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Monolayer thin films with ethylene-glycol function onto gold surfaces by using thiols have been extensively
investigated. They have been proposed as precursors for applications to bio-detection, where their hydrophilic
character improves both specificity and sensitivity. The aim of this letter is to characterize ethylene-glycol
monolayer precursors formed onto silicon chips by using silanes. The importance of the ethylene-glycol function
is demonstrated by comparing with the well known 3-Aminopropyltriethoxysilane. The different nano-scale
structures of the two precursor monolayers are investigated by using atomic force microscopy (AFM). Longer,
wider, and deeper grooves were measured in the images acquired on 3-Aminopropyltriethoxysilane.
Fluorescence investigation demonstrates that the presence of ethylene-glycol function improves target
hybridization onto silicon chips, assuring highly-specific detection of DNA.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

A pH imager realized with a CMOS chip has been recently realized
[1] for measuring two-dimensional distributions and for real-time
dynamic imaging of various chemical reactions. This technology was
very recently proposed both for enhanced glucose sensing [2] and for
DNA detection [3]. However, false positive signals from mismatching
DNAwere also acquired (Fig. 3(d) in Ref. [3]) clearly showing that the
probe surface is not specific enough. Moreover, overlapping ranges in
acquired voltages were registered for match and mismatch DNA
(Fig. 4(a) and (b) in [3]). This means that the acquired signals do not
distinguish among specific hybridization and non-specific adsorption
of DNA onto the chip surface. A similar situation has also been
observed in fully-electronic capacitance detection of DNA onto gold
surfaces (Fig. 12 in [4]).

In the latter case, the poor detection quality has been related to the
nano-scale properties of DNA probe films [5]. In particular, AFM
investigations have shown that DNA probe film presents grooves at
the nano-scale. These grooves cross the entire probe film, providing
conducting pathways to solution ions. These conductive pathways
affect the capacitance detection and cause time instabilities and large
detection errors. Capacitance DNA detection onto gold has been
highly-improved by using ethylene-glycol thiol monolayers as
precursors for probe anchoring [6]. These films do not show deep
grooves crossing the film in the structure at the nano-scale [7]. These

special precursor monolayers present carboxyl groups for probe
anchoring as well as hydroxyl groups for repelling non-specific DNA.

This letter proposes a new kind of ethylene-glycol silane
monolayer with properties similar to those demonstrated by
ethylene-glycol thiols onto gold and shows that this film is suitable
for highly-specific DNA detection onto a silicon chip.

2. Experimental

2.1. Chemicals

Special ethylene-glycol silanes terminated with amine and
methoxyl groups were designed by us and synthesized by Prochimia,
Poland. Maleimide-NHS cross-linker was purchased from Prochimia.
3-Aminopropyltriethoxysilane (APTES), NaCl, Na2HPO4, KH2PO4, KCl
(used to prepare phosphate buffered saline — PBS), H2O2 (50%),
ethylenediaminetetraacetic acid (EDTA), and Tris(hydroxymethyl)
aminomethane (TRIS) buffer were purchased by Sigma, Switzerland.
Dimethyl sulfoxide (DMSO) was purchased from AplliChem,
Germany. Different DNA short oligos, with different fluorescence
markers, were supplied by MWG, Germany.

2.2. Monolayer formation

All substrates were pre-cleaned with a pirañha solution (3:1
mixture of H2SO4 and H2O2). Self-assembled monolayers (SAM)
without ethylene-glycol function were obtained from a solution of
APTES ((C2H5O)3Si (CH2)3NH2 — 98% purity). Ethylene-glycol SAM
was prepared from a 2 mM DMSO solution made by mixing 1.96 mM
of repelling silane (CH3O)3Si(CH2)11(OCH2CH2)3OCH3 and 0.04 mMof
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coupling silane (CH3O)3Si(CH2)11(OCH2CH2)3NH2. Samples of the two
kinds of SAM were prepared by immersion of substrates in the
solutions and incubated overnight in the dark, at 4 °C in case of APTES,
and at room temperature in case of ethylene-glycol SAM. After the
monolayer formation, the samples were rinsed and sonicated for
10 min, washed with Milli-Q water, and dried under nitrogen flux.
Sonications were performed in ethanol for the APTES and in Milli-Q
water for ethylene-glycol SAM. Filmswere formed onto silicon nitride,
oxide, and CMOS designed chip for fluorescence imaging while they
were formed onto silicon nitride, oxide, and mica for AFM
investigation.

2.3. DNA probe anchoring

After SAM formation, the surfaces were treated with a solution of
Maleimide-NHS 0.4 mM, dissolved in PBS 100 mM+EDTA 2 mM, pH
7.2, for 1 h. The samples were then rinsed with a solution of PBS
100 mM, pH 7.2, for 5 min in order to remove the excess cross-linker.
Once cleaned, the slides were incubated for 1 h at room temperature
with a 3 mM solution of probe DNA (modified at the 5′ with a thiol
group and at the 3′ end with a fluoresceine molecule) in PBS 100 mM,
EDTA 2 mM, pH 7.2. The samples were then rinsed with Milli-Q water
for 5 min to remove non-specific binding and dried under nitrogen
flux.

2.4. DNA target hybridization

Solutions 1 mM of target and non-specific DNA in TRIS 10 mM,
EDTA 1 mM, and NaCl 1 M, pH 8, were first pre-heated at 70 °C. The
solution was then spotted onto the probe-functionalized surfaces in
aliquots of 1 μl and incubated at room temperature in controlled
humidity conditions for 1 h. The samples were then rinsed for 3 min
with a solution of TRIS 10 mM, EDTA 1 mM, for 3 min, to remove the
non-specific binding, rinsed for a few seconds with Milli-Q water in
order to remove salts, and then dried under nitrogen flux.

2.5. Fluorescent imaging

The dry samples were analyzed with a Typhoon Trio scanner
equipped with a variable mode imager — Amersham Biosciences.
Fluoresceine signal (probe DNA) was acquired using a blue excitation
laser (λ=488 nm) and a low-pass filter (λ=526 nm). Cy5 signal
(target and non-target DNA) was acquired using a red excitation laser
(λ=633 nm) and a band pass filter (λ=670/30 nm). For some
experiments, TAMRA was also used as chromophore of non-target
DNA, using a green excitation laser (λ=532 nm) and a band pass
filter (λ=580/30 nm).

2.6. AFM measurements

Atomic force microscopy (AFM) images were acquired in tapping
mode by using PointProbe nanocontact silicon probes on a Nanoscope
IIIa SFM system equipped with a multimode head and a type-A
piezoelectric scanner — Veeco, Santa Barbara, CA, USA. The images
were acquired in Milli-Q water and in PBS buffer by using a ‘liquid
cell’. Raw images were only processed for background removal
(flattening).

3. Results and discussion

Fig. 1 shows AFM investigation of APTES monolayer. Fig. 1(A)
shows imaging on a 300 nm×300 nm region and highlights the area
used for line analysis. The image has a root means square (RMS)
roughness equal to 0.45±0.06 nm. The figure clearly shows large and
long grooves. Fig. 1(B) shows the average profile calculated on the
area highlighted in Fig. 1(A). The profile demonstrates that the shown

grooves are as deep as the whole films. This is because the shown
holes are more than 2 nm deep, a value that is even larger than the
expected height of APTES molecules that is equal to 0.8±0.1 nm [10].
The presence of hydrogenated alkane molecules affects the apparent
AFM thickness for the APTES films, and this is the reason because it is
not possible to have quantitative estimations by comparing profiles in
AFM images [11,12]. Nevertheless, grooves crossing the entire layer
are usually evaluated in AFM images of thin films [7,13]. Therefore, we
may conclude that the grooves shown in Fig. 1(A) are crossing the
entire APTES monolayer. The average depth of these grooves was
estimated equal to 1.31±0.14 nm. Images acquired on APTES also
show grooves with an average length of 52±20 nm, and an average
width of 16.8±5.2 nm.

Fig. 2(A) shows a similar AFM image acquired on a 300 nm×300 nm
region of an ethylene-glycol silane monolayer and the area for the line
analysis. This second image clearly shows a muchmore densely packed
film,where large and longgrooves are not present. Surprisingly, thefilm
RMS roughness was estimated almost equal to that of APTES. In fact, a
value of 0.60±0.07 was registered on ethylene-glycol, which is even
larger than that of 0.45±0.06 nm registered on APTES. The two values
are not statistically different from each other at 99% (3 times the
standard deviations) and they are higher than the range 0.28–0.39 nm
registered on silicon wafers [9]. Thus, both the films present a high
corrugation due to the nature of silanes. However, the average depth of
grooves on ethylene-glycol films is only 1.06±0.17 nm, a value smaller
than that found on APTES, which is a shorter molecule. Therefore, we

Fig. 1. AFM image (A) and profile (B) of an APTESmonolayer ontomica presenting large
and wide grooves. The image size is 300 nm×300 nm, while the grey-level scale
corresponds to 5 nm in surface corrugation. The image was acquired in PBS. The profile
is the average of different profiles acquired on a 0.6 nm large region (this region is
shown in A).
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may conclude that the grooves of Fig. 1(A) are crossing thewholeAPTES
filmwhile those in Fig. 2(A) are not crossing thefilm. The average length
of the grooves in ethylene-glycolmonolayer is only 19±14 nm, and the
averagewidth is 5.1±1.8 nm. So, the average length andwidth are also
smaller for ethylene-glycol than for APTES. Similar results by compar-
ison were observed with ethylene-glycol thiols onto gold [7].

These nano-scale features of precursor films are reflected in the
behavior of probes surfaces during DNA detection. Indeed, Fig. 3

presents the different results that we registered with these precursor
films when we immobilized DNA probes onto the CMOS biochips.
Fig. 3(A) presents the chip used for this test. It is exactly the same chip
previously used for DNA detection with the charge transfer technique
[3]. The two different SAM precursors were formed onto the CMOS
chips. Then, the DNA probes, target, and non-target were deposited in
smaller drops, which cover only a small surface portion. Fig. 3(B) and
(C) clearly show spots in the right chip area that corresponds to target
DNA hybridized to probes. However, Fig. 3(B) shows also a large
fluorescent signal in the area just close to the spot where the DNA
probes were immobilized and the non-specific DNA was dispersed.
The signal is not exactly from the region of DNA probes but nearby.
This is due to an adsorption of the DNA target directly onto APTES
silanes and not to hybridization on the probes. Therefore, the non-
specific DNA surface is provided by the APTES. On the other hand, the
perfectly white and clean area – surrounding the equivalent spot in
Fig. 3(C) – demonstrates that ethylene-glycol assures a highly-specific
DNA target recognition.

Repeated experiments on silicon slides both with silicon oxide and
with silicon nitride returned the same results (data not shown). The
strong role played by the new proposed precursor films in highly-
specific DNA detection relies in two molecular features: the methoxyl
groups and the ethylene-glycol chains. The ethylene-glycol chains
coordinate water molecules, as envisaged by ab initio calculations [14]
and confirmed by both infrared spectroscopy [15] and QCM [6].
Furthermore, non-specific adsorption of DNA onto the ethylene-glycol
was only obtained when the SAM was formed using only the
anchoring silanes, without mixing with the repelling ones. In this
case, non-specific signal was also recorded from the sample regions
surrounding the probe spots. This demonstrates the key importance of
mixed SAM, where the methoxyl groups (CH3) are highly relevant to
repel non-specific molecules.

When these two key features are not present into the probe layer,
strong non-specific adsorption onto the silicon surface is the reason of
non-specific detection of DNA by a charge transfer technique [3] and it
raises doubts about the reproducibility of microarray technology [8].
This shows the key importance of both methoxyl groups and
ethylene-glycol chains for a reliable DNA detection onto silicon.

4. Conclusions

Two different kinds of silane monolayers used as film precursors
for DNA detection were investigated and presented in this letter.
Monolayers with ethylene-glycol function have shown highly-specific
DNA hybridization onto silicon CMOS chip. AFM imaging revealed
highly-packed film structures at the nano-scale, with small grooves,
which do not cross the whole film thickness. Similar AFM imaging
onto shorter silane monolayer without ethylene-glycol function has

Fig. 2. AFM image (A) and profile (B) of an EG-silane monolayer onto mica, which does
not present deep grooves. The image size is 300 nm×300 nm, while the grey-level scale
corresponds to 5 nm in surface corrugation. The image was acquired in PBS. The profile
is the average of different profiles acquired on a 0.6 nm large region (this region is
shown in A).

Fig. 3. (A) A photograph of the DNA-chip used in this investigation and functionalized with the two considered precursor monolayers. (B) Fluorescent image acquired on a chip with
APTES that also present an evident signal from the region of the non-coding DNA. (C) Fluorescent image acquired on a chip with ethylene-glycol silanes that assure highly-specific
DNA hybridization only from coding DNA target.
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shown larger, longer, and deeper grooves. In these films, deep grooves
are widely distributed on the film surface, and they provide regions
for non-specific adsorption of DNA sequences that remain trapped
into the precursor film. Thus, the superior performance of ethylene-
glycol silane monolayers in providing highly-specific sensors is
demonstrated in CMOS chips for DNA detection.
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