periodic reference lattice, O defects are placed by inserting O 

atoms or substituting Al to O atoms. The following geometries are generated: 

 

1. The pure structure containing 108 Al atoms. 

2. A substitutional structure where exactly one atom is substituted by an O. 

3. An interstitial structure where the O is placed in the octahedral position between the Al 

atoms. 

4. An interstitial structure where the O is placed in the tetrahedral position between the O 

atoms. 

5. An interstitial structure where one Al is slightly moved and the O is then placed in a 

[100]-dumbbell situation. 

6. The same structure as 5. where the slightly moved Al atom is additionally substituted by 

an O atom. 

7. A structure containing two substitutions on neighboring lattice sites. The distance 

between them is 2/2 0a . 

8. A structure containing two substitutions with the distance of one lattice constant ( 0a ) 

between them. 

9. A structure where four atoms forming a tetrahedron are substituted by O atoms. The 

edge length of the tetrahedron is 2/2 0a . 

10. A structure where the six face center atoms of the fcc primitive cell are substituted by O 

atoms. 

11. A structure where the eight corner atoms of the fcc primitive cell are substituted by O 

atoms. 

12. A structure where the same atoms as in 10. and 11. are substituted by totally 14 O 

atoms. 
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All these structures are ionically relaxed, i.e. structure optimized, by VASP 114-117 and for each 

system the energy is determined. VASP is used with projector augmented wave 

pseudopotentials 113, 118 using the PBE functional 119, 120: PAW_PBE_Al for Al and 

PAW_PBE_Os_pv for O. As an energy cutoff 320 eV and 10 k-points per direction are chosen 

using a Monkhorst distribution. These selections are made according to a series of test runs to 

obtain reasonable energy values which give the aforementioned compromise between efficiency 

and accuracy (~ 0.1 eV). 

 

The comparison of absolute energy coming from ab initio calculations with empirical data is 

unnecessary since empirical potentials are usually determined with respect to their cohesive 

energy. Therefore relative energies or energy differences which can be reproduced by the fitting 

procedure are calculated as results of the ab initio simulations. To keep things simple defect 

energies initioAbE  are defined by subtracting the total energy of the pure Al structure (1.) of the 

total energy of each defect structure. The energy of the solid O ( cE = 2.558 eV according to 

Baskes 179) is not taken into account in the calculation of the defect energies. Table 3.3 

summarizes information on the structures, number of atoms and defect energies. 

 

 Configuration Al 

Atoms 

O 

Atoms 

Tot 

Atoms 
initioAbE  

eV 

1. Pure 108 0 108 0 

2. Substitutional 107 1 108 -8.61 

3. Octahedral 108 1 109 -10.22 

4. Tetrahedral 108 1 109 -8.54 

5. [100]-Dumbbell 108 1 109 -10.76 

6. Sub 2 O 1st NN 106 2 108 -17.23 

7. Sub 2 O 2nd NN 106 2 108 -17.18 

8. Dbl and Sub 107 2 109 -19.55 

9. Sub 4 O 104 4 108 -33.24 

10. Sub 6 O 102 6 108 -49.51 

11. Sub 8 O 100 8 108 -66.79 

12. Sub 14 O 94 14 108 -112.62 

Table 3.3 Configurations used in the fitting including number of atoms and energy differences. 
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3.2.3 Fitting procedure 

As described in section 3.2.1 the main idea for the new AlO potential is to fit Al-O and O-O 

EAM interactions to a given potential for Al-Al interactions 178. In the ideal case, the 

electrostatic interaction should be included in the fitting procedure. The first strategy for the 

fitting is to use the AlO defect structures described in 3.2.2. The energy differences given in 

Table 3.3 have to be reproduced as good as possible and the forces should vanish for all the 

given defect structures, as they are structure-optimized by ionic relaxation in the ab initio 

calculation. A further aim is that the new potential should have a cutoff distance which is of the 

same range as Mishin and Farkas Al potential: 6.78 angstroms.  

 

In the fitting, the pair interaction function between Al-O and O-O as well as the O electron 

density are modeled as sums of cubic knot functions which give for each function the form 

 

     



N

i
iii rrrrarV

1

3
 (31.) 

 

Here, the number of knot functions is N  and   stands for the Heaviside step function 180, 181. 

The parameters to be found are the knot values ia  as well as the knot points ir . For the 

embedding function it is assumed that it is the negative square root of the given electron density 

which gives no additional parameters in the fitting. Additionally, the modification of 

electrostatic parameter via the fitting program is done by changing the existing parameter in the 

given framework of Streitz and Mintmire using the local chemical potential approach.  

 

To optimize the existing parameters an objective function representing a weighted measure 

between fit and targeted properties is calculated. For this purpose, the squared difference 

between fitted and target energy as well as a residual force norm for each structure are 

calculated, multiplied with a weight of choice and summed up. The objective is to minimize the 

value of the sum. The minimization of the objective function in the fitting is done either by a 

simulated annealing 182 procedure or by a downhill simplex like algorithm 183. Usually simulated 

annealing is used to obtain a first guess for the knot points ir  for given knot values ia . Then the 

results obtained by simulated annealing are refined using the more flexible downhill simplex 

method by simultaneously freeing up also the knot values. This allows for more accessible 

minima in the optimization and which improves the potentials. To have reasonable values for 

the fitting parameters they can be varied either in fixed bounds or in a range which is defined 

relatively to the actual value. Usually a change in fixed bounds is preferred in the fitting. 
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During the fitting it turns out that a modification of the electrostatic parameters slows down the 

procedure tremendously. So, in the beginning the electrostatic part of Streitz and Mintmire 102 is 

kept unchanged (including all the electrostatic parameters). This allows for computing all the 

electrostatic interactions (energies and forces) only once in the beginning of the execution of the 

fitting program and using those values in each iteration of the optimization. 

 

The fitting of the defect structures shows that no embedding contribution for the O is necessary. 

So, no electron density is fitted for O atoms. However, it is rather difficult to reproduce the 

defect energies and the vanishing forces in the different structures in a reasonable accuracy. 

Considering again, Streitz and Mintmire’s work makes clear that the usage of all 1s orbital 

functions describing the delocalized valence electron distribution in the electrostatic part can be 

substituted by any other orbital function. To make the model more physical and to have more 

flexibility in the fitting procedure, 2s orbitals for O atoms and 3s orbitals for Al atoms are 

implemented. This needs a recalculation and reimplementation of the Coulomb interaction 

between these valence orbitals with each other and with the cores. According to Roothaan’s 

work 147 it is found that one has to implement the following interaction terms into the 

electrostatic part. For the core-valence case integral  bfa |  one obtains the expressions 32 and 

33. 
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and 
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In equations 32 and 33, b  is a parameter which controls the spread of the electron distribution. 

For the valence-valence Coulomb integral three different cases of interactions are possible: Al-

Al, O-O and Al-O. In the case of equal interaction partners the index ba    is unique. So 

for the Al-Al and O-O interaction the terms given in equations 34 and 35 are obtained. 
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For the Al-O interaction it holdsa  b  and the valence-valence Coulomb integral looks like 

expression 36. 
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In this equation 36, the abbreviation   is equal to  
a

2 b
2

a
2  b

2 . All the expressions 32 to 36 

are implemented into the code to obtain according electronegativities i  and pair interactions 

ijV . With the given implementation the fitting is continued without changing the electrostatic 

parameters given in Streitz and Mintmire’s publication. Nevertheless, changing the orbital 

functions makes the fitting of the potential a lot easier. 

3.2.4 Results 

The newly fitted version of the potential is described by four knot functions for the Al-O 

interaction, four knot functions for the O-O interactions and the parameters listed in Table 3.4 

which gives then the potential energy curves in Figure 3.5. The cutoff radius of the new 

potential is 6.78 angstroms which corresponds to the position of biggest distance of a knot point 

and to the cutoff of the underlying Al potential 178. 
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Knot function VAl-O VO-O 

I ri 

Ang. 

ai 

eV/Ang.3 

ri 

Ang. 

ai 

eV/Ang.3 

1 1.74 -8.772 2.95 2.600 

2 5.96 0.107 4.21 -0.580 

3 6.73 0.644 4.77 0.423 

4 6.78 -0.682 6.33 -0.047 

Table 3.4 Positions of the knot functions and their coefficients for the Al-O and O-O pair potentials. 

 

 

Figure 3.5 Radial energy functions for the pair potential between Al-O (red) and O-O (blue).  

 

To have an idea about the quality of the fit the predicted energies of the ab initio code and the 

values achieved by the fit are compared in Table 3.5.  

 

Many reasonable candidate potentials are tested. For this purpose, MS simulations using 

structures which contain the unrelaxed defects are produced. The expected result is a structure 

around impurities which is congruent with the structure obtained from the ionic relaxation in ab 

initio and an energy difference with respect to the perfect structure which are similar to the 

predicted values. For the potential presented here, these simulations show that the substitutional 

and the [100]-dumbbell interstitial O atoms can be reproduced very well. Also the energy 

differences are well reproduced. Figure 3.6 shows different properties of the substitutional 

defect produced with the new potential. However, for the other two interstitials (octahedral and 

tetrahedral) it is observed that also the O atom is moving during the relaxation. Interestingly, in 

both cases the atoms rearrange in [100]-dumbbell structures. This is a reasonable result when 

one considers the numerical instability of the defect atom in MS as no point group symmetries 

are exploited unlike the VASP calculations. Additionally the [100]-dumbbell is the lower 

energy configuration than the octahedral or tetrahedral. The changes in interstitial 

configurations happen for all the tested potential candidates. 



 - 56 - 

 

Configuration EAb initio 

eV 

EFitting 

eV 

||FFitting||
2 

 (eV/Ang.)2
 

Pure 0 0 0 

Substitutional -8.61 -8.67 0.059 

Octahedral -10.22 -10.23 0.105 

Tetrahedral -8.54 -8.54 0.081 

[100]-Dumbbell -10.76 -10.63 0.108 

Sub 2 O 1st NN -17.23 -17.19 0.125 

Sub 2 O 2nd NN -17.18 -17.20. 0.133 

Dbl and Sub -19.55 -19.62 0.177 

Sub 4 O -33.24 -33.35 0.269 

Sub 6 O -49.51 -49.72 0.389 

Sub 8 O -66.79 -66.84 0.484 

Sub 14 O -112.62 -112.45 0.608 

Table 3.5 Comparison between energy differences from ab initio calculations and the values 

produced by the fitting. The last column contains the force norms produced by the fitting. 

 

 

Figure 3.6 Substitutional O impurity (center atom) in FCC Al in which atoms are colored according 

to (a) converged charges, (b) hydrostatic pressure, (c) deviatoric stress* and (d) xy shear stress. 

Charges are given in multitudes of the elementary charges e and stresses are displayed in GPa. 

                                                      
* The deviatoric stress tensor is the difference between the full stress tensor and the hydrostatic 
stress tensor, and its second scalar invariant gives a measure of the maximum shear stress. 
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3.3 Development III – Second potential 

3.3.1 Motivation 

A second potential is presented which takes in the fitting the properties of the Al2O3  -

corundum structure (Figure 3.7) into account. The corundum structure is the most common form 

of alumina however it is not included in the fitting of the first EAM potential. Therefore the 

corundum description of the first potential is rather poor (see sections 3.3.2 and 3.3.4).  

 

Figure 3.7 The  -corundum structure of Al2O3. Grey spheres represent Al and yellow O atoms. 

 

The corundum structure has a rhombohedral (trigonal) primitive unit cell and is determined via 

two internal parameters. These internal parameters are not relevant to maintain the symmetry 

but more relevant for the bonding. The description of corundum’s basis vectors is given in 

Appendix A.  

 

The corundum structure is important for the description of locally elevated O densities which 

could form oxide clusters or for the simulation of corundum precipitates in fcc Al. The aim in 

the fitting is an empirical potential which is able to reproduce properties of impurities, i.e. dilute 

O clusters and corundum properties simultaneously. The result should be a transferable 

potential. Therefore a compromise between the fitting of impurity properties and the 

reproduction of the corundum structure has to be found. In the interest of transferability, the 

values in the fitting are tried to be reproduced in a qualitative way. Transferability is a measure 

for the value of potentials.  
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3.3.2 Fitting procedure 

Basically, the same fitting procedure as described in section 3.2.3 is applied. All the defect 

structures are included in the fitting with modified weights and data of the corundum structure is 

added as new target properties. For this purpose a small corundum sample (Figure 3.7) is 

generated according to geometrical data provided by Appendix A to compute its properties.  

 

As during the fitting of the first potential the electrostatic interaction i.e. the description of the 

orbitals has been changed from all 1s to 3s for Al and 2s for O, the charges for the corundum 

structure are tested first. It is found, that the charges do not match the expected values of -2 e for 

O and +3 e for Al. So, the electrostatic parameters are modified to obtain the same values for Al 

and O charges as Streitz and Mintimire (-1.9 e and +2.85 e). Mainly the free parameter i  

which determines the spread of the orbital is adapted. In fact there is a whole set of pairs (one 

for Al and one for O) of parameters which produce reasonable charges in the corundum 

structure. Among these pairs, the one presented in Table 3.6 is selected according to the 

reproduction of Streitz and Mintmire’s value for the electrostatic energy.  

 

A change in the electronegativity i  with a constant difference between the values for both 

atom types does not affect the charges. The only value which changes under the new 

electronegativies is the chemical potential used in the charge determination. The self-Coulomb 

repulsions iJ  and effective core charge iZ  are left unchanged as it is assumed that these values 

are given by Streitz and Mintmire due to a physical motivation. Old and new values for the 

electrostatic parameters are given in Table 3.6. 

 

Potential Atom     J  Z  

Old Al 0.968438 0 10.38655 0.74679 

 O 2.143957 5.484763 14.035715 0 

New Al 1.5679 -3.484763 10.38655 0.74679 

 O 2.6665 2 14.035715 0 

Table 3.6 New electrostatic parameters to use with the 2s and 3s orbitals. 

 

Using constant electrostatic parameters implies that charges, the electrostatic energies, forces 

and stresses can not change, either. After the new parameters have been set they are 

incorporated into the fitting: Charges, electrostatic forces and energies for all the defect 

structures in section 3.2 are recalculated and adjusted to be used as precalculated, tabulated 
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values. Furthermore similar precalculations of energies and forces for the corundum structure 

are added to the fitting program.  

 

In the case of corundum, the new EAM potential has to be fitted to reproduce the total energy 

given by Streitz and Mintmire’s work 102 using the given electrostatic energy. The non-

electrostatic forces and stresses calculated from the EAM potential have to compensate the 

given electrostatic forces and stresses as good as possible to obtain a force- and stress-free 

parameterization for the corundum structure. Simultaneously, the reproduction of the defect data 

in section 3.2 is desired. Fitting considering all the constraints given by the corundum structure 

and the defect structures is hardly feasible. So, a higher weight is given to the corundum 

structure and to the defect structures with only one O atom.  

 

As soon as a reasonable candidate for a new potential has been found it is used to relax the 

corundum structure in a MS run. Unfortunately it is never observed that the morphology of the 

sample remains unchanged. As already described in the motivation of this section, the atomic 

positions in the corundum structure are determined up to two internal parameters. Changing 

these parameters gives again a symmetric structure with a different bonding nature. So, during 

the relaxation it is observed that all atoms move in a collective way to another “corundum” 

structure which can be described with different internal parameters.  

 

The instabilities above can not be removed without including corundum’s elastic constants in 

the fitting. However incorporating the elastic constants of corundum in the fitting is more 

tedious than using elastic constants of an fcc metal as Al. The  -corundum structure is trigonal 

and has six independent elastic constants (C11, C12, C13, C33, C14 and C44) unlike cubic systems 

with three elastic constants (C11, C12, and C44). To reproduce these six elastic constants in a 

qualitative manner the quadratic equations given in table IV of Ref. 184 are used†. Consequently, 

a small corundum configuration is twice deformed according the deformations described in 

table IV of Ref. 184 and the two deformed configurations for each deformation mode are directly 

stored in the fitting program. For each guess of parameters in the fitting energies are calculated 

for the undeformed and the two predeformed samples. The three parameters of the quadratic 

functions are analytically calculated. For this the three datapoints and in some cases already 

calculated elastic constants are used. Using this, the quadratic function given in Ref. 184 can be 

                                                      
† In table IV of Ref. 184 M. M. Ossowski, L. L. Boyer, M. J. Mehl, et al., Physical Review B 66, 
224302 (2002). the energy expression for strain 7 is in error and should be replaced by: 

  2
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approximated in a crude way. In the fitting mainly the sign of the elastic constants and a rough 

estimate of the value is tried to be reproduced. 

 

Using these elastic constants made the fitting not easier because more constraints are added to 

the system. There is always a tradeoff between the reproduction of elastic constants and the 

accurate description of the principal stress components in the corundum structure. Also other 

objective values suffered from the incorporation of the additional terms in the objective 

function. During the fitting it turns out that for the description of the properties an electron 

density for O is necessary.  

Different candidates are tested in MS runs. The good news is that positions of the atoms in the 

corundum structure do not anymore change for a fixed volume. Also the relaxation of the single 

O defect structures using MS shows plausible results. Therefore one of the candidates, which 

gives the best results in terms of defect structures and which produces a stable corundum 

structure, is chosen to be the next potential. 

 

3.3.3 Results  

The final version of the potential which models O-O and Al-O interactions in the full EAM 

form and which is applied in MD and MS simulations uses the parameters given in Table 3.7. 

The curves for the corresponding pair energies are displayed in Figure 3.8. The cutoff radius of 

the new potential is 6.45 angstroms which is slightly smaller than the cutoff of the underlying 

Al potential 178. However in practice, the values for the Al potential (6.78 angstroms) are used 

for all pair interactions. 

 

Knot function VAl-O VO-O O 

I ri 

Ang. 

ai 

eV/Ang.3 

ri 

Ang. 

ai 

eV/Ang.3 

ri 

Ang. 

ai 

eV/Ang.3 

1 2.24 30.164 2.18 -1.796 1.34 1.491 

2 4.69 2.051 2.22 11.680 2.44 2.919 

3 4.73 -1.436 6.04 0.364 2.15 0.754 

4 5.07 -0.300 6.45 -0.250   

Table 3.7 Positions of the knot functions and their coefficients for the Al-O and O-O pair functions 

and the O electron density of the second potential/ 
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Figure 3.8 Radial energy functions for the pair potential between Al-O (red) and O-O (blue) for the 

second version of the potential 

 

Using three or four knot functions is rather little but using more does not improve the fitting. 

For the pure Al system the same atomic cohesive energy (3.36 eV) is obtained as it is obtained 

from Mishin and Farkas Al potential 178 since the pure Al interaction is not affected by the new 

potential. The fitting focused on the corundum structure and the single O defects. In Table 3.8 

there is a summary of results obtained by the fitting and values for the application of the 

potential in a MS relaxation using the same defect structures in unrelaxed fcc Al. The elastic 

constants obtained for the corundum structure are given in Table 3.9. 

 

System Reference Fitting MS 

Defect energies [eV]    

Substitution -8.61 -8.70 -10.84 

Tetrahedral -8.54 -10.09 -11.56 

Octrahedral -10.22 -10.55 -11.56 

100-Dumbell -10.76 -9.57 -11.64 

110-Dumbell -9.34 N/A N/A 

Corundum    

Energy [eV] -31.8 -31.95 -31.95 

Pressure [GPa] 0.00 0.02 0.04 

Table 3.8 Defect energies for the second potential. For corundum also the pressure in the sample is 

fitted and calculated. 
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 C11 C12 C13 C33 C14 C44 

 [GPa] [GPa] [GPa] [GPa] [GPa] [GPa] 

Reference 497 164 111 498 -24 147 

Fitting 452 82 206 406 -61 -302 

Table 3.9 Elastic constants for the corundum structure. The reference values are taken from Ref. 
102.  

 

It is observed that the tetrahedral and the octahedral defects move into a [110]-dumbbell 

configuration upon MS relaxation. The properties displayed in Table 3.8 are rather poor 

especially for the single O defects. The stability of the structures is reduced compared the 

previous potential and an even more unfavorable structures appear. Still this is the best which 

has been obtained under the constraint of a stable corundum structure. 

 

Another weakness of this potential is that the principal stress components in the corundum 

structure do not vanish. This means, that a corundum sample changes its shape as soon as the 

volume is allowed to adapt to pressure (NPE or NPT ensembles). This weakness affects also the 

behavior of the corundum at finite temperature. Unfortunately, fits with a better description of 

the interior stresses in corundum are not stable in the sense of the internal parameterization of 

the structure. 

3.3.4 Comparison to first potential 

The first obvious difference between the two potentials is the formal description of them. In 

case of the first potential no electron density and embedding function is fitted for the O. This 

means O-O interactions are modeled only via a pair potential. The second potential uses the full 

EAM framework for both elements, Al and O. Additionally the first EAM potential has two 

minima for the Al-O pair potential whereas the second potential has only one. This is a result of 

the fitting and the direct effect on properties is not yet known. 

 

In terms of properties, the first potential reproduces ab initio data for the defect structures better 

than the second potential. This is also observed if O impurities in the bulk fcc Al matrix are 

relaxed using molecular statics. The first potential is able to stably relax the substitutional and 

the [100]-dumbbell interstitial. The octahedral and tetrahedral interstitials decay to [100]-

dumbbells which is according to ab initio the most favorable interstitial site for the O in Al. For 

the second potential again the substitutional and [100]-dumbbell interstitial are stable. 

Octahedral and tetrahedral interstitials decay to [110]-dumbbells which are known to be less 

favorable considering the energies according to the ab initio calculation (see Table 3.8).  

 



 - 63 - 

The major drawback of the first potential is the inability to reproduce the properties of the 

corundum structure. Firstly, the charges are not correctly reproduced due to a pair of 

electrostatic parameters which has not been adjusted when the orbital functions have been 

exchanged. Consequently the whole parameterization is not appropriate to simulate the 

corundum configuration. This can be observed during relaxation of the corundum structure, 

where all atoms move in the collective manner to a different “corundum” structure. 

 

Comparing the two potentials in terms of possible influence on other defects, i.e. the 

perturbation of the lattice due to their presence via the stress field of the substitutional and the 

interstitial defect in the fcc lattice it can be seen that the distortion produced by the second 

potential is more compact but stronger (Figure 3.9).  

 

  

  

Figure 3.9 Pressure field of the substitutional (a and b) and the [100]-dumbbell interstitial (c and d) 

for the first (a and c) and the second (b and d) potential. 

-5 GPa       5 GPa 

a b

c d
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4 Results on applications 
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4.1 Application I - Nanocrystalline structures  

4.1.1 Motivation 

The Materials Science and Simulation group at Paul Scherrer Institut 107 is well known for their 

work on MD simulations of fully three-dimensional nc metals. These structures have provided 

insight into deformation mechanisms and especially into details of dislocation/GB interactions 

in fcc metals 61-72 as it is mentioned in the introduction (section 1.2.2). Important here is the fact, 

that dislocations which have been nucleated in GBs can be temporary pinned at GB ledges and 

their associated stress intensities during propagation 66, 70 which also changes the 

macroscopically observable stress-strain behavior. 

 

In this section, impurities are incorporated to three-dimensional nc structures to model the nc 

samples in a more realistic way. The local chemical potential approach and the first EAM 

potential described in chapter 3 are applied to simulate a dilute O concentration in GBs of nc 

samples. From experimental data it is expected that a difference in the macroscopic stress-strain 

behavior would be observed. In the microstructure a change in the dislocation propagation 

behavior, e.g. an additional pinning due to O impurities in GBs is expected. 

4.1.2 Sample description and simulation details 

Two nc Al samples containing 15 grains are used as pure initial structures. Both samples are 

produced using the Voronoi technique, MS relaxations and a room temperature equilibration 

procedure according to Ref. 185. The smaller sample consists of 101384 Al atoms and has 15 

grains with 5nm mean size. It is called “test sample” as it is used to perform test runs for the 

larger MD simulation. The larger sample consists of 1223250 Al atoms and has 15 grains with a 

mean size of 12 nm. The impure version of this sample is the main focus of interest and is 

therefore called “main sample”. The pure version of the 12 nm grain sizes sample serves as a 

reference for the impure simulation, consequently it is called “reference sample”. The test 

sample is deformed under uniaxial tension with a strain rate of 109 s-1 to provide information for 

the preparation of the large sample in a rapid way. All the simulations for test or reference 

purposes and the final simulation of the main sample are performed at 300 K temperature using 

the first EAM potential described in section 3.2. 

 

To study the effect of the impurities, two distributions of O atoms are inserted into the test 

sample by substituting Al by O atoms. In the first distribution the O atoms are arranged as small 

clusters in triple junction lines between GBs. The distance between the clusters is chosen 
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sufficiently large to avoid interaction between the neutrally charged sub-regions during the 

charge update procedure. The selection of triple junction lines for the insertion of O is made on 

a random basis. In total 95 Al atoms are substituted by O atoms. This new impure sample is 

called “impure 1”. During the subsequent deformation of the “impure 1” sample the green 

stress-strain curve shown in Figure 4.1 is obtained. It coincidences with the curve for the pure 

test sample (Figure 4.1: the red curve) at strains smaller than 5% and higher than 10%. For the 

interval from 5% to 10% strain, there is some divergence between the curves.  

 

It is known from former simulations66 that the reference sample with a mean grain size of 12 nm 

will plastically deform by the propagation of dislocations which nucleate from the GBs. To 

enhance the effect of the impurities, a second O distribution is implemented to the test sample 

with the intention to affect the dislocation activity present in the test sample. For this purpose 

the simulation of the pure test sample is analyzed with a particular interest in the dislocation 

activity. To get a second sample with a more effective O distribution, O atoms are placed into 

the undeformed test sample by substituting clusters of Al atoms by O atoms in those triple 

junction lines which are either close to nucleation sites of dislocations or where dislocations 

pass during their propagation in the pure sample. In total 37 Al atoms are substituted by O 

atoms. The sample is called “impure 2”. The deformation of the “impure 2” sample revealed 

that the global stress-strain behavior (see Figure 4.1: blue curve) can be modified using this 

approach.  

 

 

Figure 4.1 Stress-strain curves for the test sample (red) and the two impure cases: “impure 1” with 

95 randomly distributed O atoms (green) and “impure 2” 37 O impurities distributed with 

knowledge of the dislocation behavior in the test sample (blue). 
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Before O atoms are added to the pure (reference) sample to create the main sample, again the 

pure sample is deformed using the potential published in Physical Review B 178 to create a 

reference. The reference sample is deformed at the same strain rate as the main sample: 108 s-1. 

After a total elongation of 16% the simulation is stopped. As previously mentioned, the 

simulation temperature is 300 K. Visual inspection of configurations of the reference simulation 

are used to insert O atoms at the triple junctions with “higher dislocation activity” analogously 

to the “impure 2” sample. O atoms are introduced in the undeformed sample by substituting Al 

atoms in clusters of 1 to 17 atoms. During the substitution of Al atoms, care is taken that the 

groups of O atoms have distances between each other which are larger than twice the cutoff of 

the constrained region in the charge optimization. The reason for this is that regions which are 

closer than this limit count as one in the cluster algorithm of the charge determination (see 

section 3.1.6 on the implementation of the local chemical potential approach). If the distances 

are maintained, the largest profit from distributing neutrally charged sub-regions to different 

nodes of the parallel computer can be made. The main sample contains totally 179 O atoms. 

After production, the sample is relaxed using MS and then equilibrated at 300 K using MD. A 

section through the sample is displayed in Figure 4.2.  

 

 

Figure 4.2 Section through the large simulation sample. The local crystallinity coloring is used to 

visualize the grains and the GB. Yellow spheres indicated O atoms.  

 

After the preparation procedure, the main sample is deformed at a strain-rate of 108 s-1 to 

approximately 6.5% strain. At this strain the simulation is stopped because of two atoms which 
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moved to close to each other. If two atoms are closer than a certain threshold the charge update 

automatically stops the simulation. This threshold is typically much smaller than the average 

distance between atoms in the fcc arrangement. Apparently for two atoms it is possible to move 

closer than this threshold due to the randomness in the atomic structure of the triple junction and 

probably due to weaknesses in the description of the atomic interaction with the given potential: 

The first potential described in section 3.2. This could be avoided by modifying the short-range 

interaction of the potential by adding a strongly repulsive term. 

4.1.3 Results 

4.1.3.1 Deformation of the sample: Global response 

The comparison between the stress-strain curves (Figure 4.3) for the uniaxial deformation of the 

pure “reference” and the impure “main sample” shows some divergence. In both cases discrete 

stress drops are visible. They match with plastic events in the microstructure, i.e. propagating 

dislocations. Remarkable is the fact that the stress at 6% strain is significantly higher in the 

impure case than in the pure case. In the visual inspection of the samples it is seen that in the 

main sample there is dislocation activity around 5.7% strain which causes the large drop. Before 

6% strain the dislocation activity disappears with the exception of to slip events at 6.1% and 

6.4% strain. The stress-strain curve shows the corresponding behavior: the stress increases for 

the strain interval without dislocation activity and shows two discrete drops for the mentioned 

slip events. In the reference sample, the dislocation activity is different and various slip-events 

are observed between 5.7% strain and 6.2% strain: The stress is more or less continuously 

decreasing in this range of strain. After this no more dislocation activity is observed and the 

stress increases. So the difference between the stress-strain curves can be rationalized by 

differences in the dislocation activity. However it is difficult to correlate the dislocation activity 

or its absence to the presence of impurities. For this purpose, two dislocations which appear at 

similar strains in the same grain are compared. This is described in section 4.1.3.2. Connected to 

the sudden stop of the simulation due to atoms which inhibit further charge update, it remains 

unclear whether the flow stresses at higher strains would be of the same value.  

 

Although dislocation activity is a rather stochastic process in these nc samples, at the onset of 

plasticity dislocations appear for both cases in the same grains. These “early” dislocations use 

slip planes which are parallel and they even nucleated in the same GB regions. In the 

continuation of the deformation of the samples it becomes more difficult to compare internal 

processes. This can also be seen from the stress-strain curves which clearly diverge above 5.9% 

strain. As described above more and more slip-events are observed only in one of the two 

samples. Each event, e.g. nucleation or propagation of dislocations, causes changes in the 
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microstructure. Summing up these changes during the continuation of the simulation, the 

samples become more and more different from each other and less comparison based on local 

processes is possible. 

 

 

Figure 4.3 Stress-strain curves for the large simulation samples: The reference sample (red) and 

main sample with 179 substitutional O impurities (blue). The red and the blue arrow mark the 

position in the stress strain curve where the dislocation analyzed in 4.1.3.2 nucleates. 

 

For a deformation around 6% strain, hardly any grain growth is visible in the samples. 

Therefore it is impossible to study the effect of the impurities on the grain growth in the main 

sample.  

4.1.3.2 Difference in dislocation behavior 

A difference between the reference and the main simulation is observed for a dislocation which 

exists in both samples in the same grain. In both cases the leading partial nucleates at about 

5.7% strain.  

 

Pure case 

The process described here is visualized in Figure 4.4: In the reference sample the leading 

partial nucleates rapidly where the red arrow is drawn in the stress-strain curve (Figure 4.3). The 

leading partial is propagating through the grain in about five picoseconds simulation time. As 

soon as the leading partial has reached the opposite GB a new partial dislocation nucleates in the 

same GB region as the previous on an adjacent plane. With the propagation of the second partial 
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a micro-twin is formed. With increasing deformation of the reference sample more partial 

dislocations propagate through the sample and the twin migrates. The twin fault remains in the 

sample until the end of the simulation.  

 

 

Figure 4.4 Dislocation propagation in the reference sample. Atoms are displayed in local 

crystallinity classes without displaying fcc atoms. The arrow in the image (a) points to the 

nucleation site of the leading partial dislocation. The leading partial propagates through the grain 

(b), a second partial dislocation nucleates at nearly the same position as the first (c). This creates a 

twin fault which remains in the sample (d) and increases in size during the simulation. The whole 

process described here happens in less than 10 ps. 

 

Impure case 

In the main sample three clusters of O impurities are distributed in triple junctions facing the 

grain of interest (Figure 4.5a). It is observed that the nucleation of the leading partial dislocation 

is more difficult: During 30 ps, the leading partial dislocation tries in several attempts to detach 

from the GB to propagate through the sample. After propagating away from the nucleation site, 

the leading partial dislocation is stopped, i.e. pinned at an O cluster sitting in the neighboring 

triple junction line, for about 50 ps. After unpinning the leading partial propagates through the 

entire grain. During the propagation time a twin fault starts to be nucleate at about the 

nucleation site of the previous partial dislocation. As soon as, the first leading partial dislocation 
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reaches the GB at the opposite side of the grain a trailing partial is formed in this GB. This 

trailing partial sweeps away the entire dislocation and the twin fault.  

 

 

Figure 4.5 Dislocation propagation in the main sample (impure case). Atoms are displayed in local 

crystallinity classes without displaying fcc atoms. Yellow circles indicate the position of the O 

clusters in the GB. The arrow in (a) indicates the nucleation site of the leading partial dislocation. It 

takes about 30 ps until the leading partial dislocation starts to propagate. Afterwards the leading 

partial requires additional 25 ps to pass one of the O clusters (b). In (c) the nucleation of a second 

dislocation is seen which creates a twin fault. Additionally a trailing partial is nucleated at position 

indicated by the yellow arrow. The trailing partial sweeps away the stacking fault and the twin 

fault (d + e). After all, the whole dislocation is removed in the sample (f). The entire processes 

starting from the first nucleation attempts until the dislocation completely disappears, takes about 

70 ps. 
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Comparison 

Two main differences are observed: Firstly, the dislocation (Figure 4.5) nucleates and 

propagates in the main sample (impure) much slower than in the reference sample (pure) 

(Figure 4.4) and secondly, the dislocation is entirely absorbed in the surrounding GB of the 

main sample whereas it remains in the grain as a micro-twin in the reference sample.  

 

There are different aspects which complicate the picture and have not been considered yet:  

1. The dislocations in the two cases are sliding on parallel slip planes however one is two 

atomic layers above the other. Consequently, both dislocations will interact with 

different structures in the neighboring GBs. 

2. Other dislocations have nucleated and propagated in both cases before the discussed 

dislocations appear. Actually, there is a dislocation in the pure case (reference) which 

uses the very same slip plane as the one in the impure case (main sample). This 

dislocation nucleates at 5% strain, propagates very quickly and disappears in the 

opposite GB 10 ps later. 

3. In both cases the interactions of the dislocations with the neighboring GB structures are 

complicated. Stair-rod dislocations are observed at the GB region where the trailing 

partial nucleates. This might be linked to attempts for cross-slipping. 

4.  The competing mechanisms, twin fault vs. propagation of the trailing partial, in the 

impure case complicates the situation additionally. 

 

In summary, there are differences between the pure and the impure sample, such as the speed of 

dislocation nucleation and/or propagation and the stability of the twin fault. It is however 

difficult to pin down the exact role of the O impurities because there are other differences e.g. 

the different history of the two samples or the different slip plane which impede a direct 

comparison between pure and impure cases. 

4.1.4 Discussion 

The results in section 4.1 show that the difference in the global response to the deformation is 

rather small. No significant changes in the mechanical properties due to the O impurities have 

yet been observed. Especially, the magnitude of change is different from experiments e.g. the 

one reported by Gianola in Ref. 53. Maybe the approach of putting the O atoms into triple 

junctions between GB regions where dislocation activity is seen in the reference sample is not 

powerful enough to influence the dislocation nucleation and mobility in a significant way. 

However test simulations performed on the smaller sample (5 nm grain size) at a ten times 

higher strain rate show that completely random O insertion gives a smaller effect than using a 

distribution based on the knowledge of the dislocation activity in the pure case (see Figure 4.1).  
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The nc samples are the most complex systems studied here. Determining the influence of the O 

impurities in them is difficult. First of all, the effects arising from the impurities have to be 

separated of other sources of differences. Especially the thermal noise has to be filtered to 

obtain a meaningful comparison between pure and impure cases as all the atoms have slightly 

different trajectories in the two cases due to the finite temperature. Instead of separating effects 

for single events, a comparison on a statistical basis could be envisioned. As soon as many 

simulations with varying O content in the GB are available, it is possible to find qualitative 

models which link the mechanical behavior and also dislocation activity with the impurity 

content. Alternatively, simulation of larger samples with many grains could also increase the 

number of observed events to produce statistical trends. However, the production of many or 

larger samples, their simulation and analysis is demanding. 

4.2 Application II – Dislocation propagation 

4.2.1 Motivation 

The computational burden of an nc simulation is very large. Therefore only one distribution of 

impurities has been simulated in the large sample with more than a million Al atoms. A smarter 

simulation geometry where several impurity distributions can be tested should give access to the 

effect of impurities on dislocation pinning, propagation and absorption. For this purpose, a 

sample which contains a grain with one well-defined dislocation is several times tested under 

shear deformation by introducing different O impurity distributions. 

4.2.2 Sample description and simulation details 

The simulation sample (Figure 4.6) was produced by Christian Brandl who isolated a single 

grain with a surrounding buffer of atoms from a large nc simulation by cooling it down to 0 K 

using a MS relaxation. The isolated grain contains a perfectly nucleated dislocation which is 

pinned at both ends at the GB. Some atoms of the buffer around the grain are fixed because of 

the free surface. During the construction of the sample, the local coordinate system was aligned 

with the Burgers vector of the dislocation parallel to the x axis and the slip plane of the 

dislocation as a xy plane (perpendicular to the z axis).  

 

Christian Brandl shear deformed such samples to determine the athermal stress barrier for 

dislocation pinning. The loading of the sample was done in discrete increments of shear strain 

with relaxations in between. The stepwise shear deformation was applied in xz direction using 

affine transformations. Brandl used a fast conjugate gradient scheme for the intermediate 

relaxation. Here, the loading is performed in the same direction. The increments of shear strain 
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are 0.1% until the dislocation unpins and propagates for the first time through the sample. Then, 

the last stable configuration is shear deformed by an increment which is one magnitude smaller 

(0.01%) and the procedure is repeated. The smallest increments of shear deformation, which are 

applied, are 0.001%. For the relaxation, the more time consuming MS relaxations is used, 

because the variable charge method has not yet been implemented into the conjugate gradient 

code. A benefit of the MS method is the physical trajectory of atomic motion which is tractable 

during the energy minimization process.  

 

 

Figure 4.6 Cut through the initial sample produced by Christian Brandl. The free atoms are 

colored according to their local crysallinity class. The yellow atoms are static (and not O atoms) 

during the relaxation. The coordinate system is aligned in the following way: x axis (red) parallel to 

the Burgers vector, z axis (blue) normal to the slip plane and y axis accordingly to form a right 

system. Image produced by Christian Brandl. 

 

Boundary conditions and simulation parameters during each relaxation and among the different 

O distributions remain unchanged. The sample is always simulated with free surfaces and a 

static shell of atoms (yellow atoms in Figure 4.6). The static atoms are used to maintain the 

sample geometry and the external load. The time-step in the MS integration is kept at 1 fs and 

charge update is done in every step. During the molecular static relaxation the global quench 

condition is used which means that the velocities of the atoms are removed as soon as the 

kinetic energy in the system decreases. As interatomic potential both versions described in 

section 3.2 (First potential) and 3.3 (Second potential) are applied. This means, the Al-Al 

interaction is simulated with the spline version of Mishin and Farkas potential 178, which is 

different from Brandl, who used the analytical version of Mishin and Farkas potential 186. 

Therefore, prior to the first deformation a MS run is performed to relax the pure configuration 

xy

z
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because of the different potentials. MS simulations are terminated when the kinetic energy curve 

shows only statistical fluctuations which are of order 1410  eV. 

 

Several impure configurations are produced to investigate the influence of O impurities. They 

will be described in the results part. For each impure sample there is MS relaxation after its 

production, i.e. before it is deformed for the first time. 

4.2.3 Results 

4.2.3.1 Pure 

First potential 

Using the first potentials for the shear deformation of the pure sample the following results are 

obtained: The pure sample (Figure 4.7) can be sheared up to 0.35% additional strain without 

unpinning of the dislocation.  

 

a 

 

b

 

c 

 

d

 

Figure 4.7 Cut through the pure sample in the initial (a) and (b) and in the final (c) and (d) 

configuration. (a) and (c) show the local crystallinity class coloring and (b) and (d) show the 

hydrostatic atomic pressure. Colors are between -1 GPa (tensile) in blue up to +1 GPa 

(compressive) in red according to Figure 3.6b. The dislocation is pinned at two pinning points: the 

upper pins the edge segment and the lower the screw segment. 
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During the deformation in discrete increments the dislocation curvature is increased with 

increasing strain. Up to strain of 0.35%, the shear stress is linearly increasing to a value of 232 

MPa (Figure 4.13). If the shear strain is increased further, the dislocation unpins simultaneously 

at both pinning points (edge and screw side), propagates through the entire sample and is 

absorbed in the neighboring GB network. After the propagation, only a small left over of the 

dislocation is visible in one corner of the grain (see Figure 4.7c). Visual inspection of a series of 

configurations outputted during the relaxation shows no more obvious pinning points during the 

propagation with the exception of the final structure.  

 

The evolution of the kinetic energy during the relaxation (Figure 4.8) reveals that atoms start to 

be mobile after unpinning which can be seen in the increase of the kinetic energy. At a certain 

point the kinetic energy drops to zero. At this point the global quench condition is fulfilled. The 

system is at a stationary point and has to “climb up hill” in terms of potential energy if the 

displacement direction of the atoms is not changed. The drops in kinetic energy are also 

noticeable in the shear-stress evolution curve in the form of kinks. The final shear stress after 

the relaxation is found to be 122 MPa. The effect of the “global quenching” is discussed within 

the general discussion on the method chapter 5 (see section 5.1.1.2). 

 

 

Figure 4.8 Evolution of the kinetic energy (red, dashed) and the shear-stress (black, solid) during 

the molecular static relaxation. 

 

Second potential 

The same things are observed when the second potential is used because the Al-Al interaction 

does not change between the two potentials (for both potentials Mishin Farkas Al potential 178 is 

used). The dislocation is pinned up to 0.35% strain. Up to this point it bows out more and more 

with increasing strain. Finally, it unpins at 0.351% strain. It is observed that the dislocation 

unpins at both pinning sites (edge and screw component) simultaneously. During the visible 
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inspection no change in the propagation behavior, e.g. a drag, can be seen. In the end the major 

part of the dislocation is absorbed in the GB as Figure 4.7 has already shown. The propagation 

behavior of the dislocation in terms of kinetic energy and shear stress evolution is identical with 

the one displayed in Figure 4.8. 

4.2.3.2 Oxygen substitutions in the grain boundary 

First potential 

In four cases a few Al atoms are substituted by O atoms. The different structures are shown in 

Figure 4.9. The O substitutions are always done in or around the slip plane of the dislocation. 

The O impurities are substituted in the pure sample which has been deformed to 0.3% additional 

strain. After this all the samples are relaxed at the given strain using MS and then shear strained 

by another 0.1%. 

 

During the relaxation at 0.1% additional strain the dislocation unpinned and propagated through 

the entire grain. In the visible inspection, the pure configuration has not shown much interaction 

between the propagating dislocation and neighboring GBs. The same is true for all cases with 

substitutions in GBs. Only in one case (GB-S3), it is observed that the trailing partial of the 

edge segment of the dislocation is slightly dragged by the impurities (Figure 4.11). Still, the 

dislocation overcomes the clusters of O atoms with ease in any of these cases. To quantify the 

effect of the drag at O impurities the evolution of the shear stress during the relaxation is 

compared to the pure case (Figure 4.10). 

 

In case GB-S1, the shear stress drop curve diverges from other impure and pure cases. The 

deviation from the other curves indicates that the quench condition is fulfilled earlier than in the 

other cases. This can mean that a pinning at an obstacle such as a cluster of O in the GBs is 

present. However it is not possible to find visual evidences which prove this speculation as too 

few configurations are outputted during the run to resolve this possible pinning event.  
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Figure 4.9 The four cases with substational O impurities in the GB. Left hand column shows the 

local crystallinity class and the right hand picture shows the pressure field according to Figure 4.7. 

Number of O impurities is 10 in case “GB-S1” (a+b), 7 in case “GB-S2” (c+d), 17 in case “GB-S3” 

(e+f) and 6 in case “GB-S4” (g+h). The yellow circles indicated the position of the O substitutions.  
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Figure 4.10 Shear stress evolution during propagation of the dislocation in the pure and the four 

impure cases described in Figure 4.9. The curves are shifted along the step axis to have the onset of 

the propagation at the origin. The onset of the drop in shear stress is shown until a plateau is 

reached again. This corresponds with the number of steps required of the propagation of the 

dislocation.  

 

 

Figure 4.11 Propagation in case GB-S3: the trailing partial of the edge segment of the dislocation is 

dragged by an O cluster in the grain boundary (dashed circle). The screw segment entirely passed 

the cluster near its original pinning point (solid circle). 
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4.2.3.3 Interstitial oxygen in the grain boundary (edge part) 

First potential 

To emphasize the effect of impurities, a larger number of O atoms are tested as interstitials in 

the GB. For this purpose, 28 O atoms are added near the pinning site at the edge segment of the 

dislocation. The O atoms are inserted close to the dislocation and ahead of it so that the 

propagating dislocation has to overcome all these atoms to reach the GB in which it is absorbed. 

The O atoms are not only added to the slip plane but also few atomic planes above and below of 

it predominantly around the existing ledge structure in the GB. 

 

 

Figure 4.12 The initial sample “GB-Ie1’ with the 28 O impurities as additional atoms in the GB. 

 

For the deformation of the impure sample it is remarkable, that the dislocation is still pinned at a 

shear strain of 0.4%, where the dislocation has propagated in all structures investigated, so far. 

After a few more runs it turns out that the dislocation is pinned up to a shear strain of 0.55%. 

The critical shear stress needed to unpin the dislocation increases from 232 MPa to 244 MPa 

(see Figure 4.13). 

 

 

Figure 4.13 Shear strain-stress curves for the pure case (black) and the case of 28 O impurities 

additionally inserted to the GB (red). 
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Second potential 

Different O arrangements in the GB are tested using also the second potential. Three clusters of 

dilutely distributed O atoms are inserted near the edge segment of the dislocation. In all cases 

the O impurities are added in the undeformed pure sample. The configurations are presented in 

Figure 4.14. 

 

 

Figure 4.14 Initial structures with a dilute O distribution as interstial atoms in the GB at the edge 

segment of the dislocation. The number O atoms is 28 in case “GB-Ie1” (a), 11 in case “GB-Ie2” (b), 

15 in case “GB-Ie3”. (d) shows a magnification of the dislocation at the impurities in case “GB-Ie1” 

without displaying fcc atoms. After the relaxation, the dislocation has a step structure (yellow 

arrow) at the impurities. The local crystallinity color-code is used. 

 

The structure in Figure 4.14a (GB-Ie1) is the same as the one in Figure 4.12. The pressure field 

due to the O impurities changes to more compression if the potential is changed from the first to 

the second (see Figure 4.15). The highly compressive pressure in case of the second potential 

could be a reason why the dislocation has a step structure (Figure 4.14d) at the impurities after 

the first relaxation without any deformation of the sample. This step structure consists of a few 

atoms at the GB which are one atomic layer higher than the initial slip-plane. The mechanism 
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which creates this step is unclear. The dislocation propagates in the same way as in the previous 

cases however the steps structure at GB remains and propagates with the dislocation.  

 

The O atoms simulated in GB-Ie2 (Figure 4.14b) are a subset of the O atoms simulated in  

GB-Ie1. 

 

 

Figure 4.15 Pressure field of “GB-Ie1” for the first (a) and the second (b) potential. 

 

All the three samples are stepwise deformed according to the procedure described in section 

4.2.2 to obtain a critical value for the strength of the pinning points under the presence of 

impurities in the sample. Table 4.1 lists the values of critical shear strains and stresses. The 

strains are those of the last stable structures before the dislocation unpins with further strain 

increment.  

 

Case # O imurities Critical shear strain Critical shear stress 

Pure 0 0.350% 232 MPa 

GB-Ie1 28 0.012% 220 MPa 

GB-Ie2 11 <0.2% 235 MPa 

GB-Ie3 15 0.340% 232 MPa 

Table 4.1 Samples according to Figure 4.14: The number of O impurities and the critical shear 

strains and stresses for which the dislocation is still pinned are shown. 

 

The dislocation in GB-Ie1 unpins after little additional shearing using the second potential. This 

fact can be rationalized by the step structure of the dislocation near the impurities. Also in case 

GB-Ie2 where the impurity atoms are a subset of those in GB-Ie1 the dislocation unpins at a 

much smaller strain as in the pure case, i.e. less than 0.2%. If the O impurities are placed a bit 
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further away (GB-Ie3) the critical shear strain increases to 0.34%. Although this is a higher 

value than in cases GB-Ie1 and GB-Ie2 it is not as high as the one of the pure case (0.35%). In 

summary, all the three cases show less dislocation pinning than the pure case, using the second 

potential. This is different from the first potential where the case GB-Ie1 shows significantly 

more pinning than the pure case.  

4.2.3.4 Interstitial oxygen in the grain boundary (screw part) 

Second potential 

In this section, O interstitials are tested in the GB near the other segment of the dislocation, 

which is of predominantly screw character (Figure 4.16).  

 

 

Figure 4.16 Initial structures with a dilute O distribution as interstitial atoms in the GB at the 

screw segment of the dislocation. The number O atoms is 4 in case “GB-Is1” (a), 6 in case “GB-Is2” 

(b), 15 in case “GB-Is3”. The local crystallinity color-code is used. 

 

Shear deformation analogous to previous cases yields the critical shear strains and stresses given 

in Table 4.2. 
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Case # O imurities Critical shear strain Critical shear stress 

Pure 0 0.350% 232 MPa 

GB-Is1 4 0.340% 231 MPa 

GB-Is2 6 0.362% 232 MPa 

GB-Is3 15 0.363% 231 MPa 

Table 4.2 Samples according to Figure 4.16: The number of O impurities and the critical shear 

strains and stresses for which the dislocation is still pinned are shown. 

 

The critical shear strain is again smaller (even smaller than the pure case) if the impurities are 

inserted too close to the dislocation. In case of a bigger distance to the existing pinning point the 

critical shear strains are increased. The corresponding critical shear stresses are 231 MPa for 

GB-Is1 and 232 MPa for GB-Is2 which is about the same as in the pure case. Obviously, those 

values are not significantly changed by the presence of the impurities and depend mainly on the 

critical shear strain which can be achieved before the dislocation unpins. 

 

The propagation behavior of the dislocation, especially the drag effect due to O impurities is 

analyzed using the visual inspection of the series of configurations outputted during the run (see 

e.g. Figure 4.17). A drag can be seen in case GB-Is2 where the edge segment of the dislocation 

unpins of the ledge structure in the GB and the screw segment remains pinned for about 3000 

MS steps longer at the O impurities (Figure 4.17). None of the cases shows cross-slip although 

the impurities interact with the screw segment of the dislocation. 

 

 

 

Figure 4.17 Case “GB-Is2” at 0.363% strain. The dislocation unpins at the edge part and remains 

pinned at the O impurities (yellow circle. (a) Local crystallinity class and (b) pressure field. 

 

a b
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4.2.3.5 Interstitial oxygen in the grain boundary (absorption part) 

Second potential 

To check possible changes in the absorption behavior of the dislocation due to the O impurities, 

clusters of dilute interstitials are added to the GB at the absorption side of the sample according 

to Figure 4.18. For both cases a critical shear strain of 0.354% and a critical shear stress of 232 

MPa are obtained which means that the dislocation is pinned longer at the existing pinning 

points than in the pure case. 

 

 

Figure 4.18 Initial structures with a dilute O distribution as interstial atoms in the GB at the part 

where the dislocation is absorbed. The number O atoms is 10 in case “GB-Ia1” (a), 14 in case “GB-

Ia2” (b). The local crystallinity color-code is used. 

 

 

Figure 4.19 The drop in shear stress is followed for the pure and the three impure cases GB-Ia1, 

GB-Ia2 and GB-Is2. The curves are shifted along the step axis to have the onset of the propagation 

at the origin. More or less the onset of the drops is shown until a plateau is reached again. This 

corresponds with the number of steps required for the propagation of the dislocation. 
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The propagation and absorption behavior for both cases is visually found to be comparable to 

the pure case. This is also suggested by Figure 4.19 which shows the shear stress evolution 

during the propagation. However different levels of shear stress are obtained for the final 

structures. The difference is smaller than 5 MPa and is also found for other impure cases such as 

GB-Is2. 

4.2.3.6 Al2O3 precipitates in the grain boundary 

Second potential 

Here, corundum precipitates in GBs are study in terms of pinning strength and dislocation 

propagation behavior. Six different samples are tested (see Figure 4.20). Al2O3 precipitates of 

diameter three angstroms are introduced by cutting out a sphere of the same diameter in the pure 

sample and inserting a commensurate spherical cutout of a larger corundum sample. In one case 

a larger precipitate of five angstroms diameter is introduced in the same way. 

 

The shear deformation of the samples analogous to the aforementioned procedure yields the 

critical shear strains and stresses presented in Table 4.3. 

 

Case # O impurities Critical shear strain Critical shear stress 

Pure 0 0.350% 232 MPa 

GB-Ce1 7 0.316% 228 MPa 

GB-Ce2 7 0.340% 231 MPa 

GB-Cs1 7 0.266% 226 MPa 

GB-Cs2 7 0.352% 231 MPa 

GB-Cs3 36 0.323% 228 MPa 

GB-Cb1 14 0.351% 231 MPa 

Table 4.3 Samples according to Figure 4.20: The number of O impurities and the critical shear 

strains and stresses for which the dislocation is still pinned are shown. 

 

It is observed that the critical shear strains are reduced if the precipitates are too close of the 

existing pinning points. E.g. cases GB-Ce1, GB-Cs1 and GB-Cs3 are lower in critical shear 

strain than the pure case. Moving the impurities further away leads to more pinning. Also, the 

trend that the pinning decreases more, if impurities are put into the GB at the edge segment, is 

maintained. In case of GB-Cs2 a slightly higher pinning than in the pure case is obtained. The 

larger corundum sphere (GB-Cs3) improves the small pinning strength of GB-Cs1 a bit. 

Obviously, there is more compressive stress due to the larger precipitate (see Figure 4.21).  
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Figure 4.20 Structures with corundum preciptates. The number of O atoms is 7 in cases “GB-Ce1” 

(a), “GB-Ce2” (b), “GB-Cs1” (c) and “GB-Cs2” (d). In case of the large precipitate “GB-Cs3” (e) 36 

O atoms are present and in the case of two precipitates (one at each side of the dislocation) “GB-

Cb1” (f) twice 7 O atoms are present. The local crystallinity coloring is used. 

 

Figure 4.21 Pressure field of the corundum precipitates of cases GB-Cs1 (a) and GB-Cs3 (b). 

a b
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The shear stress drop curves (Figure 4.22) reveal that there are changes in the propagation 

behavior. The difference is most pronounced in GB-Ce2. There, two kinks in the shear stress 

drop curve are visible where there is only one for the other cases. Visual inspections of samples 

reveal that the new kink is the first one and it is produced by an interaction between the 

dislocation and the corundum precipitate. This interaction event happens at a lower stress (i.e. 

after more steps) which means that the mobility of the dislocation is reduced. After the shear 

stress drops further a second kink is visible, which is the same as the one in the pure case. This 

kink emerges from the interaction with the GB.  

 

 

Figure 4.22 The drop in shear stress is followed for the pure and the three impure cases GB-

Cb1,GB-Ce2 and GB-Cs2. The curves are shifted along the step axis to have the onset of the 

propagation at the origin. More or less the onset of the drops is shown until a plateau is reached 

again. This corresponds with the number of steps required of the propagation of the dislocation. 

 

The short pinning at the corundum precipitate is also visible in the series of configuration 

outputted during the run. In the impure case the dislocation is pinned at the corundum 

precipitate and bows with a large curvature whereas in the pure case, it continues the 

propagation as it is visible in the Figure 4.23 for the case GB-Ce2.  

 

In all the samples with corundum spheres the absorption of the dislocation is slowed down. This 

can be seen from visual inspections of carefully selected configurations outputted during the run 

and from the shear-stress evolution during the run shown in Figure 4.22. The most pronounced 

difference is observed for GB-Cs2 (Figure 4.24). 
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Figure 4.23 Dislocation pinned at a corundum cluster in the GB. The image is taken from GB-Ce2 

The dashed yellow line represents the position of the leading and the trailing partials in the pure 

case after the same amount of relaxation steps. 

 

 

Figure 4.24 Difference in the absorption behavior of the dislocation. The sample “GB-Cs2” is 

displayed in local crystallinity coloring. The yellow dashed line indicates the position of the 

dislocation in the pure case at corresponding relaxation steps. (a) shows an intermediate step and 

(b) the final configurations where in the pure case only the trailing partial dislocation is visible. 

4.2.3.7 Oxygen impurities in the grain 

Second potential 

Different samples with either a dilute distribution of O impurities, with a cluster of dilute 

impurities or with one corundum precipitate modeled as a sphere of 3.7 angstroms diameter 

placed in the grain interior are analyzed in this section. All the samples are first relaxed, than 

once deformed to 0.35% of shear strain and then relaxed again. During the second relaxation the 

dislocation unpins from the existing pinning points in all the samples. These are ideal conditions 

to compare the propagation of the dislocation in different samples.  
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In IG-I1 where one single O atom is placed in the grain, there is a visually noticeable effect: The 

dislocation bows around the foreign atom as Figure 4.27a shows. After further relaxation the 

dislocation overcomes the atom. Also in the shear stress drop curve (Figure 4.26) the drag effect 

due to this single O interstitial is visible. The broadening of the curve should be understood as 

evidence that the shear stress drops in more MS steps (i.e.” slower”) than in the pure case. 

 

The change in shear stress drop curves (Figure 4.26) is a lot bigger in IG-I2 and IG-I3 as the 

larger numbers of impurities influence the dislocation propagation more. In IG-I2, the 

dislocation is trapped by impurities soon after unpinning from the existing pinning points 

(Figure 4.27c). The second kink in the shear stress drop curve (Figure 4.26: green curve) 

represents an interaction event with the neighboring GB which is also present in the pure case.  

 

In IG-I3 the impurities are placed at a future position of the leading partial dislocation during 

propagation in the pure case. Consequently, the propagating dislocation should hit all the 

obstacles more or less simultaneously. The simulation shows that the dislocation propagates 

towards the obstacles and passes them rather easily. The main exception is the second group of 

non fcc atoms on which the yellow arrow in Figure 4.25c points. In fact, this is not a single O 

impurity but two interstitials rather closely placed. The effect on the dislocation is that it 

changes its slip plane at this obstacle. So, this slightly bigger defect provokes a cross-slip of the 

dislocation (Figure 4.27d). Cross-slip is also observed at the screw part of the dislocation 

(Figure 4.27d: yellow circle). The reason for this cross-slip is not known. Because of the cross-

slip the mobility of the dislocation changes what can also be seen in the shear stress drop curve 

(Figure 4.26) for this case. 
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Figure 4.25 Initial configurations to study the influence of O in the grain interior on dislocation 

propagation. (a) shows a single O interstitial (IG-I1), (b) 14 homogenously distributed O atoms (IG-

I2), (c) 14 O along the future position of the dislocation line after it starts to propagate (IG-I3), (d) 5 

O interstitials as a cluster (IG-C1), (e) 14 O interstitials as a cluster (IG-C2), (f) a precipitate of 

corundum containing 14 O atoms (diameter 3.7 angstroms) (IG-C3). The yellow arrow in (c) 

indicates a group of two O atoms.  
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Figure 4.26 The drop in shear stress is followed for the pure and the three impure cases IG-I1, IG-

I2 and IG-I3. The curves are shifted along the step axis to have the onset of the propagation at the 

origin. More or less the onset of the drops is shown until a plateau is reached again. This 

corresponds with the number of steps required of the propagation of the dislocation. 

 

 

Figure 4.27 Bending of the dislocation at different obstacles. (a) one O impurity (i.e. case (a) in 

Figure 4.25), (b) 14 O impurities as a precipitate (i.e. case (e) in Figure 4.25), (c) a homogeneous 

distribution of 14 O atoms (i.e. case (b) in Figure 4.25) and (d) 14 O atoms along the dislocation (i.e. 

case (c) in Figure 4.25). In case (d) cross-slip is visible (yellow circles). 
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As in the case of two O impurities very close to each-other cross-slip has been observed in IG-

I3, the number of O arranged as clusters is increased further. Obstacles containing 5 interstitial 

O atoms (IG-C1 shown in Figure 4.25d), 14 interstitial O atoms (IG-C2 shown in Figure 4.25e) 

and finally 14 O atoms in a corundum precipitate (IG-C3 shown in Figure 4.25f) are simulated. 

The visual change in the propagation behavior is large: The propagating dislocation bows 

around all the clusters and the precipitate (see e.g. Figure 4.27b). Cross-slip happens in all the 

cases. The change of slip plane always starts near the obstacle. The final structures (Figure 4.28) 

are completely different of the one obtained in the pure case which results in difference for the 

shear stress of the relaxed structures which Figure 4.29 shows. In Figure 4.29, it is obvious that 

the shear stress drop behavior is significantly changed: In all the cases with clusters or 

precipitates the curve is broadened a lot which indicates a significant drag effect due to the 

obstacles in grain. Remarkable is the fact, that the dislocation does not change the slip plane in 

case of one atom (IG-I1), it changes by two atomic layers in case of the cluster with 5 atoms 

(IG-C1) and the corundum precipitate (IG-C3) and it changes by four atomic layers for the 

largest cluster consisting of 14 dilute O atoms (IG-C2). 

 

 

Figure 4.28 Final structures of the samples described in Figure 4.25: (a) IG-I1, (b) IG-C1, (c) IG-C2 

and (d) IG-C3. The neighboring GB is illustrated as grey atoms. For the dislocation and 

precipitates the local crystallinity coloring is used. Fcc atoms are not displayed to emphasis the 

cross-slipped structure of the dislocation. 



 - 95 - 

 

Figure 4.29 The drop in shear stress is followed for the pure and the four impure cases IG-I1, IG-

C1, IG-C2 and IG-C3. The curves are shifted along the step axis to have the onset of the 

propagation at the origin. More or less the onset of the drops is shown until a plateau is reached 

again. This corresponds with the number of steps required of the propagation of the dislocation. 

 

4.2.4 Discussion 

Using the first potential for the simulation of impurities in the scenario of dislocation 

propagation shows a small effect if the impurities are present as substitutions in the GB. 

However a remarkable increase in strength of the existing pinning point due to the insertion of 

28 interstitials is obtained in case GB-Ie1. The same case simulated with the second potential 

shows reduced pinning. A possible reason can be the step structure of the dislocation at the 

impurities which emerges during the relaxation probably due to the very high stress caused by 

the impurities.  

 

In all the simulations using the second potential the pinning is significantly reduced if the 

impurities are close or too close to the existing pinning points (see e.g. GB-Ie1, GB-Is1, GB-

Ce1 and GB-Cs1). The reason for this decrease has not yet been entirely understood. Changes in 

the bonding nature due to impurities which lead to instabilities of the structure could be a 

possible reason. An increase in the pinning strength, i.e. a higher critical shear strain, is mainly 

observed if impurities are present at the screw side of the dislocation with sufficiently large 

distance from the existing pinning point or even at the absorption side of the sample (GB-Ia1 

and GB-Ia2). The pinning strength of the pure sample could not be reproduced in any of the 

cases, where O impurities are present on the edge side only (GB-Ie1, GB-Ie2, GB-Ie3, GB-Ce1 

and GB-Ce2) using the second potential. Although explanations for the increase or decrease of 

the critical shear stress due to the O impurities in GBs are missing, it is clear that the changes 
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with respect to the pure case are small for the second potentials. A possible explanation can be 

that the inherent stress fluctuations in GBs are rather large. For the sample GB-Is1 a detailed 

analysis of the stress distribution around the defect and in the rest of the slip plane is executed. 

It is observed that stresses are not significantly changed due to the O impurities. The 4 O atoms 

in the GB increase the pressure locally to a peak value of 3.78 GPa on one of the atoms. 

However, there are several atoms in the GB with pressures over 2 GPa and more atoms which 

are under high tension, i.e. below than -3 GPa (see Figure 4.30). 

 

 

Figure 4.30 Atoms under high or low pressure: Light red spheres indicate atoms with pressure 

above 2 GPa and light blue indicates atoms with pressure below 3 GPa. The impurities are 

indicated by the yellow arrow. 

 

As the propagating dislocation is athermally pushed through the sample, the sensitivity to the 

neighboring GB structure is limited. Therefore bigger effects of the impurities can be expected 

in finite temperature simulations. Still in a few cases a difference between pure and impure 

cases is present in the shear stress drop curves, e.g for GB-Ce2 (Figure 4.22), GB-S1 (Figure 

4.10). 

 

A bigger effect is observed for impurities in the grain interior. Here the stress concentration in 

the otherwise homogenous crystal causes a strong interaction with the propagating dislocation. 

The interaction between the impurity clusters and the dislocations happens without shearing of 

the cluster or the deposition of a dislocation loop. So, the dislocation overcomes the obstacles 

with a more complicated mechanism which probably is observed in form of the present cross-
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slip. In all cases the evolution of the shear-stress during the propagation is significantly different 

from the pure case (Figure 4.26 and Figure 4.29). 

 

To summarize: The dislocation propagation under the presence of O has been investigated. The 

study shows some interaction with O impurities. In all cases where there is a change in the 

dislocation propagation behavior due to the impurities, the dislocation is dragged. This 

corresponds with the literature knowledge, from which it is known that an additional stress is 

required to move a dislocations in a field of solute atoms or to make a dislocation overcome an 

obstacles consisting of foreign atoms such as dispersions, clusters or precipitates. The drag 

effect is more pronounced for O clusters in the middle of the grain. Here the dislocation bows 

around the obstacles and changes in some cases the slip plane to overcome them. However, 

using the given simulations it is not justified to estimate the quantitative change of mechanical 

properties due to the impurities. Consequently, the direct comparison with the change in 

mechanical properties observed by Gianola et al. 53 is not yet possible. However the knowledge 

on the interaction of dislocations with impurities in the grain interior point out that it is worth to 

test a more homogenous impurity distribution with foreign atoms in both grains and GBs in a 

fully three-dimensional nc simulations in a similar approach as it is done in section 4.1. This 

approach corresponds also more to the observations by Gianola et al. who has observed O atoms 

in GBs and grains of nc thin films using various experimental techniques 60, 187. 

4.3 Application III - Coupled grain boundary 

migration 

4.3.1 Motivation 

As it is shown in the introduction, coupled grain-boundary migration is a relevant system to 

study the mobility of GBs in nc metals. Here the effect of dilute impurities on the mobility of 

GBs is investigated. The key idea is to investigate the effect of different O atom distributions on 

two Al bicrystals with symmetric tilt GBs. It is expected that the impurities have some impact 

on the migrating boundary such as pinning or at least a drag effect.  

 

Beyond the link to real GB motion or stress-driven grain growth, coupled GB migration is an 

ideal application to test the local chemical potential approach described in section 3.1 and the 

potentials described in sections 3.2 and 3.3  
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4.3.2 Sample description and simulation details 

Prof. Yuri Mishin and his coworker Dr. Vladimir Ivanov, both from George Mason University 

in Fairfax VA, USA started recently the investigation of coupled GB migration in Al samples. 

Collaboration with them has given access to pure Al samples, but also to details about 

simulation parameters and the knowledge on the pure samples in the form of preliminary 

results. Mishin and Ivanov prepared the samples by merging two symmetrically rotated crystals 

to a flat (CSL) GB 31. Three different Al bicrystals have been delivered by them and two 

samples are used for the investigation of the effect of impurities. All the bicrystals contain 

symmetric tilt grain-boundaries along the [112] axis. One bicrystal has a  75175  [112] GB 

with an angle of misorientation is 23.07º (Figure 4.31). More simulations are using this sample 

geometry which consists in the pure case of 24000 Al atoms. The reference coordinate system is 

set as: y-axis along the [-751] normal to the GB, the x-axis is along [45-4] parallel to the GB 

plane and z-axis is parallel to the tilt axis.  

 

 

Figure 4.31 Bicrystalline simulation sample with ]112)[751(75   GB. The standard color-code 

for local crystallinity is used. The static atoms are colored in light red and a marker line is 

displayed as yellow atoms. 

 

The other Al sample which is tested, has a  42121  [112] GB. The angle of misorientation 

between the crystals is 44.42º. The coordinate system is chosen analogous to the sample 

described above. The z-axis corresponds to the tilt axis, y-axis is perpendicular to the GB plane 

[-421] and x-axis [13-2], respectively. The sample consists of 24192 Al atoms.  
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Both simulation samples, delivered by Mishin and Ivanov, are small enough to be simulated on 

the serial version of the MD code. (So, the parallelization of the methodology in section 3.1 is 

developed simultaneously to the simulation of the coupled GB migration.) 

 

Periodic boundary conditions are applied parallel to the GB whereas perpendicularly to the GB 

no periodicity is present. At both free surfaces (on the top and at the bottom) there is a layer of 

static atoms of a thickness larger than twice the EAM cutoff. The number of those static atoms 

is 4000 for each of the two layers in the 75  sample and 3392 in each layer of the 21  

sample. This refers to the fixed boundary condition in 31. 

 

Simulations are mostly performed at low temperature (MD at temperature of 100 K) or without 

temperature (MS with global quenching) to uncover the effects of the impurities without or with 

only minor effects of thermal noise. The MD time-step is 2 fs. This holds for MD as well as the 

MS. To impose the shear deformation to the sample, the static atoms of one of the layers are 

moved in x-direction with a constant velocity of 1 m/s. This means atoms are collectively 

moved in x direction in every time-step by a displacement of 0.00002 angstroms. 

 

To follow the deformation behavior in terms of GB coupling and/or sliding a slice of atoms 

normal to the shear direction is tagged with an extra label. A visual representation of these 

atoms can be seen in Figure 4.31: the yellow plane of atoms. This plane is assumed to show the 

characteristic behavior for coupled GB motion or GB sliding according Figure 1.3c and d.  

 

For the analysis of the samples the vertical position of the GB plus the global stress tensor of the 

system are outputted in every time-step. Configurations, containing atomic positions, energies, 

atomic coordination and the local crystallinity data are outputted every 250 time-steps. For these 

configurations the local atomic shear stress is recomputed if required. 

4.3.3 Results on the 75  sample 

4.3.3.1 Pure simulations 

The pure sample is simulated first to compare the result of the MD code used here, with the 

results produced by Mishin and Ivanov. Close inspection of the atomic structure of this GB 

sample reveals that the GB (and its subsequent motion) may be understood in terms of two 

fundamental structural units: triangles A and C that exist in the perfect fcc lattice and a kite-

shaped unit referred to as B, located at the GB plane which accommodates the misorientation 

associated with the interface. The legs of the triangles A and C identified in Figure 4.32 

represent the <110> and <111> orientated conventional cell of the FCC lattices. Detailed spatial 
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and temporal analysis of a GB migration step reveals that such a structural unit (A) transforms 

into the kite-shaped structural unit B displayed in Figure 4.32. Upon further GB migration such 

structural units return to their [110]/(111) orientated conventional cell (C), which due to the 

misorientation is mirror symmetric to A. Thus the global GB migration step may be seen as the 

collective downward propagation of the [110] GB dislocations on their (111) slip planes with 

accommodation via a lateral translation of the upper grain and resulting lowering the global xy 

shear stress. This atomistic process is the fundamental GB migration event associated with the 

stick-slip process discussed in refs. 29, 30. The MD code reproduces the atomic processes 

observed by Mishin and Ivanov.  

 

 

Figure 4.32 Close-up view of the GB, where again the local crystallinity coloring is used. A, B and C 

mark structural units.  

 

The stick slip process observed by Mishin and co-workers shows an increase in shear stress 

until a critical stress value is reached at which the GB migration step begins. Subsequently the 

shear stress is relieved rapidly and even reaches negative values. During this relief of shear 

stress the actual migration event takes place, where the atoms rearrange. Figure 4.33 displays 

the resulting shear stress versus simulation time‡ and the measured GB position versus 

simulation time of the 0 K MS simulation which shows the same behavior as observed by 

Mishin. The GB motion results in an immediate drop of the shear stress to an - in this case - 

negative value. Further static atom displacement results in a repeated linear increase in stress 

until a critical value at which GB motion again occurs. The deformed sample is shown in Figure 

4.34. It is obvious that the marker line shows the same shape as Figure 1.3d which obviously 

indicates nearly perfect coupled GB migration. 

                                                      
‡ MS has no concept of time: Simulation time refers here to the number of MS steps multiplied with the 
MS steps size of 2 fs. Like this results are comparable to MD simulations at finite temperature in terms of 
process times. 
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Figure 4.33 Shear stress-time (black) and GB displacement-time (red) curves of the pure sample 

simulated at 0 K. 

 

 

Figure 4.34 The deformed pure sample at 0 K. The yellow marker line remains continuous which is 

a strong indication for coupled GB migration according to Figure 1.3d. 

 

Figure 4.35 shows the same quantities for the 100 K MD simulations and a similar behavior is 

evident. The rapid fluctuations of the calculated instantaneous shear stress are due to thermal 

vibrations. Importantly, the mean maximum shear stress at 100 K is reduced by approximately 

25 MPa indicating a thermally activated process is at hand that in principle may be 

characterized by a migration free energy and a corresponding activation volume. Inspection of 

the calculated GB position also reveals fluctuations arising from the thermal displacements of 

the atoms about their mean position. In both the 0 K and 100 K simulations, the resulting 

downwards velocity of the GB is determined from the average slope of the GB position-time 
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curve. The theoretical prediction of the ratio between the shear deformation velocity and this 

GB migration velocity is given by 408.0110   for a misorientation of 23.07º. In both 

simulations a value approximately 0.406 is obtained which indicates that the observed motion is 

indeed coupled GB migration as defined by Refs. 29, 30. This is the same behavior as it has been 

observed by Mishin and Ivanov.  

 

 

Figure 4.35 Shear stress-time (black) and GB displacement-time (red) curves of the pure sample at 

100 K.  

 

Both EAM potentials described in chapter 3 model the Al-Al interactions using Mishin and 

Farkas Al potential 178. For this reason, the results in the pure case are the same for the first and 

the second potential. 

4.3.3.2 Homogenous oxygen distribution without temperature 

First potential 

To monitor the influence of O impurities on the coupled GB migration phenomenon, O atoms 

are substitutionally inserted into the Al bicrystal described in section 4.3.3.1. Three samples are 

produced containing one, four and sixteen O atoms. The substitutions are done in the following 

way: nine atomic planes below the initial coincidence plane of the GB a regular grid of four 

times four atoms is substituted to obtain the sixteen O sample (Figure 4.36). From these sixteen 

O atoms the four and one O atom samples are constructed. In Figure 4.36b, the O chosen for the 

four O sample are indicated by the red arrows, whereas for the one O sample, the lower left O 

atom is selected. Due to transverse periodicity the regular planar arrangements of O impurities 

with corresponding surface densities of 215 /m104.4  , 216 /m1076.1   and 216 /m1004.7   is 

therefore considered. 
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Figure 4.36 (a) Position of the 16 substitutional O atoms (yellow) in the sample relative to the GB. 

(b) Planar arrangement of the substitutional O atoms. In both parts, the red arrows mark the 

position of the O atoms in the four O atom configuration. In the one O atom configuration only the 

O atom in the lower left corner of (b) was used.  

 

Figure 4.37 displays the resulting shear stress-time for a 0 K simulation of the one O 

configuration. A similar stick-slip behavior is evident, although as the GB approaches the single 

O atom via coupled GB migration, the critical shear stress needed to activate the migration 

mechanism first decreases and then increases, reaching a maximum value when the GB migrates 

away from the plane containing the O atom.  

 

Figure 4.37 demonstrates that the presence of the O atom affects the critical shear stress needed 

to induce a coupled GB migration event. This influence has a spatial dependence in terms of the 

distance between the GB plane and the O atoms. For the 0 K simulations, as the GB plane 

approaches the O atom it initially becomes easier to induce the motion – the critical shear stress 

decreases. At a distance of approximately 7 angstroms, the critical shear stress then begins to 

rise. When the GB is close to the O atom the critical shear stress rapidly increases to 90MPa, 

reaching this maximum. Then the GB plane coincides with the O atom. After that there is a 

decrease in the next migration event followed by a gradual return to the critical shear stress 

values that may be associated with the pure Al coupled GB motion seen in Figure 4.33.  
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Figure 4.37 Shear stress–time (black) and GB displacement–time (red) curves of the one O sample 

at 0 K. The origin of the “GB displacement” axis is chosen to be at level of the impurities. 

 

 

Figure 4.38 Difference in atomic xy shear stress (GPa) between the one O sample and pure sample 

at the shear stress peaks indicated in Figure 4.37.  

 

To gain an understanding of how the presence of the O atom influences the critical shear stress 

needed to induce a coupled GB migration event, the local atomic stress tensor is investigated for 

the 0 K one O simulations. From Figure 3.6 it can be seen that the presence of the substitutional 

O defect results in a cloud of surrounding charged Al atoms experiencing a strong stress field, in 

particular a xy shear stress that has strong directional dependence. Figure 4.38a-f displays such 

local stresses due to the O as the GB approaches and passes the O at a number of configurations 

which are always at the critical shear stresses for which migration occurs. In Figure 4.38, the 

displayed stresses are determined from the local stresses of the sample in which the local xy 

shear field from the bicrystal sample containing no O atoms has been subtracted. The stress 
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signature of the critical GB configuration is therefore entirely removed and what is seen is the 

residual stress field due to the O atom. Figure 4.38 shows how this residual shear stress field 

changes as the migrating GB approaches and passes the O atom – a complex series of local 

stress transformations is evident. Importantly, the residual field is clearly localized around the 

position of the O atoms and is maintained as the GB migrates by. A clearer picture can be 

obtained by partially summing these residual stresses. Table 4.4 displays the global shear stress 

and three such partial shear stresses in which atoms having an xy shear stress magnitude greater 

than a given stress threshold are summed.  

 

Configuration Partial Residual Shear Stress (GPa)  

 0i
xy (Global) 01.0i

xy  05.0i
xy  1.0i

xy  

A 0.001 0.007 0.005 0.013 

B 0.029 0.029 0.060 0.087 

C -0.024 -0.010 -0.058 -0.094 

D -0.008 -0.011 -0.013 -0.019 

E -0.015 -0.016 -0.055 -0.082 

F -0.002 -0.006 -0.009 -0.014 

Table 4.4 Localness of the effect of the O impurity on the shear stress distribution 

 

This is done for each configuration displayed in Figure 4.38. Larger thresholds increasingly 

include only atoms that are close to the O defect. Inspection of the global residual shear stress 

reveals an initially positive value which then becomes maximally negative as the GB migrates 

past the O and subsequently becomes less negative. The precise behavior correlates well with 

the changes in the critical shear stress needed for migration to occur shown in Figure 4.37. Thus 

the behavior seen in Figure 4.37 may be largely understood in terms of the effective shear stress 

that acts on the GB, which is the sum of the applied shear stress and the internal stress (residual 

stress) that arises due to the presence of the O defect. Thus if a defect produces a positive 

internal shear stress then a reduced applied shear stress is needed to activate the migration event, 

whereas a negative internal shear stress requires an increased applied shear stress. The important 

message that can be obtained from the data of Figure 4.37 is that the trends seen in the global 

residual shear stress become progressively enhanced when considering the increasingly local 

stress signature of the O – the effect of O on GB migration is localized to the atoms in the 

immediate surrounding of the O atoms. However, during the MS simulation only global GB 

migration events are observed.  
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From Figure 4.37 and Figure 4.38, the variation in the critical shear stress required to induce a 

GB migration event manifests itself in either an increased or decreased waiting time for GB. 

Such spatially dependent variations average out since the calculated GB migration velocity 

resulting in a beta factor of about 0.411, which is not so different to that of the pure Al case. 

 

 

Figure 4.39 Shear stress–time (black) and GB displacement–time (red) curves of the four O sample 

at 0 K (a) and the sixteen O sample at 0 K (b). The origin of the “GB displacement” axes is chosen 

to be at level of the impurities. 

 

If the number of O atoms in the sample is increased to four and to sixteen the shear stress-time 

and GB position-time data presented in Figure 4.39a and b is obtained. An amplification of the 

initial decrease in the critical shear stress needed to induce a migration event is obviously 

present as well as the latter increase in shear stress when the GB is directly nearby the O. The 

generally larger needed critical shear stresses also entail significantly increased waiting times 

between migration events demonstrated that the local mobility of the GB is significantly altered 

when in the presence of such a high density of O atoms. In the case of the 16 O planar 

arrangement the GB is for a while pinned to the O atoms. Moreover after unpinning, the 

subsequent time between migration events is short compared to that of the pure Al case; in this 

regime it can happen that the GB migrates twice to three times in relatively short time (less than 

50 ps). This rapid movement may be understood by the fact that a relatively large critical shear 

stress is attained to make the GB migrate past the O layer. The amount of shear strain that can 

be relieved is geometrically constrained to that associated with the migration of one atomic 

layer. Therefore after migration past the O atoms there remains still a significant amount of 

shear stress which is immediately relieved by subsequent GB migration to pure Al regions that 

are only slightly affected by the O defects. Importantly, the sum of these rapid drops in shear 

stress due to a quick succession of GB migration events is also geometrically limited since the 

resulting migration cannot exceed that seen in the case of the pure Al simulation. This is 

reflected in the coupling factors averaged over the entire simulation which are not too different 

a b
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from that of the pure case, where the average coupling constants slightly increase to values 

around 0.420 for the four O samples and values above 0.450 for the sixteen O samples. 

 

Second potential 

The samples tested here correspond to the one described by Figure 4.36. Plotting the resulting 

shear stress-time curve in case of one substitutional O atomon top of the one for the first 

potential and the pure case, two remarkable differences are observable (see Figure 4.40): The 

new curve deviates later of the pure case and returns sooner to the pure curve and secondly the 

decrease in shear stress while GB is approaching the O impurity and the following increase for 

the GB at the O impurity are more pronounced. To summarize, similar effects are observed for 

the case of one O impurity however they are more localized and more pronounced in the 

quantity. This corresponds with a comparison of the local stress signatures, which show the 

same trends. This is also observed in Figure 3.9 in section 3.3.4 which compares the pressure 

fields around O defects in bulk fcc Al. There the change in pressure is more localized and higher 

in absolute values.  

 

 

Figure 4.40 Shear stress-time curves of the pure sample (red), the one O case using potential of 

section 3.2 (blue) and the one O case using potential described in section 3.3 (green). Simulations 

where carried out without temperature (0 K). 

 

If the O concentration is increased to four and sixteen substitutions the observations made for 

the one O case are more pronounced (see Figure 4.41). However, overall coupling constants are 

maintained due to geometrical limitations which have to be fulfilled. 
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Figure 4.41 Shear stress–time (black) and GB displacement–time (red) curves of the four O sample 

at 0 K (a) and the sixteen O sample at 0 K (b). The origin of the “GB displacement” axes is chosen 

to be at level of the impurities. 

 

Comparing the first and the second potential by the maximal shear stresses obtained for given 

numbers of O substitutions makes clear that there is a stronger effect in the case of the second 

potential (see Figure 4.42). 

 

 

 

Figure 4.42 Maximal shear stress vs. number of O atoms. In case of the 1st potential the linear 

correlation indicated by the red line was found. In case of the 2nd potential there is also a linear 

correlation (black line) however the slope is steeper.  

4.3.3.3 Homogenous oxygen distribution with temperature 

First potential 

If the same samples in section 4.3.3.2 are tested using MD simulations at 100 K temperature the 

results obtained from MS are reproduced with additional noise because of the thermal motion of 

a b 
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the atoms (Figure 4.43a-c). In the case of the one O simulation it is observed that the distance at 

which the critical shear stress begins to rise is now approximately 4.2 angstroms (Figure 4.43a) 

instead of 7 angstroms in the case without temperature (Figure 4.37). 

 

  

 

Figure 4.43 Shear stress-time (red) and GB displacement-time (red) curves for the one O case (a), 

the four O case (b) and the sixteen O case (c) with homogenous distribution of the substitutions at a 

simulation temperature of 100 K. (d) The same for a one O sample at 500 K. The origin of the “GB 

displacement” axes is chosen to be at level of the impurities.  

 

To illustrate the effect of the higher temperature, the sample containing one substitutional O 

defect is equilibrated at 500 K. Then the sample is analogously deformed as before. Figure 

4.43d shows shear stress-time and the GB displacement-time curves. As the GB displacement-

time curve shows the motion of the GB happens at this higher temperature in a more continuous 

way than the aforementioned stick slip processes. This can also been seen in the visual 

inspection of atomic configurations. Hardly any discrete migration events are observed then. 

 

The difficulty of separating the effect of the O impurities from thermal noise is obvious at this 

higher temperature: No more effect due to the O is e.g. visible in the GB displacement-time 

curve Beside this, the simulation follows the overall trends for coupled GB migration explained 

by the publications of Cahn and Mishin 29. The overall coupling constant derived from the slope 

a b

c d
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of the GB displacement-time curve is not changed compared to cases without temperature 

which corresponds to Cahn and Mishin’s observations. 

4.3.3.4 Inhomogeneous oxygen distribution without temperature 

First potential 

Instead of homogeneous distributions of impurities over the whole GB plane, an 

inhomogeneous distribution of impurities is considered. The O atoms are placed in a plane 

rather close to the GB. However, they are distributed only over a quarter of the sample cross-

section in an array of two by eight atoms (Figure 4.44a).  

 

 

Figure 4.44 (a) O atoms positioned in a inhomogeneous distribution over only one quarter of the 

sample cross-section. (b) shows an atomic section, where the difference in migration behavior due 

to the presence of the O (right hand side) is obvious. 

 

The resulting shear stress-time and GB displacement-time curves are shown in Figure 4.45. The 

fact that the impurities are placed closer to the GB in the initial configuration changes the curves 

in the sense, that starting point is later compared to the previous cases. The data on the GB 

position is split into two curves: one representing the average position for the GB over the O 

impurities and one for the pure part above Al atoms only. Figure 4.45 shows that the maximal 

critical shear stress in the inhomogeneous case (0.63 GPa) is about the same as in the case of 16 

O atoms homogeneously distributed (0.64 GPa). However there is a clear difference in the 

motion of the GB. It can move nearly freely at the side without O whereas it is clearly pinned by 

the O impurities on the other side until the critical shear stress is reached. At that point of 

maximal shear stress, the GB part on the pure side has already moved by several migration 

events which can be seen in Figure 4.44b. According to Figure 4.45, the GB part over the 

impurities seems to move forth and back before overcoming the O atoms. However, in the 

visual inspection of configurations it is seen that the GB is stationary at these impurities. So, the 

different shape of the GB position-time curve can be explained by the fact, that it is difficult to 

determine the GB position on a reliable basis due to the large change in the local structure when 
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one part is migrating and the other is stationary. As Figure 4.45 shows, the part at the impure 

side also overcomes the obstacles. After successfully passing the obstacles, the critical stress 

decreases rapidly and the part above the impurities catches up with the part above the pure side. 

With sufficient distance from the impurities the planar GB is formed again which also can be 

seen in the visual inspection of the atomic configurations. 

 

 

Figure 4.45 Shear stress–time (black) and GB displacement–time (red) curves of the 16 O sample 

with heterogeneous distribution of the O impurities at 0 K simulation temperature. The origin of 

the “GB displacement” axis is chosen to be at level of the impurities. 

 

Second potential 

A similar inhomogeneous O distribution as for the first potential is also investigated using the 

second potential Figure 4.46 however the impurities are inserted 9 atomic planes below the GB. 

It is observed that the GB over the impure part migrates faster towards the impurities than the 

part of the GB which migrates on the side without impurities (Figure 4.46b). After this the part 

at the impurities remains stationary and the rest of the GB can catch up and overtake. Up to a 

critical stress of 0.60 GPa the part at the impurities is pinned. At this point the part over the pure 

sample has migrated already several times (Figure 4.46c). After unpinning the impure part 

catches up and a planar GB is formed with large enough distance from the impurities (Figure 

4.46d). However a distortion of the lattice is visible around the impurities. The O atoms are in a 

more excited configuration than the initially substitutional positions after the GB passed them. 

Apparently Al atoms close to the O atoms are missing. In a visual inspection using the atomic 

coordination of the sample additional Al atoms are seen near the GB (Figure 4.48). The effect 

happens collectively along the whole rows of O atoms. 
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Figure 4.46 Inhomogeneous O distribution: Initial structure (a), at minimal stress after 215 ps (b), 

at maximal stress (after 955 ps) (c), and after 1475 ps (d). 

 

For the second potential, the maximal shear stress obtained for the inhomogeneous O 

distribution is significantly lower than for the homogeneous simulation (Figure 4.47) which is 

different from the first potential where both are approximately the same.  

 

 

Figure 4.47 Shear-stress time curves for three sixteen O simulations. (red) with an homogeneous O 

distribution of 4 x 4atoms, (green) in a inhomogeneous O distribution with all the O atoms on one 

side in a array of 2 x 8 atom and (blue) with a sphere of corundum in the sample. 
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Figure 4.48 Cut through Figure 4.46d. Small atoms correspond to local crystallinity coloring. Large 

atoms display the atomic coordination (blue = 6 to red = 13). 12 coordinated atoms are not 

displayed in case of the large atoms.  

 

As an additional geometry, a sample, where a sphere of fcc Al atoms is removed and substituted 

by a sphere of Al2O3 in a corundum arrangement, is simulated. The corundum sphere contains 

16 O atoms. In the resulting shear stress-time curve it is seen that much smaller critical shear 

stresses are obtained (Figure 4.47: the blue curve). After the GB has passed the obstacle, the 

shear stresses curve does not return to the curve known from the pure case. So, over a rather 

long time there is an interaction between the corundum sphere and the GB. This interaction can 

also be seen in the visual inspection of configurations: In the initial state the corundum sphere 

deforms the lattice in its neighborhood without affecting the GB (Figure 4.49a), as soon as the 

GB is approaching the distortion of the lattice increases significantly in size (Figure 4.49b). The 

GB overcomes the obstacle with some bowing but not as much as in the previous 

inhomogeneous case as the critical strength of the obstacle is smaller (see e.g. shear-stresses-

time curve Figure 4.47). Afterwards the lattice remains distorted. The GB moves further and 

further away but it is affected by the distortions in the lattice over a large distance (Figure 4.49c 

and d). The effect of the corundum on the critical shear stress is lower, but of longer range. It is 

important to mention that the structure of the corundum precipitate does not change much when 

the GB passes the obstacle. No O atom distribute further into the crystals.  

 

The large distortion of the lattice in both cases with inhomogeneous O distributions (2 x 8 atoms 

and corundum) raises serious questions. A few explanations are given in the discussion (section 

4.3.5). 
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Figure 4.49 Corundum sample. Initial sample (a), Sample after 360 ps, sample after 1060 ps, and 

after 1400 ps. 

 

4.3.3.5 Interstitial O impurities 

First potential 

To test an interstitial impurity, one O atom is added in a tetrahedral interstitial site to the Al 

crystal. Before the sample is deformed, it is relaxed. The tetrahedral interstitial transforms to a 

100-dumbell interstitial structure (Figure 4.51a) as this is the more stable configuration using 

this potential (compare section 3.2). The shear stress versus simulation time and the measured 

GB displacement versus simulation time curves of the 0 K MS simulations (Figure 4.50a) look 

rather similar to the one of the substitutional defect, however the maximal critical shear stress is 

higher (120 MPa instead of 90 MPa for the substitutional). 
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Figure 4.50 (a) Shear stress–time (black) and GB displacement–time (red) curves of the one O 

sample at 0 K with the O impurity at a interstitial side and (b) the corresponding potential 

energies-time curves for the substiutional (black) and interstitial case (red). The origin of the “GB 

displacement” axis is chosen to be at level of the impurities. 

 

In the visual inspection of the simulation data, it is observed that the O atom pushes an Al atom 

in the GB out of its position as soon as the O is in the GB (Figure 4.51b). After the GB migrates 

further, the O atom does not move with the GB and moves to a substitutional position in the fcc 

Al lattice Figure 4.51c. The Al atom which has been pushed away by the O atom pushes another 

Al atom out of its position in the layer below where the GB is migrating to. Like this, there is 

always an additional atom in the GB, however these are different Al atoms and not the O 

impurity. These additional atoms are migrating to the free volume of the GB structure, i.e. to the 

middle of the kite structure “B” in Figure 4.32. In terms of energy it is interesting to see (Figure 

4.50b), that the final structure, which contains the additional Al atom in the GB and the 

substitutional O impurity, is lower than the initial structure with the 100-dumbell O interstitial. 

This is different from the substitutional case where initial and final structures are at the same 

energetic level. 

 

   

Figure 4.51 Lattice position of a additional O atom (yellow) during coupled grain boundary 

migration: (a) before the GB has passed the O atom is in a (100)-dumbbell position. (b) the O atom 

is additional in the grain boundary and (c) the O is in a substitutional position an the GB contains 

an additional Al atom. 

 

a b
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4.3.4 Results on the 21  sample 

4.3.4.1 Pure 

First potential 

From private communication with Mishin and Ivanov and from Ref. 31 it is known that the 21  

sample shows only coupled GB motion at finite temperatures (see Figure 7 in Ref. 31). For the 

study of the influence of O impurities on GB migration, simulations at low temperatures are 

preferred to minimize thermal noise. Therefore the pure sample is first studied at 0 K and at 100 

K. As one can see in Figure 4.52a, the shear stress-time curve at 0 K shows a different behavior 

than the saw-tooth curve for the 75  sample (Figure 4.33). Also the motion of the GB is unlike 

the case of the other sample.  

 

Figure 4.52 Shear stress–time (black) and GB displacement–time (red) curves of pure sample with a 

21  GB simulated at 0 K (a) and 100 K (b).  

 

In case of a simulation temperature of 100 K things become more similar: There is a saw-tooth 

curve and the GB moves downwards using more or less discrete migration events (Figure 

4.52b). This corresponds with findings of Mishin and Ivanov 31, who observe coupling in the 

temperature range from 100 K to 900 K for this system. Also the coupling constant   of 0.8 is 

well reproduced as it is evident from Figure 4.52b. The mechanism for the coupled GB motion 

under finite temperature is similar to the 75  sample. Details on the mechanism can be found 

in e.g. Figure 5 of Ref 31.  

 

For the 0 K simulation the GB moves less than half as much in the normal direction and even in 

the opposite direction compared to the samples simulated at 100 K temperature. Visual 

inspection of configurations outputted during the run at 0 K shows that the GB is more sliding 

than showing a coupled motion which can also be seen from a single frame taken at a later point 

in the simulation (at about 10 % shear strain). Here the yellow marker plane is more or less 

perpendicular (the bending is due to the applied load) to the GB and it is hardly connected. This 

a b
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corresponds more with Figure 1.3c which is the prototypic picture for GB sliding. However 

some trends corresponding to coupling are visible in Figure 4.52a and Figure 4.53a. At 100 K, 

the shape of the marker line in the deformed state of the sample corresponds with Figure 1.3d 

which is an indication for coupled GB motion (Figure 4.53b). 

 

 

Figure 4.53 Deformed 21  GB simulation sample. (a) At 0 K: The marker line remains more or 

less perpendicular and seems to be discontinuous which is an indication for a strong GB sliding 

contribution as shown in Figure 1.3c. (b) At 100 K: The continuous marker line shows the shape of 

coupled GB migration in Figure 1.3d. 

4.3.4.2 Homogenous oxygen distribution with temperature  

First potential 

MD simulations at 100 K temperature are carried out to investigate the influence of O impurities 

on coupled GB migration, An increasing amount of O impurities (one, four and sixteen 

substitutions) are added to the samples in a homogenous way analogous to section 4.3.3 on the 

75  GB.  

 

Deformation of these samples gives the shear stress-time and GB displacement-time curves 

shown in Figure 4.54 and Figure 4.55. The critical shear stresses are slightly reduced in case of 

one O impurity (Figure 4.54) compared to the pure case. However no significant increase in the 

maximal shear stress comparable to the 75  samples is visible.  

 

a b
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Figure 4.54 Shear stress–time (black) and GB displacement–time (red) curves of the one O sample 

with a 21  GB simulated at 100 K. The origin of the “GB displacement” axis is chosen to be at 

level of the impurities. 

 

If the number of O atoms is increased to four and sixteen, the reduction of shear stress is more 

significant, especially in the latter case (Figure 4.55). According to Figure 4.55b the motion of 

the GB is nearly stopped at the level of the 16 O impurities. An increase in maximal stress is 

observed after the GB has reached the plane containing the O atoms. The figure could even 

suggest a change in mechanism from coupled GB motion to e.g. GB sliding. However these 

speculations can not be confirmed as the data of the atomic structures for all the impure cases 

has been lost before the simulations have finished. Currently the simulations are rerun to clarify 

the detailed mechanisms. 

 

 

Figure 4.55 Shear stress–time (black) and GB displacement–time (red) curves of the four O sample 

(a) and a sixteen O sample (b) with a 21  GB simulated at 100 K. The origin of the “GB 

displacement” axes is chosen to be at level of the impurities. 
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4.3.5 Discussion 

The effect of O impurities on the mobility of GB is tested within the framework of coupled GB 

migration. In all the simulated cases, O atoms have never segregated towards the GB or have 

moved with the migrating GB. However diffusive processes which are necessary to observe 

these effects are suppressed by the low simulation temperature and by the given time-scales. 

According to the short time-scales, GBs are moving with a tremendous speed compared to 

experimental values which gives the O impurities no chance to accommodate in more favorable 

positions, e.g. in the GB. Additionally the expected picture of impurities segregating to the 

defects, e.g. GBs, is not reproduced here since the simulation temperature is too low to move 

solute atoms from their well-relaxed lattice position towards the GBs. Instead of letting the 

impurities move and segregate to GBs, the presented simulations can be interpreted as a try to 

study GB/impurity effects by forcing the GB to move towards or over the impurities. It is e.g. 

seen that GBs approach the plane containing the O defects faster than pure planes, which might 

be linked to the affinity between impurities and defects such as GBs. This means, the increase in 

normal velocity of the GB when it approaches the O atoms could be caused by the attractive 

force between the impurities and the GB. In this case the mobile GB is moved to the stationary 

impurities however the same attractive force could lead to segregation of mobile impurities to 

stationary GBs. 

 

Further, it is shown that the change in global shear stress due to impurities arises locally around 

the defect atom (see Figure 4.38 in section 4.3.3.2). This shows remarkably that impurities 

which produce strain and stress fields interact with the stress field of other defects, such as the 

GB in this case. This corresponds to the understanding for interactions of impurities (e.g. solute 

atoms or precipitates) with defects. The interstitial O atom shows a higher maximal critical 

shear stress than the substitutional. This corresponds with the expectations in Ref. 188, which 

mention that the interstitial impurity perturbs the atomic configuration and the bonding more 

than a substitution. Using the given potential (the first potential presented in section 3.2) shows 

the preference of the O atom to be in the lattice as substitution instead of being in the [100]-

dumbbell interstitial site. This can be seen from the change of position during the simulation and 

from the energy of the final configuration which is lower than the initial energy. This result is 

dependent on the potential and has not been confirmed or disproved by ab initio calculations or 

experiments, so far. Again the accommodation processes can be questioned due to the high 

velocity of the GB, the short time-scales and the missing temperature. 

 

In the case of the inhomogeneous O distribution and the corundum structure using the second 

potential a large distortion remains in the sample after the GB passed the O atoms or the 
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precipitate. The resulting structure might be an artifact caused by the high stress, athermal 

simulation conditions. Possibly, these distortions of the lattice could anneal out if the same 

samples are simulated at a smaller strain-rate and/or at finite temperature. However the EAM 

potential can also have some influence as for the first potential no comparable distortion of the 

lattice after the GB passes the inhomogeneous O distribution is observed. 

 

The use of different potentials and samples showed that results can change in values obtained so 

quantitative predictions are precarious. Independent of the potential, results show important 

qualitative effects e.g. a drag of GB due to impurities. This drag effect is most pronounced for 

the highest O concentrations in both samples ( 75  and 21 ). The publications by Lucke, 

Detert, Cahn and Stuwe 39-41 claimed decades ago that impurities can reduce the mobility of GBs 

significantly. A drag effect for GB is reported for small amounts of soluble, foreign atoms. This 

literature trend of reduced interface mobility due to impurities is very obvious in the case of 

inhomogeneously distributed O atoms, where the GB can move freely on the side without 

impurities and is significantly pinned at the impurities on the other side. Similar changes in 

critical shear stresses can be expected in experiments. The reduction of the mobility of 

interfaces such as GBs can also be used as an experimental observation criterion for the 

influence of impurities. A possible indication for the validity of the observed trends is the fact 

that the grain growth is more pronounced in purer samples as reported by Gianola and co-

workers 53. However experimental conditions are generally much more complex and various 

side effects could blur these results. In the case of grain growth it can e.g. not be excluded that 

an oxide layer on the surface passivates internal processes. 

 

Detailed spatial and temporal analysis of the actual GB migration events for both the pure Al 

and homogeneous AlO systems reveal no initially local process – the GBs do not migrate 

locally with for example a subsequent migration of a GB step that eventually results in the 

migration of the entire GB – even at 100 K temperature. This observation can be expected due 

to the imposed periodicity and choice of relatively short periodic lengths forcing the coupled 

GB migration event to be a collective process that occurs globally over the entire GB plane. In 

contrast, migration of GBs in the cases of the inhomogeneous O distributions happens locally. It 

is envisaged that using much larger samples such local processes could begin to occur at finite 

temperature due to local fluctuations at the GB. This is especially expected for the presence of 

O atoms which affect significantly the critical stress required for migration to occur. For 

example, a large bi-crystal sample has a planar distribution of O at surface densities much 

smaller than considered here, it is expected that “isolated” O could pin locally the GB leading to 

a GB step structure that accommodates the different levels of GB migration within the sample 

as a function of distance from the O defect.  
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In summary, coupled GB migration in Al bicrystals has been studied under the presence of O 

impurities. Some of the observed effects, e.g. the reduced mobility of the GB, are in good 

agreement with the existing literature on GB/impurities effects which affect the mobility of 

GBs. Other effects, such as impurities which segregate to the GB or move with the propagating 

GB could not be observed as the simulation temperatures are too low and the simulation method 

used is too limited in time-scale. Accelerated molecular dynamics methods 126, 127, 189, 190, which 

are successfully used by Mishin and Voter 191, could help to solve the time-scale issue.  
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5.1 Applications 

5.1.1 Samples and simulation conditions 

5.1.1.1 Samples 

As there is little knowledge on simulations of nonmetallic impurities in metals, especially in nc 

metals, a representative selection of configurations is made. Less complex simulation 

geometries, such as bicrystals or the dislocation sample which consists of mainly one grain and 

its nc environment, are more powerful in enlightening the possible role of impurities since a 

smaller number of processes happen in these samples at the same time. In all applications in 

chapter 4 the O distribution is modified to enhance the impact of the O impurities. E.g. in the 

case of the nc sample, the O distribution is embedded in triple junctions, because this could 

anchor the microstructure and consequently influence the mechanical behavior. Additionally, 

the O distribution is modified according to observations of dislocations in the pure sample. In 

the cases of dislocation propagation and/or coupled GB migration, many different O 

distributions are tested with different impact of the impurities. In both cases a stronger effect is 

achieved if the homogeneity in the structure is broken either by distributing O impurities in an 

inhomogeneous way (coupled GB migration) or by putting the O atom in the normally 

homogenous center of the grain (dislocation propagation). 

5.1.1.2 Simulation conditions 

As thermal motion of atoms produces noise which can cover effects of interest, a restriction to 

lower temperatures or even 0 K is frequently done in this work by using the MS method. It 

gives access to a series of intermediate configurations which are connected by physical events 

and it successfully removes thermal noise which facilitates the comparison between different 

simulations such as pure and impure. However there are pitfalls in the usage of this method: MS 

is developed to relax the potential energy of a given configuration, i.e. moving atoms of an 

initial configuration to a configuration which corresponds to a local minimum in potential 

energy. The intermediate configurations are physically less meaningful as they are at most 

stationary points of the potential energy surface. Using MS means, that one simulates 

athermally. In this athermal limit processes have no concept of time. So a comparison of process 

rates or velocities is difficult. Moreover processes such as dislocation propagation, pinning and 

unpinning, which are known to be thermally activated 66, are made active by applying stresses 

which are higher than in the corresponding finite temperature simulations. As an example, the 

critical shear stress in the pure 75  coupled GB migration simulation is reduced by 30 MPa if 
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the simulation is executed with 100 K MD instead of MS. In case of the inhomogeneous O 

distribution (Figure 4.46) and in the case of the corundum precipitate (Figure 4.49) in the 75  

sample a huge distortion of the lattice is observed when the GB passes the impurities using the 

second potential. These distortions could be an artifact of the simulation athermal conditions. 

Another consequence of athermal simulations is that processes are less sensitive to the given 

environment and corresponding stress concentration. Athermal simulations bulldozes through 

energy barriers which might be important in the experimental regime. Chang and Chen also 

report on the reduced sensitivity in athermal simulations and even conclude that MS is “not a 

suitable method for the studying the behavior of nanomaterials beyond the elastic limit” 192. In 

the lower stress regime at finite temperature (or lower strain rate), processes are much more 

diverse, e.g. more dislocation cross-slip can appear, as Brandl et al. recently showed 72. This is 

especially an issue in the simulations of the dislocation propagation which have been performed 

with MS and therefore in the athermal limit. Additionally, there is the effect of global quenching 

which produces rather unphysical events during the relaxation. Global quenching means that 

velocities of all the atoms are simultaneously removed, when a maximum in kinetic energy is 

reached. Two alternatives to MS with global quench are tested as case-studies: MD at 1 K 

(Figure 5.1) and MS with local quenching (Figure 5.2). In case of the 1 K MD simulation the 

process of dislocation propagation for the pure sample presented in section 4.2.3.1 is studied. It 

is not changed much compared to the corresponding MS simulation with global quench and the 

shear stress evolution curve follows the same trends. However the kinks due to quenching are 

not present any more (Figure 5.1). 

 

 

Figure 5.1 Pure sample with 1 K MD (black) or MS using global quenching (red). 
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In the other case (Figure 5.2) the “IG-I2” sample presented in section 4.2.3.7 is studied using 

MS with local quenching. Local quenching means that the atomic velocities are removed 

individually if the scalar product between the acceleration and the velocity of an atom is 

negative. It is observed that the dislocation still propagates. It also overcomes the local pinning 

sites caused by the impurities in a similar way as in the MS simulation using global quenching. 

However the simulation with local quenching (Figure 5.2: red curve) requires a order of 

magnitude more relaxation steps than in the case of global quenching (Figure 5.2: black curve). 

Due to the small differences in the resulting dislocation propagation behavior between MS with 

local and global quenching and due to the long simulation time in the case of local quenching, 

no other sample are tested using MS with local quenching.  

 

 

Figure 5.2 The “IG-I2” sample with global (black) and local (red) quenching. 

 

5.1.2 Performance of the method 

5.1.2.1 Nanocrystalline samples 

Thanks to the local chemical potential approach and to the EAM potential with shorter cutoff 

distances it is possible to simulate the deformation of an nc sample with more than 1.2 million 

atoms and impurities. This simulation is performed using 64 parallel cores on the Palu system of 

the Swiss National Supercomputing Center (CSCS). The simulations sample is modified to have 

the same number of neutral clusters as having computing cores in order to obtain a good load 

balancing. An MD time-step in the simulation takes about 3.7 seconds wall clock time without 

charge update but with calculation of the electrostatic energies, forces and stresses. The charge 
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update is performed in every 10th time-step. Those MD steps with charge update take less than 

12 seconds. So an average MD step takes less than 5 seconds wall clock time. This is about a 

magnitude more than the underlying EAM implementation for pure Al which performs on the 

corresponding pure sample using the same number of cores at about 0.5 seconds per time-step.  

 

The major limitation of the developed method in this application is the fact that atoms move too 

close to each other in the impure case. This leads to a stop of the whole simulation at a strain of 

about 6.5% because the electrostatic part is not solvable any more for atoms which are so close. 

A partial reason might lay in the parameterization of the first potential. Especially the repulsion 

at very short distances is too weak and for the case of O-O interactions even attractive. This is a 

result which can happen in a fitting procedure and which can be improved by artificially adding 

a repulsive contribution to the very short-range of the potential. 

5.1.2.2 Dislocation propagation 

For the simulation of dislocation propagation first the serial and later the parallel 

implementation on 8 cores are used. In both cases the performance is dependent on the O 

distribution. In the computationally worst case where the of O atoms are distributed in the whole 

slip plane of the dislocation in the sample with about 275000 atoms, the average MD time-step 

takes a wall clock time of less than 3 seconds on the Rosa supercomputer at CSCS. In the serial 

case the same sample can be simulated in about 35 seconds per time-step without charge update 

and 70 seconds with charge update. The average time-step is then of the order of 40 seconds 

which is still a large improvement compared to the beginning where only the charge update of 4 

O in 13500 Al took 22.5 minutes (however on a slower computer). 

5.1.2.3 Coupled grain boundary migration 

All the simulations of coupled GB migration are performed in serial computation. The wall 

clock time during the simulation depends on the amount of O impurities and on their 

distribution. In case of only one O atom in the 75  sample (24000 atoms) an average MD 

time-step took about 2.3 seconds without charge update and 3.2 seconds with charge update. 

The average MD step with charge update in every tenth step takes about 2.5 seconds. In the 

computationally worst case of the 75  sample with 16 impurities the wall clock time of a MD 

step is between 20 seconds without charge update and 40 seconds with charge update.  

5.1.2.4 Time-scale issue 

The time-scale limit of MD is for most applications a constriction. As the implemented method 

for the simulation of impurities brings additional computational costs, a restriction to smaller 

simulation times has to be done. The time-scale limitation which is present in both pure and 
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impure simulations and which leads to the very high strain rates makes it difficult to compare 

simulation results to experimental findings. However simulations might help to uncover causes 

of processes or mechanisms among which impurities play an important role. 

5.2 Developments 

5.2.1 Local chemical potential approach 

The local chemical potential approach offers faster access to charges in sub-regions of samples 

around isolated O atoms or clusters of O atoms by excluding a large fraction of atoms from the 

charge update. Such an approach reduces the computational cost in the case of dilute O 

impurities as fewer charges have to be calculated. This is especially true, when O impurities are 

grouped in well separated clusters as it is done for the impure nc samples (section 4.1). A 

distribution of small O clusters or isolated O atoms in GBs and grains could also match 

Gianola’s descriptions 60, 187. He did not measure a higher O concentration in GBs using EELS 

and he did not find any buried O layers using Auger depth profiling. Although the scenario of O 

layers and especially oxide surfaces has not been the focus in the development, the method can 

give some improvement if many metallic atoms are far enough from the oxide and are therefore 

neglected in the charge optimization. Considering for example a sample (Figure 5.3a) with a 

thin layer of amorphous oxide (yellow atoms) on the top, a large fraction of atoms can be 

neglected from charge optimization: If Al atoms are further than the constrained buffer region 

(red atoms) given by the selected cutoff away from all O atoms, they are excluded from the 

charge update procedure by the classification scheme presented in section 3.1.3.  

 

   

Figure 5.3 (a) Sample with a layer of O atoms at the top. (b) Cross section through a cylindrical 

nano-pillar with an O layer at the surface. Yellow indicates O atoms, green are regions with full 

charge optimization, red regions are constrained in the charge update and grey regions represent 

atoms being neglected in the charge update according to Figure 3.3. 

a 

 20 nm

b 
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In a similar way, the local chemical potential approach makes the simulation of a nano-pillar 

with an oxide layer on the surface (Figure 5.3b) considerable. Assuming a cylindrical Al nano-

pillar with 20 nm cross section and 40 nm height the sample contains approximately 800000 

atoms (760000 fcc Al atoms and 40000 O atoms at the surface) ignoring the base. Assuming 

further, that the O atoms (yellow) are present only at the surface and the charge transfer 

involves only the outer 2 nm (green and red atoms), a pillar of 16 nm cross section and 38 nm 

height can be neglected from the charge update. These are about 450000 atoms or more than 

half of the atoms. Still, solving a charge optimization problem which involves a system of 

350000 atoms is very demanding. 

 

The technical implementation of the method is largely based on the reformulation of Streitz and 

Mintmire’s optimization problem using Lagrange multiplier notation. This improves also the 

computational efficiency of solution of the global charge update compared to the publication by 

Vashishta and Nakano 156. In the publication, it is suggested performing the charge update by 

solving two linear systems of equations whereas here only one system is solved. 

 

The concept of local chemical potentials is transferable. One can think e.g. of properties which 

are computed globally although they have more a local character and maybe also a large 

screening such as magnetism. 

 

Implementation 

The serial implementation is powerful. The clustering based on graph theory, where only the 

positions of the O atoms are represented as a graph, is a computationally very efficient way for 

labeling the atoms. The application of a commercial or open-source solver library (in this case 

UMFPACK 172-175) shows a significant performance improvement compared to self-

programmed solution routines for standard problems such as linear systems of equations. 

Manual programming according to a recipe (e.g. Numerical recipes 183) in combination with 

automated code generator for the given computer architecture can be an alternative for the 

future. 

 

The parallel code is developed based on the assumption of a dilute O distribution in many small 

neutral sub-regions. These sub-regions can be distributed to different computing cores. In the 

case where the first assumption is fulfilled, the efficiency and the load balancing is good. This 

however limits the distribution of O atoms a lot. The O concentration has to be sufficiently 

dilute and distances between O atoms have to be large enough to be able to send different sub-

regions to different computing cores. In case of a small number of neutral sub-regions (e.g. 

much smaller than the number of cores) and/or large sub-regions the load balancing is bad. In 
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the worst case charges for one huge sub-region have to be optimized on one core and all the 

others computing cores are idling at the same time. This would be the case in the example of the 

nano-pillar (Figure 5.3b). A possible solution to improve the load balancing is to distribute the 

information of the whole charge optimization problem (i.e. equation 30) and solve it on all cores 

by using a parallel solver for linear systems of equations. This has been tested by Dr. Olivier 

Politano however it is not implemented in the current version of the code.  

 

So far, the architecture of state of the art parallel computers, i.e. several execution nodes with 

more than one multi-core processor which access the same memory, has not been exploited: 

Parallelization is only obtained from message passing (MPI) between the cores which means 

data is assumed to be separated between cores. However, cores belonging to the same node 

access the same memory. Therefore a hybrid OpenMP/MPI-implementation saves 

communication costs.  

 

The precision is for some properties e.g. the stresses or even the charges not very crucial to 

obtain satisfactory results or sufficiently good energy conservation. For these properties a 

restriction to single precision instead of double precision can increase the performance. 

(Currently all the properties are calculated in double precision.) In case of a clear separation of 

tasks which have to be calculated in single precision (e.g. charge optimization) and in double 

precision (e.g. force and position update) the use of future hybrid (CPU and GPU) architectures 

can open new perspectives. GPUs have e.g. an overwhelming performance on single precision 

computation. GPUs with more than a teraflop performance on one processor exist now.  

5.2.2 EAM potentials 

Two potentials have been developed based on ab initio data. For one of them also properties of 

the  -corundum structure have been included in the fitting. Both potentials are applied in the 

simulation of O impurities in Al. Reduced cutoff distances give significant improvement in the 

performance. In a few cases the simulations are executed using both potentials which allows for 

direct comparison. In cases of pure simulations no change is observed, because both potentials 

use the same Al-Al interaction which is based on Mishin-Farkas Al potential 178. However in the 

impure case, e.g. in the simulation of the coupled GB motion, a change in critical or maximal 

stresses is observable for the two potentials (see Figure 4.40 and Figure 4.42). As suggested by 

Figure 3.9, the second potential causes a stress distribution around impurities which is of shorter 

range but higher in absolute values. Still the overall trends observed in coupled GB migration 

are preserved by switching between the potential.  
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How representative the database used in the fitting is and whether the set of calculated and fitted 

properties is large enough to call the potential “accurate” is questionable. Weaknesses are 

obvious for the first potential as e.g. the corundum structure can not be modeled correctly: The 

electrostatic parameters have not been adjusted after the exchange of the orbital functions which 

leads to wrong charges for corundum structure and therefore an incorrect description of 

corundum’s electrostatic interactions. The corundum structure has also never been considered in 

the fitting of the first potential. As a result, the first potential models the non-electrostatic 

interactions in corundum in an unlikely way, which leads to instabilities of the structure. 

 

The second version of the potential, which takes the corundum structure explicitly into account 

in the fitting, is able to preserve it. In the fitting elastic constants are used to make the model of 

the corundum structure more stable to distortions. However the resulting description of the 

corundum structure is still very fragile. Possible reasons are internal stresses which could not be 

entirely removed in the fitting. As a result, the corundum structure can transform to another 

corundum structure which uses different internal parameters for its description. Due to the 

fragility of corundum, the second potential should be applied carefully under well-selected 

conditions (e.g. at temperatures clearly below room temperature).  

5.2.2.1 Changes in the electrostatics 

Figure 3.2 shows that the charge on a single O is significantly reduced in absolute value 

compared to the charges in the corundum structure due to the non-stoichiometric ratio of Al and 

O atoms. The charge of the substitutional O atom is in the displayed case -1.166 e produced 

with Streitz and Mintmire’s potential 102. If the orbital functions are changed from 1s orbitals for 

all atoms to 2s for O and 3s for Al without adjusting the electrostatic parameters, the same atom 

has a charge of -0.2250 e. In this case, the structure is relaxed using the first potential. In case of 

the second potential where the electrostatic parameters are modified in order to reproduce 

Streitz and Mintmire’s charges for the corundum structure the value of the same charge is  

-0.5143 e.  

 

Whether one of these O charges is a good estimate for the real charge is hard to say as no 

comparison exists. In principle, it is possible, to calculate charges from DFT calculations by 

assigning contributions of the electronic densities to individual atoms which gives something 

like atomic charges (see Appendix B). However, tests have shown that these atomic charges are 

very dependent on the method of charge calculation and a comparison with values calculated in 

MD is difficult. Therefore charges are so far modified to reproduce the corundum charges, only. 

A further comparison is useful. 
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5.2.2.2 Underlying Al potentials 

Both potentials have limitations and for the continuation of simulations of dilute O impurities in 

Al a new potential could be fitted. Here, for both potentials Mishin and Farkas Al potential 

published in “Physical Review B” 178 is used for the Al-Al interaction mainly to reproduce 

Mishin and Ivanov’s results on coupled GB migration. Depending on the application, one can 

also select other Al potentials such as the Mishin and Farkas potential which is published in the 

MRS proceedings 186 and which is frequently used in the Materials Science and Simulation 

group 107. There are minor differences between the potentials in terms of fitted properties, e.g. in 

the elastic constants, in the phonon frequencies, in the stacking fault energies and in the surface 

energies. Still a rather different behavior is observed if the MRS potential (analytical description 

instead of the spline-fitted PRB version) is applied e.g. in coupled GB migration: The shear 

stress-time curve changes its morphology from a saw-tooth-like curve (PRB) to a more 

sinusoidal curve (MRS) as shown in Figure 5.4. However the stick-slip process for the atomic 

motion is maintained which indicates again that coupled GB migration is a purely geometrical 

phenomenon. The mentioned difference can be explained by the known fact that the analytical 

potential of Mishin and Farkas 186 is soft at short range. This can also lead to differences in 

stress-strain curves for the deformation of nc samples or different critical athermal stress 

barriers for the pinning of dislocations. As the Materials Science and Simulation group uses the 

analytical version of the potential 186 more frequently than the spline fitted version 178 a refit of 

an empirical AlO potential on the basis of the analytical potential might be useful for a direct 

comparison of existing pure simulation data. The continuation of the usage of 2s and 3s orbitals 

is recommended in any case, however the electrostatic parameters should be improved by 

including them in the fitting procedure. In general, if corundum is reproduced sufficiently well 

by an empirical potential, the potential is more transferable. However including corundum in the 

fitting makes it more complicated and time consuming. 

 

 

Figure 5.4 Shear stress-time (black) and GB displacement-time (red) curves of the pure 75  

sample simulated at 0 K using the empirical potential given in Ref. 186.  
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A method for the simulation of dilute O impurities in nc Al is presented. The development of 

the method is described and its possibilities and limitations are illustrated for three categories of 

applications. Many of these applications become accessible for simulation only through the gain 

in computational efficiency of the presented developments. 

 

In all the applications, the focus is on the change of mechanical properties due to dilute O 

impurities in nc Al. In several cases one can see that impurities reduce the mobility of 

propagating defects such as dislocations or GBs which corresponds to existing knowledge. 

However the magnitude of change in mechanical properties, e.g. in case of the deformation of 

the nc sample are smaller than the one known from experiments (c.f. Gianola’s work 53). This is 

on the one hand a reminder that simulation conditions are still far from experimental ones. 

(Especially athermal simulations bulldoze through energy barriers which might be important in 

the experimental regime.) On the other hand, it shows clearly that the method should be used to 

study processes and not quantities. In the best case the method can be used to develop new ideas 

for experiments, e.g. by studying specific O distributions and their effects, which can be a basis 

for comparison of future experiments.  

 

The whole methodology used for the simulation of dilute O in Al is based on the framework of 

Streitz and Mintimire 102. This work allows for MD simulations with variable charges. 

Electrostatic energies, forces and stresses can be explicitly added to the calculation by the usage 

of charges. However the computational effort to determine the charges is considerably large. 

This project reduces this effort significantly by introducing the local chemical potential 

approach for dilute O distributions. The method offers great prospective for the calculation of 

local properties by the application of local chemical potentials. Streitz and Mintmire potential 
102 has got other weaknesses, when it comes to the simulation of impurities, e.g. the long-range 

EAM potential for the non-electrostatic interaction. This is substituted by two alternatives for 

EAM potentials. Whether one of the fitted potential is sufficient to be applied in a broader 

context of simulations of impurities has been questioned. The whole method presented here 

should clearly be further developed to be able to compete with reality and/or experiments in the 

future. 

 

Depending on the type of simulations the parallel implementation should be reconsidered and 

adapted to exploit modern supercomputer architectures more efficiently. A refitting of the EAM 

potential should be considered e.g. to be also able to simulate the more natural form of surface 

oxides which are amorphous. Beyond this, there is the concern about the physics, which is used 

in Streitz and Mintimre. The gain in physical accuracy due to the description of ionic bonding 

via variable charges compared to conventional MD using e.g. empirical EAM or MEAM 
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potentials might still not justify the computational efforts. Especially a comparison with the 

rather recent MEAM potential for AlO system by Sekkal and co-workes would be desirable 95. 

For the simulation of dilute impurities other approaches such as the embedded ion method 

(EIM) 91 or the more bond order like charge transfer method by Albe 193 should be tested in 

terms of accuracy and efficiency. All this charge transfer methods are within the frame-work of 

classical molecular dynamics and remain empirical. As an alternative multi-scale methods 

which locally simulated with ab initio techniques e.g. for the impurities and which simulate the 

metallic interaction in the big majority of the samples with conventional MD. 

 

Independent of the choice of method, one should study many more simple and complex systems 

to gain more knowledge on the role of impurities in metals and in particular in nc metals. 
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Appendix A - The corundum structure 

 

Figure A.1 The corundum structure. Al atoms in grey and O atoms in red from: http://cst-

www.nrl.navy.mil/lattice/struk/d5_1.html 

 

The corundum structure is described by specifying primitive vectors and basis vectors according 

to the following website: http://cst-www.nrl.navy.mil/lattice/struk/d5_1.html: 

 

Although corundum has a rhombohedral primitive unit cell, Pearson's Handbook § and other 

references use the equivalent hexagonal lattice, which contains 3 primitive cells. Since the 

primitive cell is of more interest the rhombohedral structure is used. 

 

According to Pearson’s Handbook aHCP = 4.758 Ang. and cHCP =12.99 Ang. This is translated to 

a = 3.621 Ang. and b = 0.257 Ang. 

 

Corundum is defined up to two internal parameters. These internal parameters (x1 and z1) are in 

the hexagonal case xAl (hex) = 0.35228 and xO (hex) = 0.3064. On the rhombohedral lattice this 

translates to z1= xAl (hex) = 0.35228 and x1 = ¼ - xO (hex) = -0.0564 

 

                                                      
§ 194 P. Villars, L. D. Calvert, and W. B. Pearson, Pearson's handbook of crystallographic data for 
intermetallic phases (ASM International, Materials Park, OH, 1991). 
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Primitive vectors: 

A1 = b X + a Y + a Z 

A2 = a X + b Y + a Z 

A3 = a X + a Y + b Z 

 

Basis vectors: 

B1  = + z1 (A1 + A2 + A3) = + z1 (2a + b) (X + Y + Z)    (Al) 

B2  = - z1 (A1 + A2 + A3) = - z1 (2a + b) (X + Y + Z)    (Al) 

B3  = + (½ + z1) (A1 + A2 + A3) = + (½ + z1) (2a + b) (X + Y + Z)   (Al) 

B4  = - (½ + z1) (A1 + A2 + A3) = - (½ + z1) (2a + b) (X + Y + Z)    (Al) 

 

B5  = + x1 A1 + (½ – x1) A2 + ¼ A3 

= + [(¾ – x1) a + x1 b] X + [(¼ + x1) a + (½ – x1) b] Y + [½ a + ¼ b] Z   (O) 

B6  = - x1 A1 - (½ – x1) A2 - ¼ A3 

= - [(¾ – x1) a + x1 b] X - [(¼ + x1) a + (½ – x1) b] Y - [½ a + ¼ b] Z  (O) 

B7  = + (½ - x1) A1 + (¼) A2 + x1A3 

= + [(¼ + x1) a + (½- x1) b] X + [(¼ + x1) a + (½ a + ¼ b] Y  

+ [(¾ – x1) a + x1 b] Z        (O) 

B8  = - (½ - x1) A1 - (¼) A2 - x1A3 

= - [(¼ + x1) a + (½- x1) b] X - [(¼ + x1) a + (½ a + ¼ b] Y  

- [(¾ – x1) a + x1 b] Z        (O) 

B9 =+ ¼ A1 + x1 A2 + (½ – x1) A3 

 = + [ ½ a + 1 /4 b] X + [(¾ - x1) a + x1 b] Y + [( ¼ + x1) a + (½ –x1)b] Z (O) 

B10 = - ¼ A1 - x1 A2 - (½ – x1) A3 

 = - [ ½ a + ¼ b] X - [(¾ - x1) a + x1 b] Y - [( ¼ + x1) a + (½ –x1)b] Z  (O) 
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Appendix B – Partial charge 

determination 

In most ionic or covalent systems the charges are not distributed as multitudes of the elementary 

charge unit. Often the charge is smeared out between the atoms and across the bonds. As a 

consequence, charges with an absolute value smaller than one elementary charge unit so-called 

partial charges are produced. A lot of approaches try to assign these partial charges to the 

corresponding atoms based on various sources such as the wave functions, the electron density, 

spectroscopy or other experimental data. Meister and Schwarz ** review a lot of methods.  

 

Propably, the most well-known method is the population analysis of the wave function by 

Mulliken ††. The Mulliken charges mul
aq  are obtained by subtracting the sum of products of 

overlap integrals ijS  with one-electron density matrix elements ijP from the nuclear charge aZ  

of an atom a .  

 





aji

jiija
mul
a SPZq

,

 (37.) 

 

Unfortunately, the result is known to be non-unique and that there can be artifacts. 

 

People performing DFT calculations usually obtain in the end of their calculation directly the 

electron density, which can be directly partitioned to derive the atomic charges. Famous 

methods for this are the Bader’s method ‡‡ which splits up the molecular density into non 

overlapping pieces by separating the surfaces through the density minima along gradient lines 

from one nucleus to another.  

 


atcompartmen

mola
bad
a drZq 3  (38.) 

 

Bader’s charges are generally expected to be too big in absolute values. 

 

                                                      
** 195 J. Meister and W. H. E. Schwarz, Journal of Physical Chemistry 98, 8245 (1994). 
†† 196 R. S. Mulliken, Journal of Chemical Physics 23, 1833 (1955). 
‡‡ 197 R. F. W. Bader, Atoms in molecules: a quantum theory (Clarendon Press, Oxford, 1990). 
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Hirshfeld charges §§ are claimed to be more realistic. They are based on the definition of a 

promolecule or procrystal by superposition of the atomic ground state electron densities. They 

are assumed to be overlapping, neutral and spherically averaged. 
a

apro  . The atomic 

Hirshfeld charge is then given by: 

 

.3 mol
pro

a
a

hir
a drZq 




 (39.) 

 

As the word procrystal indicates, this method fits well to describe the charge distribution 

assigned to point charges in a crystalline specimen. 

 

 

 

 

                                                      
§§ 198 F. L. Hirshfeld, Theoretica Chimica Acta 44, 129 (1977). 
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A personal retrospect 
This project for the simulation of O impurities in Al has many interesting aspects: Personally, I 

could apply a lot of my skills I gathered during my studies in computational science and 

engineering. The optimization of the charge determination problem of Streitz and Mintmire for 

the purpose of dilute O concentrations has been especially interesting for me. After a solution 

was found for this problem I have spent many weeks to program and test the serial and the 

parallel version of the MD code with variable charges and the local chemical potential 

approach. Mainly the parallel version has challenged me a lot. I knew the fitting of empirical 

potentials only from theory before I started my PhD and I have learned a lot in the practical 

execution of this task.  

 

One of my tasks has been the application of my developments to investigate the role of O 

impurities in nc Al. The field of nc metals (and also materials science in general) has been rather 

new to me. Reading the current literature, discussing with other people, but also travelling to 

courses, workshops and conferences broadened my personal horizon a lot. I have learned 

various things starting from as simple concepts as the one of interstitials in crystalline materials 

to the rather challenging interactions of impurities with e.g. GBs or dislocations. A lot of people 

have contributed in this learning process. So, I am at the point where I want to thank many of 

these people who have broadened my mind and contributed to the potential success of this 

thesis. 

 

First of all, I want to thank Prof. Helena Van Swygenhoven, my thesis director, for giving me 

the possibility to investigate this interesting topic. She set up an excellent environment to work 

in e.g. the stimulating infrastructure at PSI, the productive collaboration with Dr. Olivier 

Politano from U-Bourgogne in Dijon and the financial support for me and my family. During 

the thesis, Helena has contributed with several discussions on my topic. In such discussions the 

road map for the project has been adjusted from time to time. As group leader, she has cared 

also for a constructive and pleasant climate in the group. 

 

The technical advice during the work came mostly from Dr. Peter Derlet at PSI and from 

Olivier. Peter has always had an open door to discuss anything on a very detailed but also very 

theoretical level. With Olivier, the MD code has been transferred to a MD code with variable 

charges which includes all the developments presented in this thesis. Additionally further or 

other developments have been studied in literature and/or have even been tested in the code, e.g. 

multiple time-steps algorithms, separate thermostats for Al and O, the fast multipole method or 
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parallel solvers for linear systems of equations. Oliver also contributed a lot by his literature 

knowledge on the specific topic of simulation of O in metallic environments. All the three 

people mentioned so far have contributed a lot to my posters, presentations, and publications. 

Last but not least, they have also been critical readers and correctors of several versions of my 

thesis. 

 

As a next person, I want to thank Dr. Christian Brandl for sharing an office with me for more 

than three years. Christian and me, we have had a lot of supportive discussions. As both of us 

have been working in the field of atomistic simulations a regular transfer of knowledge but also 

computational tricks and tools has taken place. Prof. Erik Bitzek, a former postdoctoral 

researcher in the Materials Science and Simulation group, shared his knowledge on MD in 

generous way so that I could learn a lot from his advices. Especially, he pointed out the 

difficulty of the complexity of the nc samples. Samuele Chiesa has criticized my work on a 

more theoretical basis and has always been helpful to understand the physics behind the 

problems. All other group members contributed either scientifically or at least in making my life 

more enjoyable with dinners, parties or spending free time in the mountains. I thank all of them 

(Dr. Steven Van Petegem, Dr. Alexander Evans, Dr. Jorge Martinez Garcia, Dr. Stefan 

Brandstetter, Dr. Robert Maaß, Ning Gao, Julien Zimmermann, Deniz Kecik, Stephane Pierret, 

Michael Weisser, Cecile Marichal, Mario Velasco Sanchez and a few guest students) very much 

for the time we spent together. 

 

During the simulation of the bicrystals I have been in frequent e-mail contact with Dr. Vladimir 

Ivanov from George Mason University in Fairfax VA. I want also to thank him for his valuable 

support in terms of additional information and cross-checking of preliminary results.  

 

Beside the work at PSI I have had several chances to get advises for the continuation of my 

work in the form of private communications with professors. I want to mention here the 

conversation with Prof. Diana Farkas from Virgina Tech. in Blacksburg VA and Marc Hou from 

ULB in Bruxelles at the TMS Annual Meeting 2007 in Orlando, the comments of Yuri Mishin 

from George Mason University in Fairfax VA at the Small Scale Plasticity Workshop in 

Braunwald and the chat with Daniel Gianola from U Penn. in Philadelphia PA at the MRS Fall 

Meeting 2009 in Boston. 

 

For finishing my thesis I want to thank the readers Prof. Marc Hou from ULB in Bruxelles, 

Prof. Ralph Spolenak from ETH Zurich, and Prof. Efthimios Kaxiras, EPFL Lausanne for their 

constructive comments on my work. Additionally I want to thank Prof. Nadine Baluc, EPFL 

Lausanne for chairing the examination procedure.  
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Last but not least I feel the need to acknowledge my family: My wife Jolanda and my three kids 

Seraina, Olivia and Fabris. They have had the patience to let me work on this subject without 

being offered a fortune. My travelling, which I have appreciated a lot, has always been a hard 

time for my wife, as she has been alone with an increasing number of kids. But I have always 

felt a lot of support of them what has always been an additional motivation for me. 
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