
Visual Comput (2006) 22: 399–414
DOI 10.1007/s00371-006-0017-3 O R I G I N A L A R T I C L E

Pascal Glardon
Ronan Boulic
Daniel Thalmann

Dynamic obstacle avoidance for real-time
character animation

Published online: 17 May 2006
© Springer-Verlag 2006

P. Glardon · R. Boulic (�) · D. Thalmann
Ecole Polytechnique Fédérale
de Lausanne (EPFL), Virtual Reality Lab,
CH-1015 Lausanne, Switzerland
ronan.boulic@epfl.ch

Abstract This paper proposes
a novel method to control virtual
characters in dynamic environments.
A virtual character is animated by
a locomotion and jumping engine,
enabling production of continuous
parameterized motions. At any
time during runtime, flat obstacles
(e.g. a puddle of water) can be created
and placed in front of a character. The
method first decides whether the char-
acter is able to get around or jump
over the obstacle. Then the motion
parameters are accordingly modified.
The transition from locomotion to
jump is performed with an improved
motion blending technique. While
traditional blending approaches let
the user choose the transition time
and duration manually, our approach
automatically controls transitions
between motion patterns whose

parameters are not known in advance.
In addition, according to the anima-
tion context, blending operations are
executed during a precise period of
time to preserve specific physical
properties. This ensures coherent
movements over the parameter space
of the original input motions. The
initial locomotion type and speed
are smoothly varied with respect to
the required jump type and length.
This variation is carefully computed
in order to place the take-off foot
as close to the created obstacle as
possible.

Keywords Human body simulation ·
Real-time motion blending · Motion
planning · Obstacle avoidance

1 Introduction

In computer graphics, many methods and techniques
have been developed to animate virtual humans, with
the same principal objectives: believability, efficiency and
adaptability. Motion capture [26] produces incontestably
realistic human animations, but needs post-processing
work to filter and adapt the raw recorded data. Editing
methods have, therefore, been developed, such as mo-
tion interpolation or blending, producing new motions
by combining multiple clips according to time-varying
weights. This provides effective ways of adapting mo-
tion clips to the desired constraints specified by anima-

tors. However, these are sometimes complex to formu-
late, notably for real-time animation in dynamic environ-
ments.

In this paper, we present a method that determines
these constraints automatically so as to animate an au-
tonomous character in a dynamic environment. As op-
posed to traditional methods that consider the objects (or
obstacles) of a scene as static [9, 14, 32] or as described
with pre-defined trajectories [16, 23], we aim at handling
obstacles that are not known in advance, generated on-the-
fly during the animation process. Based on a locomotion
engine, the character moves freely in a virtual environ-
ment. As soon as an obstacle is visible for the character,
the method decides whether to get around or to jump over

400 P. Glardon et al.

Fig. 1. A transition from locomotion to jump generated by our
blending method

it, and then constructs the appropriate animation on-the-
fly. This mechanism is composed of three phases.

The first phase aims to determine if the jump is
physically feasible with respect to the current anima-
tion parameters such as the locomotion speed, obsta-
cle length, distance between the character and the ob-
stacle. According to the resulting decision, the second
phase establishes a path that the character has to fol-
low. A trajectory results from this path, providing the
necessary linear and/or angular speed variation, either
to avoid the obstacle or to place the take-off foot as
close to the obstacle as possible. Finally, the last phase
consists in generating the animation with respect to the
parameter variation by applying the animation engine
presented in [11], which produces the exact desired mo-
tion. In the case of jumping over the obstacle, we elab-
orate an on-line motion blending method that ensures
a smooth transition from a locomotion pattern to a jump
sequence without knowledge of their parameters in ad-
vance.

To produce realistic animation results, the motion
blending method needs the implementation of time warp-
ing techniques, where correspondences between the mo-
tions are identified and then aligned. Instead of applying
time warping methods where all input motions have to
be pre-processed [19, 34], we opt for an approach simi-
lar to [27] that allows dynamic blending of motions not
known in advance. However, its disadvantage is that the
correspondences of motion structures have to be done
manually, by annotating the time constraints of the feet,
referred to as the support phases. We therefore propose
an automatic method based on a subset of pre-labeled mo-
tions. Owing to a relation between these motions and their
support phases, the time constraints of a new generated
motion are detected on-the-fly.

All of the above mentioned methods perform blending
as soon as it is requested by an animator. As a conse-
quence, the resulting produced motion is sometimes not
coherent: blending two walking motions that are out-of-
phase, for example. This stems from either an incorrect
chosen transition time and/or duration, or from a violation
of dynamic motion properties. Hence, our method con-
trols the blending from locomotion to jump by choosing
the appropriate transition time and duration. In addition,

the locomotion speed is adapted to the required jump for
the given obstacle so as to minimize dynamic incoher-
ence.

The first contribution of this paper concerns the elab-
oration of a blending technique for virtual characters, al-
lowing the transition from locomotion to jump and en-
suring coherence of motion properties (see Fig. 1). Using
this technique, the second contribution consists in real-
time one speed variation, which places the take-off foot
as close to an obstacle as possible for a given final run-
up speed. This obstacle “appears” dynamically in front of
the moving character, at a distance not known in advance.
As opposed to a previous technique [23] based on a search
technique for the best appropriate motion into a motion
clip database, we generate on-the-fly the exact motion cor-
responding to the requirements.

The remainder of this paper is organized as follows.
Related work is reviewed in the next section. Section 3
presents an overview of our method, while the following
section describes the control of a blending operation. Then
we explain the path generation to get around or jump over
an obstacle. Finally, we conclude in Section 6 with results
and a discussion.

2 Related work

The method presented in this paper is related to two main
research directions. The first one concerns the generation
of transitions with continuous parameter variation. We use
two animation engines, one for the locomotion and the
other for the jump, explained in [11]. However, we still
have to generate the transition between them. We focus,
therefore, on motion blending techniques in the first part
of this related work section. The second research direction
encompasses the motion planning methods allowing the
modification of a character’s action according to a goal, in
order to avoid obstacles in the environment.

2.1 Motion blending

Nowadays it is common to use motion capture data to
generate parameterized animations either by interpolating,
assembling or blending original motion clips.

Two or more motions can be interpolated to produce
a new parameterized one, by applying different tech-
niques. The bi-linear [15] or multivariate interpolation [34]
method generates new motions over a multi-dimensional
parameter space. Recently, Mukai and Kuriyama [28] im-
proved the interpolation function construction described
in [34] by defining a specific kernel function for each input
motion according to its characteristics. Other approaches
based on statistical methods using PCA (principal com-
ponent analysis) [10, 11] produce parameterized motion
in a very efficient way, by computing them in a low-
dimensional space.

Dynamic obstacle avoidance for real-time character animation 401

Concerning assembling animation sequences, a large
motion capture database can be organized in a motion
graph [2, 20, 25], where edges represent pieces of original
motions or generated transitions, and node choice points
where motions join seamlessly. These points are automat-
ically computed by comparing pairs of motions, frame by
frame. A metric function measures the distance between
two frames: a result smaller than a specified threshold in-
dicates a transition between these two frames.

However, this transition threshold has to be manually
quantified, as different kinds of motions have different fi-
delity requirements. In addition, some metric functions
contain non-intuitive weight values, which are difficult to
parameterize. For example, the proposed set of weights
used for the cost metric function in [25] is compared to
an optimal set in [38]. Even if the presented user study
— applied on one performer without highly dynamic mo-
tions — reveals better results for the optimal set of weights
proposed in [38], this latter method remains difficult to
evaluate under various conditions.

Another problem of the motion graph technique con-
cerns the transition duration. Actually, even if its starting
point is found automatically, its duration has to be deter-
mined manually by giving the number of transition frames
around the starting point. Moreover, adding a new motion
on-the-fly is impossible, as all input motions have to be
compared pairwise to construct the directed graph.

Motion blending is a basic way either to create new
motions by interpolation or to generate transition between
clips. Precursor works treat the motion as a time-varying
signal. Signal processing techniques have, therefore, been
developed to perform blending between motions by vary-
ing the frequency bands of the signal [7], or the Fourier
coefficients [37]. However, disadvantages appear: the tran-
sition method in [37] is not invertible (a transition from
run to walk is impossible), support phases of the feet are
not considered in [7], and transition time and duration
have to be specified by hand.

In [19, 29] blending is controlled by changing blend
weights of input motions, during a period of time given
by the user. Unlike [20], the time constraints (or sup-
port phases) change smoothly according to these weight
values. However, this solution does not allow one to add
a new input motion dynamically. It needs to be compared
to the existing ones. In contrast, Menardais et al. in [27]
propose a synchronization method to perform dynamic
blending. If a requested transition is currently unfeasi-
ble due to incompatible support phases, the blending is
shifted until it becomes possible. Another approach [3]
proposes a decouple blending to resolve diverse coordina-
tion configurations between upper and lower body-halves,
restricted to cyclic motions. Relevant events of input se-
quences are manually labeled and correspondences be-
tween them are established. Therefore, all motions have
to be known in advance. In addition, the blending is per-
formed at an interactive frame rate.

Even if all these blending techniques are widely ac-
cepted and used, transitions are not totally controlled and
can produce incoherent results. In the study of [38], se-
quences with fixed or variable transition durations have
been evaluated by some volunteers. As a result, the users
preferred transition durations that are adapted to the con-
text.

Finally, approaches taking dynamics into account,
like [35, 39], can control valid transitions by modifying
physical parameters such as angular velocity or the center
of mass. However, the parameter setting is not straightfor-
ward and the motion generation is an off-line process. Re-
cently, a momentum-based method was developed in [1].
Starting from a single motion capture sequence, a space of
new physically plausible motions is pre-computed without
parameterization effort. Although on-line blending can be
performed between these motions, the method is limited
to high dynamic movements. Furthermore, the transition
time and duration are constant.

This short survey in transition generation reinforces
our motivation to develop a methodology able to compute
automatically not only transition duration, but also tran-
sition time, and to adapt on-the-fly motion parameters to
ensure the coherence of the blended motions.

2.2 Motion planning

Motion planning increases the autonomy of virtual charac-
ters. Generally, given initial conditions and a goal, a path
planner method provides a path to follow. Concerning the
special case of locomotion tasks, the planner provides the
path taking into account the obstacle avoidance problem.
Additionally, this path is transformed into a trajectory that
returns the adequate locomotion parameters at each time.

The probabilistic roadmap methods (PRM) sample the
configuration space randomly as preprocessing, to con-
struct an accessible point graph called a roadmap. This
latter is then used to search for a path during the plan-
ning stage [17]. These methods have demonstrated good
performance empirically for difficult problems. Moreover,
they are generic, applicable to navigating car-like robots
with non-holonomic constraints, humanoid robots with
many degrees of freedom, and also molecule movements
in biochemistry.

Pettre et al. [31, 32] apply PRM to get a collision-free
2D path in a 3D environment. This path is represented
by Bezier curves and generates a trajectory encapsulating
linear and angular speed variations. Finally, a walking an-
imation is generated according these variations. Another
approach based on PRM is presented in [9]. The roadmap
is constructed by randomly sampling foot positions and
orientations to form the graph nodes. The connection be-
tween two nodes is possible if a subsequence searched
in a motion capture database approximates the given foot
configuration well. The final animation from a given start
and goal position is obtained by traversing the graph. The

402 P. Glardon et al.

input motion clips are adapted to the foot configuration de-
scribed in the graph nodes. However, these techniques are
only designed for static environment and are not adapted
to real-time context.

Other approaches based on A* algorithm allow to
search a path into a tree structure at interactive or even
real-time performance. Kuffner [21] proposes to subdivide
the 2D scene projection into a regular grid of cells. Each
cell is labeled as free or occupied by an object. A collision-
free path is then searched using a dynamic programming
algorithm such as A*. The final animation is generated
using only a single walking cycle played at varying fre-
quency according to a proportional derivative controller.
However, due to the 2D projection, the obstacles are con-
sidered as a wall and, therefore, cannot be stepped over.

Recently, finite state machines (FSM) have been used
to abstract different behaviors [8, 23]. From a current be-
havior state, FSM proposes a set of possible next behavior
states to be reached. The optimal one is then chosen by ap-
plying an A* search algorithm so as to find the solution
that is less costly. Hence, the results are highly dependent
on the database size. In addition, the approach in [23] al-
lows one to jump over obstacles. However, they have to be
assigned to specific motion clips. It is therefore not pos-
sible to add an obstacle dynamically in the scene without
having its corresponding jumping motion in the database.

The previous approaches are not well-adapted for dy-
namic scenes where the number and position of the ob-
stacles are not known in advance. In [30], the method
proposes to modify the computed path jammed by a mov-
ing obstacle. The solution is based on the work of Khatib
et al. [18] using repulsive force assigned to the obstacle.
However, this technique is off-line and was applied only to
the hand movements. Kathib et al. [6] introduce a method
that represents the path as a deformable elastic strip. From
a previously planned motion, the path can be modified
in real-time according to moving obstacles intruding it.

Fig. 2. The state machine allowing either
to go around or to jump over an obstacle

Originally designed for robot motions, this method can be
applied to virtual humans. However, the skeleton is con-
trolled dynamically, which therefore limits the approach to
motion patterns for which one masters such control tech-
niques (e.g. skiing in [18]).

Finally, the approach in [14] allows the steering of a
3D point into a dynamic environment by selecting the
best trajectory among predefined ones. However, this tech-
nique is well-adapted for 3D point animation such as
a spacecraft, but still difficult to adapt for virtual humans
whose motion constraints are much more complex. In fact,
the pre-computed trajectories have a constant linear speed.

3 Method overview

Our method is based on a state machine model composed
of ten states (see Fig. 2). The neutral state corresponds
to the animation of a character that is moved freely in an
environment by a locomotion engine based on motion cap-
tured data introduced in [11]. Its attached parameter vector
w allows the real-time variation of a stylistic weight vector
wsubj composed of vtot captured subject weights, a loco-
motion weight wloco from walking (wloco = 0) to running
(wloco = 1) and the speed s. Jumping motions are gen-
erated analogously, by substituting the parameter jump
length l for the speed s. The locomotion weight wloco is ei-
ther equal to 0 for the walking jump or 1 for the running
jump.

This state machine is composed of a sub-part respon-
sible for the transition generation from locomotion to
a jump sequence, as described in [12]. The underlying idea
is to adapt the current locomotion in order to be coherent
with the requested jump. It results in a speed and locomo-
tion type variation performed in state 1. Once this varia-
tion is finished, the blending method starts the transition as

Dynamic obstacle avoidance for real-time character animation 403

soon as the support phases of both motions contain simi-
larities (state 3). A blending operation is then performed,
from a walking (or running) motion to a jumping motion,
during the support phase. After that, the jumping motion is
played (state 4) until another compatible support phase is
detected. During this phase, the transition back to walking
(or running) is executed (state 5). Finally, the locomotion
engine returns to its neutral state, by modifying the motion
parameters to their initial values (state 6).

The remaining states of the state machine are specific
to the motion planning problem. As soon as an obstacle
“appears” dynamically in front of the moving character,
the choice whether or not to clear an obstacle is deter-
mined by performing different tests. The results depend on
the current motion parameters, the obstacle dimension and
its distance from the character. For the situation where the
obstacle is jumped over, a speed variation (state 1) is com-
puted so as to place the take-off foot as close as possible
to the obstacle, with a specific run-up speed determined by
our blending method. The alternative situation consists in
getting around the obstacle. It involves a linear and angu-
lar speed variation so as to follow the path that goes to
one obstacle side. This stage is determined using a steering
method divided into two phases (state 7 and 8).

In the next section, we explain in detail first the blend-
ing mechanism and second our motion planning algo-
rithm.

4 Controlled motion blending

We describe the method to control a blending operation
from locomotion to a jump, composed of three stages.
First the locomotion is adapted to generate a run-up phase
compatible with the requested jump, ensuring a coherent
transition. The second stage determines the transition time
and duration automatically. Finally, the transition itself is
performed by aligning in time the two blended motions.
Without loss of generality, we consider in this paper only
jumps executed with the right take-off foot.

4.1 Coherent motion adaptation

Imagine that a jump, described with a parameter wjum p, is
requested at time t1, while the character is animated by
a locomotion cycle parameterized with w1 whose speed is
s1. Two conditions have to be satisfied before effectively
operating the transition: the final run-up speed s2 to be
reached before the jump execution at time t2, and the run-
up duration trunu p = t2 − t1.

Final run-up speed. In order to preserve the dynamic co-
herence, a jump of a specific length l can only be per-
formed for a locomotion speed range. To determine this
range, we analyzed jumps from a motion capture database

to establish a relationship between the jump length and
the run-up speed. Actually, the actors were asked to se-
lect their most natural run-up speed to execute a jump of
a given length. This limits high dynamic variations be-
tween the run-up phase and the jump. Therefore, the speed
s2 measured just before the jump execution can be approx-
imated by the mean speed of this jump. We extract the
mean speed of all jumps in the database. This is computed
by dividing the traveled distance of the character’s root
by the jump duration. Figures 3 and 4 illustrate the result-
ing relation between the jump length l and the mean speed
s for walking and running jumps, respectively. Clearly,
the best approximation function of these data is obtained
by performing a linear least squares fit. Two functions are
then constructed, one for each type of jump (fW and fR,
for walking and running, respectively), returning the mean
speed that corresponds to the run-up speed s2 of a given
jump length:

fW(l) = s2 = 0.97l −0.04±0.1 , (1)
fR(l) = s2 = 1.16l −0.13±0.15 . (2)

Note that we add a tolerance to these functions. Actu-
ally, depending on the skill level of the performer, a given
jump length matches several acceptable mean speeds. This

Fig. 3. Walking jumps: relation between the mean speed and jump
length. Given a jump length, the stripe delimited by the linear
approximation (middle dashed line) and the lower and upper toler-
ances defines allowed speed values just before the jump. The gray
zone indicates not commonly feasible jumps

404 P. Glardon et al.

Fig. 4. Running jumps: relation between the mean speed and jump
length. Given a jump length, the stripe delimited by the linear
approximation (middle dashed line) and the lower and upper toler-
ances defines allowed speed values just before the jump. The gray
zone indicates not commonly feasible jumps

speed range is illustrated in Figs. 3 and 4 by the stripe built
by the positive and negative tolerances of Eqs. 1 and 2.

Therefore, given a jump length, a range of speed values
is determined. If the current locomotion speed s1 is outside
of this range, we propose two motion adaptation scenar-
ios:

� The priority is given to the jump execution. A new jump
is generated, having the appropriate length and type
which correspond to the current locomotion parame-
ter. This solution is well adapted to game environment
where the user’s actions need to be quickly executed.

� The priority is given to the jump parameters. The cur-
rent motion is adapted by a continuous speed varia-
tion until an acceptable speed that the jump requires
is reached. Additionally and simultaneously, the cur-
rent locomotion weight wloco is adapted to the one
of the jump. When the jump is finished, the locomo-
tion parameters are gradually restored to their initial
values. This solution is interesting when a character has
to clear accurately an obstacle having a specific dimen-
sion. This problem is addressed later in this paper.

Run-up duration. The determination of the run-up phase
duration trunu p is the second property ensuring a coherent
transition. We first describe an approach presented in [12],
which is based on a constant speed variation. According to

the linear speed variation ∆s = s2 − s1, the duration trunu p
has to be chosen so that the induced acceleration is less
than a threshold εa:

a = ∆s

trunu p
≤ εa . (3)

To compute trunu p, we consider the next possible time
when the transition to a jump is possible. In fact, a tran-
sition starts only at a specific foot event that occurs once
during a locomotion cycle. To facilitate the foot event
identification, we use a generic time referred to as the lo-
comotion phase ϕi and defined in the interval [0 . . .1]. The
phases ϕi = 0 and ϕi = 1 correspond, respectively, to the
beginning and the end of the cycle (or jump sequence).

According to the elapsed time ∆t between two con-
secutive frames, the current phase ϕi is updated as follows:

ϕi = ϕi−1 +∆tF(w) , (4)

where F(w) is the frequency function defined in [11]. This
function returns the inverse duration of the locomotion
cycle (or jumping sequence) characterized by the param-
eter vector w.

For the transition from locomotion to jump, we define
ϕ1 the phase at time t1 and ϕ2 the phase at time t2. The run-
up duration can, therefore, be approximated using Eq. 4:

trunu p = t2 − t1 = (ϕ2 −ϕ1)
2

F(w1)+ F(w1)
, (5)

where the frequency variation is approximated by consid-
ering it as constant.

In order to determine the necessary number of locomo-
tion cycle before performing the jump, Eq. 5 is evaluated
by setting ϕ2 = 1. This operation is repeated by adding
1 to ϕ2 (i.e. an additional cycle) as long as the returned
trunu p does not satisfy the acceleration condition described
in Eq. 3.

However, this approach involves a constant speed vari-
ation during this run-up phase and can generate several
locomotion cycles before executing the jump. Hence the
take-off foot position is not fixed and depends on the cur-
rent motion and jump parameters. We address this prob-
lem in the Sect. 5.

4.2 Transition time and duration

The locomotion parameters being compatible with the
jump ones, the transition time and duration has to be de-
termined.

First, we define eight foot events (Table 1) that interact
with the floor. These are needed to identify the different
support phase types described in Fig. 5. A support phase
is defined as a period of time during which one feet (sin-
gle support) or two feet (double support) touch the ground.

Dynamic obstacle avoidance for real-time character animation 405

Event name Abbreviation

Right heel strike RHS
Right heel off RHO

Right toe strike RTS
Right toe off RTO

Left heel strike LHS
Left heel off LHO

Left toe strike LTS
Left toe off LTO

Table 1. Foot events in-
teracting with the floor

Fig. 5. Description of the support phase types

We simplify this definition by assuming that the heel al-
ways touches the floor before the toe, and inversely when
the foot leaves the floor.

Many works [19, 27, 34] have demonstrated the neces-
sity to take into account the support phases when blending
is performed. In fact, a specific support phase (e.g. a right
hopping with a left hopping) cannot be blended as they
violate the motion properties. The support phases also al-
low one to blend several motions in a synchronous way.
The algebraic relation proposed in [27] determines dy-
namically the transition time by defining and checking
the support phases’ compatibility of the blended motions.
For example, a double support is always compatible with
a single support.

However, this latter method is not general enough. For
example, the double support defined from LHS to RTO in
a walking motion (Figs. 5 and 6) is incompatible with the
single support from RHS to RTO for a jump starting with
the right take-off foot. Actually, the right leg is in front
of the character trunk at the double support and back at
the single support. Our method avoids this drawback by
guaranteeing that the blending from locomotion to jump
occurs during the single support phase defined between
RHS and RTO, and similarly from jump to locomotion be-
tween LHS and LTO. In that way, those support phases
determine not only the transition time, but also the transi-
tion duration.

Still, the foot events must be detected from the blended
motions. As our method is foreseen to work dynamically,
without knowing those motions in advance, these events
have to be detected in real-time. Therefore, the motions
have to be labeled, in order to know which type of support
phase happens at which generic time.

In our situation, only a few walking and running mo-
tions generated by the engine have been labeled (∼ 14%

Fig. 6. Incompatible support phases to blend a walk with a jump
motion

of the input data), by selecting specific speeds and by con-
sidering the eight foot events described in the previous
section. We observe that, given a subject and a type of lo-
comotion, the different events occur almost independently
of the speed normalized by the leg length of the charac-
ter, for values between 0.8 and 2.2 [ms−1]. Analogously,
a subset of jumping motions (∼ 25%) have been labeled,
leading to the conclusion that, given a subject, the event
timing is linearly dependent on the jump length, as shown
in Fig. 7.

From those observations, the feet constraints of any
walking, running or jumping motion generated by the en-
gines can be instantaneously and automatically computed.

4.3 Time-aligned blending

The support phases of two blended motions may have dif-
ferent durations, depending on the motion properties. For
a similar jump, one subject can put the take-off foot longer
on the floor longer than another one. Hence, it is necessary
to align in time the support phases that are blended.

Let A be a motion where frames Fa1 and Fa2 delimit
a support phase that has to be blended with the motion
B having a compatible support phase from frames Fb1
to Fb2. According to the elapsed time ∆t between two
consecutive frames, we have to compute the time aligned
frames Fa and Fb, as illustrated in Fig. 8.

While the motions are generated in a generic time and
have an identical total frame number fmax , the frequencies
Fa and Fb associated to the motion A and B, respectively,
are used to update the current motion phase ϕi . During the
blending, we define the frequency F, which varies from
Fa to Fb, and a phase variable ϕi . For each ∆t, the phase
is updated as described in Eq. 4. Hence, the current frame
Fa of the motion A is computed as follows:

Fa = ϕi fmax . (6)

406 P. Glardon et al.

Fig. 7. Manual labeling of the foot events, for the seven captured
subjects performing various jump lengths. Left: walking jumps with
a length variation from 0.4 to 1.6 [m]. Right: running jumps with
a length variation from 0.8 to 2.0 [m]

Fig. 8. Frame alignment between compatible support phases of two
motions. Motion A and motion B support phases are defined from
frame Fa1 to Fa2 from frame Fb1 to Fb2, respectively

To find the corresponding time-aligned frame fb in
the motion B, we define a blending weight parameter p,
which varies from 0 at the blending start, to 1 at the blend-
ing end. This parameter indicates the normalized progres-
sion of frames in both motions and is computed as fol-

lows:

p = Fa −Fa1

Fa2 −Fa1
= Fb −Fb1

Fb2 −Fb1
. (7)

From this latter equation, Fb is determined and then in-
terpolated with Fa to compute the blended frame F . As
the frames hold a posture expressed with quaternions, each
joint’s rotation of F is computed by the spherical interpo-
lation method [36] using the parameter p. The root global
position is similarly computed by a linear interpolation be-
tween the jump’s and the locomotion’s root position. For
this latter, as the pattern is originally generated on a tread-
mill, we add the displacement corresponding to the current
speed. Additionally, the frequency F is computed by per-
forming a linear interpolation from the frequencies Fa to
Fb, parameterized with the weight p.

5 Motion planning for dynamic obstacles

The blending technique presented in the previous section
is included in our method that controls a character for
handling obstacles dynamically. When an obstacle “ap-
pears” in the scene, our method decides on a trajectory
according to two solutions. If the obstacle is to be got
around, two way-points are created in order to construct
the trajectory. Otherwise, the obstacle is jumped over and
the trajectory is constructed so as to place the take-off foot
as close as possible to the obstacle.

An obstacle obs is defined by a flat box (e.g. a puddle
of water) with a center position Cobs, length lobs and width
wobs. We assume that the obstacle always faces a charac-
ter perpendicularly (see Fig. 9) and has a null height. Let
t1 be the time when an obstacle is dynamically created in
front of a virtual human. Its current position is pr(t1) with
a h(t1) normalized heading direction. The distance d from
the character position to the front of the obstacle is com-
puted as follows:

d = Cobs −
(

lobs

2
h(t1)

)
− pr(t1) . (8)

The position just in front of the obstacle is defined as
Pstart = pr(t1)+d. In addition, at time t1 the character’s
motion is defined with a linear speed s1, an angular speed
ω1 = 0 and a locomotion weight wloco1 .

With this environment configuration in mind, the
choice to clear an obstacle or not is determined by per-
forming different tests. The first one checks if the obstacle
length lobs is included in the jump length range that a hu-
man is able to perform. Two ranges are defined, from lwmin
to lwmax and from lrmin to lrmax , for walking and running
jumps, respectively. By default, the current locomotion
weight wloco1 determines the type of jump. However, a re-
quested length between lwmax and lrmax compels a walking
motion to be smoothly modified towards a running one.

Dynamic obstacle avoidance for real-time character animation 407

Fig. 9. Top-view of the environment configuration at time t1 when
an obstacle is generated dynamically. According to the decision
planning, either the red or the blue path is determined

Assuming that a given jump length lj lies between the
minimal and maximal boundaries, we compute the re-
quired speed s2 to execute this jump. According to its type
and length (i.e. the obstacle length lobs), lj is inserted into
either Eq. 1 or Eq. 2 to determine the corresponding s2. In
the case where s2 < s1, we avoid decelerating before exe-
cuting the jump by setting s2 := s1. As a consequence, the
jump length lj is adjusted by inserting s2 either into Eq. 1
or Eq. 2.

The next test evaluates the mean acceleration ā com-
puted between the time t1 and the jump start, as described
in Eq. 9, where s̄ represents the mean between the s1 and
s2 speeds. To avoid too abrupt speed modifications, an
acceleration threshold εa is fixed that corresponds to the
maximal acceleration a non-sportsman can achieve. Be-
yond this value, the obstacle has to be got around.

ā = s2 − s1
d
s̄

≤ εa . (9)

The presented rules allow an autonomous character to
decide either to get around the obstacle or to jump over
it. In both cases, the motion planning method determines
a trajectory that the character has to follow. In the next
subsections, we present the methodology for constructing
the trajectory for getting around and for jumping over the
obstacle.

5.1 Getting around the obstacle

When an obstacle cannot be jumped over, the character
has to get around it by passing either by its right or left
side. We choose arbitrarily the left side and we define
a point Pobs to go through, depicted in Fig. 9 and com-
puted as described in Eq. 10, where h′(t1) is orthogonal

to h(t1) (see Fig. 9).

Pobs = Cobs +h′(t1)
(wobs

2
+ δlobs

)
. (10)

The underlying idea is to move this point away from
the obstacle regarding its length, in order to avoid a pos-
sible collision. We therefore fix a value δ ∈ [0 . . .1] in
order to determine the influence of the obstacle length. In
addition, the character’s original trajectory can be joined
back by defining a second point Pend to go through, by
a symmetry of the point pr(t1) according to the axis
traversing the obstacle, perpendicular to d.

The path that avoids the obstacle is then determined
by those two points Pobs and Pend , with their directions
similar to h(t1). Bezier curves can be applied to construct
a smooth path [31]. It must then be transformed into a tra-
jectory respecting velocity and acceleration constraints,
a classical problem in robotics [22]. However, we prefer
to adopt the steering model proposed in [5]. This latter al-
lows one to go through a desired position (like [33]), with
a desired heading direction at this position. This steering
method ensures the reach of the target, thanks to a process
that anticipates either the success or failure of the reach,
and adjusts the desired speed accordingly. In addition, pre-
calculated data greatly reduces the computational cost,
which is appreciable for our real-time constraint.

Hence, the getting around the obstacle is performed in
two stages. The first one is initialized by setting the tar-
get position Pobs and direction h(t1) to the steering model.
While the target is not reached, the model updates at
each animation time step the character’s linear and angu-
lar speed, according to the character’s previous position as
well as its linear speed and locomotion phase. As soon as
the first target is reached, the second phase can be started
if necessary by setting the new target position Pend and
direction h(t1).

5.2 Run-up footprint computation

When the jump is feasible, its run-up phase should be gen-
erated so that the right take-off foot is placed as close to
the obstacle as possible and so that the locomotion speed
corresponds to the required jump length. To solve this
problem, the algorithms presented in [9] may be applied.
It consists in generating randomly a series of footprints be-
tween the start and the end of the run-up motion, and then
in adapting an appropriate motion capture clip. Another
method that provides less precise results looks for a suit-
able motion capture clip into an enhanced motion graph
structure [23]. However, as these methods are only inter-
active and do not ensure the speed constraint, we propose
an alternate approach. This allows the on-the-fly motion
sequence generation that corresponds to the obstacle con-
straints.

The fundamental idea of our method is to compute
a footprint combination matching the following constraint

408 P. Glardon et al.

formulation: “position the right take-off foot at Pstart with
a locomotion speed s2”. In other words, we have to de-
termine a speed variation function (or speed profile) S(t),
defined from the speed s1 at time t1, i.e. at the obstacle
generation, to the speed s2 at time t2, when the charac-
ter is located at Pstart (note that s1 ≤ s2). The locomotion
phase ϕ (mod 1) is used to ensure the correct take-off
foot position. Let us recall that ϕ = 0 indicates the start of
the locomotion cycle and coincides with the RHS event.

To begin with and for simplification, our method con-
siders that the locomotion type is identical during the
run-up phase. The speed variation model S(t) that we in-
troduce is based on a quadratic function:

S(t) = at2 +bt + c . (11)

The three parameters a, b and c determine the shape of
the function in order to match the goal position, final speed
and locomotion phase conditions (Fig. 10). In addition to
these unknowns, the variation duration that corresponds to
the run-up duration trunu p = t2 − t1 has to be computed.
We determine four equations: the first two match the ini-
tial and final conditions of the speed profile, assuming that
t1 = 0:

S(0) = c = s1 ,

S(t2) = a t2
2 +bt2 + c = s2 ,

(12)

Then the traveled distance d = ||d|| between pr(t1) and
Pstart is expressed as a function of time and speed:

d =
t2∫

0

(at2 +bt + c) dt = 1

3
at3 + 1

2
bt2 + ct . (13)

Fig. 10. Quadratic speed variation from s1 at position pr(t1) to s2
at Pstart . Over the curve family, one has to be chosen to match
optimally the right take-off foot constraint at position Pstart

Finally, the last equation expresses the constraint for
the locomotion phase ϕ2:

ϕ2 = ϕ1 +∆ϕ

= ϕ1 +
[

n∑
i=1

F(S(
i

n
t2))

t2
n

]

= ϕ1 +
t2∫

0

F(S(t)) dt . (14)

As the frequency function F is only dependent on the
speed s, it can be defined as described in [11]:

F(s) = gsh , (15)

where g and h are constant parameters. Hence, the integral
in Eq. 14 is:

t2∫
0

F(S(t)) dt =
t∫

0

g(at2 +bt + c)h dt . (16)

However, the solution of this integral uses hypergeo-
metric functions and its analytic formulation is therefore
very complex to compute and inappropriate for a real-time
application. In addition, this integral does not consider the
case where the locomotion weight has to vary from 0 to
1, inducing the modification of the frequency function F.
To solve this problem, the frequency function is expressed
as a linear interpolation between the two frequency func-
tions F1 and F2 associated to locomotion weight at time
t1 and t2, respectively. Hence, we approximate Eq. 14 with
Eq. 17 by assuming that the frequency function is linear
between S(0) and S(t2).

ϕ2 = ϕ1 +
t2∫

0

F(S(t)) dt

≈ ϕ1 + F1 (S (t2))+ F2 (S(t2))

2
t2 . (17)

Finally, the four unknowns a, b, c and t2 are computed
by solving the system composed of the four described
equations (Eq. 12, Eq. 13 and Eq. 17).

However, the value of ϕ2 that actually corresponds to
the performed cycle number before the jump remains to be
determined. For given parameters s1, s2, ϕ1 and d, a too
big ϕ2 involves a negative speed during a time interval
(Fig. 11, left). In practice, this means that the number of
cycles is so important that the character has to slow down,
and even walk backwards when the speed is negative,
which is not the intention of the method. Conversely, a too
small ϕ2 (i.e. a small number of cycles) entails an abrupt
speed variation not physically feasible by the character

Dynamic obstacle avoidance for real-time character animation 409

Fig. 11. Left: ϕ2 is too big and violates the condition S(t) ≥ 0.
Right: ϕ2 is too small and entails a too strong acceleration

Fig. 12. The function S(t) (in blue) for different ϕ2, given s1 = 1,
s2 = 1.6, ϕ1 = 0.1 and d = 5. The red plane corresponds to S(t) =
0 and helps to visualize when S(t) < 0. The white plane represents
the final speed (S(t) = s2)

(Fig. 11, right). Figure 12 illustrates the speed variation
S(t) (blue surface) for a continuous ϕ2 variation. Observe
the negative speed variation for some ϕ2 values.

Hence, we determine ϕ2 that generates the variation
closest to the linear one. Actually, this linear variation en-
tails the smallest acceleration difference, which has to be
below the acceleration threshold εa defined in Eq. 9. The
algorithm is composed of two phases.

Firstly, ϕ2 is initialized by assuming that the speed
variation is linear. Using the approximation of Eq. 16, the
final locomotion phase is rounded as follows:

ϕ2 =
⌊
ϕ1 + F(s1)+ F(s2)

s1 + s2
d +0.5

⌋
. (18)

Secondly, this approximated phase value and the given
input parameters s1, s2, ϕ1 and d allow the unknowns a,
b, c and t2 to be computed in order to generate the func-

tion S(t). From its derivative

dS(t)

dt
= A(t) = 2at +b (19)

we compute the slope m = 2a.
A negative m implies that either the extremum of S(t)

is a maximum inside [0 . . . t2] or that the speed always
decreases from s1 to s2, as illustrated in Fig. 13. In both
cases, the target phase ϕ2 may be increased in order to
reduce the acceleration variation. Hence, this phase is it-
eratively incremented by 1. At each i-th iteration, the new
parameters ai , bi , ci and t2i are used to compute the accel-
eration difference ∆ai defined as follows:

∆ai = |A(t2i)− A(0)| = |2ait2i | . (20)

Fig. 13. Speed variation S(t) (black curve) where the acceleration
slope is negative. The arrow indicates that by increasing ϕ2, S(t)
approaches the red line illustrating the linear speed variation, from
t = 0 to t = t2Lin . Left: the maximum is between t = 0 and t = t2.
Right: the extremum is outside [0 . . . t2]

The algorithm stops when ∆ai ≥ ∆ai−1 or when the
speed variation provides negative speed values, which is
easily tested using the extremum of S(t).

On the contrary, a positive m indicates that ϕ2 may be
decreased (Fig. 14). The algorithm proceeds iteratively by
decrementing the phase, and stops similarly to the case
where m is negative. In addition, it is ensured that the final
ϕ2 ≥ 1.

Fig. 14. Speed variation S(t) (black curve) where the acceleration
slope is positive. The arrow indicates that by decreasing ϕ2, S(t)
approaches the red line illustrating the linear speed variation, from
t = 0 until t = t2Lin . Left: the minimum is between t = 0 and t = t2.
Right: the extremum is outside [0 . . . t2]

410 P. Glardon et al.

The motion planning is therefore completed first by de-
termining either to get around or to jump over an obstacle
and secondly by providing the adequate motion parameter
variations to follow the path in the environment.

6 Results

We have integrated our state machine model into a 3D
application where an animator can steer a virtual human
by changing the speed, locomotion weight and the per-
sonification vector. We present the results of our blending
method and our motion planning technique separately.

6.1 Transition between locomotion and jump (without
obstacle)

A jump can be parameterized with a desired jump length,
a personification vector and jump type. At any time, the
animator can trigger a jump. The blending model adapts
on-the-fly the current motion automatically to preserve
a speed coherence based on observations made on 105
walking and 103 running captured jumps. Therefore, the
speed and locomotion weight is smoothly modified dur-
ing a specific period of time (Fig. 15, bottom). After some
experiments, we choose εa as an acceleration value, nor-
malized by the leg length of the character, of 0.8 [s−2].

Additionally, the method decides when and how long
to perform the blending operation, by taking into account
the motion support phases. The generated transition is
seamless and performed in real-time, with a duration time
varying from 0.2 to 0.5 seconds.

The top image of Fig. 15 shows a transition from walk-
ing to a running jump, using a traditional blending method
such as [29]. One can observe that the jump length is
large regarding the step length, leading to a dynamic inco-
herence. The bottom image shows the same situation by
applying our technique. The motion is adapted by mod-
ifying the speed and locomotion weight according to the

Fig. 15. Comparison between two transition methods from a walk-
ing motion with running jump. Top: without motion adaptation.
Bottom: with locomotion speed and type adaptation

requested jump. For a better perception of the improve-
ments proposed by our method, the reader can also view
the movies attached to this paper.

Some artifacts may nevertheless occur due to the ap-
proximation used to detect the feet constraints. Therefore,
like many other blending methods, we add IK control on
the feet to prevent sliding effects, by extending the prior-
itized IK described in [4, 24] to the automatic generation
of constraints in a dynamically evolving context [13]. This
correction is efficient enough to not alter the real-time per-
formance of the animation.

6.2 Motion planning for obstacles

In our developed real-time application, a jump can be
generated at any time by the animator. The jump dimen-
sion and its distance to the current character’s position
are generated randomly over a predefined range of values.
The distance is selected between 2 and 10 [m], the ob-
stacle length between 0.4 and 2.6 [m], the and width be-
tween 1 and 6 [m]. The obstacle height is constant and set
to 0.1 [m].

We present the results when the character gets around
the obstacle. Figure 16 illustrates the situation where the
obstacle cannot be jumped over. In fact, the final run-up
speed necessary for this jump length entails a too import-
ant acceleration starting from the initial character loco-
motion speed. The path goes through the first way-point
placed on the obstacle side and the second one placed in
order to recover the path followed if the obstacle were
jumped over. In the resulting generated animation, we no-
tice that the linear speed is significantly decreased near
to the two way-points. This is due to the steering method
that we used. In fact, this method is highly dependent
on a database of pre-computed trajectories. At any time,
for a given locomotion parameter situation, the method
searches for a correspondence in this database. If it fails,
the current parameters are modified in order to find a cor-
respondence. In our case, the speed is decreased to match
a trajectory in the database [5].

Fig. 16. Motion sequence when the character gets around the obsta-
cle

Dynamic obstacle avoidance for real-time character animation 411

Fig. 17. Increase of the run-up cycle number. Starting from ϕ2 =
13, ϕ2 = 14 is selected among different speed variations S(t) for
a given ϕ1 = 0.3, s1 = 0.2 [m/s], s2 = 1.6 [m/s] and d = 16 [m]

Fig. 18. Decrease of the run-up cycle number. Starting from ϕ2 = 4,
ϕ2 = 1 is selected among different speed variations S(t) for a given
ϕ1 = 0.1, s1 = 0 [m/s], s2 = 0.9 [m/s] and d = 1.6 [m]

In situations where the character jumps over the ob-
stacle, we illustrate two speed variation results, explaining
the optimal ϕ2 computation described in Sect. 5.2. In the
first example (Fig. 17), the approximated ϕ2 = 13 returns
a negative slope m. The phase is augmented until reaching
the variation closest to the linear one. As the curve defined
with ϕ2 = 14 leads to a ∆a greater than the previous one,
ϕ2 = 13 is selected. For pedagogical purposes, the graph
in Fig. 17 depicts curves from ϕ2 = 9 to ϕ2 = 14.

The second example (Fig. 18) illustrates the situation
where the phase ϕ2 is iteratively decremented until the
optimal value ϕ2 = 1. The corresponding speed variation
shows two t2 solutions to reach s2. However, the solu-
tion is unique (t2 = 2.09) due to the ϕ2 constraint. One
can observe that the variation with ϕ2 = 2 provides in ab-
solute a less accelerated solution. However, our method
is based on the relative acceleration difference between
the start and end of the variation. This is the reason why
ϕ2 = 1 is preferred, as this solution offers less difference,
despite that the absolute accelerations at t = 0 and t = t2
are high.

In Figs. 19, 20 and 21 we illustrate scenarios where the
current locomotion speed and type are modified on-the-fly
in order to clear the obstacle. According to the obstacle
dimension, the performed jump needs a fast final run-up
speed, executed by running. Our method computes the

Fig. 19. Motion sequence when the obstacle is jumped over. From
slow walking to fast running, the method computes the footprint
positions (right foot in purple, left in yellow) in order to place the
right take-off foot as close as possible to the obstacle

footprint positions (i.e. the speed variation) so as to place
the right take-off foot as close as possible to the obsta-
cle, with the required speed and type of locomotion. After
jumping over the obstacle, the motion parameters are re-
stored to the initial ones.

Our model constrains the current locomotion phase to
be null (RHS event) when the 3D root position pr is in
front of the obstacle. However, the right foot at this phase
is forward positioned regarding pr , as the legs are apart
in order to perform the next step. We therefore reduce
the distance d by the resulting step length at speed s2. In
that way, the right foot is exactly placed in front of the
obstacle.

Thanks to the performance of our method (it takes
about 4µ sec on average to compute the speed varia-
tion S(t)), we are able, not only to generate the required
jump, but to compute the speed variation at any time dur-
ing the animation. It is, therefore, possible to animate
an autonomous character that handles obstacles appearing
dynamically, as illustrated in the videos attached to this
paper.

We have also evaluated the quality of our method.
As our original motion capture jump sequences do not
contain the run-up phase, we propose another evaluation
method. We ran our method in a dynamic environment,
where obstacles are generated on-the-fly by randomly se-
lecting their dimensions and their positions to the moving
character. The error E is computed by subtracting from
the start obstacle’s position Cobs − 1

2 lobs the effective pos-
ition of the right toe Ptoe at the jump beginning. Hence,
a quantitative measurement of the method precision is per-
formed. The histograms in Figs. 22 and 23 illustrate the
experimental results, by counting the jump number with
respect to the precision of the take-off foot position. The
error is computed for 353 obstacles jumped over with
a constant initial walking speed s1 = 1.1 [m/s] for 334 ob-
stacles with a running speed of s1 = 1.5 [m/s]. The foot
is correctly placed within an error of 5 [cm] (for a char-
acter’s leg length of 0.88 [cm]) in more than 70% of the
jumps. In addition, we try to quantify the influence of the
frequency function approximation (Eq. 17) on E regarding

412 P. Glardon et al.

Fig. 20. Sequence of motion
when the obstacle is jumped
over

Fig. 21. Different virtual characters performing jumps differing in
length and type

Fig. 22. Results of 353 obstacles jumped over with an initial walk-
ing speed s1 = 1.1 [m/s] Left: histogram representing the distri-
bution of the measured error E. Right: comparison between the
measured error E and the jump length to jump over an obstacle

Fig. 23. Results of 334 obstacles jumped over with an initial run-
ning speed s1 = 1.5 [m/s] Left: histogram representing the distri-
bution of the measured error E. Right: comparison between the
measured error E and the jump length to jump over an obstacle

the speed difference between s1 and s2. At a first thought,
we can intuitively induce that the longer the jump, the big-
ger the error. The graphs in Figs. 22 (right) and 23 (right)
depict each jump (represented by a circle) according to its
length and take-off foot position error. We conclude that E
is not directly influenced by big length jumps (i.e. big final
speed s2).

7 Conclusion

Compared to earlier approaches [2, 20, 25] to finding
the possible transition time over a large motion capture
database, our motion blending method presents advan-
tages. First, we do not need to perform a pre-processing
step involving all the clips of the database. This allows us
to generate dynamically parameterized motions. Then our
methodology determines the transition time and duration
automatically, in contrast to [20] where transition thresh-
olds have to be specified by hand. Finally, we adapt the
current motion by modifying its parameters to enforce the
requested blending, unlike previous methods that either do
not allow the transition or perform it without adaptation.

In addition, we have presented a new motion planning
model for obstacle handling in dynamic environments.
When an obstacle of a specific length suddenly appears
in front of a moving autonomous character, the method
chooses first whether to go around or jump over the obsta-
cle. For the first choice, the linear and angular speeds vary
to generate a path that avoids the obstacle. For the sec-
ond choice, a quadratic speed variation is computed. This
latter ensures that the right run-up foot is placed just be-
fore the obstacle and that the character has an appropriate
speed allowing the required jump length to be performed.
The method is fully dynamic as the motions are gener-
ated on-the-fly, without knowledge about the environment
topology. In addition, the method performance (4µ sec) al-
lows one to maintain real-time capability of the animation.

Compared to similar previous work [23], our method
is based on a continuous parameter animation. The mo-
tion result precision is, therefore, not dependent on the
database size as the exact desired motions are always
available thanks to our animation engines (locomotion and
jump). Furthermore, our method does not need to know
in advance the obstacle location over time. In the case
of moving obstacles, we can iteratively apply our motion
planning method to correct the speed variation.

The steering method used to get around the obstacle
decreases the linear speed near the way-points. This prob-
lem can be solved by placing two way-points near the ob-
stacle side to subdivide the problem complexity. Another
idea is to place two way-points to recover the original
path, one with the position and the other for the direction.

Our speed variation method is adapted also for other
scenarios. Imagine that the character has to jump over
a low wall from a standing position (without run-up). The
speed variation is computed by setting to zero the speed to

Dynamic obstacle avoidance for real-time character animation 413

be reached at the obstacle beginning. Another interesting
problem solved by our method concerns the locomotion
combined with stair climbing. It is important to be sure
that either the right or the left foot is placed just in front
of the first stair. In this case, the method computes a speed
variation ensuring that the final phase equals either 0 (right
foot) or 0.5 (left foot). However, this final phase can take
any other value according to the desired task.

During the run-up phase, the model estimates the lo-
comotion frequency variation by a linear function. This
approximation allows a drastic computational cost reduc-
tion without decreasing the result quality. Actually, even
when the speed variation is important, the foot is placed
within a tolerance of 10 cm. We can nevertheless ensure
that the foot never touches the obstacle by reducing the
distance to the obstacle and increasing the length of the
jump. The precision of the take-off foot position can be
improved by re-computing our speed variation during the
run-phase, at a specific sampling rate.

The choice of a quadratic variation model is motivated
by its efficiency and flexibility, allowing one to handle
special cases such as identical initial and final speeds.
However, our method induces an acceleration disconti-
nuity, even though we limit the acceleration difference

during the variation. Other polynomial variation models
of higher degree can be elaborated, in order to add a con-
straint for ensuring acceleration continuity. Still, our opin-
ion is that those models increase the computational costs
and do not guarantee a significant improvement in the an-
imation believability. Actually, we think that the human
eye is not extremely sensitive to acceleration discontinu-
ities as our results already provide pleasant animations.

Finally, we do not consider the obstacle height. How-
ever, our method can be easily adapted for such situ-
ation. At the strategic planning layer level, the parameter
height may lead to other decisions like a different final
run-up speed or a stop in front of the obstacle. In this lat-
ter case, our method provides a speed variation given the
final speed equal to zero. Nevertheless, our method can
hardly be applied to compute the run-up speed variation
for obstacles having a considerable height. In this case, the
dynamics of the motion has to be taken into account in
order to compute the speed variation.

Acknowledgement The authors would like to thank Rodrigue Oeu-
vray for his helpful advice and fruitful discussions. The present
research was funded by the Swiss National Science Foundation.
The Maya licenses were granted by Alias through their research
donation program.

References
1. Abe, Y., Liu, C., Popović, Z.:

Momentum-based parameterization of
dynamic character motion. In: Proceedings
of ACM SIGGRAPH/Eurographics
Symposium on Computer Animation
(2004)

2. Arikan, O., Forsyth, D.: Interactive motion
generation from examples. In: Proceedings
of ACM SIGGRAPH, Annual Conference
Series (2002)

3. Ashraf, G., Wong, K.: Generating consistent
motion transition via decoupled framespace
interpolation. Comput. Graph. Forum 19(3),
447–456 (2000)

4. Baerlocher, P., Boulic, R.: An inverse
kinematic architecture enforcing an
arbitrary number of strict priority levels.
Visual Comput. 20(6), 402–417 (2004)

5. Boulic, R.: Proactive steering toward
oriented targets. In: Proceedings of
Eurographics, short presentation (2005)

6. Brock, O., Khatib, O.: Elastic strips:
a framework for motion generation in
human environments. Int. J. Robot. Res.
21(12), 1031–1052 (2002)

7. Bruderlin, A., Williams, L.: Motion signal
processing. In: Proceedings of ACM
SIGGRAPH, Annual Conference Series,
pp. 97–104 (1995)

8. Chestnutt, J., Lau, M., Cheung, G.,
Kuffner, J., Hodgins, J., Kanade, T.:
Footstep planning for the Honda ASIMO
humanoid. In: Proceedings of IEEE
International Conference on Robotics and
Automation (2005)

9. Choi, M., Lee, J., Shin, S.: Planning biped
locomotion using motion capture data and
probabilistic roadmaps. ACM Trans. on
Graph. (2003)

10. Egges, A., Molet, T.,
Magnenat-Thalmann, N.: Personalised
real-time idle motion synthesis. In:
Proceedings of Pacific Graphics,
pp. 121–130. Seoul, Korea (2004)

11. Glardon, P., Boulic, R., Thalmann, D.:
A coherent locomotion engine extrapolating
beyond experimental data. In: Proceedings
of Computer Animation and Social Agent,
pp. 73–83 (2004)

12. Glardon, P., Boulic, R., Thalmann, D.:
On-line adapted transition between
locomotion and jump. In: Proceedings of
Computer Graphics International,
pp. 44–49 (2005)

13. Glardon, P., Boulic, R., Thalmann, D.:
Robust on-line adaptive footplant detection
and enforcement for locomotion. Visual
Comput. (2006, to appear)

14. Go, J., Vu, T., Kuffner, J.: Autonomous
behaviors for interactive vehicle
animations. In: Proceedings
of ACM SIGGRAPH / Eurographics
Symposium on Computer Animation
(2004)

15. Guo, S., Robergé, J.: A high-level control
mechanism for human locomotion based on
parametric frame space interpolation.
In: Proceedings of Eurographics Workshop
on Computer Animation and Simulation,
pp. 95–107 (1996)

16. Hsu, D., Kindel, R., Latombe, J., Rock, S.:
Randomized kinodynamic motion planning
with moving. Int. J. Robot. Res. 21(3),
233–255 (2002)

17. Kavraki, L., Svestka, P., Latombe, J.C.,
Overmars, M.: Probabilistic roadmaps for
path planning in high-dimensional
configuration spaces. IEEE Trans. Robot.
Auto. 12(4), 566–580 (1996)

18. Khatib, O.: Real-time obstacle avoidance
for manipulators and mobile robots. Int. J.
Robot. Res. 5(1), 90–98 (1986)

19. Kovar, L., Gleicher, M.: Flexible automatic
motion blending with registration curves.
In: Proceedings of ACM
SIGGRAPH/Eurographics Symposium on
Computer Animation, pp. 214–224 (2003)

20. Kovar, L., Gleicher, M., Pighin, F.: Motion
graphs. In: Proceedings of ACM
SIGGRAPH, Annual Conference Series,
pp. 473–482 (2002)

21. Kuffner, J.: Goal-directed navigation for
animated characters using real-time path
planning and control. In: Proceedings of
Workshop on Modelling and Motion
Capture Techniques for Virtual
Environments, CAPTECH’98, LNAI 1537,
pp. 171–186. Springer, Berlin, Heidelberg
(1998)

22. Lamiraux, F., Laumond, J.P.: From paths to
trajectories for multi-body mobile robots.
In: Proceedings of International
Symposium on Experimental Robotics,
LNCIS 250, pp. 237–245. Springer
(1997)

414 P. Glardon et al.

23. Lau, M., Kuffner, J.: Behavior planning for
character animation. In: Proceedings of
ACM SIGGRAPH / Eurographics
Symposium on Computer Animation (2005)

24. Le Callennec, B., Boulic, R.: Interactive
motion deformation with prioritized
constraints. In: Proceedings of ACM
SIGGRAPH/Eurographics Symposium on
Computer Animation (2004)

25. Lee, J., Chai, J., Reitsma, P., Hodgins, J.,
Pollard, N.: Interactive control of avatars
animated with human motion data. In:
Proceedings of ACM SIGGRAPH, Annual
Conference Series (2002)

26. Menache, A.: Understanding Motion
Capture for Computer Animation and
Video Games. Academic Press, San Diego
(2000)

27. Menardais, S., Kulpa, R., Arnaldi, B.:
Synchronisation for dynamic blending of
motions. In: Proceedings of ACM
SIGGRAPH/Eurographics Symposium on
Computer Animation (2004)

28. Mukai, T., Kuriyama, S.: Geostatistical
motion interpolation. In: Proceedings of
ACM SIGGRAPH, Annual Conference
Series, pp. 1062–1070 (2005)

29. Park, S., Shin, H., Shin, S.: On-line
locomotion generation based on motion
blending. In: Proceedings of ACM
SIGGRAPH/Eurographics Symposium on
Computer Animation (2002)

30. Park, W., Chaffin, D., Martin, B.:
Modifying motions for avoiding obstacles.
SAE Trans. 110(6), 2250–2256 (2002)

31. Pettré, J., Laumond, J.P., Siméon, T.: 3D
collision avoidance for digital actors
locomotion. In: Proceedings of
International Conference on Intelligent
Robots and Systems (2003)

32. Pettré, J., Laumond, J.P., Siméon, T.: A
2-stages locomotion planner for digital
actors. In: Proceedings of ACM
SIGGRAPH / Eurographics Symposium on
Computer Animation (2003)

33. Reynolds, C.: Steering behaviors for
autonomous characters. In: Proceedings of
Game Developers Conference, pp. 763–782.
Miller Freeman Game Group, San
Francisco (1999)

34. Rose, C., Cohen, M., Bodenheimer, B.:
Verbs and adverbs: Multidimensional
motion interpolation. IEEE Comput. Graph.
Appl. 18(5), 32–41 (1998)

35. Rose, C., Guenter, B., Bodenheimer, B.,
Cohen, M.: Efficient generation of motion
transitions using spacetime constraints. In:
Proceedings of ACM SIGGRAPH, Annual
Conference Series, pp. 147–154 (1996)

36. Shoemake, K.: Animating rotation with
quaternion curves. In: Proceedings of ACM
SIGGRAPH, Annual Conference Series,
pp. 245–254 (1985)

37. Unuma, M., Anjyo, K., Takeuchi, R.:
Fourier principles for emotion-based human
figure. In: Proceedings of ACM
SIGGRAPH, Annual Conference Series,
pp. 91–96 (1995)

38. Wang, J., Bodenheimer, B.: Computing the
duration of motion transitions: An
empirical approach. In: Proceedings of
ACM SIGGRAPH/Eurographics
Symposium on Computer Animation,
pp. 335–344 (2004)

39. Wooten, W., Hodgins, J.: Simulating
leaping, tumbling, landing and balancing
humans. In: Proceedings of IEEE
International Conference on Robotics and
Automation (2000)

PASCAL GLARDON is a research assistant and
received his PhD in the Virtual Reality Labora-
tory at the Swiss Federal Institute of Technology
(EPFL). His research interests include the gen-
eration and the control of virtual character ani-
mations, as well as their interaction with virtual
environments. He received his Master’s degree in
Computer Science in 2000 at the Swiss Federal
Institute of Technology, Zurich (ETHZ). In 2001
he worked as a software engineer at a company
specialized in the security document printing.

RONAN BOULIC is a Senior Researcher, Lec-
turer and PhD Director at the Swiss Federal
Institute of Technology, Lausanne (EPFL).
He is working in the Virtual Reality Lab and his
research interests include realistic motion syn-
thesis for virtual humans and robot. He received
the PhD degree in Computer Science
in 1986 from the University of Rennes, France,
at the INRIA-IRISA research institute. He
received the Habilitation degree from the Uni-
versity of Grenoble, France, in March 1995.
Ronan Boulic is co-author of 83 research

papers, among which 21 have appeared in in-
ternational peer-reviewed journals. He served
as Paper Chair of the 2004 SIGGRAPH-
Eurographics Symposium on Computer
Animation. He is a senior member of IEEE and
a member of ACM and Eurographics.

DANIEL THALMANN is Professor and Director
of The Virtual Reality Lab (VRlab) at EPFL,
Switzerland. He is a pioneer in research on vir-
tual humans. His current research interests
include real-time virtual humans in virtual real-
ity, networked virtual environments,
artificial life, and multimedia. Daniel Thalmann
has been Professor at The University of Montreal
and Visiting Professor/Researcher at CERN,
University of Nebraska, University of Tokyo,
and Institute of System Science in Singapore.
He is coeditor-in-chief of Computer Animation
and Virtual Worlds (formerly Journal of Visual-
ization and Computer Animation), and
a member of the editorial board of the Visual
Computer and four other journals. Daniel Thal-
mann has been a member of numerous program

committees, the program chair of several
conferences and the chair of the Computer
Graphics International ’93, Pacific
Graphics ’95, ACM VRST ’97, and MMM ’98
conferences. He was Program Cochair of IEEE
VR 2000. He has also organized five courses
at SIGGRAPH on human animation and crowd
simulation.
Daniel Thalmann has published more than 400
papers on graphics, animation, and virtual re-
ality. He is coeditor of 30 books, including the
recent “Handbook of Virtual Humans”, pub-
lished by John Wiley and Sons, and
coauthor of several books. He was also codi-
rector of several computer-generated films with
synthetic actors including a synthetic Marilyn
shown on numerous TV channels all over the
world.
He received his PhD in Computer Science in
1977 from the University of Geneva and an
Honorary Doctorate (Honoris Causa) from Uni-
versity Paul-Sabatier in Toulouse, France,
in 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

