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Abstract In this paper, we propose a hybrid postural con-
trol approach taking advantage of data-driven and goal-
oriented methods while overcoming their limitations. In par-
ticular, we take advantage of the latent space characteriz-
ing a given motion database. We introduce a motion con-
straint operating in the latent space to benefit from its much
smaller dimension compared to the joint space. This allows
its transparent integration into a Prioritized Inverse Kine-
matics framework. If its priority is high the constraint may
restrict the solution to lie within the motion database space.
We are more interested in the alternate case of an intermedi-
ate priority level that channels the postural control through
a spatiotemporal pattern representative of the motion data-
base while achieving a broader range of goals. We illustrate
this concept with a sparse database of large range full-body
reach motions.

Keywords Inverse kinematics · Motion editing · Posture
control

1 Introduction

The applications of human-like character animation at in-
teractive frame rates are manifold, ranging from computer

This work has been supported by the Swiss National Foundation
under the grant N° 200020-117706.

D. Raunhardt (�) · R. Boulic
Ecole Polytechnique Fédérale de Lousanne, VRLAB Station 14,
1015 Lausanne, Switzerland
e-mail: daniel.raunhardt@epfl.ch

R. Boulic
e-mail: ronan.boulic@epfl.ch

entertainment to ergonomic studies or virtual prototyping.
Human figures are difficult to animate such that they move
in a coordinated and human-like fashion [7, 17]. We focus
in the present paper on the problem of controlling a full-
body goal directed motion (i.e. reach) where locomotion is
not necessary.

Previous work has led to two different approaches for
realistic character animation: data-driven and goal-oriented.
Data-driven approaches create animations from motion cap-
tured data that contain the movement details from a human
actor. The embedded natural flow of motion is their most at-
tractive feature; on the other hand it can become tedious to
generate movements that are outside the space of the cap-
tured movements. Goal-oriented techniques minimize the
norm of postural variations and/or other physically-based
cost functions while achieving a wide range of user-defined
tasks. Their key advantage is their versatility at the cost of
a frequent lack of naturalness when it comes to reproduce
human activities.

In this paper we propose a hybrid approach aiming to
combine the positive features of goal-oriented and data-
driven approaches. Our goal is to benefit from the nat-
ural flow of movement provided by a motion database to
channel the convergence of a Prioritized Inverse Kinemat-
ics (PIK) solver. This makes sense as the dimension of the
user-defined goals are generally much smaller than the di-
mension of the joint space. Hence, even when exploited at
a low priority, a motion database can influence each succes-
sive postural variation of the optimization convergence.

As already mentioned we use the action of full-body
reach to illustrate the methodology throughout the paper;
its generalization to other movement types is discussed at
the end of the paper. We use a small number of reach mo-
tions where both feet remain fixed on the ground while the
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Fig. 1 System architecture: the
captured motions are used to
build a low-dimensional, latent
space using Principal
Component Analysis (PCA).
This pose PCA space is used to
guide the PIK convergence by
predicting its immediate future
at low cost

right hand reaches a specific goal in space (database pro-
vided by [19]). Such reach actions are highly coordinated
movements that remain very similar independently of the
goal location (front, side, back, low, high). They are the ex-
pression of a high-level motion synergy [5]. This allows to
express them in a reduced latent space (e.g. Principal Com-
ponent Analysis or other similar techniques).

We show in the paper how to specify a motion constraint
(Fig. 1) in that space; its purpose is to generate a specific
instance of a reach motion through a low-dimensional task.
Its low dimension allows a transparent integration into the
PIK framework. When assigned a high priority the motion
constraint restricts the solution to lie within the motion data-
base. Conversely, an intermediate priority level still allows
it to guide the movement but a broader range of user-defined
goals are feasible.

Finally, in accordance with our approach of interactive
design, the proposed method still allows the user to alter any
parameter of the PIK context, e.g. reach goal or priority etc.,
from one time step to the next.

Paper organization The reminder of this paper is orga-
nized as follows. Section 2 gives an overview of the liter-
ature. Section 3 presents a brief outline of the PIK solver
used to solve constraints. Section 4 introduces the motion
constraint. Finally, we present a summary of experimental
results in Sect. 5 and discuss future work in Sect. 6.

2 Related work

Methods for modeling and generating human motions have
been widely studied in biomechanics, robotics and computer
graphics. Human motions are “under constrained” as there
exist many ways to accomplish a task.

Data-driven approaches based on captured motion repro-
duce details and the style of human movement. Adapting

recorded motion to different characters or to new situations
is often difficult [29]. Different approaches consist of blend-
ing between recorded motions [23], to edit motions [9] or
producing new motions from the database [2, 16–18, 25].
However, most interpolation methods have difficulties han-
dling constraints that do not interpolate or extrapolate from
the data. Our proposed method overcomes these problems
by combining learned motion data with an existing IK
framework.

Goal-oriented approaches constrain the solution space
to find natural-looking solutions in addition to enforce the
specified user-defined goals [29]. IK is a popular tech-
nique to find a character pose that satisfies given constraints
[3, 4, 10, 25, 29]. A number of techniques like energy con-
sumption [12], mass displacement from a default pose [22]
or distance to some reference pose [4] have been presented
to restrict the IK solution space toward most “natural” pos-
tures. Rose et al. [23] explored the idea of using certain
poses as a seed for IK to blend between motions using ra-
dial basis functions (RBF) changing their style. Kulpa et
al. [17] proposed a motion representation independent of the
character’s morphology. With this representation, complex
constraints can be rapidly enforced by applying a Cyclic
Coordinate Descent algorithm. Grochow et al. [10] applied
a nonlinear dimensionality reduction technique, called the
Scaled Gaussian Process Latent Variable Model (SGPLVM)
to human motion data. This learned, probabilistic model was
combined with kinematic constraints to create new character
postures.

Howe et al. [13] and Alexa et al. [1] used Principal Com-
ponent Analysis (PCA) to reduce the dimensionality of mo-
tions. They represented the animations as a set of Principal
Components. Glardon et al. [8] used PCA predictions to tune
step constraints for walking, running and jumping motions.
Following this idea, Safanova et al. [24] proposed a hybrid
motion synthesis framework that created new motions by
optimizing a set of constraints in the low-dimensional PCA
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space. They used IK simply in the limbs of the virtual man-
nequin to prevent undesirable artifacts such as foot sliding.
Yamane et al. [29] used a Rapidly-Exploring Random Tree
(RRT) planner to perform path planning for an object be-
ing manipulated. They used IK to position the character and
to satisfy simultaneously external constraints. They biased
IK toward poses generated from pre-recorded motion cap-
tured data. Finally, they applied a path smoothing and com-
puted velocity profiles. Aydin et al. [3] combined a database
with forward kinematics and IK to determine appropriate
poses for the hand to grasp an object. However, their method
required a dense database and works off-line. Carvalho et
al. [6] combined a PCA motion model with a PIK frame-
work to solve external constraints in the low-dimensional
PCA space. Their work strongly focused on traditional per-
frame constraint-based motion editing. As we want to build
a sparse latent space with different styles of motions and to
change interactively the goal, we cannot use such a simple
motion PCA space.

Park et al. [21] identified basic spatiotemporal structures
of human motion and method for generalization. The iden-
tified structures of the sample motions could be applied to
similar motion variants by concatenating joint-angle–time
trajectories.

In this paper we present an algorithm for integrating mo-
tion synergies into an existing PIK framework. Its key char-
acteristic is to coordinate the joint contribution [5] and to
synchronize them on the motion flow pattern of recorded
movements using a sparse database. Our work concentrates
on reaching motions where some of the constraints (e.g. feet
and wrists) are known in advance [3, 16, 23, 29]. We demon-
strate, through several examples, that our algorithm is fast,
robust and that the goal can interactively be changed.

3 Prioritized inverse kinematics

At the core of our system lies a PIK solver which allows
us to find a configuration of an articulated structure (i.e.,
its joint state, Θ) given a task vector x constructed from a
set of user-specified Cartesian constraints while joint limit
avoidance is guaranteed [4]. The PIK ensures that a con-
straint associated with a high priority is achieved as much as
possible. Those of lower priority are optimized only on the
reduced solution space and do not interfere with higher pri-
ority constraints. After all constraints have been solved, the
remaining degrees of freedom (DOF) can be exploited by
a joint-space optimization function, like attracting toward a
predefined rest posture.

4 Motion constraint

4.1 Overview

The main idea is to create a low-dimensional motion con-
straint from a sparse set of captured motions. We take advan-
tage of the embedded spatiotemporal information available
from the database to determine a posture variation.

Latent space Each motion captured posture is represented
by a vector Θi where i is an index over the captured pos-
tures. We apply PCA on the vectors Θi to define a low-
dimensional representation of the original data. This low-
dimensional space of the Θi is called latent space. Every
posture Θi has a corresponding representation in the latent
space. Postures that belong to the same motion are chrono-
logically connected in the latent space.

Latent space and trajectory deformation Given the user-
defined goal position PG for the controlled effector (i.e. the
right wrist for the reach example), we deform the captured
motions in our latent space. The deformed motion achieves
the user-defined goal PG while maintaining as much as pos-
sible the style and temporal grounding of the original mo-
tions.

Motion constraint We integrate the deformed motion
transparently into our PIK framework to determine a pos-
ture variation while retaining the spatiotemporal informa-
tion from the captured motions. This type of spatiotemporal
constraint is called motion constraint. A motion constraint
can be achieved at any priority level and it can be combined
with any other Cartesian constraint.

4.2 Latent space

We define the 3D motion captured posture of a character
with a vector Θ that consists of the global position and ori-
entation of the root and all of the joint angles of the articu-
lated structure:

Θ = [θ1,P1, . . . , θn], (1)

where P1 and θ1 represent the normalized 3D global posi-
tion and 3D orientation of the root node and θj is the local
transformation of the j th joint expressed using the exponen-
tial map formulation [11]. By applying PCA, any posture
vector Θ can be represented as the linear combination of:

Θ ≈ Θ +
m∑

i=1

αiEi, (2)

where Θ is the mean posture, Ei are the Principal Compo-
nents computed by the PCA and α = (α1, . . . , αm) are the
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Fig. 2 PCA latent space with 16 learned reach motions as well as
some extrapolated postures. Points indicate training poses included in
the training set. Points that are connected belong to the same motion
sequence. We present here only the first two Principal Coefficients

Principal Coefficients that characterize the motion. m repre-
sents the number of Principal Components that are required
to reconstruct a desired percentage of the database [14]. All
postures of a motion are connected chronologically inside
this latent space.

We use a sparse motion database of 16 different right
wrist reach motions provided by [19]. In Fig. 2 we show the
PCA latent space constructed from a few reach sequences.
We normalize the motion duration such that every motion
has the same importance for building the latent space. The
Principal Components as well as the Principal Coefficients
are estimated off-line as these parameters stay constant.

4.3 Latent space and trajectory deformation

In this section, we describe how to compute a motion in
the latent space that achieves the user-defined reach motion
goal PG.

In our examples, we focus on constraining the right wrist
to a specific location in space PG. The user-specified reach
motion constraint has to reproduce the type of motions in the
latent space. To use the same motion database with differ-
ent body heights, we use a scaling factor that maps the cur-
rent body height to the body height of the captured postures.
This simple scaling factor only works with different body
heights that have the same body proportions (see Fig. 3d
and Fig. 3e).

To compute a weighted combination of captured motions
that achieve PG in the latent space, we first express the user-
defined goal PG as a combination of its nearest neighbors in

Cartesian space using barycentric coordinates [28]:

PG =
3∑

i=0

biPi, (3)

where bi are the barycentric coordinates and Pi are vertices
that build a tetrahedron enclosing PG. The vertices P1−3

correspond to captured, final positions while the fourth ver-
tex P0 is set to the initial, rest position of the controlled ef-
fector. The final positions build a goal hull that covers the
whole space of captured motion for the controlled effector.
In our examples, the goal hull is given by the final posi-
tion of the right wrist of the captured motions (Fig. 3a). Our
choice of P0 allows us to build a set of tetrahedrons that
are never intersecting. Thus, we can change the goal inter-
actively while the goal PG can be expressed continuously
using the barycentric coordinates b0−3. We allow negative
values of b0 such that we can guarantee that the barycentric
coordinates exactly achieve the goal PG even if the goal is
outside the goal hull. We obtain a deformed trajectory of the
controlled effector by applying the barycentric coordinates
to the motions associated with the tetrahedron enclosing PG.

The barycentric coordinates b0−3 that define the goal PG

in Cartesian space are used as a first estimation of the final
state in the latent space. The final state in the latent space
given by the barycentric coordinates b0−3 can be represented
as:

α̃G =
3∑

i=0

biαPi
, (4)

where αPi
are the Principal Coefficients of the vertex Pi .

However, there is no guarantee that the corresponding goal
position P̃G of α̃G exactly matches PG. To refine the
barycentric coordinates, we relate their variation Δb to a
variation Δx of the goal PG:

Δb = J (b)+λΔx (5)

with the damped pseudo-inverse of the Jacobian J (b) =
[δx/δb]. Owing to the chain rule, the Jacobian J (b) is de-
fined as:
[
δx

δb

]
=

[
δx

δθ

][
δθ

δα

][
δα

δb

]
. (6)

Besides, the [δθ/δα] is the Jacobian J (E) of the latent space
built by the Principal Components E1−m. Thus, J (E) is
constant for a given motion database. The [δα/δb] relates
a change of the barycentric coordinates to a change in the
latent space. As long as the vertices P1−3 remain the same
(i.e. the user-specified goal stays within the same tetrahe-
dron), [δα/δb] is constant and only the Jacobian [δx/δθ ] has
to be updated. To refine the barycentric coordinates b0−3, we
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Fig. 3 (a) Goal hull of right wrist built by end-positions of the cap-
tured motions indicated by a yellow cube. (b) Estimating the final
reaching posture using b0−3 of a goal on the right indicated by a
yellow cube. (c) Estimated final posture of the refined barycentric co-

ordinates using w0−3 of a goal on the right indicated by a yellow cube.
(d), (e) Motion constraint applied to two different body heights reach-
ing the same goal in Cartesian space

Fig. 4 Overview for computing
the barycentric coordinates and
how to extend the solution
space. Given the barycentric
coordinates b0−3 we compute
the barycentric coordinates
w0−3 to find a deformed motion
in the latent space that achieves
the user-defined goal PG

iteratively use (5) converging to the refined barycentric coor-
dinates w0−3 of the final state in the latent space. This small
convergence loop is very efficient as J (b) is only a 3 × 3
matrix.

We still cannot guarantee that the refined barycentric co-
ordinates w0−3 exactly achieve the goal PG (Fig. 3b and
Fig. 3c). But the barycentric coordinates w0−3 define a
motion deformation in the latent space such that the user-
specified goal is achieved as much as possible while retain-
ing the spatiotemporal coherence of the captured motions.
Figure 4 presents an overview for computing the barycentric
coordinates. Thus, we have two different sets of barycentric
coordinates: b0−3 and w0−3. The b0−3 deform the Carte-
sian trajectory of the controlled effector while w0−3 are used

for motion deformation in the latent space to take advantage
of its low-dimensional spatiotemporal coherence. If a user
interactively changes the goal PG, we have to update the
barycentric coordinates b0−3 of the Cartesian trajectory as
well as w0−3 in the latent space.

4.4 Motion constraint

In this section we describe how to integrate the methods dis-
cussed in the previous sections into a PIK framework that
works on the joints variations.

A motion constraint has to handle two key aspects: reach-
ing PG as well as preserving the temporal pattern of the
motion synergy. Given a goal PG, an objective is to guide
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the PIK convergence by using the latent space reproducing
the style of the captured motions while reaching the user-
specified goal PG. We have the general IK formulation de-
termine a posture variation that satisfies the specified con-
straints:

ΔΘ = J (Θ)+λΔx, (7)

where J (Θ)+λ is the damped pseudo-inverse of the Jaco-
bian matrix J (Θ). Our motion constraints work in the latent
space and not in the Cartesian constraints task space. Due to
a chain rule similar to (6) we obtain the following equation:

ΔΘ = J (E)+λΔα, (8)

where J (E)+λ is the damped pseudo-inverse of the Princi-
pal Components (latent space). Equation (8) relates a vari-
ation Δα in the latent space to a joint variation ΔΘ ; the
motion constraint can be used as any other Cartesian con-
straint. The user may also specify the set of joints that are
influenced by the motion constraint to achieve the solution.
It is important to note that the Principal Components are es-
timated off-line and that they remain constant for a given
latent space.

4.5 Synchronization

For traditional Cartesian constraints, the task to achieve is
to minimize the distance between the end-effector and the
goal. For a motion constraint such a simple definition is not
appropriate as we want the PIK framework to follow the de-
formed motion in the latent space. This leads us to another
aspect of the motion constraint: the management of the tem-
poral dimension. We use two parameters to control the tem-
poral dimension of a motion constraint. The first parameter
is the current phase ϕ and the second is the phase increment
Δϕ. As the deformed motion in the latent space is built by
motions with different durations, we normalize ϕ between
[0,1] to provide an easy mapping from the motion con-
straint to the real durations of the captured motions. By con-
struction, the motion constraint has accomplished its task at
ϕ = 1. An estimation of the real motion duration is given by
the barycentric coordinates w1−3 and the duration of the cor-
responding captured motions. This information can be use-
ful for creating animations. The user-defined phase incre-
ment Δϕ defines the step size that controls the speed. It de-
fines how fast we want to follow the deformed motion. The
motion constraint evaluates the Principal Coefficients αΘ of
the current joint configuration Θ , the Principal Coefficients
of the deformed motion αDM at phase ϕ+Δϕ and computes
the difference ΔαG = αDM(ϕ + Δϕ) − αΘ . The damped
pseudo-inverse then computes the optimal joint variation so-
lution to achieve the goal ΔαG. After having computed the
joint variation, we update the phase by ϕ = ϕ + Δϕ. Thus,

the motion constraint continuously follows the deformed
motion guiding the PIK optimization process. The previ-
ously made considerations about the management of the
temporal dimension have to be slightly modified when con-
straints other than the motion constraint are present. More
specifically, the motion constraint can lie on any priority
level. Higher level priority constraints can prevent the mo-
tion constraint to accomplish its desired goal. Thus, the up-
date of the phase by ϕ = ϕ + Δϕ is no longer necessarily
valid and we cannot ensure that the motion constraint ex-
actly follows the deformed motion in the latent space. To
overcome this problem, we have to synchronize the motion
constraint with the current joint configuration. First we com-
pute the Principal Coefficients αΘ of the current joint con-
figuration Θ . To synchronize ϕ, we simply set ϕ to the phase
of the closest posture of the deformed motion in the latent
space. To reduce the search space, we compare αΘ only with
postures in the latent space that have been achieved at a simi-
lar phase as our current ϕ. We enforce that the synchronized
ϕ cannot be smaller than it was before. Depending on the
synchronization interval, the same ϕ can be evaluated dur-
ing several convergence iterations of the PIK framework. If
the phase is synchronized or the user-defined goal changes,
we also re-compute the barycentric coordinates.

4.6 Extending the solution space

The balance of the virtual mannequin is automatically en-
sured by the motion constraint. Due to other higher prior-
ity constraints, the motion constraint may not be exactly
achieved and therefore it cannot guarantee the balance. An-
other problem is that the 3D position P̃G of the estimated
posture is not necessarily the same as the user-specified po-
sition PG. This mainly depends on the density of the data-
base. To overcome these problems, we propose to combine
the motion constraint with a Cartesian position constraint
for the constrained effector as well as with a time dependent
center of mass (COM) constraint given the mass distribu-
tion of the articulated structure. The deformed trajectories of
the constrained effector and the time dependent COM con-
straint are given by the barycentric coordinates b0−3. They
ensure that the deformed effector trajectory exactly reaches
the user-specified position while balance is maintained. We
use the same phase parameters ϕ and Δϕ as for the motion
constraint to control the desired position of the constrained
effector and the COM constraint over time. We set the pri-
orities of these effectors as follows: time dependent COM
constraint > time dependent Cartesian position constraint
> motion constraint to avoid discontinuities and to guaran-
tee that the user-specified goal only is exactly achieved (if
possible) while strictly keeping balance of the virtual man-
nequin. Thus, we are able to precisely manage over time the
controlled effectors due to the deformed trajectories as well
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Fig. 5 Results for three different reaching motions for a goal outside
the goal hull. The goal is indicated by a yellow cube. Upper row: Prior-
itized Inverse Kinematics. Lower row: motion constraint. (a) Goal on
the side. (b) Goal in the back. (c) Goal in the front

as take advantage of the full-body spatiotemporal coherence
using the motion constraint (Fig. 5 and Fig. 6).

4.7 Summary

To summarize, our motion constraint is composed of a de-
formed motion in the latent space preserving the temporal
pattern of the motion synergy. To deform the captured mo-
tions, we use barycentric coordinates. Through phase pa-
rameters, the user can control the speed of the deformed
motions. As we cannot guarantee that the deformed motion
exactly reaches the user-specified goal, we propose to add
an additional Cartesian constraint to control the effector tra-
jectory that uses the same phase parameters as for the mo-
tion constraint. By combining the motion constraint with an
additional Cartesian constraint and a time dependent COM
constraint, we extend the solution space while retaining the
spatiotemporal coherence of the captured motions.

5 Results

5.1 Final posture comparison

This section presents the results for a variety of difficult
reaching tasks. The motion constraint database used for all

Table 1 Basic constraint set used during our experiments

Constraint type Controlled Priority Standard PIK with motion

body part rank PIK constraint

Center of mass Root 1 x –

Position Feet 2 x x

Position Right wrist 3 x x

Motion All joints 4 – x

constraint

examples is described in Sect. 4.2 (16 reach motions, each
containing 25 postures). We use 95% of the information re-
trieved from the PCA. Thus, a posture is represented by only
6 Principal Coefficients. Table 1 defines the different basic
types of constraints that are used in the following experi-
ments.

The center of mass constraint is used to ensure the bal-
ance of the virtual mannequin given the mass distribution
of the articulated structure. The balance is automatically en-
sured through the motion constraint. Thus, we do not use
the center of mass constraint together with the motion con-
straint. For example motions with the time dependent COM
constraint, see the accompanying video. We compared two
approaches: standard PIK and PIK with the proposed motion
constraint.

We executed three experiments with difficult reach goals
for the right wrist: once the goal is on the side (Fig. 5a),
in the back (Fig. 5b), and in the front (Fig. 5c). Every goal
is outside the goal hull built by the captured motions and
the distance between the desired goal and the closest cor-
responding position in the database varies between 0.25 m
(front) and 0.4 m (back). For the goal in the front and on
the right side, the center of mass is placed under the right
foot. For the goal in the back, the center of mass constraint
is placed under the left foot. Comparing the results in Fig. 5,
the motion constraint helps to converge toward more realis-
tic postures.

In general, an important aspect with IK is the number of
convergence iterations required to reach the goal. As we can
control the speed of the motion constraint through its task
parameter Δϕ, we implicitly control the number of itera-
tions required to reach the goal. For the normal PIK we do
not have such control.

In the accompanying video, we compare virtual man-
nequins with different body heights that have to reach the
same goal in Cartesian space. We also present two motions
combining the motion constraint including the time depen-
dent COM constraint with other constraints (i.e. holding a
bottle vertical while reaching a goal).
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Fig. 6 Joint variations for the three different reaching goals. Upper row: closest captured motion. Middle row: Prioritized Inverse Kinematics.
Lower row: motion constraint. (a) Goal on the side. (b) Goal in the back. (c) Goal in the front

5.2 Temporal pattern comparison

When achieving a reach goal, the joint contributions follow
a characteristic temporal pattern [15, 26, 27]. For example
there exists a high correlation behavior in the joint-angle
space between the elbow and the shoulder. The standard PIK
framework has no information about this correlation. It only
finds a minimum norm in the joint configuration space that
brings the wrist nearer to the solution. We have measured
the joint variations (amplitude of the exponential map) of
the right hip, right knee, right shoulder and right elbow. Fig-
ure 6 presents them for the closest captured motion, the stan-
dard PIK solution and our approach including motion con-
straint. The joint variations produced with the motion con-
straint capture many features of the closest captured motion.
In general the elbow-shoulder correlations are well modeled
by our motion constraint. However, there can be some dis-
crepancies. The motion constraint usually starts with a larger
joint variation than the captured motions. The reason for this
is that our deformed motion is a combination of different
captured motions whose latent space rest poses slightly dif-
fer from one another (Fig. 2). Thus, the motion constraint
has to bring the initial posture to the initial posture of the
deformed motion. The other key difference in the joint vari-
ations is due to our reaching locations outside the goal hull.

But as seen in Fig. 6 and in the accompanying video, our mo-
tion constraint succeeds in channeling the joint variations to
reflect the original reach flow of movement.

5.3 Performance

The motion constraint consists in off-line and on-line com-
putations. The Principal Coefficients of the postures, the
Principal Components of the latent space as well as the
goal hull and a set of non-intersecting tetrahedrons are com-
puted off-line. Given the user-specified goal PG, we have
to find the barycentric coordinates b0−3 for the effector tra-
jectory deformation and the refined barycentric coordinates
w0−3 for the motion deformation. The computation of the
barycentric coordinates for the effector trajectory deforma-
tion can be done in constant time using a spatial hashing
between the goal PG and the tetrahedrons.

Once the barycentric coordinates b0−3 of the deformed
trajectory have been computed, we have to refine them. This
requires a small convergence loop using (5) that relates a
change of the barycentric coordinates to a variation of the
goal PG. We only have to re-compute the barycentric coordi-
nates b0−3 and w0−3 when the user-specified goal changes.
To synchronize the phase, we only have to compare the
current pose with poses of motions corresponding to the
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Table 2 Computational time for different update steps of the motion
constraint measured on a Pentium Dual Core 3.2 GHz with 2 GB RAM

Update step Computational

time [µs]

Synchronize time 250

Barycentric coordinates effector trajectory 14

deformation (computing b0−3)

Refining barycentric coordinates for motion 457

deformation (computing w0−3)

barycentric coordinates w1−3. To further reduce the num-
ber of poses, we only compare poses of the corresponding
motions which are in a similar phase. If we are not inter-
ested in the joint variations over time, the motion constraint
can be used to let the PIK optimization converge within a
few iterations by setting Δϕ = 1 − ϕ. Table 2 presents the
computational time required for the different stages of our
motion constraint.

6 Discussion

We have introduced a new type of constraint for IK that re-
lies on a sparse motion database. Using barycentric coordi-
nates, the algorithm deforms a motion in the latent space that
achieves the user-specified final goal. Moreover, its speed to
convergence can be controlled through a phase increment
parameter by the user. The work required to generate a final
posture is: (1) set the goal position for an effector that cor-
responds to the captured motions; (2) set the Cartesian con-
straints (e.g., feet on the ground). Our system then computes
a deformed motion in the latent space that should achieve the
desired goal. For extending the solution space, we propose
to use an additional Cartesian constraint using a deformed
effector trajectory and a time dependent COM constraint.

Due to our transparent integration of the motion con-
straint into a PIK solver, even multiple simultaneous motion
constraints can be supported as the strict priority levels pre-
vent them to interfere with one another. An example would
be a reaching motion that includes a step. One motion con-
straint could control the upper body while another motion
constraint is responsible for controlling the legs.

Our method implicitly assumes that there is a strong re-
lation between the captured motions and the user-specified
goal to be achieved by the motion constraint. To increase
the accuracy of our motion constraint, a slightly larger set of
captured motions can be used. We have shown that using a
very sparse database, our motion constraint reaches goals far
from the goal hull while retaining the spatiotemporal char-
acteristics of the captured motions over time.

Future work We plan to extend our approach to higher
dimensional motion synergies such as the generalized step
(forward/backward, up/down, sideward, turn) and a general-
ized reach with an additional orientation constraint.
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