
Solving chaotic differential equations using an
adaptative algorithm

Master Thesis

Lionel Walter

Prof. Alfio Quarteroni
Dr. Erik Burman
Dr. Paolo Zunino

Private Defense / January 27th 2005

1 / 65

Outline

1 Main Notions
The Cauchy Problem
The Chaos
The Ideas to Solve It
Central Theorem

2 Algorithm validation and improvement
Our algorithm
Comparison Algorithm
Test Cases
Improvements
Results

3 Application to PDE
Burgers Equation
Kuramoto-Sivashinsky Equation

Outline 2 / 65

Outline

1 Main Notions
The Cauchy Problem
The Chaos
The Ideas to Solve It
Central Theorem

2 Algorithm validation and improvement
Our algorithm
Comparison Algorithm
Test Cases
Improvements
Results

3 Application to PDE
Burgers Equation
Kuramoto-Sivashinsky Equation

Outline 2 / 65

Outline

1 Main Notions
The Cauchy Problem
The Chaos
The Ideas to Solve It
Central Theorem

2 Algorithm validation and improvement
Our algorithm
Comparison Algorithm
Test Cases
Improvements
Results

3 Application to PDE
Burgers Equation
Kuramoto-Sivashinsky Equation

Outline 2 / 65

The Cauchy Problem

Find a function X : R → Rd such that{
X ′(t) = a(t ,X (t)) ∀t ∈ [0 T]
X (0) = X0

a(·, ·) and X0 are given.

Finding the exact X is usually impossible. We approximate X by X̄ and
our goal is to minimize

g(X (T))− g(X̄ (T))

where g : Rd → R is a given function, called the goal function.

Main Notions The Cauchy Problem 3 / 65

The Cauchy Problem

Find a function X : R → Rd such that{
X ′(t) = a(t ,X (t)) ∀t ∈ [0 T]
X (0) = X0

a(·, ·) and X0 are given.

Finding the exact X is usually impossible. We approximate X by X̄ and
our goal is to minimize

g(X (T))− g(X̄ (T))

where g : Rd → R is a given function, called the goal function.

Main Notions The Cauchy Problem 3 / 65

The Cauchy Problem

Find a function X : R → Rd such that{
X ′(t) = a(t ,X (t)) ∀t ∈ [0 T]
X (0) = X0

a(·, ·) and X0 are given.

Finding the exact X is usually impossible. We approximate X by X̄ and
our goal is to minimize

g(X (T))− g(X̄ (T))

where g : Rd → R is a given function, called the goal function.

Main Notions The Cauchy Problem 3 / 65

Goal over the entire time interval

Assume we want to have a goal function of the following form :

h(X (T)) +

∫ T

0
k(t ,X (t))dt

for given functions h : Rd → R et k : R× Rd → R.
If we modify the Cauchy problem as follows

X ′(t) = a(t ,X (t)) ∀t ∈ [0 T]
X (0) = X0

y ′(t) = k(t , y(t))
y(0) = 0

then we can define the goal g(X (T)) = h(X (T)) + y(T) and we get the
wanted goal.

Main Notions The Cauchy Problem 4 / 65

Goal over the entire time interval

Assume we want to have a goal function of the following form :

h(X (T)) +

∫ T

0
k(t ,X (t))dt

for given functions h : Rd → R et k : R× Rd → R.
If we modify the Cauchy problem as follows

X ′(t) = a(t ,X (t)) ∀t ∈ [0 T]
X (0) = X0

y ′(t) = k(t , y(t))
y(0) = 0

then we can define the goal g(X (T)) = h(X (T)) + y(T) and we get the
wanted goal.

Main Notions The Cauchy Problem 4 / 65

What is Chaos ?

Chaos is used to indicate behavior of solutions to dynamical systems
that is highly irregular and usually unexpected.

 Lorenz applet.

Main Notions The Chaos 5 / 65

What is Chaos ?

Chaos is used to indicate behavior of solutions to dynamical systems
that is highly irregular and usually unexpected.

 Lorenz applet.

0 20 40 60 80 100
−20

0

20

t

This intuitive notion is present in religion, philosophy, politics, physics. . .

Main Notions The Chaos 5 / 65

And in Mathematics ?

It’s rather an idea than a precise mathematical concept. But Edward
Ott gives a mathematical definition of Chaos. He says that if the
difference between the solution of an ODE and the solution of the
same ODE slightly modified grows exponentially with time then the
system is said to be chaotic.{

X ′(t) = a(t ,X (t)) ∀t ∈ [0 T]
X (0) = X0

{
Y ′(t) = a(t ,Y (t)) ∀t ∈ [0 T]
Y (0) = X0 + δ0

If

lim
δ0→0

‖Y (t)− X (t)‖
δ0

≈ eDt

for a constant D > 0, then the system is said to be chaotic.

Main Notions The Chaos 6 / 65

Example

0 10 20 30
−20

−10

0

10

20

X
(t)

t

X(0)=1
X(0)=1.005

Main Notions The Chaos 7 / 65

Meteorological Example

Monday Morning, 10 degrees. What will be the temperature on
Friday Morning ?

We have all the laws of meteorology at hand.

We have 4 methods at our disposal to compute the temperature of
the following day.

1 2 3 4

speed

precision

We want to have Friday’s temperature with a precision of 1 degree
in the least amount of time

Main Notions The Ideas to Solve It 8 / 65

Strategy A

w
ed

ne
s.

tu
es

da
y

m
on

da
y

fr
id

ay

th
ur

sd
ay

degrees

1

3

4

2

Main Notions The Ideas to Solve It 9 / 65

Strategy A

w
ed

ne
s.

tu
es

da
y

m
on

da
y

fr
id

ay

th
ur

sd
ay

degrees

1

3

4

2

Main Notions The Ideas to Solve It 9 / 65

Strategy A

w
ed

ne
s.

tu
es

da
y

m
on

da
y

fr
id

ay

th
ur

sd
ay

degrees

1

3

4

2

Main Notions The Ideas to Solve It 9 / 65

Strategy A

w
ed

ne
s.

tu
es

da
y

m
on

da
y

fr
id

ay

th
ur

sd
ay

degrees

1

3

4

2

Main Notions The Ideas to Solve It 9 / 65

Strategy A

w
ed

ne
s.

tu
es

da
y

m
on

da
y

fr
id

ay

th
ur

sd
ay

degrees

1

3

4

2

Main Notions The Ideas to Solve It 9 / 65

Chaotic problems : Thunderstorm

w
ed

ne
s.

tu
es

da
y

m
on

da
y

fr
id

ay

th
ur

sd
ay

degrees thunderstorm

bigsmall

Main Notions The Ideas to Solve It 10 / 65

Chaotic problems : Anticyclone

w
ed

ne
s.

tu
es

da
y

m
on

da
y

fr
id

ay

th
ur

sd
ay

degrees

Anticyclone

big small

Main Notions The Ideas to Solve It 11 / 65

A better strategy : Strategy B

w
ed

ne
s.

tu
es

da
y

m
on

da
y

fr
id

ay

th
ur

sd
ay

degrees

1

3

4

2

Main Notions The Ideas to Solve It 12 / 65

A better strategy : Strategy B

w
ed

ne
s.

tu
es

da
y

m
on

da
y

fr
id

ay

th
ur

sd
ay

degrees

1

3

4

2

Main Notions The Ideas to Solve It 12 / 65

A better strategy : Strategy B

w
ed

ne
s.

tu
es

da
y

m
on

da
y

fr
id

ay

th
ur

sd
ay

degrees

1

3

4

2

Main Notions The Ideas to Solve It 12 / 65

A better strategy : Strategy B

w
ed

ne
s.

tu
es

da
y

m
on

da
y

fr
id

ay

th
ur

sd
ay

degrees

1

3

4

2

Main Notions The Ideas to Solve It 12 / 65

A better strategy : Strategy B

w
ed

ne
s.

tu
es

da
y

m
on

da
y

fr
id

ay

th
ur

sd
ay

degrees

1

3

4

2

Main Notions The Ideas to Solve It 12 / 65

A better strategy : Strategy B

w
ed

ne
s.

tu
es

da
y

m
on

da
y

fr
id

ay

th
ur

sd
ay

degrees

1

3

4

2

Main Notions The Ideas to Solve It 12 / 65

A better strategy : Strategy B

w
ed

ne
s.

tu
es

da
y

m
on

da
y

fr
id

ay

th
ur

sd
ay

degrees

1

3

4

2

Main Notions The Ideas to Solve It 12 / 65

A better strategy : Strategy B

w
ed

ne
s.

tu
es

da
y

m
on

da
y

fr
id

ay

th
ur

sd
ay

degrees

1

3

4

2

Main Notions The Ideas to Solve It 12 / 65

Analysis of Strategy B

Advantage

Strategy B deals with
Thunderstorms and
Anticyclones.

Drawbacks

Strategy B is much
slower than strategy A

Strategy B could give
wrong results

Main Notions The Ideas to Solve It 13 / 65

Analysis of Strategy B

Advantage

Strategy B deals with
Thunderstorms and
Anticyclones.

Drawbacks

Strategy B is much
slower than strategy A

Strategy B could give
wrong results

Main Notions The Ideas to Solve It 13 / 65

Analysis of Strategy B

Advantage

Strategy B deals with
Thunderstorms and
Anticyclones.

Drawbacks

Strategy B is much
slower than strategy A

Strategy B could give
wrong results

Main Notions The Ideas to Solve It 13 / 65

Analysis of Strategy B

Advantage

Strategy B deals with
Thunderstorms and
Anticyclones.

Drawbacks

Strategy B is much
slower than strategy A

Strategy B could give
wrong results

Solution
The central theorem says that the strategy B can be
computed with the same amount of time as Strategy A

Main Notions The Ideas to Solve It 13 / 65

Analysis of Strategy B

Advantage

Strategy B deals with
Thunderstorms and
Anticyclones.

Drawbacks

Strategy B is much
slower than strategy A

Strategy B could give
wrong results

True Solution

Last step :

Main Notions The Ideas to Solve It 13 / 65

Analysis of Strategy B

Advantage

Strategy B deals with
Thunderstorms and
Anticyclones.

Drawbacks

Strategy B is much
slower than strategy A

Strategy B could give
wrong results

Solution
Combine Strategy A and Strategy B !

Main Notions The Ideas to Solve It 13 / 65

Conclusion

Combining strategy A and B and using the central theorem, we can
now estimate temperature precisely, coping with thunderstorms and
anticyclones. The time we need will be at most twice the time of
strategy A only.

Main Notions The Ideas to Solve It 14 / 65

u and ψ

Definition (u)
u(s,Y) ∈ R is the value of g(X (T)) if we replace the initial condition
X (0) = X0 by X (s) = Y .

ts

Y

T

X(t) u(s,Y)

u if g(x) = x

Main Notions Central Theorem 15 / 65

u and ψ

Definition (u)
u(s,Y) ∈ R is the value of g(X (T)) if we replace the initial condition
X (0) = X0 by X (s) = Y .

Definition (ψ)

Let X be the true solution of the Cauchy problem. Let W ∈ Rd .
ψ : R → Rd measures the sensitivity of the goal function g around the
true solution :(

ψ(s),W
)

= lim
δ→0

u(s,X (s) + δW)− u(s,X (s))

δ

ψ is the gradient of u with respect to the second variable.

Main Notions Central Theorem 15 / 65

Local Error

��

��

������

������

	�	
�

t

X(t), true solution

t1 t2 t3 t4=T

e(t2)

e(t4)X(t1)

Main Notions Central Theorem 16 / 65

Local Error of an approximation

Definition (Local Solution)

Assume we approximate the true solution X (t) by X̄ (t) on a grid
0 = t0 < t1 < . . . < tN = T . X̃ (t) is defined as follows, for tn < t ≤ tn+1 :{

X̃ ′(t) = a(t , X̃ (t)) ∀t ∈ (tn, tn+1]

X̃ (tn) = X̄ (tn)

Definition (Local Error)

e(tn) = X̃ (tn)− X̄ (tn).

Main Notions Central Theorem 17 / 65

Local Error of an approximation

Definition (Local Solution)

Assume we approximate the true solution X (t) by X̄ (t) on a grid
0 = t0 < t1 < . . . < tN = T . X̃ (t) is defined as follows, for tn < t ≤ tn+1 :{

X̃ ′(t) = a(t , X̃ (t)) ∀t ∈ (tn, tn+1]

X̃ (tn) = X̄ (tn)

Definition (Local Error)

e(tn) = X̃ (tn)− X̄ (tn).

Main Notions Central Theorem 17 / 65

Central Theorem (intuitive)

Theorem
Assume that the Cauchy problem has a unique solution for all possible
X0. Assume that a(t , x) is differentiable in x for all t in [0 T]. For all
differential functions g, the global error is a weighted sum of the local
errors :

g(X (T))− g(X̄ (T)) =
N∑

n=1

(
e(tn), ψ(tn)

)
and ψ satisfies  −dψ(s)

ds
= (a′)∗(s,X (s)) ψ(s)

ψ(T) = ∇g(X (T))

The above problem is called the dual problem of the Cauchy problem.

Main Notions Central Theorem 18 / 65

Central Theorem (intuitive)

Theorem
Assume that the Cauchy problem has a unique solution for all possible
X0. Assume that a(t , x) is differentiable in x for all t in [0 T]. For all
differential functions g, the global error is a weighted sum of the local
errors :

g(X (T))− g(X̄ (T)) =
N∑

n=1

(
e(tn), ψ(tn)

)
and ψ satisfies  −dψ(s)

ds
= (a′)∗(s,X (s)) ψ(s)

ψ(T) = ∇g(X (T))

The above problem is called the dual problem of the Cauchy problem.

Main Notions Central Theorem 18 / 65

Central Theorem (intuitive)

Theorem
Assume that the Cauchy problem has a unique solution for all possible
X0. Assume that a(t , x) is differentiable in x for all t in [0 T]. For all
differential functions g, the global error is a weighted sum of the local
errors :

g(X (T))− g(X̄ (T)) =
N∑

n=1

(
e(tn), ψ(tn)

)
and ψ satisfies  −dψ(s)

ds
= (a′)∗(s,X (s)) ψ(s)

ψ(T) = ∇g(X (T))

The above problem is called the dual problem of the Cauchy problem.

Main Notions Central Theorem 18 / 65

Central Theorem (exact form)

Theorem
Assume that the Cauchy problem has a unique solution for all possible
X0. Assume that a(t , x) is differentiable in x for all t in [0 T]. For all
differential functions g, the global error is a weighted sum of the local
errors :

g(X (T))− g(X̄ (T)) =
N∑

n=1

(
e(tn),

∫ 1

0
ψ(tn, X̄ (tn) + se(tn))ds

)
and ψ satisfies −dψ(s,X (s))

ds
= (a′)∗(s,X (s)) ψ(s,X (s))

ψ(T ,X (T)) = ∇g(X (T))

The above problem is called the dual problem of the Cauchy problem.

Main Notions Central Theorem 18 / 65

X and ψ, its dual

Primal {
X ′(t) = a(t ,X (t)) ∀t ∈ [0 T]
X (0) = X0

Dual {
−ψ′(s) = (a′)∗(s,X (s)) ψ(s) ∀s ∈ [0 T]
ψ(T) = ∇g(X (T))

Main Notions Central Theorem 19 / 65

Approximation of e(tn)

To approximate e(tn) = X̃ (tn)− X̄ (tn), we use another approximation
X̄ (tn) and we do Richardson extrapolation based on the different
orders of the estimation X̄ (tn) and X̄ (tn).

ē(tn) = γ(X̄ (tn)− X̄ (tn))

Main Notions Central Theorem 20 / 65

Approximation of ψ(tn)

We replace the system −dψ(s)

ds
= (a′)∗(s,X (s)) ψ(s)

ψ(T) = ∇g(X (T))

by the system  −dψ(s)

ds
= (a′)∗(s, X̄ (s)) ψ(s)

ψ(T) = ∇g(X̄ (T))

So, we can find ψ.

Main Notions Central Theorem 21 / 65

The algorithm

From the estimation of the global error

g(X (T))− g(X̄ (T)) ≈
N∑

n=1

(
ē(tn), ψ̄(tn)

)
︸ ︷︷ ︸

rn

we will construct an adaptative algorithm to solve chaotic ordinary
differential equations. The idea is to refine the mesh at the places
where rn is big.

Algorithm validation and improvement Our algorithm 22 / 65

The algorithm

Inputs

TOL, the tolerance we want on g(X (T))− g(X̄ (T)).

A one-step numerical method M to approximate ODE (Euler
progressive, Runge-Kutta, . . .).

N0 the initial number of time steps.

a(·, ·) the given function of the Cauchy Problem.

g(·) the goal function.

T the final time.

X0 the initial condition.

Outputs
T , the mesh the algorithm use to find the approximation.

X̄ the approximation of X on the mesh T that satisfies
g(X (T))− g(X̄ (T)) < TOL

Algorithm validation and improvement Our algorithm 23 / 65

The algorithm

Inputs

TOL, the tolerance we want on g(X (T))− g(X̄ (T)).

A one-step numerical method M to approximate ODE (Euler
progressive, Runge-Kutta, . . .).

N0 the initial number of time steps.

a(·, ·) the given function of the Cauchy Problem.

g(·) the goal function.

T the final time.

X0 the initial condition.

Outputs
T , the mesh the algorithm use to find the approximation.

X̄ the approximation of X on the mesh T that satisfies
g(X (T))− g(X̄ (T)) < TOL

Algorithm validation and improvement Our algorithm 23 / 65

The algorithm

Inputs

TOL, the tolerance we want on g(X (T))− g(X̄ (T)).

A one-step numerical method M to approximate ODE (Euler
progressive, Runge-Kutta, . . .).

N0 the initial number of time steps.

a(·, ·) the given function of the Cauchy Problem.

g(·) the goal function.

T the final time.

X0 the initial condition.

Outputs
T , the mesh the algorithm use to find the approximation.

X̄ the approximation of X on the mesh T that satisfies
g(X (T))− g(X̄ (T)) < TOL

Algorithm validation and improvement Our algorithm 23 / 65

The algorithm

Inputs

TOL, the tolerance we want on g(X (T))− g(X̄ (T)).

A one-step numerical method M to approximate ODE (Euler
progressive, Runge-Kutta, . . .).

N0 the initial number of time steps.

a(·, ·) the given function of the Cauchy Problem.

g(·) the goal function.

T the final time.

X0 the initial condition.

Outputs
T , the mesh the algorithm use to find the approximation.

X̄ the approximation of X on the mesh T that satisfies
g(X (T))− g(X̄ (T)) < TOL

Algorithm validation and improvement Our algorithm 23 / 65

The algorithm

Inputs

TOL, the tolerance we want on g(X (T))− g(X̄ (T)).

A one-step numerical method M to approximate ODE (Euler
progressive, Runge-Kutta, . . .).

N0 the initial number of time steps.

a(·, ·) the given function of the Cauchy Problem.

g(·) the goal function.

T the final time.

X0 the initial condition.

Outputs
T , the mesh the algorithm use to find the approximation.

X̄ the approximation of X on the mesh T that satisfies
g(X (T))− g(X̄ (T)) < TOL

Algorithm validation and improvement Our algorithm 23 / 65

The algorithm

1 T a uniform grid of N0 timesteps.

2 Compute X̄ on the mesh T using the numerical method M.

3 Compute X̄ on a different mesh using M.
4 Use extrapolation to compute the approximation of the local error

ē = γ(X̄ − X̄).
5 Compute the weights ψ on the mesh T using M.
6 Compute the residuals ri = (ei , ψi)

7 Compute the estimation of the error E =
∑

i ri . If E < TOL stop.
8 Refine the mesh where ri is big.
9 Go back to 2.

We call this algorithm mstz .

Algorithm validation and improvement Our algorithm 24 / 65

The algorithm

1 T a uniform grid of N0 timesteps.

2 Compute X̄ on the mesh T using the numerical method M.

3 Compute X̄ on a different mesh using M.
4 Use extrapolation to compute the approximation of the local error

ē = γ(X̄ − X̄).
5 Compute the weights ψ on the mesh T using M.
6 Compute the residuals ri = (ei , ψi)

7 Compute the estimation of the error E =
∑

i ri . If E < TOL stop.
8 Refine the mesh where ri is big.
9 Go back to 2.

We call this algorithm mstz .

Algorithm validation and improvement Our algorithm 24 / 65

The algorithm

1 T a uniform grid of N0 timesteps.

2 Compute X̄ on the mesh T using the numerical method M.

3 Compute X̄ on a different mesh using M.
4 Use extrapolation to compute the approximation of the local error

ē = γ(X̄ − X̄).
5 Compute the weights ψ on the mesh T using M.
6 Compute the residuals ri = (ei , ψi)

7 Compute the estimation of the error E =
∑

i ri . If E < TOL stop.
8 Refine the mesh where ri is big.
9 Go back to 2.

We call this algorithm mstz .

Algorithm validation and improvement Our algorithm 24 / 65

The algorithm

1 T a uniform grid of N0 timesteps.

2 Compute X̄ on the mesh T using the numerical method M.

3 Compute X̄ on a different mesh using M.
4 Use extrapolation to compute the approximation of the local error

ē = γ(X̄ − X̄).
5 Compute the weights ψ on the mesh T using M.
6 Compute the residuals ri = (ei , ψi)

7 Compute the estimation of the error E =
∑

i ri . If E < TOL stop.
8 Refine the mesh where ri is big.
9 Go back to 2.

We call this algorithm mstz .

Algorithm validation and improvement Our algorithm 24 / 65

The algorithm

1 T a uniform grid of N0 timesteps.

2 Compute X̄ on the mesh T using the numerical method M.

3 Compute X̄ on a different mesh using M.
4 Use extrapolation to compute the approximation of the local error

ē = γ(X̄ − X̄).
5 Compute the weights ψ on the mesh T using M.
6 Compute the residuals ri = (ei , ψi)

7 Compute the estimation of the error E =
∑

i ri . If E < TOL stop.
8 Refine the mesh where ri is big.
9 Go back to 2.

We call this algorithm mstz .

Algorithm validation and improvement Our algorithm 24 / 65

The algorithm

1 T a uniform grid of N0 timesteps.

2 Compute X̄ on the mesh T using the numerical method M.

3 Compute X̄ on a different mesh using M.
4 Use extrapolation to compute the approximation of the local error

ē = γ(X̄ − X̄).
5 Compute the weights ψ on the mesh T using M.
6 Compute the residuals ri = (ei , ψi)

7 Compute the estimation of the error E =
∑

i ri . If E < TOL stop.
8 Refine the mesh where ri is big.
9 Go back to 2.

We call this algorithm mstz .

Algorithm validation and improvement Our algorithm 24 / 65

The algorithm

1 T a uniform grid of N0 timesteps.

2 Compute X̄ on the mesh T using the numerical method M.

3 Compute X̄ on a different mesh using M.
4 Use extrapolation to compute the approximation of the local error

ē = γ(X̄ − X̄).
5 Compute the weights ψ on the mesh T using M.
6 Compute the residuals ri = (ei , ψi)

7 Compute the estimation of the error E =
∑

i ri . If E < TOL stop.
8 Refine the mesh where ri is big.
9 Go back to 2.

We call this algorithm mstz .

Algorithm validation and improvement Our algorithm 24 / 65

The algorithm

1 T a uniform grid of N0 timesteps.

2 Compute X̄ on the mesh T using the numerical method M.

3 Compute X̄ on a different mesh using M.
4 Use extrapolation to compute the approximation of the local error

ē = γ(X̄ − X̄).
5 Compute the weights ψ on the mesh T using M.
6 Compute the residuals ri = (ei , ψi)

7 Compute the estimation of the error E =
∑

i ri . If E < TOL stop.
8 Refine the mesh where ri is big.
9 Go back to 2.

We call this algorithm mstz .

Algorithm validation and improvement Our algorithm 24 / 65

The algorithm

1 T a uniform grid of N0 timesteps.

2 Compute X̄ on the mesh T using the numerical method M.

3 Compute X̄ on a different mesh using M.
4 Use extrapolation to compute the approximation of the local error

ē = γ(X̄ − X̄).
5 Compute the weights ψ on the mesh T using M.
6 Compute the residuals ri = (ei , ψi)

7 Compute the estimation of the error E =
∑

i ri . If E < TOL stop.
8 Refine the mesh where ri is big.
9 Go back to 2.

We call this algorithm mstz .

Algorithm validation and improvement Our algorithm 24 / 65

Adaptive Runge-Kutta

One of the most used method for solving ODE. Based on the
Dormand-Prince pair. Use a pair of Runge-Kutta methods of order
4 and 5 to estimate the local error.

A typical example of the strategy A.

Implemented in MATLAB under the name ode45 .

Need to give to the solver the tolerance ε we want on the local
error.

As there is no estimation of the global error with ode45 , we decided to
give to the solver the exact solution X (T) and we decrease ε until we
have g(X (T))− g(X̄ (T)).

Algorithm validation and improvement Comparison Algorithm 25 / 65

Adaptive Runge-Kutta and global error

1 Set the tolerance on the local error ε =
TOL
N0

.

2 Compute X̄ using ode45 .
3 Compute

E = g(X (T))− g(X̄ (T))

If E < TOL, stop. Else set ε = ε/10 and go back to 2

We call this algorithm RK45.

Algorithm validation and improvement Comparison Algorithm 26 / 65

Adaptive Runge-Kutta and global error

1 Set the tolerance on the local error ε =
TOL
N0

.

2 Compute X̄ using ode45 .
3 Compute

E = g(X (T))− g(X̄ (T))

If E < TOL, stop. Else set ε = ε/10 and go back to 2

We call this algorithm RK45.

Algorithm validation and improvement Comparison Algorithm 26 / 65

Adaptive Runge-Kutta and global error

1 Set the tolerance on the local error ε =
TOL
N0

.

2 Compute X̄ using ode45 .
3 Compute

E = g(X (T))− g(X̄ (T))

If E < TOL, stop. Else set ε = ε/10 and go back to 2

We call this algorithm RK45.

Algorithm validation and improvement Comparison Algorithm 26 / 65

Strategy A

w
ed

ne
s.

tu
es

da
y

m
on

da
y

fr
id

ay

th
ur

sd
ay

degrees

1

3

4

2

Algorithm validation and improvement Comparison Algorithm 27 / 65

Strategy A

w
ed

ne
s.

tu
es

da
y

m
on

da
y

fr
id

ay

th
ur

sd
ay

degrees

1

3

4

2

Algorithm validation and improvement Comparison Algorithm 27 / 65

Strategy A

w
ed

ne
s.

tu
es

da
y

m
on

da
y

fr
id

ay

th
ur

sd
ay

degrees

1

3

4

2

Algorithm validation and improvement Comparison Algorithm 27 / 65

Strategy A

w
ed

ne
s.

tu
es

da
y

m
on

da
y

fr
id

ay

th
ur

sd
ay

degrees

1

3

4

2

Algorithm validation and improvement Comparison Algorithm 27 / 65

Strategy A

w
ed

ne
s.

tu
es

da
y

m
on

da
y

fr
id

ay

th
ur

sd
ay

degrees

1

3

4

2

Algorithm validation and improvement Comparison Algorithm 27 / 65

A better strategy : Strategy B

w
ed

ne
s.

tu
es

da
y

m
on

da
y

fr
id

ay

th
ur

sd
ay

degrees

1

3

4

2

Algorithm validation and improvement Comparison Algorithm 28 / 65

A better strategy : Strategy B

w
ed

ne
s.

tu
es

da
y

m
on

da
y

fr
id

ay

th
ur

sd
ay

degrees

1

3

4

2

Algorithm validation and improvement Comparison Algorithm 28 / 65

A better strategy : Strategy B

w
ed

ne
s.

tu
es

da
y

m
on

da
y

fr
id

ay

th
ur

sd
ay

degrees

1

3

4

2

Algorithm validation and improvement Comparison Algorithm 28 / 65

A better strategy : Strategy B

w
ed

ne
s.

tu
es

da
y

m
on

da
y

fr
id

ay

th
ur

sd
ay

degrees

1

3

4

2

Algorithm validation and improvement Comparison Algorithm 28 / 65

A better strategy : Strategy B

w
ed

ne
s.

tu
es

da
y

m
on

da
y

fr
id

ay

th
ur

sd
ay

degrees

1

3

4

2

Algorithm validation and improvement Comparison Algorithm 28 / 65

A better strategy : Strategy B

w
ed

ne
s.

tu
es

da
y

m
on

da
y

fr
id

ay

th
ur

sd
ay

degrees

1

3

4

2

Algorithm validation and improvement Comparison Algorithm 28 / 65

A better strategy : Strategy B

w
ed

ne
s.

tu
es

da
y

m
on

da
y

fr
id

ay

th
ur

sd
ay

degrees

1

3

4

2

Algorithm validation and improvement Comparison Algorithm 28 / 65

A better strategy : Strategy B

w
ed

ne
s.

tu
es

da
y

m
on

da
y

fr
id

ay

th
ur

sd
ay

degrees

1

3

4

2

Algorithm validation and improvement Comparison Algorithm 28 / 65

Test Cases

We will have 6 test cases :

The Exponential

A non-linear problem with blow-up

A stiff problem

A problem with a discontinuity in the derivative

A model of the transition to the turbulence

The Lorenz problem

The last 2 problems are chaotic. For the numerical method we use a
Runge-Kutta method of order 5. The coefficients are taken from the
Dormand-Prince pair.

Algorithm validation and improvement Test Cases 29 / 65

The Exponential

(a)


X ′(t) = X (t) ∀t ∈ [0 3]
X (0) = 1
g(x) = x
TOL = 10−8

N0 = 5

solution : X (t) = et

0 1 2 3
0

10

20

30
X(t)

t
0 1 2 3

0

10

20

30
ψ(t)

t
0 1 2 3

−1.5

−1

−0.5

0
x 10−11 e(t)

t
0 1 2 3

0.0375

0.0375

0.0375

0.0375

t

taille des pas de temps

Algorithm validation and improvement Test Cases 30 / 65

Non-linear with blow-up

(b)


X ′(t) = 2(t + 1)X 2(t) ∀t ∈ [0 0.4]
X (0) = 1
g(x) = x2

TOL = 0.1
N0 = 5

solution : X (t) =
−1

t2 + 2t − 1

0 0.2 0.4
0

10

20

30
X(t)

t
0 0.2 0.4

0

1

2

3

4
x 104 ψ(t)

t
0 0.2 0.4

−4

−2

0

2
x 10−4 e(t)

t
0 0.2 0.4

0.01

0.02

0.03

0.04

0.05

t

taille des pas de temps

Algorithm validation and improvement Test Cases 31 / 65

Stiff problem

(c)


X ′(t) = t(1− X (t)) + (1− t)e−t ∀t ∈ [0 10]
X (0) = 1
g(x) = x
TOL = 10−8

N0 = 5

solution : X (t) = e−t2/2 − e−t + 1.

0 5 10
0.9

1

1.1

1.2

1.3
X(t)

t
0 5 10

0

0.5

1
ψ(t)

t
0 5 10

−1

−0.5

0

0.5

1
x 10−6 e(t)

t
0 5 10

0.1

0.15

0.2

0.25

t

taille des pas de temps

Algorithm validation and improvement Test Cases 32 / 65

Singularity

(d)



X ′(t) =
X (t)√

t − 5/3 + π10−8
∀t ∈ [0 10]

X (0) = e−2
√

5
3−π10−8

g(x) = x
TOL = 0.1
N0 = 5

sol. : X (t) = exp(2 · sign(t − 5/3 + π10−8) ·
√
|t − 5/3 + π10−8|)

0 2 4
0

10

20

30
X(t)

t
0 2 4

0

100

200

300
ψ(t)

t
0 2 4

−2

0

2

4

6
x 10−3 e(t)

t
0 2 4

0

0.5

1

t

taille des pas de temps

Algorithm validation and improvement Test Cases 33 / 65

Transition to turbulence

(t)



X ′(t) =

(
−R−1 1

0 −R−1

)
X (t) + ||X (t)||

(
0 −1
1 0

)
X (t)

X (0) =
δ√
2
(1,1) δ > 0

g(X) = x1 (the first component)
TOL = 10−6

N0 = 500

0 500
10−10

10−5

100

105
||X(t)||

t
0 500

10−5

100

105
||ψ(t)||

t
0 500

10−20

10−15

10−10

10−5
||e(t)||

t
0 500

0

0.5

1

t

taille des pas de temps

Algorithm validation and improvement Test Cases 34 / 65

Transition to turbulence ‖X0‖ = 10−5.4

2 4 6

x 10−4

5

10

15

x 10−6 X t=20

0 0.5 1
0

0.2

0.4

0.6

0.8

ψ

Algorithm validation and improvement Test Cases 35 / 65

Transition to turbulence ‖X0‖ = 10−5.4

2 4 6

x 10−4

5

10

15

x 10−6 X t=40

0 0.5 1
0

0.2

0.4

0.6

0.8

ψ

Algorithm validation and improvement Test Cases 35 / 65

Transition to turbulence ‖X0‖ = 10−5.4

2 4 6

x 10−4

5

10

15

x 10−6 X t=60

0 0.5 1
0

0.2

0.4

0.6

0.8

ψ

Algorithm validation and improvement Test Cases 35 / 65

Transition to turbulence ‖X0‖ = 10−5.4

2 4 6

x 10−4

5

10

15

x 10−6 X t=80

0 0.5 1
0

0.2

0.4

0.6

0.8

ψ

Algorithm validation and improvement Test Cases 35 / 65

Transition to turbulence ‖X0‖ = 10−5.4

2 4 6

x 10−4

5

10

15

x 10−6X t=100

0 0.5 1
0

0.2

0.4

0.6

0.8

ψ

Algorithm validation and improvement Test Cases 35 / 65

Transition to turbulence ‖X0‖ = 10−5.4

2 4 6

x 10−4

5

10

15

x 10−6X t=120

0 0.5 1
0

0.2

0.4

0.6

0.8

ψ

Algorithm validation and improvement Test Cases 35 / 65

Transition to turbulence ‖X0‖ = 10−5.4

2 4 6

x 10−4

5

10

15

x 10−6X t=140

0 0.5 1
0

0.2

0.4

0.6

0.8

ψ

Algorithm validation and improvement Test Cases 35 / 65

Transition to turbulence ‖X0‖ = 10−5.4

2 4 6

x 10−4

5

10

15

x 10−6X t=160

0 0.5 1
0

0.2

0.4

0.6

0.8

ψ

Algorithm validation and improvement Test Cases 35 / 65

Transition to turbulence ‖X0‖ = 10−5.4

2 4 6

x 10−4

5

10

15

x 10−6X t=180

0 0.5 1
0

0.2

0.4

0.6

0.8

ψ

Algorithm validation and improvement Test Cases 35 / 65

Transition to turbulence ‖X0‖ = 10−5.4

2 4 6

x 10−4

5

10

15

x 10−6X t=200

0 0.5 1
0

0.2

0.4

0.6

0.8

ψ

Algorithm validation and improvement Test Cases 35 / 65

Transition to turbulence ‖X0‖ = 10−5.4

2 4 6

x 10−4

5

10

15

x 10−6X t=220

0 0.5 1
0

0.2

0.4

0.6

0.8

ψ

Algorithm validation and improvement Test Cases 35 / 65

Transition to turbulence ‖X0‖ = 10−5.4

2 4 6

x 10−4

5

10

15

x 10−6X t=240

0 0.5 1
0

0.2

0.4

0.6

0.8

ψ

Algorithm validation and improvement Test Cases 35 / 65

Transition to turbulence ‖X0‖ = 10−5.4

2 4 6

x 10−4

5

10

15

x 10−6X t=260

0 0.5 1
0

0.2

0.4

0.6

0.8

ψ

Algorithm validation and improvement Test Cases 35 / 65

Transition to turbulence ‖X0‖ = 10−5.4

2 4 6

x 10−4

5

10

15

x 10−6X t=280

0 0.5 1
0

0.2

0.4

0.6

0.8

ψ

Algorithm validation and improvement Test Cases 35 / 65

Transition to turbulence ‖X0‖ = 10−5.4

2 4 6

x 10−4

5

10

15

x 10−6X t=300

0 0.5 1
0

0.2

0.4

0.6

0.8

ψ

Algorithm validation and improvement Test Cases 35 / 65

Transition to turbulence ‖X0‖ = 10−5.4

2 4 6

x 10−4

5

10

15

x 10−6X t=320

0 0.5 1
0

0.2

0.4

0.6

0.8

ψ

Algorithm validation and improvement Test Cases 35 / 65

Transition to turbulence ‖X0‖ = 10−5.4

2 4 6

x 10−4

5

10

15

x 10−6X t=340

0 0.5 1
0

0.2

0.4

0.6

0.8

ψ

Algorithm validation and improvement Test Cases 35 / 65

Transition to turbulence ‖X0‖ = 10−5.4

2 4 6

x 10−4

5

10

15

x 10−6X t=360

0 0.5 1
0

0.2

0.4

0.6

0.8

ψ

Algorithm validation and improvement Test Cases 35 / 65

Transition to turbulence ‖X0‖ = 10−5.4

2 4 6

x 10−4

5

10

15

x 10−6X t=380

0 0.5 1
0

0.2

0.4

0.6

0.8

ψ

Algorithm validation and improvement Test Cases 35 / 65

Transition to turbulence ‖X0‖ = 10−5.4

2 4 6

x 10−4

5

10

15

x 10−6X t=400

0 0.5 1
0

0.2

0.4

0.6

0.8

ψ

Algorithm validation and improvement Test Cases 35 / 65

Transition to turbulence ‖X0‖ = 10−5.4

2 4 6

x 10−4

5

10

15

x 10−6X t=420

0 0.5 1
0

0.2

0.4

0.6

0.8

ψ

Algorithm validation and improvement Test Cases 35 / 65

Transition to turbulence ‖X0‖ = 10−5.4

2 4 6

x 10−4

5

10

15

x 10−6X t=440

0 0.5 1
0

0.2

0.4

0.6

0.8

ψ

Algorithm validation and improvement Test Cases 35 / 65

Transition to turbulence ‖X0‖ = 10−5.4

2 4 6

x 10−4

5

10

15

x 10−6X t=460

0 0.5 1
0

0.2

0.4

0.6

0.8

ψ

Algorithm validation and improvement Test Cases 35 / 65

Transition to turbulence ‖X0‖ = 10−5.4

2 4 6

x 10−4

5

10

15

x 10−6X t=480

0 0.5 1
0

0.2

0.4

0.6

0.8

ψ

Algorithm validation and improvement Test Cases 35 / 65

Transition to turbulence ‖X0‖ = 10−5.4

2 4 6

x 10−4

5

10

15

x 10−6X t=500

0 0.5 1
0

0.2

0.4

0.6

0.8

ψ

Algorithm validation and improvement Test Cases 35 / 65

Transition to turbulence ‖X0‖ = 10−5.2

−0.5 0 0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

X t=10

−10000−5000 0 5000
−6

−4

−2

0

x 104 ψ

Algorithm validation and improvement Test Cases 36 / 65

Transition to turbulence ‖X0‖ = 10−5.2

−0.5 0 0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

X t=20

−10000−5000 0 5000
−6

−4

−2

0

x 104 ψ

Algorithm validation and improvement Test Cases 36 / 65

Transition to turbulence ‖X0‖ = 10−5.2

−0.5 0 0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

X t=30

−10000−5000 0 5000
−6

−4

−2

0

x 104 ψ

Algorithm validation and improvement Test Cases 36 / 65

Transition to turbulence ‖X0‖ = 10−5.2

−0.5 0 0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

X t=40

−10000−5000 0 5000
−6

−4

−2

0

x 104 ψ

Algorithm validation and improvement Test Cases 36 / 65

Transition to turbulence ‖X0‖ = 10−5.2

−0.5 0 0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

X t=50

−10000−5000 0 5000
−6

−4

−2

0

x 104 ψ

Algorithm validation and improvement Test Cases 36 / 65

Transition to turbulence ‖X0‖ = 10−5.2

−0.5 0 0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

X t=60

−10000−5000 0 5000
−6

−4

−2

0

x 104 ψ

Algorithm validation and improvement Test Cases 36 / 65

Transition to turbulence ‖X0‖ = 10−5.2

−0.5 0 0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

X t=70

−10000−5000 0 5000
−6

−4

−2

0

x 104 ψ

Algorithm validation and improvement Test Cases 36 / 65

Transition to turbulence ‖X0‖ = 10−5.2

−0.5 0 0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

X t=80

−10000−5000 0 5000
−6

−4

−2

0

x 104 ψ

Algorithm validation and improvement Test Cases 36 / 65

Transition to turbulence ‖X0‖ = 10−5.2

−0.5 0 0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

X t=90

−10000−5000 0 5000
−6

−4

−2

0

x 104 ψ

Algorithm validation and improvement Test Cases 36 / 65

Transition to turbulence ‖X0‖ = 10−5.2

−0.5 0 0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

X t=100

−10000−5000 0 5000
−6

−4

−2

0

x 104 ψ

Algorithm validation and improvement Test Cases 36 / 65

Transition to turbulence ‖X0‖ = 10−5.2

−0.5 0 0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

X t=110

−10000−5000 0 5000
−6

−4

−2

0

x 104 ψ

Algorithm validation and improvement Test Cases 36 / 65

Transition to turbulence ‖X0‖ = 10−5.2

−0.5 0 0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

X t=120

−10000−5000 0 5000
−6

−4

−2

0

x 104 ψ

Algorithm validation and improvement Test Cases 36 / 65

Transition to turbulence ‖X0‖ = 10−5.2

−0.5 0 0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

X t=130

−10000−5000 0 5000
−6

−4

−2

0

x 104 ψ

Algorithm validation and improvement Test Cases 36 / 65

Transition to turbulence ‖X0‖ = 10−5.2

−0.5 0 0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

X t=140

−10000−5000 0 5000
−6

−4

−2

0

x 104 ψ

Algorithm validation and improvement Test Cases 36 / 65

Transition to turbulence ‖X0‖ = 10−5.2

−0.5 0 0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

X t=150

−10000−5000 0 5000
−6

−4

−2

0

x 104 ψ

Algorithm validation and improvement Test Cases 36 / 65

Transition to turbulence ‖X0‖ = 10−5.2

−0.5 0 0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

X t=160

−10000−5000 0 5000
−6

−4

−2

0

x 104 ψ

Algorithm validation and improvement Test Cases 36 / 65

Transition to turbulence ‖X0‖ = 10−5.2

−0.5 0 0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

X t=170

−10000−5000 0 5000
−6

−4

−2

0

x 104 ψ

Algorithm validation and improvement Test Cases 36 / 65

Transition to turbulence ‖X0‖ = 10−5.2

−0.5 0 0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

X t=180

−10000−5000 0 5000
−6

−4

−2

0

x 104 ψ

Algorithm validation and improvement Test Cases 36 / 65

Transition to turbulence ‖X0‖ = 10−5.2

−0.5 0 0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

X t=190

−10000−5000 0 5000
−6

−4

−2

0

x 104 ψ

Algorithm validation and improvement Test Cases 36 / 65

Transition to turbulence ‖X0‖ = 10−5.2

−0.5 0 0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

X t=200

−10000−5000 0 5000
−6

−4

−2

0

x 104 ψ

Algorithm validation and improvement Test Cases 36 / 65

Transition to turbulence ‖X0‖ = 10−5.2

−0.5 0 0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

X t=210

−10000−5000 0 5000
−6

−4

−2

0

x 104 ψ

Algorithm validation and improvement Test Cases 36 / 65

Transition to turbulence ‖X0‖ = 10−5.2

−0.5 0 0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

X t=220

−10000−5000 0 5000
−6

−4

−2

0

x 104 ψ

Algorithm validation and improvement Test Cases 36 / 65

Transition to turbulence ‖X0‖ = 10−5.2

−0.5 0 0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

X t=230

−10000−5000 0 5000
−6

−4

−2

0

x 104 ψ

Algorithm validation and improvement Test Cases 36 / 65

Transition to turbulence ‖X0‖ = 10−5.2

−0.5 0 0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

X t=240

−10000−5000 0 5000
−6

−4

−2

0

x 104 ψ

Algorithm validation and improvement Test Cases 36 / 65

Transition to turbulence ‖X0‖ = 10−5.2

−0.5 0 0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

X t=250

−10000−5000 0 5000
−6

−4

−2

0

x 104 ψ

Algorithm validation and improvement Test Cases 36 / 65

Transition to turbulence ‖X0‖ = 10−5.2

−0.5 0 0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

X t=260

−10000−5000 0 5000
−6

−4

−2

0

x 104 ψ

Algorithm validation and improvement Test Cases 36 / 65

Transition to turbulence ‖X0‖ = 10−5.2

−0.5 0 0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

X t=270

−10000−5000 0 5000
−6

−4

−2

0

x 104 ψ

Algorithm validation and improvement Test Cases 36 / 65

Transition to turbulence ‖X0‖ = 10−5.2

−0.5 0 0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

X t=280

−10000−5000 0 5000
−6

−4

−2

0

x 104 ψ

Algorithm validation and improvement Test Cases 36 / 65

Transition to turbulence ‖X0‖ = 10−5.2

−0.5 0 0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

X t=290

−10000−5000 0 5000
−6

−4

−2

0

x 104 ψ

Algorithm validation and improvement Test Cases 36 / 65

Transition to turbulence ‖X0‖ = 10−5.2

−0.5 0 0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

X t=300

−10000−5000 0 5000
−6

−4

−2

0

x 104 ψ

Algorithm validation and improvement Test Cases 36 / 65

Transition to turbulence ‖X0‖ = 10−5.2

−0.5 0 0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

X t=310

−10000−5000 0 5000
−6

−4

−2

0

x 104 ψ

Algorithm validation and improvement Test Cases 36 / 65

Transition to turbulence ‖X0‖ = 10−5.2

−0.5 0 0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

X t=320

−10000−5000 0 5000
−6

−4

−2

0

x 104 ψ

Algorithm validation and improvement Test Cases 36 / 65

Transition to turbulence ‖X0‖ = 10−5.2

−0.5 0 0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

X t=330

−10000−5000 0 5000
−6

−4

−2

0

x 104 ψ

Algorithm validation and improvement Test Cases 36 / 65

Transition to turbulence ‖X0‖ = 10−5.2

−0.5 0 0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

X t=340

−10000−5000 0 5000
−6

−4

−2

0

x 104 ψ

Algorithm validation and improvement Test Cases 36 / 65

Transition to turbulence ‖X0‖ = 10−5.2

−0.5 0 0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

X t=350

−10000−5000 0 5000
−6

−4

−2

0

x 104 ψ

Algorithm validation and improvement Test Cases 36 / 65

Transition to turbulence ‖X0‖ = 10−5.2

−0.5 0 0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

X t=360

−10000−5000 0 5000
−6

−4

−2

0

x 104 ψ

Algorithm validation and improvement Test Cases 36 / 65

Transition to turbulence ‖X0‖ = 10−5.2

−0.5 0 0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

X t=370

−10000−5000 0 5000
−6

−4

−2

0

x 104 ψ

Algorithm validation and improvement Test Cases 36 / 65

Transition to turbulence ‖X0‖ = 10−5.2

−0.5 0 0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

X t=380

−10000−5000 0 5000
−6

−4

−2

0

x 104 ψ

Algorithm validation and improvement Test Cases 36 / 65

Transition to turbulence ‖X0‖ = 10−5.2

−0.5 0 0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

X t=390

−10000−5000 0 5000
−6

−4

−2

0

x 104 ψ

Algorithm validation and improvement Test Cases 36 / 65

Transition to turbulence ‖X0‖ = 10−5.2

−0.5 0 0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

X t=400

−10000−5000 0 5000
−6

−4

−2

0

x 104 ψ

Algorithm validation and improvement Test Cases 36 / 65

Transition to turbulence ‖X0‖ = 10−5.2

−0.5 0 0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

X t=410

−10000−5000 0 5000
−6

−4

−2

0

x 104 ψ

Algorithm validation and improvement Test Cases 36 / 65

Transition to turbulence ‖X0‖ = 10−5.2

−0.5 0 0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

X t=420

−10000−5000 0 5000
−6

−4

−2

0

x 104 ψ

Algorithm validation and improvement Test Cases 36 / 65

Transition to turbulence ‖X0‖ = 10−5.2

−0.5 0 0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

X t=430

−10000−5000 0 5000
−6

−4

−2

0

x 104 ψ

Algorithm validation and improvement Test Cases 36 / 65

Transition to turbulence ‖X0‖ = 10−5.2

−0.5 0 0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

X t=440

−10000−5000 0 5000
−6

−4

−2

0

x 104 ψ

Algorithm validation and improvement Test Cases 36 / 65

Transition to turbulence ‖X0‖ = 10−5.2

−0.5 0 0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

X t=450

−10000−5000 0 5000
−6

−4

−2

0

x 104 ψ

Algorithm validation and improvement Test Cases 36 / 65

Transition to turbulence ‖X0‖ = 10−5.2

−0.5 0 0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

X t=460

−10000−5000 0 5000
−6

−4

−2

0

x 104 ψ

Algorithm validation and improvement Test Cases 36 / 65

Transition to turbulence ‖X0‖ = 10−5.2

−0.5 0 0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

X t=470

−10000−5000 0 5000
−6

−4

−2

0

x 104 ψ

Algorithm validation and improvement Test Cases 36 / 65

Transition to turbulence ‖X0‖ = 10−5.2

−0.5 0 0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

X t=480

−10000−5000 0 5000
−6

−4

−2

0

x 104 ψ

Algorithm validation and improvement Test Cases 36 / 65

Transition to turbulence ‖X0‖ = 10−5.2

−0.5 0 0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

X t=490

−10000−5000 0 5000
−6

−4

−2

0

x 104 ψ

Algorithm validation and improvement Test Cases 36 / 65

Transition to turbulence ‖X0‖ = 10−5.2

−0.5 0 0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

X t=500

−10000−5000 0 5000
−6

−4

−2

0

x 104 ψ

Algorithm validation and improvement Test Cases 36 / 65

Lorenz Problem

(l)



x ′1(t) = −σx1(t) + σx2(t)
x ′2(t) = rx1(t)− x2(t)− x1(t)x3(t)
x ′3(t) = x1(t)x2(t)− bx3(t)

∀t ∈ [0 10] avec σ = 10, b = 8/3, r = 28
X (0) = (1,0,0)
g(X) = x1

TOL = 0.1 et 0.01
N0 = 300

0 10 20 30
−20

−10

0

10

20

x
1
(t)

t
0 10 20 30

0

2

4

6
x 106 ||ψ(t)||

t
0 10 20 30

0

2

4

6
x 10−5 ||e(t)||

t
0 10 20 30

0

0.02

0.04

0.06

t

taille des pas de temps

Algorithm validation and improvement Test Cases 37 / 65

Lorenz with Dual

0
20

40
−10
0

10

−20

0

20

X t=1

−2
0

2
x 106

−2
0

2
x 106

−4

−2

0

2

4

x 106
ψ

Algorithm validation and improvement Test Cases 38 / 65

Lorenz with Dual

0
20

40
−10
0

10

−20

0

20

X t=2

−2
0

2
x 106

−2
0

2
x 106

−4

−2

0

2

4

x 106
ψ

Algorithm validation and improvement Test Cases 38 / 65

Lorenz with Dual

0
20

40
−10
0

10

−20

0

20

X t=3

−2
0

2
x 106

−2
0

2
x 106

−4

−2

0

2

4

x 106
ψ

Algorithm validation and improvement Test Cases 38 / 65

Lorenz with Dual

0
20

40
−10
0

10

−20

0

20

X t=4

−2
0

2
x 106

−2
0

2
x 106

−4

−2

0

2

4

x 106
ψ

Algorithm validation and improvement Test Cases 38 / 65

Lorenz with Dual

0
20

40
−10
0

10

−20

0

20

X t=5

−2
0

2
x 106

−2
0

2
x 106

−4

−2

0

2

4

x 106
ψ

Algorithm validation and improvement Test Cases 38 / 65

Lorenz with Dual

0
20

40
−10
0

10

−20

0

20

X t=6

−2
0

2
x 106

−2
0

2
x 106

−4

−2

0

2

4

x 106
ψ

Algorithm validation and improvement Test Cases 38 / 65

Lorenz with Dual

0
20

40
−10
0

10

−20

0

20

X t=7

−2
0

2
x 106

−2
0

2
x 106

−4

−2

0

2

4

x 106
ψ

Algorithm validation and improvement Test Cases 38 / 65

Lorenz with Dual

0
20

40
−10
0

10

−20

0

20

X t=8

−2
0

2
x 106

−2
0

2
x 106

−4

−2

0

2

4

x 106
ψ

Algorithm validation and improvement Test Cases 38 / 65

Lorenz with Dual

0
20

40
−10
0

10

−20

0

20

X t=9

−2
0

2
x 106

−2
0

2
x 106

−4

−2

0

2

4

x 106
ψ

Algorithm validation and improvement Test Cases 38 / 65

Lorenz with Dual

0
20

40
−10
0

10

−20

0

20

X t=10

−2
0

2
x 106

−2
0

2
x 106

−4

−2

0

2

4

x 106
ψ

Algorithm validation and improvement Test Cases 38 / 65

Lorenz with Dual

0
20

40
−10
0

10

−20

0

20

X t=11

−2
0

2
x 106

−2
0

2
x 106

−4

−2

0

2

4

x 106
ψ

Algorithm validation and improvement Test Cases 38 / 65

Lorenz with Dual

0
20

40
−10
0

10

−20

0

20

X t=12

−2
0

2
x 106

−2
0

2
x 106

−4

−2

0

2

4

x 106
ψ

Algorithm validation and improvement Test Cases 38 / 65

Lorenz with Dual

0
20

40
−10
0

10

−20

0

20

X t=13

−2
0

2
x 106

−2
0

2
x 106

−4

−2

0

2

4

x 106
ψ

Algorithm validation and improvement Test Cases 38 / 65

Lorenz with Dual

0
20

40
−10
0

10

−20

0

20

X t=14

−2
0

2
x 106

−2
0

2
x 106

−4

−2

0

2

4

x 106
ψ

Algorithm validation and improvement Test Cases 38 / 65

Lorenz with Dual

0
20

40
−10
0

10

−20

0

20

X t=15

−2
0

2
x 106

−2
0

2
x 106

−4

−2

0

2

4

x 106
ψ

Algorithm validation and improvement Test Cases 38 / 65

Lorenz with Dual

0
20

40
−10
0

10

−20

0

20

X t=16

−2
0

2
x 106

−2
0

2
x 106

−4

−2

0

2

4

x 106
ψ

Algorithm validation and improvement Test Cases 38 / 65

Lorenz with Dual

0
20

40
−10
0

10

−20

0

20

X t=17

−2
0

2
x 106

−2
0

2
x 106

−4

−2

0

2

4

x 106
ψ

Algorithm validation and improvement Test Cases 38 / 65

Lorenz with Dual

0
20

40
−10
0

10

−20

0

20

X t=18

−2
0

2
x 106

−2
0

2
x 106

−4

−2

0

2

4

x 106
ψ

Algorithm validation and improvement Test Cases 38 / 65

Lorenz with Dual

0
20

40
−10
0

10

−20

0

20

X t=19

−2
0

2
x 106

−2
0

2
x 106

−4

−2

0

2

4

x 106
ψ

Algorithm validation and improvement Test Cases 38 / 65

Lorenz with Dual

0
20

40
−10
0

10

−20

0

20

X t=20

−2
0

2
x 106

−2
0

2
x 106

−4

−2

0

2

4

x 106
ψ

Algorithm validation and improvement Test Cases 38 / 65

Lorenz with Dual

0
20

40
−10
0

10

−20

0

20

X t=21

−2
0

2
x 106

−2
0

2
x 106

−4

−2

0

2

4

x 106
ψ

Algorithm validation and improvement Test Cases 38 / 65

Lorenz with Dual

0
20

40
−10
0

10

−20

0

20

X t=22

−2
0

2
x 106

−2
0

2
x 106

−4

−2

0

2

4

x 106
ψ

Algorithm validation and improvement Test Cases 38 / 65

Lorenz with Dual

0
20

40
−10
0

10

−20

0

20

X t=23

−2
0

2
x 106

−2
0

2
x 106

−4

−2

0

2

4

x 106
ψ

Algorithm validation and improvement Test Cases 38 / 65

Lorenz with Dual

0
20

40
−10
0

10

−20

0

20

X t=24

−2
0

2
x 106

−2
0

2
x 106

−4

−2

0

2

4

x 106
ψ

Algorithm validation and improvement Test Cases 38 / 65

Lorenz with Dual

0
20

40
−10
0

10

−20

0

20

X t=25

−2
0

2
x 106

−2
0

2
x 106

−4

−2

0

2

4

x 106
ψ

Algorithm validation and improvement Test Cases 38 / 65

Lorenz with Dual

0
20

40
−10
0

10

−20

0

20

X t=26

−2
0

2
x 106

−2
0

2
x 106

−4

−2

0

2

4

x 106
ψ

Algorithm validation and improvement Test Cases 38 / 65

Lorenz with Dual

0
20

40
−10
0

10

−20

0

20

X t=27

−2
0

2
x 106

−2
0

2
x 106

−4

−2

0

2

4

x 106
ψ

Algorithm validation and improvement Test Cases 38 / 65

Lorenz with Dual

0
20

40
−10
0

10

−20

0

20

X t=28

−2
0

2
x 106

−2
0

2
x 106

−4

−2

0

2

4

x 106
ψ

Algorithm validation and improvement Test Cases 38 / 65

Lorenz with Dual

0
20

40
−10
0

10

−20

0

20

X t=29

−2
0

2
x 106

−2
0

2
x 106

−4

−2

0

2

4

x 106
ψ

Algorithm validation and improvement Test Cases 38 / 65

Lorenz with Dual

0
20

40
−10
0

10

−20

0

20

X t=30

−2
0

2
x 106

−2
0

2
x 106

−4

−2

0

2

4

x 106
ψ

Algorithm validation and improvement Test Cases 38 / 65

Methods implemented

The brut method. Divide the timesteps by 2 when ri >
TOL
N

.

The basique method. Divide the timesteps by

M =

⌊(
|ri |
TOL
N

) 1
p+1

⌋

when ri >
TOL
N

.

The demi-pas method. Same as basique, except that we estimate
the error using a coarser approximation of X rather than a finer as
before. The dual is solved on a mesh 2 times coarser than the
primal.

Algorithm validation and improvement Improvements 39 / 65

Results

a b c d t l l 0.01
0

20

40

60

80

100 RK45 .

Algorithm validation and improvement Results 40 / 65

Results

a b c d t l l 0.01
0

20

40

60

80

100 RK45 .
brut

Algorithm validation and improvement Results 40 / 65

Results

a b c d t l l 0.01
0

20

40

60

80

100 RK45 .
brut
basique

Algorithm validation and improvement Results 40 / 65

Results

a b c d t l l 0.01
0

20

40

60

80

100 RK45 .
brut
basique
demi−pas

Algorithm validation and improvement Results 40 / 65

Exponential, Non-linear with blow-up and Stiff problem

TOL True error Est. errorr # eval. a # eval. (a′)∗ CPU N it
brut 1e-08 -1.16e-09 -1.16e-09 2790 930 0.89 80 5
basique 1e-08 -3.86e-10 -3.86e-10 3240 1080 0.59 100 4
demi-pas 1e-08 -4.8e-09 -4.38e-09 900 300 0.17 30 3
RK45 1e-08 -1.33e-09 - 776 0 0.93 79 2

The Exponential

TOL True error Est. errorr # eval. a # eval. (a′)∗ CPU N it
brut 0.1 0.0125 0.00629 810 270 0.18 16 4
basique 0.1 0.0125 0.00629 594 198 0.12 16 3
demi-pas 0.1 0.0194 -0.0122 360 120 0.07 8 3
RK45 0.1 0.0986 - 237 0 0.06 13 3

Non-linear with blow-up

TOL True error Est. errorr # eval. a # eval. (a′)∗ CPU N it
brut 1e-08 1.39e-09 1.41e-09 2160 720 0.41 45 5
basique 1e-08 4.77e-10 4.87e-10 1944 648 0.35 53 3
demi-pas 1e-08 3.68e-10 8.41e-10 990 330 0.18 50 2
RK45 1e-08 5.92e-10 - 895 0 0.13 146 1

Stiff problem

Algorithm validation and improvement Results 41 / 65

Singularity and Transition to Turbulence

TOL True error Est. errorr # eval. a # eval. (a′)∗ CPU N it
brut 0.1 0.0484 0.0976 4320 1440 0.81 24 16
basique 0.1 0.0484 0.0976 4320 1440 0.79 24 16
demi-pas 0.1 -1.1 0.0858 810 270 0.16 10 6
RK45 0.1 0.0055 - 1061 0 0.19 71 5

Singularity

TOL True error Est. error # eval. a # eval. (a′)∗ CPU N it
brut 1e-06 5.49e-08 1.55e-07 184716 61572 44.82 2531 7
basique 1e-06 6.31e-08 1.7e-07 113652 37884 27.4 2514 4
demi-pas 1e-06 9.16e-08 3.19e-07 50832 16944 12.23 1335 3
RK45 1e-06 -9.69e-07 - 140045 0 24.04 9569 5

Transition to turbulence

Algorithm validation and improvement Results 42 / 65

Lorenz, 2 tolerances

TOL True error Est. error # eval. a # eval. (a′)∗ CPU N it
brut 0.1 0.0623 0.0674 256734 85578 57.91 6461 6
basique 0.1 -0.0251 -0.0261 157680 52560 34.43 5789 3
demi-pas 0.1 -0.0146 -0.0182 94716 31572 20.7 3176 3
RK45 0.1 -0.0147 - 168110 0 25.29 10513 8

Lorenz problem

TOL Vraie erreur Est. erreur # eval. a # eval. (a′)∗ CPU N it
brut 0.01 0.000979 0.000998 472788 157596 108.75 10463 7
basique 0.01 -0.0037 -0.00365 198108 66036 44.29 7949 3
demi-pas 0.01 -0.00428 -0.00521 115434 38478 25.39 3985 3
RK45 0.01 -0.0015 - 264932 0 40.37 16651 8

Lorenz problem

Algorithm validation and improvement Results 43 / 65

Size of time steps (Lorenz problem, TOL= 0.01)

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

erreur, mstz : 7.56, RK45 : 1.18

iteration 1, mstz : 300 timesteps, RK45 : 678 timesteps

mstz
RK45

Algorithm validation and improvement Results 44 / 65

Size of time steps (Lorenz problem, TOL= 0.01)

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

erreur, mstz : 0.87, RK45 : 8.75

iteration 2, mstz : 2128 timesteps, RK45 : 1087 timesteps

mstz
RK45

Algorithm validation and improvement Results 44 / 65

Size of time steps (Lorenz problem, TOL= 0.01)

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

erreur, mstz : −0.0042, RK45 : 2.73

iteration 3, mstz : 3985 timesteps, RK45 : 1656 timesteps

mstz
RK45

Algorithm validation and improvement Results 44 / 65

Size of time steps (Lorenz problem, TOL= 0.01)

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

erreur, mstz : −0.0042, RK45 : 17.48

iteration 4, mstz : 3985 timesteps, RK45 : 2696 timesteps

mstz
RK45

Algorithm validation and improvement Results 44 / 65

Size of time steps (Lorenz problem, TOL= 0.01)

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

erreur, mstz : −0.0042, RK45 : 0.12

iteration 5, mstz : 3985 timesteps, RK45 : 4173 timesteps

mstz
RK45

Algorithm validation and improvement Results 44 / 65

Size of time steps (Lorenz problem, TOL= 0.01)

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

erreur, mstz : −0.0042, RK45 : 0.13

iteration 6, mstz : 3985 timesteps, RK45 : 6637 timesteps

mstz
RK45

Algorithm validation and improvement Results 44 / 65

Size of time steps (Lorenz problem, TOL= 0.01)

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

erreur, mstz : −0.0042, RK45 : 0.015

iteration 7, mstz : 3985 timesteps, RK45 : 10513 timesteps

mstz
RK45

Algorithm validation and improvement Results 44 / 65

Size of time steps (Lorenz problem, TOL= 0.01)

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

erreur, mstz : −0.0042, RK45 : 0.0015

iteration 8, mstz : 3985 timesteps, RK45 : 16651 timesteps

mstz
RK45

Algorithm validation and improvement Results 44 / 65

Comparison with Szepessy and al.

TOL |True error| N Ntot

mstz demi-pas 0.1 0.02 6352 10524
mstz Szepessy 0.1 0.01 6000 20000
mstz demi-pas 0.01 0.004 7970 12826
mstz Szepessy 0.01 0.003 9000 34000

Algorithm validation and improvement Results 45 / 65

Application to PDE

We now use the algorithm mstz to solve semi-discretization of partial
differential equations. We use the heat equation to validate our code.

1 We study the properties of the Burgers Equation (a non-chaotic
equation) with the help of mstz . We use a centered finite
difference scheme for the spatial discretization.

2 We compare RK45 and mstz on the Kuramoto-Sivashinsky
Equation, a chaotic PDE. We use the pseudo-spectral method for
the spatial discretization.

Application to PDE 46 / 65

Application to PDE

We now use the algorithm mstz to solve semi-discretization of partial
differential equations. We use the heat equation to validate our code.

1 We study the properties of the Burgers Equation (a non-chaotic
equation) with the help of mstz . We use a centered finite
difference scheme for the spatial discretization.

2 We compare RK45 and mstz on the Kuramoto-Sivashinsky
Equation, a chaotic PDE. We use the pseudo-spectral method for
the spatial discretization.

Application to PDE 46 / 65

Application to PDE

We now use the algorithm mstz to solve semi-discretization of partial
differential equations. We use the heat equation to validate our code.

1 We study the properties of the Burgers Equation (a non-chaotic
equation) with the help of mstz . We use a centered finite
difference scheme for the spatial discretization.

2 We compare RK45 and mstz on the Kuramoto-Sivashinsky
Equation, a chaotic PDE. We use the pseudo-spectral method for
the spatial discretization.

Application to PDE 46 / 65

Study of Burgers Equation

For x ∈ [−1 1] and t ∈ [0 1], we have
∂

∂t
u(t , x) +

∂

∂x
u2(t , x)

2
= 0

u(0, x) = u0(x)

Application to PDE Burgers Equation 47 / 65

Study of Burgers Equation

For x ∈ [−1 1] and t ∈ [0 1], we have
∂

∂t
u(t , x) +

∂

∂x
u2(t , x)

2
= ε

∂2

∂x2 u(t , x)

u(0, x) = u0(x)

Viscous term

Application to PDE Burgers Equation 47 / 65

Centered Finite Difference Scheme

u̇h
j (t) = −

(
uh

j+1(t)
)2 −

(
uh

j−1(t)
)2

4h
+ ε

uh
j+1(t)− 2uh

j (t) + uh
j−1(t)

h2

Application to PDE Burgers Equation 48 / 65

Initial conditions

0
x

Shock Wave

Application to PDE Burgers Equation 49 / 65

Initial conditions

0
x

Shock Wave

Application to PDE Burgers Equation 49 / 65

Initial conditions

0
x

Shock Wave

0
x

Rarefaction Wave

Application to PDE Burgers Equation 49 / 65

Initial conditions

0
x

Shock Wave

0
x

Rarefaction Wave

Application to PDE Burgers Equation 49 / 65

Initial conditions

0
x

Shock Wave

0
x

Rarefaction Wave

Which one is the hardest to solve ?

Application to PDE Burgers Equation 49 / 65

Goal Function

For g, we select a point x̄ ∈ [−1 1]. Our goal is to have a very precise
value of u(T , x̄). To have a smoother function in the x-domain, we take
a weighted sum around the point x̄ . The weights are give by the
normal density.

g(u(T)) =
M−1∑
j=0

wju(T , xj) =
M−1∑
j=0

1√
2πσ

e
− 1

2

(
xj−x̄

σ

)2

u(T , xj)

(∇g(u(T)))j = wj =
1√
2πσ

e
− 1

2

(
xj−x̄

σ

)2

Application to PDE Burgers Equation 50 / 65

Parameters

ε=0.01

h=0.025

∆t=0.005 (initial)

x̄ = 0.5, σ = 0.1.

TOL=0.005

Numerical method M : Euler progressive

Application to PDE Burgers Equation 51 / 65

Shock Wave

Application to PDE Burgers Equation 52 / 65

Rarefaction Wave

Application to PDE Burgers Equation 53 / 65

Comparison

Shock Wave (down)

0 0.5 1
0

0.005

0.01

t

size of time steps

Number of timesteps
needed : 523

Number of evaluations
needed : 3168

Rarefaction Wave (up)

0 0.5 1
0

1

2
x 10−4

t

 time steps

Number of timesteps
needed : 8565

Number of evaluations
needed : 48750

Application to PDE Burgers Equation 54 / 65

Explanation

Shock Wave (down)

t

0

x0

The perturbations
travel quicker than the
wave. They are eaten
by the shock

The important parts are
the parts just prior T

Rarefaction Wave (up)

t

0

0 x

The perturbations are
amplified along the
time interval

It’s important to make
good calculations at the
begining

Application to PDE Burgers Equation 55 / 65

A chaotic PDE

The Kuramoto-Sivashinsky Equation. x ∈ R, t ∈ [0 120].
∂u(t , x)

∂t
= − ∂2u(t , x)

∂x2 − ∂4u(t , x)

∂x4 − 1
2
∂u2(t , x)

∂x
u(0, x) = u0(x)

u(t , x) = u(t , x + l)

Application to PDE Kuramoto-Sivashinsky Equation 56 / 65

A chaotic PDE

The Kuramoto-Sivashinsky Equation. x ∈ R, t ∈ [0 120].
∂u(t , x)

∂t
= − ∂2u(t , x)

∂x2 − ∂4u(t , x)

∂x4 − 1
2
∂u2(t , x)

∂x
u(0, x) = u0(x)

u(t , x) = u(t , x + l)

Inverse Heat term. Amplifies the perturbations

Application to PDE Kuramoto-Sivashinsky Equation 56 / 65

A chaotic PDE

The Kuramoto-Sivashinsky Equation. x ∈ R, t ∈ [0 120].
∂u(t , x)

∂t
= − ∂2u(t , x)

∂x2 − ∂4u(t , x)

∂x4 − 1
2
∂u2(t , x)

∂x
u(0, x) = u0(x)

u(t , x) = u(t , x + l)

Beam term. Reduces the perturbations

Application to PDE Kuramoto-Sivashinsky Equation 56 / 65

A chaotic PDE

The Kuramoto-Sivashinsky Equation. x ∈ R, t ∈ [0 120].
∂u(t , x)

∂t
= − ∂2u(t , x)

∂x2 − ∂4u(t , x)

∂x4 − 1
2
∂u2(t , x)

∂x
u(0, x) = u0(x)

u(t , x) = u(t , x + l)

Burgers term. Non-linear transport term

Application to PDE Kuramoto-Sivashinsky Equation 56 / 65

A chaotic PDE

The Kuramoto-Sivashinsky Equation. x ∈ R, t ∈ [0 120].
∂u(t , x)

∂t
= − ∂2u(t , x)

∂x2 − ∂4u(t , x)

∂x4 − 1
2
∂u2(t , x)

∂x
u(0, x) = u0(x)

u(t , x) = u(t , x + l)

All together : the solution remain bounded !

Application to PDE Kuramoto-Sivashinsky Equation 56 / 65

Pseudo-spectral method

The 4th order term is to heavy to discretize using finite differences. We
use the pseudo-spectral method based on Fourier theory. This allows
as well an easy way of dealing with periodic boundary conditions. We
write :

u(t , x) =
+∞∑

n=−∞
cn(t)e2iπn x

l

with cn(t) =
1
l

∫ l

0
u(t , x)e−2iπn x

l dx

Taking a finite number of Fourier coefficients and computing them with
the Fast Fourier Transform gives the pseudo-spectral scheme.

Application to PDE Kuramoto-Sivashinsky Equation 57 / 65

The semi-discretization

We obtain the following ODE (q = 2π
l):

ċn(t) = (n2q2 − n4q4)cn(t)−
1
2

inqdn(t) ∀n = −m, . . . ,m

where dn(t) are the Fourier coefficients of u2(t , x). We compute them
using the inverse Fourier transform of all the cn, then squaring all the
components and then taking the Fourier transform again.

Application to PDE Kuramoto-Sivashinsky Equation 58 / 65

The semi-discretization

We obtain the following ODE (q = 2π
l):

ċn(t) = (n2q2 − n4q4)cn(t)−
1
2

inqdn(t) ∀n = −m, . . . ,m

where dn(t) are the Fourier coefficients of u2(t , x). We compute them
using the inverse Fourier transform of all the cn, then squaring all the
components and then taking the Fourier transform again.

Inverse Heat term. Amplifies the perturbations

Application to PDE Kuramoto-Sivashinsky Equation 58 / 65

The semi-discretization

We obtain the following ODE (q = 2π
l):

ċn(t) = (n2q2 − n4q4)cn(t)−
1
2

inqdn(t) ∀n = −m, . . . ,m

where dn(t) are the Fourier coefficients of u2(t , x). We compute them
using the inverse Fourier transform of all the cn, then squaring all the
components and then taking the Fourier transform again.

Beam term. Reduces the perturbations

Application to PDE Kuramoto-Sivashinsky Equation 58 / 65

The semi-discretization

We obtain the following ODE (q = 2π
l):

ċn(t) = (n2q2 − n4q4)cn(t)−
1
2

inqdn(t) ∀n = −m, . . . ,m

where dn(t) are the Fourier coefficients of u2(t , x). We compute them
using the inverse Fourier transform of all the cn, then squaring all the
components and then taking the Fourier transform again.

Burgers term. Non-linear transport term

Application to PDE Kuramoto-Sivashinsky Equation 58 / 65

Initial condition

Following Wanner and Hairer, the initial condition has the following
shape :

0 50 100 150 200 250
0

0.5

1

x

u(
0,

x)

Application to PDE Kuramoto-Sivashinsky Equation 59 / 65

Number of coefficients

To get a solution in a reasonable amount of time, we decided to use
150 Fourier coefficients. The problem is that we can not solve the
orginal Kuramoto-Sivashinsky Equation with 150 coefficients. The
numerical scheme is unstable. We modify the Kuramoto-Sivashinsky
equation as follows :

∂u(t , x)

∂t
= −λ∂

2u(t , x)

∂x2 − ∂4u(t , x)

∂x4 − 1
2
∂u2(t , x)

∂x

For λ = 1, we have the original equation. For λ < 1, the perturbations
are less amplified by the inverse heat term, so the equation is easier to
solve. We will be able to solve it for λ = 0.93.

Application to PDE Kuramoto-Sivashinsky Equation 60 / 65

Solution

Application to PDE Kuramoto-Sivashinsky Equation 61 / 65

Solution of the dual

Application to PDE Kuramoto-Sivashinsky Equation 62 / 65

Results

TOL E t E t
eval. a # eval. (a′)∗ CPU N it

mstz 0.0001 2.09e-05 3.41e-05 18666 6222 115.94 637 2
RK45 0.0001 3.55e-05 - 29499 0 55.49 2382 3
mstz 1e-05 -8.01e-06 -8.61e-06 21078 7026 133.53 771 2
RK45 1e-05 4.2e-06 - 45915 0 86.2 3726 3
mstz 1e-06 4.61e-08 -6.26e-07 25776 8592 158.04 1032 2
RK45 1e-06 8.22e-07 - 71853 0 138.16 5855 3
mstz 1e-07 4.15e-07 3.24e-09 79254 26418 484.8 2524 3
RK45 1e-07 No solution !

Application to PDE Kuramoto-Sivashinsky Equation 63 / 65

Summary

Using an algorithm which monitors the global error instead of one
which monitors the local error is really important for chaotic differential
equations. It provides :

An indicator of the accuracy of the solution. With local errors
algorithms, we have no garanty that we are close to the true
solution even if the local tolerance is really small.

A better efficiency. We get the solution faster or for a smaller
tolerance.

Computing the solution of the dual less accurately than the
solution of the primal gives a really efficient algorithm

Summary 64 / 65

Questions

Summary 65 / 65

	Outline
	Main Notions
	The Cauchy Problem
	The Chaos
	The Ideas to Solve It
	Central Theorem

	Algorithm validation and improvement
	Our algorithm
	Comparison Algorithm
	Test Cases
	Improvements
	Results

	Application to PDE
	Burgers Equation
	Kuramoto-Sivashinsky Equation

	Summary

