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1 Introduction
Our aim is to solve chaotic differential
equations, monitoring the error at the
end of the time interval

�������
. Mete-

orology, fluid dynamics and stock ex-
change values are domains where our
methodology applies. One typical ex-
ample could be : we are Monday and
the temperature is 10 � C. We want to estimate the temperature of Friday
with an error less than 1 � C using the least possible computational effort.

2 The Chaos
By chaotic, we mean a behaviour that is very irregular and unexpected.
For example, a chaotic equation is very sensitive to the initial conditions.
A Monday temperature of 10 � C can result in a Friday temperature of
25 � C and a Monday temperature of 9.99 � C can give a Friday temperature
of 0 � C. An initial difference of 0.01 � C gives a final difference of 25 � C.
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Usual methods for differential equations may fail for chaotic problems.
They have big computing time and give no assessment of the quality of
the solution. Using the theory of [3] we developed an algorithm designed
especially for chaotic problems (mstz below).

3 The Ideas we used
Classical methods for differential equations monitor only the local error,
i.e. the error done at each timestep. For chaotic problems, this is not
enough since small local errors can give a big error at time

�
.
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For each timestep, we calculate how a small error amplifies until
�

and
denote it by � . A big value of � implies important amplification of the
error whereas a small value of � indicates that the problem is unsensitive
to perturbations. To compute � , we solve a dual problem, corresponding
to the linearized original problem solved backwards in time.
Using the local errors weighted with the stability factors given by �
mstz decides in what portions of the interval

���	���
precise computa-

tions are important in order to approximate the solution at time
�

to the
prescribed precision.

4 Results
Our reference algorithm for differential equations, denoted RK45, is an
algorithm based on the adaptive Runge-Kutta algorithm from Dormand
and Prince. It reduces the bound on the local error until the error at time�

is small enough.
After having validated our Matlab code on different examples, we com-
pared it with RK45 on two chaotic benchmark problems.
1. The Lorenz Problem. A 3D ordinary differential equation which
comes from meteorology.
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Results :
Algorithm Error # Timesteps Computing

time[s]
RK45 -0.0015 16651 42
mstz -0.0042 7970 26
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2. The Kuramoto-Sivashinsky Equation. A partial differential equation
modelling certain aspects of concentration waves, flame propagation or
hydrodynamic turbulence. D E ��� 9 �F�G2 HJI "AKL D ��� 9 �F�G2 HMI . The space
semi-discretization is done using the pseudo-spectral method.N DN � � � N " DN � " �
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Results :
Algorithm Error # Timesteps Computing

time[s]
RK45 WYXMZ=[]\�^._�` 5855 138
mstz a�XMb=[]\�^ _Yc 2064 158

5 Conclusions
For chaotic problems, it is very important to monitor the stability factors.
It gives more accurate and faster algorithms. Also, it gives an idea of
the computability of the problem. Problems which are too chaotic are
impossible to solve numerically.
To have a good efficiency, we have shown numerically the advantage of
solving the dual problem less accurately than the original problem.
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