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Abstract 

Atomic force microscopy (AFM) force-distance curves have become a fundamental tool in several fields of research, such 
as surface science, materials engineering, biochemistry and biology. Furthermore, they have great importance for the study of 
surface interactions from a theoretical point of view. 

Force-distance curves have been employed for the study of numerous materials properties and for the characterization of all 
the known kinds of surface forces. Since 1989, several techniques of acquisition and analysis have arisen. An increasing 
number of systems, presenting new kinds of forces, have been analyzed. AFM force-distance curves are routinely used in 
several kinds of measurement, for the determination of elasticity, Hamaker constants, surface charge densities, and degrees of 
hydrophobicity. 

The present review is designed to indicate the theoretical background of AFM force-distance curves as well as to present 
the great variety of measurements that can be performed with this tool. 

Section 1 is a general introduction to AFM force-distance curves. In Sections 2 -4  the fundamentals of the theories 
concerning the three regions of force-distance curves are summarized. In particular, Section 2 contains a review of the 
techniques employed for the characterization of the elastic properties of materials. After an overview of calibration problems 
(Section 5), the different forces that can be measured with AFM force-distance curves are discussed. Capillary, Coulomb, Van 
der Waals, double-layer, solvation, hydration, hydrophobic, specific and steric forces are considered. For each force the 
available theoretical aspects necessary for the comprehension of the experiments are provided. The main experiments 
concerning the measurements of such forces are listed, pointing out the experimental problems, the artifacts that are likely to 
affect the measurement, and the main established results. Experiments up to June 1998 are reviewed. Finally, in Section 7, 
techniques to acquire force-distance curves sequentially and to draw bidimensional maps of different parameters are listed. 
© 1999 Elsevier Science B.V. All rights reserved 

I. Introduct ion 

1.1. General overview: A F M  and force-dis tance  curves 

Since  1989, the  a tomic  fo rce  m i c r o s c o p e  ( A F M )  [1] has  e m e r g e d  as a usefu l  tool  for  s t udy ing  sur face  
in t e rac t ions  b y  m e a n s  o f  f o r c e - d i s t a n c e  curves .  A g rea t  dea l  o f  w o r k  has  been  p e r f o r m e d  on bo th  its 
t heo re t i ca l  and  e x p e r i m e n t a l  aspects .  T h e  hea r t  o f  the  A F M  is a can t i l eve r  wi th  a m i c r o f a b r i c a t e d  t ip  
that  def lec t s  w h e n  in t e rac t ing  wi th  the  s a m p l e  surface.  P r o v i d e d  the s a m p l e  can  be  s c a n n e d  b y  m e a n s  o f  
a p i ezoac tua to r ,  the  can t i l eve r  de f l ec t ion  m a y  be  m e a s u r e d  in d i f fe ren t  w a y s  in o rde r  to r e p r o d u c e  the 
s a m p l e  t opog raphy .  A con t ro l l e r  regu la tes ,  co l lec t s ,  and  p r o c e s s e s  the  data ,  and  dr ives  the  p i e z o  

0167-5729/99/$ - see front matter ~) 1999 Elsevier Science B.V. All rights reserved 
PII: S0167-5729(99)00003-5 
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scanner. The controller consists of a variable number of A/D converters that receive data from the 
detection system of cantilever deflections, some D/A converters that give signals to the piezo, and an 
interface with a computer that stores data. 

AFM cantilevers are usually made out of silicon or silicon nitride. They have two shapes: rectangular 
and "V"-shaped. The cantilever back face (the face that is not in contact with the sample) is usually 
coated with a metallic thin layer (often gold) in order to enhance reflectivity. This is necessary in 
liquids, where the reflectivity of silicon nitride is much reduced. 

The most common methods to detect cantilever deflections are the optical lever method, the 
interferometric method, and the electronic tunneling method. The optical lever method is the most used 
one, since it is the most simple to implement. It consists in focusing a laser beam on the back side of the 
cantilever and in detecting the reflected beam by means of a position sensor, that is usually a quartered 
photodiode. Both cantilever deflection and torsion signals may be collected. In the interferometric 
method, a laser beam focused on the cantilever interferes with a reference beam and the deflections are 
revealed by the variation of the interfering beam intensity. Finally, in the electronic tunneling method, 
the tunneling current between a metallic tip and the side of the cantilever that does not face the sample 
is revealed. Hence, the cantilever has to be conductive or coated with a conductive material. This 
method, employed in the early AFM, has several problems. First, the interactions with the metallic tip 
next to the cantilever are comparable to those with the sample. Furthermore this method does not work 
in liquids, and when used in air, contaminants accumulate between the cantilever and the tip, rendering 
the tunneling unstable. 

The sample is scanned by means of a piezoactuator, that is able to perform minimal displacements 
of the order of 1 A with high precision up to displacements of the order of 100~tm. The piezo- 
electric actuators employed for atomic force microscopy are cylindrical tubes of different dimensions 
with an inside electrode, usually grounded, and an outside electrode, usually segmented in four 
quadrants. Unfortunately, the dependence of the displacement of piezo on the applied voltage is 
hysteretic and affected by creep, that is a delay effect depending on temperature. Because of creep, 
almost the entire displacement is performed at the beginning, but a little fraction is done later with a 
logarithmic time dependence. Efforts to eliminate these non-linearities follow four different 
approaches: 

1. A posteriori calculation of non-linear deformations due to hysteresis and creep [2]. 
2. Independent measurement of piezo displacements with two different techniques, e.g., capacitive 

technique (the two plates of a capacitor are mounted one on the piezo and the other fixed on the 
support and the displacements can be calculated on the basis of capacitance variations) [3,4] and 
interferometric technique (the displacement of the interference fringes between a laser beam 
reflected by the piezo and a reference beam is measured) [5,6]. 

3. Use of electrostrictive transducers [7]. 
4. Charge-drive technique, which consists in driving the piezo by controlling the charge instead of the 

potential [8]. This may be achieved by inserting a capacitor between the amplifier and the piezo 
[9, 101. 

AFM is able to acquire force-distance curves on every kind of surface and in every kind of 
environment, with high lateral (25 nm) [11], vertical (0.1 A) and force (1 pN) [12] resolution. The entire 
force-distance curve can be collected. Moreover, force measurements can be correlated with 
topography measurements. Interacting surfaces can be reduced to 10 × 10nm. The AFM is the only 
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tool able to measure the interactions between nanometer sized surfaces, allowing local forces and 
sample properties to be compared. 

When acquiring force-distance curves, the piezo must be ramped along the Z axis, i.e., the axis 
perpendicular to the surface. There are two principal modes of acquisition of force-distance curves. In 
the first mode, called the static mode, the sample is displaced along the Z axis in discrete steps and the 
variations in cantilever deflection are collected, as indicated in Section 1.2. In the second mode, called 
the non-contact mode, the cantilever is vibrated by an extra piezoelectric transducer while the sample is 
approached and withdrawn, and the amplitude or the resonance frequency of the cantilever oscillations 
are collected as a function of tip-sample distance. The principles of this mode of acquisition are 
introduced in Section 1.5. 

The study of surface interactions can be performed with several other tools [13, 14]. Between all 
these tools the surface force apparatus (SFA), invented by Israelachvili [15] in 1978, is the leading 
instrument in surface force measurements. It contains two curved molecularly smooth surfaces of mica 
whose separation can be measured by use of interferometric techniques. The distance between the two 
surfaces is controlled by means of a piezoelectric tube and the force is measured by expanding or 
contracting the piezotube by a known amount while measuring optically the movement of the surfaces. 
Any difference between the two values, when multiplied by the stiffness of the spring separating the 
surfaces, gives the force difference between the initial and final position. Measurements may be carried 
out in liquid. The SFA has a vertical resolution of 0.1 nm and a force resolution of 10 nN [15]. The SFA 
employs only surfaces of known geometry, thus leading to precise measurements of surface forces and 
energies. Although there is a considerable overlap in the force measuring capabilities of the AFM and 
the SFA, we would like to point out several differences. 

1. Interacting surfaces in AFM are 104-106 times smaller than those employed in SFA, but in AFM the 
shape of the surfaces is unknown. 

2. When the substrates to be employed are not transparent, the interferometric technique cannot be 
used to measure forces (see Ref. [16]). 

3. The SFA needs molecularly smooth samples, and therefore it can deal only with mica surfaces or 
thin layers of materials adsorbed on mica. 

4. The SFA cannot characterize indentation or topography. 
5. The viscous force on a spherical particle scales with the square of the particle radius. Therefore with 

an AFM, measurements can be performed at speeds 10 4 times greater while maintaining the same 
viscous force to surface force ratio [17]. 

6. Since the interacting surfaces are smaller, and the probability of trapping a contaminant particle is pro- 
portional to the square root of the interacting surfaces, the AFM is less subject to contamination [17]. 

The first study on force-distance curves acquired with an AFM, concerning the characterization of 
surface forces on LiF and graphite, dates back to 1988 [18]. The first works trying to interpret force- 
distance curves and related information appeared in 1989-1990. Since the first experiments, it has 
become clear that, when force-distance curves are acquired in air, meniscus forces exerted by thin 
layers of water vapor dominate any other interactions. Such forces can be eliminated by working in a 
controlled atmosphere or in a liquid environment. 

In 1991 several studies of force-distance curves in liquids were performed, both theoretically and 
experimentally. Moreover, Mizes et al. [19] performed the first direct measurement of the spatial 
variation of adhesion. 
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Since then, two different research lines have characterized the research on force-distance curves: on 
one hand, the study of different interactions in several environments, on the other, the "mapping" of 
such interactions, drawn from force-distance curves, in order to distinguish materials with different 
physico-chemical properties (a kind of "surface spectroscopy"). 

In 1994, a further technique was introduced [20]. This technique employs functionalized tips, i.e., 
tips covered with particular molecules that selectively adhere to other, in order to study specific forces 
by means of force-distance curves. 

1.2. Relation between A F M  force-d is tance  curves and t ip -sample  interaction force 

An AFM force-distance curve is a plot of t ip-sample interaction forces vs. t ip-sample distance. In 
order to obtain such a plot, the sample (or the tip) is ramped along the vertical axis (Z axis) and the 
cantilever deflection 6c is acquired. The tip-sample force is given by Hooke's law: 

F = -kcrc.  (1.1) 

The distance controlled during the measurement is not the actual t ip-sample distance D (Fig. 1), but 
the distance Z between sample surface and the rest position of the cantilever. These two distances differ 
because of cantilever deflection 6c and because of the sample deformation 6s. These four quantities are 
related as follows: 

D = Z - (60 + 6s). (1.2) 

Since one does not know in advance the cantilever deflections and the sample deformations, the only 
distance that one can control is the Z distance, i.e., the displacement of the piezo. Therefore, the raw 
curve obtained by AFM should be called "force-displacement curve" rather than "force-distance 
curve". This latter term should be employed only for curves in which the force is plotted versus the true 
t ip-sample distance, that has been previously calculated from raw data. Such a distinction is used in 
this review. When not referring to the specific type of plot employed, the term "force-distance curve" 
is used. 

An AFM force-displacement curve does not reproduce tip-sample interactions, but is the result of 
two contributions: the tip-sample interaction F(D) and the elastic force of the cantilever, Eq. (1.1). 
Such a result can be intuitively understood by means of the graphical construction shown in Fig. 2. 

cantilever 

, Z 

D 
i i 

Fig. 1. The tip-sample system. D is the actual tip-sample distance, whereas Z is the distance between the sample and the 
cantilever rest position. These two distances differ because of the cantilever deflection 6, and because of the sample 
deformation 6~. 



B. Cappella, G. Dietler/Surface Science Reports 34 (1999) 1-104 9 

1 

f~' 0 

fb' 

Fig. 2. Graphical construction of an AFM force-displacement curve. In panel (a) the curve F(D) represents the tip-sample 
interaction and the lines 1, 2, and 3 represent the elastic force of the cantilever. At each distance the cantilever deflects until the 
elastic force equals the tip-sample force and the system is in equilibrium. The force values f , ,  fr,  and f .  at equilibrium are 
given by the intersections a, b, and c between lines 1, 2, and 3 and the curve F(D). These force values must be assigned to the 
distances Z between the sample and the cantilever rest positions, i.e., the distances c~, /3, and "7 given by the intersections 
between lines 1, 2, and 3 and the horizontal axis. This graphical construction has to be made going both from right to left and 
from left to right. The result is shown in panel (b). The points A, B, B ~, C, and C' correspond to the points a, b, b', c, and c' 
respectively. BB 1 and CC are two discontinuities. The origin O of axis in panel (b) is usually put at the intersection between 
the prolongation of the zero line and the contact line of the approach curve. The force f., eventually coincides with the zero 
force. 

In Fig. 2(a) the curve F(D) represents the tip-sample interaction force. For the present, since no 
surface force has been introduced yet and for the sake of simplicity, F(D) was chosen to be the 
interatomic Lennard-Jones force, i.e., F(D)= - A / D  7 + B/D 13. By expressing tip-sample forces by 
means of an interatomic Lennard-Jones force, only a simple qualitative description of the mechanisms 
involved in force-displacement curves acquisition can be provided. In particular, the attractive force 
between surfaces actually follows a force law - D  -n with n _< 3 (and not n = 7) and the repulsive part 
of the force is much more complex than the one modeled by the Lennard-Jones force. In Section 2 we 
treat this in detail. The lines 1-3 represent the elastic force of the cantilever, Eq. (1.1). In panel (b) of 
Fig. 2 the resulting AFM force-displacement curve is shown. At each distance the cantilever deflects 
until the elastic force of the cantilever equals the tip-sample interaction force, so that the system is in 
equilibrium. The force values at equilibrium f,,, fb, f,~ are given by the intersections a, b and c between 
lines 1-3 and the curve F(D), respectively. These force values must not be assigned to the distances D 
at which the lines intersect the curve F(D), but to the distances Z between the sample and the cantilever 
rest positions, that are the distances c~,/3, and 7 given by the intersections between lines 1-3 and the 
horizontal axis (zero force axis). Going from right to left, i.e., approaching to the sample, the approach 
curve is obtained. Making the same graphical construction from left to right, i.e., withdrawing from the 
sample, gives the withdrawal curve. The result is shown in panel (b) of Fig. 2. The points A, B, B', C, 
and C' correspond to the points a, b, b', c, and c', respectively. 

Let us now give an analytical expression for the force-displacement curves, following the derivation 
of Hao et al. [21]. The cantilever-sample system can be described by means of a potential Utot that is 
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the sum of three potentials: Ucs(D), U~(6c), and Us(~5~). U~(D) is the interaction potential between the 
tip and the sample, e.g., the Lennard-Jones potential. U~(6~) is Hooke's elastic potential of the 
cantilever. U~(G) is the potential that describes the sample deformation. Sample deformations are 
discussed in detail in Section 2. For the present derivation, the sample deformation is described by the 
Hooke's law: 

= ½kc( c) 2, 
(1.3) 

Us(~s) = lks(~s) 2, 

in which kc and k~ are the cantilever and sample elastic constants. Usually the interaction force can be 
written as 

OUc~ C 
F - -  0 D -  D" '  (1.4) 

in which C and n depend on the type of forces acting between the tip and sample. The force expressed 
in Eq. (1.4) takes into account only the attractive part of the interaction, i.e., only the interaction prior to 
contact. 

The relation between Z and ~5~ can be obtained by forcing the system to be stationary: 

OUto~ _ OUtot _ O. (1.5) 
0(6 ) 0(6c) 

Since OUc~/O(G) = -OUc~/O(D) (see Eq. (1.2)), we obtain 

k~ 6 
" ks (1.6) 

C 
k c 6 c =  

( Z - 6 c  - 

Hence 
C 

kc6c - (1.7) 
(z  - f l6c7 '  

in which /3 = (1 + k~/k~). From Eqs. (1.6) and (1.7) both 6~ and Z can be determined from the 
measured value of 6c as functions of the elastic constants k~ and ks. Hence the measured force-  
displacement curve (panel (b), Fig. 2) can be converted into the force-distance curve (panel (a), Fig. 2), 
subject to the assumptions embodied in Eqs. (1.3) and (1.4). 

1.3. Differences between approach and withdrawal curve 

In panel (b) of Fig. 2 two characteristic features of force-displacement curves can be noted: the 
discontinuities BB t and C U  and the hysteresis between approach and withdrawal curve. These features 
are due to the fact that in the region between b' and c' (panel (a), Fig. 2) each line has three intersections 
and hence three equilibrium positions. Two of these positions (between d and b and between b' and c) 
are stable, while the third position (between c and b) is unstable. During the approach phase, the tip 
follows the trajectory from d to b and then "jumps" from b to b' (i.e., from the force value fb tO fh,). 
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During retraction, the tip follows the trajectory from b' to c and then jumps from c to c t (i.e., f r o m f  to 
~.,). These jumps correspond to the discontinuities BB t and CC' in panel (b) of Fig. 2, respectively. 
Thus, the region between b and c is not sampled. The difference in path between approach and 
withdrawal curves is usually called "force-displacement curve hysteresis". The two discontinuities in 
force values are called "jump-to-contact" in the approach curve (BB t in panel (b) of Fig. 2) and "jump- 
off-contact" in the withdrawal curve (CC' in panel (b) of Fig. 2). 

Let us return to Eq. (1.5), that is the condition for Utot to be stationary. For the system to be in stable 
equilibrium, we must h a v e  02Utol/O(6c) 2 > 0, i.e., 

k~. 1 
i-7 > nc (z (1.8) 

in which kc//3 is referred to as the effective elastic constant. 
If the force gradient is larger than the effective elastic constant, the cantilever becomes unstable and 

"jumps" onto the surface. This is the jump-to-contact discontinuity. From Eqs. (1.7) and (1.8) the 
cantilever deflection (6c)jtc and the t ip-sample distance Djtc at which the jump-to-contact occurs can be 
determined: 

,,,~ C 
(6c)it~ = (n/3)"kc' (1.9) 

These are the deflection and the distance of the point b in panel (a) of Fig. 2 and depend only on the 
attractive part of the interaction, Eq. (1.4). Since the repulsive part of the interaction has not been 
modeled yet, it is not possible to give the deflection and the distance of the point b ~ in the same figure. 
From Eq. (1.9) it is possible to calculate C and/3 o n c e  ((~c)jtc and Djtc are known. These equations are 
valid for any kind of attractive force and are adapted to the two main attractive forces, i.e., Van der 
Waals and hydrophobic (see Sections 6.2 and 6.6). No similar expression can be found for the jump-off- 
contact, since, in this case, sample deformations and contact elastic theories reviewed in Section 2 
actually determine both the distance and the force. 

The slope of the lines 1-3 in panel (a) of Fig. 2 is the elastic constant of the cantilever k~. Therefore, 
using cantilevers with high k~, the unsampled stretch b-c becomes smaller, the jump-to-contact first 
increases with kc and then, for high kc, disappears. The jump-off-contact always decreases, so that the 
total hysteresis diminishes with k~. When k~ is greater than the greatest value of the t ip-sample force 
gradient, hysteresis and jumps disappear and the entire curve is sampled. Fig. 3 shows the force-  
displacement curves that would be obtained with three different cantilevers of k~ = 0.105N/m, 
k~2 = 0.06N/m, and kc3 = 0.04N/m and with an interatomic Lennard-Jones force (A = 1 0 - 7 7 j m  6, 
B • 10 134 Jm12). Once again, since a Lennard-Jones interaction is used, the presented dependence has 
only a qualitative meaning. The hysteresis is large for k~3, decreases for k~2, and finally the jumps 
overlap in the curve acquired with k¢l. 

Fig. 4 shows the dependence of jump-to-contact distance and jump-off-contact distance on the 
elastic constant of the cantilever, and Fig. 5 shows the same dependence for the jump-to-contact and the 
jump-off-contact forces. Both graphs have been obtained using a Lennard-Jones interaction with 
A = 10 77 Jm6, B = 10-134jml2 .  

In order to obtain complete force-displacement curves one should employ stiff cantilevers which, on 
the other hand, have a reduced force resolution. Therefore it is necessary to reach a compromise. In 
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"-.k¢,=O.105 N/m F ( Z )  
k~2=0.06... N/m '-:.. 

• .. ". 

k~=0.04 N / ~ , , ,  " . .  '.:. 

-..'-..'.444 .. , 1 
":. ". 4.4." i * i 

". " % i ". ". 4~4 ~' 4 

D 
Z 

Fig. 3. Force--displacement curves (broken lines) obtained with three cantilevers of different elastic constant for kc >> ks. The 
continuous line is the tip-sample interaction, modeled with a Lennard-Jones interaction with A = 10  -77 J m  6, B = 10 134 jml:. 

E e.. 

0.45 

0.35 

0.25 

0.15 

o jump-off-contact distance 
• jump-to-contact distance 

b l i i i i i i i ; 8  L I I I. I I I i i~  
.04 0.06 0. 0 1 0 12 

k (N/m) 

Fig. 4. Dependence of jump-to-contact and jump-off-contact distances on the elastic constant of the cantilever. The tip- 
sample interaction has been modeled with a Lennard-Jones interaction with A = 10 -77 Jm 6, B = 10 -134 Jm 12. 

early AFMs, the cantilevers used for force-displacement  curves measurements were tungsten wires, 
curved at one end, with high elastic constants (> 1 N/m) and with large radii of  curvature (> 100 nm). 
The achieved force resolution was usually of  the order of  hundreds of  pN so that the details of  the t ip -  
sample interaction could hardly be seen. Later, less stiff cantilevers with smaller radii of  curvature have 
been employed,  increasing the resolution up to nearly 10 pN. 

Recently Aoki et al. [12] proved that the force resolution of  the AFM can be increased to 0.1 pN. 
They employed home-made cantilevers with a spring constant of  the order of  10 -4 N/m. Such flexible 
cantilevers undergo large brownian motions and hence need to be stabilized by feedback forces. In this 
case, the feedback force is exerted by means of  laser radiation pressure. Besides a first laser beam 
aimed to the deflections detection, a second laser beam is focused on the cantilever. The intensity of  this 
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Fig. 5. Dependence of jump-to-contact and jump-off-contact forces on the elastic constant of the cantilever. The t ip-sample  
interaction has been modeled with a Lennard-Jones interaction with A = 10 -77 Jm 6, B = 10 134 jm12. 

second laser beam is varied with a fast feedback loop, in order to keep constant the deflection of the 
cantilever. 

1.4. The three regions of  the force-displacement curve 

Both approach and withdrawal force-displacement curves can be roughly divided in three regions: 
the contact line, the non-contact region and the zero line. 

Zero lines are obtained when the tip is far apart from the sample and the cantilever deflection is 
nearly zero (on the fight side of the point C I for both curves in Fig. 2). When working in liquid, these 
lines give information on the viscosity of the liquid. 

When the sample is pressed against the cantilever the tip is in contact with the sample and D = 0. 
Therefore, from Eqs. (1.2) and (1.6), the relation between Z and 6c can be obtained: 

kc ks kcbc - - - Z .  (1.10) 
kc + k~ 

The corresponding lines obtained in the force-displacement curve are called "contact lines". In panel 
(b) of Fig. 2 they are represented by the lines B'A and CA. If the sample is much stiffer than the 
cantilever, the cantilever deflection 6c equals sample movement Z, whereas if k~ << kc, 6c ~- (k~/kc)Z. 
Thus, the contact lines provide information on sample stiffness. 

The origin of force-displacement curves O is usually put at the intersection between the prolonga- 
tion of the zero line and the contact line of the approach curve. Referring to panel (b) of Fig. 2, the 
distances 0/3 and O7 are called "jump-to-contact distance" and "jump-off-contact distance". The 
adhesion work equals the area between the negative part of the withdrawal curve and the Z axis. The 
hysteresis of the curve is the difference between the adhesion work and the area between the negative 
part of the approach curve and the Z axis. 

The most interesting regions of force-displacement curves are the two non-contact regions, 
containing the jump-to-contact and the jump-off-contact. The non-contact region in the approach 
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curves gives information about attractive or repulsive forces before contact. In particular, the maximum 
value of the attractive force sampled prior to contact equals the pull-on force, i.e., the product of jump- 
to-contact cantilever deflection and k~. 

The non-contact region in withdrawal curves contains the jump-off-contact. The pull-off force, i.e., 
the product of jump-off-contact cantilever deflection and kc, equals the adhesion force, F~,u. In order to 
relate the tip and sample surface energies (~'t and %) and the adhesion force it is necessary to evaluate 
the deformations and the contact area of the sample. This can be done by means of different theories, 
reviewed in Section 2. 

1.5. Non-contact mode 

The non-contact mode was introduced by Martin et al. [22]. It consists of exciting the cantilever at a 
frequency v = ~o/27r while the sample is ramped along the Z axis. The cantilever may be modeled as a 
harmonic oscillator with effective mass m* and spring constant kc. The effective mass m* is given by 
m* = mc + 0.24mt, where m~ is the mass of the cantilever and mt is the mass of the tip. Hence, when the 
tip is far away from the surface, the equation of motion of the cantilever is 

, d2fc(t) dfc(t) 
m d t ~ + ~ / ~ t - + k c f ~ ( t )  = F0 exp (kot), (1.11) 

in which "~ is the damping coefficient and F0 exp(Lot) is the exciting force exerted by the driving piezo 
on the cantilever. Solving (1.11), the "free" amplitude of vibration as a function of frequency is 
obtained: 

F0 ~o0/~ 
- - -  ( 1 . 1 2 )  

a(~) = 6c(t) exp[-i(~Jt + q~)] 7~Vo ~/1 + Q0[(w/wo) - (w,,/w)] 2' 
v x t ] $  

in which ~:o --= V ~ / m *  is the resonance frequency and Q0 = m'w0/7 is the quality factor. When the 
cantilever is near the sample surface, surface forces modify the cantilever vibration and the force 
F[D + 6c (t)], where D is the distance between the sample and the mean position of the cantilever, is to 
be added in the second term of Eq. (1.11). The general solution of such an equation cannot be obtained 
analytically, even when the force law is known. A convenient approximation is the small amplitude 
approximation, in which the surface force can be written in the form (we follow the derivation by 
Fontaine et al. [23]): 

dF 
F[D + 8~(t)] = F(D) + ~8~( t ) .  (1.13) 

Using such an approximation, Eq. (1.12) becomes 

A(~,D) = F o CJo(D)/od (1.14) 
Two V/1 + Q(D)2[(w/w~(D)) - (w~,(D)/w)] 2' 

with 

• /  1 d F  ( 1 . 1 5 )  Jo(D) = ~Oo 1 - k~-~(D) and O(D) ---- Q0 ~°~(D) 
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Fig. 6. Approach curves in the dynamic mode (operating frequency 328 kHz). Circles correspond to a Teflon surface and 
triangles to a gold surface. The squares correspond to mica and the vibration amplitude has been multiplied by 10 for the sake 
of comparison (reprinted with permission from [23]). 

Dynamic force-distance curves are characterized by a horizontal line at the free amplitude, and a 
contact line at zero amplitude (when the cantilever is in contact with the sample it is no more longer to 
vibrate), with a region of decreasing amplitude in between, as shown in Fig. 6. 

Non-contact force-distance curves are much less used than static force-distance curves. It is 
difficult to obtain a good quality factor in liquids. Furthermore, measurements are affected by a lot of 
artifacts (see Ref. [23]). Hence, in the following, only few experiments performed in this mode are 
presented. 

2. Theories of contact region 

From the contact lines of force-displacement curves it is possible to draw information about the 
elasto-plastic behavior of materials. 

Let us first consider an ideally elastic material. As shown in panel (a) of Fig. 7, during the approach 
curve, i.e., from O to A, the tip goes into the sample of a depth ~5, causing a deformation. During the 
withdrawal the tip goes back from A to O, and since the sample is elastic, it regains step by step its own 
shape, exerting on the tip the same force. Hence loading and unloading curves, i.e., the approach and 
withdrawal contact lines, overlap. 

If the sample is ideally plastic (panel (b) of Fig. 7), it undergoes a deformation during the loading 
curve, and when the tip is withdrawn, it does not regain its own shape and the load decreases, whereas 
the penetration depth stays the same. 

Most samples have a mixed behavior. Hence loading and unloading curves seldom overlap. In 
particular, at a given penetration depth, the force of the unloading curve is lesser than the force of the 
loading curve (see panel (c) of Fig. 7, where a force-displacement curve is shown, whereas the curves 
in panels (a) and (b) of Fig. 7 are deformation vs. load curves). The difference between the approach 
and the withdrawal contact lines is called "loading-unloading hysteresis". 
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Fig. 7. Load vs. penetration depth curves for an ideally elastic material (panel (aD and an ideally plastic material (panel (b)). 
The force-displacement curve for an elasto-plastic material is shown in panel (c). H' is the "zero load plastic indentation", 
i.e., the penetration depth at which the force of the unloading curve equals zero. H is the "zero load elastic deformation", i.e., 
the distance the sample regains. 

The penetration depth H '  at which the force of  the unloading curve equals zero is called "zero  load 
plastic indentat ion".  The distance H the sample regains is the "zero  load elastic deformat ion" .  Both 
distances are determined by use of  the tangent to the curve in A, in order to neglect the influence of  the 
variations of  contact area during the unloading process. 

In the following we neglect the plastic deformations and review the theories dealing with elastic 
cont inuum contact mechanics,  in which the tip and sample are assumed to be continuous elastic media.  
The geometry  of  a spherical tip in contact with a fiat surface is indicated schematical ly in Fig. 8. Eq. 
(1.10) reveals that, along the contact lines, Z and ~c are proportional and that once the elastic constant 
of  the cantilever is known, the elastic constant of  the sample ks can be determined f rom their 
proportionality ratio. The elastic constant o f  the sample ks depends on contact area, Young modulus E 
and Poisson r a t i o / ,  via 

E 
m ks = 2a 1 - / , 2 '  (2.1) 

in which a is the contact radius [24]. 

?Z 

Fig. 8. Deformation of an elastic sphere on a flat surface following Hertz and JKR theory. The profile of the spherical tip in 
the DMT theory is the same as in the Hertz theory. F is the loading force, R the radius of the sphere, y the distance from the 
center of the contact area, 6 the penetration depth, aHert z and ajnR are the contact radius following the Hertz and the JKR 
theories. 
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In order to know the dependence of the contact radius and the force on the penetration depth it is 
necessary to make some assumptions. The different theories of such phenomena are summarized below. 

2 .1 .  H e r t z  a n d  S n e d d o n  

Hertz theory [25] dates back to 1881. It takes into account neither surface forces nor adhesion. The tip 
is considered as a smooth elastic sphere, while the sample is a rigid flat surface. For a sphere of radius R 
pressed onto a flat surface with a force F, the adhesion or pull-off force Fad, the contact radius a, the 
contact radius at zero load a0, the deformation 6 of the spherical tip, and the pressure P are given by 

Fad = 0, (2.2a) 

a0 = 07 

(2.2b) 

(2.2c) 

and 

a 2 F 
- R - K a '  (2.2d) 

3 K a y / - 1  - x 2 3F~/1 - x 2 
P ( x )  - 27rR - -  27ra 2 , (2.2e) 

in which x = y / a ,  y is the distance from the center of the contact circle, and the reduced Young 
modulus K is given by 

K - 4  + Ei J (2.3) 

In Eq. (2.3) E, El, t, and u/are the Young modulus and the Poisson ratios of the flat surface, i.e., the 
sample, and of the indenter, i.e., the tip. The geometry of the deformed sphere-substrate contact is 
indicated in Fig. 8. 

In the limit of high loads or low surface forces, an AFM experiment can follow the Hertz theory. In 
most cases, however, the AFM tip is stiffer than the sample, and one has to consider the deformations of 
the flat sample, or in other cases, those of both the tip and the sample. Hertz theory cannot be used to 
calculate sample deformations by assuming a rigid tip. When a rigid spherical punch on an elastic 
surface is considered, Sneddon analysis has to be employed [26]. In Sneddon analysis [27] the elastic 
deformation is given by a transcendental equation that can be computed numerically. The force F 
exerted by the punch on the surface and the surface deformation 6 are given by 

= (a2 + R2) k . - R - ~ - a J  - 2 a R  

and 

(2.4a) 

1 (R + a'] (2.4b) 6 = ~ a l n \ R _  a J "  
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and 

Deformation and force can be computed for a generic axisymmetric punch: 
1 

l f ' ( x )  dr, 
6 = v/1 _ x 2 

0 

(2.5a) 

1 

F =  Ka j x/l _ x dx, (2.5b) 
0 

in which f ( x )  is the function describing the profile of the punch. Solutions for common geometries can 
be found in [27]. 

Simply summing Hertz and Sneddon deformations, i.e., tip and sample deformations, whenever 
surface forces are negligible, one can obtain the total deformation in an AFM measurement. When 
surface forces must be considered, one of the four theories described in Sections 2.2 and 2.3 has to be 
employed. 

2.2. Bradley, Derjaguin-Miil ler-Toporov and Johnson-Kendal l -Roberts  

We present here three theories that take into account the effect of surface energy on the contact 
deformation. The Bradley analysis [28] considers two rigid spheres interacting via a Lennard-Jones 
potential. The total force between the spheres is 

- 3 ~ - \~/  j ,  (2.6) 

in which z0 is the equilibrium separation, R the reduced radius of the spheres, i.e., R = 
(1/Rj + l/R2) 1, and W is the adhesion work at contact. 

In Derjaguin-Mfiller-Toporov (DMT) theory [29] the elastic sphere is deformed according to Hertz 
theory, but in addition to the external load F, also the forces acting between the two bodies outside the 
contact region are taken into account. These forces alone produce a finite area of contact. If an external 
load is applied, the area of contact is increased. If a negative load is applied, the contact area diminishes 
until it reaches zero. At this point the pull-off force reaches its maximum value. The corresponding 
expressions for the quantities of Eqs. (2.2a)-(2.2e) are found by minimizing the sum of the elastic and 
of the surface energy: 

Fad = 27rRW, (2.7a) 

a = ~/(F + 27rRW) R, (2.7b) 

~ 2/~-~W 
ao = V ~ - R - ,  (2.7c) 

a 2 
z - -  ~5 R '  (2.7d) 
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and 

3 K a v / 1  - x 2 3 F x / 1  - x 2 
P ( x )  - -  27rR - -  27ra 2 (2.7e) 

DMT theory is applicable for systems with low adhesion and small tip radii. 
Johnson-Kendall-Roberts  (JKR) theory [30] neglects long range forces outside the contact area and 

considers only short range forces inside the contact region. With JKR assumptions, the corresponding 
equations of Eqs. (2.2a)-(2.2e) are: 

3 
F~,d = - z r R W ,  ( 2 . 8  a)  

2 

(2.8b) 

ao = ~ 2W, (2.8c) 

and 

a2 2 ~  
R 3 

2.8d) 

_ x2 _ ~ 3 V  2__~a. 1 (2.8e) 3 K a  
P (x )  = v 5  v/1 - x2 

The JKR theory behaves hysteretically. During unloading, a neck links the tip and sample (see Fig. 8), 
and contact is abruptly ruptured at negative loads. When separation occurs, the contact radius has fallen 
to a~ = 0.63a0. 

The JKR theory is suitable for highly adhesive systems with low stiffness and large tip radii. One 
difficulty with the JKR theory is that it predicts an infinite stress for x = 1, i.e., at the edge of the 
contact area. This unphysical situation arises because JKR theory considers only the forces inside the 
contact area and implicitly assumes that the attractive forces act over an infinitesimally small range. 
These infinities disappear as soon as a finite range force law, e.g., Lennard-Jones potential, is assumed. 

DMT and JKR theories have raised a number of controversial experimental as well as theoretical 
issues after their publication. This controversy persisted from 1971 to 1984, when it was slowly realized 
that the two theories apply to two very different situations. Without citing the numerous publications on 
the controversy, we indicate here the most important works. 

Attard and Parker [31] self-consistently calculated the elastic deformation and adhesion of two 
convex bodies interacting via finite range surface forces, namely an exponential law for repulsive force 
at small separations and a 9 -3  Lennard-Jones law for the attractive forces. Hertz theory is confirmed to 
be suitable for short ranged repulsive forces and large loads, and thus agrees well with the results of 
Attard and Parker for both exponential repulsive forces and Lennard-Jones repulsion. Nevertheless, in 
general, Hertz theory overestimates the deformation caused by a given load. When the adhesive part of 
the Lennard-Jones potential is considered, JKR theory turns out to predict the force-deformation 
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relation very well and also the stress infinities at x = 1 disappear. Comparing the pull-off force with the 
value predicted by JKR theory, when a certain parameter erA, which is a function of surface energies, 
radii of curvature and materials stiffness, is much lesser than one, i.e., for stiff bodies with small surface 
energies and small radii of curvature, DMT value is more accurate than JKR value. 

Mfiller et al. [32] presented a self-consistent numerical calculation abandoning the hypothesis that 
adhesion forces do not alter the hertzian geometry. The result is a continuous transition from the DMT 
to the JKR theory when a single #M parameter is varied. 

Pashley et al. [33] had already introduced a parameter 9~e, which is proportional to the ratio of h, i.e., 
the height of the neck formed when the sphere is under a negative load before detachment, and z0, i.e., a 
typical atomic dimension: 

h , . ,  3 R ~  2 
~p . . . .  (2.9) 

When ~p < 1, i.e., h < z0, surface forces outside the contact area become important and the behavior 
approaches that of the DMT theory. Following the more complete analysis of Mtiller et al. [32] the 
DMT model holds when ~r, < 0.3 (hard solids of small radius and low surface energies) and the JKR 
model holds when ~p > 3 (soft bodies with large radius and surface energies). 

2.3. Maugis 

Maugis theory [34] is the most complete and accurate theory in that it applies to all materials, from 
large rigid spheres with high surface energies to small compliant bodies with low surface energies. The 
full range of material properties is described by a dimensionless parameter A given by 

A = 2.06 3R~W 2 
(2.10) z,W- V 

in which z0 is again a typical atomic dimension. This parameter A is proportional to the parameter >M 
introduced by Mtiller et al. [32] (A = 0.4 #M), tO the parameter ~e introduced by Pashley, and to the 
parameter erA introduced by Attard and Parker [31] ( , ~ 0 . 4  ~ ) .  A complete conversion table is 
given by Greenwood [35]. A large A occurs for more compliant, large, and adhesive bodies, whereas a 
small A occurs for small rigid materials with low surface energies. 

In the Maugis theory following the Dugdale model [36], adhesion is considered as a constant 
additional stress over an annular region around the contact area. The ratio of the width of the annular 
region c to the contact radius a is denoted by m. By introducing the dimensionless parameters 

A - -  a ~/TrWR2/K, (2.11a) 

F 
rrWR' (2.1 lb) 

and 

= (2.11c) 
~//rc2WZ R / K 2 ' 
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a set of  parametric equations is obtained. In particular, the corresponding equations to Eqs. (2.2a) and 
(2.2d) are: 

= A 2 - 4 A A x / ~ m ~ -  - 1,  (2.12) 
3 

4A2A F 
/ - m  + 1 + - 1 + (m - 2/arctg m2,/2 - 1 

2 k 
- 1 a r c t g ~ ]  = 1, 

(2.13) 

and 

i~ = ~3 _ XAZ(v~m2 _ 1 + m 2 arc tgv~m 2 - 1). (2.14) 

Eqs. (2.12)-(2.14) form an equation system which enables the calculation of m, F and 6(A) if A (6) is 
given. Eq. (2.12) reduces to Eq. (2.7d) for A -~ 0 (DMT) and to Eq. (2.8d) for A ~ vc (JKR). 

The adhesion force Fad given by Eq. (2.14) is 27rRW for A --~ 0 (DMT) and 1.57rRW for A --~ 
(JKR). 

The results presented above are displayed in Fig. 9, showing the dependence of i] on 6 and the 
dependence of P on S. In panel (a) it is evident that the radius of contact at zero penetration is zero only 

I 
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Fig. 9. The dependence of A on 8 (panel (a)) and the dependence of/~ on 6 (panel (b)) as functionals of A calculated using 
Maugis theory. The JKR [30] and the DMT [29] limits are indicated. A, F, and S are the dimensionless contact radius, force 
and penetration depth given by Eqs. (2.1 l a)-(2.1 l c). 
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in the DMT limit. For A > 1 and 6 < 0, there are two values of A (panel (a)) and of F" (panel (b)) for 
each ~5 and the behavior is hysteretic. 

Following Maugis theory, there is a continuous transition from the DMT deformation vs. load curve 
to the JKR deformation vs. load curve. This means that, at a certain applied load F, the deformation of 
the sample and the contact area, and hence the relation between k~ and E (see Eq. (2.1)) can be exactly 
known only if the surface energy, the tip shape and the stiffness of the sample are exactly known. In 
other words, provided the exact value of the elastic constant of the cantilever, for each value of load, 
one can calculate k~ from load/unloading curves, but in order to relate k~ to Young modulus E, one 
needs to know the contact radius a and hence the deformations ~5 of the sample. This is not possible as 
the deformation depends also on surface energies, and when deducing surface energies from pull-off 
forces, one has also to know the Young modulus E, i.e., the quantity one wants to draw from the 
experiments. Quite exact values of E can be obtained only when the materials or the experimental 
conditions approach the Hertz-Sneddon limit, and hence the measure of the Young modulus is usually 
obtained from the high load part of the load curve in order to exclude the influence of surface energies. 
Furthermore, in AFM measurements, E, R, and W are the local values of the Young modulus, the radius 
of curvature and the surface energy, and not the bulk macroscopic values. In 1997, Johnson and 
Greenwood [37] constructed a map of the elastic behavior of bodies, shown in Fig. 10, permitting to 
find the theory to be applied depending on the material properties. The authors observe that AFM 
experiments usually fall in the Maugis region. 

At our knowledge, the only experimental verification of the Maugis theory is that of Lantz et al. [38]. 
In this work, the contact area between a Pt/Ir coated Si tip and graphite is deduced from current, 
friction, and normal force measurements. The experimental data are shown to follow a Maugis model 
rather than an hertzian law. Measurements are repeated for a Si tip on NbSe2. 

Finally, all the theories reviewed in this section are continuum elastic theories and hence assume 
smooth surfaces with no plastic deformation and no viscoelastic phenomena. 

10 '  ' I ' I ' I ' I ' 
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Fig. 10. Map of the elastic behavior of bodies. P~/P is the ratio between the adhesive part of the load and the total load. When 
the adhesion is negligible, bodies fall in the Hertz limit (approximately F > 103 7rWR). 61 is the elastic compression, and h0 is 
an equilibrium distance. When ~51 << h0, the bodies are rigid and follow Bradley theory (A < 10 3). 6~ is the deformation due 
to adhesion. When the adhesion is small the behavior of materials is described by the DMT theory (approximately 
10 2 < A < 10-1), whilst JKR theory predicts the behavior of highly adhesive bodies (approximately A > 10 x). The Maugis 
theory suits to the intermediate region (approximately 10 l < A < 10 l) (adapted from [37]). 
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2.4. Artifacts 

One of the most striking artifacts concerning contact lines is due to the piezoelectric actuators 
hysteresis and creep [7]. As a matter of fact, in order to acquire force-displacement curves sequentially, 
the piezo actuator has to be ramped repeatedly along Z. Hysteresis and creep affect the zero line of the 
approach curve and the contact line of the withdrawal curve, i.e., the regions near the inversion of 
motion. 

Hysteresis and creep lead to an incorrect determination of displacements. In particular, because of 
creep, the loads in the unloading curve for a given displacement may appear bigger and finally 
overcome those of the loading curve. This unphysical phenomenon is called "reverse path effect". 

Several methods have been proposed in order to compensate for hysteresis and creep effects. To our 
knowledge, the only method applied to force-distance curves is the one that uses lead magnesium 
niobate (PMN) actuators [7] which have less non-linearities when used in a cyclic application. 
However, PMN ceramics are electrostrictive materials for which the strain is proportional to the square 
of the applied field and the displacement is thus independent of the sign of the applied voltage yielding 
only one half the displacement range of a corresponding lead zirconate titanate (PZT) actuator. 
Furthermore, PMN response is much more temperature dependent. 

Aim6 et al. [24] have studied the elastic behavior of viscoelastic materials. For such materials, the 
work of adhesion is a function of the Z scan rate v, i.e., 

W,, = W(1 + ~(T)v"), (2.15) 

in which ~(T) is a function characterizing the material, T is the temperature and n is found to be equal 
to 0.6. This dependence of the adhesion force, when inserted in the equations describing the elastic 
behavior of materials, leads to a dependence of the loading/unloading curves on velocity. Furthermore, 
since the hysteresis changes with the scanning frequency, the slope of the contact lines decreases with 
frequency, even in the case of hard, inorganic, non-viscoelastic surfaces. 

Besides viscoelastic properties, another source of artifacts not accounted for in the elastic continuum 
media equations is surface roughness. Both AFM tips produced by electrochemical etching and tips 
produced through microfabrication techniques have on the surface some small asperities which can 
reach few nanometers in size. In the contact region of the force-displacement curve the effect of 
asperities is twofold. On the one hand, for a given load, the deformation depth is enhanced since the 
actual contact radius is much smaller than the macroscopic tip. On the other hand, the surface 
deformation is smaller than that expected for a single asperity contact since there are multiple contacts 
and the load will be distributed over many points. Cohen [39] has compared the deformations in the 
case of a smooth tip (radius 1 ~tm) and of a rough tip on a flat gold surface. The roughness is described 
as a distribution of hemispherical minitips (radius 2 nm), and the contact is modeled with an hertzian 
law. Deformations due to the rough tip turn out to be larger than the one in the case of a smooth tip. 
Anyway, for forces above 1 ~tN, the slope of the deformation vs. load curve is the same in the two cases, 
since above a certain load, the microasperities are buried and the entire tip surface comes in contact. 

Hob and Engel [40] have shown that the loading/unloading hysteresis is scan-rate dependent. At high 
scan rates the separation between the two contact lines is large. As the scan rate is decreased, this 
separation reaches a minimum after which it increases again. Such a scan-rate dependence is typical of 
stick slip friction and is not consistent with effects arising from electromagnetic forces. The authors 
propose that the friction between the tip and sample makes the cantilever bow forward after the tip 
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comes in contact, resulting in an offset of the contact line. As the tip is retracted, the cantilever bends 
upward, causing an opposite effect in the line. At the turn-around point, the deflection signal jumps 
nearly vertically, as it would be expected when the cantilever turns up from a forward bow. 
Unfortunately, no experiment has been carried out to separate the effects of friction and of scan rate 
dependent hysteresis. 

Haugstad and Glaedfelter [41] have studied the effect of photodiode non-linearities on the contact 
lines of force-displacement curves. The withdrawal contact line is the portion of the force- 
displacement curves with the highest repulsive and/or attractive loads, and hence with high cantilever 
deflections. In turn, this means high displacements of the laser spot on the photodiode. The authors 
prove, experimentally and theoretically, that the difference between the measured contact line and the 
line 6c = Z is a cubic curve whose maximum contribution is about 8% of the total signal. This non- 
linear contribution is related to the features of the photodiode. The measurements are done on a rigid 
material, namely polycrystalline Si3N4, so that sample deformations can be neglected. 

2.5. Experimental results 

The first pioneering work dealing with the determination of materials elasto-plastic properties by 
means of an AFM is that of Burnham and Colton [42]. Using a hertzian analysis, the modulus of 
elasticity has been drawn from the experiments for an elastometer, HOPG graphite, and gold, in rather 
good agreement with literature values. 

Acquiring force-displacement curves on gold, Cohen et al. [43] have shown the effect of 
microasperities on an iridium tip, as indicated in Section 2.4. The same effect has been discussed by 
Blackman et al. [44] pointing out the inadequacy of continuum elastic theories and the need of models 
for atomic-scale contacts. 

Hao et al. [21] have measured the slope of loading/unloading curves for graphite, mica, and stainless 
steel, finding inexplicable results for graphite. The authors account neither for elasticity theory nor for 
microasperities effects. Consequently, they are unable to explain the discrepancy between expected and 
measured values. 

Aim6 et al. [24] have characterized force-displacement curves on rigid and soft polymer films in 
controlled atmosphere. The authors point out several causes of misinterpretation of force-displacement 
curves: the lack of an accurate knowledge of the cantilever stiffness and of the tip size and the difficulty 
in separating viscoelastic, elastic, and plastic effects. Even with these numerous restrictions, AFM 
measurements can lead to a characterization of the film properties. Following the JKR theory and taking 
into account viscoelastic effects (see Section 2.4), a good agreement between theoretical and experi- 
mental values is obtained. 

Thomas et al. [45] have acquired force--displacement curves between a W tip and a gold sample 
covered with a monolayer of docasanethiol. They show that the deformation follows an hertzian model 
for forces smaller than 15 ~tN, but a considerable loading/unloading hysteresis appears for loads of 
about 25 ~tN. 

Weisenhorn et al. [46] have compared load vs. indentation curves on glass, polyurethane, and rubber, 
showing that it is possible to distinguish between two polyurethane layers of different Young's modulus 
(namely 14 and 30 MPa). 

The measurement of elastic properties of biological materials has been pioneered by Tao et al. [47], 
who have measured elastic properties of bones, comparing them with stainless steel and rubber. 
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Radmacher et al. [48] have measured the indentation of an Si3N 4 tip on lysozyme adsorbed on mica. 
A good agreement between Hertz equation for a sphere on a flat surface and experimental data is 
reached (although the formula reported in the text is affected by an error, and it is not clear if the same 
error affects also the fit of the data). What is most important, the authors show the different behavior of 
lysozyme and mica in indentation measurements, thus leading to the possibility of distinguishing the 
two materials throughout the acquisition of force-displacement curves. Later on, Radmacher et al. 
[49], acquiring force-displacement curves on gelatin, have shown that the agreement with Hertz 
equation improves when the tip is modeled as a cone for higher loads and as a sphere for small loads. 
They proved the capability of AFM force-displacement curves to measure the change of gelatin elastic 
properties under various conditions. The gelatin was immersed in pure water, propanol, or mixtures of 
the two, and the measurement of the Young modulus reached a resolution of 0.5 MPa. 

Domke and Radmacher [50] have determined the Young modulus of gelatin layers of different 
thickness. They have verified that the calculated Young modulus depends both on the thickness of the 
medium and on the portion of the contact line used for the calculation. In particular, the Young modulus 
of a thick film (1.1 pm) depends very little on the range of analysis (it goes from 15.9 kPa for cantilever 
deflections in the range 10-30 nm up to 18.5 kPa in the range 170-200 nm). The load-deformation 
curve is well fitted with the hertzian model. In the case of the thin film (<300 nm), the Young modulus 
is 27 kPa in the range 10-30 nm and it is bigger than 1 GPa in the range 170-200 nm. The load-  
deformation curve cannot be fitted with the hertzian model. As a matter of fact, when the tip indents a 
thin film, at high loads the deformation-load curve is influenced by the presence of the rigid substrate, 
that in turn cannot be probed with a thick film. 

Several load-indentation studies have been performed on cells. Ricci and Grattarola [51] have 
explored the possibility of measuring cell height by means of indentation-load curves. No calculation 
is presented for cells elastic modulus. 

Finally, several works have exploited dynamic force-distance curves in order to characterize sample 
elasticity [52, 53]. 

Experiments dealing with the study of elastic properties of materials by means of the AFM have 
shown that the absolute measurement of Young modulus or other elastic properties is not a simple and 
straightforward issue, whereas the comparison of elastic properties of different materials gives quite 
satisfactory results. However, the AFM turns out to be the only instrument able to characterize the local 
elastic properties of materials with high lateral resolution (25 nm) [11]. 

3. Theories of non-contact region 

3.1. Approach curve: jump-to-contact and attractive forces 

The jump-to-contact is one of the important quantities one can measure in a force-displacement 
curve. As discussed in Section 1.3, this discontinuity occurs when the gradient of the tip-sample force 
is larger than the elastic constant of the cantilever. The general expressions of the cantilever deflection 
and the t ip-sample distance at which the tip jumps onto the surface are given by Eqs. (1.9). 

The jump-to-contact may be preceded by a region of attractive (Van der Waals or Coulomb force) 
or repulsive (Van der Waals force in certain liquids, double-layer, hydration, and steric) force. The 
jump-to-contact gives information on attractive forces between the tip and sample. The maximum 
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sampled value of the attractive force equals the jump-to-contact cantilever deflection (~c)jtc times the 
cantilever elastic constant. In order to evaluate such attractive forces it is necessary to know the force 
law and the tip shape. In Section 6 we consider in detail the different forces and the influence of the tip 
shape. 

The onset of a jump-to-contact is predicted by any theory that takes attractive forces into account 
(JKR or Maugis) and is also predicted by numerical calculations [31, 35]. 

In AFM measurements the jump-to-contact instability is governed by the stiffness of the cantilever 
relative to the long-range tip-sample forces. As indicated in Section 1.3, if the cantilever elastic 
constant is bigger than the maximum value of the tip-sample force gradient, then the discontinuities 
virtually disappear. However, jump-to-contact is always present at an atomic scale, even if the 
cantilever can be modeled as an infinitely rigid body. In this case, the jump-to-contact instability is 
governed by the inherent stiffness of the tip and sample materials, related to their cohesive strengths. 
This phenomenon has been demonstrated by Pethica and Sutton [54] by means of calculations 
employing Lennard-Jones potentials and by Landman et al. [55] by use of molecular dynamics (MD) 
simulations. 

Pethica and Sutton [54] have shown that in general it exists a minimum separation ( ~  1-2 ,~) below 
which the surfaces jump in contact irrespective of the rigidity of the holder. This instability is due to the 
fact that, at some small enough separation, the gradient of the surface forces exceeds the gradient of the 
elastic restoring force of the bodies. The instability is irreversible because surface forces have stronger 
separation dependence than does the elastic restoring force. The Lennard-Jones pair potential used by 
Pethica and Sutton is inapplicable to free surface structures. N-body potentials of the embedded-atom 
variety are much more reliable. They do not, however, account for long-range attractive forces, because 
they do not incorporate a Van der Waals term. 

Landman et al. [55] verified the onset of jump-to-contact instability by means of MD simulations and 
compared their results to AFM measurements for a nickel tip interacting with a gold substrate. In MD 
simulations the tip is modeled as a pyramid with an effective radius of curvature of --30 ,~ and the 
sample is made up of 11 layers of 450 atoms per layer. The interatomic interactions governing the 
energetics and dynamics of the system are modeled by means of the embedded-atom method (EAM). In 
the EAM [56], the dominant contribution to the cohesive energy of the material is viewed as the energy 
to embed an atom into the local electron density provided by other atoms of the system. The AFM 
measurements were carried out with a nickel tip with a radius of curvature of ~200 nm and the 
cantilever spring constant is ~ 5 kN/m. The measurements were done under dry nitrogen. 

MD simulation shows the onset of an instability when the tip is at a distance of 4.2 ,~ from the 
sample. This jump-to-contact is associated with a tip-induced sample deformation and the process 
involves large atomic displacements (~2,~) occurring in a time span of ~ 1 ps. When the tip jumps 
onto the surface, the distance decreases from 4.2 to 2.1 ,~. Just after the jump-to-contact, in addition to 
the adhesive contact between the two surfaces, a partial wetting of the tip bottom by Au atoms induced 
by adhesion is observed (panel (a), Fig. 11). Pressure contours reveal that atoms at the periphery of 
the contact area are under extreme tensile stress (-~ 10 GPa), in accord with the JKR theory (panel (b), 
Fig. 11). In the AFM experiment the magnitude of the force and the distance from the sample at which 
the tip begins to deviate from zero are much larger than those predicted by the MD simulation. The 
authors list several causes of these differences: tip dimensions, cantilever elastic constant, neglect of 
long range attractive forces in MD calculations, tip and sample roughness, and the exposure to air of the 
tip and sample. 
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Fig. I 1. Atomic configuration generated by the MD simulation (panel (a)) and calculated pressure contours just alter the 
jump-to-contact (panel (b)) (reprinted with permission from [55]; copyright 1990 American Association for the Advancement 
of Science). 

3.2. Withdrawal curve: jump-of f -contact  and adhesion forces  

The second discontinuity of force-displacement  curves, the jump-off-contact, occurs when, during 
the withdrawal of the sample, the cantilever elastic constant is larger than the gradient of t ip-sample  
adhesive forces. 

As we have already seen in Sections 2.2 and 2.3, the jump-off-contact is related to tip and sample 
surface energies via equations that depend on materials dimensions, stiffness, and adhesion. The jump- 
off-contact force can be deduced from Fig. 9. For an infinitely stiff tip-holder, the pull-off load is given 
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by the horizontal tangent to the deformat ion- load curves in panel (b) of Fig. 9. When the apparatus has 
a finite stiffness, the tangent to the curve in panel (b) of  Fig. 9 with a slope corresponding to the elastic 
constant of the support has to be drawn. It is evident that Maugis theory shows that the pull-off force 
gradually passes from (Fad)JKU = - 3 / 2 7 r R W  to (Fad)DMT = -27rRW as the parameter A, that describes 
tip and sample dimensions, stiffness, and adhesion, decreases. Similar results were obtained by MUller 
et al. [32] and have been confirmed by Greenwood [35]. Hence, measuring the pull-off force is not an 
accurate method to estimate surface energies. Nevertheless, the jump-off-contact shows a wide range of 
adhesive material properties. 

The jump-off-contact deflection and the jump-off-contact distance are always greater than jump-to- 
contact deflection and jump-to-contact distance, respectively. This occurs for several reasons. 

1. During the contact some chemical bonds or adhesive bonds may engender non-conservative forces. 
2. During the contact, the sample deforms, buckles and "wraps"  around the tip, increasing the contact 

area, because of the elastic behavior described in Section 2, but also under the influence of  particular 
t ip-sample  forces (e.g., hydrophobic force and viscoelastic forces). Thus, soft materials with low 
cohesive energies containing hydrophobic groups, as some biological materials, have a large pull-off 
force in water, and the jump-off-contact occurs as a gradual detachment rather than a sharp 
discontinuity. 

Fig. 12. Neck formation in the case of a separation without indentation (panel (a)) and a cut through the system at the point of 
maximum indentation, i.e., the point M in panel (c) (panel (b)). The calculated force-displacement curve corresponding to the 
situation in panel (b) is shown in panel (c). The capital letters from D to X indicate the stages of the non-monotonic 
detachment (reprinted with permission from [55]; copyright 1990 American Association for the Advancement of Science). 
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Fig. 12. (contd.)  

3. Meniscus force exerted by layers of liquid contaminants (chiefly water) acts against the pull-off [57]. 
4. In the absence of chemical bonds, non-elastic deformations or meniscus forces, the interaction force 

could be described by a Lennard-Jones like force and the mechanisms involved in force-  
displacement curves acquisition would be well described by Fig. 2. It is evident that, also in this 
case, the discontinuity CC' is greater than BB'. This is the most important reason of force- 
displacement curves hysteresis, because it is almost always present. 

As for the jump-to-contact, it is not possible to eliminate the jump-off-contact and the approach- 
withdrawal hysteresis, even in the absence of chemical bonds, non-elastic deformations or meniscus 
forces and even if the tip-holder is infinitely rigid. This phenomenon is illustrated by the MD 
calculations of Landman et al. [55] already discussed in Section 3.2. 

In their work, both MD simulations and AFM experiments have been performed with and without 
indentation. When the tip is immediately withdrawn after jump-to-contact, i.e., it is not allowed to 
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indent the sample, the separation is associated with inelastic processes in which the surface atoms of the 
gold sample adhere to the tip. While the tip is further lifted, the contact area decreases and a thin 
"adhesive neck" forms, as shown in panel (a) of Fig. 12. This neck breaks at a distance of 9-10 ,~. The 
pull-off force is of the order of 40 nN. 

When the tip is allowed to indent the sample, the connective neck is wider and elongates for a 
larger distance during withdrawal, as shown in panel (b) of Fig. 12. The elongation process occurs in 
several stages in which the atoms of a layer disorder and then rearrange to build up another layer, i.e., to 
extend the neck. The number of atoms in the neck is roughly constant throughout the elongation 
process. These stages result in a series of monotonous decrease of attractive forces (just after the 
creation of a new Au layer in the neck) followed by increase (before the formation of a further layer), as 
indicated in panel (c) of Fig. 12. The pull-off force is about 60 nN and the neck breaks at a distance of 
about 13 ,~. 

The same behavior (a series of discontinuities) has been predicted for the case of the fracture 
between two identical materials by Lynden-Bell [58]. Pethica and Sutton [54] and Attard and Parker 
[31] obtained similar results by use of Lennard-Jones potentials. 

The associated AFM experiments of Landman et al. exhibit approach-withdrawal hysteresis both 
with and without indentation. The jump-off-contact force is ~ 4 ~tN without indentation and ~ 5 ~N 
with indentation. Pull-off distances are of the order of 16 nm. However, the non-monotonic features 
predicted by MD calculations are not discernible in the withdrawal curve after indentation. The 
experiment is apparently not sensitive to such individual atomic-scale events when averaged over the 
whole contact area. 

In 1995, Agra'/t et al. [59] have succeeded in detecting such discontinuities during jump-to-contact 
and jump-off-contact. They have measured forces between a gold tip and a gold substrate in vacuum at 
liquid helium temperature (the substrate is mounted on the cantilever and also the tunneling current can 
be measured). They showed that necks are formed during jump-to-contact and jump-off-contact, and 
that such necks elongate (compress) during the unloading (loading) process. As the neck is elongated, 
the current decreases stepwise, while the force decreases with an oscillatory sawtooth-like behavior. 
Abrupt relaxations of current correlate to abrupt relaxations of force and they occur at 0.1-0.2 nm 
intervals in displacement. During a complete loading-unloading cycle, structural transformations are 
reversible. The neck radius varies about 1 nm in an elongation of 1 nm. The effective elastic constant of 
the necks varies linearly with the contact radius (see also Ref. [60]). 

The increase of force-displacement curves hysteresis with indentation has also been observed by 
Weisenhorn et al. [61]. For indenting distances smaller than 10, 70 and 150 nm, the pull-off force is 
smaller than 0.35, 0.35 and 0.70 nN. Toikka et al. [62] have measured the dependence of pull-off force 
and adhesion energy on the loading force in air and in water. In air the adhesion energy goes from 3 m J/ 
m 2 for zero load up to 5 mJ/m 2 for a loading force of 120 nN. In water it goes from 0.3 mJ/m 2 for zero 
load up to 1.2 mJ/m 2 for 120 nN. These authors also verified an hysteretical behavior in the dependence 
of pull-off force on loading force along a complete cycle, i.e., first increasing and then decreasing the 
loading force. 

We have already said that both the jump-to-contact and the jump-off-contact due to inherent stiffness 
of the tip cannot be eliminated, but in AFM force-displacement curves, jumps are also due to the 
stiffness of the cantilever, and so they could be eliminated using a stiffer cantilever to the detriment of 
force sensibility. Alternative approaches, making use of magnetic or electric force feedback loops, have 
succeeded in eliminating force-displacement curves discontinuities. 
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In 1992, Gauthier-Manuel [63] devised a feedback loop, using an inhomogeneous magnetic field 
produced by a coil, in order to keep constant the force on a tip and prevent it from jumping onto the 
sample surface. By means of such an apparatus, the author could sample the entire tip-sample force 
law. The feedback loop was not applied to an usual AFM tip mounted on a cantilever, but the author 
himself noted that this would be possible. Jarvis et al. [64] and Yamamoto et al. [65] have developed a 
feedback loop (similar to the one of Gauthier-Manuel) to be applied to the AFM tip. The force on the 
cantilever, and hence the cantilever deflection, is kept constant and the tip-sample force is deduced 
from the feedback correction signal. In both works force-distance curves without hysteresis are shown. 
In order to make the tip sensitive to the applied magnetic field, a small piece of magnetic material is 
mounted directly behind the tip. Quite different approaches are that of Joyce and Houston [66], in 
which the force is counterbalanced by a differential capacitance sensor acting also as displacement 
detector, and that of Bryant et al. [67], in which the deflection of the cantilever is measured by means of 
a tunneling tip and the position of the cantilever is adjusted by moving the lever holder. 

By using these feedback techniques, the stiffness of the cantilever is in practice infinitely increased 
(no displacement of the tip occurs, whichever is the amplitude of the force) without decreasing the 
force resolution. The distance dependence of the force can be entirely sampled without losing the 
details. 

4. The zero  line 

The zero lines are the parts of force-displacement curves in which the tip exerts no force on the 
sample, e.g., when the tip and sample are far apart, and the tip does not deflect. 

Despite that almost no force can be detected in this portion of the curve, zero lines have a great 
importance in that, as discussed in Section 1, all distances are referred to the cantilever rest position. 
Thus, the forces can be calculated only when the deflection of the cantilever, i.e., the difference 
between the current deflection and the rest position, is known. The latter is given by the zero line. 

Zero lines seldom happen to be lines. They always have a superimposed oscillation due to optical 
interference between the beam reflected by the upper face of the cantilever and that scattered by sample 
surface, as shown in Fig. 13. The laser beam (i in Fig. 13) reaches the sample because the laser spot is 
not completely inside the lever surface and because of the fact that part of the light passes through the 
cantilever. The beam that reaches the sample is scattered, resulting in a second beam pointing towards 
the photodiode (r2). r2 interferes with the beam reflected by the upper face of the cantilever (rl). The 
resulting oscillation has a fixed spatial period determined by the laser light wavelength and by the 
microscope geometry. 

The optical path difference s is given by [61]: 

(1 + cos 2(-)) 
s = n O, (4.1) 

COS 0 

in which D is the cantilever-sample distance, 0 the incidence angle and n is the refractive index of the 
medium. If A is the wavelength of the laser, the spatial period of the oscillation is given by 

A 
/3 = (4.2) 

n((l  + cos 2 0 ) / c o s O )  
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Fig. 13. Schematic representation of the interference between the laser beam reflected by the upper face of the cantilever and 
the beam scattered by the sample surface, resulting in an oscillation on the zero lines of the force-displacement curves. 

Also the zero lines exhibit a kind of hysteresis that results in a separation of approach and withdrawal 
traces. The hysteresis of zero lines is due to the viscosity of the medium. The viscous force pulls the 
cantilever upward when approaching the sample and makes it bend downward when the sample is 
withdrawn. Hoh and Engel [40] have measured this hysteresis by altering the viscosity of the medium 
and the scan rate. Force-displacement curves obtained in water and glycerol are shown in Fig. 14. In 
water, there is a notable effect for velocities bigger than 30 ~tm/s. The separation between approach and 
withdrawal zero lines is about 5 nm for a cantilever 200 ~tm long, a scan range of 500 nm and a scan 
rate of 401.tm/s. In a high viscosity medium such as glycerol (15 P instead of 10 2 p for water) the 
separation becomes very large even at low scan rates ( -  10 nm for 0.6 ~m/s and = 50 nm for 4.8 ~m/ 
s). In a low viscosity medium such as air (2× 10 -4 P) zero lines hysteresis is hardly detectable (see also 
Ref. [68]). 
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Fig. 14. Zero-lines hysteresis in water and in glycerol. On the x-axis, the sample position in nm. On the y-axis, the cantilever 
deflection in rim. (reprinted with permission from [40]; copyright 1993 American Chemical Society). 
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5. Calibration 

5.1. Methods Jor the calculation of forces 

All AFM, whether home made or not, provide the cantilever deflection as a function of the distance 
between the sample and the rest position of the cantilever. In order to know the tip-sample force, 
several transformations of the data have to be performed. Eq. (1.10) reveals that, if the sample is much 
more rigid than the cantilever and no deformation of the sample occurs, along the contact line the 
deflection of the cantilever equals the displacement of the piezoactuator, i.e., A~Sc = AZ. 

Usually, if the optical lever method is employed, the deflection of the cantilever is given by the 
voltage output of the photodiode. This voltage, however, depends also on laser spot shape and 
dimensions. Along the contact line, the relation between the voltage output AV and the displacement of 
the piezo is given by 

AbC = AZ = A V / Q ,  (5.1) 

where Q is a proportionality factor. In order to know 6c the zero deflection value V0 of the voltage is 
needed, and can be determined from the zero line. 

A first problem with this procedure is associated with the hysteresis and the creep of the piezo, 
affecting the measurement of Z. As a general rule, the response of the piezo should be checked previous 
to any force-distance curves acquisition and Eq. (5.1) should be applied to approach curves. Further- 
more, depending on the sample, the relation A6c = AZ might not be correct at low loads. Hence, as a 
rule of thumb, it is always better to consider in the above procedure the tangent to the loading curve at 
high loads. The origin of the Z axis is placed at the beginning of the contact line. Because of tip 
asperities, the contact line may begin prior to intimate true contact. Thus, the asperities on the tip affect 
the determination of tip-sample distances. Taking into account all these effects, tip-sample distances 
can be determined by means of the equation: 

A Z -  Lp d31AV. (5.2) 
Wp 

in which Lp and Wp are the length and the wall thickness of the piezotube, d3L is a proportionality factor 
characteristic of materials, and V is the voltage applied to the piezo. 

The factor Q in Eq. (5.1) depends on the dimensions and on the shape of the laser spot on the 
photodiode, and hence depends on the refractive index of the medium in which the measurements are 
performed [69]. Furthermore, this factor may change in time due to the thermal drift of the components 
of the microscope, and should be checked previous to any measurement. 

Once the deflection of the cantilever in nanometers is known, the product k,,A6,, gives the force in 
newtons: 

A F  = k~A(5~ = k~.AV/~. (5.3) 

Once the true tip-sample distance is known, and the force has been deduced from cantilever deflec- 
tions, the curve can be rearranged in order to give a "normalized" representation, i.e., a plot of the 
force vs. the true tip-sample distance D. This representation is referred to as the "force-distance 
curve" (see Section 1.2). This procedure corresponds to the reversal of the geometric construction 
presented in Section 1.2. 
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The main problem in the calculation of forces is given by the knowledge of the cantilever elastic 
constant. 

5.2. The cantilever elastic constant and the tip radius 

The nominal elastic constant of rectangular and "V"-shaped [70] cantilevers is given by 

kc - Et3w (rectangular cantilever), 
4L 3 

and 

(5.4) 

Et3c Wb 
kc = 2b(L~ - L 3) + 6WL~ ("V"-shaped  cantilever), (5.5) 

in which tc is the thickness, E is the Young modulus and the other quantities are defined in Fig. 15. Eq. 
(5.5) is not an exact formula. The elastic constant of "V"-shaped cantilevers was calculated by use of 
the "parallel beam" approximation [71, 72], in which the "V"-shaped cantilever is modeled as a 
couple of rectangular cantilevers. Sader and White [73] have demonstrated the inaccuracy of such an 
approximation by means of a finite element calculation. 

A more accurate formula has been given by Neumeister and Ducker [74]: 

[ ( /]-' k~=  A I + A I I + ~  W - d  
sin c~  ' 

A I - - E t  3tg~ S ins  2d - d  2 21Ogdsino~ 

1 + 3(Wcot c~ - dcos  c~ - t~ sin c~) 
EWt~ cos 2 c~ cos ct ' 

(5.6) 

A l l  - -  

w 

Fig. 15. Schematic representation of a rectangular and a "V"-shaped cantilever. L and w are the length and the width of the 
rectangular cantilever, W is the width of the arms of the "V-shaped" cantilever, a is the angle between the arms, b and L2 are 
the base and the height of the triangle at the end of the "V-shaped" cantilever, LI is the total height of the "V-shaped" 
cantilever, and d is the distance between the center of the tip and the end of the cantilever. 
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and 

3L(1 + u ) ( W  / 
gA -- EWt3 cosa s~n-a d + ~ ) c o t a  , 

in which u is the Poisson ratio and 0 is given by 

0 = L t g a + ( W - d s i n a ) ( 1  - u ) c o s a  (5.7) 
2 - (1 - u) cos 2 

All the above formulas depend on the knowledge of E and u (E = 304 GPa and u = 0.24 for the silicon 
nitride) that can be measured by different techniques (see Ref. [75] and references therein). Anyway, 
each cantilever has its own elastic constant that can vary between cantilevers on the same wafer, and 
hence, rather than calculate them, it would be better to measure them. Several methods have been 
proposed for doing this as indicated below. 

The most effective method is that proposed by Cleveland et al. [76]. Consider a rectangular 
cantilever with elastic constant k~ and mass mo The resonance frequency of this cantilever is 

k mk--  (5.8) ~(I z 

The effective mass m* is given by m* = mc + 0.24 rot, where mt is the mass of the tip. When an extra 
mass M is added, the resonance frequency becomes 

~/M k~ (5.9) 
~1  = ÷ m*" 

By measuring ~l and ,;0, kc is given by 

M 
k c -  1 / ~ -  1/w 2" (5.10) 

The added extra mass is usually a sphere placed near the end of the cantilever. Since the sphere is 
secured onto the cantilever by adhesive forces (e.g., capillary force), the method turns out to be non- 
destructive. 

Senden and Ducker [77] have proposed a similar method in which a tungsten sphere (10-50 gtm in 
diameter) is glued at the end of the cantilever and the static deflection due to gravity is measured. 
Subsequently, the cantilever is turned upside down and the deflection is measured again. The difference 
/X~5 between the two measurements is twice the deflection due to the gravity. The deflections can be 
calibrated as shown in Section 5.1 and the spring constant is given by 

k~ - 87rR3 p~g , (5.11) 
3A6~ 

in which R is the radius, p the density of the sphere and g is the gravitational acceleration. Hutter and 
Bechhoefer [78] have measured the spring constant of the cantilever from the power spectral density of 
cantilever fluctuations due to thermal noise. If the cantilever is modeled as a harmonic oscillator, then 

~ma;?/5~} = ~knT ~ = kc/m and kc = kBT/(6?,}. (5.12) 
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Rabinovich and Yoon [79] have calibrated the spring constant of a cantilever by comparing it with the 
spring constant of a glass fiber. The glass fiber spring constant is measured by detecting its deflection 
under a known weight. After mounting the glass fiber on a piezoactuator, it is brought into contact with 
the cantilever of unknown elastic constant. The cantilever spring constant is given by 

= k f  - 1 , ( 5 . 1 3 )  

in which kf is the spring constant of the glass fiber and AZ is the displacement of the piezo. The same 
authors have tested their technique together with that of Ducker and Senden, and have compared the 
values obtained with those calculated by means of Eq. (5.4) [80]. All three methods give kc values 
within +7% of each other. 

Finally, Sader et al. [81 ] have developed a technique to calculate the cantilever spring constant once 
the mass or the density of the cantilever is known. These quantities are not provided by the 
manufacturers, so the method is rather useless. 

Another major problem encountered when a quantitative treatment of force-distance curves is 
undertaken is the characterization of the size and shape of tips. Forces depend on the dimensions of the 
tip both on a mesoscopic (overall shape of the tip) and a microscopic range (shape of the apex and 
presence of asperities). Although several approaches to characterize AFM tips exist, none of them 
provides a reliable and general technique easily applicable to all cases. 

A first approach is the examination of tips with the transmission electron microscope (TEM) [82]. If 
Si3N4 tips are to be imaged by TEM, then a coating with Pt/Pd is needed in order to prevent charging, 
while silicon tips can be imaged without coating. Resolutions of the order of 1 nm can be attained. 

Alternatively, once the process of image formation is known, given a surface of known profile 
employed as characterizer, the shape of the tip can be deduced from the artifacts in the image of the 
characterizer [83-89]. Such methods are affected by the uncertainty of characterizers profiles and by 
the poor reliability of mathematical reconstructions of imaging processes. 

Two other methods of calibrating tip size and shape exploit the measurement by means of force-  
distance curves of some forces, namely the Coulomb force [21] and the double-layer force [69]. These 
are treated in Sections 6.1.2 and 6.3.2. 

In order to eliminate the problem of the unknown shape of the tip, Ducker et al. [17] have used 
modified cantilevers with tips of known geometry. Such a technique, generally known as "colloidal 
probe technique", has been widely employed in force-distance curves acquisition. It is implemented by 
gluing at the end of a cantilever a sphere of radius between 2 and 10 ~tm by means of an epoxy resin. 
The radius of the sphere can be determined by electron microscopy and the mean roughness by AFM 
measurements. Fig. 16 shows a colloidal tip glued on a cantilever. A wide variety of materials has been 
employed: silica [17], TiO2 [91], ZnS [62,92], gold [93], polystyrene [94] and others. When a colloidal 
probe is used, curves are often presented as a logarithmic plot of the ratio F/Reff vs. the tip-sample 
separation. The advantage of this technique lies in the exact knowledge of the tip geometry, but it turns 
out to be disadvantageous when a high lateral resolution is needed. Thus, it cannot be effectively used 
in force-distance curves mapping. 

5.3. Noise and systematic errors 

Some general considerations on noise and systematic errors in force-distance curves acquisition are 
discussed here. Other specific artifacts are listed in Sections 2.4, 6.2.3, and 6.3.3. 
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Fig. 16. A silica colloidal probe attached on a silicon nitride cantilever (reprinted with permission from [90]; copyright 1993 
American Chemical Society). 

The noise level of a force-distance curve, due to thermal agitation, mechanical vibrations of the 
apparatus and/or turbulence of the liquid environment, depends on the cantilever stiffness, and is 
usually < 30 pN. Sources of the noise vary widely. Along the zero lines the noise is dominated by the 
thermal agitation, whereas along the contact lines, the thermal agitation is damped but mechanical 
vibrations are enhanced. In order to minimize the effects due to thermal drift, force-distance curves 
should be acquired with high scan rates but, over a certain threshold speed, dynamic effects begin to 
affect the measurement. This threshold value depends on the environment and can be roughly put at 
1 pm/s in air [95]. Another obvious approach to minimize thermal noise consists in averaging several 
force-distance curves acquired on the same point and in the same conditions. This approach implies a 
careful superposition of curves. 

The calculation of forces is affected by systematic errors in the estimation of the cantilever spring 
constant and tip radius. Since deflections are obtained from the contact line through Eq. (5.1), errors 
due to the sample compliance are possible, and are specific for each material and sample. 

The estimation of distances is affected by systematic errors in piezo response and by piezo hysteresis 
and creep, which depend on the history of the piezo and on the scan rate. 

Finally, digitalization errors must be considered. Siedle and Butt [68] have demonstrated that the 
cantilever oscillates due to its coupling to the discrete steps of the piezo via the liquid. This oscillation 
affects both the zero deflection and the determination of the jump-to-contact. 
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6. M e a s u r e m e n t  o f  forces 

6.1. Forces in air 

6.1.1. Meniscus force 

Fig. 17 shows a force-displacement curve acquired on mica in air. Note that the hysteresis is very 
large. The jump-to-contact is rather small, while the jump-off-contact is quite large. Such a large 
adhesion is due to the meniscus force exerted by a thin layer of water vapor adsorbed on the sample 
surface, as schematically shown in Fig. 18. Such a layer barely affects attractive forces, whereas it 
prevents the tip from pulling off from the surface due to its high surface energy. 

The Laplace pressure of the liquid meniscus is given by [15]: 

( 1  1 )  ,,~ 7L (6.1) P = 7 L  -4- ~--- - - ,  
r e f f  

in which 7L is the surface energy of the liquid and r~ and r2 are defined in Fig. 18. The Laplace pressure 
acts on the area [15]: 

A ~2rrRd~-27rR[reff(1 + cos 0) + UM], (6.2) 

in which d, 0, and UM are given in panel (a) of Fig. 18. The surfaces are pulled together with a force 

F-27rR3'L (1 + cos 0 + r~tMf) (6.3) 

Eq. (6.3) is the contribution of the Laplace pressure to the adhesion. Recently, Gao [96] has calculated 
formulas for different tip geometries, showing that the force is decreased by about 20% for a conical 
tip. 

Mate et al. [97] have studied the meniscus force exerted by a perfluoropolyether polymer liquid film 
on silicon. Fig. 19 shows a typical force-displacement curve on such films. 

"-.. : 

%"*. 1 

75 ran 

Z 

Fig. 17. Force-displacement curve on mica in air with a silicon nitride tip (R between 50 and 100 nm). The large jump-off- 
contact is due to the meniscus force. One can observe one of the most common artifacts in force-displacement curves, namely 
the inverse path effect (adapted from [128]). 
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(b) 

Fig. 18. The meniscus of the water vapor layer adsorbed on the sample surface onto a paraboidal tip, during approach (panel 
(a)) and retraction (panel (b)). R is the radius of curvature of the tip, D is the distance from the sample, UM is the penetration 
depth in the liquid layer, rl and r2 the two radii that define the liquid meniscus, 0 the contact angle the liquid makes with the 
tip, and d the height of the meniscus relative to the end of the tip. 

At great distances (right) the tip is far away from the surface and the deflection is zero. At 25 nm 
from the surface, while approaching the sample, the tip contacts the surface of the liquid film, that 
wicks up and forms a meniscus, resulting in an attractive force of 60 nN. After this first jump, the force 
on the tip is fairly constant, since the tip is penetrating through the liquid. When the tip contacts the 
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Fig. 19. Force--displacement curve on a perfluoropolyether polymer liquid film (reprinted with permission from [97]). 
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silicon, there is a second jump followed by the contact line. There are also two jumps-off-contact. The 
first jump, of 120 nN, occurs when the tip pulls off from silicon. The second, of g 10 nN, when the tip 
detaches from the liquid film at -- 280 nm. In between, the force slowly decreases. The tip radius is 
approximately 230 nm. Force-distance curves allow to measure the effective meniscus radius re~ and 
the thickness of the liquid film. Mate et al. have compared the thickness measured by the AFM with that 
measured by ellipsometry, showing that AFM always overestimates the film thickness, and that this is 
probably due to a thin film of liquid on the surface of the tip. Furthermore, the film thickness was 
acquired along a line of the sample in order to study the local liquid uniformity. 

Thundat et al. [98] have observed the dependence of adhesion force on the relative humidity and 
have fitted the experimental data on meniscus force with the equation 

F = - 47rRTL cos 0 
[1 + D log(Hr)]/1.08 cos 0 '  (6.4) 

in which D is the tip-sample distance in nm and Hr is the relative humidity. With a rather small tip 
(R = 15 nm) the adhesion force is larger than 10 nN for Hr > 60% and becomes smaller than 5 nN for 
Hr < 20%. Later on Thundat et al. [99] reproduced the same fit for a clean and a contaminated tip, 
showing that adhesion forces are larger for the contaminated tip (70 nN at Hr > 50% and 40 nN at 
Hr < 10%). When rinsing the contaminated tips in acetone, methanol or methylene chloride, a slight 
decrease (< 10%) in adhesion force is observed. Such a decrease is enhanced by cleaning the tips in UV 
ozone, in which case the adhesion reaches the values of the clean tips (see also Ref. [100]). 

The increase of adhesion force with increasing relative humidity has been studied for silicon nitride 
tips on SiO2 substrates by Torii et al. [101]. 

Xu et al. [102] have studied the dependence of pull-off forces on relative humidity with Pt-covered 
tips on mica. The pull-off force is constant (2 nN) for Hr < 20%, increases rapidly (8 nN) for Hr = 20%, 
and then slowly decreases down to 3 nN for Hr = 95%. They also verified that, depending on relative 
humidity, the pull-off force depends on contact time. At H~ = 42%, the force goes from 87 nN for 1 ms 
contact time to 100 nN for a 10 s contact time. On the contrary, at Hr -- 12%, the pull-off force 
decreases with increasing contact time. Later on, Xu and Salmeron [103] have studied the effects of 
surface ions on the adhesion dependence on relative humidity. 

Eastman and Zhu [104] have measured capillary forces between a mica substrate and surface 
modified tips, namely a Si3Na tip, a gold coated tip and a paraffin coated tip. The results show that the 
capillary force, and hence the total adhesion force diminishes when the tip is coated with a hydrophobic 
material. The value of the capillary force is 92 nN for the gold coated tip and -31  nN for paraffin. The 
tip radius is about 100 nm. The authors do not obtain the same dependence of adhesion force as a 
function of relative humidity as Thundat et al., even for the Si3N4 tip. They claim that this disagreement 
is due to the hydrophobicity of their mica substrate. Since the substrate is hydrophobic, the height of the 
water layer is limited and does not increase with relative humidity so that the adhesion force stays the 
same at all values of relative humidity. 

The different dependence of meniscus force on relative humidity for hydrophilic and for hydrophobic 
substrates has been addressed by Fujihira et al. [105]. The authors study the adhesion force on a Si 
substrate partially covered with a hydrocarbon monolayer. They show that the adhesion force is about 5 
nN on the hydrophilic Si substrate and 1 nN on the hydrophobic hydrocarbon substrate, using the same 
tip. Furthermore the meniscus force on silicon increases from 20 nN at 10% relative humidity to 40 nN 
at 60% relative humidity, while it is about 20 nN for any relative humidity value on hydrocarbon. This 
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latter measurement was performed using a tip with a larger curvature radius. Hence capillary force 
allows to distinguish hydrophobic and hydrophilic materials. A similar set of measurements has been 
performed by Binggeli and Mate [106] on silicon, carbon and perfluoropolyether and by Olsson et al. 
[107] between a tungsten tip and a methylated SiO2 surface. In this latter work, dynamic force-distance 
curves also are acquired, showing that, when the meniscus forms and the capillary force onsets, the 
amplitude of the oscillations abruptly goes from the free amplitude to an almost zero amplitude via a 
sharp and strong discontinuity. Dynamic force-distance curves are, therefore, more suitable for the 
detection of the distance of formation of menisci. This capability of dynamic force-displacement 
curves has been exploited by Friedenberg and Mate [108] in order to study the meniscus force exerted 
by different layers of polydimethylsiloxane (PDMS). Dynamic force-displacement curves are acquired 
varying the penetration distances in the PDMS layer and the thickness of the PDMS layer. The 
experimental results are in rather good agreement with theoretical predictions. Colchero et al. [109] 
have acquired force-displacement curves in the static and in the dynamic modes simultaneously. They 
have shown that static force-displacement curves reveal the liquid-solid interface, while the dynamic 
force-distance curve is able to reveal the presence of the liquid-vapor interface. 

The study of capillary forces, of great importance also for the comprehension of the mechanisms 
involved in AFM imaging, has revealed the measurement of their effect as a useful technique for 
distinguishing materials with different hydrophobicity (see also Section 7). The different techniques 
reviewed here may be used effectively for the study of wetting properties of lubricants. 

Water meniscus force exceeds all other forces, and in particular, it masks the Van der Waals 
force. Inserting 7L = 72mJ m 2, R = 30nm and d = 2nm into Eq. (6.3) the meniscus force is 
approximately 30 nN, whereas the adhesion force due to Van der Waals attraction for normal materials 
is typically only 20 nN. In order to measure Van der Waals force and/or other surface forces, the 
meniscus force must be eliminated, either by removing the water layer by working in a low humidity 
environment (such as dry nitrogen or vacuum), or by dipping both sample and tip in a liquid 
environment [57]. 

6.1.2. Coulomb force 

The measure of Coulomb forces until now has been of little interest, but it can be employed in order 
to study the tip shape. Hao et al. [21] have studied Coulomb forces by modeling the tip-sample system 
as a sphere on a fiat surface and as a sphere-ended conical tip on a fiat sample, as shown in Fig. 20. In 
the first case, the force is given by 

R (6.5a) FiSl p = 7rc()V" 

for R/D >> 1 and by 

F~ = :re0V 2 (6.5b) 

for R/D << 1. V is the voltage difference between the tip and sample, R the radius of the sphere and D 
is the tip-sample distance. 

In the case of a sphere-ended cone on a flat surface, the force may be calculated by replacing the 
equipotential conducting surfaces with their equivalent image charges. For small aperture angles 
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Fig. 20. The two tip-sample systems employed by Hao et al. [21] for the calculation of Coulomb force. R is the radius of the 
sphere, D the tip-sample distance, L the length of the sphere-ended conical tip, and 0 the aperture angle. 

(0 _< 7r/9) the cone may be approximated by a charged line of constant charge density Ao given by 

,ko = 47rEoVIln(l+c°sO'] ' Z c~s0 j ]  (6.6) 

The resulting force is given by 

F c ~ 0 In , (6.7) 
47re0 

in which L is the cone length (L << D << R). 
Hao et al. have measured the Coulomb forces between a tungsten tip and graphite. By fitting the 

experimental data, the authors have been able to determine the curvature radius of different tips (270 
and 27.5 nm, in good agreement with scanning electron microscope measurements). Furthermore, they 
have shown that Eq. (6.5a) fits well the measured forces at small tip-sample separations, whereas at 
larger distances Eq. (6.7) is needed (see Fig. 21). The disagreement between experimental data and 
Eq. (6.5b) increases with decreasing tip dimensions. 

Burnham et al. [110] have studied another kind of Coulomb-like force which arises from the patch 
charges distribution on the tip and sample, i.e., from regions of different surface charge density 

o r o y  

1'4 - 2 0 " 0  qD ~=I~V ~ ~ 2 5 V  

. / f  --I - 30.0 

- - ] 0 ,  0 . . . . .  , i , [ . . . .  i . . . .  i , , r r ~ . . . .  I . . . .  i , - , i I 

- 2 5 0 . 0  0 . 0  2 5 0 . 0  5 0 0 . 0  7 5 0 . 0  1 0 0 0 . O  1 2 5 0 . 0  1 5 0 0 . 0  1 7 5 0 . 0  2 0 0 0 . 0  

S a m p l e  d i s p l a c e m e n t  (A) 

Fig. 21. Force-displacement curves on graphite. Coulomb forces at V = 0  V, V= 15 V and V=25  V are displayed. The 
theoretical results for the sphere-ended conical tip (continuous line), the spherical tip ( - -  - -  - - )  and the simple RID 
approximation (- - -) are also shown (reprinted with permission from [21]; copyright 1991 American Vacuum Society). 
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~dium, e3 

Fig. 22. The tip-sample system employed by Burnham et al. [110] for the calculation of patch charges force. The tip and 
sample surface charges are represented by two image charges Qr and Q~ placed at the distances R 1 and R'. D is the tip- 
sample distance, c~, e2 and e~ are the dielectric constants of the tip, the sample, and the medium, respectively. 

interacting via a long range force law. The patch charges distribution can be modeled by means of the 
image charge method, as shown in Fig. 22. Consider a spherical tip of radius R on a flat sample with 
surface charge densities ~rt and a~ represented by an image charge Qt at a distance R ~ inside the tip and 
by an image charge Qs at a distance R" inside the sample. If R >> R ~ >> D and R" >> D, R, R ~, then the 
force is given by 

Qt ( 2 D ) ( c z - e 3 )  QtQ~( 2R' 7 ) ( e ~ - e 3 ) ( c z - c 3 )  (6.8) 
47re0F-- 4R,2 1 -  - ~  ~_ ~ + ~ -  1 R ~ -+--~3 ~ -+ c--~V' 

where c1 and E2 are the dielectric constants of the tip and sample and c3 is the dielectric constant of the 
medium. 

Patch charge densities are negligible compared to double-layer charge densities (see Section 6.3.1). 
The patch charge force is larger than the Van der Waals force and has the same dependence on the 
dielectric constants. Note that, if the geometrical constants R and R' are much larger than D, Eq. (6.8) 
becomes effectively independent on the distance. There is evidence that this occurs when the ratio of 
the probe radius to the distance is 103 . 

This kind of force has been measured by Burnham et al. [110] and by Agraft et al. [59]. This latter 
experiment has been performed in vacuum, at liquid helium temperature (4.2 K), using a gold tip on a 
gold sample. The presence of contaminants can therefore be excluded, allowing the different forces to 
be distinguished from each other. 

6.2. Van der Waals force 

6.2.1. Theory 
In the theoretical subsections only the issues necessary to the comprehension of the experimental 

results are reviewed. The discussion is based on the derivations given in [15, 111-113]. 
The Van der Waals force between atoms and/or molecules is the sum of three different forces, all 

proportional to 1/r 6 (r is the distance between the atoms or molecules). These forces are: (a) the 
orientation or Keesom force, (b) the induction or Debye force, and (c) the dispersion or London force. 
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(a) The Keesom force is the angle-averaged dipole-dipole interaction between two atoms or 
molecules and its potential is [15]: 

2 "~ u I u 5 CK 
wK(r) = 3(4rreoe)2kBTr 6 - r6 , (6.9) 

where u~ and u2 are the dipole moments of the molecules, e the dielectric constant of the medium, 
ks the Boltzmann constant and T is the temperature. Eq. (6.9) holds for kBT > u l u2/41reoer 3115]. 

(b) The Debye force is the angle-averaged dipole-induced dipole interaction between two atoms or 
molecules: 

(c) 

WD(r) = -- U2a02 + u22~°' -- CD (6.10) 
(4rrCoc)2r 6 r 6 

in which Sol and a0z are the electronic polarizabilities of the molecules. Eq. (6.9) may be obtained 
from Eq. (6.10) by replacing the electronic polarizability So with the orientation polarizability 
ct = u2 /3kBT. 
The dispersion force is the most important contribution to Van der Waals force, because it acts 
between all molecules or atoms, on a distance that ranges from more than 10 nm down to 2 .~. It 
may be attractive or repulsive. The dispersion force is the instantaneous dipole-induced dipole 
interaction, and is of quantum-mechanical nature. An expression of this force has been calculated in 
1930 by London [114]. The corresponding potential is 

w L ( r ) = _ 3  Ot01Og02 ( h U l ) ( h u 2 ) _  CL (6.11) 
2 (47r~0)2r 6 htq ÷ hu2 r 6 ' 

in which hul and hu2 are the first ionization potentials of the molecules and h is the Planck constant. 

Thus the total Van der Waals potential can be written as 

CK ÷ CD ÷ CL __ 1 [ b/Zu 2 
WVdW(r) r6 (4rrc0)2r 6 L(u>°2 + ">°') + + 

3Ct010e02 (hzq) (h,2)] . 
2 hUl + hu2 ] 

(6.12) 

In 1963 McLachlan [115] presented a generalized theory of the Van der Waals force between infinite 
media 1 and 2 separated by a medium 3 in the form: 

6kBT ~-~ ct 1 (iu,)a2 (iu,,) (6.13) 
Wvdw(r) -- (47re0)Zr6 , ,=0 ez(iu,,) , 

in which the 0-term of the sum has to be multiplied by 1/2, cq (iun) and c~2(iu,,) are the polarizabilities 
of molecules, and e3 (iun) is the dielectric constant of the medium at the frequencies iu, = 2niTrkB T/h .  
The total polarizability in vacuum at the frequency iu, is [116]: 

a(iu.)  - ao u 2 
1 + (u,, lu,)  2 4 3kuT(1 + -n///rot) ' (6.14) 

in which ul is the ionization frequency and Urot is the average rotational relaxation frequency. 
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The first term (n = 0) of Eq. (6.13) is: 

3kBT 3kBT ( u ~  ) (  u~ ) (6.15) 
(Wvdw(r))v= 0 -- (47rc0) "r6" oil (0)ot2(0) -- (47rco)-r' 6 ~ + oqn ~ + oL02 . 

It contains the Keesom and Debye energies. This term acts only between polar molecules and is 
called polar or entropic contribution. 

The term at non-zero frequencies is called dispersion contribution. This sum entails the calculation of 
c~(iu,,) at the discrete frequencies u, and hence the knowledge of the absorption spectrum of the 
materials over the entire real frequency range, 0 _< u < o~. With a few exceptions, only partial data are 
available, and some approximate methods have been developed, such as the Ninham and Parsegian 
method [117]. In this method c~(iu,,) is considered as determined only by electronic polarizability, 
since, at normal temperatures, the first frequency u,,=l - 4 x 10 ~3 Hz is already much greater than 

"~ 1011 Hz. Further, since all the frequencies u,, are very close in the UV region, the sum in Eq. //ro t 
(6.13) can be replaced [15] by an integration over dn = (h/27rkBT) du: 

3h [~ 3 c~<)lc~o2 hulu2 (6.16) 
= - , C~l (iu)c~2(iu) du ~ 2 (47rc0)2r 6 ul + u , '  (Wvdw(r))">o (47reo)-rrr6 , 

yielding Eq. (6.11). 
McLachlan theory allows to calculate dispersion forces also for atoms or molecules of dielectric 

constant e~ in a medium of dielectric constant c3. In this case it is necessary to consider the excess 
polarizability of the molecule of radius Rm given by the Clausius-Mossotti equation [118]: 

El(//) -- E3(b') 3 (6.17) Ctexc(U) = 47r~oC3 (~') ~ -~  . f  ~ ) R m .  

Inserting Eq. (6.17) into Eqs. (6.15) and (6.16) the total Van der Waals interaction, Eq. (6.13), 
becomes the sum of two terms given by 

, 3kB TR m i Rm2 (6.18a) 
(WVdW(r)),,=O -- r 6 \~-~(-~ +-~3-~)J \ ~  +2~3(0)]' 

and 

3 3 [ ~  cl(iu) - e3(iu) c2(iu) - c~(iu) (WVdW(r))v>0 = 3hRmlRm2 " (6.18b) 
- 7rr6 a0 Z ~ £ ~ )  ~ (T~ £ 2T3~-) du. 

If the dielectric medium has one strong absorption peak at the frequency ue (that is usually different 
from the frequency ul of the isolated molecule), e(u) can be written as 

,) 
n - - I  c(u) = 1 + (6.19) 

1 + 

in which n is the refractive index. Substituting in Eq. (6.18b) we obtain: 
3 3 ~ 9 9 v ~  hpenmlem2 (ny - rt-3)(rl ~ - n 2) 

(Wvdw(r))">° = 2 r 6 * ~ 2 ~ 2n 2) v/(n~ +2n~) ]  v/(n7 + 2n7) ~¢/(n ~ + 2n3)[v/(n7 + + 
(6.20) 
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Hence the total Van der Waals force between two identical molecules is: 

/ . 2  ,%] ~n I - n~) 3 
WVdW(r) = -  3 k B T ~ - ( ~ ) - ~ - ~ ) J  ~ - T h l J e  V/( n2- - - - +  2n2) 3 ---r6 j • (6.21) 

From the above equations, some conclusions about Van der Waals force can be drawn. 
(1) Whenever hu~ >> kBT, as in vacuum, the dispersion term is larger than the polar term. 
(2) In a medium, the Van der Waals force is greatly reduced. 
(3) The Van der Waals dispersion (polar) force in a medium may be attractive, vanishing or repulsive. 

It is repulsive whenever n3 (¢3) is intermediate between n l (¢1) and n2 (~2). It vanishes if n3 (e3) matches 
nl (~1) or n2(c2). The force between two identical molecules is always attractive. 

Some other features of Van der Waals force are noteworthy. 
(1) The Van der Waals force is anisotropic. As a matter of fact, the polarizabilities of the majority of 

molecules are anisotropic, i.e., they have different values for different molecular directions. One of the 
consequences of the anisotropy of polarizabilities is that the dispersion force between two molecules 
depends on their mutual orientation. This effect is important in solids and liquid crystals, where the 
thermal motion is reduced. 

(2) The Van der Waals force is non-additive. The force between two molecules is affected by other 
molecules nearby, since they behave like a medium. 

(3) The Van der Waals force is affected by retardation effects. This effect is described in detail in 
[119] and only a qualitative description is given here. When two atoms are far away, the time taken by 
the field of the first atom to reach the second one and come back may be comparable to the period of the 
fluctuating dipole. In this case, the reflected field finds that the orientation of the first dipole is now 
different. At large separation, because of the retardation effect, the power law index increases by unity. 
Thus, with increasing separation, the dispersion force begins to decay as - 1 / r  7 at distances larger than 
100 nm. Such retardation effects tum out to be very important in liquids, where the speed of light is low, 
and the effect appears at distances smaller than 5 nm. Only the dispersion term is retarded, whereas the 
polar one is non-retarded at all distances. In the presence of a medium, the Van der Waals force has 
three distance regimes. At small distances the force law is 1/r 6. At intermediate distances, where the 
retarded dispersion dominates the Van der Waals force, the force law is 1/r  7. At larger distances, the 
polar term, that is always non-retarded, turns out to be dominant and the force law is again 1/r  6. 

In order to model the interactions taking place in AFM, it is necessary to study interactions between 
surfaces, rather than between atoms or molecules. Let us begin with a pair potential in the form 
w(r) = -C/r" .  Assuming that the potential is additive, the interaction energies between macroscopic 
bodies may be obtained via integration. In the case of two interacting spheres of radius Rj and R2 at the 
distance D, the force F(D) can be obtained by integrating over small circular sections of surface 27rxdx 
on both spheres [120] (Fig. 23): 

F ( D ) =  27rxdxf(Z), (6.22) 
D 

in which f(Z) is the normal force per unit area. From the Chord theorem x 2 ~ 2Rlz~ = 2R2z2 and 

Z = D + z ~ + z 2 = D + ~ -  + , (6.23) 
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Fig. 23. Geometry employed in the Derjaguin approximation. The two spheres of radii R1 and R2 are at a distance D. The 
force is integrated over small circular sections of radius x and height dx at distances Z = D + 21 + zz. 

and hence 

Finally, the force is given by 

I ~ 27r RIR2 F(D)  ~ = 27r - -  D Re + R2 f (Z) dZ 

(6.24) 

RjR2  
W(D), (6.25) 

Ri +R2 

in which W(D) is the interaction potential between two flat surfaces. 
Eq. (6.25) is known as the Derjaguin approximation, and holds whenever the interaction range and 

the separation D are much smaller than Rl and R2. It should be emphasized that in Eq. (6.25) it is not 
necessary to specify explicitly the type of interactionf(Z).  This fact implies that Eq. (6.25) is correct 
for any kind of force, whether attractive, repulsive, or oscillating. From the Derjaguin approximation, 
by putting R2 >> R1, it is possible to obtain the force between a sphere and a flat surface: 

F(D)  = 27rR,W(D). (6.26) 

Van der Waals energies between macroscopic bodies in vacuum may be computed via integration 
only in the approximation that the Van der Waals force is considered additive and non-retarded. The 
interaction laws obtained via integration are listed in Table 1 for the most common geometries. 

Table 1 
Van der Waals interactions for the most common geometries. R is the radius 
of spheres, D the distance between the interacting bodies, and A the 
Hamaker constant. 

Geometry Interaction law 

A RIR2 
Two spheres W - 

6D R i + R2 
AR 

Sphere-flat surface W - 
6D 

A 
Two flat surfaces W - 127rD2 per unit area 
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All interaction laws depend on geometrical features of the bodies and on the Hamaker constant A, 
which includes all physico-chemical information [ 121 ]: 

A = rc2Cpx P2, (6.27) 

in which C is the constant in the atom-atom pair potential and p~ and P2 are the number of atoms 
per unit volume. Typical values of the Hamaker constant of condensed phases in vacuum are about 
10-19 j. 

In the following, we will show how the Hamaker constant can be calculated. However, in order to 
determine Hamaker constants from measured curves, two approaches can be followed. The first method 
consists in fitting one of the force laws listed in Table 1 to the attractive part of the force-distance 
curve. This procedure can be somewhat difficult due to the short interaction range. The second method 
adapts Eq. (1.9) to the Van der Waals force and to the appropriate geometry. Thus, the Hamaker 
constant can be determined from the jump-to-contact force. 

For n = 2 and C = AR/6,  i.e., for a sphere on a flat surface, Eq. (1.9) becomes 

1 ~ / A R  
((~c)jtc = ~ V 3 ~ c  

3/SAR 
Djt~ = 28(6c)jtc = V 3k~f" 

(6.28) 

Eq. (6.28) permits to calculate A and R from the measured (6c)jtc and Djtc once ;3 and kc are known. 
By assuming the additivity of the Van der Waals force, the influence of nearby atoms on the couple of 

interacting atoms is neglected, thus introducing large errors in the calculation of the Hamaker constant. 
To circumvent this problem, Lifshitz [122] presented an alternative approach in which each body is 
treated as a continuum with certain dielectric properties. This approach automatically incorporates 
many-body effects which are neglected in the microscopic approach. All the expressions in Table 1 
remain valid. Only the computation of the Hamaker constant changes. 

In Lifshitz theory, the Hamaker constant for the interaction of media 1 and 2 across the medium 3 
may be expressed in terms of McLachlan equation (6.13) as 

67r2kBTplP2 ~ eel (iun)c~2(iu,,) 
A = 7r2Cplp2 - (47re0)2 ~ 2 • 0 c3(w") 

= 3kBT ~ - ~ I ~  -e3(iun)]  [e2(iu, ,)-  e3(iu,,)] (6.29) 
z 0 /elU n) T63(iu,)]  [Q(iu,) + 63(iu,,)J 

Substituting the sum with an integration, as already done in Eq. (6.16), yields 

3 61 - 63 69 - 63 + 3h f _ -63(iu,,)62(iu,,) - . i~  61 (iun) i ~3 ~ i ~  ~ 
A = ~ k B T ~  + 63 c2 ~ c3 4--~ J,j~ 61 (iu,,) T 63(iu,,) 62(iu,,) + 63(iu,;) du. (6.30) 

The first term is the zero frequency contribution and includes Debye and Keesom forces. The second 
term is the dispersion contribution. 

In order to compute Hamaker constants it is necessary to know the dependence of the dielectric 
constant on the frequency. Hough and White [113], following Ninham and Parsegian [117], have 
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approximated c(iu) in the form: 

C1R CUV "~ n 2 
e ( i u ) = l + l + u / U ~ o t  + 1 +  - .  ; u~ /u , ,  CtR ~- eo -- n'; and Cur ~ - 1. (6.31) 

Such an approximation holds for materials with sharp, non-overlapping absorption peaks. The 
infrared term can be neglected when ¢0 ~ n2. Using the Hough and White approximation, and 
neglecting the infrared term, Eq. (6.30) becomes 

3hue (n~ - n~)(n~ - n~) (6.32) - - - ] - - -  
8 x/2 ~ + ns v n~_ + n 5 + n 5 + 

For two identical media (ca = ¢2 ¢ ¢3,nl = n2 ¢ n3), Eq. (6.32) becomes 
3 

(6.33) 
+ 16x/2 v/(nT + n~) 

Eq. (6.33) exhibits three interesting aspects. 
1. The Van der Waals force between two identical bodies in a medium is always attractive (A is 

positive), whereas the force between two different bodies may be attractive or repulsive. 
2. The Van der Waals force between any two condensed bodies in vacuum or in air (c3 = 1 and 

n3 = 1) is always attractive. 
3. The polar term cannot be larger than (3/4)kBT, which is about 3.6 x 10-21J at T = 300 K. 
Bergstr6m [112] has evaluated the accuracy of Ninham-Parsegian and Hough-White  approxima- 

tions, and the importance of the infrared contribution. 
For interactions between conductive bodies such as metals, Eq. (6.33) cannot be applied, since e is 

infinite. For two metals in vacuum the Hamaker constant is [15]: 

----;3 u,,jv,,2 = 4.  10-19J, (6.34) A 
8v'2 h G,l + re2 

in which Vel and ue2 are the plasma frequencies of the two metals. 
At large separations, the retardation effect becomes important, and a retarded Hamaker constant Ar 

has to be considered [111, 123]. The entropic Hamaker constant scales as kBT and the non-retarded 
Hamaker constant scales as hue. Similarly, the retarded Hamaker constant scales as hc (c is the speed of 
light). The characteristic wavelength 

A132 = 67rAr/A (6.35) 

indicates the onset of retardation. Ar depends on low-frequency indices of refraction n*. It is negative 
for n I < n* * * n* * n* 3 < n2 and positive for n* • 3 < n~ or 3 > n2" Anyway, since there is no correlation between 
and n, the Van der Waals force may be attractive at small distances and repulsive at great distances, and 
vice versa. 

Hamaker constants for materials commonly used in AFM are listed in Table 2. Usual AFM tips are 
made out of silicon nitride or silicon, one common substrate is mica and the colloidal probes are usually 
silica spheres. A complete list of Hamaker constants calculated with the full Hough and White 

ATOT = A,j=o + A,,>o 

3kBTCl - c3 Q - c3 
4 cl + c3 Q + c3 
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Table 2 
Hamaker constants (× 10 -20 J) through air (italic values) or water (bold values) for most common AFM materials as 
calculated by (a) Bergstr6m [ 112] using the Hough and White expression and the Prieve-Russel representation for water, (b) 
Bergstr6m using the approximate expressions Eqs. (6.31) or (6.32), (c) Senden and Drummond [124] using Hough and White 
method and Gingell-Parsegian representation of water. 

Si3N4 silicon mica silica 

Si3N4 16.7 ~'I, 16.2 ~b~, 4.85 m), 6.07 <c) 16.84 l':), 6.75 tc) 12.8 ~ ,  2.45 ta), 3.40 tc~ 10.8 "°, 1.17 m), 1.9 tc) 
silicon 18.6,5 ":~, 9.75 ~c~ 12.63 ~"~, 3.4ff c) 10.26 I':), 1.92 ~"> 
mica 9.86 "u, 9.64 ~b), 1.34 m), 2.01 ~c~ 8.01 ~), 0.69 m), 1.19 ~c~ 
silica 6.5 ~>, 6.39 ~b>, 0.46 m~, 0.77 ~'> 

approximation is given by Bergstrrm [112]. In Table 2 the values calculated by Senden and Drummond 
[124] are also included. In the case of water as a medium, Hamaker constants may differ up to 67% due 
to the different models of water used in the calculations. The exclusion of the infrared term brings an 
error of about 2%. 

6.2.2. Exper imenta l  results 

At the very beginning of the study of t ip-sample  interactions with the AFM, the importance of 
capillary force had not been realized, and some researchers pretended to measure Van der Waals force 
and sample surface energies in air. Weisenhorn et al. [57] were the first to realize the necessity of 
working in water if  one would like to perform measurement in absence of capillary force. 

Nevertheless, a lot of measurements have been performed in dry nitrogen. There are some common 
drawbacks affecting these initial experiments. 

1. The tips are rather large, so that the interaction is averaged over a large area and details are lost. 
Furthermore, any asperity on the tip turns to determine the interaction. 

2. Surface contaminants are likely to store up on a very large tip and cannot be easily eliminated. 
3. Maugis theory was still unknown, so that the elastic contact is modeled according to the JKR 

theory or according to the DMT analysis. 
The previous considerations do not hold for the study of Eastman and Zhu [104] and for that of 

Hutter and Bechhoefer [95]. The work of Eastman and Zhu [104] is focused on determining separately 
the contributions of capillary and Van der Waals forces (see Section 6.1). The work of Hutter and 
Bechhoefer [95] is the first measurement of the transition from the non-retarded regime to the retarded 
regime of the Van der Waals force. The power law is - 2  ( -2 .19  is the experimental value) for distances 
smaller than 16 nm and increases to - 3  ( -2 .92)  for distances larger than 20 nm. The exponent - 2  is 
characteristic for the interaction between a sphere and a plane. The increased exponent at larger 
distances is due to the retardation effect. Table 3 contains a list of  measurements performed in air or in 
dry nitrogen. Even if measured quantities have a large uncertainty, they often show a valid trend with 
surface energies. 

Fig. 24 shows a curve acquired on mica in water. Both attractive and adhesion forces become nearly 
10 times smaller than in air and the Van der Waals force makes the greatest contribution to adhesion 
since the meniscus has been removed. Also the pull-off distance is reduced by a factor of 10. 

Table 4 provides a list of measurements in water or water solutions. 
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Table 3 
Measured attractive force Fattr, adhesion force F~d, and surface energy % for experiments in air or in dry nitrogen: (a) The tip 
material and dimensions are unknown in this work, (b) The tips are colloidal particles, (c) PTFE = poly-tetrafluoroethylene. 

Ref. Tip radius Tip material/Medium/Sample Measured (calculated) 
(nm) 

Fattr ")'s F~,l 
(nN) (mJ/m 2) (nN) 

[ 18] 270 SiO2/air/graphite, LiF 
[57] ' ~'' ~ ~)/air/mica 
[44] 5(I-100 tungsten/dry N2/silicon 
[42] 100-200 tungsten/dry N2/gold 

tungsten/dry N_,/graphite 
[125] 2500 tungsten/dry NJmica 

/graphite 
/PTEE ~ c 

2000 /stearic acid 
/A1203 

3000 /trifluorostearic acid 
[55] 200 Ni/dry N2/Au 
[21] 270, 27.5 tungsten/air/graphite 
[95] 40 Si3N4/air/mica 

[ 126] 20-50 Si3N4/air/glass 
[ 104] 100 Si3NJair/mica 

gold/air/mica 
paraffin/air/mica 

[62] 5000 tt~) iron oxide/air/silica 

100, 160 
4OO 
50 

750 270-540 ~ 750 
140 ~ 250 

230 ± 30 330 ± 150 
140 ± 90 220 ± 120 
2 ± 2  2 1 ± 2  (18) 5 ± 5  
17 ± 11 2 4 ± 2  (21) 35 ± 11 
85 ± 25 41 ± 4 (45) 100 ± 25 
5 ± 4 23 ± 2 (20) 20 ± 8 

3000 4000-5000 
15-40, 60-80 ~ 24, ~ 8 

0.6 

3 (163) 

300 
192 (184) 
51 (48) 
17 (16) 

F: 

"'b.~ 
"q? 

• . o  . 
o t. 

"t 

÷o.. 

Z 

.24 nN I__ 

7.5 nm 

Fig. 24. Force~displacement curve on mica in water with a silicon nitride tip (R between 50 and 100 nm). Note the inverse 
path effect on the contact lines (adapted from [128]). 
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Table 4 
Measured attractive force Fattr, adhesion force Fad, and Hamaker constants A for experiments in water. Tips labeled with (a) 
are colloidal probes. 

Ref. Tip radius Tip material/Medium/Sample Measured (calculated) 
(nm) 

A Fattr F.d 
(xlO 19 j) (nN) (nN) 

]91 ] 9000 ~) TiO2/TiO2 0.6 i 0.2 
[93] 3300 ~), 100 ~) Au/Au 2.5, 2.5 
[69] 160-260 I') Si3N4/Si3N4 0.32-2.2 (0.61) 

130-280 I"~ Si3N4/mica 0.06-1.7 (0.34) 
[127] 30-50 Si3N4/stearyl amine 

/stearic acid 
/stearyl amide 

[48] 20 Si3N4/mica 
/lysozyme 

[77] 2201 ~'~ Si~N4/Si3N4 
[ 101 ] 50 Si3NJSiO2 

/Si3N4 
[62] 5000 I"~ iron oxide/silica 

[128] ~ 50 

1.3 

Si3N4/mica 0.24 
Si3N4/stearic acid 1-3 
Si3NJAu 0.4 

3-5 
1-1.5 

0.5 
0.8-1.4 
0.2-0.4 

44 (45) 
50 
(3' in mJ/m 2) 

0.3 (51) 
1.4 

10 

Hartmann [123, 129] has calculated, according to Lifshitz theory, the Van der Waals force in different 
liquids (H20, glycerol, CCI4, H202,  formamide, and glycol) verifying that the force is reduced by a 
10-fold factor (or 100 for the last three liquids). For CCI4 the Van der Waals force is attractive at 
any distance. For formamide and glycerol it is repulsive, because their dielectric functions exhibit 
a rather strong polar contribution. For H 2 0 ,  H202,  and glycol there is a transition point from the 
attractive to the repulsive regime between 100 and 1000 nm. This effect is due to the retardation of 
the dispersion contribution that becomes smaller than the polar repulsive term. Unfortunately, the 
Van der Waals force becomes very small at such distances. Hence it turns out to be very difficult to 
detect such inversion points. In Fig. 25 a force-displacement curve acquired on mica in formamide is 
shown. Before the jump-to-contact and after the jump-off-contact, the force follows a D -2 law and is 
repulsive. 

In water, another phenomenon can be observed, namely the hydrophobic meniscus force. If the 
sample surface is made hydrophobic by means of  a layer of hydrocarbons and is dipped in water, after 
the tip has contacted the sample, hydrocarbon molecules form a meniscus that exerts a strong adhesion 
force. Thus the sample has to be withdrawn for a rather long distance before the tip detaches from the 
sample surface. Such a meniscus force results in withdrawal curves with a "slide-off-contact", i.e., a 
gradual and continuous pull-off, instead of a jump-off-contact. The attractive hydrophobic force can be 
hardly seen in Fig. 26. The jump-to-contact is rather big, however, and this cannot be due to the 
Hamaker constant. The attractive hydrophobic force is treated in detail in Section 6.6. Similar curves 
can be obtained on gold or platinum [61], because metals become hydrophobic when exposed to air due 
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0.1 nN 
~ m  

10 rm~ 

W~c'~'v'~' .?.~'Z. ~ ' L  " . . . .  v ~ " "  t.,~¢--, , Z 

Fig. 25. Force-displacement curve in formamide with the repulsive van der Waals force just before the contact line and just 
past jump-off-contact (the continuous line is the approach curve). Note the splitting of the two zero lines of the approach and 
the retraction curve due to the viscosity of the medium (adapted from [128]). 

to the adsorption of a thin layer of  alkanes. Such "slide-off" curves become "jump-off" curves if gold 
is dipped into ethanol or cleaned with ethanol, which dissolves the alkane layer. 

Experiments carried out in several liquids are summarized in Table 5. In addition to the works listed 
in Tables 4 and 5, those on double-layer force also contain measurements of the Van der Waals force of 
the system, since it is necessary to subtract the Van der Waals contribution in order to correctly estimate 
the double-layer force. Sometimes the Van der Waals force is computed on the basis of theoretical 
Hamaker constants in order to measure experimentally the double-layer force. Some authors compute 
the double-layer force and then experimentally measure the Van der Waals force. 

' \  
%'~'::%, 

N \  / 

0.9nN I 
35 rim 

Fig. 26. Hydrophobic meniscus on gold in water• The pull-off is larger than on mica, and it is gradual and continuous over a 
distance of about 40 nm. Also the pull-off distance is larger than on mica (adapted from [128])• 
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Table 5 
Measured attractive force F~ttr, adhesion force F,~, and surface energy 7 for experiments in different liquids. Quantities labeled 
with (a) are unknown, tips labeled with (b) are colloidal particle. (c) PTFE = poly-tetra-fluoro-ethylene, PFMCH = per-fluoro- 
methyl-cyclo-hexane. 

Ref. Tip radius Tip material/Medium/Sample Measured (calculated) 
(nm) 

A Fattr Fad 
(×10 19 j) (nN) (nN) 

[61 ] 50 Si3Na/ethanol/mica, Au 
/mica 
/platinum 
/H20 ÷ ethanol/platinum 
/ethanol/platinum 
/formamide/mica 

~a~ WC/ethanol/Au 
/mica 
/mica 
/Au 
/formamide/Au 

[78] 50 Si3N4/ethanol/mica 
/bromo-naphtalene/mica 
/methyl-naphtalene/mica 

[101] 50 Si3N4/acetone/SiO2, Si3N4 
/ethanol/SiOz, Si3N4 

[ l 31 ] ca), ~b) Au/cyclohexane/PTFE ~c) 
/p-Xylene/ 
/bromobenzene/ 
/perfluorohexane/ 
/PFMCH~C)/ 
/formamide 

[128] ~ 50 Si3N4/formamide/mica 
/ethanol/ 

[ 130] 50 Si3N4/diodomethane/Si3N4, SiO2 
/bromonaphtalene/SiO2, Si3N4 

1.16 
- 0.07 
- 2 . 3 6  

- 0.55 ( - 0.52) 
- 0.5 ( - 0.48) 
- 0.55 ( - 0.76) 
0.07 (0.125) 
0.05 

- 0.4 

0.14 0.2, 0.2-0.5 
0.06 0.2-1.5 
26 55 
20 29 
0 0 
- 0 . 1 2  - 0 . 1 2  

0.3 0.5 
0.2-0.5 
0.5-2 

6 10 
7 15 

14 (15), 32 
12 (13), 20 

- 0 . 1  
0.1 

(0.1), ( - 0 . 0 8 )  0.1, ~ - 0 . 2  0.6, ~ - 0 . 2  
( -- 0.02), (0.3) ~ -0.1 --~ -0.1 

The work of Weisenhorn et al. [61 ] has been of outstanding importance in the development of force-  
distance curves acquisition. Measurements have been done in water, ethanol and formamide for three 
kinds of systems: non-metal/non-metal, non-metal/metal and metal/metal. In water, the forces for non- 
metal/metal or metal/metal systems (S i3N 4 on  platinum or gold and WC on Au) are very much bigger 
than for non-metal/non-metal systems (S i3N 4 on  mica). The authors demonstrate that this is due to the 
hydrophobic meniscus by dipping the metals in ethanol or ethanol-water mixtures. The force 
progressively decreases due to the dissolving of the alkane layer. Forces in ethanol are of the same 
order for all the three systems. In formamide, the force between Si3N4 and mica is repulsive, while it is 
strongly attractive for WC and platinum. This is once again due to the hydrophobic meniscus, which is 
smaller than in water. 
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Table 6 
Measured and calculated adhesion force for different polymers in 
perfluorodecalin. All data are taken from the Ref. [132]. The polystyrene 
tip is a colloidal particle. (a) FEP = poly-tetra-fluoro-ethylene-co-hexa- 
fluoro-propylene; PVDF = poly-vinilidene-fluoride; PAN = poly-acriloni- 
trile; PAA = poly-acrylic acid; PMMA = poly-(methyl-methacrylate). 

Tip radius Tip material/Sample Measured (calculated) 
(nm) F~o (nN) 

51 SiOx/FEP ''~ 0.18 ± 0.08 (0.39) 
/PVDF ~'~ 0.62 ± 0.2 (1.23) 
/polypropilene 2.07 + 0.15 (1.98) 
/polystyrene 2.98 ± 0.16 (2.76) 

20 /PAN ~'~ 1.32 -t- 0.15 (0.26) 
/PMMA "~) 1.84 ± 0.16 (0.73) 
/PAA I"! 2.13 ± 0.14 (0.84) 
/polystyrene 0.66 ± 0.1 ( 1.08) 

3 7 5 0  polystyrene/PAN"" 54.4 ± 20.6 (55.5) 
/PMMA ~') 113 ± 4 (203) 
/PAA ~''~ 75.4 + 4.5 (231) 
/polystyrene 135 ~_ 7.5 (314) 

In the work of  Hutter and Bechhoefer  [78] different liquids are chosen in order to minimize the 
Hamaker  constant and hence the Van der Waals attraction. The Van der Waals force is attractive in 
ethanol and repulsive in methyl-naphtalene, but it is nearly zero in bromo-naphthalene. Therefore,  this 
liquid could be used in contact mode to enhance lateral resolution (see also Ref. [130]). 

Finally, the work of  Milling et al. [131] is designed to measure repulsive Van der Waals forces in 
different liquids. Nevertheless, some liquids with attractive Van der Waals forces are studied. 

Feldman et al. [132] have shown the possibility of  a kind of  force spectroscopy on polymers.  The 
best liquid for distinguishing samples is perfluorodecalin (PFD), since it shows the best signal-to-noise 
ratio. Measurements are all performed in PFD (see Table 6) using a glass or a polystyrene colloidal tip. 
The "exac t "  adhesion force is calculated on the basis of  the JKR theory. Although a sensible trend for 
the adhesion force is found in the case of  the first four polymers listed in Table 6, considerable 
discrepancies between the calculated and measured values occur for all the other measurements.  These 
discrepancies are attributed to the microasperities of  the polystyrene tip and to the presence of  other 
interactions (e.g., hydrogen bonding) not accounted for in the Lifshitz theory. 

A very interesting experiment is that of  Mulvaney et al. [133], in which the authors have measured 
the forces between an oil (decane) droplet and a glass colloidal particle. The contact lines of  the curves 
acquired with such a system depend on the scan rate. At very low scan rates (<0.5 Hz), the lines show a 
large number  of  high frequency oscillations and in the region between 0.5 and 2 Hz the lines show 
numerous, regularly spaced waves. At higher scan rates the oscillations are no longer evident. The Van 
der Waals force between glass and decane in water has been measured at low scan rates and the 
Hamaker  constant is 6 × 10-21-t - 3 x 10 -21 J, in good agreement with the theoretical value of  
3 × 10 21 _ 7 x 10 21 j. 
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The experiments dealing with the determination of the Van der Waals force have demonstrated that 
the AFM is a useful tool in the study of this fundamental force. Measurements can be performed in any 
kind of liquid and between any kind of surfaces with high resolution. The exact determination of 
Hamaker constants is not a simple issue, but for several materials this has been achieved in good 
agreement with theoretical predictions. In other cases, the presence of other forces, the difficulty of 
eliminating contaminants, and the lack of knowledge of the tip shape make the measurement more 
problematic. The capability of distinguishing the Hamaker constants of very similar materials also has 
been demonstrated. The recent measurements of the Van der Waals force at a liquid/liquid interface are 
of outstanding importance. 

6.2.3. Dependence on tip shape 

Hartmann [1 1 1] has calculated the effect of tip shape assuming a Van der Waals force in the form: 

A 
F = g ~ 7 ,  (6.36) 

in which g is a geometric factor that he has calculated by means of Lifshitz theory and A is the Hamaker 
constant, which is shape independent. 

Hartmann has pointed out that, like Hamaker constants, geometric factors also depend on retardation. 
The retarded Van der Waals force decays on smaller distances, and hence involves a smaller effective 
volume than the non-retarded Van der Waals force. The non-retarded factor gn, the retarded one gr, and 
the power law index n of the non-retarded Van der Waals force are indicated in Table 7. The power law 
index of the retarded force is n + 1, and there is a transition from n to n + 1 for D > 5,~132. In the 
present context the most important result is that the Van der Waals force decays as  D -2  for the most 
realistic probe geometry, i.e., the paraboloidal apex. 

Hao et al. [21] have calculated a correction factor for the flat-sphere system in order to take into 
account the elongated nature of the tip. Considering the tip as a cone of semiaperture 0/2 and length L, 
ending with a sphere of radius R, for D << L they obtain: 

F ( D ) -  6D 2AR(1 -~ Dtg2-(O/2)). (6.37) 

The correction factor is negligible for D << R. 
The distribution of microasperities on the tip and/or on the sample has a dramatic effect on the 

calculated Van der Waals forces. Generally, the effect of microasperities is to greatly reduce the force, 

Table 7 
Retarded and non-retarded geometric factors for three 
geometries as calculated by Hartmann [111]. /xy and lz are 
the semiaxes of the paraboloid, R is the radius of the cylinder 
and 0 the semiaperture of the cone. 

g,, gr n 

Cone (tg20)/6 (Tr/3)tg20 1 
Paraboloid IZy/121~ rr/2xy/31z 2 
Cylinder Re/6 rrR 2 3 
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because the effective contact radius is smaller than the overall radius. Cohen et al. [43] have calculated 
that a distribution of microtips with mean radius of 20 A and 4 A r m s  deviation would reduce the 
adhesion force by more than 90%. 

Bordag et al. [ 134] have calculated the corrections to the Van der Waals force corresponding to two 
types of deviations of the tip from the paraboloidal shape. The deviations of the first type are small 
protrusions on the tip surface that, in this case, can be described by the formula: 

p2 
zl (p) = ~ + (f(x, y), (6.38) 

in which p is the cylindrical coordinate, R the tip radius, and (f(x,y) is the stationary stochastic 
function with dispersion ( and mean value (~f(x, y)) = 0. The second type of deviations corresponds to 
a possible deformation of the tip surface described by 

z2 - [p + ~g(~)]2, (6.39) 
2R 

in which p and ~? are cylindrical coordinates and g(~) is another stationary stochastic function with 
dispersion ( and zero mean value. 

In the first case the correction to the Van der Waals force is 

X -  1 + +15 (6.40) 6D 2 D " 

In the second case the correction is 

AR[ ( ~ ) 2  3 ( ~ ) 4 1  
F - -  6D 2 1 +  ~ - ~  ~ . (6.41) 

For ~/D ~ 0.1 the contribution of the second order correction is about 3%, while the contribution of 
the fourth order term is negligible. For ~/Rv/-R-D TM 0.1 the correction to F0 according to Eq. (6.41) is 
about 0.1%. 

Toikka et al. [62] have verified the effect of microasperities on the tip. They measured the Van der 
Waals force for the system iron oxide/air or water/silica with a colloidal probe of radius --- 5jam. The 
measured value of the Van der Waals adhesion energy is very much smaller than the calculated value 
(see Table 2). If the calculation is made with the characteristic dimension of the asperities (between 10 
and 40 nm) instead of the overall radius of the colloidal probe, experimental and calculated values are 
in agreement. They argue that asperities on the tip decrease the adhesion force not only because the 
effective radius is smaller than the overall radius, but also because a thin layer of water solution stays 
between the tip and the sample surface, thus exerting a repulsive double-layer force. 

Cohen [39] has considered the effect of a layer of contaminants of height X adsorbed on a tip of 
radius R at a distance D from the sample surface. The interaction between the spherical tip and the flat 
sample is affected by the layer of contaminants as follows: 

A I2RD + D2 2(D + R) 3D + 2R ] 
W = ~ 2(D + X) 2 (D + X) + 2----D~ + In D + ln(D + X) . (6.42) 
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For R >> D, the force is given by 

A [ R  RD + 3RX] _ F- -  
6 D 2 (D TX)3-]  ' 

For D = 5 A and X = 7 ,~ the contaminant layer decreases the attractive force by about 50%. 

6.3. Double-layer force 

(6.43) 

6.3.1. Theory 

Usually, all surfaces of high dielectric constant in water or other liquids are charged. The charging 
may occur via either dissociation of surface groups (e.g., COOH--~COO-+H +) or adsorption of ions 
from the solution. Whatever be the charging mechanism, the final surface charge is balanced by a 
charged region of counterions of equal and opposite charge. Some of these counterions are bound to the 
surface in the so-called Stern layer, while others form an atmosphere of ions near the surface known as 
electric double-layer. 

Following [15], consider two equally charged surfaces at a distance D and a liquid solution in 
between. The coordinate system is illustrated in panel (a) of Fig. 27. 

If ions are present in solution, the chemical potential of each species of ion can be written as 

# = ze~(x) + kB T log p(x), (6.44) 

in which ~(x) is the electrostatic potential and p(x) is the number density of the counterions of valence 
z at each point x between the surfaces. Let ~(0) = ~0 = 0, p(0) =/90, and (d~/dx)0 = 0 (x = 0 is the 
midplane between the two surfaces). Then the Boltzmann distribution of counterions is given by 

p(x) = Po exp(-ze~(x) /ksT). (6.45) 

@ @ @"-" ~ @ @ @ ~ ®©~® 
........ G.....~ ............ ~.....o.......°........x~ ° ....... e @ @ @e G 

Q counter'ion • ion @ electrolite ion 

(a) (b) 
Fig. 27. Panel (a): the coordinate system employed in the derivation of the double-layer force without electrolyte ions (Eqs. 
(6.44)-(6.59)). D is the t ip-sample distance and the tip and sample surfaces are at x = +D/2. x = 0 is the midplane. Panel 
(b): the coordinate system employed in the derivation of the double-layer force with electrolyte ions (Eqs. (6.60)-(6.75)). D is 
the t ip-sample distance, x = 0 is the sample surface. The distribution of the counterions and of the electrolyte ions in the 
liquid gap is also sketched. 
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Eq. (6.45), together with the Poisson equation, yields 

_ _  ( ze'(;(x)~ d Z ~ ( x )  zep(x) zepOex p . (6.46) 
dx2 co0 co0 / 

This is the Poisson-Boltzmann equation. Solving Eq. (6.46), one obtains the potential ~(x), the electric 
field E(x) = d~(x)/dx, and the counterion density p(x). 

The two boundary conditions needed to solve Eq. (6.46) are 

d~(x) o = 0, (6.47a) e 0  - 

[,)/2 I D/2 d2~(x) dQ(x) o/? 
(7 = - zep(x) dx = eEo dx 2 dx = e e o ~  = eeoE~. (6.47b) 

J0 J0 

The latter condition means that the total charge in the liquid gap is equal and opposite to the surface 
charge, o-. 

Next consider the counterions distribution. Differentiating Eq. (6.45) and inserting Eq. (6.46), yields 

dp(x) zepo ( ze~(x)'~ d~(x) cco d~(x)de~,(x) CCo d ( ~ )  2 
dx - k ~  exp ~ T  ) ~ - k s T  dx dx 2 -2kBTdx  (6.48) 

and hence 

p ( x ) -  p()= d p -  Ix d (d~(x)'] (6.49) 
2kBTJo \ dx ) 2kBT 

Using Eq. (6.47b), the value Ps of p(x) at the surface (x = +D/2) can be determined: 
O-2 

Ps = Po + 2eeokBT" (6.50) 

Eq. (6.50) shows that the concentration of ions at the surface depends only on o- and P0. Most of the 
counterions balancing the surface charge are placed in the first few angstroms near the surface. 
However, for lower densities (7, since p,~ o( o-2, the counterions layer extends well beyond the surface. 

The Poisson-Boltzmann equation can be satisfied by 
/ 

~'(x) = kBT l°g c ° s Z z e  Fx, I" = ~/2cC0kB(Ze)2P°T. (6.51) 

1-' can be determined from Eq. (6.51) if E~ is known: 

E(x) -- d~(x) _ 2kBrr tgrx  ~ E~ - o- - 2kBrFtgVD-- (6.52) 
dx ze eCo ze 2 

The counterion distribution 

( ze~(x)~ Po (6.53) 
p(x) = P0 exp k ~  ) - cosZ---Fx 

is known once F is determined in terms of o- and D. 
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Since OP/Oxlx.v = pO#/Ox[~,T, the variation in pressure resulting from bringing the two surfaces 
from an infinite distance to a distance x = D/2  is 

P(x) = - l z e p ~  d ~ +  ~ r d p ( x )  , (6.54) 
=D/2 

in which x is the fixed point in which values are computed and ~ is the variable separation between 
surfaces. Substituting the Poisson equation into the previous equation we obtain 

¢¢o -kBTp~(x) ,  (6.55) ¢e0 +kB Tp ° (x) + --~ pO (x) - P~ (x) -- 2 x(O) 

in which P°(x), P~  (x), p°(x), and p~ (x) are the pressures and the distributions when the two surfaces 
are at a distance D and at an infinite distance. In the case that no electrolyte ions are present in solution, 
p~ (0) = P'~ (x) = 0. Thus pD (x) is the sum of two contributions. The first one, always attractive, is the 
contribution of the electrostatic field and the second one is the osmotic or entropic contribution and it is 
always repulsive. 

From Eq. (6.55) one can see that the origin of the repulsive force between charged surfaces in 
solution is not electrostatic (the electrostatic term is always attractive), but entropic. What keeps the 
double-layer of counterions expanded is the osmotic pressure that compels counterions away from the 
surfaces and far from each other, in order to increase the configurational entropy. By bringing the two 
surfaces in contact, the counterions in solution are forced to come in contact with the surfaces, against 
their equilibrium configuration. 

Inserting Eqs. (6.49) and (6.50) into Eq. (6.55) it is possible to derive an expression for the pressure 
at the surface (x = +D/2) :  

pO = kBTpD(O) = kRT[p~ - p~]. (6.56) s 

This important equation, known as the contact value theorem, is always valid as long as there is no 
interaction between counterions and surfaces. 

Using Eqs. (6.46) and (6.51) to evaluate pD(0) in Eq. (6.56) leads to an expression for the pressure in 
terms of F : 

,.) 

P = kBTpo = 2ee0 k 
z e  / 

In order to evaluate Eq. (6.57) for two limiting cases a ~ c~ and D ~ cx~ one needs to know F. For 
a ~ cx~, Eq. (6.52) yields ED/2 ~ 7r/2. For D ~ 0, tg FO/2  ~ FD/2  and Eq. (6.52) yields 
E 2 ~ -aze/eeokBTD. In the first case the Langmuir equation is obtained: 

lim P(D) = 2cc°(TrkBT/Ze)2 (6.58) 
FD/2~Tr/2 D 2 

In the second case: 

2akB T 
lim P(D) -- (6.59) 

F 2 ~crze/~ccllkB TD zeO 
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The simple form for the Poisson equation, Eq. (6.46), is valid only if there are no electrolyte ions in 
solution. If there are electrolyte ions in solution, Eq. (6.45) must be written for each kind of ion and the 
sum used for p(x) in Eq. (6.46). In this case the total concentration of ions at the surface is 

O-2 
ZPOi = Zp-vi + - -  (6.60) 

i i 2cc0kB T 

in which zi is the valence, Poi the distribution at the surface, and P~ci is the distribution at an infinite 
distance for the ith ion. In the following, the x coordinate origin is changed, since one of the surfaces is 
now at infinite distance. Hence x = 0 now indicates the surface position and no longer the midplane. 
The new system of coordinate is illustrated in panel (b) of Fig. 27. 

The ions at the surface are mainly the counterions. Their excess concentration over the bulk 
concentration depends only on O-. From Eq. (6.60), it is possible [15] to determine the relation between 
O- and ~'0 in the case of a mixed KCI+CaCI2 electrolyte: 

K~- 9-- = 2ee0kBr([ ]~ exp(-e~o/kBr) + [Ca- ]~ exp(-2e~0/kBr)  + [C1-]~ exp(e~0/kBr)) 

- + [Ca>l  + (6.61) 
Since [C1 ]=[K+I+2[Ca2+], Eq. (6.61) becomes 

O- = ~ [ K  *] ~ {exp(-e~0/kR T) + exp(e~o/kB T) - 2} 

+ ~ [ C a > ] : ~ { e x p ( - 2 e ~ o / k B T )  + 2 exp(ewo/kBT) - 3} 

= ~ s i n h ( e ~ o / k B r )  [K+]~, + [Ca - ]~(2 + exp(-e~,o/kBT)). (6.62) 

Eq. (6.62) is the Grahame equation. This equation shows that, at constant surface charge density, the 
surface potential decreases with increasing electrolyte concentration. In the presence of divalent cations 
the surface potential decreases more than in the case of monovalent ions. 

In most cases, when there are electrolyte ions in solution, neither O- nor ~0 stay constant, because of 
reactions at the surface. Such reactions at the surface can be described by means of a reaction constant 
that can be inserted in Grahame equation. Parsegian and Gingell [135] have studied the consequences 
of these surface reactions. Their results can be summarized as follows: 

(1) The interaction potential is always intermediate between two limits. 
(2) The upper limit corresponds to the case of constant charge. 
(3) The lower limit corresponds to the case of constant electric potential. 

A particularly interesting limit of the Grahame equation is the limit at small potentials. Below 25 
mV, Eq. (6.62) becomes [151: 

(6.63) o- = ~CoKDg'O, 

in which 

/~'-~ pvc, ie2z 2 
KD=V/-~ ~ "  (6.64) 
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Eq. (6.63) is analogous to the equation for a capacitor with charge density +or, potential ~0, and whose 
plates are separated by a distance 1/KD. The characteristic length 1/KD is the Debye length. The Debye 
length depends only on solution properties and not on surface properties. At 25 °C the Debye length of 
aqueous solutions is: 

{ 0 . 3 0 4 / [ x / ~ n m  
1 =  0 .17 6 / [v /~ n m 
KD 0 .15 2 / [v /~ n m 

for 1 : 1 electrolytes, 
for 1:2 or 2:1 electrolytes, 
for 2: 2 electrolytes, 

(6.65) 

in which [X] is the electrolyte concentration in moles. 
In the general case, i.e. for any potential, the electrostatic potential is given by 

2kBTlog 1 + 7e -KDx 4kBT - "~ 7e KDX 
e 1 - -  ~ e  - K D x  - -  e (6.66) 

where 

. , e f f Y 0  

7 = tgn4--kn T • (6.67) 

This is known as the Gouy-Chapman theory. At strong electric potentials 7 -~ 1, whereas, for small 
potentials, Eq. (6.66) becomes the so-called Debye-Htickel equation: 

~(x) - fJo e -xD*. (6.68) 

For an 1:1 electrolyte the interaction pressure and the interaction energy are given by [15]: 
2 

P = 64kBTp~72 e -KDD and W = 64kBTp~ ~ e  -x°D. (6.69) 

For small potentials Eq. (6.69) becomes 

0 -2 0-2 
= = e -x°D. (6.70) P 2--ce0e-KDD and W 2KDCe0 

Since KD is proportional to the electrolyte concentration p, the force and the potential are inversely 
proportional to the salt concentration. 

Generally in an AFM the tip and sample have different surface charge densities. Parsegian and 
Gingell [135] have described the double-layer force per unit area between two semiinfinite surfaces 
with surface charge density al and 0-2 at a distance D in the limit of small potentials (< 25 mV): 

2 a~ + ~r~ + O-lO-2(e KDD -+- e KDD) 
fd, = - -  (6.71) 

(eKoD -- e-KD )2 

If KDD >> 1, Eq. (6.71) becomes 

2 fd, = [(0-~ + 0-~)e ZKDD + 0-, Cr2 e-KDD]. (6.72) 
E'E0 
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Butt [136] has computed the double-layer force between a flat sample and a spherical tip with radius 
R by integrating Eq. (6.72) on circular sections 2rrrdr (Derjaguin approximation): 

Fd, -- ~coK~rr ~ [(aT + a2 ) ,e_ZKDR + 2KDR - 1)e -2xDl) + 4aTas(KoR + e -xDR - 1)e KDt)], (6.73) 

in which O'T and as are the tip and sample surface charge densities. If KDR >> 1, Eq. (6.73) becomes 

2rcR ~2 ~--2KDD Fdl -- - - [ ( a  T -? tJs)c + 2a~as e-KDt~]. (6.74) 
CCoKD 

If err << as, i.e., if the tip is neutral, the first term in Eq. (6.74) dominates and the double-layer force 
decays with 1/2KD, whereas, if aT ~ aS, the second term dominates and the double-layer force decays 
with 1/KD. However, for D > (1/Kt)) In ((a~ + as) /ZaTas ), the second term in Eq. (6.74) is always 
dominant. It should also be noted that the double-layer force between two bodies with different surface 
charge may be attractive, whereas the double-layer force between two surfaces with the same surface 
charge density is always repulsive. 

A similar, approximate expression can be derived in the case of constant potential [137]: 

Fdl = 47rccoRKD~/JT'~,S e xol). (6.75) 

Also in this case, the double-layer force may be attractive or repulsive depending on the sign of the 
potentials product. 

The behavior of oxide-like materials, such as Si-OH, is particularly important for the AFM. For such 
materials, the potential is governed by the amphoteric character of surface sites, i.e., the groups can act 
as proton donors (Si-OH---+SiO) or proton acceptors (Si-OH--+SiOH~-). Therefore, both pK + for 
donors and pK for acceptors must be defined and the point of zero charge (PZC) is equal to the 
quantity (pK + + pK-) /2 .  The surface potential is positive (negative) when the pH of the solution is 
smaller (larger) than the PZC. If both tip and sample are oxide-like materials, two isoelectric points 
(IEP) can be defined when the potential becomes zero for either the tip or the sample. Hence the 
double-layer force is repulsive for pH values smaller than the smallest IEP or larger than the largest IEE 
and is attractive in between. 

6.3.2. Experimental results 

In order to introduce the experimental results on double-layer force, a specific AFM measurement of 
these forces is presented first. In this experiment, the AFM tip is made of silicon nitride and the 
substrate is mica. The electrolyte is KC1 and the Debye length is varied by varying the KC1 con- 
centration at constant pH. The force-displacement curves at different concentrations are depicted in 
Fig. 28. 

Increasing the concentration up to 0.1 M, three changes occur: 

1. the repulsive force becomes smaller and smaller; 
2. its decay length diminishes; 
3. the Van der Waals force appears. 

At 0.1 M KC1 concentration, the force-displacement curve resembles the one in deionized water 
(Fig. 23). Since deionized water is a weak electrolyte (10 7 M in both H30 + and OH ), it should show 
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Fig. 28. Force~lisplacement approach curves associated with double-layer force between a silicon nitride tip and mica in KC1 
solutions of different concentration. The tip radius is estimated between 50 and 100 nm. On the x-axis, the sample position in 
nm. On the y-axis, the force in nN (adapted from [128]). 

the highest double-layer force. However, this long range force is acting on distances well beyond the 
range of the AFM tip motion. Therefore, it is not possible to detect the actual zero line and to define the 
zero force reference. 

These results were first obtained by Butt [138] with Si3N4 tips on mica, diamond tips on mica and 
glass tips on glass, by Weisenhorn et al. [61], by Atkins and Pashley [92] with a ZnS colloidal sphere on 
mica, and by Li et al. [94] with polystyrene spheres on polystyrene spheres or mica. Only a qualitative 
comparison can be done, since the tip radius of curvature is unknown. In all papers, in order to deduce 
the Debye length, the force law has been fitted with the second term of Eq. (6.74), since one supposes 
Kt)D >> 1 and KDR >> 1. A good agreement has been found in all the cases. Weisenhorn et al. have 
obtained a remarkable agreement with Eq. (6.65) (Debye length = 0 . 3 0 8 / ~  nm). The fact that 
only the second term of Eq. (6.74) is needed to fit the experimental data implies that the surface charge 
density of diamond and silicon nitride are comparable to that of mica. This evidence contradicts what 
one would expect for these two materials. In the case of Si3N4 the origin of the surface charge could be 
explained by the presence of small amounts of oxide [138]. 

Similar series of curves can be obtained in other electrolyte solutions, e.g., MgC12 [138], CaC12 [139] 
or Ca(NO3)2 [140]. Using a 2:1 salt, the Debye length decreases, and the double-layer force vanishes at 
a 30 mM concentration. In order to measure the dependence of double-layer force on tip and/or sample 
surface charge, a sample whose surface charge density depends on pH has to be employed. 

Fig. 29 shows force-displacement curves on stearic acid in different pH solutions. Stearic acid pK is 
nearly 8. This means that, at pH less than 8, the sample surface is uncharged, there is no double-layer 
force and there is a jump-to-contact due to the Van der Waals force (1-3  nN). At pH 8.1 the surface 
begins to charge and the double-layer force counterbalances the Van der Waals force, so that there is no 
jump-to-contact. Finally, at a pH greater than 8, the double-layer force appears. 

Ishino et al. [127] have characterized the charging of several functional groups as a function of pH. A 
behavior similar to that shown in Fig. 29 was observed for stearic acid and steryl amide (in this case, 
repulsive forces are observed for pH> 10.5). Butt [138] has shown the transition from double-layer 
force to Van der Waals force for an alumina tip on mica. Mica is negatively charged at any pH value, 
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Fig. 29. Dependence of double-layer force on the surface charge of a stearic acid sample. Curves are acquired at different pH 
with a silicon nitride tip (tip radius between 50 and 100 nm). On the x-axis, the sample position in nm. On the ),-axis, the force 
in nN. 

whereas alumina is positively (negatively) charged below (above) pH 8.1. The forces are repulsive 
above pH 8.1 and attractive below pH 8.1. 

Several studies have been dedicated to the double-layer force on oxide-like materials. 
Raiteri et al. [141] have studied the pH dependence of forces for Si3N4 tips on Si3N4, A1203, and 

mica, demonstrating the capability of AFM in determining the PZC of such materials. For Si3N4 on 
Si3N4, forces are always repulsive with the exception of a range around pH 6-7.  This means that the tip 
and sample always bear a charge of the same sign and that the PZC is around pH 6.5. For Si3N4 on mica 
the total tip-sample force changes from attractive (for pH _< 6) to repulsive (pH ~ 8). This is consistent 
with the fact that mica is negatively charged and the PZC of silicon nitride tip is around pH=6.5. For 
Si3N4 tips on A1203 the forces are always repulsive, with a repulsion minimum at pH=4.3. Hence the 
PZC is between pH=4 and pH=5. In addition to the experimental results, the authors introduce a 
simulation method based on the computation of the double-layer force by means of Eq. (6.73), in which 
the tip and sample charges are calculated according to the site binding theory. Such a method predicts 
well the qualitative behavior of double-layer force for all the three samples. 

Similar results have been obtained by Karaman et al. [142] for an A1203 substrate with aluminum or 
Si3N 4 tips, and by Senden and Drummond [124] for mica with a silicon nitride tip. In this work, the pH 
dependence of double-layer force with and without background electrolyte is investigated, and 
measurements at constant pH with different electrolyte concentrations have been performed. The 
curves are fitted taking into account both the Van der Waals force and double-layer force (see also Ref. 
[143]). 

Arai et al. [144] have measured the PZC of A1203, SnO2, and SiO2 with a Si3N4 tip in buffer. The 
PZC are measured by monitoring the amplitude of the repulsive or attractive forces at different pH (2-  
12) at a distance corresponding to 1/2Ko, i.e., 15 nm, in order to make Van der Waals force negligible. 
For A1203 the results agree with those of Raiteri et al. For SnO2 forces are repulsive below pH=6 and 
above pH=10. The first IEP is due to the PZC of SigN4, the second to that of SnO2. The SiO2 has a PZC 
at pH ~ 2, and hence there is only an IEP due to Si3N4 (see also Refs. [17, 144, 145]). Furthermore, the 
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authors have studied the pH dependence of forces on a SiO2 substrate partially covered with 
hydrocarbons. They show that both attractive (at pH=3) and repulsive (at pH=10) forces are stronger 
on bare SiO2. Such a behavior indicates that the surface charge density of bare SiO2 is larger than that 
of the HC-covered quartz. When the quartz is uncharged (pH=6.8), the force-displacement curves on 
the two substrates overlap and show a slight repulsive double-layer force due to the tip charging. 

Lin et al. [137] have once more studied the IEP for a silicon nitride tip on SiO2 with two different 
methods. The IEP due to silicon nitride is 6.2 4-0.2 and 5.8 4-0.4 (see also Ref. [62] for the deter- 
mination of the IEP of ZnS and [146] for the determination of the IEP of TiO2). 

Larson et al. [91] have compared the determination of the potentials by means of the AFM with the 
electrophoretic determination. The system employed was a TiO2 colloidal sphere on TiO2. A good 
agreement between these two methods is found. In later works, the same comparison is established for a 
silica colloidal sphere on TiO2 and on silica [147] and for colloidal silica probes on silica [148]. Once 
again there is a good agreement between the two methods (see also Ref. [149]). 

Butt [150] has acquired force-displacement curves on purple membrane deposited onto alumina at 
different pH. The purple membrane is negatively charged above pH=3, alumina is negatively 
(positively) charged above (below) pH = 8.1 and the oxidized Si3N4 tip is always negatively charged. 
Hence, force-displacement curves are repulsive both on alumina and on purple membrane for pH 
values larger than 8, while they become attractive on alumina and stay repulsive on purple membrane 
for pH < 8. The force is weaker on alumina than on purple membrane. The author could calculate the 
surface charge density of purple membrane from the ratio of repulsive forces at pH 10.3 and 9.3 and 
from the known surface charge density of alumina. 

The double-layer force between a very sharp ZnO whisker crystal (R--- 10 nm) and an amino- 
silanized coverslip has been measured by Aoki et al. [12]. The double-layer force is measured in 
deionized water, in 0.1 mM and 1 mM KC1, and in 0.1 mM and 1 mM MgC12. The authors take 
advantage of extremely flexible cantilevers (see Section 1.3) in order to acquire subpiconewton details 
of the force in the range 0-5 nm. 

Drummond and Senden [69] have demonstrated that the double-layer force between a silicon nitride 
tip and mica in hexadecyltrimethylammonium bromide (CTAB) is intermediate between the theoretical 
constant surface charge fit and the theoretical constant potential fit (see also Refs. [62, 90, 147, 151, 
1521). 

Biggs et al. [92, 153] have measured force-distance curves between a gold colloidal sphere and a 
gold flat substrate in different solutions. They verified the increasing of the strength and decay length of 
double-layer force with decreasing ion concentrations (NaC1, trisodium citrate or gold chloride). By 
fitting the experimental data both with the constant charge force and the constant potential force, the 
authors were able to establish that the charge, and hence the adsorbed ions concentration, is constant. 
Also the dependence of double-layer force on pH was studied (see also Ref. (154]). 

Hu and Bard [155] have exploited the double-layer force to monitor the adsorption of sodium 
dodecyl sulfate (SDS) on functionalized gold substrates. SDS is a negatively charged molecule. When 
force-distance curves are collected between a silica colloidal probe and silica in SDS solutions at pH 5, 
the force is always repulsive at any SDS concentration. When the substrate is positively charged gold, 
the force is attractive for SDS concentrations smaller than 5 x 10 6 M and becomes repulsive for larger 
concentrations, indicating that the SDS has adsorbed on gold and the surface has become negatively 
charged. The same behavior is verified for hydrophobic gold (charge reversal for 10 -5 M SDS 
concentration). At a certain concentration, called critical micelle concentration (cmc), micelles begin to 
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form and adsorb onto the substrate. Na + ions begin to bind to micelles in order to compensate the high 
negative charge of micelles. These bound Na + ions no longer contribute to the diffuse double-layer. By 
determining the Debye length of the solution, the cmc can be measured in rather good agreement with 
other methods. 

Similar experiments have been performed by Manne et al. [156] with cetyltrimethilammonium 
bromide (CTAB) on graphite, by Larson et al. [157] with pyridine on gold, by Hu et al. [158] with hexa- 
meta-phosphate on CdS, and by Kane and Mulvaney [154] with lead on gold surfaces covered with 
thiols. 

Raiteri et al. [ 159, 160] have acquired force-displacement curves between a silicon nitride tip and a 
platinum or gold sample mounted on an electrode. An electric potential was applied between the 
sample and a counter electrode. Measurements have been performed at pH 9-10 in order to have a 
negative tip potential. The authors show the existence of three regimes. At negative potentials ( - 0 . 5 -  
0 V), as expected, the tip-sample force is dominated by the double-layer force. In this interval of 
potential the double-layer force is almost constant. Between 0 and 1V the double-layer force steeply 
declines. At high potentials (> 1 V) an attractive exponential force onsets, with a decay length of about 
50 nm for platinum. The third region is absent in the case of gold (as a matter of fact, anions bind 
strongly to gold and hence larger positive potentials are needed to make the attractive force appear). In 
the case of gold, the oxidation of the surface can be revealed due to a sharp increase in adhesion. The 
calculation of forces by means of the Poisson-Boltzmann theory enables the prediction of the behavior 
of the system in the first and second region, but the attractive exponential force in the third region 
cannot be explained with this theory. Force~tisplacement curves with an applied potential have been 
measured also by Ishino et al. [1611 with similar results. 

Hillier et al. [162] have measured the forces between a silica colloidal probe and a gold electrode as a 
function of the applied potential. They show that the force is strongly repulsive for voltages between 
-0 .2  and -0 .7  V, and the double-layer repulsion increases with the decreasing potential. The force 
becomes slightly repulsive for V = -0.1 V and is attractive for V = 0 V or V = 0.1 W. The authors show 
that the theoretical curves with constant charge boundary conditions fit better to the experimental data 
than the constant potential model. The PZC of the system is also determined by plotting the force as a 
function of the applied voltage at different distances from the sample surface. The authors, both 
theoretically and experimentally, demonstrate that the point of zero force, i.e., the potential at which the 
force becomes zero depends on the distance from the sample surface at which forces are measured 
(going from -0 .2  V for forces measured at 25 nm up to -0.1 V for forces measured at 5 nm). The 
dependence of the PZC on the dimensions of the ions in solutions is also verified by acquiring force-  
distance curves in NaF, KC1, KBr and KI solutions. 

The double-layer force has been measured also at the liquid/liquid interface. Mulvaney et al. [133] 
have acquired force-distance curves between a glass colloidal particle and an oil droplet in pure water 
or in a 1 mM sodium dodecyl sulfate (SDS) and 10 mM NaCI solution. In pure water the curve is 
attractive (see Section 6.3), but when salts are added, they adsorb onto the oil droplet and form a 
charged monolayer giving rise to the repulsive double-layer force. The measured surface potential of 
the droplet is less than - 4 0  mV, and the measured Debye length is 10 nm, rather than -120  mV and 0.3 
nm, as expected from theory. The authors attribute these large discrepancies to several factors. First of 
all the contact line between the colloidal sphere and the droplet is affected by strong oscillations 
depending on the scan rate, probably due to fluctuations in the fluidity of the oil/water interface. Hence, 
it is very difficult to find the contact distance. Furthermore, since the droplet surface is oscillating, the 
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contact line might not correspond to a plane of surface charge. Finally, the surfactant SDS is likely to 
diffuse or migrate out of the region of double-layer interaction so that the surface charge is fluctuating 
in an undetermined fashion and the oil can flow into the diffuse double-layer. 

Drummond and Senden [69] have exploited the double-layer force in order to determine the effective 
radius Reff of a pyramidal tip. The method is based on comparing the forces measured with the colloidal 
probe and the forces measured with the pyramidal tip at a certain reference distance from the sample 
surface, thus obtaining a scaling factor that can be used to normalize the force measured at all other 
distances. The reference distance is chosen in order that the contribution of the Van der Waals force and 
of other forces is negligible (typically it is 15 or 20 nm) and the entire force is due solely to the double- 
layer. Furthermore, at such distances, also the difference between the two boundary conditions, i.e., 
constant charge and constant potential, is negligible. 

The study of the double-layer force has perhaps given the best results in AFM studies of forces. The 
capability of the instrument in characterizing this force with high resolution in any kind of liquid 
solution and with any kind of surfaces is fully demonstrated. The dependence of the force on the pH of 
the solution or on the salt concentration has been extensively studied for several kinds of systems. The 
AFM is routinely used to measure the Debye length of solutions, to determine the PZC of materials, 
and to calculate the surface charge density of substrates. The forces at a liquid/liquid interface, the 
dependence of forces on applied potentials and the study of ions adsorption at interfaces are now the 
most intriguing issues. 

6.3.3. Dependence on tip shape 

As for all other forces, the knowledge of the tip shape is critical for the quantitative measurement 
of the double-layer force. Arai and Fujihira [163] have calculated the double-layer force according 
to Eq. (6.55) for a conical sphere-ended tip with the cone angle 20 ranging from 1 ° to 150 ° and the 
radius of curvature R ranging from 1 to 3500 nm and for a spherical tip of the same R. The calcula- 
tions were performed in 10 3 and 10 4 M 1 : 1 electrolytes. In the 10 3 M electrolyte, for R = 20 nm, 
the forces differ significantly for 2 0 =  90 ° and 20 = 30 ° (at 10 nm the force is 0.018 nN for the 90 ° 
tip and 0.01 nN for the 30 ° tip). The force for the spherical tip is similar to the force for the 30 ° tip. 
Such differences disappear for R = 200 nm. In the 10 -4  M electrolyte, for R = 20 nm, all the three tips 
(30 °, 90 °, and spherical) probe different forces (at 1 nm the force is 0.0075 nN for the spherical 
tip, 0.015 nN for the 30 ° tip, and 0.0475 nN for the 90 ° tip). A slight difference persists for the 
30 ° tip and the 90 ° tip or the spherical tip in the case of R = 200 nm. The difference disappears 
for R = 500 nm. The authors have also fitted experimental data testing the validity of the low poten- 
tials approximation [Eq. (6.70)] for a silicon nitride tip with R = 20 nm and 20 = 30 ° onto a silicon 
sample in pH 11.4. Experimental data are best fitted by the curve calculated without such an 
approximation. 

Sader et al. [164] have used the linearized Poisson-Boltzmann theory to calculate the electrical 
double-layer force between identical spheres and have compared the exact value of the force with that 
obtained with the Derjaguin approximation. Drummond and Senden [69] have utilized this procedure to 
study the applicability of the Derjaguin approximation. They calculated the ratio of the Derjaguin 
approximation to the exact interaction between a sphere and a flat surface, assuming that such a ratio 
for the sphere-plate system is half of that for the sphere-sphere system. They found that, for the 
constant potential interaction, this ratio is always 1 for KDR > 2 and is between 1.1 and 1 for KDR < 2. 
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The situation is worst for the constant charge interaction, since the ratio is between 1.5 and 1.05 for 
KDR < 10. 

Also microasperities on the tip are of fundamental importance for the quantitative measurement of 
double-layer force. First of all, surface roughness may lead to a wrong determination of the contact 
distance and of the position of the plane of charge on the tip and on the sample. One simplistic 
approach to this problem is to create a macroscopic reference plane at a negative separation equal to 
half the maximum roughness (average plane of charge) [17, 69]. If the contact occurs at the 
microasperities separation rather than at the average plane of charge, the derived value of the surface 
potential is an underestimate [149]. 

Toikka et al. [62] have showed that, because of microasperities, the liquid is not completely squeezed 
out at contact and a thin layer of liquid stays between the tip and the sample, thus exerting a double- 
layer force that decreases the adhesion force. Therefore, the apparent adhesion force depends on pH. 
The authors found an evidence of this phenomenon measuring adhesion forces at different pH between 
an iron oxide colloidal probe and silica. The silica surface is negatively charged at pH > 2, while the 
iron oxide surface is negatively charged at pH > 6. Thus, for pH > 6, there is a repulsive double-layer 
force. If the liquid was completely squeezed out at contact, adhesion force would not depend on pH. 
But this is not the case, experimentally, as the adhesion decreases with increasing pH for pH < 6 and is 
zero for pH > 6. 

6.4. Solvation forces 

The continuum theories of Van der Waals force and double-layer force cannot describe the mutual 
interaction of two surfaces approaching at distances smaller than few nanometers, because (a) they are 
not valid at small separations; and (b) other forces arise. The theory modeling the interactions of the 
surfaces taking into account only Van der Waals and double-layer forces is called DLVO (Derjaguin- 
Landau-Verwey-Overbeek) theory [165, 166] and all other surface forces are called non-DLVO 
forces. The non-DLVO forces can be roughly grouped into four categories: solvation forces, repulsive 
hydration forces, hydrophobic attractive forces, and steric forces, which are reviewed in the 
forthcoming sections. 

6.4.1. Theory 

Solvation forces arise whenever liquid molecules are compelled to order in almost discrete 
layers between two surfaces. In most cases, these forces exhibit an oscillatory behavior. Consider 
the way liquid molecules order at an isolated surface or between two surfaces, as indicated 
schematically in Fig. 30. Computer simulations reveal three different behaviors of liquid molecules 
at interfaces. At a vapor-liquid or a liquid-liquid interface there is no oscillatory behavior in the 
density of the liquid, as shown in panel (A) of Fig. 30. At a solid-liquid interface liquid molecules 
begin to order in layers [167, 168], as shown in panel (B) of Fig. 30. Between two solid surfaces such 
an ordering increases, as shown in panel (C) of Fig. 30. Even in the absence of any liquid-solid 
interaction, geometric considerations alone compel the molecules to rearrange in order to fit between 
the solid surfaces. The variation of this ordering with the separation D generates the solvation 
force. 
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Fig. 30. Schematic representation for the ordering of liquid molecules. Panel (A): vapor-liquid interface. Panel (B): solid- 
liquid interface. Panel (C): between two solid surfaces. The density of the liquid as a function of position is shown, pz is the 
density of the liquid as a function of the distance from the interface, Pvapor is the density of the liquid molecules in the gas 
phase, p~ is the bulk density, ps(cxD) is the density of the liquid at the interface in the case of a single solid-liquid interface, 
ps(D) is the density of the liquid at the interface when a second interface is at a distance D, and D,,, is the radius of the 
molecule (adapted from [15]). 

Use of  Eq. (6.56) permits the quantitative description of  solvation forces. This equation can be 
applied to any kind of  particle. Therefore,  a solvation force occurs whenever there is a variation of  
density. 

Like the density profile, the solvation pressure is an oscillatory function of  distance with a period that 
approximately equals the molecular diameter Dm and with a range of  few molecular  diameters. At very 
small separations, when the last liquid layer has been squeezed out, l imos0  Ps = 0 and the pressure 
tends to a finite value, deduced from Eq. (6.56): 

lim P = - k B T p ~ .  (6.76) 
D - - , 0  

Hence the contact force is adhesive. 
In a first approximation the solvation oscillatory force can be described by a cosine exponentially 

decaying in the form [15]: 

P(D) ~ -kB Tps (oo) cos 27rD e_D/D,,. (6.77) 
Dm 

Integrating Eq. (6.77) and inserting ps(ec) = x/2/D~, yields the work of  adhesion due to the 
solvation force: 

v kBT 
W(0) ~ 47rZD2 ~ . (6.78) 

Comparing this value to the work of  adhesion due to the Van der Waals force, we conclude that 
the solvation force dominates the adhesion if the Hamaker  constant is less than 0.2kBT, i.e., i f  
A < 1 0  -21 J. 
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O'Shea et al., using the Derjaguin approximation, have calculated the force on a parabolic tip by 
integrating Eq. (6.77) [169]: 

2rcRcr 27rD e_O/o. ' (6.79) F(D) = -kBTps(oc) 4~X/-~T~COS Dm 

in which R is the radius of curvature of the tip. Kralchevsky and Denkov [170] have obtained a semi- 
empirical expression of the solvation force as a function of D, Din, and the molecule volume fraction 
~v. Their expression is 

2rrD { D { n  ~__~,n) P(D) ~ -Po c o s - - e x p  2 
Dm \Din 1 Dm2 

P0 is given by 

(6.80) 

Po = pkB T1 +qOv + ~ 2  v --qO3v (6.81) 
( l  -- ~ v )  3 

in which qDv is the molecule volume fraction and p = 6~ov/rrD,3,~. The dimensionless period Dm I and the 
dimensionless decay length Din2 are given by 

and 

D i n , _  ~ ~ (6 .82)  
Dram q- al Ag2v q- a2(/kg2v)~' 

Din2 bl 
- -  --  - -  b2, 
Dm A~v  

in which Aqov = rr/3V/2 - qOv, al = 0.23728, a2 = 0.633, bl = 0.48663 and b2 = 0.42032. 
Gelb and Lynden-Bell [171] have studied oscillatory solvation forces between a non-structured tip 

and a sample in a liquid by means of MD simulations and closed analytical solutions. They showed that 
the amplitude of the oscillations is linear with the tip radius, with the exception of the first oscillation 
below 2Dm, which increases non-linearly. The number of oscillations per curve is not sensitive to tip 
dimension. The oscillations amplitude increases also with decreasing temperature. Neither the 
temperature nor tip dimensions alter the wavelength of the oscillating force. The density of the liquid 
has an effect both on oscillation amplitude and wavelength. With increasing density, the amplitude 
increases and the wavelength decreases. The authors suggested that the dependence of the first 
oscillatory peak on tip dimension could be exploited in order to calibrate the apex of the tip. 

Subsequently, Patrick and Lynden-Bell [ 172] investigated the effect of structured tips and substrates, 
by considering an atom-ended tip and a four atoms-ended tip. They showed that, in the case of the 
"fiat" tip, oscillations are about sixfold larger than with the atomic sharp tip. This is due to the fact 
that the apex atom of the sharp tip compensates the repulsive forces exerted by liquid molecules on 
the tip. They also showed that the sharp tip is able to trap a liquid molecule into the hole of a 
fourfold hollow site, thus yielding an additional peak below Dm. This additional peak is absent when 
the tip is located above an atop site of the substrate. The trapped liquid molecule stays between the tip 
and sample for 10-100 ps. Hence, the authors state the incapability of AFM to detect such a 
phenomenon. 
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6.4.2. Experimental results 

The first measurement of solvation forces with an AFM has been performed by O'Shea et al. [173] in 
octamethylcyclotetrasiloxane (OMCTS) and dodecanol on graphite with a Si3N4 tip. Both curves are 
shown in Fig. 31. In OMCTS, there is an oscillatory force superimposed to the attractive Van der Waals 
force. The oscillatory force results in a series of repulsive surges followed by sudden jumps. The 
repulsive surge is due to the tip pushing on the structured liquid layer. When the layer beneath the tip is 
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Fig. 31. Force~l istance curves in octamethylcyclotetrasiloxane (OMCTS) (panel (a)) and in dodecanol (panel (b)) (reprinted 
with permission f rom [173]). 
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squeezed out, the tip jumps onto the next layer. The curves shown in Fig. 31 seem to have been 
rearranged by calculating the true t ip-sample distance as explained in Section 5.1, but this is not 
plainly stated in the paper. The oscillations increase with decreasing distance, from ~ 0.2 to ~ 0.4 nN. 
The period is 0.73 + 0.06 nm, whereas the molecule has a diameter of 0.8 nm. The small discrepancy 
between the diameter of the molecule and the period of the oscillations might be due to packing 
geometry or to errors in the calibration of distances. 

In dodecanol, the oscillatory force is superimposed to the repulsive Van der Waals force. It can be 
observed both on the approach curve and on the withdrawal curve. The amplitude of the oscillations 
increases with decreasing distance from TM 0.5 up to ~ 2.5 nN. The period is 0.35 ± 0.04 nm. 

The same measurement in OMCTS has been repeated by Cappella et al. [128] on graphite. The 
authors were not able to measure solvation forces on mica since a few molecules of water (that are 
likely to remain on a cleaved hydrophilic mica substrate) are likely to destroy the ordering of OMCTS 
molecules. 

Subsequently, O'Shea et al. [169] have acquired both static and dynamic force-distance curves, 
making the cantilever vibrate by means of an external magnetic field. They were able to detect solvation 
forces in OMCTS and dodecanol in both modes. 

O'Shea et al. could not measure solvation forces in water. This has been done by Hoh et al. [ 174]. 
Force-displacement curves were acquired on a glass surface with a silicon nitride tip. The pH was 
adjusted between 8 and 9 in order to compensate the Van der Waals attractive force with the double- 
layer repulsive force. A small jump-off-contact is obtained. Recording the jumps-off-contact for several 
curves, discrete jump-off forces can be observed and the histogram of these jumps shows a well-defined 
peak at 1.2 x 10 It N. Also a second peak can be seen, but higher multiples are lost because of peak 
broadening. The authors explain what they call "quantized adhesion" in two ways. Either the peaks 
are due to individual hydrogen bonds being resolved, or to solvation forces caused by the ordering of 
water layers between the tip and sample. A later experiment [175] seems to confirm this latter 
hypothesis. 

6.5. Hydration forces 

The hydration force probably arises between hydrophilic surfaces, such as silica and mica, since 
strongly H-bonding surface groups modify the H-bonding network of nearby liquid water molecules. 
This also occurs when hydrated cations in solution bind to a negatively charged surface at high salt 
concentration. The hydration force is probably due to the energy needed to dehydrate the ions, as 
indicated by the fact that the strength and the range of the force increase with the hydration number in 
the order Mg 2+ > Ca 2+ > Li + ~ Na + > K + > Cs +. The hydration force is exponential with the distance, 
but the origin of the exponential decay is still unknown. 

Fig. 32 shows force-displacement curves illustrating the effects of the hydration force on mica in 
MgC12 solutions at different concentrations. At 3 mM MgCI2 (first curve), the double-layer repulsive 
force can be seen. This force disappears at higher concentrations (second and third curve), but at 3M 
MgCI2 the hydration force onsets. The shape of the curve in presence of the hydration force is not very 
different from that of the curve associated with double-layer force. The presence of the hydration force 
is inferred from theoretical considerations, since it is known that, for [MgC12]>3 mM, the double-layer 
force disappears. 
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Fig. 32. Force-displacement approach curves illustrating hydration force on mica in MgC12 solutions at different concen- 
trations. Curves are acquired at constant pH with a silicon nitride tip (reprinted with permission from [138]; Biophysical 
Society). 

Similar forces have been observed by Butt [138] for a silicon nitride tip on mica in CaC12 and SrCI2. 
The force in a 3M MgCI2 solution has a decay length of 3 nm and is 0.07 nN strong. 

Ducker et al. [17, 176] argue the presence of an hydration force between a silica colloidal sphere and 
a silica flat plate from the fact that, at small distances (< 2-3 nm), the measured force does not follow 
the DLVO fit. The authors list other possible origins of such a mismatch (presence of a gel layer on the 
silica surface, shift in the position of the plane of surface charge). The authors have observed that the 
force increases with pH, i.e., with the charge on the surface. 

Meagher [139] has measured hydration forces between a silica colloidal sphere and a silicon sample 
in 0.01 M CaCI2 solutions at pH 4.1. He has shown that the theoretical curve based on DLVO theory fits 
the experimental data well for distances larger than 2 nm. Below 2 nm, however, a repulsive force is 
probed and no jump-to-contact occurs. The hydration force disappears at pH 5.3 and 1 M or at pH 10.3 
and 0.01 M CaCI2. These results suggest that the force is due to the specific adsorption of Ca 2+ onto the 
silica surface. When the adsorption increases (because pH or ions concentration increase), the force 
becomes attractive and is well predicted by the DLVO theory. 

Atkins and Ninham [151] have measured forces between silica surfaces in 1,2-ethanediol and water. 
In both solvents, for D > 3 nm, the DLVO theory can fit the data, but at smaller separations, a non- 
DLVO force is measured. This force can be represented by the equation 

F = r/R e x p ( - r D ) .  (6.83) 
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The decay length is 7- = 0.97 + 0.12 nm for 1,2-ethanediol and 7- = 0.41 nm for pure water (in good 
agreement with other measurements). From the fact that the hydration force scales with the radius of 
the solvent molecules, the authors argue that the hydration force is actually an oscillatory solvation 
force whose oscillations are smeared out by the roughness of the tip and sample. 

Biggs et al. [93] have observed hydration-like forces between gold surfaces in NaC1. Approaching 
the tip to the sample, an additional repulsion is observed at all concentrations. This repulsion extends 
over more than 10 nm in distance. The authors attribute this force to the presence of highly hydrated 
sodium ions near the surface, but do not discuss the differences with the case of mica surfaces. 

Larson et al. [147] have observed the hydration force between silica surfaces and silicon on TiO2 at 
high pH. The authors were not able to distinguish between real hydration forces and effects due to tip or 
sample asperities. 

Karaman et al. [142] have studied the forces between an alumina surface and an aluminum or 
silicon nitride tip. Hydration forces are observed below 3 nm. The cause of this non-DLVO force is 
attributed to the formation of a thin hydrolyzed oxide gel layer near the surface. This supposition is 
supported by the fact that, when force-distance curves are repeatedly acquired, initially attractive 
forces become more and more repulsive, reflecting the characteristic time of formation of the gel 
layer. 

Despite of the importance that hydration forces seem to have in surface science and in biology, this 
force is still unknown. A lot of theoretical and experimental work is needed. The study of hydration 
forces by AFM presents several problems. This force acts on a very small range and is in most cases 
very weak. Often the presence of this force is inferred from the fact that the force-distance curve 
cannot be fitted by DLVO equations. Errors in the determination of distances, of the Hamaker constants, 
of the surface charge densities or of surface potentials are likely to affect the fit and to give wrong 
results. Therefore, this force is rather difficult to characterize quantitatively, and depending on the 
system, it is not possible to single out the contribution of hydration force to the total tip-sample 
force. 

6.6. Hydrophobic force 

Attractive forces between hydrophobic macroscopic bodies in water have been measured for 
different systems. The origin of these forces is not well understood, although recently several 
hypothesis have been proposed. 

1. The hydrophobic force could originate from changes of the water structure in the thin layer between 
hydrophobic surfaces compared to the structure of bulk water [177, 178]. 

2. The hydrophobic force could be the capillary force due to cavitation in the vicinity of hydrophobic 
surfaces [ 179]. 

3. In another hypothesis, hydrodynamic fluctuations at a hydrophobic surface/water interface are 
believed to correlate with those at the neighboring interface to give rise to an attractive force 
[1801. 

4. Some researchers suggest that hydrophobic force arises from correlated dipole-dipole or dipole- 
charge interactions [ 181-183]. 

5. Others believe that such a force is the result of dipole interactions associated with the large domains 
of ordered hydrocarbon chains [79, 184, 185]. 
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Since no theory is able to explain the experimental results, data are fitted by an empirical force law in 
the following form [80]: 

F C l e x p ( D ~ )  ( ~ 2 )  = - + Ceexp - , (6.84) 

in which Cl and Ce represent the strength of the short- and long-range force respectively, and D~ and De 
are the respective decay lengths. The term "short-range" refers to the hydrophobic attraction with 
decay length of 1-2 nm. 

The hydrophobic force can also be fitted by a power law: 

F F 
R - -  6D 2 (6.85) 

This equation can fit both short- and long-range hydrophobic force, but there are uncertainties about the 
exponent, since an exponent slightly larger than 2 can fit experimental data better [79, 184]. 

Rabinovich and Yoon [80] have measured the hydrophobic force between a silica plate and a glass 
colloidal probe hydrophobized with octadecyltrichlorosilane (ODTCS). They could measure the 
parameters in Eqs. (6.84) and (6.85) by measuring the jump-to-contact of the curves, according to the 
following relationships: 

f D,,,.'~ 3kcD3tc kcD"2expl~-I  and (l?)itc (6.86) (Cl,2)jtc -- ~ \Oj.%/'  -- R ' 

in which the subscript "jtc" means that these values are obtained with the "jump" method. 
The parameters C~, C2, and I ~ also have been calculated by fitting the whole curve. The authors show 

that the "jump" method gives less precise values than the fitting of the whole curve. 
Values determined by both methods are correlated with advancing and receding contact angles 0a and 

Or. For 0~ = 88 °, three ranges of the force are evidenced. For 0a = 95 °, the force has a short- and a long- 
range regime, while for 0~ = 102 °, 105 °, and 115 ° only the long-range regime can be observed. The 
parameter C2 correlates well with the advancing angle (it is smaller than 5 mN/m for 0~ < 95 ° and 
increases sharply up to 255 mN/m for 0a > 95°), while D 2 is rather insensitive to 0a. The authors suggest 
that C2 depends on the density and hence on the ordering of hydrocarbon chains, while D2 varies with 
the distance between the charge or dipole domains. Increasing the density (and the contact angle) 
results in increasing the ordering, but does not increase the distance between domains. 

If D2 depends on the distance between charge or dipole domains, then it should depend on the Debye 
length. Following the theory of correlation between charges in lattice arrays on two interacting 
surfaces, the authors derived the following relation for D2: 

l/D2 = V/KD + (Tr/dc) 2 ~ 1/D~ = 10.5z2[X] + (Tr/dc) 2, (6.87) 

in which dc is the average charge or dipole distance, and z and [X] are the valence and the concentration 
of the electrolyte. The fit of several experimental data with Eq. (6.87) is not good at high electrolyte 
concentrations and some experimental data are independent of [X] (see also Ref. [186]). 

The role of gas dissolved in the liquid also was investigated. No difference can be observed between 
curves acquired in degassed water and water in equilibrium with surrounding air, but this could be due 
to dissolution of air in water during the measurement. Force-displacement curves in water saturated 
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with argon (whose solubility is about twice that of nitrogen) show a considerably higher attractive 
force, and this could be explained with the formation of microbubbles. Gas microbubbles in the liquid 
gap act in analogous way like liquid bubbles in an air gap, i.e., they contact the tip and sample surface 
and exert a meniscus force. The sharp increase of the force for 0~ > 95 ° may support this view. 

Also the adhesion force is measured. Typical values of F~a/R are in the range 100-400 mN/m, and 
the jump-off-contact distance is in the range 20-100 nm. 

Forces were measured also for an asymmetric system, i.e., a hydrophobic glass colloidal sphere on a 
clean hydrophilic silica plate. Only after subtracting DLVO forces, can a short-range hydrophobic force 
be revealed. In a later work, the same authors have confirmed these results with trimethylchlorosilane 
[791. 

Tsao et al. [185] have studied the dependence of hydrophobic force on the temperature and on the 
hydrocarbon chain length by collecting force-displacement curves between a silicon nitride tip and 
mica in several surfactants. All the possible combinations were investigated, i.e., a bare tip and 
hydrophobic mica, a hydrophobic tip on bare mica, and both tip and mica coated with hydrophobic 
layers. The surfactants employed are in order of length: dihexadecyl-dimethyl-ammonium (DHDA), 
dioctadecyl-dimethyl-ammonium (DODA), dieicosyl-dimethyl-ammonium (DEDA), and didoeicosyl- 
dimethyl-ammonium (DDDA). 

The authors show that, in water and at room temperature, the force is weaker for the shortest chain 
(DHDA), and that the force is stronger for the hydrophobic mica-bare tip system than for the bare 
mica-hydrophobic tip system, whereas for the symmetric situation the force is much weaker. These 
results are in contrast with the results of Rabinovich and Yoon, and these two latter authors believe that 
Tsao et al. have not accounted for DLVO forces. 

When raising the temperature, both DHDA and DODA show only the Van der Waals attraction, while 
the force for DEDA is substantially the same. This result correlates well with the chain transition 
temperatures in water. 

Hydrophobic forces are present also in ethylene glycol. In this solvent, the force is the same for 
DDDA and DEDA, but smaller for DODA. As a matter of fact, the melting temperature of DODA in 
ethylene glycol is comparable with the melting point of DHDA in water (34°C and 35°C). The fact that 
hydrophobic forces have been observed in solvents different from water indicates that this force cannot 
be attributed to the unique structural properties of water. Further, the force is associated with the solid 
phase of the surfactant, and disappears as the melting point is approached. No long-range attractive 
hydrophobic forces were observed when a bare Si3N 4 tip approached either a Teflon or polyethylene 
substrate in either water or ethylene glycol, indicating that these two polymeric surfaces do not possess 
specific molecular structures that give rise to the hydrophobic force. Finally, the force depends on salt 
concentration. 

Similar results were obtained in another work [ 187] measuring forces for DHDA, DEDA and DODA 
at 25~C, 40°C, and 50°C. The first derivative of the force can be fitted with Eq. (6.84). All parameters 
(i.e., both the force strength and the force decay length) decrease with increasing temperature for any 
surfactant. The correlation between the force and the chain order is studied by means of molecularly 
resolved AFM images. 

Rabinovich et al. [184] have correlated the results of Tsao et al. with the order parameter S of the 
hydrocarbon chain defined as S = (3(cos 2 3) - 1)/2, where "7 is the angle between the axis normal to 
the surface and the molecular axis. When S = 1, all molecules are parallel to each other and perpendi- 
cular to the surface, whereas when the molecules are randomly oriented, S = 0. They showed that the 
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parameters C1, C2, D1 and D 2 found by Tsao et al. have a linear dependence on S and that C2, D1 and D 2 
are proportional to S, while for C1 there is a critical parameter Scr ~ 0.3, below which the short range 
hydrophobic force ceases to exist. Also the parameter Y shows a linear dependence on S for S > 0.3, and 
is zero for S < 0.3. The authors explain such a dependence as arising from the changes in water structure 
induced by the ordering of the hydrocarbon chains. The changes in water structure may in turn create 
dipole domains which are comparable in size with the observed decay length. 

Forces also differ for a single-chain surfactant and a double-chain surfactant, in that single-chain 
surfactants have only the short-range term. This effect can be explained with ordering considerations. 
On the one hand, since the adsorption is controlled mainly by the Coulomb attraction between the polar 
head and the negative charge site on the mica substrate, the area occupied by each single-chain 
molecule is actually the area per charge site (~ 0.5 nm2). This area is approximately twice as large as 
the cross-sectional area of the hydrocarbon chain. As a result, the hydrocarbon chain are disordered and 
exhibit only the short-range hydrophobic force. On the other hand, the double-chain molecules give rise 
to large values of S and consequently to long-range forces. 

Mantel et al. [188] have measured forces between a silanated glass colloidal particle and stainless 
steel. They found that hydrophobic forces are absent in the non-treated stainless steel that contains a 
certain amount of hydrophilic potassium salt (2%). When the stainless steel is treated with Ar plasma 
and then rinsed with water or simply rinsed with water, the potassium decreases and the hydrophobic 
force onsets. The authors argue that, when hydrophilic and hydrophobic groups are present in close 
proximity on a surface, the attractive hydrophobic force and the repulsive hydration force, both arising 
from changes in water structure, are not simply additive. 

Several studies have addressed the interaction of an AFM tip with bubbles or droplets in water. Even 
if they are not directly related to hydrophobic force, these results are reviewed in this section, since 
some evidences exist that hydrophobic interactions could also arise from microbubbles in water. 

Butt [189] has acquired force-displacement curves and force-t ime curves between a glass colloidal 
particle and an air bubble in water. When the glass particle is hydrophilic, force-displacement curves 
show a repulsive region when the tip and the bubble are in contact. Several oscillations are observed on 
such contact lines. These oscillations are reproducible when the force is kept below a certain threshold 
value and become hysteretic if the force exceeds the threshold value, because the particle snaps into the 
bubble. When the glass particle is hydrophobic the curve is completely different. A strong attractive 
force makes the tip snap into the bubble and a very high force is needed to pull it out of the bubble. 
Looking at the time-resolved analysis of the signal, an oscillatory behavior of the acceleration can be 
noted. The attractive force is calculated between 580 and 1000 nN. Also the forces between a glass 
particle and a water droplet in air are considered. The system hydrophilic tip-water droplet is analogous 
to the hydrophobic glass sphere-air bubble. The tip snaps in at a certain distance with a force between 
230 and 406 nN, but the time-resolved analysis reveals that the process is 2-4 times faster, probably 
because of the lower effective mass of the cantilever in air. Also the hydrophobic glass snaps into the 
water droplet. The author has offered no explanation for this result. 

Ducker et al. [190] have acquired force-displacement curves between a silica colloidal particle and 
an air bubble in water. When the silica particle was hydrophobic their results are in agreement with 
those of Butt. Also in the case of an hydrophilic silica particle an attractive force of about - 0.2 mN/m 
is detected. After the tip has jumped into contact, the curves show a contact line from which the 
stiffness of the air bubble can be measured (0.065 ± 0.005 N/m). This contact line is probably due to the 
presence of a thin wetting film between the silica particle and the air bubble and the repulsive force is 
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associated with the high energy needed to squeeze it out. The attractive force cannot be accounted for 
by the sum of the force needed to squeeze out the wetting film and of the DLVO force. The sum of the 
jump distances due to these two forces is 26 nm, while the measured jump distance is 44 nm. By 
measuring jump-in distances at different salt concentrations, the authors ascertained that the force was 
not electrostatic. When sodium dodecylsulfate (SDS) is adsorbed at the air-water interface, forces 
become repulsive and are in good agreement with DLVO theory at all distances, with deviations only 
below 2 nm. The deviations are now repulsive. The measured forces are interpreted on the basis of 
capillary bridging forces. When the tip is pushed against the sample, the air bubble "wets" the tip 
surface and exerts an attractive force, even when the tip is hydrophobic. Also hydrophobic forces are 
interpreted as arising from the air microbubbles nucleation between the two surfaces. 

6. 7. Specific forces 

Specific forces are non-covalent forces that generate very strong adhesion between molecular groups. 
The term "specific force" is somewhat ambiguous, but can refer to all forces that are present only 
between a specific pair of molecules. Most of the interactions between biological molecules are due to 
specific forces. The specific bond between a couple of molecules arises from the cooperation of several 
non-covalent bonds (e.g., hydrogen or ionic bonds) favored by the geometry of the interacting 
molecules. The two molecules may fit together by means of a "lock and key" mechanism. Specific 
bonds, like covalent bonds, have a precise stoichiometry. 

In order to measure specific forces with the AFM, it is necessary to functionalize the tips by covering 
them with one of the two molecules under study. A typical withdrawal curve between a tip func- 
tionalized with odorant binding protein (OBP) and a sample functionalized with its antibody is shown 
in Fig. 33. At a distance of 7 nm from the contact point, there is a jump-off-contact of 230 pN due to 
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Fig. 33. Withdrawal force-displacement curve with specific adhesion between odorant binding protein (OBP) and anti-OBP. 
After the jump-off-contact, there is a non-linear attractive surge due to the stretching of a group of OBP molecules, that 
suddenly breaks at a distance of 65 nm. 
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aspecific adhesion (mainly Van der Waals force). After the jump-off-contact, the cantilever returns to 
the rest position (zero deflection). The tip and sample seem to be detached, but some OBP and antibody 
molecules are still bound by bonds which are stretched along the subsequent attractive surge until the 
force reaches a rupture value. The discontinuity of 550 pN at a distance of 65 nm marks the detachment 
due to the rupture of the specific bonds between the OBP and its antibody. Since the complementary 
molecules may be located at different points on the tip and on the sample, they may detach at different 
distances, and hence a specific force-displacement curve may present multiple detachments. The 
rupture occurs at a distance of 65 nm because the sample undergoes important deformations and 
because a whole group of OBP molecules is likely to be stretched. 

In principle, the jump-off-contact and the specific detachment may overlap so that the specific force 
is hidden by the aspecific (Van der Waals) adhesion. In some works this problem is solved by acquiring 
curves in a particular liquid that has a small Van der Waals force. In some others, one or both of the 
interacting molecules are attached to the tip and/or to the sample via a spacer. The spacer is a molecule 
few nanometers long which is stretched during the detachment and makes the rupture of the bond occur 
at distances greater than those of the aspecific detachment. The curve in Fig. 33 is acquired with the 
antibody bound via a spacer. 

In general, four different parameters can directly be extracted from specific force-displacement 
curves: 

(1) the force of a single binding event; 
(2) the rupture distance depending on the length of the molecules involved and on how they are 
immobilized; 
(3) the adhesion probability, i.e., the ratio between the number of force-displacement curves with 
specific detachment and the total number of force-displacement curves, depending on surface coverage 
and experimental conditions; and 
(4) the elasticity of the stretching region. 

The first study on specific forces with the AFM is that of Florin et al. [20], who measured the forces 
between avidin and biotin molecules. They used Si3N4 commercial tips functionalized with avidin on 
agarose beads functionalized with biotin. The measured adhesion between the two surfaces is of about 
20 nN. When blocking the surfaces with an excess of free avidin or biotin, the adhesion diminishes 
down to ~ 200 pN. The force-displacement curve displays both the jump-off-contact of about 1 nN and 
the specific detachment occurring at different distances. The forces do not diminish in presence of 
excess bovine serum albumin (BSA), which proves the specificity of the interactions. Histograms of the 
measured rupture forces show several regularly spaced peaks, that correspond to multiples of an 
elementary force of 160 ± 20 pN. This force is attributed to the interaction of a single avidin-biotin 
couple. In similar experiments carried out with quite hard substrates (silicon oxide instead of agarose 
beads) no quantized adhesion is found. A likely explanation is that the soft agarose bead allows the 
molecules to arrange parallel to each other, so that the force does not depend on the relative positions. 
This is not possible with hard substrates. As a matter of fact, the spacer is often employed also to make 
the molecules more mobile and to allow such a rearrangement. Measurements have been repeated with 
desthiobiotin and iminobiotin, leading to the identification of an elementary force of 125 ± 20 and 
85 ± 15 pN, respectively. 

In a later work [191], the same authors have showed that there is a meaningful correlation between 
the measured elementary forces and the enthalpy of the system. 
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Lee et al. [192] have measured the forces acting in the following three systems: biotin-biotin, 
biotin-streptavidin blocked with biotin, and biotin-streptavidin. The force between biotin and biotin is 
characterized by a repulsive steric or hydration force and no adhesion is present. Between biotin and 
blocked streptavidin there is an adhesion force of 60 + 40 pN. This adhesion force may be due either to 
the increase of the Hamaker constant or to the decrease of the repulsive force. The interaction between 
biotin and streptavidin is dominated by an adhesion of 340 + 120 pN. The authors note that, because of 
steric limitations due to the immobilization of molecules on the surfaces, not all the biotin molecules 
within the contact area (nearly 10 molecules) bind a streptavidin molecule. They observe that no 
specific forces can be measured with a sharper tip. 

The same kind of measurements have been performed by Allen et al. [193]. No adhesion is observed 
when the streptavidin is blocked, and the specific force tums out to be 409 + 166 pN. 

Bowen et al. [194] have measured the forces between a tip and a sample both functionalized with 
bovine serum albumin (BSA). The forces are studied at different NaC1 concentrations and at different 
pH. 

Lee et al. [195] have measured specific interactions between DNA strands. All experiments are 
performed in a 0.1 M NaCI solution. In a first experiment the forces between two complementary 
strands, namely (ACTG)5 and (CAGT).s, are measured. The adhesion forces are found to be grouped in 
four categories. One of these (0.48 + 0.1 nN) corresponds to the non-specific force between non- 
complementary strands, the other three correspond to interactions between DNA oligonucleotides of 
12 (0.83 i 0.11 nN), 16 (1.11 -4- 0.13) or 20 (1.52 + 0.19) base pairs. Since the oligonucleotides have 
different lengths, the bond breaks at different distances and forces. In a second experiment both the tip 
and the sample are functionalized with cytosine. On the tip, inosine polymers of 160 base pairs are 
bound to the cytosine. In withdrawal curves, retarded detachments at distances of about 240 nm can be 
observed with specific forces between 1 and 2 nN. These detachments are due to the bond between the 
inosine and the cytosine on the sample, and 240 nm is the length of the inosine polymer. Forces 
between couples of cytosine polymers also can be measured. 

Boland and Ratner [196] have measured the hydrogen bonding between DNA complementary pairs 
(adenine-thymine and cytosine-guanine). The histograms of the attractive forces show in both cases 
quantized forces with an elementary force of 54 pN. The attractive and adhesive force turn out to be the 
sum of 12 and about 60 base pair interactions, respectively. Several control experiments with non- 
complementary base pairs and bare surfaces are performed. 

Noy et al. [ 197] have measured the forces between two complementary DNA 14-mers fixed on a gold 
surface via HS(CH2)I6 spacers. The force-displacement curve between DNA strands has the typical 
shape of the curve in Fig. 33. The specific adhesion is of 0.45 nN (one couple) or of 0.9 nN (two 
couples) and the detachment occurs at a distance of about 18 nm. When employing two non- 
complementary DNA strands, force-displacement curves show a jump-off-contact of about 100 pN at 
zero separation. The authors have also studied the stretching of the DNA duplex formed before the 
detachment. They observe that the part of the curve between the origin and the specific detachment, i.e., 
the part resulting from the stretching of the duplex, is characterized by three regions: a short elastic 
region, a pronounced flat region where the separation increases rapidly under almost constant force 
(indicative of a structural transformation), and a relatively stiff elastic region immediately prior to 
duplex separation. The elastic constant of the DNA duplex before and after the structural transfor- 
mation is determined. The qualitative and quantitative results obtained by Noy et al. are in agreement 
with some theoretical predictions. 
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Nakagawa et al. [198] have measured the forces between trichlorosilanes of different length. The 
experiments are performed in ethanol in order to decrease the Van der Waals adhesion. The force is 
found to be proportional to the length of the chain for n > 8, whereas there is no specific force for n < 8, 
since the chains are randomly oriented and do not bind to each other. 

Dammer et al. [199] have measured the specific forces between biotin and anti-biotin molecules. The 
adhesion force between the two functionalized surfaces is between 100 and 200 pN, while it is almost 
zero for the non-functionalized tip. The authors carry out several control experiments (non-func- 
tionalized tip, blocked tip or sample, low and high pH, and non-specific antibody) in order to ensure the 
measured forces to be specific. In these control experiments the measured adhesion is between 20% and 
40% of the specific adhesion. The most interesting control is the one at low and high pH. When the pH 
of the solution is changed, the ionic and hydrogen bonds cooperating in the specific bond are affected, 
and the specific interaction may disappear. By blocking the biotin on the tip, it is possible to decrease 
the interaction force, and the histogram of the force values shows four peaks that are multiples of an 
elementary force of 60 + 10 pN. 

Antigen-antibody specific forces also have been measured by Hinterdorfer et al. [200] taking 
advantage of the complex human serum albumin (HSA)-anti-HSA. The authors solve the problem of 
distinguishing aspecific and specific adhesion by introducing a spacer (polyethylene glycol PEG, 8 nm 
long) between the tip and/or the sample and the molecules. The elementary force is about 240 pN and 
the rupture distance goes up to 30 nm, which is the sum of the lengths of one HSA molecule, one anti- 
HSA molecule and two PEG molecules. Both the values of the rupture force and distance indicate that 
individual molecule-molecule bonds have been measured. The distribution of the rupture lengths is 
bimodal. The two different distances correspond to the detachment of the two arms of the asymmetric 
antibody molecule. 

Stuart and Hlady [201] have measured the forces between fluorescein and anti-fluorescyl IgG. They 
have observed that the strength of the specific force and the overall shape of the curve depend on the 
contact time between the tip and sample. When the tip and sample are allowed to stay in contact only 
for 2 s, no adhesion is observed. When the contact time is increased up to 1 or 2 min, the adhesion 
increases up to nearly 4 nN and the jump-off-contact distance is 200 nm (1 min) or 400 nm (2 min). 

Allen et al. [202] have directly monitored specific interactions between ferritin and anti-ferritin in an 
immunoassay system. The measured forces are quantized with steps of 49 + 10 pN. This elementary 
force is attributed to individual unbinding events. 

Vinckier et al. [203] have measured specific forces between the chaperonin GroEL and several 
proteins (synthase, lactamase, bovine serum albumin, and peroxidase). Forces are measured with and 
without ATP in solution and both with native and denatured proteins. The authors have verified that, for 
all proteins, the forces are greater in the denatured form than in the native form. The forces in presence 
of ATP are greatly reduced, since the ATP modifies the GroEL structure. This happens both for native 
and denatured proteins. The non-hydrolyzable ATP analog, the ATPTS, does not affect the forces. The 
authors have shown that the specific interaction depends on the hydrophobicity of the tip. Hydrophilic 
functionalized tips do not interact with GroEL, while hydrophobic functionalized tips show the same 
interaction as tips functionalized with proteins. Finally the authors have studied the dependence of the 
measured force on the tip diameter. The force between GroEL and lactamase goes from 110 pN for a tip 
diameter of 35 nm up to 380 pN for a tip diameter of 160 nm. 

Nakajima et al. [204] have studied the actin-heavy meromyosin (HMM) interaction, with a single 
HMM molecule bound onto the tip surface via a long chain made up of biotin, ultravidin, and 
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acrylamide. The force-displacement curves look like the curve in Fig. 33, but sometimes the jump-off- 
contact overlaps with the specific detachment. The histogram of the pull-off forces is bimodal with 
peaks at 14.8 and 24.7 pN. The two forces correspond to the binding of only one head or of both heads. 

Dammer et al. [205] have measured the forces between proteoglycans which are involved in cell 
adhesion (AP). The pull-off is once again retarded due to the lifting and extending of string-like arms. 
In 10 mM Ca 2+ the mean force is 125 pN and the probability of binding is 60%. The force and the 
probability are greatly reduced in 2 mM Ca 2+ and 2 mM Ca 2- ÷ 10 mM Mg 2- (40 pN and 12%), 
showing that the AFM measurement is able to assess the Ca2+-selectivity of an interaction. Also control 
experiments with a blocking antibody have been performed. Subsequently, Fritz et al. [206] have 
studied the elasticity of the proteoglycans and have addressed the extension dependence of the force. 
These authors have found that the extension dependence of the force is non-linear and that two 
fundamental phenomena contribute to this non-linear response. At low force regimes (below some 10 
pN) the response is dominated by entropic effects and the cantilever works against a random thermal 
motion, which tends to curl the molecule. At higher forces, the elasticity of single-chain segments has 
to be considered. The data of Fritz et al. are best fitted by an empirical formula which considers only the 
entropic elasticity [207]. If X is the extension of the molecule, the force due to entropic elasticity is 
described by 

k~T X(X) = 1 - - ~+ + , (6.88) 

in which E is the persistence length and ~ is the contour length. If the chain molecule is represented as 
a chain of N freely joint rigid rods, the persistence length is defined as the length of each rod and the 
contour length as NE. 

Kikuchi et al. [208] have studied the stretching of polystyrene chains and have fitted the extension- 
force law with the extended Langevin equation: 

X(F)= coth k ~  - lF] n m l + ~  , 

in which X is the extension, F the force, l the length of the monomer, nm the number of monomers, and 
km is the elastic constant of the monomer. 

Bowen et al. [209] have functionalized the tip with a cell, namely a yeast cell (Saccharomices 
cerevisiae). They have measured the adhesion of the cell onto a mica surface. After a first jump-off- 
contact, there is a long stretching region (about 200 nm) in which the attractive force increases slowly 
until the cell detaches from the surface. Such curves are contact time dependent. If the contact time is 
increased to 5 min, then the adhesion increases and the stretching region becomes longer (about 
500 nm). 

Another group of experiments deals with the determination of the single bond force for other kind of 
forces (mainly Van der Waals and hydrogen bond). In these experiments the tip is functionalized with a 
non-biological molecule. So, strictly speaking, the measured forces are not specific. This kind of AFM 
measurements is often called "chemical force microscopy", since the functionalized tip behaves as a 
chemical sensor. 

Van der Vegte and Hadziannou [210] have measured the forces between the chemical groups listed in 
Table 8. All measurements have been performed in ethanol. Once the adhesion force is measured, the 
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Table 8 
Measured mean adhesion in nN and single bond force in pN (bold) between the listed functional groups as determined in Ref. 
[210]. All measurements have been performed between functionalized tips and samples in ethanol. 

Substrate 

tip CH3 OH NH2 COOH CONH2 

CH3 0.9 81 0.3 57 0.3 59 0.3 61 0.3 60 
OH 0.1 50 0.9 101 1.2 113 1.2 112 1.4 117 
NH2 0.2 54 0.5 88 0.8 98 0.7 95 0.9 100 
COOH 0.7 95 1.2 109 1.2 105 1.3 114 2.2 137 
CONH2 0.3 62 1.3 110 1.2 102 2.2 125 1.8 120 

JKR theory is applied in order to determine the surface energy 7 and the single bond force. The number 
of interacting molecules is given by the ratio between the contact area, determined by means of JKR 
theory, and the characteristic area of the molecules. The elementary force is the total adhesion divided 
by the number of molecules. The trend expected on the basis of the kind of interactions governing the 
adhesion is qualitatively observed. In the case of a CH3-modified tip, for which only the Van der Waals 
interaction plays a role, small adhesive forces are found. The cohesive CH3-CH3 Van der Waals 
interaction is larger than the Van der Waals force for dissimilar pairs, e.g., CH3-COOH. As regards OH, 
NH2, COOH, or CONH2 tips, again the pure Van der Waals interaction with a CH3 surface gives the 
lowest adhesive force. The measured hydrogen bond forces are in qualitative agreement with hydrogen 
bond energies. 

Williams et al. [211] have developed a method to calculate the single bond forces. This method is 
based on Poisson statistics. The distribution of adhesion forces in an AFM experiment can be modeled 
with the Poisson statistics provided the two following assumptions are satisfied: 

(1) the total adhesion force is the sum of a finite number of discrete, independent chemical bonds; 
(2) these bonds form randomly, and have similar force values. Accordingly, if the single bond force is 
F, the mean force ~" and the variance 0,2 are given by 

[ ~ = m E  and 0 " 2 = m F  2, (6.90) 

in which m is the mean number of events, i.e., of bonds. The single bond force can be calculated as 
9 

F = ~.0,7~ (6.91) 
F 

If an additional aspecific force F0 is present, then 

F" = m F  + Fo and 0,2 = m F  2 = F~" - FFo. (6.92) 

Thus a plot of @ versus F gives both the single bond force (the slope of the linear plot) and the 
aspecific force (the intercept of the line is - F F o ) .  The authors determine the single bond force for the 
Van der Waals force and for the hydrogen bond by measuring forces between a Si3N4 tip and gold or 
mica, respectively. Measurements are performed in water. Different values of the mean force are 
obtained with different tips of randomly varying R. The Van der Waals single bond force is 60 ± 3 pN 
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and the hydrogen bond force is 181 ± 35 pN. Van der Vegte and Hadziannou have compared their 
results with the one of Williams et al. verifying that the two are in good agreement. The same result for 
the Van der Waals single bond force had been previously found by Han et al. [212]. In this latter work, 
Van der Waals and hydrogen single bond forces have been measured in several liquids. The elementary 
Van der Waals force between an Si3N4 tip and a gold surface is 59.7 4- 4.2 pN in water and 29.2 4- 4.2 
pN in propanol. As regards the COOH-functionalized tip and sample, only the measurement in hexane 
gives good results for the hydrogen bond elementary force. As a matter of fact, by analyzing the 
distance dependence of the force, the authors find a power law of - 3  (i.e., the expected value for 
hydrogen bond interaction) only in hexane. The elementary force is 70.6 + 2.4 pN. In water and 
propanol the interaction is repulsive, and is due to the double-layer force. 

Subsequently, the hydrogen bond elementary force has been measured by functionalizing the tip and 
sample with SH- or OH-terminated silanes [213] or CH2Br or CH3 terminated silanes [214]. In the first 
experiment forces are measured in water, (CH3)2SO, and propanol. The OH-OH single bond force in 
water is 119+ 16 pN. The single bond force is linearly dependent on the dielectric constant of the 
medium and the value in vacuum is extrapolated to 362 + 10 pN for OH-OH and to 136 ± 6 pN for SH- 
SH. In the second experiment forces are measured in water, methanol, and propanol. The hydrogen 
bond elementary force between unmodified Si3N4 tips and unmodified SiO2 substrates in water is 
236 4-20 pN. The Van der Waals single bond force between bromo-undecyl-trimethoxy-silanes is 
31 + 5  pN in water, 75 + 11 pN in methanol, and 101 4- 3 pN in propanol. Finally, the force between 
octa-decyl-trimethoxy-silanes has a single bond force of 658 + 68 pN in water and of 281 + 35 pN in 
propanol. The authors have suggested that these rather high values of force are due to a hydrophobic 
interaction. 

Thomas et al. [215] have measured the elementary forces for the systems CH3-CH3, NH2-NH2, 
COOH-COOH, and NH2-COOH, taking advantage of their force feedback controlled AFM (see 
Section 3.2). Measurements are performed in an evacuated chamber successively filled with dry N2. 
The force feedback method allows the authors to sample the whole curve and hence to work in dry N2. 
The work of adhesion and the single bond energy are determined on the basis of DMT theory. As in the 
work of van der Vegte and Hadziannou, the CH3-CH3 interaction is a pure Van der Waals interaction 
and the calculated surface energy (30 mJ/m 2) is in agreement with Lifshitz theory. All other interactions 
are interpreted as hydrogen bond interactions. 

Van der Vegte and Hadziannou [216] have studied the pH dependence of the adhesion between a tip 
and a sample both functionalized with the same acidic or basic group. The curves depicting such a 
dependence resemble the solution titration curves for acids. Furthermore, the authors have deduced the 
degree of ionization and the effective pK from force-displacement curves. For COOH and PO3H2 the 
adhesion decreases for pH>4  and reaches zero for pH = 10. The initially strong adhesion is due to 
hydrogen bonds, whereas the final zero adhesion is due to the double-layer force that increases as more 
and more COOH or PO3H2 groups become deprotonated. In the case of the diprotic acid PO3H2 the two 
steps in the ionization, i.e., PO3H2~PO3H - and PO3H -~ PO~-, are clearly observed. In the case of 
NH2, the adhesion is zero for pH < 4 and then increases with pH. The initial zero adhesion is due to the 
fact that, at low pH, the NH2 groups are positively charged (NH~) and give rise to a double-layer 
repulsion. Finally, the adhesion is pH-independent for the C H  3 groups. 

All the experiments dealing with the determination of specific forces have demonstrated the 
importance of the techniques based on functionalized tips. Functionalized tips have a chemical 
selectivity that greatly enhances the capabilities of the AFM in studying biological interactions and 
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mechanisms of molecular recognition. Specific forces, single bond forces, the stretching of molecules 
and acid-base interactions have been extensively investigated. A lot of work is still necessary, however, 
in order to clarify several details of such measurements and to make the technique reliable and simple 
to perform. 

6.8. Steric, depletion, and bridge forces 

Steric forces arise when the interacting surfaces are spatially diffuse, i.e., they have thermally mobile 
surface groups. A common type of thermally diffuse surface is a surface covered with chain molecules 
which dangle out into the solution, e.g., a polymer-covered surface. When another surface is appro- 
ached confining these dangling chains in a well-defined volume, a repulsive entropic force known as 
"steric" or "overlap" force arises. 

The extension of a polymer chain into the solution depends on three interactions: the solvent- 
solvent, the monomer-monomer,  and the monomer-solvent interaction. If the solvent is a "0" solvent, 
i.e., the polymer-solvent interaction is equivalent to the polymer-polymer interaction, the root mean 
square radius of the polymer coil R~ is given by R~, = Ix/-~m/X/6 [217], where nm is the number of 
monomers and I is the length of a monomer. In real solvents the effective size of the coil is referred to as 

, 3/5 Flory radius RF [217]. In a "good" solvent there is a repulsion between the monomers and RF ~ mm • 
In a poor solvent the polymer collapses to a globular shape. The thickness of the polymer layer TL 
depends also on the coverage of surface. If N is the number of chains per unit area, in a good solvent TL 
is given by [15]: 

TL = ~/NR~/3. (6.93) 

Once two polymer-covered surfaces are closer than 2TL, there is a repulsive pressure P(D) given by 
[218]: 

P(D) ~- kB TN 3/2 [(2TL/D) 9/4 - (D/2TL)3/4], (6.94) 

in which D is the distance between the surfaces. 
Eq. (6.94) is the expression of the steric repulsion. The first term in Eq. (6.94) is the osmotic 

repulsion between the coils favoring their stretching, while the second term comes from the elastic 
energy of the chains acting against the stretching. The energy scales as D 5/4 at short distances and 
as D 2 at large distances [218]. For 0.2 < D/2TL < 0.9 the pressure is adequately described by 
[218]: 

P(D) TM lOOkBTN3/E exp(-Tr ~--~).~ (6.95) 

When the surfaces are closer than Rg the coils are pushed out of the gap resulting in a reduced polymer 
concentration between the surfaces. Another kind of force arises, no longer due to the confining of the 
dangling chains which have now been pushed out. This new force is called the depletion force. If the 
polymer concentration is p, applying the contact value theorem, Eq. (6.56), yields the attractive 
depletion free energy per unit area [15]: 

lim W = -pRgkBT (6.96) 
D~0 
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Fleer et al. [219] have deduced the depletion force in the form: 

# (D + 2R)(D - 2TL), (6.97) F----Tr--  
VM 

in which # is the chemical potential of the solvent, Vm the solvent molecular volume, and R is the 
radius of the tip. The net interaction between two polymer-covered surfaces depends also on the 
polymer-surface interactions and on the availability of free binding sites on the opposite surface. If 
there are free binding sites on the opposite surface, some polymer coils will form bridges between the 
two surfaces and give rise to an attractive bridging force. The bridging force decays roughly exponen- 
tially with distance, with a decay length that is close to RF. 

Biggs [220] has measured the forces between a surface covered with polyacrilic acid (molecular 
weight Mw = 750 000, R~ = 56 nm) and a zirconia colloidal probe of radius ~- 300 nm. After checking 
that the forces between the probe and a zirconia plate can be completely described by the DLVO theory, 
the forces between the probe and polymer-covered surface are measured. At high coverage, the 
measured force on approach increases approximately exponentially from 180 to 20 nm. From 20 nm 
down to contact a much steeper force is observed. Note that 180 nm corresponds to 3.5Rg. The same 
features are observed in the withdrawal curve. However, between 0 and 20 nm, the withdrawal force is 
always lower than the approaching one. The non-exponential force at D < 20 nm is attributed to a 
severe restriction of the degrees of freedom of the polymer and/or to surface roughness. The interaction 
energy scales as D -5/4 for D < 20 nm and as D 2 for D > 20 nm. At lower concentration there is a 
bridging force between the two surfaces that extends up to 2 lam. 

Similar results have been obtained by Frank and Belfort [221] with extracellular polysaccharides 
(EPS) of varying molecular weight. Bridging forces are present both for anionic EPS and for anionic 
dextran and extend up to 1300 and 400 nm, respectively. No adhesion is observed. Bridging forces are 
absent in the case of neutral EPS. The authors have addressed also the effects of the ionic strength of 
the solution and have showed that bridging forces disappear in a 0.1 M KCI solution (see also Ref. 
[222]). 

Braithwaite et al. [223] have studied the forces between a glass surface and a glass colloidal particle 
both covered with polyethylene oxide (Mw = 56 000). The force-distance curves acquired after 35 min 
of incubation show a weak jump to contact at a distance of 45 nm (5Rg) and few bridging events due to 
some dangling polymers adsorbing to free binding sites onto the tip. The withdrawal curve has a slide- 
off-contact behavior. If sufficient time elapses (e.g., 24 h), the surface is fully covered by the polymer, 
and no bridging occurs. Only an exponential repulsion, beginning at 90 nm (12Re), is present. If the 
time of incubation is very long, e.g., some days, force-distance curves are not reproducible. Their 
common features are an exponential repulsion beginning at very large distances (e.g., 1600 nm) and an 
irregular slide-off-contact with multiple stages of detachment. When covering only one of the surfaces, 
one would expect that the bridging events increase, since in this case one of the surfaces is entirely 
available for polymer adsorption. Measured curves do not support this supposition. The authors have 
attributed the discrepancy to the rather high scan rate. Finally, the authors have proved that the 
interactions between polymer-covered surfaces depend on repeated contacts. If the scan rate is high 
compared to the relaxation time of the polymer and the exerted loads are important, both attractive and 
adhesive forces change with repeated contacts. In particular, the adhesion diminishes. 

Ducker and Clarke [224] have studied the forces between a silicon nitride tip and a silicon nitride flat 
surface in solutions containing a zwitterionic surfactant adsorbed on the surfaces. A steric repulsion of 
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about 2 nN is observed in approach and withdrawal curves from 5.2 down to 3.3 nm. The thickness of 
the two surfactant bilayers, measured by X-ray diffraction, is 4.6 nm. Repeating the contact on the same 
point of the sample for several times (300), the adhesion diminishes, and the range of the repulsive 
force extends a distance approximately equal to an additional bilayer. If the tip is moved to a new 
position, the shape of the curve returns to the previous one. 

Steric and bridge forces depend not only on the repeated contacts, but also on the scan rate. Biggs 
[225] has acquired force-distance curves between a zirconia colloidal probe (R = 2-3 ~tm) and a 
zirconia plate covered with polyvinyl pyrrolidone (PVP) (Mw --40000) .  The curves show a steric 
repulsion on approaching and several bridging events on withdrawal. The bridging events occur at 
rather small distances (40-80 nm) and assume the shape of small attractive surges similar to those 
obtained with functionalized tips (see Fig. 33). The steric force begins at a distance of 70-80 nm 
(~- 5Rg). Force-distance curves are acquired at different scan rates (9.8 - 0.1 Hz). Differences between 
the data at 1 Hz and below are insignificant, but, at higher scan rates, the steric force becomes steeper 
and steeper as the scan rate increases. These data indicate that there is a limiting collision velocity 
below which the response of the repulsive potential is rate independent. Also the bridge force depends 
on the scan rate. The jump-off-contact and the bridging events are present only at scan rates of 1 Hz or 
lower (see also Ref. [222]). 

The weakness of the depletion force relative to the double-layer and the Van der Waals forces has 
made the measurement of this force particularly difficult. Milling and Biggs [226] have measured the 
depletion force between a silica colloidal particle (R = 3.8 ~tm) and a silica plate, both covered with 
octadecyl alcohol (SiO2--Cls). The Van der Waals force is minimized by performing the experiment in a 
solution of polydimethyl siloxane in cyclohexane. The curves show a short-range steric repulsion 
(D = 3-4 nm) followed by a strong attractive force, beginning at 20 nm of separation. The experimental 
data are in good agreement with Eq. (6.97). 

Milling and Vincent [227] have studied the depletion force between silica surfaces in solutions of 
polyacrilic acid (PAA). The depletion force depends on the PAA concentration. In particular, the surface 
separation at which the depletion force reaches its maximum decreases with increasing PAA concen- 
tration. Also the effect of electrolytes (NaNO3 and NaOH) is studied. The data are fitted with Eq. (6.97). 

7. Imaging based on force-distance curves 

Force-distance curves also may be acquired in all points throughout the scanned area in order to 
compare t ip-sample interactions at different regions of the sample, i.e., in order to study the spatial 
variation of interactions. 

In such a case, different scanning methods are employed and the quantities of interest (e.g., adhesion 
force) are drawn from the acquired curves and represented in two-dimensional maps. There are some 
common drawbacks of these imaging techniques. The acquisition of the force-distance curves on each 
point of the scanned surface can require some minutes, and almost all the information on the sample 
physico-chemical properties is drawn from maps obtained by data post-processing. An advantage of the 
use of force curves is the possibility of doing the lateral movement with the tip away from the surface, 
and hence the capability to avoid the dragging of the sample. 

Two methods of acquisition are commonly used. In one method [228] force-displacement curves are 
acquired, irrespectively of sample topography, over a given distance range AZ beginning from a fixed 
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(a) (b) 

(c) (d) 

Fig. 34. The four main scanning methods proposed for the sequential acquisition of force-displacement curves on a surface, 
i.e. Radmacher's method (panel (a)), Baselt and Baldeschwieler method (panel (b)), Koleske et al. method (panel (c)), and 
Cappella et al. method (panel (d)). In Radmacher's method force-distance curves are acquired, irrespectively of sample 
topography, over a given distance range AZ beginning from a fixed distance at Z~. In the other three methods, force-distance 
curves are acquired beginning from a point of maximum load Z(Fm~,). In the method of Baselt and Baldeschwieler the tip 
moves laterally in contact with the sample surface. The sampled distance AZ is fixed. In the method of Koleske et al. the 
height at which the tip is retracted is the same for all the points, so that the sampled distance varies for each curve. In Cappella 
et al. method the scanned volume follows the sample surface. 

distance at Z~) (panel (a), Fig. 34). The scanned volume does not follow the sample surface and there is 
no control on forces exerted on the cantilever by the sample. Therefore,  the cantilever may bend 
excessively and break on protrusions or fail to contact the surface on depressions. With another method 
[229-231],  force-d isp lacement  curves are acquired beginning from a point of  maximum load Z(Fmax). 
Thus the tip does not fail to contact the surface at each point and cantilever damage because of  
excessive load cannot occur. This method provides another advantage in that all fo rce-d isp lacement  
curves are related to the same value of  force and can be compared directly. After Baselt and 
Baldeschwieler,  the former method is referred to as "absolute mode"  and the latter as "relative mode" .  
In the relative mode different techniques are used to control the force on the cantilever so that it does 
not exceed the maximum load. 

In Baselt and Baldeschwieler 's  work [229] a controller based on a digital signal processor is used and 
the tip moves laterally in contact with the sample surface. During this process the feedback loop is 
active and keeps the cantilever deflection, and hence the t ip - sample  force, constant. Then, at each 
point, the feedback is stopped and the tip is first withdrawn and then approached step by step. At each 
step the deflection is measured and stored. The sampled distance AZ is fixed, during both the 
withdrawal and the approaching ramp, as indicated in panel (b) of  Fig. 34. In this technique part of  the 
advantage of  the force-d is tance  curves method is lost because the tip is moved while it is in contact 
with the sample and so there is the risk of  dragging the sample. 

In the method of  Koleske et al. [230] the computer  stops the approach when the force reaches the 
maximum load and then the sample is retracted to a given height (see panel (c) in Fig. 34). This height 
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is the same for all the points so that the sampled distance varies for each curve. Therefore some 
acquisition time is wasted in sampling points too far from the surface, where there is no interaction. 

Yet another method has been proposed by Cappella et al. [231], as illustrated in panel (d) of Fig. 34. 
At the beginning the tip is away from the surface. Then the sample is approached to the cantilever, 
acquiring deflection values at each pre-assigned step. This process stops at the height Z(Fma×), when the 
force exerted on the tip reaches the pre-assigned maximum load F,n~,x. The deflections in the last N~ 
approaching points are stored. Next the sample is retracted step by step for a distance AZ and the 
deflections in the next N~ withdrawal points are acquired and stored. After the acquisition of these 
N~ values, the sample is withdrawn for a further short distance in order to insure that the vertical 
distance between the cantilever and the subsequent XY point is never less than AZ. In this 
method lateral XY movements are done away from the surface, avoiding sample dragging. The scanned 
volume follows the sample surface so that no time is spent in acquiring points too far away from the 
surface. 

The spatial variation of surface interactions may be represented in several ways. One of the most 
effective of these is constructed by plotting all the curves of one scanned line together. Even if the 
details of the interactions are sometimes lost, this kind of plot has the advantage of immediately 
comparing all the regions of the curve. Hence, differences in elasticity, attractive forces, and adhesion 
forces are simultaneously observable. A more refined analysis of the spatial variation of interactions 
can be performed by extracting several different parameters from the curves. Single parameters can be 
plotted on a gray scale as a function of the XY coordinates. In some works, such quantities, e.g., 
adhesion force, are directly acquired. Finally, a kind of image proposed by Cappella et al., namely the 
force-slice, has the advantage of showing the differences between different regions of the sample on 
line, i.e., during the acquisition and not in post-processing images. 

7.1. Comparative curve plotting 

A collection of withdrawal force-displacement curves acquired on a peroxidase deposit on silicon is 
showed in Fig. 35 [231 ]. All the curves belong to a scanning line. The peroxidase occupies the center of 
the scanned area. The curves are acquired in deionized water with an Si3N4 tip. The first and last curves 
of the scan line are on clean silicon. These curves have a jump-off-contact of approximately 3 nN. The 
adhesion on the peroxidase region (central curves) is smaller, allowing the two regions to be 
distinguished. Similar images have been obtained for a deposit of fluorescein iso-thiocianate (FITC) on 
silicon in air [231]. In this case, the differences in adhesion are due to the different degree of 
hydrophobicity of the two materials. 

Radmacher et al. [228] have studied the spatial variation of interactions for a thin nickel film 
evaporated onto mica, a glass slide partially covered with chromium, and lysozyme adsorbed on mica. 
All measurements are performed in water. In all the three cases, large differences between the different 
regions of the sample are shown by plotting the curves of a scan line altogether. The presence of nickel 
islands on mica and of chromium regions on glass is revealed by higher attractive and adhesive forces, 
probably due to a hydrophobic meniscus exerted by contaminants adsorbed onto nickel or chromium. 
For the lysozyme, only the withdrawal curves show clear differences, since the adhesion is weaker on 
lysozyme than on mica. 

Radmacher et al. [232] have mapped force-displacement curves on human platelets showing 
differences between the substrate and the cell mainly due to elasticity. 
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Fig. 35. Line of withdrawal force-displacement curves acquired on a peroxidase deposit on silicon. The inset is a lateral force 
image showing the area occupied by the peroxidase. The curves on silicon (first and last curves) have a rather large adhesion 
whereas the adhesion on the peroxidase region (central curves) is smaller, thereby allowing to be distinguished (adapted from 
[231]). 

Rotsch and Radmacher [11] have studied the spatial variation of forces on a vesicle suspension of 
dimethyl dioctadecyl ammonium bromide (DODAB) on mica in pure water. Several kind of images are 
presented. The most effective images are the lines of force-displacement curves, in which all the 
regions of the curves can be immediately compared. In pure water, the DODAB is positively charged, 
while the mica is negatively charged. The silicon nitride tip is negatively charged. Hence the double- 
layer force is attractive between DODAB and silicon nitride and repulsive between mica and silicon 
nitride. Such a difference can be exploited to identify the DODAB vesicles in images collecting both 
the approach and the withdrawal force-distance curves. The lateral resolution is better than 25 nm. 

7.2. Force-slices 

A force-slice collects the deflections of the cantilever on each point of the scanned area at a given 
distance from the point of maximum load. The kind of information given by a force-slice depends on 
the considered distance. If the force-slice collects points on the contact line, then it provides informa- 
tion about the different stiffnesses of the regions of the sample. Force-slices collecting points near the 
jump-to-contact or the jump-off-contact give information about attractive or adhesive forces. Three 
force-slices at different distances from the deflection of maximum load (300, 350, and 440 nm) are 
shown in Fig. 36 for a sample of FITC on silicon. Two squares of FITC are partially evident. The lighter 
parts of the image indicate the larger value of deflection. In each of the three slice-forces, it is evident 
that the tip is still adhering to silicon, although it is already detached from the FITC deposit. Hence the 
points on silicon are black (negative deflections) and the points on FITC are white (zero deflection). 
The number of points on FITC at which the tip is already detached increases with the distance. Such 
differences in adhesion are due to capillary forces. Similar images have been presented for a deposit of 
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Fig. 36. Three force-slices at a distance of 300, 350, and 440 nm from the deflection of maximum load on a FITC deposit on 
silicon. The lighter parts of the image indicate the larger value of deflection. In each force-slice the tip is still adhering to 
silicon (black points), while it is already detached from the FITC deposit (white points). The number of points on FITC at 
which the tip is already detached increases with the distance (adapted from [231]). 

peroxidase on silicon in water [228], where differences are mainly due to different Hamaker constants. 
Meaningful information can be drawn from force-slices only if they are acquired in a relative mode. 
Otherwise, the curves are not referred to the same maximal value of load and deflections cannot be 
compared. 

Information obtained from force-slices is qualitative. A force-slice does not contain either the value 
of the pull-off force or the distance at which the tip pulls off the sample. It simply shows that, at a 
certain distance from sample surface, pull-off has already occurred in some regions of the scanned area, 
while in other regions it has still to occur. 

7.3. Mapping parameters drawn from force-distance curves 

Three maps obtained in air on a phosphatidyl choline (PC) deposit on silicon are shown in Fig. 37. 
The maps show the jump-off-contact force (panel (a)), the jump-off-contact distance (panel (b)), and 
the adhesion (panel (c)). The adhesion is calculated as the area below the zero line in the withdrawal 
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Fig. 37. Three maps obtained in air on a phosphatidilcoline deposit on silicon. The maps show the jump-off-contact (panel 
(a)), the jump-off-contact distance (panel (b)), and the adhesion (panel (c)). 
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curve. The PC regions show a smaller pull-off force (darker points), a smaller pull-off distance (lighter 
points) and a weaker adhesion (darker points). The different quantities are calculated off-line from the 
curves and mapped. Since curves are acquired in air, the differences between the two regions are due to 
differences in the thickness of the adsorbed water layer. 

The first direct measurement showing the spatial dependence of adhesion is that of Mizes et al. [19]. 
These authors have performed adhesion studies on a sample of both doped and undoped polycarbonate 
in air. The adhesion is mainly due to meniscus force. First of all, the authors check that the adhesion is 
not affected by repeated contacts. Subsequently, they show that the adhesion depends on sample 
topography and on materials properties. As a matter of fact, three ridges are present on the sample. The 
adhesion is smaller on the edge of the ridges, since the contact area, and hence the meniscus force, is 
smaller. On the bottom of the ridge the adhesion is larger, since a larger portion of the tip is in contact 
with the sample surface, as indicated schematically in Fig. 38. Hence, adhesion maps are able to reveal 
differences in sample topography. Differences in sample materials can also be detected. The authors 
demonstrate the capability of adhesion maps to distinguish between doped and undoped polycarbonate. 
Since measurements are performed in air, the differences detected are probably differences in materials 
hydrophobicity. 

Differences in materials hydrophobicity have been exploited also by Berger et al. [100]. These 
authors show adhesion maps acquired in air on a di-myristoyl-phosphatidyl-ethanolamine (DMPE) 
deposit. The thicker domains have a smaller adhesion. 

The same kind of measurements has been performed by Sasaki et al. [233] on a Cr grating on glass. 
The authors show the topography dependence of adhesion and propose a method to draw pull-off and 
pull-on forces from the curves. Also pull-on maps are presented. 

Dufrene et al. [234] have performed similar measurements on a mixed di-stearoyl-phosphatidyl- 
ethanol-amine (DSPE) and di-oleoyi-phosphatidyl-ethanol-amine (DOPE). Adhesion maps in air show 
that the microscopic domains of DSPE have a smaller adhesion (6.1 ± 0.2 nN) than the DOPE matrix 

Fig. 38. Schematic representation of the dependence of the adhesion force on sample topography. The top line represents the 
sample and the tip in four different positions, the bottom line represents the corresponding adhesion. Various tip positions are 
indicated by the labels (1)-(4). In (2), a smaller fraction of the tip surface comes in contact with the sample surface than in (1) 
or in (4), whereas the contact area is larger in (3). The adhesion varies accordingly. 
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(10.5~0.2 nN). Differences in adhesion are attributed to differences in materials elasticity and 
deformation. Adhesion maps also in water are presented. Once again the adhesion is larger on DOPE. 
The authors attribute such differences to the presence of repulsive hydration or steric forces acting only 
between DSPE and the Si3N4 tip. 

Baselt and Baldeschwieler [229] have acquired force-displacement curves in air on collagen fibrils. 
These authors have used both the relative and the absolute mode of acquisition. Force-slices were 
considered too difficult to interpret. Hence, different parameters are drawn from the force curves and 
mapped. The authors have shown adhesion and hardness maps. 

Koleske et al. [230] have shown maps of pull-on and pull-off force on a calibration grating in air. 
Van der Werf et al. [125] have acquired on-line the pull-off force, the pull-off distance, and the 

adhesion on a mercaptopentadecane-gold layer on glass. The pull-off force is determined by means of 
a peak revelator. The pull-off distance and the adhesion are detected by means of two integrators. 
Several images of different samples obtained in air and in water are presented. The method proposed by 
the author presents some advantages when compared with usual mapping methods. However, it cannot 
be effectively used for every kind of sample and interaction. 

Ishino et al. [235] have mapped forces on patterns of stearyl-mercaptan, stearic acid, stearyl alcohol, 
and stearylamine monolayers on SiO2. All the patterns are well imaged in jump-in and jump-off maps. 
The stearyl-mercaptan is hydrophobic and uncharged in water at pH 5.6, whereas the silicon nitride tip 
and the bare silicon oxide surface are both negatively charged. In jump-in maps, forces on stearyl- 
mercaptan are about 1.5 nN greater than on SiO2. The other three patterns are imaged in adhesion maps. 
In all the three cases, adhesion forces are greater on the monolayers than on the bare silicon oxide. 
Differences in attractive and adhesion forces are due mainly to the double-layer force (see also Ref. 
[12]). 

7.4. Affinity imaging 

The mapping of specific forces by means of functionalized tips has often been called "affinity 
imaging", since functionalized tips are able to single out the complementary molecule on a sample. 

Hinterdorfer et al. [200] have localized single antigens on samples with a low density of mole- 
cules. These authors have performed a scanning of the sample along a given direction. In withdrawal 
curves, the specific detachments occur only at certain positions. A plot of the number of specific 
detachments vs. the position gives a gaussian distribution whose peak corresponds to the position of 
the molecule. 

Ludwig et al. [236] have mapped the interaction between avidin and biotin. In their experiment, 
the tip is functionalized with biotin. The sample is a pattern of avidin lying between squares 
covered with bovine serum albumin (BSA). The authors show that the usual topographic images 
are not able to distinguish between the avidin and the BSA regions. On the contrary, the adhesion 
maps reveal the presence of avidin due to the different interactions. When free biotin is added 
in solution, the topographic image is always the same, but in the adhesion maps, the contrast 
disappears. 

All the techniques designed to map surface forces have revealed the AFM as a useful tool for 
distinguishing different materials and for the imaging of materials that would be damaged by other 
imaging modes. Several technical problems are still unsolved, e.g., the long time needed for the 
acquisition. Nevertheless these new kinds of "surface spectroscopy" are very promising. 
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8. Synopsis 

The AFM has been used to study surface forces and materials elasticity by means of force-distance 
curves since 1989. Since then, this technique has become a fundamental tool for several kinds of 
measurements. 

In certain cases the technique gives satisfactory results and the interpretation of data no longer 
presents problems. Thus, AFM force-distance curves are the most used technique for measurements of 
the elasticity of materials, for the study of the wetting properties of lubricants, for the determination of 
the Hamaker constants in certain liquids, for the characterization of the double-layer force 
(determination of the Debye lengths, of the surface charges, and of the PZT of oxide-like materials), 
and for the study of solvation and hydrophobic forces. New applications are constantly being found. 
The technique is becoming increasingly reliable in the characterization of the degree of hydrophobicity, 
in the study of the adsorption of salts and polymer at liquid/solid or liquid/liquid interfaces, and in the 
characterization of steric and bridging forces. 

The most promising results are the recent studies of forces at a liquid/liquid interface, the 
applications of functionalized tips for the study of specific forces and for the determination of single 
bond forces, and the development of techniques for the mapping of physico-chemical properties drawn 
from force-distance curves. 

The main problems in the quantitative application of this technique are the uncertainties in the 
cantilever elastic constant and in the tip shape. Although procedures have been developed to calibrate 
the elastic constant of the cantilever, some cases, e.g., with functionalized tips, remain in which it is 
quite difficult to apply such techniques effectively. The main problem in AFM force-distance curve 
interpretation is, however, the lack of reliable methods to determine the tip shape and dimensions. The 
use of a big colloidal tip of known dimensions is not an effective solution to this problem, because one 
of the major advantages of the AFM, namely the capability of probing local interactions on a very little 
area, is lost. Only a better knowledge of the shape of the tip will increase the reliability of quantitative 
measurements of forces, above all the Van der Waals and the double-layer forces, and will permit the 
study of still uncharacterized forces such as hydrophobic or hydration forces. 
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