During wound healing and fibrocontractive diseases fibroblasts acquire a smooth muscle cell-like phenotype by differentiating into contractile force generating myofibroblasts. We examined whether regulation of myofibroblast contraction in granulation tissue is dominated by Ca2+-induced phosphorylation of myosin light chain kinase or by Rho/Rho kinase (ROCK)-mediated inhibition of myosin light chain phosphatase, similar to that of cultured myofibroblasts. Strips of granulation tissue obtained from rat granuloma pouches were stimulated with endothelin-1 (ET-1), serotonin, and angiotensin-II and isometric force generation was measured. We here investigated ET-1 in depth, because it was the only agonist that produced a long-lasting and strong response. The ROCK inhibitor Y27632 completely inhibited ET-1-promoted contraction and the phosphatase inhibitor calyculin elicited contraction in the absence of any other agonists, suggesting that activation of the Rho/ROCK/myosn light chain phosphatase pathway is critical in regulating in vivo myofibroblast contraction. Membrane depolarization with K+ also stimulated a long-lasting contraction of granulation tissue; however, the amount of force generated was significantly less compared to ET-1. Moreover, K+-induced contraction was inhibited by Y27632. These results are consistent with inhibition of myosin light chain phosphatase by the Rho/ROCK signaling pathway, which would account for the long-duration contraction of myofibroblasts necessary for wound closure.