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Abstract

The aim of this thesis is to build a system able to automatically and robustly track

human motion in 3–D starting from monocular input. To this end two approaches are

introduced, which tackle two different types of motion: The first is useful to analyze ac-

tivities for which a characteristic pose, or key-pose, can be detected, as for example in

the walking case. On the other hand the second can be used for cases in which such pose

is not defined but there is a clear relation between some easily measurable image quan-

tities and the body configuration, as for example in the skating case where the trajectory

followed by a subject is highly correlated to how the subject articulates.

In the first proposed technique we combine detection and tracking techniques to

achieve robust 3D motion recovery of people seen from arbitrary viewpoints by a single

and potentially moving camera. We rely on detecting key postures, which can be done

reliably, using a motion model to infer 3D poses between consecutive detections, and fi-

nally refining them over the whole sequence using a generative model. We demonstrate

our approach in the cases of golf motions filmed using a static camera and walking mo-

tions acquired using a potentially moving one. We will show that this approach, although

monocular, is both metrically accurate because it integrates information over many frames

and robust because it can recover from a few misdetections.

The second approach is based on the fact that the articulated body models used to

represent human motion typically have many degrees of freedom, usually expressed as



joint angles that are highly correlated. The true range of motion can therefore be repre-

sented by latent variables that span a low-dimensional space. This has often been used

to make motion tracking easier. However, learning the latent space in a problem inde-

pendent way makes it non trivial to initialize the tracking process by picking appropriate

initial values for the latent variables, and thus for the pose. In this thesis, it will be shown

that by directly using observable quantities as latent variables, this issues can be elimi-

nated.

Index Words: Human Body Detection and Tracking, Motion Models, Low-Dimensional

Embedding.



Sommario

Lo scopo di questa tesi é di costruire un sistema in grado di tracciare automatica-

mente e in maniera robusta il movimento umano in 3 dimensioni, a partire da una singola

sequenza video. Per questo obiettivo sono introdotti due approcci, che sono volti ad anal-

izzare due differenti tipologie di movimento: Il primo é utile per studiare attivit´a per le

quali é definibile una posa caratteristica, o posa chiave, come per esempio nel camminare.

Il secondo invece pu´o essere utilizzato per casi nei quali tale posa non é definibile ma vi

é una chiara relazione tra alcune quantit´a direttamente misurabili nell’immagine e la con-

figurazione del corpo, come ad esempio nel caso del pattinaggio nel quale la traiettoria

seguita dal soggetto analizzato é strettamente correlata a come muove le sue articolazioni.

Nel primo algoritmo proposto vengono combinate tecniche di rilevazione e traccia-

mento per stimare in maniera robusta il movimento di persone riprese da un punto di vista

arbitrario tramite una singola videocamera, eventualmente mobile. Esso si basa sul rileva-

mento di posture base, che pu´o essere effettuato in maniera affidabile, e utilizza modelli di

movimento per stimare le pose 3 dimensionali tra rilevamenti consecutivi. Queste stime

sono infine ottimizzate su tutta la sequenza utilizzando un modello generativo. Il fun-

zionamento di tale approccio é stato dimostrato su sequenze di golf, acquisite tramite una

videocamera statica, e su sequenze di persone che camminano, utilizzando una videocam-

era in movimento. Questa tecnica, seppure non stereo, é sia precisa metricamente, dato

che integra informazioni provenienti da molteplici immagini, sia robusta perch´e anche in



grado di sopperire a delle eventuali mancate rilevazioni

Il secondo approccio é invece basato sul fatto che i modelli articolati che sono in

genere utilizati per rappresentare il movimento umano hanno numerosi gradi di libert´a,

solitamente espressi in termini di angoli delle articolazioni che sono tra loro correlati. Per

questo motivo il reale spettro di movimenti pu´o essere rappresentato da variabili di minore

dimensionalitá in uno spazio sottodimensionale. Questa soluzione é stata spesso adottata

per rendere pi´u semplice la stima del movimento umano. Tuttavia, l’apprendimento di

tale rapprensentazione sottodimensionale in maniera indipendente dal tipo di problema

rende molto complessa l’inizializzazionedel processo di tracciamento, in particolare nella

selezione dei valori iniziali per le variabili sottodimensionali. In questa tesi verrá invece

mostrato come, utilizzando come variabili sottodimensionali delle misure direttamente

rilevabili dalle immagini, questo problema possa essere risolto.

Parole Chiave: Tracciamento del corpo umano, Modelli di movimento, Rappre-

sentazione sottodimensionale.
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Chapter 1

Introduction

Retrieving 3–D human body poses from monocular video sequences, as depicted by

Fig. 1.1, has many potential applications, such as video surveillance, animations for the

entertainment industry or performance analysis in sports, just to cite a few examples, and

has been addressed by the Computer Vision community for several years. The monoc-

ular approach has the advantage, over multi-camera motion capture, of being much less

expensive and also much easier to deploy, not needing ad-hoc engineered studios.

Unfortunately 3–D human pose estimation from a single sequence is often poorly-

constrained, due to reflection ambiguities, self-occlusion, cluttered backgrounds, non-

rigidity of tissue and clothing, and poor resolution. Some of such issues are shown in

Fig. 1.2. As a consequence some kind of prior information is needed to resolve ambigu-

ities, minimize estimator variance and to cope with occlusions. Moreover a good way to

exploit the images is also necessary, so that the tracking does not only depend on priors

but also on accurate and robust image measurements.

In this thesis we focus on robust tracking over long sequences. This is well beyond
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Figure 1.1: Human body tracking.First Column: Input images.Second Col-

umn: Results overlaid on the input images.Third Column: Results seen from

a different 3–D perspective.

the state of the art, which typically lacks robustness and involves very short sequences.

To this end, we have developed two algorithms able to handle different kinds of human

motion: For activities in which a characteristic pose, or key-pose, can be defined, as

for example in the walking case, we studied a technique to automatically initialize and

re-initialize the system after tracking failures, and more effectively exploit the image-

data, even in case of moving camera. On the other hand the second algorithm can be

used for cases in which such key-pose is not defined but there is a clear relation between

some easily measurable image quantities and the body configuration, as for example in

the skating case where the trajectory followed by a subject is highly correlated to how

the subject articulates. This approach allows the use of such directly measurable image

quantities to automatically infer a valuable estimation of the body pose.

20



(a) (b) (c)

Figure 1.2: Examples of issues.(a) Reflection ambiguity and self-occlusion:

If considering the silhouette only it is not clear which leg is in the front. More-

over the body occludes one of the arms.(b) Cluttered background. (c) Loose

clothes.

1.1 Motivation

Motion Capture applications range from the entertainment industry, including movies

and computer games, to surveillance, sport performance analysis and clinical studies.

Several recent movies like Pirates of the Caribbean and Harry Potter, and also computer

animated stories like Finding Nemo and Wall-E, made use of motion capture data to ani-

mate their characters in a more realistic and artistic way. Many computer games, such as

the NBA Live series and Pro Evolution Soccer to cite only a couple of best sellers, make

intensive use of motion capture to increase realism. Examples of surveillance applica-

tions are detection of atypical motions, the use of gait signature for recognition, and the

monitoring of physically impaired people. Finally motion capture systems are nowadays

being used to analyze performances and detect mistakes in sports such as golf and tennis,
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and also to study the effect of different types of prosthesis in clinical studies. Recently

there have also been some trials of using cameras to take sequences of moving people as

a Human-Machine interface, as all the efforts put in the Microsoft NATAL project show.

Over the years, because there are so many applications to tracking the human body

in 3 dimensions a number of approaches have been proposed, some of which are nowa-

days commercially adopted: For example the VICON [h] system relies on reflective mark-

ers placed on a special suit, whose 3D positions are then captured using a set of infrared

cameras (see Fig. 1.3(a)). Another approach involves directly placing accelerometers

and gyroscopes on the subject’s body in order to accurately collect data about his/her

motion [b, f], as shown in Fig. 1.3(b). In recent years, multi-camera systems have also

appeared. By engineering the environment and using many cameras, they can retrieve the

3D movement of one or more persons [Mitchelson 03, Starck 03, Horaud 09]. Unfortu-

nately, these systems are either invasive or require a very expensive set-up, both in terms

of money and time. For these reasons, a system that could capture 3D human motion

simply from standard video sequences would be a great improvement. Furthermore, it

could also be used to process pre-existing videos.

1.2 Goal and Contributions

In this work, we focused on designing and implementing fully automated systems

able to robustly track in 3–D people in monocular sequences of theoretically arbitrary

length. The approaches we developed include the following features:
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(a) (b)

Figure 1.3: Examples of Motion Capture systems.(a) Optical based system.

Several reflective markers are placed on a special suit, and their 3D position is

recovered through a set of infrared cameras, allowing an easy retrieval of the

body pose. (b) Inertial system. Small gyroscopes are attached to the body

limbs, in order to recover their position and orientation. Data are then sent to a

central computer for real-time elaboration.

• Robustness to long sequences:Most of the state of the art systems present results on

short sequences, the main issue being drift. Our algorithm on the other hand does

not suffer from this problem and, thanks to the detection phase, can easily recover

from tracking failures.

• Automatic initialization:Another common weakness of human body tracking sys-

tems is the initialization. Usually this is done manually, specially in single camera

settings. By contrast, our algorithm performs initialization fully automatically.
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• Intuitive parameterization of the motion:The articulated body models used to rep-

resent human motion typically have many degrees of freedom, usually expressed as

joint angles that are highly correlated. The true range of motion can therefore be

represented by latent variables that span a low-dimensional space. This has often

been used to make motion tracking easier. However, learning the latent space in

a problem independent way makes it non trivial to initialize the tracking process

by picking appropriate initial values for the latent variables, and thus for the pose.

In our work, we have shown that by directly using observable quantities as latent

variables, this issues can be eliminated.

To achieve such challenging tasks we have introduced some new technical ideas to

the tracking framework, that helped us in obtaining realistic and accurate results:

• Robust image measurements:To make the pose estimation match the input image

we have developed a couple of innovative image likelihood functions which allow

to track the subject even if the camera is moving. The first technique involves gen-

erating a synthetic image to be matched with the input one, while the second makes

use of Generalized Expectation Maximization to find correspondences between im-

age edges and body limbs.

• Exploiting the dependence between pose and global motion:Estimating the 3 di-

mensional trajectory of the body in a global coordinate system is also a very com-

plex task starting from a monocular input. The traditional ways of tackling it consist

either in learning the body root’s motion from the training data or in using a zero

acceleration model to obtain a smooth estimate. We have introduced another kind
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of prior, which directly relates the facing direction of the person and his motion,

which has proved to make the tracking results both accurate and very realistic.

By taking advantage of all this we contributed to advance the state of the art: As

a proof it is easy to assert that usual results on single-view 3–D people tracking include

simple activities like walking or running. Instead the framework we have developed can

be extended to motions which are much harder to track like golfing, skating and skiing.

1.3 Thesis Structure

The organization of this manuscript will be as follows: In Chapter 2 an extensive

review of the state of the art will be presented. Then Chapter 3 will describe the model

we used to represent the human body, explaining the different needed parameterizations.

In Chapter 4 we will introduce the first approach we have developed, which involves

studying how to take advantage of both the detection and tracking paradigms. Then in

Chapter 5 we will describe a second approach, which consists in generating a subspace

which has as dimensions image measurements and then using it for the tracking phase.

Finally Chapter 6 will enumerate conclusions and possible extensions of this work.
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Chapter 2

State of the Art

Nowadays, several ways exist to perform motion capture. Most commercially avail-

able techniques rely on inertial, electro-magnetic, acoustic or optical and infra-red de-

vices, while video-based motion capture, which is the main subject of this thesis, is not

considered to be solved yet. However, as also discussed in the previous chapter, the lat-

ter has lots of advantages compared to the former techniques: First of all it is orders of

magnitude cheaper, since it does not require any special hardware apart from a standard

video camera. Moreover, there is no need for the subject to wear special suits, nor to be

in ad-hoc engineered environments and therefore the behavior can be much more natural.

Finally video-based techniques could be applied also to pre-existing videos. For such

reasons we will first briefly discuss commercial approaches and then turn to the study of

video-based algorithms.
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2.1 Commercial Motion Capture Devices

The motion capture devices that are currently available on the marked can be di-

vided into optical ones, which are the most commonly adopted, inertial and electro-

magnetic.

• Optical motion capture systems can be of two types, either reflective or LED based.

They consist of a special suit to be worn by a subject. On this suit a set of small

ball-shaped markers is placed, usually in correspondence of the body joints. The

3D position of the markers is captured with the help of dedicated infrared cameras

which also emit light, in the case of reflective markers, or simply collect the light

emitted by the LEDs, in the active markers case. Then the body motion is recovered

with the help of a semi-automatic piece of software, which fits a kinematic skeleton

to the marker measurements. For this reason the tracking results are not available

in real-time but need some post-processing. The number of cameras composing

such systems can vary a lot, starting from 3 to 64 and even more, and is directly

proportional both to the quality of the obtained results (mostly due to the fewer

occlusions) and to the global cost of the system. Examples of such systems are the

Vicon [h] (Fig. 1.3 (a)), the Motion Analysis [c] systems and the Impulse system

by PhaseSpace [e] (Fig. 2.1 (a)).

• Inertial systems are usually based on a suit, called exo-skeleton, onto which minia-

ture gyroscopes are placed, at different body locations. The data collected by such

inertial sensors are then sent to a computer which processes them in real-time and

recovers the full body motion. The advantages with respect to optical motion cap-

28



ture systems are that they do not suffer from occlusions, can cover larger spaces,

are more portable and less expensive. On the other hand they are a bit less accurate

and can suffer from drift of the estimates. Examples of inertial system are the Meta

Motion Gypsy system [b] (Fig. 1.3 (b)) and the Xsens MVN system [d] (Fig. 2.1

(d)).

• Electro-Magnetic systems consist of an array of receivers that measure their spa-

tial relationship to a nearby transmitter. They are placed on the subject’s body and

are all connected to an electronic control unit. The transmitter generates a low-

frequency electromagnetic field which is detected by the receivers and input to an

electronic control unit, where it is filtered and amplified, and then finally sent to

a central computer where the software resolves each sensor’s position and orienta-

tion. Such systems work in near real-time and are less expensive than optical ones,

but can encounter problems in presence of different types of metal, thus making

the output data quite noisy. They also allow to track different subject simultane-

ously, but also in this case some interferences are possible. An additional issue is

that the performers are constrained by cables in most cases. Examples of electro-

magnetic systems are the Polhemus Liberty [g] (Fig. 2.1 (b)) and the MotionStar

Ascension [a] (Fig. 2.1 (c)).

2.2 Video-Based Motion Capture

Existing approaches to video-based 3–D motion capture remain fairly brittle for

many reasons: Humans have a complex articulated geometry overlaid with deformable
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(a) (b) (c)

(d)

Figure 2.1: Commercial Motion Capture systems.(a) PhaseSpace Impulse Sys-

tem, which is also based on reflective markers. An example of reconstructed and

animated pose is shown.(b) Polhemus Liberty System, based on an electromag-

netic field. It is capable to track sensors’ in 6 degrees of freedom at a 240Hz

rate.(c) MotionStar Ascension System. It is a wearable system but as can be no-

ticed from the image it is quite cumbersome for the subject.(d) Xsens MVN is a

wearable inertial based motion capture tracker. Small gyroscopes are embedded

in the suit, to allow an accurate motion reconstruction of the subject.
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tissues, skin, and loose clothing. Their motion is often rapid, complex, self-occluding

and presents joint reflection ambiguities. Furthermore, the 3–D body pose is only par-

tially recoverable from its projection in one single image, where usually the background

is cluttered and the resolution is poor. Reliable and robust 3–D motion analysis there-

fore requires good tracking across frames, which is difficult because of the poor quality

of image-data and frequent occlusions. Recent approaches to handling these problems

can roughly be classified into those that given a single input frame estimate the subject’s

pose (i.e. discriminative approaches) and those that track the subject in time during mul-

tiple consecutive frames, which in such hard conditions require a strong prior. In the

remainder of this chapter, after a brief analysis of multi-view techniques that we give

only for completeness’ sake since in this thesis we only study monocular input, there will

be a description of some detection algorithms, followed by an analysis of pure tracking

approaches. Finally a comparison of the algorithms proposed in this thesis with other

hybrid ones will conclude the chapter. Of course we plan to cover only the works that are

more related to this thesis since the literature in the people detection and tracking field is

too large to be totally covered. We refer to [Moeslund 06] for an extensive survey.

2.2.1 Multi-View Human Pose Estimation

Multi-camera techniques usually require quite expensive engineered studios, as the

ones shown in Fig 2.2, to work correctly. In general, they can be classified as shape-

based and motion-based. The so-called shape-based methods make use of 2–D shape cues

like silhouettes and edge [Starck 03, Kakadiaris 00, Delamarre 99, Moeslund 00] or 3–D

31



shape cues like voxels [Chu 03, Mikic 03, Muendermann 07, Sundaresan 08]. Usually

the voxel representation of a person gives useful information about the 3–D shape and is

often used in pose retrieval. Moreover these methods can be also 3–D model-based, as

for example [Starck 03]. Instead the motion-based techniques [Yamamoto 98, Bregler 98]

use information such as optical flow to track the pose. Typically these methods estimate

pose variation and assume that the initial pose is available, while shape-based ones can

be used both to initialize the pose and to perform tracking.

We first describe some approaches where an initial pose is not required: In [Mikic 03,

Muendermann 07] all the steps for pose retrieval are performed using voxel based tech-

niques, while in [Chu 03] volume data is used to acquire and track a human body model.

Instead in [Cheung 03] the body kinematics are estimated using shape from silhouettes,

with the drawback that the subject is asked to move one joint at a time to initialize the

pose.

Other techniques instead, as mentioned above, require an initial pose estimate:

Motion-based approaches like [Yamamoto 98, Bregler 98] make use of optical flow, while

shape-based ones make use of different cues. The technique presented in [Gavrila 96] for

example uses a generate-and-test algorithm in which the pose search is performed in a

parameter space, and then the pose is matched to the input using a variant of Cham-

fer matching. In [Kakadiaris 00] silhouettes from multiple cameras are used to estimate

the 3–D motion, similarly to what is done in [Delamarre 99], where the authors use sil-

houettes in conjunction to 3–D articulated models: Forces are applied to the contours

obtained from the model projection so that they move towards the silhouette contours.

Also in [Moeslund 00, Starck 03] a 3–D model is animated and fitted to the input using
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(a)

(b)

Figure 2.2: Multi-camera settings in engineered studios. (a) The Multi-Camera

and Multi-Lighting Dome at the Tsinghua University of Beijing, China. (b) The

Grimage system at the INRIA-Rhone Alpes in Grenoble, France.
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correspondences from silhouette, stereo and feature cues. Finally in [Sigal 03, Sigal 04]

nonparametric belief propagation is used to track motion in a multicamera setup.

To summarize the pros and cons of such methods, we can argue that motion-based

trackers suffer from the problem of drift, i.e. they estimate the change in pose from frame

to frame and as a result the error accumulates over time. On the other hand, shape-based

methods rely on absolute cues and do not face the drift problem but shape cues are very

likely non extractable in every single input frame. They typically attempt to minimize

an objective function (which measures the error in the pose) and are prone to converge

to incorrect local minima. Specifically, background subtraction or voxel reconstruction

errors in voxel-based methods result in cases where body segments are missing or adjacent

body segments are merged into one.

2.2.2 People Detection

A standard detection approach implies recognizing postures from a single im-

age by matching it against a database and has become increasingly popular recently:

In [Thayananthan 03] the authors propose a Chamfer matching technique to match shapes,

and in [Dimitrijevic 06] a similar approach is applied to human silhouettes. They show

that such a technique is robust to clutter, but nonetheless requires the use of multiple

templates to handle pose, scale and viewpoint changes in the subject. Also in [Howe 04]

Chamfer distance is used, but in this case to make a direct silhouette lookup to select

candidate poses from a training database.

The authors of [Agarwal 04] instead directly learn a mapping between shape de-
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scriptors, extracted from silhouettes, and pose, using nonlinear regression. Their algo-

rithm is also view-independent since the mapping is learnt from silhouettes obtained by

projecting 3–D models onto several viewing planes. A similar idea was earlier devel-

oped in [Rosales 01], in which the mapping from visual features of a segmented person

to a static pose is learnt using neural networks, in a framework which is invariant to

speed and direction of movement. Also in [Shakhnarovich 03] a mapping from input

silhouettes to estimated pose is studied, with the slight difference that this mapping is

purely exemplar-based and makes use of efficient hashing functions to achieve a faster

computation. Recently more sophisticated techniques using Bayesian Mixture of Ex-

perts [Sminchisescu 05, Bo 08] and mixture of Gaussian Process [Urtasun 08a] made this

mapping more powerful, by increasing the number of examples in the training set and

decreasing the computation time by orders of magnitude.

A related idea is proposed in [Elgammal 04] where the authors learn two mappings,

one from the visual input, which is again a silhouette, to an activity dependent manifold,

and then another mapping from such manifold to the 3–D body pose.

In [Mori 04] a different idea is presented, in which body parts detectors are com-

bined in a bottom-up fashion to retrieve a 2D representation of the body pose, with the

advantage of using as input a standard image and not a clean silhouette. This idea orig-

inarily comes from [Forsyth 97], where the authors first introduced the notion ofbody

plansto represent people or animals as a structured assembly of parts learnt from images.

A further evolution of such idea has been recently presented [L. Bourdev 09], in which

the authors introduce the concept ofposelets, which basically constitute parts that are

tightly clustered in both appearance and configuration space, as shown in Fig. 2.3. Then
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Figure 2.3: The poselets approach presented in [L. Bourdev 09]. The poselets

correspond to parts that are clustered both in the appearance and configuration

space. The figure shows examples of the Frontal Face, Right Arm crossing Torso,

Pedestrian, Right Profile, and Shoulder and Legs Frontal View poselets.

an additional classification layer allows to use the poselets as a starting point to estimate

the 3–D pose of the subject. A related bottom-up technique is the use of pictorial struc-

tures [Felzenszwalb 00], which has also been applied to the people detection and pose

estimation problem [Andriluka 09].

On the other hand, in [Leibe 05] a higher level technique is presented, which can

locate and track multiple pedestrians in very cluttered scenes, with the drawback of not

being able to estimate their pose.

In general the use of such discriminative algorithms has several drawbacks: They
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usually require very large sets of examples to be effective, and in this context it was

even proposed in [Enzweiler 08] to artificially increase the size of the training set through

selective sampling of a generative model. Moreover they often rely on background sub-

traction and on clean silhouettes, such as those that can be extracted from the HumanEva

dataset [Sigal 06], which require static cameras or controlled environments. Finally these

methods are usually able just to obtain a good reconstruction of the body pose but cannot

correctly locate people in a 3–D environment.

2.2.3 People Tracking

Contrary to detection, tracking involves predicting the pose in a frame given ob-

servation of the previous one. It requires thus an initial pose and can easily fail if er-

rors start accumulating in the prediction, causing the estimation process to diverge. The

possibility of drifting is usually mitigated by introducing sophisticated statistical tech-

niques for a more effective search. For example [Deutscher 00] and [Davison 01] pro-

pose the use of an annealed particle filtering technique to effectively optimize the very

high-dimensional objective function matching the body configuration to the input images.

Similarly, in [Choo 01] an Hybrid Monte Carlo filter is used to obtain samples in such a

high-dimensional space. Instead, in [Wu 03] the authors propose to divide the problem

in subparts, which are separately analyzed using a Dynamic Markov Network, and then

these smaller subproblems interact through a Mean Field Monte Carlo algorithm to solve

the higher dimensional problem. Finally, the authors of [Sminchisescu 03a] observed that

the direction of maximal uncertainty is where alternative poses with good correspondence
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to the input are most likely to be found. For this reason they introduced a technique named

covariance scaled sampling, still based on particle filters, which increases the covariance

in such direction to generate samples close to local minima in the objective function. In

a successive work [Sminchisescu 03b] they also studied the causes of visual ambiguities,

as potential kinematic minima, and incorporated them in the sampling process to make

pose estimation more robust and efficient.

An alternative solution is to use strong dynamic motion models as priors:

In [Sidenbladh 00] both the use of a constant velocity model and of a walking specific one

are proposed. In [Ormoneit 01] a set of training motions is used to learn the body dynam-

ics, using PCA. On the same direction also in [Sidenbladh 02] the same authors propose

an algorithm to match the motion dynamics of the body in the scene to one of the training

examples, which is then used to estimate the future motion. A very similar idea, whose

output is shown in Fig. 2.4, is described in [Rosenhahn 07], where tracking is performed

in a multi-camera environment with the help of a 3–D model of the subject, and tracked

motion patterns are matched to training patterns to predict future poses. The authors

of [Urtasun 06] propose instead the use of a Gaussian Process Dynamical Model (GPDM)

to learn both a low dimensional embedding of the motion and a dynamical model inside

such embedding. In [Taycher 06] the use of a Conditional Random Field model is pro-

posed to make the estimation problem discrete and thus efficiently solvable. Furthermore

in [Rosenhahn 09] the authors show how, also in a multi-camera setting, incorporating

suitable motion priors can help in regularizing and stabilizing the tracking results. In this

case the correct prior to apply is chosen after a first rough classification of the type of ac-

tivity that the subject is performing. In recent years also the application of physics-based
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Figure 2.4: Tracking results of the approach presented in [Rosenhahn 07], where

a 3–D model of the subject is available and tracked motion patterns are matched

to training ones to estimate future poses.

models to tracking has shown good results [Brubaker 07, Brubaker 08, Vondrak 08]. The

physics-based approaches are attractive for motions such as walking or running for which

appropriate models have been developed. For others, assuming that motion-capture data

can be obtained, the learning-based approaches are much easier to deploy. They all rely

on the fact that the space of poses for a particular activity can be modeled as a low-

dimensional manifold, embedded in the much higher-dimensional space of all possible

poses of an articulated human body model. As a result, recovering sequences of body

poses can be achieved by optimizing over the low-dimensional manifold rather than the

high-dimensional pose space.

To this end, the manifold is usually parameterized by a few latent variables and
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the mapping between them and the poses, or pose sequences, can be either linear, as

in [Sidenbladh 00, Ormoneit 01, Urtasun 04], or not [Elgammal 04, Sminchisescu 04,

Urtasun 05, E.-J-Ong 06]. For example, in [Urtasun 05], a Gaussian Process Latent Vari-

able Model (GPLVM) [Lawrence 04] was used to learn a differentiable manifold from

modest amounts of training data, which allowed motion recovery by continuous opti-

mization of an image-based objective function. There has been attempts at constrain-

ing the topology of the latent space to assume known configurations, such as circles,

or to respect the distances in the high-dimensional space between neighboring exam-

ples [Urtasun 08b]. However, such techniques still require learning a latent space, which

remains a complex optimization problem, whereas, in the algorithm proposed in Chapter

5, we propose to directly make use of directly observable image quantities as a latent

space.

Another issue with such approaches is that usually the latent variables have no phys-

ical meaning and are hard to initialize from image data. In GPLVM approaches such

as [Urtasun 05], the process is initiated by finding a training example that best fits the

data and using the corresponding latent variable for initialization purposes. This implies

a search that our technique avoids. This difficulty was addressed in [Navaratnam 07,

Shon 06, Ham 06] by learning a common low-dimensional latent space both for pose

and image data. However, because learning the joint latent space is more involved than

learning individual latent spaces, standard techniques require more training data than is

normally available. As a result, the authors of [Navaratnam 07] had to develop a more

sophisticated algorithm able to use not only examples for which the correspondence be-

tween pose and image data is known, but also examples for which it is not. Unfortunately,
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learning a GPLVM is computationallyexpensive and sensitive to initializationof the latent

variables. Furthermore, it yields a complex objective function with many local minima,

which is not always ideal for inference purposes.

In the algorithm described in Chapter 5, by contrast, we rely on ordinary Gaussian

Processes (GP) [Rasmussen 06] to establish a direct mapping between low-dimensional

observable image data and the high dimensional pose space. Since fewer parameters need

to be learned, training is more straightforward and requires far less data. Initialization is

similarly easy since the image data directly give us a mapping to a pose sequence, which

we then simply need to refine. As described in the previous section, GPs were also used

in [Urtasun 08a] to map image data directly to 3–D poses. To model the multimodality of

this mapping, they required using not a single GP but a mixture of them. In our case, due

to our choice of image measurements, and because we map them to sequences of poses,

the mapping is unimodal and can be modeled with a single GP.

2.2.4 Approaches combining Detection and Tracking

Neither detection nor tracking has yet been proved to be superior, and both are ac-

tively studied and sometimes combined: Manually introducing a few 3–D keyframes is

known to be a powerful way to constrain 3–D tracking algorithms [DiFranco 01, Loy 04].

In the 2–D case, it has recently been shown that this can be done in a fully automated fash-

ion to track multiple people in extremely long sequences [Ramanan 06]. This involves

tracking forwards and backwards from individual and automatically detected canonical

poses, and the results of such algorithm are shown in Fig. 2.5 (a). While effective, this
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approach to tracking still has the potential to diverge. In the approach described in Chap-

ter 4 of this thesis, we avoid this problem and go to full 3–D by observing that automated

canonical pose detections can be linked into complete trajectories, which let us first re-

cover rough 3–D poses by interpolating between these detections and then refining them

by using a generative model over full sequences. A similar approach has been proposed

for 3–D hand tracking [Tomasi 03] but makes much stronger assumptions than we do

by requiring high-quality images so that the hand outlines can accurately and reliably be

extracted from the background.

More recently a similar technique has been developed also by other researchers:

Andriluka et al. [Andriluka 08] start from the idea presented in our first paper [Fossati 07]

and described in Chapter 4 of this thesis. They propose an algorithm that, mixing detec-

tion and tracking, is able to cope with multiple pedestrians and large occlusions, but which

only gives 2–D results, with a very rough pose estimation that does not include the arms’

positions, as visible in Fig. 2.5 (b). Another drawback of such technique is that it only

works if the viewpoint is static and from the side of the subjects, with a small tolerance.

A further similar idea has been presented in [Gammeter 08], where the authors propose

a framework that uses as input a narrow-baseline stereo stream, captured with the help

of a special moving rack, therefore with much richer input cues than the ones we adopt.

It first detects and tracks in 3–D bounding boxes around pedestrians, using a previously

published technique by the same authors [Ess 08], and then estimates the body articula-

tion of such pedestrians by learning a mapping between silhouettes and poses with the

help of Gaussian Processes, assuming that subjects are continously walking. The results

of such technique are presented in Fig. 2.5 (c).
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(a)

(b)

(c)

Figure 2.5: Body Pose Estimation combining Detection and Tracking. (a)

Tracking algorithm proposed in [Ramanan 06]. It tracks the subject in 2–D

in very long sequences. (b) The approach presented in [Andriluka 08] can

handle multiple pedestrians and large occlusions but the pose estimation is

quite rough. (c) Pose estimation results obtained with the algorithm presented

in [Gammeter 08], which requires a narrow-baseline stereo stream as input.
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Finally it must be stated that the work presented in Chapter 4 of this thesis builds on

some earlier results. We rely on spatio-temporal templates to detect the people in canoni-

cal poses [Dimitrijevic 06] and on PCA-based motion models [Urtasun 06] to perform the

interpolation. However, unlike in this latter paper, our system does not require manual ini-

tialization. This means that we had to develop a strategy to link detections, infer initial

3–D poses from them, and perform the pose refinement even when the camera moves or

the background is cluttered. As a result, we can now operate fully automatically under far

more challenging conditions than before.
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Chapter 3

Human Body and Motion

Parameterization

3.1 Human Body Model

We represent the human body as cylinders attached to an articulated 3–D skeleton

as shown in Figure 3.1. Our body model has standard dimensions and proportions, thus

it allows us to obtain reasonable tracking results on different subjects without the need of

being specifically trimmed. In this case using a model that is slightly too small or too big

simply results in variations in the recovered camera position with respect to the subject,

due to the scale ambiguity inherent to monocular reconstruction.

Adapting the skeleton proportions would have required an a priori knowledge of

their more likely variations, as was done for example in [Balan 08] using the SCAPE

model [Anguelov 05] depicted in Fig. 3.2, which required a few thousands of laser scans

of real people to be built. Basically it allows to control the the body shape, along the
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Figure 3.1: Cylinder-based representation used as human body model in our

experiments.

directions of maximal inter-person variance, by tuning few PCA parameters.

Other complex models that have been proposed and used in literature are for ex-

ample superquadrics (introduced in [Barr 84] and used in the body tracking context

in [Sminchisescu 03b]), shown in Fig. 3.3 (a), implicit surfaces [Dewaele 04, Herda 04,

Plänkers 03], depicted in Fig. 3.3 (b), and also directly 3–D meshes [Carranza 03,

Starck 03, Starck 05, Franco 05, Gall 10], shown in Fig. 3.3 (c) and (d). All such models

are definitely more accurate than the simple cylinder-based one, but on the other hand

have several drawbacks in the cases we take into consideration: First of all a model of

the tracked subject would be needed, thus requiring bulding a new one for each different

subject, while our model is general and has been used for all the subjects shown in our

experiments. Secondly, being more complex, they are also computationally heavier in

case of rendering. Since all the generative techniques developed in this thesis require a

projection of the body model onto the images to evaluate the objective function, and since

several of such evaluation need to be performed in our stochastic optimization frame-
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Figure 3.2: The SCAPE model has been developed by Stanford University and

Intel through laser scan on several thousands of real people [Anguelov 05].

work, a simple model allows very large savings in terms of computation time. Finally

and additional point is that accurate models require a very high quality input (i.e. multi-

camera settings, usually in very well engineered studios) to fit the images. In cases such

as ours, where the video stream is monocular, the resolution not too high and other pos-

sible shortcomings like cluttered backgrounds and occlusions usually occur, the robust

tracking framework we propose is able to produce reliable results even with the simple

cyilinder-based model we adopt.

3.2 Pose and Motion Definition

A pose, whether canonical or not, is given by the position and orientation of the

body root node, defined at the sacroiliac, and a set of joint angles. More formally, letD

denote the number of joint angles in the skeletal model (usuallyD was fixed to 51 in our

experiments, as better depicted in Figure 3.4). A pose at timet is then given by a vector of
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(a)

(b)

(c)

(d)

Figure 3.3: (a) Superquadrics models used in [Sminchisescu 03b]. (b) Implicit

surface reconstruction of the human body, proposed in [Plänkers 03]. (c) 3D

mesh representing the human body reconstructed in a multi-camera setup, as

proposed in [Carranza 03]. (d) Another 3D mesh reconstruction of the human

body from multiple video streams, proposed in [Starck 03].
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Figure 3.4: Skeleton representing the joint angles used in our body pose estima-

tion algorithms. The markers correspond to the body joints, and the configuration

of each one of the joints is described by 3 Euler angles.

joint angles, denotedψt = [θ1, · · · , θD]T , along with the global position and orientation

of the root

gt ∈ R6 . (3.1)

A motionbetween two canonical poses can be viewed as a time-varying pose. While

pose changes continuously with time, we assume a discrete representation in which pose

is sampled atN distinct time instants. In this way, a motion becomes a sequence ofN

discrete poses

Ψ = [ψT
1 , · · · , ψT

N ]T ∈ RD N , (3.2)

G = [gT
1 , · · · ,gT

N ]T ∈ R6 N .

Since motions can occur at different speeds, we encode them at a canonical speed and
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time-warp them to represent other speeds. We let the pose vary as a function of a phase

parameterµ that is defined to be 0 at the beginning of the motion and 1 at the end. For

periodic motions such as walking, the phase is periodic. For generic ones such as swing-

ing a golf club, it is not. The canonical motion is then represented with a sequence of

N poses, indexed by the phase of the motion. For framen ∈ [1, N ], the discrete phase

µn ∈ [0, 1] is simply

µn =
n− 1

N − 1
. (3.3)

3.3 PCA on Poses

A standard approach to human body tracking is based on retrieving the body pose

independently in each frame. One of the main issues about this idea is that there are too

many variables that need to be optimized at the same time, namely theD-dimensional

vectorψ of joint angles and the 6-dimensional vectorgt describing position and orienta-

tion of the body root. In practice, we learn motion models from optical motion capture

data including different subjects performing the same activity several times. For walk-

ing, we used a Vicontm system to capture the motions of four men and four women on

a treadmill at speeds ranging from 3 to 7 km/h by increments of 0.5 km/h. The body

model hadD = 51 degrees of freedom. Four cycles of walking at each speed were used

to capture the natural variability of motion from one gait cycle to the next for each per-

son. Similarly, to learn the golf swing model, we asked two golfers to perform 24 swings

each. Therefore, considering the fact that there is a good prior concerning the motion

model to be used, applying Principal Component Analysis to our training data to reduce
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Figure 3.5: Low-dimensional embedding of the pose space. Each point in the

latent PCA space, on the left, corresponds to a body pose in the high dimensional

body configuration space, on the right.

the dimensionality of the problem, as shown in in Figure 3.5, results to be the best option.

With such procedure all the poses in our training set can be approximated through a linear

combination of the mean poseψ0 and a set ofeigen-poses{ψi}d
i=1 :

ψ ≈ ψ0 +

d∑

i=1

βiψi . (3.4)

The scalar coefficients,{βi}, characterize the pose, andd ≤ D controls the fraction of

the total variance of the training data that is captured by the subspace.
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3.4 PCA on Sequences

Optimizing the pose in each frame independently leads to quite accurate results if

considered frame-wise, but the output sequences may suffer from jittering. For this reason

an alternative approach is to optimize the objective function over the full sequence at one

time, be it a walking cycle or a golf swing, and to make this manageable a different low

dimensional embedding of our training data needs to be adopted. Given a training set

of motions, denoted{Ψj}, where each motion is composed byN consecutive poses as

explained in Section 3.2, we use Principal Component Analysis to find a low-dimensional

basis with which we can effectively model them, as visually explained by Figure 3.6. In

particular, the model approximates motions in the training set with a linear combination

of the mean motionΘ0 and a set ofeigen-motions{Θi}m
i=1 :

Ψ ≈ Θ0 +
m∑

i=1

αiΘi . (3.5)

The scalar coefficients,{αi}, characterize the motion, andm ≤ DN controls the fraction

of the total variance of the training data that is captured by the subspace.

A pose can then be defined as a function of the scalar coefficients,{αi}, and a phase

value,µ. We therefore write

ψ(µ, α1, · · · , αm) ≈ Θ0(µ) +

m∑

i=1

αiΘi(µ) . (3.6)

Note that nowΘi(µ) areeigen-poses, andΘ0(µ) is the mean pose for that particular phase.

A linear subspace representation like PCA has the advantages of being very simple

and very fast to compute. On the other hand in the literature, as explained in Chapter 2,
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Figure 3.6: Low-dimensional embedding of the motion space. Each point in

the latent PCA space, on the left, corresponds to sequence of poses in the high

dimensional motion space, on the right.
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also more complex and non-linear embeddings, like Kernel PCA, Local Linear Embed-

ding, or Gaussian Process Latent Variable Models, have been successfully adopted in the

Human Body Tracking context. We still believe that to model relatively simple activities

like walking or golfing a linear subspace is a good compromise between complexity and

model elasticity, and this will be proved in the next chapters.
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Chapter 4

Bridging the Gap between Detection

and Tracking

We combine detection and tracking techniques to achieve robust 3–D motion recov-

ery of people seen from arbitrary viewpoints by a single and potentially moving camera.

To do this we detect key postures, which can be done reliably, using a motion model to

infer 3–D poses between consecutive detections, and finally refining them over the whole

sequence using two different techniques.

We demonstrate our approach in the cases of golf motions filmed using a static

camera and walking motions acquired using a potentially moving one. We will show

that our approach, although monocular, is both metrically accurate because it integrates

information over many frames and robust because it can recover from a few misdetections.
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4.1 Approach

We first use a template-based algorithm [Dimitrijevic 06] to detect people in poses

that are most characteristic of the target activity, as shown in the first row of Fig. 4.1.

The templates consist of consecutive 2–D silhouettes obtained from 3–D motion capture

data seen from six different camera views and at different scales. This way the motion

information is incorporated into the templates and helps to distinguish actual people who

move in a predictable way from static objects whose outlines roughly resemble those of

humans. For each detection, the system returns a corresponding 3–D pose estimate.

In theory, a person should be detected every time a key pose is attained, which the

template-based algorithm does very reliably. The few false positives tend to correspond

to actual people but detected at somewhat inaccurate scales or orientations and false neg-

atives occur when the relative position of the person with respect to the camera generates

an ambiguous projection and the key pose becomes hard to distinguish from others. In

our experiments, this almost never happened in the golfing case and sometimes did in the

walking case when the camera moved and saw the subject against a cluttered background

from a difficult angle. To handle such cases, we have implemented a Viterbi-style algo-

rithm that links detections into consistent trajectories, even though a few may have been

missed. Since the camera may move, we perform this computation in the ground plane,

which we relate to the image plane via a homography that is automatically recomputed

from frame to frame, after a first manual initialization.

Finally, we use consecutive detections to select and time-warp motions from a train-

ing database obtained via optical motion capture. As shown in the second row of Fig. 4.1,
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Figure 4.1: Our approach.First row: Input sequence acquired using a moving

camera with silhouettes detected at the beginning and the end of the walking

cycle. The projection of the ground plane is overlaid as a blue grid.Second

row: Projections of the 3–D poses inferred from the two detections.Third row:

Synthesized images that are most similar to the input.Fourth row: Projections

of the refined 3–D poses.Fifth row: 3–D poses seen from a different viewpoint.
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this gives us a rough estimate of the body’s position and configuration in each frame

between detections. To refine this initial estimate, and since the camera may move from

frame to frame, we first compute homographies between consecutive frames and use them

to synthesize a background image from which the moving person has been almost com-

pletely removed. When we know the camera to be static, we synthesize the background

image by simple median filtering of the images between detections. At this point we pro-

pose two different image likelihood functions. In the first case we learn an appearance

model from the detections and use it in conjunction with the synthesized background to

refine the body position by minimizing an objective function that represents the likelihood

of the observed image under the current model. In the second case, we adopt Generalized

Expectation Maximization to match the body limbs to the image edges. Using the ap-

pearance based approach we obtain the refined poses depicted by the bottom three rows

of Fig. 4.1.

In the remainder of this chapter, we first briefly describe our approach to detect-

ing people in canonical poses, second to using these detections to estimate the motion

between frames, and, finally, to refining this estimate.

4.2 Key-Pose Detection

To reconstruct golf swings, we treat as canonical poses the transition between the

upswing and the downswing and the end of the upswing, as shown in Fig. 4.2. Since there

is a little motion of the golfer’s center of gravity during the swing, we take thegt vectors

of Eq. 3.1 to be initially all equal, and during the optimization we only allow a rotation
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(a) (b)

Figure 4.2: Key pose detections at the beginning and at the end of a golf swing.

around thez axis. Furthermore, since the camera is static in the examples we use, we

simply median filter frames in the whole sequence to synthesize the background image

we need to run the pose refinement algorithm of Section 4.5.

To track walking people, we use the beginning of the walking cycle, when the legs

are furthest apart, as our canonical pose. Our spatio-temporal templates detect this pose

reliably but with the occasional false positive and false negative. Such errors must be

eliminated and the valid detections linked into consistent trajectories, which is more in-

volved than in the golf case since people move over time and the camera must be allowed

to move as well to keep them in view.

As also explained in [Dimitrijevic 06], people in canonical poses are detected us-

ing spatio-temporal templatesthat are sequences of three silhouettes of a person, such as

the ones of Fig. 4.3(c). The first corresponds to the moment just before they reach the

target pose, the second to the moment when they have precisely the right attitude, and

the third just after. Matching these templates against three-image sequences let us differ-

entiate between actual people who move in a predictable way and static objects whose
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(a)

(b) (c) (d)

Figure 4.3: Creating spatio-temporal templates. (a) Eight virtual cameras are

placed around the model. Viewpoints 3 and 7 are not considered because they

are not discriminant enough, resulting in six different training views. (b) A tem-

plate corresponding to a particular view consists of several silhouettes computed

at three consecutive instants. The small blue arrows in image Camera 1 / Frame

1 represent edge orientations used for matching silhouettes for some of the con-

tour pixels. (c) The three silhouettes of a walking template are superposed to

highlight the differences between outlines. (d) Superposed silhouettes of a golf

swing template.
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outlines roughly resemble those of humans, which are surprisingly numerous. As a re-

sult, it turns out to be much more robust than earlier template-based approaches to people

detection [Olson 97, Gavrila 99, Giebel 04].

As shown in Fig. 4.3(a), to build these templates, we introduced a virtual character

that can perform the same captured motions we used to build the motion model discussed

in Chapter 3 and rendered images as seen from virtual cameras in six different orien-

tations. The rendered images are then used to create templates such as those depicted

by Fig. 4.3(b). They are rescaled to seven different sizes ranging from 52×64 to 92×113

pixels, so that an image at one scale is 10% larger than the image at one scale below. From

each one of the rendered images, we extract the silhouette of the model. Each template

is made of the silhouette corresponding to the canonical pose, the one before, and the

one after. The silhouettes are represented as sets of oriented pixels that can be efficiently

matched against image sequences. We refer to [Dimitrijevic 06] for further details.

4.3 Linking Detections to obtain 2D Trajectories

In our scheme, people should be detected at the beginning of every walking cycle

but are occasionally missed. To link these sparse detections into a complete trajectory,

we have implemented a Viterbi-style algorithm. It is important to note that the system

is trained on a very specific pose, the left leg in front of the right one, which helps our

algorithm resolve ambiguities by giving higher scores to the correct detections. We could

have used two keyposes instead of one for each walking cycle, but we empirically found

that using one was a good trade-off between tracking robustness and computational load.
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As shown in Section 4.7 even missing a detection out of two can still lead to reliable

results. Finally these detections include not only an image location but also the direction

the person faces, which is an important cue for linking purposes.

Ground Plane Registration Since the camera may move, we work in the ground plane,

which we relate to each frame by a homography that is computed using a standard tech-

nique [Simon 00], illustrated in Fig. 4.4. In practice, we manually indicate the ground

plane in one frame and compute an initial homography between it and the world ground

planeGw –Hw
0 . Then, we detect interest points in both the reference frame and the next

one and match them. From the set of correspondences we compute the homographyH0
1

between the subsequent frame’s ground plane and the reference frame’s ground plane,

and further the homographyHw
1 from the subsequent frame’s ground plane to the world

ground plane. We repeat this process for all the framesIi, i = 1..N obtaining the ho-

mographiesHw
i , i = 1..N between each of them and world ground plane,N being the

number of the sequence frames. This makes it easy to compute the world ground plane

coordinates of the detections knowing the 2D coordinates in the frame’s ground plane.

Since there are specific orientations associated with each detection, we also recalculate

these orientations with respect to the world ground plane.

Formalizing the Problem The homographies let us compute ground plane locations

and one of the possible orientations for all detections, which we then need to link while

ignoring potential misdetections. To this end, we define a hidden state at timet as the

oriented position of a person on the ground planeLt = (X,Y,O), wheret is a frame
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Figure 4.4: Ground plane tracking. Given the corresponding interest points

in each pair of consecutive frames in the sequenceIi, i = 0..N it is possible

to compute the pairwise homographiesH i
i+1, i = 0..N − 1 between consecu-

tive frames. Furthermore, knowing the initial homography between the world

ground plane and the reference imageHw
0 , we compute the required homogra-

phiesHw
i , i = 1..N between each of the frames and the world ground plane

.
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Figure 4.5: Transitional probabilities for the hidden state (X,Y,O). They

are represented by three Gaussian distributions corresponding to three possible

previous orientations. Each Gaussian covers a 2D area bounded by two circles

of radii dc − δdc anddc + δdc, whereδdc represents an allowable deviation from

the mean, and by two lines defined by tolerance angleδϕ.

index,(X,Y ) are discretized ground plane coordinates, considering a grid size of10 cm,

andO is one of the possible orientations.

We introduce the maximum likelihood estimate of a person’s trajectory ending up
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at statei at timet

Γt(i) = max
l1,...,ln

P (I1, L1 = l1, ..., In, Ln = ln) , (4.1)

whereIj represents thejth frame of the video sequence. Casting the computation ofΓ

in a dynamic programming framework requires introducing probabilities of observing a

particular image given a state and of transitioning from one state to the next.

We therefore takebit, the probability of observing frameIt given hidden statei, to

be

bit = P (It|Lt = i) ∼ 1

dbayes-chamfer
, (4.2)

wheredbayes-chamferis a weighted average of the chamfer distances between projected tem-

plate contours and actual image edges. This makes sense because the coefficients used to

weight the contributions are designed to account for the relevance of different silhouette

portions in a Bayesian framework [Dimitrijevic 06].

We also introduce the probability of transition from statej at time t′ to statei at

time t

a∆t
ji = P (Lt = i|Lt′ = j),with ∆t = t− t′. (4.3)

Since we only detect people when their legs are spread furthest apart, we can only expect a

detection approximately everyNc = 30 frames for an averagev = 5 km/h walking speed

in a 25 Hz video. This implies an average distancedc = vNc

25
between detections. We

therefore assume thata∆t
ji for statei = (X,Y,O) follows a Gaussian distribution centered

at (Xµ, Yµ) such that

√
(X −Xµ)2 + (Y − Yµ)2 = dc , (4.4)
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and positioned in the direction180◦ opposite to the orientationO, as depicted by point

A in Fig. 4.5. This Gaussian covers only the hidden states with orientation equal toO

and within the 2D area bounded by two circles withdc − δdc anddc + δdc radii, where

δdc represents an allowable deviation from the mean, and two lines defined by tolerance

angleδϕ. Similarly, we define two more Gaussians centered according to Equation (4.4)

and positioned in the directions of−3π/4 and+3π/4 opposite to the orientationO, as

depicted by points B and C in Fig. 4.5 respectively. These Gaussians cover the states with

orientationsO+ π/4 andO− π/4, respectively. The standard deviations of the Gaussian

distributions may be chosen arbitrarily as long asσA > σB andσB = σC , which favors

straight trajectories and penalizes sudden turns.

Linking Sparse Detections Given the probabilities of Eq. 4.2 and 4.3, if we could

expect a detection in every frame, linking them into complete trajectories could be done

using the Viterbi algorithm to recursively maximize theΓt likelihood of Eq. 4.1.

However, since we can only expect a detection approximately everyNc = 30

frames, we allow the model to change state directly fromLt′ at time t′ to Lt at time t

(t′ < t), Nc − δt < t − t′ < Nc + δt and skip all frames in between. The valueδt is a

frame distance tolerance that we set to 10 in our implementation.

This lets us reformulate the maximization problem of Eq. 4.1 as one of maximizing

Γt(i) = max
lt1 ,...,ltn

P (It1, Lt1 = lt1, ..., Itn, Ltn = ltn)

= bit max
j,∆t

(a∆t
ji Γt−∆t(j)) , (4.5)

wheret1 < t2 < ... < tn are the indices of the framesI in which at least one detection
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occurred andNc − δt < ∆t < Nc + δt.

This formulation initially retains for each detection several hypotheses with differ-

ent orientations, and then allows the dynamic programming algorithm to select those that

provide the most likely trajectories according to the probabilities of Eq. 4.2 and 4.3. If a

detection is missing, the algorithm simply bridges the gap using the transition probabil-

ities only. For the sequences of Fig. 4.6 and Fig. 4.8, this yields the results depicted by

Fig. 4.7 and Fig. 4.9.

4.4 Interpolation of 3D Poses between Detections

An added bonus of our approach to detecting people, is that to each detection we

can associate the set of{αi} PCA coefficients coming from the corresponding database

motion, as defined in Eq. 3.5. Averaging the coefficients corresponding to two consecutive

detections and sampling theµn phase parameter of Eq. 3.3 at regular intervals gives us a

pose estimate in each intermediate frame. In the golfing case where the body’s center of

gravity moves little, this is enough to characterize the whole motion since we can assume

that thegt vector of Eq. 3.1 that encodes the position and orientation of the body root

remains constant except for the component that encodes the rotation around thez axis.

In the walking case, this is of course not true and we use the position of the detected

silhouettes on the ground plane to estimate the person’s 3D location and orientation. We

then use cubic spline interpolation to derive estimategt values in between, as will be

discussed in more details in Section 4.5.

The whole procedure is very simple and naturally extends to the case where a key

67



Figure 4.6: Filtering silhouettes with temporal consistency on an outdoor se-

quence acquired by a moving camera.First two rows: Detection hypotheses.

Third and fourth row: Detections after filtering out the detection hypotheses

that do not lie on the recovered most probable trajectory. Note that the extremely

similar poses in which is very hard to distinguish which leg is in the front are

successfully disambiguated by our algorithm.
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Figure 4.7: Recovered trajectory for the sequence depicted by Fig. 4.6. Dark

blue squares represent detection hypotheses and bright short lines inside them

represent the detection orientations. Smaller light green squares and lines repre-

sent the retained detections and their orientations respectively. These detections

form the most probable trajectory depicted by dark blue lines.

posture has been missed, which can be easily detected by comparing the number of frames

between consecutive detections to its median value for the whole sequence. In this case,

a longer motion must be created by concatenating several motion cycles —usually 2,

and never more than 3 in our experiments— depending on the number of frames between

detections. This new motion is then resampled as before. Obviously the initial predictions

then lose in accuracy, but they usually remain precise enough to retrieve the correct poses

thanks to the refinement process described in the following subsection.

4.5 Image Likelihood for Refinement

In this section we will analyze the two techniques that we have developed to refine

the initial estimates provided by the previous steps in order to better fit the images. The
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Figure 4.8: Filtering silhouettes with temporal consistency on an outdoor se-

quence acquired by a moving camera.First two rows: Detection hypotheses.

Third and fourth row: Detections after filtering out the detection hypotheses

that do not lie on the recovered most probable trajectory.

70



Figure 4.9: Recovered hypothetical trajectory for the sequence depicted by

Fig. 4.8. Dark blue squares represent detection hypotheses and bright short lines

inside them represent the detection orientations. Smaller light green squares and

lines represent the retained detections and their orientations respectively. These

detections form the most probable trajectory depicted by dark blue lines.

first one involves estimating the likelihood of the input images under the current model,

while the second one makes use of Generalized Expectation Maximization to find corre-

spondences between image edges and body limbs.

4.5.1 Appearance-based Likelihood

To track a person walking about, the camera usually has to move to keep him in

view. Therefore we cannot use a simple background subtraction technique to create the

background image we require for refinement purposes and adopt the more sophisticated

approach depicted by Fig. 4.10. We treat each image of the sequence in turn as a reference

and consider the few images immediately before and after. We compute homographies

between the reference and all other images [Hartley 00, Simon 00], which is a reasonable
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Figure 4.10: Synthesizing a background image.First row: The central image

is the reference image whose background we want to synthesize. The other four

are those before and after it in the sequence.Second row:The same four images

warped to match the reference image. Computing the median image of these and

the reference image yields the central image, which is the desired background

image.

approximation of the frame-to-frame deformation because the time elapsed between suc-

cessive frames is short and lets us warp all the images into the reference frame. Then, by

computing the median of the V values for each pixel in the HSV color space and taking

as output its corresponding pixel value, we obtain background images with few artifacts.

The poses obtained using the method discussed in the previous section are only ap-

proximative. To refine them, we use appearance information to compute the likelihood of

the input image, given a particular pose and the obtained background mode. Maximizing

such likelihood then lets us refine the poses in each individual frame.

In our implementation, we depart from typical generative approaches in an impor-

tant way: As shown in the third row of Fig. 4.1, we not only create an appearance model

for the person but also for the background. As illustrated by Fig. 4.11, this is important
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Figure 4.11: Appearance based refinement process. The images are from left

to right the input image, the initialization given by the interpolation process, the

result obtained without using a background image, and finally the result obtained

as proposed. Whole parts of the body can be missed when the background is not

exploited.

because it effectively constrains the projections of the reconstructed model to be at the

right place and allows recovery of the correct pose even when the initial guess is far from

it.

Assuming for simplicity that, given an estimated poseψ̂i, a background, and a

foreground model, all the pixels(u, v) in imageIi are conditionally independent, we

write

p(Ii|ψ̂i, ĝi) =
∏

(u,v)∈Ii

p(Ii(u, v)|ψ̂i, ĝi). (4.6)

We estimatep(Ii(u, v)|ψ̂i) for each pixel of framei as follows: Given the gener-

ated background images, we project our human body model according to poseψ̂i. As

discussed above, individual limbs are modeled as cylinders to which we associate a color

histogram obtained from the projected area of the limb in the frames where the silhou-

ettes were detected. We project the body model onto the generated background image to

obtain a synthetic image, such as those depicted by the third row of Fig. 4.1. If(u, v)

is located within the projection of a body part, we takep(Ii(u, v)|ψ̂i) to be proportional
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to the value of its corresponding bin in the color histogram of the body part. If, instead,

(u, v) is located on the background, we samplep(Ii(u, v)|ψ̂) from a Gaussian distribution

centered on the corresponding pixel value in the synthetic background imageBi, with

fixed covarianceΣ. We therefore write

p(Ii(u, v)|ψ̂, ĝ) =





hpart(u,v)(Ii(u, v)) if (u, v) ∈ F

N(Bi(u, v),Σ; Ii(u, v)) if (u, v) 6∈ F

, (4.7)

whereF represents the projection of the body model into the image. Modeling both the

foreground and background appearance helps in achieving more accuracy and robustness,

as already noted in the literature [Isard 01, Sidenbladh 03] for static camera cases. This

function will then be optimized following the strategies explained in Section 4.6.

4.5.2 Generalized Expectation Maximization for Limb to Edge Match-

ing

The second approach we have designed is structured as follows: first of all we

obtain a reliable initial estimate of the 3D configuration of the person, using the key-pose

detection technique together with the corresponding motion model, as described at the

beginning of this chapter. Then we pre-process the video sequence we use as input in

order to obtain a pretty clean edge image even if the camera is moving. Finally we use

Generalized Expectation Maximization (GEM) to refine the initial pose estimation in a

frame-wise fashion. This is done by matching the image edges to the edges obtained by

projecting a 3D model of the person where limbs are considered as cylinders. We will

explain in detail the different phases in the following paragraphs.
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Sequence Pre-ProcessingTo cope also with sequences shot by a moving camera, we

decided to elaborate the input images in order to retrieve the edges corresponding to the

moving objects. These are assumed to be the objects that move in the image at a different

velocity than the background. This phase is composed of two main parts:

• Motion Detection:This step is taken from [Odobez 97] and simply retrieves, using

optical flow, which pixels in the image are used to estimate the global motion of the

camera. It also retrieves which pixels are considered as outliers for this estimation,

and these are the pixels on which we will focus our attention since they are the ones

that move at a different velocity than the background.

• Background matching:To obtain a more robust estimate of the edges belonging to

the foreground, we also adopt a homography-based technique, similar to the one we

use in the other type of objective function. Assuming that the motion of the camera

is not too fast and not too close to the scene, we can consider the background to be

planar. We then can simply take a window ofN frames centered around the current

oneIt and match them toIt using a standard approach based on robust estimation

of homographies using keypoints. Then we extract the edges, using a Canny-style

edge detector, from all the frames in the window. Finally we warp all the obtained

edge images to matchIt, using the previously computed homographies. For all the

pixels we will now have a set ofN observations, which correspond to the same pixel

being edge (1) or not (0) in the warped images. Now simply taking the median of

these values for each pixel will tell us which edge pixels belong to the foreground

(if the median is 0) and which to the background (if the median is 1). At this point
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we have an estimate of the edge pixels belonging to the background at frameIt, and

simply subtracting this estimate from the edge extraction performed atIt will give

us an estimate of the edge pixels that belong to the foreground, i.e. to the moving

person.

By making a simple intersection of the outputs of these two steps, for each input

frame, we will obtain a robust estimate of which pixels belong to the foreground and

are at the same time part of some edges. All the parts of this pre-processing algorithm

are summarized in Fig. 4.12. We will use the output of this procedure as input for the

following phase. Note that this phase can easily be replaced by a standard background

subtraction algorithm if the camera is not moving.

Pose refinement through GEM Before explaining how we plugged the GEM algo-

rithm into our framework, some definitions are provided. The observations pointsx =

{x1, . . . , xM} are the points belonging to the contours obtained in the pre-processing

phase, from a single input frame. Our goal is then to fit a body configuration to these

observation points. To do so, we suppose thatx are sampled from a 2D mixture distri-

bution ofK components (Gaussian laws) and an outlier component (uniform law). Each

Gaussian is associated to one limb’s side of the projected body pose. The parameters of

thekth Gaussian, i.e. its mean and covariance, are denoted asθk. Let us note thatθk is

a function of the state of the body, and therefore a function of its low dimensional em-

beddingλ = (β1 . . . βn). This parameterization is straightforward and is done as follows:

From a given value ofλ, the body state, defined by the 3-dimensional body poseg and

by the set of joint anglesψ, is used to generate a 3D representation of the human body.
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(a) (b) (c)

(d) (e) (f)

Figure 4.12: Summary of the pre-processing algorithm: (a) Input image. (b)

Edges extracted from the input image. (c) Background edges reconstructed

through homographies. (d) Subtraction between (b) and (c). (e) Outliers re-

trieved by the camera motion estimation technique. (f) Final output of the algo-

rithm, obtained as intersection between (d) and (e).
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This representation has limbs which are considered as cylinders of different radius and

length, depending on the body part. Then this 3D model is projected onto the image and

generates two segments for each cylinder, which should represent the 2 sides of the limb.

Finally these segments are converted into Gaussian distributions, using their midpoint as

representation of the mean and their length and a constant width to model an appropriate

covariance matrix.

We then formalized the problem of fitting the projected body pose, now described as

a Gaussian mixture, to the observed 2D cues as a classification task that could be carried

out by the GEM algorithm. This problem boils down to the problem of finding an optimal

value ofλ such as the mixture components explain the image observation. The algorithm

performs in 2 steps: First, each edge pixel is assigned to one of the components of the

mixture. Let us note that a uniform component is added to the mixture to account for

the corrupted observations. Second, the body configuration, i.e the mixture distribution,

is fitted to the edge pixels by finding a new value of the parameterλ that decreases a

distance function.

The assignment variables are denotedz = {z1, . . . , zM}. The eventzm = k,

m = 1, . . . ,M , k = 0, . . . ,K means that the observationxm is generated from thekth

component of the mixture. The casek = 0 corresponds to the outlier case. By assuming

conditional independence of the observations, we have:

p(x|z, λ) =

M∏

m=1

p(xm|zm, λ).

As explained before, the likelihood of an edge point being generated by thekth limb’s
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side is modeled as a Gaussian distribution of parametersθk(λ) = (µk(λ),Σk(λ)):

p(xm|zm = k, λ) ∼ N (xm; θk(λ)) if (k 6= 0). (4.8)

Similarly, we define the likelihood of an observation to belong to the outlier cluster as a

uniform distribution:

p(xm|zm = 0, λ) = U [A] =
1

A
, (4.9)

whereA represent the observed data area i.e the image area. For simplicity, we assume

that the assignment variables are independent. Their prior probabilities are denoted

p(zm = k|λ) = p(zm = k) = πk ∀k = 0, . . .K

with
K∑

k=0

πk = 1 (4.10)

and therefore

πk =
1

K + 1
, (4.11)

coming from the assumption that all the body parts have the same prior probability. The

components posterior probabilities are denoted asαmk:

αmk = p(zm = k|xm, λ). (4.12)

By applying Bayes’ rule, we can obtain the following expression, where the observation

likelihood are given by Eq. (4.8-4.9):

αmk =
πk p(xm|zm = k, λ)∑K
j=0 πj p(xm|zm = j, λ)

.

Fork = 1, . . . ,K, we have:

αmk =
πk|Σk(λ)|− 1

2 exp
(
−1

2‖xm − µk(λ)‖2
Σk(λ)

)

2ππ0
A

+
∑K

j=1 πj|Σj(λ)|− 1
2 exp

(
−1

2
‖xm − µj(λ)‖2

Σj(λ)

) , (4.13)
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where the notation‖ a − b‖2
Σ = (a − b)TΣ−1(a − b) accounts for for the Mahalanobis

distance. Fork = 0, we have:

αm0 = 1 −
K∑

k=1

αmk. (4.14)

GEM framework Given the probabilistic model defined above, the goal is to determine

the value ofλ whose associated mixture distribution better explains the observationsx.

Treating assignments as the hidden variables, the GEM algorithm helps in achieving this

goal by maximizing the joint probabilityp(x, z|λ). This probability can be written as:

p(x, z|λ) = p(x|z, λ) p(z|λ)

=
M∏

m=1

p(xm|zm, λ) p(zm|λ)

=

M∏

m=1

K∏

k=0

[πk p(xm|zm = k, λ)]δk(zm) (4.15)

The random variablesδk(zm) are defined as follows:

δk(zm) =





1 if zm = k

0 otherwise

Starting with the initial valueλ(0), the GEM algorithm proceeds iteratively and the itera-

tion t consists in searching for the parametersλ that optimize the following expression:

Q(λ|λ(t)) = E[log p(x, z|λ)|x, λ(t)],

whereλ(t) is the current estimate at iterationt. The expectation is calculated over all the

possible assignmentsz. Using eq (4.15), we have:

log p(x, z|λ) =
M∑

m=1

K∑

k=0

log(πk p(xm|zm = k, λ)) δk(zm)).
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Remarking that:

E[δk(zm)|x, λ(t)] =
K∑

k=0

δk(zm) p(zm = k|x, λ(t)) = α
(t)
mk,

whereα(t)
mk are the posterior likelihood calculated using Eq. (4.13-4.14) withλ = λ(t), we

have:

Q(λ|λ(t)) =

M∑

m=1

K∑

k=0

α
(t)
mk log(πk p(xm|zm = k, λ)).

Replacing the likelihoods by their expression given by Eq. (4.8-4.9) leads to:

Q(λ|λt) =
M∑

m=1

K∑

k=1

α
(t)
mk

{
−1

2
‖xm − µk(λ)‖2

Σk(λ)

− log
(
πk (2πk)

−1 |Σk(λ)|−1/2
)}

+

M∑

m=1

α
(t)
m0 log(A π0) (4.16)

We can now formulate the GEM algorithm as iterations of two steps at timet:

• E-stepFrom the current valueλ(t), this step simply requires the computation of the

posterior probabilitiesα(t)
mk using eq. (4.13-4.14). Each probabilityα(t)

mk represents

the likelihood of assigning observation pointm to the kth limb’s side or to the

outlier class.

• M-step Provided thatα(t)
mk are computed, nowQ(λ|λt) needs to be maximized over

λ. Since the analytical computation would be highly non-linear, the generalized

version of the EM algorithm is applied. This simply means that, instead of maxi-

mizingQ(λ|λt), we simply find a stateλ(t+1) that increases the value ofQ(λ|λt). In

practice, severalλi are sampled aroundλ(t) until this condition is reached. Usually

300 particles are enough for such optimization.
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We iterate this procedure a certain number of times until an improvement inQ is

obtained, and then retain the corresponding body pose calculated fromλ(final) for the

current frame.

4.6 Optimization

4.6.1 Frame-Wise Optimization

At this point we have all the tools to compute the likelihood of a certain pose given

an input frame, which can be evaluated using one of the proposed techniques. Incorpo-

rating both foreground and background into our algorithms makes the measure reliable

enough so that we did not have to use a robust estimator for our experiments. However,

because it produces many local minima when the pose changes, we use stochastic op-

timization techniques that sample the pose space around the predicted pose in the low

dimensional pose-space and retain the sample that yields the best score. Because we only

search for poses around the predicted ones, we still benefit from the constraints provided

by interpolating between key-poses. On the other hand, a frame-wise optimization can

lead to jittering results.

4.6.2 Sequence-Based Optimization

To overcome the jittering issue, we decided to perform batch optimization over the

whole motion at one time, which was only possible using the appearance-based objective

function. In the golfing case there was no need to take into consideration the global

82



motion, while for the walking case we had to adopt a special procedure: To account for

the fact that walking trajectories are smooth both spatially and temporally, we do not treat

thegi terms as independent from each other, and the same holds for theµi terms. Instead,

as we did for initialization purposes, we represent trajectories as 2–D cubic splines lying

on the ground plane and whose shape is completely defined by the position and orientation

of the body root node at the endpoints of a sequence, which we denote asgstart andgend.

In other words, we write all thegi as functions ofgstart andgend. Similarly, we introduce

a parameter0 < µc < 1 that defines what percentage of the walking cycle has been

accomplished during the first half of the sequence and derive all the otherµi by simple

linear interpolation. If the speed remains constant during a walking cycle, the value of

µc is 0.5. In practice, it can go from0.3 to 0.7 if the person speeds-up or slows-down

between the first and the second half-cycle.

We can now refine the pose sequence between two detections by optimizing the

objective functionL(Ψ̂) of Eq. 4.20 with respect to(µc, α1, . . . , αm,gstart,gend).

To perform the refinement, we define the objective functionL(Ψ̂) as

− log(p(Ψ̂|I1, . . . , IN))

of a pose sequencêΨ = Ψ(µ1, · · · , µN ,g1, · · · ,gN , α1, · · · , αm) in an image sequence

I1, . . . , IN . To compute it we consider the standard Bayesian formula

p(Ψ̂|I1, . . . , IN) =
p(I1, . . . , IN |Ψ̂) · p(Ψ̂)

p(I1, . . . , IN)
. (4.17)

Thep(I1, . . . , IN) term is constant and can be ignored. Because we have a dependable

way to initializeΨ, we express the prior as a distance from its initial value and write its
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negative log as

− log p(Ψ̂) =

m∑

k=1

(
αk − α0

k√
λk

)2

, (4.18)

whereα0
k represents the initialization value for thekth PCA parameter, given by the de-

tections, andλk is the eigenvalue associated to thekth eigenvector.

Assuming conditional independence of the appearance in consecutive frames given

the motion model, we can decomposep(I1, . . . , IN |Ψ̂) as

p(I1, . . . , IN |Ψ̂) =
N∏

i=1

p(Ii|ψ̂i, ĝi), (4.19)

whereψ̂i = ψ(µi, α1, . . . , αm) is the pose in imageIi, as defined by Eq. 3.6.

Given Eqs. 4.18, 4.19 and 4.6, we can write

L(Ψ̂) = − log(p(Ψ̂)) +

N∑

i=1

∑

(u,v)∈Ii

− log(p(Ii(u, v)|ψ̂i)) (4.20)

and refine all the poses between detections by minimizingL(Ψ̂) with respect to

(µ1, · · · , µN ,g1, · · · ,gN , α1, · · · , αm), which define the motion in the whole sequence.

This minimization is performed stochastically by sampling particles thrown in the param-

eter space around the initialization.

Linking pose and Motion

Our experiments have shown that using a low dimensional representation regular-

izes the motion and yields much better convergence properties than using the full parame-

terization. However, this formulation does not exploit the fact that people usually walk in

the direction they are facing. To remedy this problem, we explicitly link pose and motion

as follows: Given a subject moving along a trajectory as depicted by Fig. 4.13, the angle
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Figure 4.13: The continuous curve represents the real trajectory of the subject,

while the dashed lines show its approximation by finite differences.

betweenṖt, the derivative of the position, and the orientationΛt should in general be

small. We can therefore write that

Ṗt · Λt

||Ṗt|| · ||Λt||

should be close to 1.

To enforce this, we can approximate the derivative of the locations using finite

differences between estimated locationsP̂ at different time instants. This approximation

is appropriate when we can estimate the location at a sufficiently high frequency (e.g. 25

Hz).

Our constraint then reduces to minimizing the angle between the finite differences

approximation of the derivative of the trajectory at timet, given byP̂t+1 − P̂t, and the

object’s estimated orientation given bŷΛt. We write this angle, which is depicted as filled
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both at timet− 1 andt in Fig. 4.13, as

φt→t+1 = acos
ˆ̇
Pt · Λ̂t

|| ˆ̇Pt|| · ||Λ̂t||
= acos

(P̂t+1 − P̂t) · Λ̂t

||(P̂t+1 − P̂t)|| · ||Λ̂t||
(4.21)

and will seek to minimize it. It is important to note that the constraint we impose is not

a hard constraint, which can never be violated. Instead, it is a prior that can be deviated

from if the data warrants it.

This in practice means that the body global position, which is controlled by the

first three variables of the 6–Dgstart andgend vectors is not independent from the other

three, which control orientation. We can therefore further improve our results by adding

an additional term to our objective function to enforce this constraint. We define

Lwalk(Ψ̂) = L(Ψ̂) + µ
N∑

i=2

(φ2
(i−1)→i) (4.22)

whereφ(i−1)→i is the angle, defined in Eq. 4.21, between the direction the person faces

and the direction of motion andµ is a weighting term which is kept constant for all our

experiments, and whose purpose is to make the two terms of the same order of magnitude.

As demonstrated in [Fossati 08] and as will be shown in Section 4.7, minimizingLwalk(Ψ̂)

instead ofL(Ψ̂) has little influence on the recovered poses but yields more realistic global

body orientations.

4.7 Results

In this section, we present our results, obtained using the appearance based likeli-

hood, on golfing and walking sequences that feature subjectsotherthan those we used to
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create our motion databases and seen from many different perspectives. A computation-

ally expensive part of the algorithm is the refinement step since, for each particle, we must

render the whole sequence, be it a walking cycle or a golf swing, and compute the image

likelihood for each frame. In practice, the computation time is directly proportional to

the number of particles adopted in the optimization phase. For a golf swing it is around

1 second for each particle, while it doubles for a walking step. Given that we usually

took 300 particles to compute our results, our algorithm requires in average 5 minutes to

extract the body poses of a golf swing and 10 minutes for a walking step.

4.7.1 Golfing

Fig. 4.14 depicts a golf swing by a professional golfer. By contrast, Fig. 4.15 depicts

one performed by a former PhD student who does not play golf and whose motion is

therefore far from correct. In both cases, our system correctly detects the key postures

and recovers a 3D trajectory without any human intervention. This demonstrates that

it is robust not only to the relatively low quality of the imagery but also to potentially

large variations in the exact motion being recovered. Fig. 4.16 shows the background

model that was recovered and used to generate the results of Fig. 4.14. Note that the

feet are mistakenly made part of the background reconstruction and this results in their

unwarranted motion. This is easily fixed by constraining them to remain on the ground.
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Figure 4.14: Reconstructing a golf swing performed by a professional player.

First and third row: Frames from the input video with reprojected 3D skele-

tons.Second and fourth row: 3D skeleton seen from a different viewpoint.

Figure 4.15: Reconstructing a golf swing performed by a novice player.First

row: Frames from the input video with reprojected 3D skeletons.Second row:

3D skeleton seen from a different a different viewpoint.
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Figure 4.16: Background image used to generate the results of Fig. 4.14. No-

tice that there are some artifacts for instance in the feet area, which are anyway

overcome by our algorithm.

Figure 4.17: Recovered 3D skeletons reprojected into individual images of the

sequence of Fig. 4.6, which was acquired by a camera translating to follow the

subject.
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Figure 4.18: Final result for the subject of Fig. 4.8 who moves away from the

camera and is eventually seen from behind.First and third rows: Frames from

the input video with reprojected 3D skeletons.Second and fourth rows: 3D

skeletons seen from a different viewpoint. The 3–D pose is correctly estimated

over the sequence, even when the person goes far away and eventually turns his

back to the camera. Note that the extremely similar poses in which it is very

hard to distinguish which leg is in front are successfully disambiguated by our

algorithm.
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4.7.2 Walking

We now demonstrate the performance of our algorithm on walking sequences ac-

quired under common but challenging conditions. In all cases except when we use the

HumanEva dataset [Sigal 06] to quantify our results, the subject is seen against a clut-

tered background and the camera moves to follow him, which precludes the use of simple

background subtraction techniques.

In the sequences of Figs. 4.17 and 4.18 the camera translates. Furthermore, in

Fig. 4.18, the subject is seen first from the side and progressively from the back as he be-

comes smaller and smaller. In the sequence of Fig. 4.19, the subject walks along a circular

trajectory and the camera follows him from its center. At some point the subject under-

goes a total occlusion but the global model allows the algorithm to nevertheless recover

both pose and position for the whole sequence. We can also recover the instantaneous

speeds and the ground plane trajectory, as shown in Fig. 4.20.

All these results were obtained by minimizing the objective function of Eq. 4.22

that explicitly enforces consistency between the direction the person faces and the di-

rection of motion. We also computed results by minimizing the objective function of

Eq. 4.20, which does not take this consistency into account. When shown in projections

in the original images, these two sets of results are almost indistinguishable. However,

the improvement becomes clear when one compares the two trajectories of Fig. 4.20, one

obtained without enforcing the constraint and the other with. To validate these results,

we manually marked the subject’s feet every 10 frames in the sequence of Fig. 4.19 and

used their position with respect to the tiles on the ground plane to estimate their 3D coor-
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dinates. We then treated the vector joining the feet as an estimate of the body orientation

and the midpoint as an estimate of its location. As can be seen in Table 4.1, linking orien-

tation to motion produces a small improvement in the position estimate and a much more

substantial one in the orientation estimate, which is consistent with what can be observed

in Fig. 4.20. Obviously these numbers should be only considered in a relative way, and to

have an idea of the quantitative performance of our algorithm we refer the reader to the

results on the HumanEvaII sequence.

In the sequence of Fig. 4.21 the subject walks along a curvilinear path and the

camera follows him, so that the viewpoint undergoes large variations. We are nevertheless

able to recover pose and motion in a consistent way, as shown in Fig. 4.22 that depicts the

recovered trajectory. Again, linking orientation to motion yields improved results.

Fig. 4.23 demonstrates the robustness of our approach to missed detections. We

ran our algorithm on the same sequence as in Fig. 4.1 but ignored one out of every two

detections. Note that, even though the subject is now only detected every other step, the

algorithm’s performance barely degrades.

To further quantify our results, we tracked subject S4 of the HumanEvaII

dataset [Sigal 06] over 230 frames acquired by camera C1. Since it is static, we used

the same simple approach as in the golf case to synthesize the background image we use

to compute our image likelihoods. In Fig. 4.24 we plot the mean 3–D distance between the

real position of some reference body joints and those recovered by our algorithm, which

are commensurate with the numerical results of Table 4.1 that we obtained using our own

sequences. Given that our approach is strictly monocular—we simply ignored the input

of the other cameras—the 158mm average error our algorithm produces is within the
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Figure 4.19: Subject walking in a circle.First and third rows: Frames from the

input video with reprojected 3D skeletons.Second and fourth rows: 3D skele-

tons seen from a different viewpoint. The numbers in the bottom right corner are

the instantaneous speeds derived from the recovered motion parameters.
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(a) (b)

Figure 4.20: Recovered 2D trajectory of the subject of Fig. 4.19. The underlying

grid is made of 1×1 meter squares and the arrows represent the direction he is

facing. (a) When orientation and motion are not linked, he appears to walk

sideways. (b) When they are, he walks naturally.

X Error Y Error Orientation Error

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

No Link 12.0 7.1 16.8 11.9 11.7 7.6

Link 11.8 7.3 14.9 9.3 6.2 4.9

Table 4.1: Comparing the recovered position and orientation values for the body

root node against ground truth data for the sequence of Fig. 4.19 in case we do

not link orientation and motion (first line) and in case they are linked (second

line). We provide the mean and standard deviation of the absolute positional

error in the X and Y coordinates, in centimeters, and the mean and standard

deviation of the recovered orientation error, in degrees.
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Figure 4.21: Pedestrian tracking and reprojected 3D model in a second se-

quence.First and third rows: Frames from the input video with reprojected

3D skeletons.Second and fourth rows: 3D skeletons seen from a different

viewpoint. The numbers in the bottom right corner are the instantaneous speeds

derived from the recovered motion parameters.
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(a) (b)

Figure 4.22: Recovered 2D trajectory of the subject of Fig. 4.21. As in Fig. 4.20,

when orientation and motion are not linked, he appears to walk sideway (a) but

not when they are (b).

range of methods that make similar assumptions. By comparison, errors around 200mm

are reported in [Li 06] and between 100 and 200mm in [Brubaker 06]. This is encour-

aging given the fact that we only use relatively coarse models and motions described by

a reduced number of parameters. In other words, our algorithm is designed more for

robustness, moving cameras, and recovery from situations where other algorithms might

lose track, such as total occlusions, than for accuracy.

Of course the algorithm, even if it is designed for robustness, can fail. In the walk-

ing case, this can happen if the subject performs very sharp turns, thus preventing the

Viterbi algorithm to infer the correct trajectory. Similarly, facing the camera for too long

can result in loss of track since our detector is designed for people not seen completely

frontally. This could be overcome by adding an appropriate detector, which could take ad-

vantage of the very reliable frontal head detection algorithms that now exist. In the golfing

case, a misdetection of either the initial or the final pose would also cause a failure, but
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Figure 4.23: Robustness to misdetection.First two rows: Initial and refined

poses for a sequence in which 3 consecutive key-poses are detected.Last two

rows: Initial and refined poses for the same sequence when ignoring the central

detection and using the other two. The initial poses are less accurate but the

refined ones are indistinguishable.
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Figure 4.24: Absolute mean 3D error in joint location obtained on frames 21-

248 of the HumanEvaII dataset for subject S4 and using only camera C1 as input.

It is expressed in millimeters.

Figure 4.25: Tracking subject S4 from the HumanEvaII dataset using only cam-

era C1. Obtained results projected onto the input frames.
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they are infrequent because the pose is very characteristic.
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Chapter 5

Observable Subspaces

The articulated body models used to represent human motion typically have many

degrees of freedom, usually expressed as joint angles that are highly correlated. The

true range of motion can therefore be represented by latent variables that span a low-

dimensional space.

As also explained in Chapter 2 and demonstrated in Chapter 4, this has often been

used to make motion tracking easier. However, learning the latent space in a problem-

independent way makes it non trivial to initialize the tracking process by picking appro-

priate initial values for the latent variables, and thus for the pose, specially in the types

of motion in which key-poses are not available. In this chapter, we show that by directly

using observable quantities as our latent variables, we eliminate this problem and achieve

full automation given only modest amounts of training data.

More specifically, we exploit the fact that the trajectory of a person’s feet or hands

strongly constrains body pose in motions such as walking, skating, skiing, or golfing.

These trajectories are easy to compute and to parameterize using a few variables. We
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treat these as our latent variables and learn a mapping between them and sequences of

body poses. In this manner, by simply tracking the feet or the hands, we can reliably

guess initial poses over whole sequences and, then, refine them.

5.1 Framework

Our goal is to relate 3D motions to image trajectories of the hands or feet so that

we can predict the former from the latter. Here, we propose to learn a Gaussian Process

mapping [Rasmussen 06] from the space of image trajectories to that of human motions

represented as sequences of 3D poses, which can be done with a relatively small training

database. Given this mapping, we can track the hands or feet of subjects in video se-

quences, infer plausible motions, and refine them to obtain accurate 3D pose estimates by

minimizing an image-based objective function. In practice, however, the space of 3D pose

sequences is too high-dimensional to be directly used for optimization purposes. There-

fore, to reduce the dimensionality of our problem and the complexity of optimization,

we use a linear subspace motion model [Urtasun 04, Sidenbladh 00] to represent 3D pose

sequences with a manageable number of parameters, and learn a mapping from trajectory

curvatures to these parameters.

In this section, we first introduce the motion representation we use. We then show

how a Gaussian Process mapping can be learned between such motions and image trajec-

tories from training data, and used to initialize poses in input video sequences. Finally, to

make optimization practical, we introduce our linear subspace motion model.
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5.1.1 Motion Representation

As described in Chapter 3, we rely on a coarse body model in which individual

limbs are modeled as cylinders. Amotioncan be viewed as a time-varying pose. While

pose varies continuously over time, we assume a discrete representation in which pose

is sampled atNt distinct time instants. In this way, a motiony is just a sequence ofNt

discrete poses, and can be written as theD = (NjNt + 6Nt)-dimensional vector

y = [ψT
1 , · · · , ψT

Nt
,gT

1 , · · · ,gT
Nt

]T , (5.1)

whereψt is a set ofNj joint angles andgt a 6D vector that defines the position and ori-

entation of a reference body joint in a global coordinate system, as introduced in Chapter

3. Naturally, we assume that the temporal sampling rate is sufficiently high to interpolate

the continuous pose signal. In our examples we split activities into short and temporally

smooth motions. Therefore we simply consider poses as equally-spaced in time between

the beginning and the end of a motion. This avoids the need to explicitly account for

differences in speed between motions.

5.1.2 Gaussian Processes

Let Y = [y1, · · · ,yN ]T be theN × D matrix ofN training motions from which

the mean motiony0 was subtracted, andX = [x1, · · · ,xN ]T theN × d matrix of cor-

respondingd-dimensional image trajectories parameters.Y andX are said to be related

through a Gaussian Process (GP) mapping [Rasmussen 06] if

yi = f(xi) + εi , (5.2)
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whereεi is zero-mean Gaussian noise, with a prior overf defined as

p(f |X) = N (0,K) , (5.3)

wheref = [f(x1)
T , · · · , f(xN )T ]T , andK is a kernel matrix whose elements are defined

by a covariance function,k, such thatKi,j = k(xi,xj). This matrix entirely defines the

GP, and only depends on hyperparametersΘ. In practice, we take a covariance function

that is the sum of an RBF, a bias, and a noise term:

k(xi,xj) = θ1 exp(−θ2

2
‖xi − xj‖2) + θ3 +

δxi,xj

θ4
, (5.4)

whereΘ = θ1, θ2, θ3, θ4 are the hyperparameters that govern the output variance, the RBF

support width, the bias, and the variance of the additive noise, respectively.

Learning a GP is then done by maximizingp(Y |X,Θ) p(Θ) with respect toΘ,

where

p(Y |X,Θ) =

1√
(2π)ND|K|D

exp

(
−1

2
tr

(
K−1YYT

))
, (5.5)

andp(Θ) is a simple prior on the kernel parameters.

Given an input video sequence from which we can extract trajectory parametersx′,

the functionf(x′) follows a Gaussian distributionp(f(x′)|X,Y,Θ) = N (µ, σ), with

µ(x′) = y0 + YTK−1k(x′) , (5.6)

σ2(x′) = k(x′,x′) − k(x′)
T

K−1k(x′) , (5.7)

wherek(x′) is the vector with elementsk(x′,xj) for latent positionsxj ∈ X. We can

therefore simply use the mean prediction of the modelµ(x′) to initialize the motion in the
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new sequence, and refine it via optimization of an image-based objective function, as will

be explained in Section 5.1.4.

5.1.3 Linear Subspace Motion Model

Since, in practice, optimizing an image-based criterion with respect to theNjNt +

6Nt degrees of freedom of a sequence of poses is intractable, we first reduce the dimen-

sionality of this space. To this end, we perform Principal Component Analysis on the

datasetY to find a low-dimensional basis with which we can effectively model the mo-

tion, as described in Chapter 3, specifically by Equation 3.5.

In this case the scalar coefficients{αi} characterize the motion, and the dimension-

alityNm ≤ NjNt +6Nt controls the fraction of the total variance of the training data that

is captured by the subspace. This is measured by

Q(Nm) =

∑Nm

i=1 λi∑NjNt+6Nt

i=1 λi

, (5.8)

whereλi are the eigenvalues of the data covariance matrix, ordered such thatλi ≥ λi+1.

In practice, we chooseNm such thatQ(Nm) > 0.9. Finally, the GP mapping is learned

from the trajectory curvatures to the parametersαi of our training data rather than to the

sequence of poses directly. Since we ensure that 90% of the training data is modeled by

the linear subspace, this only yields a negligible loss of accuracy.

5.1.4 Fitting the Model to Image Data

We now describe the process of estimating the body pose for an input video se-

quence. The whole runtime procedure is summarized in Figure 5.1. Given an input
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sequence, we can easily extract the trajectory parametersx′ as will be described in Sec-

tion 5.2.2. From these, we compute the mean predictionµ(x′) through our GP model

and use it to initialize the eigen-motion coefficientsα′. Because, in our examples, most

global motion parametersg1, . . . ,gNt either can be computed from the feet trajectories or

remain constant, the linear subspace decomposition is only performed on the joint angles.

Only two global orientations need to be estimated from the images, which we do by con-

sidering them as unknowns in the first and last frames, and linearly interpolating them in

between.

The objective function is then computed as a binaryAND between the silhouette

obtained by background subtraction performed on the input images and the reprojection

of our cylinder-based body model in the estimated poses. Our method is robust to very

low-quality silhouettes, as the ones shown in Figure 5.2.

At this point the objective function needs to be optimized over theα′ parameters

that, through the PCA mapping, define the body pose in the full sequence. Since the

motion in the images is of arbitrary length, we just warp the one we obtain with the

eigen-motion coefficients to fit the correct number of frames through a simple linear in-

terpolation of theNj joint angles defining a pose. Suchα′ parameters are much lower di-

mensional than the full pose sequence space which, as reminded before, hasNjNt + 6Nt

dimensions. The dimensionality ofα′ is usually10 in our experiments, which makes the

problem manageable, but still requires an advanced optimization strategy.

Given the complexity of the objective function we had to adopt a discrete optimiza-

tion technique. A standard particle filtering algorithm [Isard 98] has been tested and has

given good results, such as the ones that are provided in the following section. Unfortu-
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Figure 5.1: Overview of the runtime procedure to recover the body pose, ex-

plained in Section 5.1.4.
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Figure 5.2: Input silhouettes used to compute our results. The silhouettes were

extracted using a standard background subtraction technique on skating and golf-

ing examples, while on skiing an intensity threshold was instead applied.

nately, it has the drawback of producing a quite slow optimization, given that the particles

are thrown in a 10-dimensional space and due to this are quite spread and dispersed around

the initial estimate, according to the eigenvaluesλi. Note that, for this purpose, we could

equivalently have used the varianceσ2(x′) of Eq. 5.7. Accordingly, the number of par-

ticles needs to be very large, in order to cover well such a high-dimensional space, but

given the fact that one function evaluation requires the rendering of the whole sequence,

this has a strong influence on the speed of the global optimization.

For this reasons we have decided to also do some experiments with a different dis-

crete maximization strategy, namely Powell’s Method [Powell 64]. It is a well-known

and powerful technique that allows to minimize (or maximize, as in our case) an objec-

tive function without the need of computing its partial derivatives. As shown in Fig. 5.3,
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Figure 5.3: Powell’s Method. The figure shows one iteration of Powell’s Method

on a sample 2-dimensional function.

it basically consists of several iterations: In each of these iterations the function is first

optimized one dimension at a time through direct search, thus obtaining a partial solution

point. Then a second optimization is performed along the vector that connects the ini-

tialization point and this partial solution. In the end the adoption of the Powell’s Method

for optimization brought a relevant speed-up in the computation time needed to obtain a

solution (∼ 50% of improvement, from∼ 3 minutes to∼ 2 minutes for a sequence) of

the same quality as with the standard particle filtering technique.

5.2 Experimental Results

To demonstrate the effectiveness of our approach, we applied it to three very differ-

ent kinds of motion: Walking, roller skating and golfing. Furthermore, to show that our

models generalize over the training data, we used the skating model to recover the motion
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of a skier.

In this section, we first describe our training data, next we explain how we obtain the

values of latent variablesx from sequences of images and finally we present our tracking

results.

5.2.1 Obtaining Training Data

To obtain the training sequences of 3D poses, we used a commercial optical motion

capture system that recovers the positions of reflective markers placed on the joints of a

person using six infrared cameras [h]. The body model we used hasNj = 51 degrees of

freedom corresponding to the joint angles, and the lengthNt of the normalized motions

varies from5 for walking steps, to15 for golf and skating sequences.

• In the walking case, we asked a subject to walk around for a few minutes, mak-

ing smooth and sharp changes of direction at varying speeds. We then split the

collected data into single steps, each one normalized toNt poses, thus building

vectors of sizeNjNt. Moreover we inferred the ground trajectory from all steps,

by taking the average between the ground projections of the feet. These trajectories

were finally used to compute thex trajectory parameters, every time using as ref-

erence the starting point and tangent of the step trajectory depicted by 5.4(a). The

4-dimensional embedded representation includes the curvature of the trajectory, the

latitudinal and longitudinal displacement of the subject, and a binary variable indi-

cating which foot is moving. Globally, we used 200 training points, corresponding

to a step each.
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• In the skating case, we captured a subject performing turns of varying radii. We

then split the reconstructed sequences into small motions representing half a turn

each and time-normalized these subsequences to build vectors of lengthNjNt by

concatenatingNt poses ofNj joint angles. For each one of these vectors, we com-

puted the trajectory of the feet on the ground plane to which we fitted a second

order polynomial, which was enough to optain a simple parameterization. In fact

this yielded a 2-dimensional vectorx of trajectory parameters containing the cur-

vature of the half-turns and a parameter discriminating between the two halves of

a turn, as depicted by 5.4(a). In total we used 84 training points, each of them

representing a half-turn.

• In the golf case, the database contained several golf swings, each of which was nor-

malized to a standard lengthNt, thus yielding similar training example vectors of

lengthNjNt. We used the hands’ trajectory to compute our trajectory parameters

x. Since the 3D hands’ trajectory cannot easily be retrieved from single-view se-

quences, we considered the trajectory in the image plane. Therefore, for each new

sequence, we built the set of 2D hand trajectories corresponding to all the motions

in our database projected to the same viewpoint as the sequence, which is straight-

forward given the camera calibration. We then fitted piecewise polynomials to the

2D trajectories, which yielded a 3-dimensional latent representationx. The total

number of training points, and therefore swings, in this case was 40.
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5.2.2 Retrieving Trajectory Parameters

For new sequences in which we want to infer the poses, we first need to recover

the trajectory parametersx′. To this end, we track either the feet or the hands using a

standard image correlation measure, after a manual initialization of the chosen target in

the first frame of the sequence.

In the case walking and skating, this is made more robust by introducing knowledge

of where the ground plane is. This yields feet trajectories on a 2D rectified plane, which

can be automatically split into steps or half-turns, depending on the type of motion. We

then obtain the latent parameters corresponding to the half-turns and steps by fitting a

polynomial to the trajectories in the same way as for the training data, as depicted in

Figures 5.4(a) and (b).

For golf swings, tracking the hands can be made robust by also tracking the golf

club, as proposed in [Gehrig 03]. Since the trajectory parameters for the training se-

quences are estimated in the image plane using the same camera as in the test sequence,

we can directly fit the piecewise polynomial to the hand trajectories to obtainx′, as shown

in Figure 5.4(c).

5.2.3 Motion Recovery

We present our tracking results obtained from real sequences in which we initialized

the motion with the mean prediction of the Gaussian Process model given the trajectory

parameters computed as mentioned above. We show results obtained for skating, skiing,

walking and golfing.
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(a)

(b) (c)

Figure 5.4: (a) For walking, we use a step low dimensional parameterization,

including curvature of the trajectory,x andy displacement and a binary variable

indicating which foot is moving. (b) For skating, we show two consecutive skat-

ing motions that correspond to the test sequence of Figure 5.6. The blue dots

represent the tracked average feet locations on the ground plane and the black

line is a second order polynomial fitted to them. The underlying grid is com-

posed of 20cm×20cm squares. The first latent parameter is the curvature of the

polynomial, whose sign changes if the subject is turning left or right. The sec-

ond one is a binary variable indicating if the subject is in the first or second half

of the turn. (c) For golfing, we use hands’ motion, corresponding to the second

golfing sequence of Figure 5.11. The blue dots depict the tracked hand locations,

while the 3 lines show the polynomials fitted to the different phases of the swing,

whose 3 curvatures are the latent parameters.
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To obtain a quantitative evaluation of our results, we filmed some of the motion

captured skating sequences. We then removed one sequence from the training data to

adopt a leave-one-out validation scheme. We applied our algorithm to this sequence, and

measured the reconstruction error as the average of the absolute error over theNj joint

angles that define a pose. This error is plotted frame-wise in Figure 5.5(a), and has an

average value of 5.3 degrees over 24 frames, with a standard deviation of 0.8 degrees.

This number of frames corresponds to the time during which the subject was within the

capture volume of the Vicon system. In Figure 5.5(b) we plot the errors for different

joint angles, averaged throughout the sequence. We achieve better accuracy on the lower

part of the body than on the upper part, because it is much better constrained by the feet

trajectory. We show the retrieved pose, both reprojected in the input image and seen from

a different viewpoint, in Figure 5.6.

This ground-truth data also helped us in computing how much accuracy is brought

by the refinement step: Without it, the above mean error would have been 6.4 degrees,

with a standard deviation of 1.1 degree. Moreover we also made some experiments with-

out using the observable variables to initialize the PCA motion model, in order to compare

our approach to [Urtasun 04]. In such paper the PCA weights were all initialized to zero,

and doing this on our skating sequence would lead to a mean error of 10.7 degrees with a

standard deviation of 1.8 degrees.

To demonstrate that our approach also works in non studio-like environments, we

filmed the outdoor sequence of Figure 5.7 in which the skater is not the one we captured

to train the GP. The viewpoint is also very different to show that our approach, being

fully 3D, is totally view-independent. Note that the reprojections of our skeleton model
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(a)

(b)

Figure 5.5: (a) Average frame-wise error for the sequence of Figure 5.6, in de-

grees. (b) Mean errors for different joint angles, in degrees, averaged throughout

the sequence. The bars represent the standard deviations of the errors.
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Figure 5.6: Roller skating in a studio setup.First row: We reprojected the

recovered body poses in the input images.Second row:Zoomed version of the

first row. Third row: To highlight the 3D nature of the results, we display the

3D skeleton seen from a different viewpoint.
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correspond well to the underlying images.

Finally, since the skiing motion is very similar to the skating one, we applied our

GP trained for skating on the skiing sequence of Figure 5.8 in which a subject is slaloming

between gates. Of course modeling the ground plane on a ski slope is not straightforward.

We therefore selected a part of the slalom track that could be roughly approximated by

a plane. We then used the GPS coordinates of the gates to warp the 2D trajectory to an

orthogonally rectified one, in which we could compute the latent parameters. To this end

it would have been enough to have a 3D reference on the ground plane. The results we

have obtained are encouraging, but can only be evaluated qualitatively. Nevertheless, they

highlight our method’s ability to generalize over the learned motion.

For the walking case, we present some results obtained on a subject walking along a

curvilinear trajectory in Figures 5.9 and 5.10. To demonstrate the ability of the algorithm

to generalize over the body shape, the tracked subject is different from the subject that

was used to generate the training database. These results were computed to show that the

whole framework can manage very different types of motions, while we still believe that

the technique described in Chapter 4 works better in terms of robustness and accuracy

in cases where key poses are frequent and relatively easy to detect, as is the case during

walking.

In the case of golf, we show the results obtained when tracking two different sub-

jects, whose motion wasnot captured to build our database, performing a swing. These

results are depicted by Figure 5.11, both overlaid on the input images and seen from a

different viewpoint. As can be noticed, the arms motion constrains better the upper body

than the legs, which is intuitive.
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Figure 5.7: Roller skating.First and fourth rows: Recovered body pose repro-

jected in the input image.Second and fifth rows: Zoomed versions of the first

and fourth rows, respectively.Third and sixth rows: 3D skeleton of the subject

seen from a different viewpoint.
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Figure 5.8: We used the model trained on skating motions to recover a skiing

one. First row: Recovered body pose reprojected in the input image.Second

row: Zoomed versions of the first row.Third row: 3D skeleton of the subject

seen from a different viewpoint.

Figure 5.9: Recovered pose in the walking case for 4 steps. The resulting esti-

mated pose is shown in red for the first and the last frame of each step. In the

case of the last step it is projected over the walking subject.

119



Figure 5.10: Estimated pose for the whole curvilinear walking trajectory. The

top image shows the input sequence while the bottom image displays the corre-

sponding body poses.
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Figure 5.11: Golf swing tracking.First and third rows: Two different subjects

performing a golf swing. The recovered body poses have been reprojected in the

input images.Second and fourth rows: The 3D skeleton of the person is seen

from a different viewpoint.
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Chapter 6

Conclusions

In this thesis we have demonstrated that retrieving the 3–D human body configu-

ration starting from monocular input is a very challenging task, but nonetheless it can be

efficiently tackled with the help of prior information and adequate techniques.

Two related approaches have been presented, that can handle two different types of

motions: For motions that contain characteristic postures that are relatively easy to detect,

such as walking and golfing, the algorithm presented in Chapter 4 exploits this fact to

formulate 3–D motion recovery from a single video sequence as an interpolation problem.

This is much easier to achieve than open-ended tracking and we have shown that it can

be solved using straightforward minimization. This approach is generic because most

human motions also feature canonical poses that can be easily detected. This is significant

because it means that we can focus our future efforts on developing methods to reliably

detect these canonical poses instead of all poses, which is much harder. A limitation

of this approach is that it does not handle transitions from one activity to another, as

Markovian motion models could. However, since transitions typically also involve key-
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poses, the approach could potentially be extended to this much more demanding context

given a sufficiently rich training database. This would involve choosing which motion

model to use to connect these key poses and modeling the transition probabilities between

activities, and is a topic for future research.

Furthermore, the approach proposed in Chapter 5 can handle motions in which

such key-poses are not defined, but there is still a clear relation between some easily

measurable image quantities and the body configuration, as for example skating where

the trajectory followed by a subject is highly correlated to how the subject articulates. Our

technique uses these easily retrievable image measurements as latent variables from which

we can recover 3D human body motion via a Gaussian Process mapping. By contrast

with state-of-the-art approaches that consider the latent variables as unknowns, learning

our mapping involves very few parameters and is therefore much easier to do. It allows

us to recover 3D motion from monocular video sequences without having to manually

initialize either the poses or the latent variables. We have demonstrated this approach on

challenging activities such as roller skating, skiing, and golfing. A potential extension

would be to look into more complex activities for which some of the latent variables are

indeed observable and others not. In these cases, such as when the person’s individual

style truly matters, we will look at hybrid approaches where we will establish a first

mapping using the approach presented here and then learn a second mapping modeling

deviations from what the first predicts. Because the first mapping will have captured much

of the complexity, it is hoped that the second will be easy to learn, even in these difficult

cases.

A general drawback of the proposed approaches is that they rely on the underlying
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motion model, and therefore the reconstructed motions cannot be too different from the

ones that build the training dataset. This is also due to the fact that the chosen dimension-

ality reduction technique, namely PCA, is intrinsically linear and not suitable to handle

motions that are too complex or that differ too much from the training ones. As explained

in Chapter 3, the choice of such technique comes from the trade-off between complex-

ity and model elasticity, and has anyway proved itself enough to cope with the types of

motion proposed in this thesis, even in a very ill-constrained setup. Another issue that

affects the proposed techniques is related to optimization and computation time. Given

the high nonlinearity of the studied objective function, standard gradient-based optimiza-

tion strategies could not be used. For this reason we had to adopt different algorithms

like stochastic optimization and Powell’s method, which were still able to obtain good

results but on the other hand required a lot of computation time, also due to the high-

dimensionality of the analyzed functions.
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