We studied the structure of viral nucleoprotein complexes extracted from the nuclei of mouse cells infected with the immunosuppressive strain of the minute virus of mice (MVMi). Two types of complex were detected, with sedimentation coefficients of about 110 and 40S. The complexes sedimenting at 110S contained single-stranded MVMi DNA as well as a second form of viral DNA which apparently had a heat-sensitive secondary structure. The 110S peak also contained proteins which coelectrophoresed with the MVMi capsid proteins. Complexes sedimenting at 40S contained the double-stranded replicative form of MVMi DNA. These complexes sedimented faster than did the pure replicative form DNA (15S), but more slowly than cellular chromatin fragments containing DNA of the same length. They incorporated labeled deoxynucleoside triphosphate in vitro into the replicative form DNA. We investigated the structure of MVMi nucleoprotein complexes in the following ways. Nuclei of MVMi-infected cells were digested with staphylococcal nuclease, and the resulting DNA fragments were electrophoresed, transferred to nitrocellulose, and hybridized first with labeled MVMi DNA and then with cellular DNA. A nucleosomal repeat pattern was seen with the cellular DNA probe but not with the MVMi DNA probe. The DNA in MVMi nucleoprotein complexes was cross-linked with psoralen, purified, denatured, and examined with an electron microscope. Bubbles, indicating the presence of proteins, were seen in the MVMi DNA. The length of the DNA in the bubbles was 90 +/- 29 nucleotides. On the other hand, nucleosomes protected 160 base pairs from cross-linking by psoralen. The MVMi nucleoprotein complexes thus have a distinct structure which is different from that of chromatin.