Action Filename Description Size Access License Resource Version
Show more files...


We propose a crossover operator that works with genetic programming trees and is approximately geometric crossover in the semantic space. By defining semantic as program's evaluation profile with respect to a set of fitness cases and constraining to a specific class of metric-based fitness functions, we cause the fitness landscape in the semantic space to have perfect fitness-distance correlation. The proposed approximately geometric semantic crossover exploits this property of the semantic fitness landscape by an appropriate sampling. We demonstrate also how the proposed method may be conveniently combined with hill climbing. We discuss the properties of the methods, and describe an extensive computational experiment concerning logical function synthesis and symbolic regression.