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STABLE COMPUTATION OF PROBABILITY DENSITIES FOR
METASTABLE DYNAMICAL SYSTEMS*
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Abstract. Whenever the invariant stationary density of metastable dynamical systems de-
composes into almost invariant partial densities, its computation as eigenvector of some transition
probability matrix is an ill-conditioned problem. In order to avoid this computational difficulty,
we suggest applying an aggregation/disaggregation method which addresses only well-conditioned
subproblems and thus results in a stable algorithm. In contrast to existing methods, the aggregation
step is done via a sampling algorithm which covers only small patches of the sampling space. Finally,
the theoretical analysis is illustrated by two biomolecular examples.
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Introduction. Consider general dynamical systems in equilibrium with a unique
stationary density. Among them, metastable dynamical systems are characterized by
the fact that there exist almost invariant subsets wherein the system remains for
“a long time,” once it is in there. In molecular dynamical systems, which repre-
sent the main class of interest here, the almost invariant subsets are the metastable
conformations; for general dynamical systems, we also speak of metastable clusters.
Throughout this paper, we fix the stationary density to be the Boltzmann distribution
without loss of generality. Within each of the conformations, the dynamics is often
said to be “rapidly mixing,” whereas between them it is “slowly mixing.” Any of the
available sampling strategies will, when applied to such systems, suffer from the un-
desirable fact that they are prone to be “trapped” within conformations. Difficulties
of this kind also arise in a special multiscale approach called conformation dynamics,
which has been developed in recent years (for surveys see [8, 9, 30, 31]) and which
will represent our algorithmic frame here.

In this paper, we deal with the trapping problem as it shows up in computa-
tional sampling techniques for metastable dynamical systems. We design an efficient
sampling strategy, especially for high-dimensional systems, which both exploits the
fast mixing within the conformations and, at the same time, safely covers the rare
transitions between the conformations. For our computations, we use the meshless
implementation ZIBgridfree [41, 39] of conformation dynamics. In the presence of
metastabilities, the arising Markov chains will be nearly completely decomposable or
nearly reducible [34, 5, 23, 6]. The metastable conformations to be identified are
analyzed via a stochastic transfer matrix, using our recently developed robust Per-
ron cluster analysis (PCCA+) [10, 39]. The basic reasoning behind the approach
to be advocated herein is the following: As we will show below, the computation
of the stationary density via the transfer matrix is highly ill-conditioned, whereas
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the identification of the metastable conformations is well-conditioned. On the basis
of this insight, we suggest a domain decomposition of the configuration space into
subdomains, ideally the conformations or certain computationally available approxi-
mations of them. Our method may be regarded as an infinite-dimensional analogue
of aggregation/disaggregation methods known from finite-dimensional problems. The
disaggregation step comprises the determination of the partial Boltzmann densities,
using our algorithm ZIBgridfree. The aggregation step realizes the construction of
the overall stationary density, using our newly developed algorithm ConfJump, which
works efficiently only when applied to the already identified conformations.

The paper is organized as follows. Existing sampling algorithms and their diffi-
culties in the treatment of metastable dynamical systems are analyzed in section 1.
In section 2, we derive the basic idea of aggregation/disaggregation in function space
and show how our proposed method can overcome the described difficulties. Finally,
we present three numerical examples, one trivial but elucidating and the other two
from biochemistry.

1. Difficulties of existing sampling methods. In recent years, the efficient
exploration of molecular configuration spaces and the identification of metastable
conformations have been the focus of our research; for surveys see [8, 9, 30, 31]. Our
algorithms are embedded in the mixed deterministic/stochastic approach called con-
formation dynamics. This approach is based on the analysis of a stochastic transfer
operator corresponding to a specific Markov chain and, after some spatial discretiza-
tion, on a Perron cluster analysis of a stochastic matrix. In the present section, we
will briefly revisit conformation dynamics algorithms as they have been used up to
now. In the sampling part of these algorithms, some computational dilemmas arise
unavoidably, as we will show. However, the same kind of difficulty would equally arise
with any other sampling technique when applied to metastable dynamical systems.

1.1. Conformation dynamics revisited. Throughout the paper, we consider
a canonical ensemble where the stationary density of configurations ¢ in a continuous
space () is given by the Boltzmann density 7(¢). Conformation dynamics aims at a
description of the continuous dynamical process in terms of a jump process on the
discrete set of conformations. Given a molecule’s geometry, we identify no metastable
conformations C1,...,Cy, C Q together with their life times and transition patterns.
Conformations are given by measurable functions &; defined in ) (e.g., characteristic
functions of the sets {C;}), which, together with the Boltzmann density, determine
the conformational weights or, more general, cluster weights

(1) ot = /Q Gr(a)de,  i=1,....nc.

In order to make the computations feasible, the continuous configuration space is de-
composed into a number of N discrete “spatial” states, F = {1,...,N}, and the
discrete dynamical process is described as a Markov chain on these states. The
stationary density of the corresponding transition probability matrix is denoted by
w = (w1,...,wy), in contrast to the stationary density 7(q) of the continuous pro-
cess. The entry w; of the discrete stationary density is denoted as statistical weight
of state i € E. The vector w arises as normalized left eigenvector of the transition
probability matrix P, i.e.,

(2) w P=w'.
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As aresult of our cluster algorithm PCCA+, membership vectors {x;}Y, are obtained,
in contrast to the continuous functions &;(q). This can be considered as a fuzzy
clustering [40]. The entry x;(j) is a number between 0 and 1 and denotes the grade
of membership of state j w.r.t. conformation i. Given these values and the stationary
density w, the continuous cluster weights in (1) are approximated by discrete cluster
weights

N
3) oi =) xilj)w; ~ af.
=1

The information about the discrete cluster dynamics is condensed in the so-
called coupling matriz P, the stochastic matrix describing the transitions between
the metastable conformations. With diagonal matrices D = diag({w;}},) and D =
diag({o;}1-¢, ), this matrix can be computed via

(4) P=D"'x"DPy.

From [8], the characteristic life times of conformations are known to behave (in first
order) like

. T
® TSP 6 )

where 7 is the molecular dynamics simulation time step. Note that these times are ex-
tremely sensitive to perturbations of the diagonal entries P(i,7) < 1 when P(i,4) ~ 1.

Summarizing, both the computation of the relevant dynamical information P and
the cluster weights {0;} depend on a well-conditioned determination of w in (2) and
a reasonable clustering y.

Sampling strategy. Within conformation dynamics, a hybrid Monte Carlo (HMC)
sampling technique [11] is used, which is known as a quite efficient method for the
sampling of canonical ensembles. However, as with other sampling strategies, its main
problem is the so-called “trapping” effect, which means that the sampling remains for
“too long” a time in the neighborhood of some potential well, an effect also denoted as
“critical slowing down.” As a consequence, the method fails to further visit physically
relevant parts of the conformational space—a significant lack of reliability. One pos-
sibility to circumvent this undesirable effect is to modify the potential energy surface
accordingly and to reweight the generated sampling points. However, such techniques
require some deep knowledge about the energy landscape and tend to accumulate too
many low-weighted sampling points in transition regions. Therefore, we will advocate
below the use of a domain decomposition method instead. Its realization requires our
recently developed software package ZIBgridfree to be presented next.

Meshless algorithm Z|Bgridfree [41, 39]. The name of this algorithm stands for a
gridfree (or meshless) partitioning of the sampling space such that different regions
can be sampled independently. The decomposition of high-dimensional spaces itself
is a difficult problem. Regular grids are well known to be inappropriate, because they
suffer from the “curse of dimensionality”; for an illustration see Figure 1, left, where
the lines represent the conformation domain. In order to overcome this problem, the
algorithm realizes a decomposition into “domains” {€2;}2; via overlapping sigmoidal
functions {¢;}¥ ,; see Figure 1, right:

. Bi(q) = exp(—ad?(q, i)
(6) () S exp(—ad?(q, ;)
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Fi1G. 1. Different discretizations of conformations (lines) in configuration space 2. Left: Reg-
ular grids require too many unnecessary bozes, giving rise to the “curse of dimensionality.” Right:
Meshless methods realize an adaptive, function-based, and overlapping discretization. The circles
indicate the “domains” {2;} corresponding to the strongly localized Gaussian radial basis functions

{¢:}-

The parameter a > 0 is a shape parameter and d : Q x 2 — R denotes a Euclidean
distance function in some lower dimensional space, more precisely in the dihedral
space. Details can be found in [39]. By definition, the basis functions form a partition
of unity:

ddi(g=1 VgeQ

This property makes them particularly accessible to umbrella sampling [37] and
reweighting strategies. The points {g;}2, are the centers of the functions which
should be localized in dynamically interesting regions of configuration space, i.e.,
within conformations or in transition regions. To find these regions beforehand, one
can perform simulations at a high temperature which do not suffer from trapping
problems. In contrast to regular grids, the number of basis functions does not depend
on the dimension of the integrand but on its variance [29].

To sum up, the algorithm realizes a decomposition in function space rather than
in configuration space. However, even though the support of the basis functions is the
whole configuration space €2, they are strongly localized in the conformation domain.
Hence, we may as well loosely speak of domain decomposition in 2. Throughout
the paper, we assume that we have already realized some decomposition by means
of N basis functions ¢1,...,én : Q — [0,1], where ¢;(q) determines the grade of
membership of configuration g € Q2 w.r.t. ;. For later purposes, we already mention
here that this algorithm may be regarded as realizing a disaggregation step in infinite
dimension.

In detail, the dynamic is described via a Markov operator T7 that propagates
densities in  for some time 7. Here, the complete dynamic in phase space (config-
urations ¢ and momenta p) comes into play, but the trajectories are projected onto
the configuration space € [30]. Thus, the conformations to be identified are defined
in configuration space but are indeed characterized from a dynamical point of view.
The corresponding transition probabilities between domains §2; can be expressed in
terms of a stochastic transition matrix P € RV*N as follows:

_ Ja (@) T7 ¢(q) w(q) dg
Jo0il@)w(q)dg

P(i,j)
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It can easily be shown that the integral can be rewritten in terms of local densities

oy 9ilg)m(q)
@) mmyfk@@M@)

P(i.j) = /Q T7 b,(q) mi(g) da.

The local densities are Boltzmann densities corresponding to modified potentials
{Vi(q)}, which depend on the basis functions {¢;(¢)}, so that

rilq) = exp(—BVi(q))
' Joexp(—=8Vi(q)) dg

with

(®) Vil) = V(o) - 5log(6i(a))

The first step of the sampling routine comprises the generation of sampling points
{q,(j)}ﬁi 1 according to the local density m;(¢). This is similar to the famous umbrella
sampling technique introduced by Torrie and Valleau [37]. The second step includes
the application of a propagator T to these sampling points and the evaluation of the
integral by Monte Carlo quadrature:

1 & :
(9) P(i,j) ~ 57 > 6:(T7q").
k=1

Actually we compute an approximation of P, because Monte Carlo integration intro-
duces truncation errors, which, within ZIBgridfree, are controlled by means of certain
stopping criteria. For more details see [39].

Robust Perron cluster analysis (PCCA+ ). Transition matrices of completely de-
coupled Markov chains with nc independent clusters can be reordered to block diag-
onal structure and have an nc-fold Perron eigenvalue {A;};:¢; = 1. In the presence of
metastabilities, we deal with nearly completely decomposable Markov chains. In this
case, there exists a Perron cluster of eigenvalues near the Perron eigenvalue A\; = 1.
The perturbation is measured as the gap to the second largest eigenvalue [10], i.e., as

(10) e=1-— AQ,

which is understood to be a small number, positive by construction.

In contrast to a reordering of states according to clusters, PCCA+ aims at an
assignment of states i € {1,..., N} to clusters j € {1,...,n¢c} with certain grades of
membership 0 < x;(¢) <1, >, x;(i) = 1. Let X € RY*nc denote the matrix of the
eigenvectors corresponding to the Perron eigenvalue cluster. In [10, 39] it has been
shown that y can be expressed as a linear combination of the eigenvectors

x = XA,

where A € R"¢*"C is a regular matrix. The algorithm PCCA+ computes this trans-
formation matrix via maximizing the metastability, which is the sum of the diagonal
entries of the coupling matrix.
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Sampling algorithm ConflJump. In [38], we described the sampling algorithm
ConfJump that uses the results of an a priori analysis of the potential energy surface to
enhance the sampling by additional intermediate jumps between low-energy regions.
This method allows a much faster sampling than the HMC algorithm. There is a
class of alternative methods, so-called smart methods, which have been designed to
overcome the trapping problem; see [3] for a survey. ConfJump can be regarded as an
extension of the smart darting Monte Carlo [1] and the jump between wells [32, 33]
methods. However, ConfJump achieves larger acceptance ratios than these methods;
i.e., within the Monte Carlo setting the part of proposed states which are accepted
as next state in the Markov chain is larger. For algorithmic details see [38]. Since
ConfJump combines jumps with the HMC method, it is not only a correct sampling
method for the Boltzmann distribution but also provides dynamical information.

1.2. Stability analysis. In section 1.1 we arranged the basic tools for confor-
mation dynamics. On this basis we are now ready to compare the condition of global
versus local density computation in the presence of metastable conformations, which
is the case of interest here.

1ll-conditioned global density computation. If we want to compute the probabilities
for the system to stay within each of the conformations, then we have to solve two
problems. The first one is the clustering problem to find the hidden block structure
of a transition matrix P and thus to determine the metastable conformations. This
problem can be solved by ZIBgridfree and PCCA+ as described in the preceding section.
The second problem is the determination of the stationary density w required to
compute the discrete cluster weights {o;}.-, as defined in (3). Unfortunately, a careful
analysis reveals that this problem is ill-conditioned. For a deeper understanding, we
will briefly recall the line of argument as given in [39].

Assume we want to compute the stationary density via solving the eigenvalue
problem (2). In this case, the truncation error of the transition matrix sampling leads
to the estimate

(11) W = Wirlloo < [P = Perlloo,

where wy,., Py, indicate the result of the algorithm after truncated sampling, and w, P
the true values. As for the choice of condition number, we select k = kg suggested
by Meyer [24], since it can be conveniently estimated via the sorted eigenvalues \; =
1>X > > Ay of Pas

1 2(N — 1)
12 < kuB S
(12) NIT=2o ="M= 1N, 0 -0

In view of (10), we thus obtain that, in the presence of at least two conformations,
k~0(1/e) > 1.

Summarizing, we are now ready to understand the computational difficulties aris-
ing in the existing conformation dynamics algorithms:

(1) In the presence of conformations, when there exists a Perron cluster of eigen-
values of P near the Perron root A\; = 1, i.e., when ¢ < 1, the computation of the
global stationary density w is ill-conditioned.

(ii) If the second eigenvalue Ay of P is sufficiently bounded away from 1, i.e., if
¢ is not small, then the computation of the stationary density is well-conditioned, but
PCCA+ will not identify any metastable conformations.
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The theoretical results so far can also be summarized in a slightly different wording
as follows. While the absolute error ||P — Pi|loo can be controlled by the stopping
criterion within ZIBgridfree, the elementwise relative error

[P(i,5) — Per (i, 3)|/1P (i )]

is important for the determination of the stationary density w [25]. If the transition
probability between two states is small, which is the case in the presence of meta-
stabilities, then the relative error may be very large although the absolute error is
moderate and the sampling converged. In this case,  in (11) will necessarily be large.

Well-conditioned local density computation. Assume there is a molecular system
with no pronounced metastable conformations. Then there exists a Perron cluster
of eigenvalues Aj,..., A, and an eigenvalue A, 4; sufficiently bounded away from
Ane < 1. Via PCCA+ we can identify the corresponding hidden block structure of
P. Assume we have identified disjoint index subsets Ii,..., I, for each of these
hidden blocks and reordered the states accordingly (which we do not do explicitly!).
Then we can construct a real block-diagonal matrix P similar to P by applying the
Simon—Ando disaggregation technique [34]. That means we take P, set all outer-
block elements equal to 0, which is a perturbation of order €, and change the diagonal
clements such that P is again stochastic. This matrix P is reducible and can be
split into ne stochastic submatrices {P;}. An easy calculation shows that each of
these submatrices defines a reversible Markov chain with a stationary density equal
to the corresponding part {wy, };'¢, of w apart from a scale factor. Details can be
found in the appendix. Due to reversibility, DP and DP are symmetric. A standard
eigenvalue estimate [16] then yields that A, 41 is a measure for the deviation of the
second largest eigenvalue of each submatrix from 1. Since, by assumption, A, .41 is
well bounded away from 1, the upper bound in (12) yields a condition number &; for
each of the submatrices such that

ki < K;

i.e., local density computation is well-conditioned. This result strongly indicates that
some aggregation/disaggregation technique might be useful. This idea will be worked
out in section 2.

1.3. An illustrative example. For an illustration of the above stability anal-
ysis, consider a dynamical system given by Hamiltonian differential equations:

¢=p, p=-VV(q).
Let a characteristic potential energy V : R? — R be given in the form
V(g) = min(f(q), g(a), h(q)),  q€R?

f(@) =3(q1 = 3)(q1 — 3) — 5(q1 — 3)(q2 +4) + 3(g2 + 4)(q2 + 4) + 0.25,
9(q) =34 —q)(4—q1) =54 —q1)(g2 — 3) + 3(q2 — 3)(q2 — 3) + 0.25,
h(q) = 3q1q1 + 3q2q2-

This potential has three well-separated local minima. The central minimum has
the deepest potential energy, but at the same time it has the smallest cluster weight
such that it is impossible to derive the cluster weights from the energy values of the
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local minima. The potential gives rise to a Boltzmann density with well-separated
partial densities; see Figure 2(a). Two of the conformations are symmetric, but
their basins of attraction have different orientations, which is disadvantageous for
the original ConfJump method [38]. The weights of the three conformations can be
computed analytically (rounded to four decimal digits) as

(13) {oP%*} = {0.3690, 0.2619, 0.3690}.

Application of ZIBgridfree. Since the single peaks are completely separated and
transitions from one cluster to another are rare events, we cannot expect ZIBgridfree
to deliver the correct stationary density.

We used N = 11 basis functions {¢x}2_,. The two symmetric minima were cov-
ered by different numbers of basis functions (three and four) so that the discretization
does not inherit the symmetry. Moreover, the minima directly coincide with the center
of one of the basis functions. The central minimum is resolved by four symmetrically
located basis functions. As a result of our algorithm, these four basis functions should
have the same statistical weights.

For each modified potential {V;}, as defined in (8), 2000 points were generated
by HMC sampling. These points were propagated by Hamiltonian dynamics applying
60 steps of the velocity-Verlet algorithm [14] with time step A7 = 0.013 fs. We
applied PCCA+ to the 11 x 11 transition probability matrix P, which resulted in a
decomposition into three clusters.

1ll-conditioned global density computation. The stationary density was calculated
by solving the eigenvector problem of P according to the eigenvalue A = 1. The
eigenvector was computed by the MATLAB routine eigs [21] based on the implicitly
restarted Arnoldi method. The Meyer condition number for this calculation appeared
as

k=2-10".

Well-conditioned local density computation. On the basis of the clustering, we
approximated the transition matrix P by a block-diagonal matrix P in that we added
the entries outside the blocks rowwise to the diagonal, a process described in sec-
tion 1.2 above and in the appendix. Next, we calculated the stationary densities of
the blocks. This time, the corresponding Meyer condition numbers arose as

{#;} = {2.15,4.10,4.69}.

As one can see, the local condition numbers are extremely small compared with the
global condition number x = 2 - 10*.

Computation of cluster weights. We decomposed the density according to the
proposed clustering into the partial densities. We know that these partial densities
are reliable because our samplings were rapidly mixing within the clusters. But we do
not know the ratios or proportionality factors exactly. The cluster weights computed
according to (3) came out wrong as

{o:} = {0.4303,0.3453,0.2244}.

Given the statistical weights {w; };'%, of the basis functions, we computed a histogram
of the Boltzmann density. For this purpose, we decomposed €2 into 70 x 70 boxes.
Then we counted the number of sampling points within each of these boxes. In this
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70

20 30

(a) Correct density.

(b) Approximate density computed as left eigenvector of
the transition probability matrix.

(c) Approximate density computed by ConfJump.

F1c. 2. Artificial potential: Spatial Boltzmann density computed in three different ways.
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counting process, every point g was scaled by a factor

1(q) = wi(q)/M;

where w;(q) is the weight of the basis function ¢ from which ¢ was generated, and M;
is the total number of points that was generated to sample the Boltzmann distribution
according to basis function i. The histogram according to our example is illustrated
in Figure 2(b).

The computed weights are expected to reflect the symmetry of the potential
energy surface. Obviously, this is not true in Figure 2(b). Hence, these weights must
be incorrect—in agreement with the analysis in section 1.2 above.

2. Sampling-based aggregation/disaggregation. Recall from section 1.2 that
the stationary density w can, in principle, be computed as left eigenvector of the
stochastic matrix P to the Perron eigenvalue A = 1. In the presence of at least two
metastable conformations, this eigenvector is very close to further eigenvalues in the
Perron cluster. The computation of the degenerate Perron cluster eigenspace as a
whole is well-conditioned, but the computation of any eigenvector in this space is
ill-conditioned. This is the situation when the matrix P, which has been computed
by truncated sampling, is given as the input and the stationary density w to be com-
puted is the output. The result of this insight is that the computation of the matrix
as such introduces some algorithmic instability.

In order to circumvent this instability, we will step back behind the computa-
tion of P; i.e., we will modify the underlying sampling technique. Therefore, in the
present section, we will replace the global sampling, which gives rise to the instability
introduced via the ill-conditioned eigenvalue problem for the matrix P, by a set of
independent local samplings corresponding to submatrices {P;} associated with well-
conditioned eigenvalue problems for the computation of sufficiently accurate partial
(or local) densities.

2.1. Basic idea. The key to overcoming the above described computational
difficulties is to transfer the well-known matrix-based aggregation/disaggregation ap-
proach due to Simon and Ando [34] to some domain decomposition realized in the
frame of the sampling technique.

Matriz-based aggregation/disaggregation. The computation of stationary densities
of Markov chains has been the topic of intensive research for many years [27, 35, 7, 2].
Iterative aggregation/disaggregation (IAD) methods as introduced in [20, 4, 19, 36]
turned out to be efficient algorithms for nearly completely decomposable Markov
chains. TAD methods are matrix-based domain decomposition methods. Here, domain
decomposition refers to the sampling space, and the states of the Markov chain are
defined by the partitioning {€;}. First, in the disaggregation step, the states Q;
are grouped to nc subsystems (in the following called clusters), which are solved
separately. Then, in the aggregation step, the global solution is constructed from the
partial solutions. In other words, the unknown overall vector w is divided into partial
vectors {w;};¢, which may well be of different dimensions:

W= (Wi,..., W), [lwl]l1 = 1.
The solutions of the disaggregation step are the partial densities

~ W;
W; =

[[will1’
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where the overall normalization constants
0 ::|‘Wi||17 Z.:17"'77107

are unknown. These normalization constants denote the discrete cluster weights.
Note that they are special instances of {0;} defined in (3) in the case that {x;}
are characteristic functions. From a coupling matrix one can estimate these missing
cluster weights which are then used to construct the overall density in the aggregation
step:

W = (&iv~vi, ey 5ncv~vnc).

The method benefits from the fact that the computation of the partial vectors w;
is well-conditioned. An iterative process, which alternately estimates {7;} and w,
accounts for the interactions between the subsystems. These interactions are given by
transition probabilities between states which belong to different clusters. If these val-
ues were correct, the IAD algorithm would compute the stationary density efficiently.
However, our problem is different in that we cannot rely on these values. That means
we cannot apply the method directly to our transition matrix because the aggregation
step would fail. Consequently, we had to find a method for the computation of the
cluster weights which does not rely on the matrix.

Transfer to sampling techniques. There exist several sampling methods which
are based on aggregation/disaggregation techniques. One of them is the hierarchical
uncoupling-coupling Monte Carlo method (UCMC) by Fischer et al. [13] and Fis-
cher [12]. To approximate ratios of normalizing constants of different densities, UCMC
uses temperature-based bridge sampling. However, that technique suffers from the
fact that the densities must be sampled correctly on every hierarchy level, which is
very expensive. In our case, here configuration-based bridge sampling [22, 15] would
also fail due to missing data in the overlap of sampling regions and due to different
shapes of these regions.

This situation motivated the development of a new approach which does not suffer
from drawbacks as described above. The partitioning of the molecular configuration
space into N different sampling regions as in Z|Bgridfree can be considered as the
disaggregation step. It also includes the clustering of states into metastable confor-
mations. This partitioning is based on the eigenvector structure of the transition
matrix P which is analyzed via PCCA+ [10]. With the result of the clustering we
obtain normalized partial densities

~ i 7T .
ﬂz(Q):M? 221,...,7’10.

0;
This definition is comparable to the definition of local densities in (7), but here partial
densities correspond to clusters whereas local densities correspond to the discretiza-
tion. In order to construct the global density

(q) = Z o:7i(q)

one has to estimate the normalizing constants {o;}; ¢, which equal the weights of

the conformations. This is part of the sampling-based aggregation step which will be
described next.
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input output
— error —— error
(MC truncation error) | well-conditioned lw—w Il
problem
stable l unstable A
disaggregation matrix K> 1 aggregation
. error
(ZIBgridfree) IP—R, I ill-conditioned (ConfJump)
eigenvalue problem

domain
decomposition

A
sub-matrices K=l ] |
. — Wi W,
1P, =P, I r
well-conditioned

eigenvalue problems

Fi1c. 3. Stability diagram corresponding to the basic aggregation/disaggregation algorithm.

Algorithmic structure. The relation of the different parts of the algorithm together
with the stability aspects is schematically presented in Figure 3. The sampling-based
aggregation/disaggregation algorithm carefully observes the condition of the global
versus the local eigenvalue problems as analyzed in section 1.2 above. Note that in
passing we thus have assured that the overall problem as such is well-conditioned.
The questions of how to realize this basic algorithm in detail will be discussed in the
forthcoming sections.

2.2. Global aggregation. Assume we are given the correct partial densities
{wr, },¢, apart from the scaling factors. There are two possibilities to rescale them
correctly. On one hand, one can rescale every partial density individually. If we knew
the exact density in a single point ¢ and the actual (wrong) value, we could use this
ratio to compute the rescaling factor. That idea is illustrated in Figure 5 and builds
the basis for the algorithm presented in the next section.

On the other hand, one can rescale the partial densities w.r.t. each other. For this
purpose, one has to compute ratios w;/w; for representative indices i € Iy, j € Iy,,
k1 # ko. After renumbering the indices, denote these statistical weights, computed
with ZIBgridfree, by wi, . .., w,, and the corresponding basis functions by ¢1, ..., ¢, -
The idea of the algorithm presented in this section is to sample the Boltzmann distri-
bution directly according to these basis functions {¢; };:, by one long trajectory. The
number of sampling points per basis function will be proportional to the statistical
weights and can thus be used to compute the correct ratios w;/w;. The selection
of representative basis functions, in the following called patches, avoids a complete
resampling within conformations. In our algorithm, we select the basis function with
maximum weight within each cluster. From the original N basis functions, we thus
obtain n¢ patches at the beginning of the sampling algorithm.

From time to time, one has to perform a “jump step” between the correspond-
ing “domains” €2;, see Figure 4, because transitions between patches belonging to
different conformations are rare events. For this purpose, we use the previously de-
veloped algorithm ConfJump [38]. Originally, ConfJump was developed to sample the
Boltzmann distribution in the whole configurational space in the presence of metasta-
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FiG. 4. Application of Conflump to selected “domains” ; C C;, Q; C Cj corresponding to
basis functions ¢;, ¢;.

bilities, but it can also be applied to restricted domains as in our applications. The
key idea of ConfJump is to combine the HMC method with intermediate jump steps
that preserve the main properties of the sampling scheme: reversibility and conver-
gence towards the equilibrium distribution. One of the main tools in ConfJump is a
symmetric jump-proposition matrix A that contains the jump probabilities between
the patches. To achieve higher HMC acceptance ratios, these probabilities are related
to the potential energies of the patches. Details for the computation of A can be
found in [38]. Once a target patch for the jump step has been selected, one has to
choose a target configuration ¢ within this patch. For this purpose, a representative
configuration is assigned to each patch. Then the target configuration is selected
relative to the representative configuration such that reversibility is ensured. To be
more precise, a translational displacement is computed w.r.t. some internal coordi-
nates x, here the values of dihedral angles, bond lengths, and bond angles, which
are then retransformed into configurational coordinates ¢; see [38]. In the following,
the representative configurations, characterized by their internal coordinates, are de-
noted as m;. This transformation from Cartesian coordinates in configuration space
to internal coordinates in some lower-dimensional space is essential for achieving rea-
sonable acceptance ratios in the HMC steps [38]. For general dynamical systems, such
transformations can possibly be omitted. In our framework, one step of the adapted
ConfJump method reads as follows:
1. Let ¢ be the initial configuration (in Cartesian coordinates) w.r.t. basis func-
tion ¢;.
2. Pick a random number z in (0,1).
3. If z > jumpRate, perform an HMC step within basis function ¢; (i.e., with
the modified potential V;).
4. Else, perform a jump step:
(a) Select another basis function ¢; with probability A;;.
(b) Compute z, the internal coordinates of g.
(c) Compute Z = x + (m; —m;), and transform Z to Cartesian coordinates
to get the new point q.
(d) Accept the new point with probability min (1,e=#(Vs(@=Vi(@)) (Metrop-
olis acceptance criterion with modified potentials).
The numbers of sampled points within each of the patches divided by the num-
ber of all ConfJump sampling points give the new weights {w?*V}"% . Thus we get

correction factors
wr}ew
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Based on the assumption that the ratios w;/wy are correct if basis functions 4
and k belong to the same cluster, we consider the factors f; as correction factors for
all statistical weights of basis functions belonging to conformation j. This assump-
tion is correct if the local weight computation is well-conditioned. Now we need to
multiply the N original statistical weights by the correction factor corresponding to
their conformation. For this purpose, the soft membership vectors y are transformed
into a crisp clustering . The entry (4, 7) is set to 1 if cluster j is the one to which
basis function i belongs with largest probability, and 0 otherwise. Given the crisp
membership vectors X, the new statistical weights {w?*V} | of the basis functions
can be computed as

new 1 - . . .
(14) w; :ZZX(Za])wifj, i=1,...,N,
j=1

where Z is the appropriate normalization constant. The corrected statistical weights
of the basis functions are used to compute the corrected cluster weights of the con-
formations via (3).

Note that, theoretically, the correction factors can be determined as accurately
as needed if the ConflJump sampling has run long enough. As an advantage, the
success of ConfJump does not depend on any local regularity of the potential energy
function, which is a key feature of Monte Carlo-based algorithms. Although ConfJump
also works without a decomposition method like ZIBgridfree, it is applicable only for
larger molecules in combination with ZIBgridfree. This is due to the fact that larger
molecules have basins of attraction with very different shapes and energies, which
leads to low acceptance ratios in the jump algorithm [38, 28]. Only jumps near the
reference configurations m; have a higher probability of being accepted. Therefore,
ConfJump benefits from the restriction to smaller regions via ZIBgridfree.

2.3. Local aggregation via density estimation. Sometimes the acceptance
ratio in the ConfJump algorithm is undesirably low, especially if the jump patches
have large differences in shape and in the average energy. In such cases, an alternative
aggregation method can be used, known as density estimation. This heuristic method
does not use an iterative sampling strategy. Thus, there is no convergence against
the correct reweighting factors. Density estimation constructs an estimate for the
underlying continuous Boltzmann density function based on the observed sampling
points. Given a sample {g;}}_, of points in , the numerically computed density at
an arbitrary point g can be estimated by the kernel density approximation [26]

Aa) == > W a).
k=1

As kernel function W, we usually choose an exponential function
(15) W(q) = exp(—cllall),  ceR,

which is similar to the basis functions used within ZIBgridfree. In our case, the points
{qx} were sampled according to N different basis functions. Let the points {q,(f)}
correspond to basis function ¢;. With the statistical weights {wl}{i , of these ba-
sis functions computed by PCCA+, the formula for the density estimation must be
modified in the following way:

1 N w M, o
~ j : l j : l
1 = — _ ‘/‘/ —
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q

F1c. 5. Rescaling of partial densities. The value of the density in a single point determines the
scaling factor as long as the density has been sampled correctly locally.

where M; denotes the number of sampling points corresponding to basis function ¢;.
Furthermore, we know the unnormalized value of the restricted Boltzmann density
at an arbitrary point g:

7(q) o< exp(—BV(q)).

This allows us to compute correction factors according to the idea illustrated in
Figure 5. As in the previous section, we first select the basis function with maxi-
mum weight within each cluster. Then we choose from the sampling points corre-
sponding to this basis function the point with minimum energy. For these points,
in the following denoted by {m;}7<;, we compute the estimated densities 7(mn;) ac-
cording to (16) and scale them such that 3, #(m;) = 1. Moreover, we calculate
w(m;) = exp(—=BV(m;))/ > ; exp(—BV (m;)). The ratios

f]:ﬁ(m])/ﬁ(mj)7 j:17""n07

are the correction factors for the weights of cluster j. Now we multiply the IV original
statistical weights of the basis functions by the correction factor corresponding to
their conformation, as shown in (14). Then we apply (3) and normalize to obtain the
cluster weights.

Since this method does not need a new sampling, it is very fast and cheap. One
might have the impression that the approach via local density estimation outperforms
the ConfJump algorithm. However, one should be aware that local density estimation
works well only in areas where the potential energy surface is sufficiently smooth.
This is especially satisfied for small systems and near minima. As already mentioned,
ConfJump does not depend on any local regularity assumption.

2.4. Numerical examples. The advantage of the aggregation/disaggregation
methods will become clear in the following examples. We briefly revisit the artificial
example from section 1.3 and then present two biochemical applications.

Artificial potential. Recall section 1.3, where the stationary density had been
computed as eigenvector of the transition probability matrix, which meant that the
cluster weights were incorrect.

This is the point where ConfJump comes into play. Within each cluster, we select
the basis function with the largest weight and apply the jump method to obtain the
scaling factors of the partial densities {7;(a)}. Then we obtain the corrected cluster
weights,

{os} ~ {0.3777,0.2585,0.3637},
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to be compared with {o¢***} in (13). The corresponding histogram is illustrated in
Figure 2(c). Now it reflects the symmetry of the potential energy quite satisfactorily,
and the approximated cluster weights agree with the analytical weights o§*2t. Alter-
natively, we corrected the height of the histogram by a local density approximation.
We used the exponential kernel (15) with ¢ = 6.5. Other values for ¢ in the range
[4,10] were tested as well, but the results were insensitive w.r.t. the choice of this
constant. We obtained the following cluster weights:

{o;} ~ {0.3798,0.2611, 0.3591}.

The weights agree quite well with the cluster weights obtained by ConfJump and the
exact weights in (13).

Bicyclononane (BCN). This molecule is a hydrocarbon which consists of two
connected 6-rings. Each of these rings has two major conformations, the chair (C)
and the boat (B) conformation. Thus, we expected four possible combinations (CC),
(CB), (BC), and (BB), all separated by high energy barriers. A computation with
ZIBgridfree at a temperature of 300K with eight basis functions ¢1, ..., ¢s led to an
8 x 8-transition matrix P with the following spectrum:

{2} = {1.000,0.999, 0.986,0.972, 0.916, 0.848, 0.774, 0.692}.

We have e =1 — Ay = 0.001 and a significant gap after A4. Hence we apply PCCA+
with ng = 4. The uncorrected cluster weights of the four conformations (CC), (CB),
(BC), and (BB) came out to be

{0} =~ {0.943,0.056,0.001,2 - 10~ **}.

Obviously, the expected symmetry of the (CB) and the (BC) conformation does not
show up correctly. The reason for that is that due to

Kk~ 1/e = 1000,

the global weight computation is not reliable. Note that a correct weight computation
does not depend only on x but also on the expected truncation error |P — Py |loo. A
variance-based estimation provides the truncation error || P — P, || = 0.008. Unfortu-
nately, if we want to reduce this error by a factor of 10, we have to sample a factor
of 100 times more points. As described in section 1.2, we computed the transition
probability matrix P corresponding to a completely decoupled Markov chain. The
maximum condition number & for the submatrices of P is
k= maxk; = 6.17.
K3

In order to scale the well-sampled local densities against each other, we applied the
pointwise density estimation for a correction of the weights. Here, in contrast to
the artificial example, V(¢) is invariant against rotation and translation of ¢ € Q.
Therefore, we first aligned the trajectories to the points where we wanted to estimate
the density via Kabsch’s alignment algorithm [17, 18]. Via local density estimation
(section 2.3) we computed the corrected cluster weights of the four conformations as

{0} ~ {0.9893,0.0053,0.0054, 3 - 10~ ¢},

In both examples we used an irreqular decomposition of the conformational space
into basis functions ¢1,...,¢x. The discretization did not reflect the symmetry of
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the molecule. This means that the reproduction of the molecular symmetry within the
weight computation is not an artificial result but a generic property of the described
algorithms and can be viewed as a validation.

Inhibitor BSI. The molecule BSI (short name of 2-(Biphenyl-4-sulfonyl)-1,2,3,4-
tetrahydro-isoquinoline-3-carboxylate) is a possible inhibitor for human neutrophil
collagenase (MMP-8), which degrades collagen.

FiG. 6. Possible MMP-8 inhibitor BSI with three torsion angles 61, 02, and 03 which induce
symmetric conformational changes. The values of 01 are symmetrically distributed, because the
negative charged COO-group has a delocated electron pair instead of a single and a double (C-O)-
bond.

Not only the cluster weights o; inherit the symmetry of the molecule: If a change
in internal degrees of freedom of the molecule leads to chemically identical structures,
all corresponding histograms for these degrees of freedom are symmetric, too. BSI is
an example of a molecule for which many sampling steps are necessary in order to
compute the correct probability densities. Figure 6 shows this molecule as a structural
formula.

BSI has three rotationally symmetric bonds. We discretized the configuration
space of BSI into 187 basis functions ¢1, ..., ¢157. We performed a sampling with
3000 up to 15000 steps per basis function (total number of steps: = 1 million),
depending on a convergence indicator. We propagated each sampling point by a
molecular dynamics simulation with randomized initial momenta for a time span
T = 78 fs. After computation of the 187 x 187-transition matrix P we computed the
ill-conditioned, incorrect statistical weights {w;}187 of the basis functions.

In Figure 7(a) the results for the pure ZIBgridfree approach are plotted with
dashed lines. The histograms do not reflect the correct symmetry of the three bonds.
But after local density estimation as in section 2.3 we corrected the statistical weights
and found that the histograms (dash-dotted line in Figure 7(b)) are now symmetric.
However, note that for this special example the good results of the local density
estimation are due to the symmetric choice of the center points ¢ for the kernel
density approximation. In the example of BSI, each of the 187 basis functions was
used for the pointwise density estimation. If the reweighting process with ConfJump
is based on each single basis function, this is comparable to performing the pure
ConfJump method for the original potential. In the case of BSI, the pure ConfJump
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E E) T g T B = 2 E g 0 B - El E o T 2 B

(a) ZIBgridfree without reweighting. The lack of symmetry clearly indicates that the
statistical weights of the discretized states are incorrect.

B ) E g 0 B = ) E g 0 B = El E o T B B

(b) Same sampling as in Figure 7(a) but reweighted by pointwise density estimation.
Here, symmetry is nicely reproduced.

) EY E] 0 0 B T 3 EY E] 0 T B T 3 E) E} g T B B

(c) Conflump reweights the sampling points in such a way that they correctly represent
the Boltzmann distribution. Here, histograms came out symmetric.

Fic. 7. Inhibitor BSI: Equilibrium distribution of values for the dihedral angles 61, 62, and 63
(from left to right) obtained from different samplings of the Boltzmann density (from top to bottom,).
Symmetry of the histograms in the interval [—m, 7] w.r.t. zero indicates that the Boltzmann density
was sampled correctly.

approach with 1 million sampling points leads to very good dihedral histograms [28];
see Figure 7(c). It was possible for the first time to sample the Boltzmann density
in such a way that it correctly reflects the inherent symmetry of the molecule. The
jump acceptance ratio was about 32%, which is very high for this approach [38]. We
repeated the ConfJump approach with different random number sequences and found
out that it is very stable.

Knowing a good approximation of the stationary density, we can compute the
coupling matrix P according to (4). We obtained two conformations with

D 0.999987 0.000013
~\ 0.000002 0.999998 /-

They result from a rotation of the unsymmetric N-S-bond. With time span 7 = 0.78 fs,
the lifetimes computed according to (5) are

71 = 6 ns, 79 = 39 ns.
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These numbers demonstrate how our model can be used to predict the long-term be-
havior of molecules from short-term molecular simulations. Thus we are able to bridge
the time gap between molecular simulations, which use time steps of femtoseconds,
and chemical experiments in the range of nanoseconds.

Conclusion. This paper suggests a stable aggregation/disaggregation algorithm
for the well-conditioned computation of stationary densities of metastable dynamical
systems. The algorithm as it stands now scales with the number of identified con-
formations and can be used as a postprocessor applied to traditional conformation
analysis. Future work will aim at telescoping the traditional tools with this postpro-
Cessor.

Appendix. Simon and Ando [34] proposed a method which makes it possible to
compute correctly the partial densities according to subchains of a reversible, nearly
completely decomposable Markov chain. Assume we are given a decomposition of
the index set {1,...,N} into nc subsets {I;};c, according to the partition into
metastable clusters. Indices i and j are related to each other, ¢ ~ j, if there exists an
index k such that i € I, A j € Ii; otherwise, ¢ ¢ j. Then a matrix P is constructed
as follows:

0 ifi ot g,
P(i,j) = P(i,5) ifinj A,
P(i,i)+ X0 P, j) ifi=j.
If w denotes the stationary density of P (w' P =w', Zivzl w; = 1), then w is also
a stationary density of P:

N
(w'P)(j) = Zwiﬁ’(z‘,j) = > wiP(i, ) + w; (P(j,j) + > PG k))

iying k,kotj

=Y wiP(i,5) +w;P(j,§) + Y wiP(k,j)
iying k,kotj
N

= wP(i, )
=1

= wj.

As can be seen from the construction, the row sums are preserved. Thus, the sub-
matrices Pr, = {P(i,7)}: jer, are stochastic. Moreover, since P(i,j) = P(i,j) for
i ~ j, we have w;P(i,j) = w;P(i,j) = w; P(j,1) = ij:’(j, i). In other words, the
submatrices Py, inherit the reversibility from the original matrix P.

Since P is block-diagonal and thus reducible, the stationary density is not unique.

In fact, the subspace spanned by the vectors vy, with

X W, ifj c Ik,
vi (i) = {0j else

is the invariant subspace corresponding to the no-fold eigenvalue A = 1. The nonzero
components of the vectors vy, are the partial density vectors wy, . They are propor-
tional to the stationary densities of the submatrices Py, , but the scaling factors are
unknown.
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