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ABSTRACT

The objective of this report is to make a contribution to the performance-based seismic design
of RC buildings with U-shaped walls. Since U-shaped walls are often placed at the perimeter of
a building and are typically stiffer and stronger than other lateral strength providing structural
elements, many of these buildings possess in-plan strength and stiffness eccentricities and are
therefore prone to damage due to twist-induced displacements. The report focuses on two
aspects of the design of such buildings for which the knowledge state was judged unsatisfactory.
These are: (i) the inelastic behaviour of U-shaped walls under different directions of seismic
loading and (ii) the estimation of displacement demands on structural elements in torsionally
eccentric buildings.

Although U-shaped walls are frequently used structural elements, only relatively little research
has been carried out on their inelastic behaviour. One reason for the restricted research ef-
forts were most likely the scarce experimental evidence – previous to this project only one
test series on a single configuration of a U-shaped wall had been carried out. This project
aimed at improving the situation by testing two U-shaped walls under a quasi-static cyclic,
bi-directional loading regime. The two test units were analysed using plastic hinge models
and wide-column models. From the comparison with the experimental results, modelling
guidelines for U-shaped walls were developed. The experimental results showed that shear
deformations of U-shaped walls can be significantly larger than those of rectangular walls. To
model the overall stiffness of the U-shaped wall correctly, appropriate assumptions regarding
the shear stiffness of such walls are required. Since existing equations failed to predict the
shear stiffnesses of U-shaped walls with adequate accuracy, a new empirical equation was de-
rived from the experimental data of 29 quasi-static cyclic tests of RC walls with rectangular,
barbelled, flanged and U-shaped sections.

Modern seismic design approaches focus on displacements rather than force demands. One of
the most completely developed approaches that uses displacements and drifts as target parame-
ters in the design process is the direct displacement-based design method, which was developed
by Priestley and his co-workers. However, at present, this approach cannot be applied to struc-
tures that are asymmetric in plan. In this report the torsional response of inelastic structural
wall buildings is investigated and a semi-empirical method for estimating the twist-induced
displacements developed. The method can be used to extend the application of the direct
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displacement-based design approach to the class of torsionally restrained structures that are
asymmetric in-plan but regular over the height.
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GENERAL NOTATION

Note: Variables that were only used in the literature review sections are defined as they are
introduced and are not included in this list.

Capital Latin Letters

Ag Gross concrete area of a section
Ash Effective shear area
As Reinforcement area
E Elastic modulus
EII Flexural stiffness of uncracked section
EIII Flexural stiffness of cracked section, EIII = M ′

y/ϕ′y
Ec Elastic modulus of the concrete
Es Elastic modulus of the steel
FEW Force in EW direction
FNS Force in NS direction
F ′y Shear force at first yield
G Shear modulus
Gc Shear modulus of the concrete
H Effective height of a building or height of a wall subjected to a point load at

h = H

I Moment of inertia
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Small Latin Letters
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εd Axial strain in the compression strut (εd < 0)
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εm Mean axial strain of a section
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stress)
εsy Yield strain of the longitudinal reinforcement
γ Shear strain
γi Shear strain within element i (FE model)
γm,0.45 Average shear strain of a wall section computed over the central 45% of the wall

length
γVW Average shear strain of a wall section computed from the principle of virtual

work
κ Ratio of displacements computed for different curvature profiles (Equation 6.3)
µ∆ Displacement ductility
ν Poisson’s ratio
ϕ Curvature of a wall section
ϕb Base curvature of a wall
ϕy Yield curvature of a wall section
ϕp Plastic curvature of a wall section
ϕult Ultimate curvature of a wall section
ρh Horizontal reinforcement ratio, excluding confinement reinforcement
ρtot Total vertical reinforcement ratio
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τi Shear stress within element i (FE model)
τP Shear stress associated with the shear capacity VP

θ Rotation of the wall section
θ Cracking angle measured against the element axis
θb Base curvature measured over the interval h = 0− 50mm (TUA and TUB)

ADDITIONAL NOTATION FOR CHAPTER 7

Abbreviations

CoM Centre of Mass
CR Centre of Stiffness
CV Centre of Strength
DDBD Direct Displacement-Based Design
MDoF Multi Degree of Freedom
SDoF Single Degree of Freedom
TR Torsionally Restrained
TU Torsionally Unrestrained
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Irot Rotational inertia
Krot,eff Rotational stiffness about the centre of stiffness based on the secant stiffnesses

of the elements
Krot Rotational stiffness about the centre of stiffness
Krot,CoM Rotational stiffness about the centre of mass
Krot,x Rotational stiffness about the centre of stiffness provided by the elements acting

in x-direction
Krot,z Rotational stiffness about the centre of stiffness provided by the elements acting

in z-direction
Kx Translational stiffness of the system in x-direction
Kz Translational stiffness of the system in z-direction
Li Length of the lever arm between element i at the centre of strength
M Mass
Sa,GM Geometric mean of the spectral acceleration of the x component of the ground

motion



xxxvi Katrin Beyer, Alessandro Dazio, M. J. Nigel Priestley

Sd,GM Geometric mean of the spectral displacement of the x component of the ground
motion

Sd,x Spectral displacement of the x component of the ground motion
Sd,z Spectral displacement of the z component of the ground motion
Sd,5% Spectral displacement for 5% viscous damping
Sd,ξ Spectral displacement for a viscous damping of ξ

TC Corner period of the spectrum
Teff Effective period of the system
T0 Uncoupled translational period of the system
Vnxs Nominal base shear of the system in x-direction
Vnxi Nominal base shear of wall i in x-direction
Vnzs Nominal base shear of the system in z-direction
Vnzi Nominal base shear of wall i in z-direction
Vrot,x Rotational strength provided by the elements acting in x-direction
Vrot,z Rotational strength provided by the elements acting in z-direction
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erx Distance in x-direction of the CR to the CoM
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evz Distance in z-direction of the CV to the CoM
heff Effective height of a building
hn Total height of the building
k Equivalent wall stiffness
kxi Equivalent stiffness of wall i in x-direction
kzi Equivalent stiffness of wall i in z-direction
meff Effective mass of a building
mj Mass of storey j

rF Post-elastic stiffness ratio
rm Radius of gyration of mass
rrx Radius of gyration of stiffness for elements acting in x-direction
rrz Radius of gyration of stiffness for elements acting in z-direction
rvx Radius of gyration of strength for elements acting in x-direction
rvz Radius of gyration of strength for elements acting in z-direction
r0 Radius of gyration of mass of a square slab with equal area and uniformly

distributed mass
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∆CoM Displacement at the centre of mass
∆d Design displacement
∆i Displacement of element i
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∆y Yield displacement of a wall
∆ys Yield displacement of the system
∆u Ultimate displacement

Small Greek Letters

α Angle enclosed by the ground motion axes and the axes of the structural system
λi Excess strength factor of element i (Equation 7.22)
µ∆s System ductility
µϕ Curvature ductility
θ Nominal rotation
ξ Viscous damping ratio
ξeff,s Effective damping ratio of the system





1. INTRODUCTION

The lateral strength of reinforced concrete (RC) buildings is often provided by a core, which
is well suited to accommodate lift shafts or staircases. A core is a structural element with a
cellular section that is typically closed on three sides and is either open or partially closed
by deep coupling beams on the fourth. There are numerous possible shapes of such core
structures; the simplest one is a U-shaped or channel shaped section (Figure 1.1a) but multi-
cellular sections (Figure 1.1b) are also very common and particular in high-rise buildings even
more complex shapes may occur (Figure 1.1c). It is believed that cores with simple shapes can
be designed for a predictable and dependable inelastic cyclic behaviour whereas the behaviour
of cores with very complex shapes can be hardly understood with the required accuracy, hence
calling for an almost elastic design. Figures 1.1d and e show examples of a core that – apart
from the floors that are spanning across – is open on one side and a core that is partially closed.

Figure 1.1. Cross section of core structures (a-c) and examples of an open (d) and a partially closed
core (e); cross section c: Victoria tower block in Mannheim, Germany [Bergmeister and Wörner,
2003].

Over the last decades the seismic behaviour of RC walls with rectangular cross section has
been the subject of extended research and several test series on such walls were conducted.
From the results of these experimental studies the key parameters controlling the behaviour
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of rectangular walls under seismic excitation could be deduced and the results were adopted in
code provisions providing detailed guidelines for designing engineers. Although core walls are
very popular in practice their inelastic behaviour under seismic loading has not been examined
in detail but only very few experiments on U-shaped walls under cyclic loading (and none on
walls with more complex shapes) have been conducted in the past. Hence, there is a lack of
experimental evidence of the behaviour of such walls under seismic loading, which prevents a
thorough calibration of analytical models and the derivation of appropriate design guidelines.

Figure 1.2. Seismic response of a RC building with a U-shaped wall.

Due to the increasing demand of open floor areas, the core structures are often placed at
the perimeter of the building. Since other vertical members of the structure are typically
less stiff and less strong than the core, the structural system is asymmetric in plan regarding
the lateral stiffness and strength distribution. Hence, when subjected to seismic excitation,
the building does not only translates but also twists. This is visualised in Figure 1.2. Large
rotational displacement demands during a seismic event can make the building vulnerable if
the increased displacement demand due to the twist of the system is not considered during
the design. To draw a valid comparison of the displacement capacity of a structure with the
expected displacement demand during a seismic event it is therefore necessary to account in
the design process for the increased displacement demand due to the twist component of the
response. Figure 1.2 visualises also the demand on the core structure: Unlike rectangular walls,
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which only resist lateral forces in one direction, core structures provide lateral stiffness and
strength in both horizontal directions and also possess a torsional stiffness.

1.1 Problem statement

When designing an in-plan asymmetric RC building with a core structure such as the one
shown in Figure 1.2 the engineer faces two main problems: The first concerns the design of
the core structure. RC design codes tend to be written for rectangular walls. It is often dif-
ficult – and sometimes impossible – to extrapolate the formulae that have been developed for
rectangular walls to cores since the behaviour of cores under seismic loading is very complex.
Although there have been some research efforts in the past to characterise the behaviour of
cores, most of these efforts concerned the elastic behaviour of such walls. Only recently one
research group addressed the inelastic behaviour of U-shaped walls but limited their study to
the behaviour of one particular wall configuration and did not derive general design recom-
mendations. The experimental evidence for the behaviour of such walls when subjected to
lateral displacements is therefore very limited.

The second difficulty concerns the conceptual design of buildings with U-shaped walls. Mod-
ern seismic design approaches focus on displacement rather than force demands. One of the
most completely developed approaches that allows to directly address displacements in the de-
sign process is the direct displacement-based design method, which was developed by Priestley
and his co-workers. However, at present this approach cannot be applied to structures that are
asymmetric in plan.

1.2 Objectives and scope of the study

The general objectives of this project is to contribute to the performance-based seismic design
of RC buildings with cores. More specifically, it is aimed (i) at making a contribution to the
understanding of the inelastic behaviour of cores under different directions of seismic loading
and (ii) to identify a method for estimating the displacement demands of torsionally eccentric
buildings during an earthquake. The scope of the first part is limited to U-shaped walls. This
is the simplest shape of a core, yet it possesses all the characteristics that make the elastic
and inelastic behaviour considerably more complex than that of rectangular walls, i.e. it is a
composite section of several rectangular sections that is open on one side and provides flexural
resistance in both horizontal directions as well as torsional stiffness. Regarding the seismic
design of U-shaped walls this project aims at making the following contributions:
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• Additional experimental evidence for the behaviour of U-shaped walls for different di-
rections of loading.

• Development and validation of simple numerical models that can be used by the engi-
neer to analyse U-shaped walls.

• Contribution to the development of design guidelines for U-shaped walls.

The torsional stiffness of U-shaped walls is not addressed within the scope of this project but
the focus is set on the flexural and shear behaviour of U-shaped walls. Core configurations with
more complex layouts are not considered although it is expected that most of the findings for
U-shaped walls would also apply, for example, to E-shaped walls. The numerical modelling of
the U-shaped walls is restricted to the analysis of the stand-alone members as they were tested
during the experimental part of this thesis, which comprised two quasi-static cyclic tests of
U-shaped walls, which were built at half scale. Entire buildings that include U-shaped walls
are not considered.

In the second part of the report the response of buildings that are asymmetric in plan is
studied. The objective of this part is to identify key parameters influencing the twist of a
structure when subjected to seismic excitation and to develop a method for estimating the
increased displacement demand on structural elements due to this twist. This method allows
to account for torsionally induced displacements when designing a structure according to the
direct displacement-based design method.

1.3 Outline of report

The report is divided into eight chapters. This first chapter is an introductory chapter, which
briefly describes the challenges involved in designing a plan-asymmetric RC building with
U-shaped walls. It also identifies the research need and formulates four key objectives for
the thesis. Chapters 2 to 6 relate to different aspects of the seismic behaviour of U-shaped
walls while Chapter 7 concerns the conceptual design of plan asymmetric buildings. In the
following, each chapter is briefly described.

Chapter 2 reviews existing approaches of numerical models for U-shaped walls. Within this
chapter four different types of models are discussed. These are the plastic hinge models, the
stick models, the wide-column models and shell element models. Also included in this chapter
is a summary of the most commonly used design criteria for determining the displacement
capacity of a RC member, a review of the applied models for diagonal tension and diagonal
compression shear failure as well as a review of existing methods for estimating the shear
deformations of RC walls.
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Chapter 3 describes the quasi-static cyclic tests of two U-shaped walls, which were carried out
within the scope of this project, in terms of the test setup, the loading history and the main
experimental results. The test units were subjected to a bi-directional loading history, hence it
was possible to observe the behaviour of the U-shaped wall for different directions of loading.
All numerical analyses of U-shaped walls that are presented in this report are based on these
two tests. This chapter also includes a comprehensive description of the design of the two
test units. The discussion of the design guidelines is extended to the design of U-shaped walls
that form part of an entire building and can therefore be applied when a new building with a
U-shaped wall is designed.

In Chapter 4 the experimental results are analysed further and compared to existing estimates
of quantities that are used in plastic hinge analysis. These are estimates for the yield curva-
ture, strains limits for defining the ultimate displacement capacity, plastic hinge length and
shear displacements. Special emphasis is placed on the comparison of quantities for different
directions of loading. The existing equations for the plastic hinge analysis were derived for
rectangular walls and this chapter concludes with recommendations for their application to
U-shaped walls.

From the results in Chapter 4 it was found that from all parameters required for the plastic
hinge analysis the available estimates for the shear displacements were the least satisfactory.
Chapter 5 aims at improving this situation by deriving a new empirical equation for the pre-
diction of the ratio of shear to flexural displacements for RC walls. In addition, this chapter
includes an evaluation of two structural analysis programs regarding their capability of pre-
dicting shear displacements. The study on shear displacements builds on the experimental
evidence of the two U-shaped walls that were tested within the scope of this project as well as
27 other RC walls that have been tested by other researchers. Out of the 27 walls, three walls
are U-shaped walls whereas the others have rectangular, barbelled or flanged sections. Details
of these walls are presented in Appendix A.

Out of the four modelling approaches that were reviewed in Chapter 2 the plastic hinge anal-
ysis method and the wide-column method were selected and used to analyse the two U-shaped
walls that were tested under quasi-static cyclic loading. In Chapter 6 the analysis results are
compared against the experimental results and the two methods are assessed regarding their
capabilities of modelling the inelastic behaviour of U-shaped walls under lateral loads. Rec-
ommendations regarding the choice of modelling parameters are given.

Chapter 7 concerns the torsional response of buildings that are asymmetric in-plan. This
chapter includes an extensive 2D parametric study on asymmetric buildings. The objective of
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this parametric study is to identify the key parameters controlling the torsional response of
inelastic RC buildings. Based on the findings of the parametric study, a method for accounting
for the displacement demands due to twist of the building within the direct displacement-based
design approach is developed.

In the final chapter the main findings of this project are summarised, the motivation for this
study reviewed and further research needs related to the design of plan asymmetric buildings
with U-shaped walls are identified.



2. LITERATURE REVIEW ON DIFFERENT
MODELLING APPROACHES FOR U-SHAPED WALLS

In this section different approaches of modelling the behaviour of U-shaped walls under seis-
mic loading are reviewed. They are discussed in the order of their complexity:

• Plastic hinge model (Section 2.1)

• Stick model (Section 2.2)

• Wide-column model (Section 2.3)

• Shell model (Section 2.4)

These modelling approaches are general approaches, which are not limited to U-shaped walls.
In the following sections the state-of-the-art of these modelling approaches for general wall
sections is briefly summarised and issues particular to the modelling of U-shaped walls or the
application of these approaches to U-shaped walls that have been reported in the literature are
reviewed.

To establish the ultimate displacement capacity for each of these models, limits on concrete
and reinforcement strains are defined that are related to certain types of failure. A summary
of different guidelines for the selection of appropriate strain limits is given in Section 2.5. In
some cases the tensile shear capacity or the web crushing capacity, which both reduce with
curvature ductility, might limit the displacement capacity of a wall section. The state-of-the-
art approaches for the assessment of these shear capacities are also summarised in Section 2.5.

Modelling of slender structural walls commonly focuses on flexural deformations while shear
deformations are often considered as negligible. It will be shown in Chapter 4 that this as-
sumption does not hold for U-shaped walls but that shear deformations should be included
in numerical models of U-shaped walls. A review of different approaches for estimating shear
deformations is given in Section 2.6.
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2.1 Lumped plasticity models

The lumped plasticity approach assumes that the inelastic deformation can be modelled as
concentrated in one flexural plastic hinge that is located near the section subjected to the
largest moment demand. The deformations are computed assuming a piecewise-linear curva-
ture profile in which the inelastic curvatures are distributed evenly over a plastic hinge length
(Figure 2.1). This is of course only an approximation of the physical behaviour of RC mem-
bers. However, the plastic hinge model is appealing for the sake of its simplicity and has also
been shown to yield good estimates of the displacement capacity of the structural member.
Moreover, it is widely accepted and used by the design engineer community. A prerequisite
for its application is of course that adequate estimates of the plastic hinge length, the ultimate
curvature and the ratio of shear to flexural displacements are available. The ultimate curvature
is typically determined from strain limits which are discussed in Section 2.5. In the follow-
ing the state-of-the-art equations for the principle aspects of plastic hinge analysis are briefly
summarised, i.e. the force-displacement characterisation (Section 2.1.1), the yield curvature,
which marks the onset of inelastic deformations (Section 2.1.2), and the plastic hinge length
(Section 2.1.3). The contribution of shear deformations to the overall deflection is discussed
in the last section of this chapter (Section 2.6).

2.1.1 Force-displacement characterisation

The objective of plastic hinge analysis is the transformation of the moment-curvature relation-
ship that can be readily obtained from section analysis into a force-displacement relationship.
The proportionality constant between force and moment is simply the shear span, the trans-
formation from curvature to displacement is, however, more elaborate. Within this process
it is customary to distinguish between the displacement prior to yielding and the post-yield
displacement. The total displacement can therefore be written as:

∆ = ∆y + ∆p (2.1)

where ∆y is the yield displacement and ∆p the plastic displacement. In the following, typical
approaches for estimating the yield and plastic deformation of cantilever walls from the base
curvature ϕ are described.

For design purposes the yield displacement of a cantilever is often simply estimated on the
basis of a triangular curvature distribution [Paulay and Priestley, 1992]:

∆y =
ϕy

3
H2 (2.2)

where ϕy is the yield curvature and H the effective height of the wall. Since the moment
distribution is also triangular this equation effectively assumes that the stiffness is constant
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Figure 2.1. Plastic hinge analysis: Theoretical curvature distribution due to flexural deformations
only, modified distribution accounting for shear spread and strain penetration into the foundation
and curvature distribution assumed in plastic hinge analysis (adapted from Priestley and Park
[1987]).

along the structural member. At some distance from the base the wall will probably be un-
cracked and hence it is likely that the flexural deformations are overestimated by Equation 2.2.
However, the shear displacements and the strain penetration are not explicitly accounted for.

Hines [2002] developed a more elaborate approach for estimating the yield displacement. He
distinguished between the deformation due to flexure of the wall, the rigid body rotation due
to strain penetration into the foundation, and the shear deformation. From the experiments
he conducted, Hines found that the strain penetration prior to yielding of the longitudinal
bars can make a significant contribution to the flexural displacement at yield. He suggested
adding a term to the flexural yield displacement ∆yf to account for the base rotation due to
strain penetration:

∆yf =
ϕy

3
H2 + ϕyLspyH (2.3)

where Lspy is the equivalent plastic hinge length to account for strain penetration prior to
yielding. From his experiments, Hines found that Lspy could be approximated as 1.5 times
the strain penetration length after yielding, which is often estimated as Lsp = 0.022dbfy

(Equation 2.10a). Hines gave the following explanation for the fact that the strain penetration
lengths prior to yielding are larger than the post yield lengths: Before yielding, the strain pen-
etration into the foundation is almost linear. After yielding the strain penetrates only slightly
further into the foundation since the forces in the reinforcing bars do not increase substan-
tially. Before yielding the overall deformations are fairly small and hence the contribution of
the strain penetration to the overall displacement – which is expressed in terms of ϕLspyH
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– is comparatively larger. The total yield displacement including the shear component Hines
described by the following equation:

∆y = ∆yf · (1 +
∆s

∆f
) (2.4)

where ∆s/∆f is the ratio of the shear to the flexural displacements. Note that, although
Hines accounted explicitly for the shear deformation and strain penetration, he computed the
flexural deformations at yield ∆yf on the basis of a linear curvature profile over the height of
the wall (Equation 2.3).

The plastic displacement is obtained from the plastic hinge length Lph, the plastic curvature
ϕp and the effective height H of the wall. A well known equation for the plastic displacement
is the following [Paulay and Priestley, 1992]:

∆p = ϕult · Lph · (H − 0.5Lph) = (ϕult − ϕy) · Lph · (H − 0.5Lph) (2.5)

where ϕult is the ultimate curvature. In this equation the term describing the plastic deforma-
tion is formulated as a rotation with the centre of the plastic hinge at midheight of the plastic
hinge. Hines [2002] noted that a centre of rotation for the plastic deformation at midheight of
the plastic hinge is a conservative assumption, which might be suitable for design, but that a
centre of rotation at the base is a more suitable assumption for assessment purposes. Within
the scope of this project the objective is to compare analytical to experimental results and
hence the most realistic assumptions should be adopted. Following Hines’ argumentation it is
therefore assumed that the displacement capacity is best estimated if the plastic hinge is placed
at the base of the wall.

Considering that the ratio of shear to flexural displacement remains approximately constant
over the entire ductility range (see Section 2.6) the ultimate displacement can – as the yield
displacement – be written as the product of the flexural displacement and the shear ratio
∆s/∆f [Hines, 2002]:

∆ = (∆yf + (ϕult − ϕy) · Lph ·H) · (1 +
∆s

∆f
) (2.6)

2.1.2 Yield curvature

It has been accepted for some time that the yield curvature ϕy of a RC structural member is,
for most practical design applications, only related to the geometry of the structural member
and the yield strain εsy of the longitudinal reinforcement. Priestley et al. [1996] were the
first to publish data that showed that the stiffness of a concrete section was directly related
to its strength and therefore the yield curvature of the concrete section was in fact relatively
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independent of the section’s strength. Priestley and Kowalsky [1998] introduced the following
expression for the yield curvatures of structural walls:

ϕy = K1 · εsy

lw
(2.7)

where lw is the wall length and K1 a proportionality factor depending on the shape of the cross
section of the wall and the longitudinal reinforcement layout. Several researchers have derived
expressions for the K1-factor from moment-curvature analysis for a number of different wall
geometries; a summary of these is given in Table 2.1.

Table 2.1. Proportionality factor K1 for the nominal yield curvature.

1) 2)

Priestley and Kowalsky [1998] 2.25± 15% 2.0± 5%

Dazio [2000] ∼ 1.8

Paulay [2002] ∼ 2.0 ∼ 1.8 ∼ 1.4 ∼ 1.4 ∼ 1.8

1) Rectangular section without concentrated end reinforcement.
2) Rectangular section with concentrated end reinforcement.

At present, K1-factors have not been derived for U-shaped sections. However, for bending
parallel to the web and the flanges K1-factors for I-shaped and T-shaped walls, respectively, can
serve as approximations:

Bending parallel to the web: ϕy = 1.4 · εsy

lweb

Bending parallel to the flanges, web in compression: ϕy = 1.4 · εsy

lfl

Bending parallel to the flanges, flange ends in compression: ϕy = 1.8 · εsy

lfl

(2.8)

where lweb is the length of the web and lfl the length of the flanges. For bending in the
diagonal direction the yield curvature of a U-shaped section cannot be approximated by the
yield curvature of a section of simpler shape, such as an I- or T-shaped section.

2.1.3 Plastic hinge length

a) State-of-the-art equations for plastic hinge lengths for design purposes.
RC structural members that respond in the inelastic range show a concentration of plastic
strains around the section with the largest moment. However, unlike an elasto-plastic model of
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a structural member under the Bernoulli-hypothesis of plane sections remaining plane would
suggest, the inelastic deformations are not concentrated in one single section but are spread
over a certain length of the structural member. The reasons for the spreading of the plastic
strains are threefold [Priestley and Park, 1987]:

• The increase in capacity between the moment at first yield M ′
y and the ultimate mo-

ment Mu combined with the moment gradient results in spreading of the plastic defor-
mations over a certain length of the structural member. The length of the region over
which plasticity spreads due to this mechanism is commonly expressed as a ratio of the
effective height H while the ratio of M ′

y/Mn, i.e. the hardening of the section, is often
not explicitly taken into account.

• The inclined flexural-shear cracks lead also to a spread of the plastic deformation since
the steel strains above the section of the largest moment will be increased (tension shift).

• Strain penetration along the reinforcement bars into the adjacent elastic member (e.g.
the foundation) is the third mechanism that increases the plastic deformation capacity
of the structural member. The strain along the anchorage length of the reinforcing bar
in the foundation leads to a slip between the reinforcing bar and the foundation, which
results in uplift at the structural wall or column base implying additional base rotation.
This can be expressed as the product of a plastic curvature times an additional plastic
hinge length increment.

Priestley and Park [1987] were the first to express the plastic hinge length as the sum of the
three aforementioned contributions (for a complete history on the development of the plastic
hinge analysis in earthquake engineering the reader is referred to Hines [2002]). For walls the
general equation for the plastic hinge length can be written as:

Lph = C1 ·H + C2 · lw + C3 · db (2.9)

where db is the bar diameter of the main longitudinal reinforcement, lw the wall length and
C1, C2 and C3 constants. The first term represents the spread of plasticity due to the mo-
ment gradient, the second the spread of plasticity due to inclined flexural-shear cracking and
the third term the increased rotation capacity due to strain penetration into the foundation.
The total plastic hinge length will be at least twice the length due to strain penetration since
slippage of the reinforcement may also increase the strain at sections above the base [Priestley
et al., 1994]. Paulay and Priestley [1992] presented two equations as estimates for the plastic
hinge length of structural walls. Each included only two of the aforementioned contributions
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to the plastic hinge length:

Lph = 0.08H + 0.022dbfy (2.10a)

Lph = 0.2lw + 0.044H (2.10b)

where H is the effective height of the wall. The same equations were given for the total wall
height hn = H/0.675 in Priestley and Kowalsky [2000]. According to Paulay and Priestley
[1992] the length of the plastic hinge Lph corresponds typically to 30− 80% of the wall length
lw. For slender flexural walls Priestley and Kowalsky [2000] used the maximum value of Lph

resulting from the two equations. In the new book on displacement-based design [Priestley
et al., 2007] a revised form of the equation for the plastic hinge length was published, which
contains a term for each of the three mechanisms contributing to the spread of plasticity:

Lph = kH + 0.1lw + 0.022dbfy (2.11)

where k = 0.2(fu/fy − 1) ≤ 0.08 with fy and fu being the yield and ultimate strengths
of the longitudinal reinforcement, respectively. Priestley et al. [2007] based the shear lag
term 0.1lw on research by Paulay and Priestley [1992], who had suggested 0.2lw. For design
purposes they reduced it to half the length. Hence, some conservatism can be removed
by resubstituting 0.1lw with 0.2lw. The resulting equation might be more appropriate for
assessment purposes including the prediction of experimental results:

Lph = kH + 0.2lw + 0.022dbfy (2.12)

According to Priestley (private communication, 2007) the plastic hinge lengths given in Equa-
tions 2.10 and 2.11 should yield – in conjunction with ultimate strain limits as given in Sec-
tion 2.5.1 – displacement capacities that are considerably lower than the displacement that
would lead to collapse of the structural members. Hence, at present, the safety margin be-
tween design displacement capacities and ultimate displacement capacities is introduced by
using conservative estimates of the plastic hinge length. This should be kept in mind when
comparing the plastic hinge lengths derived from Equations 2.10 and 2.11 to experimentally-
determined plastic hinge lengths.

b) Criticism levelled at the plastic hinge model and emerging modified approaches of the
plastic hinge model.
The plastic hinge approach has been mainly criticised for the use of curvatures within the
heavily cracked plastic zone. The crack pattern is typically fan-like due to the interaction of
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flexure and shear. The Bernoulli assumption of plane sections remaining plane does not hold
and therefore the definition of curvatures seems doubtful. In addition, the plastic hinge lengths
have been typically calibrated for the tension side. This becomes evident in the strain penetra-
tion term C2db, which is irrelevant if the rotation capacity is limited by compressive strains
[Priestley et al., 1994]. Most published plastic hinge equations are therefore not applicable if
failure on the compression side of the wall is anticipated.

The plastic hinge lengths in Equations 2.10 and 2.11 are empirical relationships and thus their
effectiveness depends on the data they have been calibrated against, which were chiefly walls
and columns with round or rectangular cross sections. Therefore, before the equations are
applied in the design of U-shaped walls, they should be validated against experimental data for
U-shaped walls. Hines [2002] tried to overcome the drawbacks of an empirical relationship by
developing a method for deriving the plastic hinge length of structural walls or columns from
first principles, accounting for the moment gradient and tension shift. The approach is based
on moment equilibrium about the centre of the compression zone at the wall base considering
the wall part above the top crack of the fanned crack pattern. It also includes the ratio of the
maximum moment to the moment at first yield M ′

y. Up to now, this approach has only been
applied to barbelled walls with heavily confined boundary elements.

Figure 2.2. Evolution of strains with increasing displacements (a) and geometry of discrete crack
model (b); figures from Greifenhagen [2006].

Based on the work by Bachmann [1967], Greifenhagen [2006] developed a new approach for
estimating the plastic rotation capacity of the inelastic zone, which abandons the assumption
of plane sections. He developed equations for the rotation capacity of the plastic zone that
consider the compression side and the tension side of the base section separately. By doing
so, for curvatures larger than ϕ′y, he dropped the assumption of plane sections and postulated
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that the behaviour can be described by assuming different curvatures for the compression and
tension side (Figure 2.2). For both sides Greifenhagen derived ultimate rotation capacities for
compression and tension failure. For tension failure the ultimate rotation capacity is expressed
as the sum of crack widths

∑
wj along the tension edge divided by the lever arm (lw − c),

where c is the depth of the compression zone (for convenience Greifenhagen assumed that the
depth of the compression zone is the same as at first yield when the section is still assumed as
plane):

θs =
∑

wj

lw − c
(2.13)

The crack widths wj are estimated on the basis of the tension chord model and different bond
models. For the compression side the ultimate curvature is expressed as

θc = κ · εcu (2.14)

where κ is a factor accounting for the strain localisation due to longitudinal reinforcement
and axial force. Greifenhagen’s approach seems appealing since the separate consideration of
the compression and tension side makes allowance for the fact that limits on the tensile and
compressive strains cannot be treated with the same plastic hinge length. In this way, ultimate
compressive and tensile strain levels can be addressed directly rather than considering average
quantities over the plastic hinge length. A drawback of the approach is the large sensitivity to
the assumed bond stress and ultimate steel strains, which control the crack width estimates.
The uncertainties related to these two quantities are significant. Greifenhagen developed and
applied the approach to squat walls that he had tested. However, when comparing the predic-
tion to the experimental results he only included the tension side criterion, although failure
of the compression side had been observed for two out of the four tested walls (i.e. M3 and to
a limited extent also for M4). Hence, although the concept of this approach is appealing, the
large uncertainties render its practical application difficult.

2.2 Stick models

In stick models the wall section is modelled by a single element. General aspects that require
attention when modelling a structural wall as a stick are the number of elements along the
wall height and the choice of the element type. The required number of elements over the
wall height depends on the formulation of the element and the number of integration points
per element. The formulation of the element determines whether the elements are based
on displacement shape functions (stiffness- or displacement-based elements) or interpolation
functions for forces (flexibility- or force-based elements). Details on these two types of element
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can be found in Bathe [1996] and Taucer et al. [1991]. The consideration of the element type is
important since it controls the distribution of the inelastic strains. If the displacement capacity
of the wall is estimated for example from the push-over analysis of a stick model, strain criteria
are typically employed for the definition of limit states. The outcome of the analysis will
strongly depend on the chosen element formulation, the number and position of integration
points along the element and the element length. In particular, the length of the element near
the wall base, where the plastic deformations are concentrated, can have a significant effect
on the analysis results. The classical type of elements are displacement-based elements. For
most displacement-based elements cubic Hermitian polynomials are used as shape functions;
for these elements the curvature variation along the length is linear. Analogous to the plastic
hinge model, which was discussed in the previous section, the base element is often assigned
the estimated length of the plastic hinge. For the bi-directional analysis of walls with different
plastic hinge lengths in the two directions a compromise might be required and an intermediate
element length chosen.

U-shaped walls can be subjected simultaneously to bi-axial shear forces and bending moments,
torsional moments and axial forces. Most programs do not allow for the interaction of shear
forces and torsional moments with bending moments and axial forces. The interaction of axial
force and bi-axial bending moments is best accounted for in fibre-sections. Shear stiffness and
torsional stiffness are often modelled as elastic properties although at least the shear stiffness
of structural walls tends to decrease when the wall is subjected to inelastic deformations (see
Section 2.6).

When the U-shaped wall is modelled as part of a larger structure additional issues require
attention, such as the in-plan position of the stick and the connection of the stick to other
structural members. If stick models are placed at the centroid of their section, lateral forces
applied to the stick model will not cause a torsional moment – this is not correct since the
shear centre of U-shaped walls does not coincide with the centroid of the section. For an
elastic homogenous section, the shear centre lies outside the U-shaped section. Placing the
stick at the shear centre of the U-shaped wall instead would improve the model regarding
its torsional properties [Reynouard and Fardis, 2001]. However, when the U-shaped wall
undergoes inelastic flexural deformations, the shear centre is likely to move towards the web
[Pégon et al., 2000c] and it is therefore not possible to place the stick at the correct effective
shear centre throughout the analysis. In addition, Reynouard and Fardis [2001] pointed out
that placing the stick at the shear centre also introduces errors in the vertical displacements
at the end of beams framing into the stick. Reynouard and Fardis [2001] recommended using
stick models of U-shaped walls only if the torsional rigidity of the U-shaped wall is small with
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respect to the torsional rigidity of the building. In this case the stick can be placed at the
centroid of the section.

2.3 Wide-column models

Despite the frequent use of wide-column models (WCMs) in engineering practice, recent liter-
ature on wide-column models is scarce. The objective of this section is to present an overview
on different aspects of WCMs starting with their historical development (Section 2.3.1) and
then discussing today’s use of such models (Section 2.3.2), their drawbacks (Section 2.3.3),
their application to U-shaped walls with elastic properties (Section 2.3.4) and their application
to structures that behave inelastically (Section 2.3.5).

2.3.1 Historical development of WCMs

Already in the past non-planar walls have been common structural elements providing lateral
stiffness and strength to RC buildings. Since even within elastic systems the force distribution
between the different components (webs and flanges) of non-planar walls can be quite complex,
the development of simple, computational inexpensive analysis models for such structures
was a research objective from the early beginnings of computational structural analysis. One
of the modelling approaches that found broad application was the "wide-column analogy"
(known also as the "equivalent frame method"). It was originally developed for planar wall
structures such as structural walls with openings and structural walls coupled by beams or slabs
(e.g. Clough et al. [1964]; MacLeod [1974]) and was later extended to non-planar structures
(e.g. MacLeod and Hosny [1977]; Stafford-Smith and Abate [1981]). Examples of WCMs of
structural walls coupled by deep beams and of a U-shaped wall are shown in Figures 2.3a and
2.3b, respectively. In WCMs of non-planar walls the web and flange sections are represented
by vertical column elements located at the centroid of the web and flange sections. These
vertical elements are then connected by horizontal links running along the weak axis of the
sections having common nodes at the corners. Except for a torsional flexibility, which they
are typically assigned, these links are modelled as rigid.

2.3.2 Advantages of WCMs for today’s analyses of structural walls

Today, with the rapid increase in computer power, computational expense receives less consid-
eration when a computer model for the analysis of a structure is set up. Nevertheless, WCMs
of structural walls still appeal and are often preferred to models with 2D or 3D elements for
the following reasons:
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Figure 2.3. WCMs of coupled wall systems (a), WCMs of non-planar structural walls (b) and the
classical wide-column module by MacLeod and Hosny [1977] (c).

• For seismic design, the nonlinear behaviour of walls and beams is of prime interest.
There are few structural software packages with adequate nonlinear RC material models
for 2D or 3D elements. The available packages are in general sophisticated and not
suited for design purposes in engineering offices.

• The engineer needs moment, shear force and axial force to design a wall. This output
can be obtained directly from frame analysis while models with 2D or 3D elements
require the integration over the section to obtain the section forces and moments.

An alternative modelling approach, which is even more simple than WCMs, are stick models,
which were discussed in Section 2.2. If stick models are assigned fibre sections they are –
as WCMs – able to capture the interaction of axial and flexural capacity and to model the
moment capacities for different directions of bending. However, WCMs of non-planar walls
have a number of advantages when compared to stick models:

• Many structural analysis programs have predefined libraries of cross section geometries;
it is hence not always possible to analyse a stick model with the section of one’s choice.
An exception is the program "Opensees" [Mazzoni et al., 2005] which allows defining
fibre sections by means of single fibres to which size, location and stress-strain relations
are assigned; any section layout can therefore be analysed.

• Stick models are one-dimensional models, and hence they cannot reflect the distribution
of the shear force over the web and flanges of the U-shaped section. Therefore, the shear
deformation will be the same whether the total shear force is in reality carried by one
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flange alone or equally distributed between the two flanges. WCMs, however, are able
to represent the distribution of the shear forces over the cross section area.

• Stick models of U-shaped walls have no inherent torsional stiffness; this property needs
to be assigned separately and is not related to the flexural and shear strength of the
model. WCMs have an inherent torsional stiffness due to the flexural stiffness of the
two flanges and the lever arm between them.

• When the U-shaped wall forms part of a larger structure, stick models representing
the U-shaped wall can be placed at either the centroid or the shear centre of the section.
Both positions bear disadvantages depending on the applied type of loading [Reynouard
and Fardis, 2001].

• While stick models yield only total sectional forces, WCMs provide the sectional forces
acting on the individual components of the wall [Avramidis, 1991]; these are exactly
the quantities needed by design engineers. For example, in the case of U-shaped walls,
the distribution of the total base shear force between the web and the two flanges is an
important parameter for their shear strength design.

For these reasons, WCMs of structural wall systems with nonlinear beam-column elements
are often used for structural analyses. However, they are, of course, only approximations of
the real structural system and also exhibit some drawbacks.

2.3.3 Drawbacks of WCMs with linear-elastic properties

The three main drawbacks of WCMs with elastic properties concern the parasitic bending
moments due to shear stresses along the wall edges, the response to torsional loading and the
rotation demand on coupling beams. The latter does not concern U-shaped walls that are
completely open on one side. However, for the sake of completion, it is briefly discussed.

a) Parasitic moments.
A wide-column module for wall sections comprises one flexible column element and two rigid
links which extend over the width of the wall. Stafford-Smith and Girgis [1986] found that
such elements are afflicted by parasitic bending moments when continuous shear stresses along
the wall edges are modelled. Since continuous distributed shear stresses along a wall edge will
be lumped into discrete shear forces at the rigid links these shear forces will cause reverse
bending of the column element (Figure 2.4a). The parasitic moment is

Mpar = τtw
hsp

2
lw (2.15)
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where τ is the constant shear stress along the wall edges, tw the wall thickness , hsp the vertical
spacing between rigid links and lw the wall length. The flexural displacement associated with
the reverse bending is

∆par =
Mparh

2
sp

6EI
(2.16)

where EI is the flexural stiffness of the wall. The deformation due to parasitic bending mo-
ments can be considered as an apparent shear deformation that is dependent on the bending
stiffness of the column element and the spacing of the rigid links. Hence, it is only related to
the modelling approach and has no physical meaning. The apparent shear displacement ∆′

s of
the wall due to the parasitic moments of the wall and the true shear flexibility is

∆′
s = ∆s + ∆par =

τ

G
hsp +

τtwlwh3
sp

12EI
=

τ

G
hsp(1 +

twlwGh2
sp

12EI
) (2.17)

If the shear modulus G is rewritten in terms of the Young’s modulus E and the Poisson’s ratio
ν and the moment of inertia I is replaced by the expression for the gross section, an apparent
shear modulus G′ can be defined as (after Kwan [1993]):

G′ =
G

1 +
h2

sp
2(1+ν)l2w

(2.18)

Equation 2.18 shows that for a homogenous wall section modelled with the wide-column ap-
proach the apparent shear modulus depends on the square of the ratio of the vertical link
spacing and the wall width. Stafford-Smith and Girgis [1986] suggested to limit the link spac-
ing to one fifth of the overall wall height to ensure that the bending stiffness of the reverse
bending is larger when compared to the overall bending stiffness of the structure. Although
the equations above have been derived for pure shear, parasitic bending moments also occur
under all other types of loading that include shear stresses.

Figure 2.4. Parasitic moment and artificial flexure in conventional wide column frame analogy
(a) and examples of modified wide column modules (b); figures adopted from Stafford-Smith and
Abate [1981], Stafford-Smith and Girgis [1984] and Kwan [1993].
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Considerable efforts by a number of researchers have been undertaken to improve the wide-
column model and to overcome its shortcomings related to the parasitic bending moments.
Kwan [1993] suggested altering the shear modulus G so that the apparent shear modulus G′

becomes equal to the true shear modulus G. Kwan demonstrated that with the classical wide-
column element by MacLeod and Hosny [1977] and the adjusted shear modulus, the model
yields in exact results for shear, bending moment and axial force. This approach does not
eliminate the parasitic moments. Instead, the bending moments are evaluated at the midheight
of the elements where the parasitic moments according to Kwan [1993] are zero; if necessary
these moments can be extrapolated to the element ends.

Other approaches (e.g. Stafford-Smith and Abate [1981]; Stafford-Smith and Girgis [1984];
Kwan [1994]) suggested modifying the WCM by adding additional braces to the wide-column
modules in order to eliminate the displacements due to the parasitic bending moments (Fig-
ure 2.4b). However, WCMs with braces have several drawbacks: Firstly, the stiffness of the
braces and the stiffness of the column element need to be determined such that the sum of
the stiffnesses is equal to the true wall stiffness. Hence, the column element is no longer the
direct model of the wall section. Secondly, the internal forces of the wall can no longer be
directly obtained from the internal forces of the column element, but equilibrium needs to be
computed on the entire wide-column module including the braces. Thirdly, more elements
and nodes are required than for the classical WCM. Although the capacity of today’s struc-
tural analysis programs is sufficient, it renders the setting up of the numerical model more
difficult. Finally, WCMs with braces are only practical for elastic analysis because it seems
very improbable to find an appropriate combination of inelastic properties of the braces and
the column element, which represent correctly the bending moment-axial force interaction of
the wall section. This applies in particular to WCMs which are subjected to cyclic loading in
the inelastic range. Kwan [1994] later showed that the wide column modules of Figures 2.4b
are equivalent to each other and the choice is only a matter of personal preferences.

b) WCMs of cores under torsional loading.
WCMs of cores which are partially closed by deep beams may lead to erroneous results for
torsional loading since a large portion of the torsional resistance is attributed to Saint-Venant
shear stresses rather than warping of the section [Stafford-Smith and Girgis, 1986]. The Saint-
Venant shear stresses cause parasitic bending moments, which lead to reverse bending of the
web and flanges. As a consequence the behaviour of the WCM might be dominated by the re-
verse bending rather than deformations that account for physical-meaningful stresses. A more
in-depth discussion of the torsional behaviour of U-shaped walls and related modelling aspects
will be considered in a future project but is beyond the scope of this study (see Section 1.2).
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c) Rotation demand on coupling beams.
The second short coming of the WCM concerns the beam end rotations. Figure 2.5a shows
that in the conventional WCM the flexible beams are connected to the rigid links. In standard
frame programs the rotation of the rigid links depend only on the flexural deformation of
the column and not on the shear deformations of the column [Rutenberg et al., 1986]. The
rotation of the coupling beam is, however, dependent on the rotation of the vertical edge of
the wall (Figure 2.5b), which is generally larger than the flexural rotation of the wall.

Kwan suggested two different approaches to overcome this problem [Kwan, 1991, 1994]. In
1991, Kwan proposed that the shear deformations of the wall should be accounted for by
making the link from the wall centre to the wall perimeter flexible in shear. In return the
wall element was assigned an infinite (or very large) shear stiffness. The approach bears the
disadvantage that due to the high shear stiffness of the wall the lateral shear deflection of
the wall is not modelled correctly. The shear stiffness of the links is further discussed in
Section 6.2.4.

In 1994 Kwan developed a coupling beam model in which the coupling beam ends were not
only linked to a single rigid link but to two consecutive rigid links (Figure 2.5b). In this way,
the rotation of the coupling beam end was linked to the rotation of the vertical edge of the
wall.

Figure 2.5. Incompatibility between beam and wall elements when joint rotations are defined as
the horizontal fibre rotations (a) and beam element with vertical rigid arms (b) (after Kwan [1994]).
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2.3.4 Studies on WCMs of U-shaped walls with elastic properties

While many studies focused on the development of modified WCMs with braces in order to
overcome the drawbacks associated with the classical WCMs, some other studies tried to de-
fine limits on the applicability of the original WCM with no braces. Avramidis [1991], for
example, stated that the original WCMs led to good results for walls with relatively simple
cross sections and walls subjected to predominantly flexural action. He also stated that the
wide-column analogy should not be used for walls with irregular cross sections, squat walls
and partially or completely closed cores under torsional loading. Further studies concentrated
on the choice of modelling parameters. Xenidis et al. [1993], for example, benchmarked the
results of classical WCMs of U-shaped walls with elastic properties against results obtained
from shell element models of the same walls. They compared the results regarding the modal
displacement profiles and maximum stresses at the wall base for response spectrum analysis
focussing their investigation on the torsional stiffness of the links and on the torsional stiff-
ness of the column elements representing the web and the flanges, respectively. The analysis
results were not sensitive to the torsional stiffness of the column elements and the authors
recommended setting their torsional stiffness to zero. Regarding the torsional stiffness of the
links Xenidis et al. [1993] concluded that for the links in the web a value representative of the
section with elastic properties was most appropriate (though they did not state which value)
while the links in the flanges should be modelled as rigid. Torsionally flexible web links imply
that the core sections are not forced to remain plane but are allowed to warp. Some years ear-
lier Avramidis, who is a co-author of the study by Xenidis et al. [1993], had suggested setting
the torsional stiffness of the links in the web to [Avramidis, 1991]:

GK =
Gchspt

3
w

3
(2.19)

where hsp is the link spacing, which Avramidis chose to be equal to the storey height.
Avramidis stated that in engineering practice the torsional rigidity of the links in the web
is often set to zero but found from parametric studies that this led in many cases to a consid-
erable overestimation of deformations under torsional loading.

2.3.5 WCMs with inelastic properties

Although it is believed that WCMs with inelastic properties are widely used in practice, there
is very little literature on such models. In the report accompanying the research project on
the U-shape walls tested in Ispra and Saclay [Reynouard and Fardis, 2001] the use of inelastic
WCMs is discussed, although it seems that such models were not used for the analysis carried
out within the scope of the research project. The authors suggested that WCMs should be used
instead of a stick model if it was felt that modelling of the torsional response was important
(see also Section 2.2). Reynouard and Fardis [2001] suggested that the horizontal arms "should
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be absolutely rigid in bending, shear and axial extensions, but should have a finite torsional
rigidity". As a value for the torsional rigidity GK they used the same value for the torsional
rigidity as Avramidis (Equation 2.19). In contrast to Avramidis [1991] and Xenidis et al. [1993],
Reynouard and Fardis did not distinguish between the torsional stiffness of the links in the
web and in the flanges.

To our knowledge the appropriateness of the link properties suggested by Reynouard and
Fardis [2001] has never been checked against experimental results of U-shaped walls responding
in the inelastic range. Apart from the link properties, the engineer needs guidelines on the best
way to subdivide the U-shaped section into planar sections, on the vertical spacing of the links,
on the number of elements between links and on the shear and torsional stiffness of the wall
sections. These issues will be addressed in Section 6.2.

2.4 Shell element models

A large number of different finite element codes including 2D or 3D elements and sophisti-
cated material models have been developed in recent years [Shing and Tanabe, 2001]. Since
the field of shell models in seismic analysis is too broad to be summarised in full, this section
concentrates on shell models of U-shaped walls with inelastic properties and their application
to U-shaped walls. More specifically, this consists of the work by Ile and Reynouard, who
have developed a shell model of the U-shaped walls tested at Ispra and Saclay using the finite
element program CASTEM 2000. The following paragraphs describe the formulation of the
shell elements, the constitutive models for concrete and reinforcement, and the match of the
analysis results to the experimental data.

2.4.1 Shell elements

Ile and Reynouard [2005] devised shell element models with several layers of thin shell ele-
ments for the concrete. Using several layers of thin shell elements allowed Ile and Reynouard
to capture the stress variation in the concrete over the thickness of the wall and to model the
out-of-plane bending stiffness of the wall sections. The vertical and horizontal reinforcing
bars were modelled as truss elements and perfect bond between reinforcement and concrete
was assumed. Note that for his Ph.D. thesis Ile [2000] applied a cyclic bond-law, in which the
bond stress degraded with bond-slip. The same model had been used by Ile et al. [2002b] when
modelling rectangular walls with plain bars.
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Figure 2.6. Ile and Reynouard [2005]: Shell model of the U-shaped wall tested in Ispra (a) and the
cyclic material model for concrete (b).

2.4.2 Material models

For their analyses Ile and Reynouard [2005] used a biaxial concrete model, which they had de-
veloped some years earlier [Ile and Reynouard, 2000]. During the uncracked state the concrete
material model was based on plasticity theory. The concrete was considered as uncracked as
long as the yield surface in tension had not been reached. When it was reached, a crack formed
perpendicular to the principle direction in tension. For the cracked state a smeared cracking
model was adopted. Cracks were not allowed to rotate, and a further crack could only form at
right-angles to the first crack. After the concrete had cracked, the two directions (parallel and
perpendicular to the crack) were considered independently and were represented by a cyclic
uni-axial material law. The shear transfer across the crack was modelled by a reduced shear
modulus µG. In their first paper in 2000, Ile and Reynouard had used a constant value of µ

throughout the analyses. In their later paper in 2005, the reduction factor µ was formulated as
a function of the total strain, the residual strain after unloading in compression, and the crack
opening strain. The reinforcing bars were modelled adopting a cyclic material model which
could account for softening due to the Bauschinger effect and buckling of the reinforcing bars
[Ile and Reynouard, 2005].
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Figure 2.7. Ile and Reynouard [2005]: Cyclic material model for reinforcing bars.

2.4.3 Comparison with experimental results

With the exception of the last cycles in which strong strength degradation was observed dur-
ing the experiments, Ile and Reynouard [2005] were able to achieve a good match between
the numerical and experimental results in terms of the global displacements and forces. Ile
and Reynouard [2005] attributed discrepancies between the shell element model and the ex-
perimental evidence to strong damage to the concrete and buckling of the bars of the physical
wall; these two effects could not be adequately accounted for in the finite element model. A
source of flexibility that was also not accounted for in the finite element model was the rigid
body rotation due to strain penetration into the foundation; this might have caused a further
discrepancy between the analytical results and the experimental results [Ile and Reynouard,
2005].

In addition to the force-displacement hysteresis, the results of the analytical model and the
experiments were compared on a more local level in terms of the elongation of diagonal trans-
ducers [Pégon et al., 2000b]. For the test in the X-direction (displacement parallel to the web)
the agreement between analytical and experimental results was very satisfactory, but for the
bi-directional test (butterfly pattern) the agreement was not as good [Ile, 2000]. On the whole,
the shell model seems, however, capable of reflecting the shear deformation of the walls in a
satisfactory manner.

Ile [2000] also modelled the U-shaped wall that was tested on the shaking table in Saclay
[Combescure et al., 1999b]. For the motions with small peak ground accelerations (PGA≤
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0.26g) in which the reinforcing steel remained elastic, the top displacement time histories and
the overturning moments were well represented by the analytical model. For larger peak
ground accelerations (0.63g≤PGA≤ 1.00g) the agreement was less satisfactory. For these
input motions significant inelastic deformation occurred. At 1.0g some bars ruptured; this
effect could not be represented in the model.

The appealing characteristic of this modelling method is the interaction of shear and flexural
behaviour. In all of the previously described types of model (plastic hinge analysis, stick model
and wide-column model) it is impossible or very difficult to account, for example, for the de-
pendence of the shear stiffness on the axial force and the flexural stiffness. It also appears that
the cyclic material models employed for the shell models, which were partly newly developed
by Ile and Reynouard [2005], are powerful for large cycle inelastic displacements. Although
computer become increasingly powerful, it seems unlikely that such elaborate models of struc-
tural walls will become a standard for design engineers in the near future. The setting up and
checking of the model – particular if an entire building rather than an isolated component has
to be analysed – requires a large amount of expertise in numerical modelling. The focus of this
study will therefore be placed on simpler numerical models (Chapter 6).

2.5 Defining the ultimate limit state

The damage state of a structural element is best characterised by peak strains in the most crit-
ical section. Hence, in plastic hinge analysis it is common practice to link the displacement
capacity of structural elements to the ultimate strain limits of concrete and longitudinal re-
inforcement. A review of proposed strain limits for concrete and reinforcement is presented
in Sections 2.5.1 and 2.5.2, respectively. Alternatively, the displacement capacity can be lim-
ited by the shear capacity of the section (both diagonal tension and compression shear failure)
which reduces with increasing inelastic deformations. Different models for the ductility de-
pendent shear capacity are discussed in Section 2.5.3.

2.5.1 Ultimate concrete strain limit

RC walls that have been designed according to state-of-the-art principles have typically con-
fined boundary elements. The loss of the unconfined cover concrete is in general not consid-
ered as an ultimate limit state but as a serviceability limit state. The ultimate strain capacity
of unconfined concrete is often estimated as εcu = 0.004 [Scott et al., 1982].

The strain capacity of confined concrete depends on a number of parameters, such as the con-
finement ratio, the spacing of hoops and the yield strength of the confining reinforcement.
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Two of the most widely used approaches for estimating the strain capacity of confined con-
crete are summarised in the following: The first is the approach by Scott et al. [1982], which
is an empirical relationship between the ultimate strain εcu of confined concrete and the con-
fining reinforcement. The second approach is by Mander et al. [1988a,b], which is based on
mechanical principles.

Scott et al. [1982] tested a series of 25 square, confined RC columns under monotonic axial
loading, which was applied concentrically (21 specimens) or eccentrically (4 specimens). They
found that the ultimate compressive strain in the confined concrete core could be estimated
as the strain at which the first hoop fractured. All tested columns had inner and outer hoops.
Fracture of the outer hoops occurred not at all or considerably later than fracture of the inner
hoops. This observation was linked to the loss of bond of the outer hoops after the cover con-
crete had spalled off leading to a more equal spread of the strains in the hoops. From the test
results on concentrically loaded columns Scott et al. [1982] derived an empirical relationship
between the concrete strain capacity εcu, the volume ratio of transverse reinforcement ρs, and
the yield strength of the transverse reinforcement fyh:

εcu = 0.004 + 0.9ρs
fyh

300MPa
(2.20)

From the experiments maximum concrete compressive strain within the range 0.017 to 0.038
were obtained. The equation was derived for columns tested under strain rates representative
of those under real seismic loading. Scott et al. [1982] stated that for structural members under
flexural loading the peak concrete compressive strain in the non-uniform stress field would
be significantly larger (2 to 3 times) than under concentric axial load. Hence, displacement
capacities of flexural members computed on the basis of the strain limit given in Equation 2.20
will be conservative estimates.

Mander et al. [1988a,b] developed an expression for the ultimate strain capacity of confined
concrete that is based on strain energy considerations. They postulated that the ultimate
volumetric strain energy of the confined concrete core equals the ultimate strain capacity of the
confining reinforcement minus the strain energy stored in the longitudinal bars in compression
plus the ultimate strain energy required to crush unconfined concrete. The equation proposed
by Mander et al. [1988b] was later simplified and is nowadays used in the following form
[Paulay and Priestley, 1992]:

εcu = 0.004 +
1.4ρsfyhεsu

f ′cc

(2.21)

where ρs and fyh are defined as in Equation 2.20, εsu is the steel strain at maximum tensile
stress and f ′cc is the compression strength of the confined section. For rectangular sections
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the volumetric ratio of confining steel is ρs = ρx + ρy where ρx and ρy are the area ratios
of transverse reinforcement to core concrete cut by planes perpendicular to the x and y direc-
tions. The approach was experimentally validated against 31 RC columns of different cross
sections under concentric, monotonic axial load at similar strain rates to those used by Scott
et al. [1982].

Hines [2002] criticised the approach by Mander et al. [1988a,b] since it does not account for the
effect of longitudinal bar buckling. According to Hines [2002], buckling of the longitudinal
reinforcement may lead to local yielding and subsequent fracture of the hoops. Hines [2002]
argued that if bar buckling rather than expansion of the confined concrete under compression
leads to hoop fracture, the energy balance approach by Mander et al. [1988a,b] is incorrect.
Priestley et al. [2007] also identified a couple of reasons why Equation 2.21 is only approximate
and suggested that compressive strains of walls under axial load and flexure might exceed the
predicted strain limits by a factor of about 1.3− 1.6.

Although there are some reservations within the engineering community regarding the me-
chanical principles behind Equation 2.21, it remains one of the most widely used equations
for estimating the strain capacity of confined concrete sections. The applicability of both ap-
proaches (Equations 2.20 and 2.21) to the quasi-static cyclic tests on U-shaped walls is limited
due to strain gradient effects, differences as a consequence of monotonic and cyclic loading,
and strain rate effects. Due to the lack of more appropriate equations they are used despite
these shortcomings.

2.5.2 Ultimate reinforcement strain limit

Longitudinal reinforcing bars in flexural walls fail typically in one of the two following modes:

• The bar ruptures in tension with no preceding buckling. This failure mechanism has
been observed for bars whose cover concrete had not spalled off. As a consequence the
strains within the bar were concentrated within a very short section of the bar.

• The bar ruptured in tension after having buckled in compression. This failure mecha-
nism is often observed for the main longitudinal reinforcement at the wall ends.

The second of these failure modes is more typical for longitudinal reinforcing bars in the
boundary elements since cover concrete tends to spall off at displacement demands smaller
than the ultimate displacement capacity and therefore the strain concentration is less signifi-
cant. Restrepo [1993] was the first to describe the mechanism behind the fracture of bars after
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buckling: Buckling leads to microcracks on the compressed side of the bar. Upon load reversal
these cracks might propagate and lead to premature fracture of the reinforcing bar.

Restrepo found that the total excursion strain εs − εc, i.e. the absolute sum of the strains in
the compressive and tensile range, was better suited as a failure criterion than the isolated con-
sideration of εs. Since the computation of the total strain excursion, for example, is in plastic
hinge analysis rather difficult, Priestley et al. [1996] proposed to simply limit the tensile strain
to 0.75εsu. Later, Priestley et al. [2007] suggested a reduction factor of 0.6 for design. Apart
from the effects of compressive strains, this reduction accounts for the effects of buckling on
the tensile strain capacity [Priestley et al., 2007].

Several other studies proposed alternative strain limits for the buckling and rupture of longi-
tudinal reinforcing bars: From his experiments on bridge piers, Hines [2002] found that total
excursion strains in the range of 0.035 to 0.05 lead to the onset of bar buckling. Restrepo
[2006] proposed the following equation as a strain limit on total excursion strain for the onset
of bar buckling:

εs − εc ≥
10− sh

db

100
(2.22)

where sh is the spacing of the confining reinforcement and db the diameters of the main
longitudinal reinforcement. As a strain limit on bar fracture Restrepo [2006] suggested:

εs − εc =
14− 4sh

3db

100
≤ εsu

2
and εc ≤ −0.004 (2.23)

Berry and Eberhard [2005] used a set of 104 circular and rectangular columns which have
been tested under cyclic loading during which the longitudinal reinforcement bars buckled.
Rather than defining a strain for which bar buckling is expected they proposed an empirical
relationship linking the drift ratio over the effective height H to bar buckling:

∆
H

% = 3.25(1 + ke_bbρeff
db

lw
)(1− P

Agf ′c
)(1 +

H

10lw
) (2.24)

where ke_bb = 40 for rectangular walls, ke_bb = 150 for circular, spiral-reinforced columns and
ke_bb = 0 if sh/db > 6 since only little data was available for this range; ρeff = ρsfys/f ′c the
effective confinement ratio; ρs the volumetric reinforcement ratio and fys the yield strength
of the transverse reinforcement.

Dazio [2000] carried out analytical studies on the buckling of reinforcement bars. He found
that besides the spacing of the confining reinforcement the post-elastic properties, i.e. the
tangent-modulus, of the reinforcing bar controls the inelastic buckling behaviour of reinforc-
ing bars. The work on buckling of reinforcing bars has been based mainly on reinforcing bars
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used in New Zealand and the United States. Typically, the hardening ratios of these steels is
higher than those used in Europe and therefore these equations might be unconservative for
European reinforcing steels.

Priestley et al. [2007] developed an equation for the damage control curvature for which buck-
ling occurs. This equation accounts directly for the effect of the post-yield stiffness on inelas-
tic buckling. For spacings of the horizontal confinement smaller than the threshold sh,max the
maximum steel strain of 0.6εsu can be attained without buckling of the reinforcement. For
spacings between sh,max ≤ s ≤ 16db the curvature at which reinforcement buckling occurs can
be estimated as:

ϕls = ϕs + ( 16db−s
16db−sh,max

) · (12ϕy − ϕs)

sh,max = (3 + 6( fu

fy
− 1))db ≤ 6db

(2.25)

where ϕs is the serviceability limit-state curvature which is defined by the limit strains εs =
1.5% or εc = 0.4% whichever is reached first. For structural walls the serviceability limit-state
curvature can be estimated as ϕs = 0.01755/lw.

The range of values proposed for maximum tensile strains reflects the uncertainties associated
with strain limits for reinforcing bars subjected to alternating compressive and tensile stresses
and strains. To identify a limit that is appropriate for the experiments conducted described
in Chapter 3, the different strain limits will be compared against experimentally determined
strain values in Section 4.2.2.

2.5.3 Shear capacity as a function of ductility demand

Three different types of shear failure in a RC member can be distinguished: Diagonal tension
failure, diagonal compression failure (also referred to as web crushing), and sliding shear fail-
ure at the base of the wall. Typically, only the diagonal tension and diagonal compression
shear capacity are formulated as ductility-dependent, while the sliding shear capacity is often
assumed as constant over the entire ductility range. In this section a summary of the diagonal
tension and diagonal compression shear capacity equations that were used for the design and
post-testing assessment of the two tested U-shaped walls is presented.

A number of shear capacity models for RC members undergoing inelastic flexural deforma-
tions have been developed in the past. Of these, the UCSD shear model [Priestley et al., 1996]
was chosen for the design of the U-shaped walls. According to this model a reinforcing steel
component Vs, a concrete component Vc, and an axial load component Vp contribute to the to-
tal shear resistance Vn of a wall. Whereas the steel and axial load components are independent
of the ductility demand, the concrete component reduces with increasing ductility:
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Vn = Vs + Vc + Vp (2.26a)

Vs = fyhd
Av

s
cot(θ) (2.26b)

Vc = k(µ∆) ·
√

f ′c ·Ash (2.26c)

Vp = P · ∆l

∆hp
(2.26d)

fyt Yield strength of the transverse reinforcement.
d Effective depth of the section (commonly taken as 0.8lw).
Av Area of the transverse reinforcement.
s Vertical spacing of the transverse reinforcement.
θ Cracking angle measured with respect to the element axis.
k(µ∆) Factor accounting for effect of ductility demand, loading history (uni-

/bi-directional) and extent of conservatism (design/assessment).
As Effective shear area taken as Ash = 0.8 · lwtw.
P Axial load.
∆l Horizontal distance between point of application of axial load and

centre of compression zone.
∆hp Vertical distance between point of application of axial load and centre

of compression zone.

For the assessment of web crushing, three different approaches were employed. During the
design stage the diagonal compression demand was checked against the web crushing capacity
within the plastic hinge region according to EC8 [CEN, 2003], which is not dependent on the
displacement ductility demand (note that in the draft version of EC8 from 2001 [CEN, 2001]
the resistance to web crushing was twice the resistance given in the final version of the EC8
[CEN, 2003]):

VRd = 40% · ν1 · bw · 0.8lw · fcd/(cotθ + tanθ) (2.27)

ν1 = 0.6 For fck ≤ 60MPa.
ν1 = 0.9− fck/200 For fck > 60MPa.
fcd Design value of concrete compressive strength.
fck Characteristic compressive cylinder strength of concrete at 28 days.
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In the literature there are a number of approaches that explicitly account for a reduction in web
crushing capacity with ductility demand. These have not been considered during the design
stage of the walls but will be used in Chapter 6 – in addition to the strain limits described
in Section 2.5 – when determining the displacement capacity of the walls by means of plastic
hinge analysis. The two approaches discussed in the following are those by Oesterle et al.
[1984] and Paulay and Priestley [1992].

Oesterle et al. [1984] tested a series of flanged and barbelled walls, of which some failed due to
crushing of the diagonal in compression. They observed that crushing occurred only after
significant flexural and shear yielding had taken place. Instead of relating the loss of diagonal
compression capacity to strains, as the modified compression field theory does, they proposed
to link the capacity to the drift demand δph in the plastic hinge zone since drift is a more
readily available parameter in seismic design. For axial load ratios of 0 < P/Agf

′
c ≤ 0.09 they

gave the following expression for the maximum shear force sustained prior to web crushing:

VRd = 0.8lwtw · 1.8f ′c
1 + (600− 2000 · P

Agf ′c
)δph

(2.28)

Hines and Seible [2004] argued that the web crushing capacity should not be a function of the
axial force in the wall section. From their experiments they found that the load path of the
axial force did not interfere with the critical compression strut in the plastic hinge zone and
hence they concluded that the two mechanisms should be considered independently.

Paulay and Priestley [1992] linked the loss of the diagonal compression capacity to the over-
strength factor Φo,w and the displacement ductility µ∆ – two design quantities that are even
more readily available than the drift over the plastic hinge region used by Oesterle et al. [1984].
For design, Paulay and Priestley suggested to limit the nominal shear stress vi = V/bwd to

vi ≤ (
0.22Φo,w

µ∆
+ 0.03)f ′c ≤ 0.16f ′c ≤ 6MPa (2.29)

The limit of 0.16f ′c was the minimum nominal shear stress for which web crushing was ob-
served in the experiments conducted by Oesterle et al. [1984] indicating that the equation
proposed by Paulay and Priestley [1992] is a design equation that aims at a certain degree of
conservatism. Hines and Seible [2004] criticised the design approaches by Oesterle et al. [1984]
and Paulay and Priestley [1992] for assuming evenly distributed shear stresses across an effec-
tive section and found from comparison with experiments that the two approaches led to very
conservative estimates of the web crushing capacity.
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2.6 Literature review on estimates for shear deformations

Unlike the flexural stiffness, the shear stiffness typically receives relatively little attention when
slender RC structural walls are modelled. For such members shear deformations are often as-
sumed as being insignificant and crude assumptions regarding the shear stiffness are common.
In FEMA 356 [American Society of Civil Engineers (ASCE), 2000], for example, it is recom-
mended to assign RC members a shear rigidity of 0.4EcAw, where Aw is the area of the web
cross section between the extreme compression fibre and the centroid of the tension reinforce-
ment. Assuming that the shear modulus is Gc

∼= 0.4Ec the proposed rigidity corresponds
approximately to the shear stiffness of an uncracked, elastic member. This certainly overesti-
mates the actual stiffness of cracked RC members considerably and therefore the importance
of shear deformations will be underestimated.

Although they have not found their way into all modelling guidelines, different approaches
for treating shear deformations of RC walls subjected to inelastic deformations have been
developed in the past. One of the earliest approaches was to reduce the effective shear area Ash

to a fraction of the gross area Ag, similar to what has been done in the past to account for the
effect of cracking on the flexural stiffness:

Ash = 0.5− 0.8Ag (2.30)

Note that the reduction factor of 0.8 originates from the theory of elasticity and does not
account for cracking. For elastic, homogenous sections with a greater length than width the
effective shear strain can be estimated as γ = V/(5/6 ·AgGc), with the factor 5/61 accounting
for the increase of shear deformations due to the non-uniform shear stress distribution over
the section. If the shear area is estimated according to Equation 2.30, the shear area is therefore
reduced to 60− 96% of the shear area of the elastic, homogenous section. The shear modulus
is defined as

Gc =
Ec

2(1 + ν)
(2.31)

For concrete a Poisson’s ratio ν between 0.2 − 0.25 is commonly assumed. The approach of
reducing the shear area does not make allowance for the load transfer mechanism for shear
forces in RC members after onset of cracking, which is generally attributed to shear reinforce-
ment in tension and concrete struts in compression and is therefore not directly related to the
shear stiffness of the concrete. Park and Paulay [1975] derived an equation for the shear stiff-
ness on the basis of an analogous truss. They assumed the chord members as infinitely rigid
and also neglected any deformations at the anchorage of the stirrups. For shear reinforcement

1The factor of 5/6 is only correct for materials with zero Poisson ratio, for other materials the factor
is (5 + 5ν)/(6 + 5ν) [Kaneko, 1975].



Seismic design of torsionally eccentric buildings with U-shaped RC Walls 35

perpendicular to the element axis the shear stiffness per length can be written as

Kv =
sin2(θ) cos2(θ)
sin4(θ) + nρh

· ρhEstwd (2.32)

where α is the inclination of the compression struts with respect to the element axis, ρv the
shear reinforcement ratio ρv = Av/(sbw), n the modular ratio Es/Ec, tw the wall width, and
d the effective depth of the wall. Note that the units of Kv are those of a force. To obtain the
shear stiffness of a member of the length h, the shear stiffness Kv has to be divided by h.

Both, the traditional approach and the approach by Park and Paulay [1975], assume that the
shear stiffness remains constant when the wall is loaded in the inelastic range. Since the shear
force carried by a wall increases only marginally once the nominal yield force has been reached,
both approaches predict that for displacements beyond the nominal yield displacement the
shear displacements remain approximately constant while the flexural deformations increase.
Hence, according to these two approaches the ratio of shear to flexural deformations would
decrease for increasing ductility demands. From experimental results Dazio [2000] found that
this is not the case: When analysing rectangular walls that he had tested under quasi-static
cyclic loading, Dazio observed that the ratio of shear to flexural displacements remained ap-
proximately constant for the peak displacements of all cycles in the inelastic range. Figure 2.8a
and b are graphs reproduced from Dazio [2000]2. The graphs show that the contribution of
the shear displacements to the total displacements at peak values remains approximately con-
stant over the entire ductility range and hence also the ratio of shear to flexural displacements
remains approximately constant. This finding is important for the analysis and modelling of
walls in which the shear displacements constitute a significant proportion of the total displace-
ments.

Priestley et al. [2007] developed a shear model, which joins the truss model by Park and Paulay
[1975] with Dazio’s finding of the constant ratio ∆s/∆f . In their model Priestley et al. [2007]
distinguished between the state before and after shear cracking. The shear displacement at
shear cracking was estimated as

∆s,1 =
Vcr

GcAsh
H (2.33)

where Priestley et al. [2007] recommended estimating the shear modulus as Gc = 0.43Ec and
the shear area of solid sections as Ash = 0.87Ag. The model developed by Park and Paulay
[1975] applied to concrete sections that were cracked in shear. The shear force Vcr for which

2The graphs are not identical to the graphs in Dazio [2000] since the shear displacements in Dazio
[2000] had been computed using the original method (Section 4.4.1) while the shear displacements shown
in Figure 2.8 were computed using the method proposed by Hiraishi [1984].
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Figure 2.8. Shear displacement vs. top displacement for two rectangular walls tested by Dazio
et al. [1999] showing the nearly linear relationship between ∆s and ∆top for peak displacements
(adapted from Dazio [2000]).

onset of shear cracking occurs is estimated as the concrete contribution to the shear capacity
for µ∆ = 1.0 [Priestley et al., 2007]:

Vcr = 0.29
√

f ′c ·Ash (2.34)

Priestley et al. [2007] recommended using Equation 2.32 only in conjunction with θ = 45◦

since for typical values of n and ρv the shear stiffness according to Equation 2.32 increases
as the cracking angle θ reduces from 45◦ to 30◦, which is in conflict with most observations
from testing. Priestley et al. [2007] also suggested that the increase in modular ratio due to the
softening of the diagonal concrete strut should be considered and proposed an average value
of n = 10 for analysis purposes.

Between the instant of shear cracking and a displacement ductility of 1.0 the shear displace-
ment is computed as the sum of the elastic shear displacement and a shear displacement com-
ponent derived from the truss model. For a cantilever wall of height H the total shear dis-
placement is:

∆s,n = ∆s1 +
Vn − Vcr

Kv
·H (2.35)

where Vn is the shear force corresponding to nominal flexural strength. From plastic hinge
analysis or a comparable analysis approach the flexural displacement ∆f,n at µ∆ = 1.0 can be
computed. For the post-yield phase Priestley et al. [2007] estimate the shear displacements as
the flexural displacements multiplied by the ratio ∆s,n/∆f,n:

∆s = ∆f · ∆s,n

∆f,n
(2.36)
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In the truss model by Park and Paulay [1975] the compression struts are assumed to be parallel.
This assumption does not hold for the plastic hinge regions, where a fan-like crack pattern is
typical. Hines [2002] derived an equation for shear displacements on the basis of this fan
mechanism. The shear displacements ∆s are expressed as a ratio of the flexural displacements
∆′

f that is associated with the same fan-like mechanism:

∆s

∆′
f

=
lw
H

(2.37)

where H is the shear span and lw the wall length. Hence, as the approach proposed by Priestley
et al. [2007], Hines’ model for shear deformations follows Dazio’s observation [2000] that the
ratio of shear displacements to flexural displacements of structural walls is relatively constant
over the entire displacement range, i.e. between yield displacement and ultimate displacement
capacity of the structural walls.

Hines [2002] further assumed that the flexural displacement ∆′
f due to the fan mechanism

accounts for about 25% of the total flexural displacement; the remaining 75% was linked to
the very lowest cracks, which were not included in the fan mechanism, rotation of the column
base due to strain penetration, and elastic displacements. With these assumptions the shear
displacements ∆s can be written as a function of the total flexural displacements ∆f :

∆s

∆f
= 0.25

lw
H

(2.38)

By adding an empirical factor Hines et al. [2004] included two phenomena: First, that shear
cracks tend to be wider when the shear demand is close to the shear capacity, and second, that
shear cracks also tend to be larger for large cracking angles θ:

∆s

∆f
= α · 0.35(1.6− 0.02θ) H

lw

1 ≤ α = ( V
Vs

+ V
Vsc

) ≤ 2
(2.39)

where θ is the angle in degrees to the vertical of cracks outside the fan mechanism measured
at maximum displacement, Vs is the capacity to resist diagonal tension (capacity limited by
yielding of stirrups) and Vsc is the capacity to resist diagonal compression (capacity limited by
web crushing). Although Hines’ model was derived from a mechanical model for the plastic
hinge zone, the assumption regarding the sources of flexural displacements (25% from the fan
mechanism) and the introduction of the factor to account for the opening of the shear cracks
renders it effectively a semi-empirical model. So far, the model has been tested against eleven
quasi-static cyclic tests on shear walls and bridge piers [Hines, 2002]; the comparison showed
a good agreement between experimental and analytical results. Note, however, that the same
tests were used to derive the semi-empirical model and hence further validation is required.
Hines’ model and the model by Priestley et al. [2007] will be applied to the two U-shaped
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walls, which were tested within the scope of this project; the comparison of the predicted and
experimentally determined ∆s/∆f -ratios is presented in Section 4.4.2.



3. QUASI-STATIC CYCLIC TESTS OF TWO
U-SHAPED WALLS

Within the scope of this project two U-shaped walls were tested under quasi-static cyclic load-
ing. The key objective of these tests was to provide additional experimental evidence for
U-shaped walls, which could promote the general understanding of their seismic behaviour.
To our knowledge, the only previous test series on U-shaped walls under seismic loading was
a joint research project between the laboratories in Ispra and Saclay; a brief summary of these
experiments is given in Section 3.1. Unlike the walls tested in Ispra and Saclay, which were
designed according to draft versions of the EC8, the test units of this project were not designed
following a particular code but following principles that were judged "reasonable" to ensure
a ductile behaviour without being unnecessarily conservative with respect to the shear and
sliding shear design. It was believed that such test units would yield the best insight into the
load transfer mechanisms of U-shaped walls and help to reveal critical aspects in their design.

Naturally, with two test units only a limited number of aspects could be investigated. The
main focus of the experiments was set on the behaviour of U-shaped walls for loading in
different directions. Based on this focus the following tasks were identified:

• Assess the failure mechanisms of U-shaped walls. In particular observe whether the
U-shaped walls are susceptible to shear or sliding shear failure.

• Gain experimental evidence for the stiffness, strength and displacement capacity of U-
shaped walls when loaded in different directions.

• Determine the magnitude of the different displacement components (flexure, shear and
sliding component) of U-shaped walls for different directions of loading.

• Determine the torsional stiffness of the U-shaped walls.

These objectives were used as guidelines for all steps during the planning phase of the experi-
ments, which concerned the test setup, the instrumentation, the loading history and the design
of the test units. These steps are described in Sections 3.2, 3.3 and 3.4. In the final two sections
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of this chapter selected results of the two tests are presented first in written form in terms of a
description of the failure mechanisms (Section 3.5) and then in the form of force-displacement
hystereses (Section 3.6). Note that the torsional stiffness of the U-shaped walls is not cov-
ered within this report but the experimental evidence on the torsional stiffness was gained for
reasons of completeness and will be analysed at a later stage. The objective of this chapter is
to provide some information on the experimental work on which the modelling and design
chapters are based; a complete description and discussion of the experiments is beyond the
scope of this document. For a complete presentation of the test set-up and the experimental
results the reader is referred to the test report [Beyer et al., 2008].

3.1 Previous experimental work on U-shaped walls: Tests in Ispra and Saclay

Within the scope of the joint research project of the laboratories in Ispra and Saclay one
configuration of a U-shaped wall was tested under different loading schemes [Reynouard and
Fardis, 2001]. The experiments were carried out in Ispra and Saclay in the years 1999 and 2000.
The key objective of these tests on U-shaped walls was the validation of the design guidelines
in the new Eurocode 8 [Combescure et al., 1999a]. According to Ile et al. [2002a] eight walls
were tested; out of these two walls were used for "calibration purposes" and results of these
tests are not reported in the literature (one of these two walls had been tested on the shaking
table and the other pseudo-dynamically). From the remaining six walls half were tested under
quasi-static cyclic loading (Ispra-tests) and the other half on the shaking table (Saclay-tests).

All test units were based on the same prototype that represented a small elevator shaft. While
the test units that were tested quasi-statically were full-scale models of the prototype the size
of the test units that were tested on the shaking table was reduced to 60%. The cross-section
of the prototype and therefore also of all test units was very compact due to the large wall
thickness compared to the web or flange lengths (Figure 3.1a); this choice in the geometry
rendered the test units rather particular and not very representative for most U-shaped walls
used in practice.

The shaking table tests of the three down-sized test units were performed at the CEA-Saclay
laboratory [Combescure et al., 1999a]. Aside from the spacing of the confining reinforcement
at the corners and flange ends, the three units were identical. The intensity of the input
motion was increased stepwise from 0.1g to 1.0g. The units were loaded uni-directionally
along their axes of symmetry. Due to very small ultimate strain capacities of the reinforcing
steel (εsu = 2.5 − 2.6%) all units failed prematurely due to fracture of the main longitudinal
bars. At failure concrete crushing was still very limited [Combescure et al., 1999a]. Since the
units were only loaded parallel to the flanges, the results provided little information regarding
the behaviour of U-shaped walls under different directions of loading, which is the focus of
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the study presented here. The Saclay-tests will therefore not be considered in the following
chapters.

The full-size specimens of the prototype were tested under quasi-static loading regimes at the
laboratories in Ispra. Apart from the scale, the Ispra- and Saclay test units differed regard-
ing the shear span ratio, the axial load ratio, and the strain capacity of the reinforcement:
For the Ispra-test units a very ductile steel was used, which had an ultimate strain capacity
of εsu

∼= 25% [Pégon et al., 2000b]. The three units tested in Ispra were identical; the cross
section and elevation of the Ispra-tests are shown in Figure 3.1. According to Ile and Rey-
nouard [2005] the U-shaped walls have been designed and detailed according to the old EC8
(ENV1998-1-3:1994, CEN [1994]) and its proposed revision (prEN1998-1:2001, CEN [2001]).
Strictly speaking, however, the sections do not even comply with the detailing requirements
for the medium ductility class since according to EC8 every other longitudinal bar within the
boundary elements should be engaged by a hoop or a cross tie. At the flange ends, however,
six longitudinal bars were placed in one line and only the outer two bars were stabilised by
the confining hoops. The shear strength of the web and particular the flanges was in excess
of what EC8 required. Each of the flanges were designed for the full shear demand in the y-
direction to account for the fact that for bi-directional loading the flange in tension might not
contribute much to the shear capacity [Ile and Reynouard, 2005]. Note that the reinforcement
drawings of the test units, which are shown for example in Ile and Reynouard [2005], suggest
that the shear reinforcing bars were straight bars that ended 160mm away from the flange end

Figure 3.1. U-shaped walls tested in Ispra: Cross section (a) and elevation (b); all dimensions are in
millimetres.
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and 80mm away from the corner without being anchored around longitudinal bars. This rein-
forcement detail does not seem to be in conflict with EC8, since no specification regarding the
anchorage of shear reinforcements are provided, but it does not comply with good detailing
practice for ductile walls.

The three test units that were tested in Ispra were subjected to different quasi-static cyclic
loading histories. During the tests the axial load was kept constant. At the base level the axial
load was 2120kN, which corresponded to an axial load ratio between P/f ′cAg = 0.10− 0.12
for the three test units. The first test unit was subjected to a uni-axial cyclic loading scheme
along the symmetry axis ("Ispra Y"), the second test unit to the same scheme but this time
the unit was loaded parallel to the web ("Ispra X"), and the third test unit was loaded with
a bi-directional clover leaf pattern ("Ispra XY"). The first test unit, which was loaded in the
y-direction, failed at µ∆ = 6.0 due to buckling and rupture of longitudinal reinforcing bars at
one flange end, rupture of one hoop at the same flange end and concrete degradation [Pégon
et al., 2000d]. The failure was also caused by a missing hoop just above the wall base in the
flange end that finally failed; the hoop had been forgotten during the construction of the test
unit. The second test unit, which was loaded in the x-direction, failed at µ∆ = 6.0 due to
buckling and rupture of longitudinal reinforcing bars and fracture of a hoop at one flange end
[Pégon et al., 2000a]. During the bi-directional test the test unit failed during the fourth loop at
µ∆ = 4.0 [Pégon et al., 2000c]. The failure began with the rupture of longitudinal reinforcing
bars but ended in a shear failure of the flange that was in compression.

The test conducted in Ispra were the first tests on U-shaped walls under quasi-static cyclic
loading and set a milestone in testing of structural walls. However, the choice of the very
compact wall section, the insufficient detailing, and the high axial load that led to pinched
hysteresis loops make the Ispra-test units fairly specific. The objective of the test series carried
out within the project here is to extend the range of experimentally tested U-shaped sections
to more commonly used layouts.

3.2 Experimental program

The two U-shaped walls that were tested within the scope of this project were both half-
scale models of a typical lift shaft housing an 8-person elevator. The effective heights of the
walls were determined from time-history analysis of a six-storey reference building shown in
Figure 3.2. Details on the time-history analyses are given in Beyer et al. [2006]. The final shear
spans of the half-scale walls were 2.95m in the direction parallel to the flanges and 3.35m in
the direction parallel to the web. During testing of the walls the applied axial load was kept
constant; the axial load at the base of the walls (i.e. including self-weight and weight of any
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installations mounted onto the wall) was 780kN. The axial load was applied at the approximate
centre of the gross sections.

The principle parameter distinguishing the two units was the wall thickness. The wall thick-
ness of Test Unit A was 0.15m corresponding to 0.30m at full-scale, while the wall thickness of
Test Unit B was 0.10m, which corresponds to 0.20m at full-scale; the latter can be regarded as
a lower bound used in RC construction. The wall thickness was chosen as parameter because
it influences the overall behaviour of the U-shaped walls. More specifically it affects – together
with the concrete strength – the shear capacity of the wall, the compression zone depths and
hence the strain demand on the concrete. The compression zone depth might become fairly
deep for loading in the diagonal direction when only one flange end is in compression. In
addition, the wall thickness controls possible out-of-plane shear, bending and stability effects.
These effects are also difficult to model numerically and hence numerical parameter studies
cannot substitute experimental results. Table 3.1 shows the cross sections and some charac-
teristic values of Test Units A and B in comparison to those of the units tested in Ispra. In
particular Test Unit B is considerably less compact than the Ispra-section and it is believed that
the new experimental results will nicely complement the test series from Ispra.

Figure 3.3a and d show the reinforcement layout of Test Unit A and B (hereafter called TUA
and TUB). Note that the cross section of TUB has been slightly revised since published in
Beyer et al. [2006]. The longitudinal reinforcement was kept the same over the entire height of
the wall. Only the spacing of the confining reinforcement was increased for h ≥ 1.70m above
the wall base. The total area of the vertical reinforcement was approximately the same for the
two test units (TUA: As = 3281mm2, TUB: As = 3224mm2). The horizontal reinforcement
was identical for the two walls. Both the corners and the flanges were strongly confined

Figure 3.2. Test design: Six-storey reference building: Isometric (a) and plan view (b); all dimen-
sions are in metres.
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Table 3.1. U-shaped walls: Comparison of cross sections of TUA, TUB and the units tested in Ispra.

TUA TUB Ispra
Scale 1 : 2 1 : 2 1 : 1

Shear span M/V 2.95m1)/3.35m2) 2.95m1)/3.35m2) 3.90m1,2)

Shear span ratio h/lw 2.811)/2.582) 2.811)/2.582) 3.121)/2.602)

Axial load ratio P/f ′cAg 0.02 0.04 0.10− 0.12

Slenderness ratios:
lweb/tw 8.7 13.0 6.0

lfl/tw 7.0 10.5 5.0

Vertical reinforcement:
ρtot 0.71% 1.00% 0.56%

Horizontal reinforcement:
Web: ρh 0.30% 0.45% 0.54%

Flanges: ρh 0.30% 0.45% 0.32%
1) for displacements parallel to the flanges (NS direction)
2) for displacements parallel to the web (EW direction)

to increase the compressive stress and in particular the compressive strain capacity of the
concrete. The design approach adopted for TUA and TUB is summarised in Section 3.4.

As a measure against sliding shear failure the walls were equipped with shear keys at their bases
(Figure 3.3b and e). The shear keys were unreinforced concrete studs, which were formed by
moulds in the foundation. The foundation was cast before the wall. Prior to casting of the wall
the moulds were lined with grease to prevent the fresh concrete from sticking to the moulds.
When the wall was cast these moulds filled with concrete and thus provided an additional
interlock between the wall base and the foundation.

Since the test units were half-scale models of the prototype wall the maximum aggregate size
was also reduced from 32mm to 16mm in order to keep scale effects to a minimum. For
the reinforcement, bars with 6 and 12mm diameter were used. Smaller diameter were not
employed since in most cases the strain capacity of such bars is very limited. The concrete
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cylinder strengths of TUA and TUB at the day of testing were 77.9MPa and 54.7MPa re-
spectively. In particular the concrete strength of TUA turned out significantly higher than
intended. The objective had been to aim for f ′c = 45MPa, which would be representative of a
concrete C30/37 that is several years of age. The larger concrete strength increased the shear
capacity of TUA and hence rendered it less susceptible to shear failure. On the other hand
the large concrete strength reduced the number of cracks outside the boundary elements since
the tensile strength of the concrete was also large. As a consequence, the crack widths were
larger than for normal strength concrete, which in return reduced the shear strength due to
aggregate interlocking. Due to the high concrete strength cracks often propagated through ag-
gregates, which further reduced the shear capacity due to aggregate interlock. On the whole,
however, the shear strength of TUA probably benefited from the high concrete strength. The
large crack widths also placed a high strain demand on the longitudinal 6mm bars. As a con-
sequence, some of the 6mm bars fractured towards the end of the test without prior buckling.
The properties of the reinforcing bars are given in Table 3.2 (note that the material tests have
been reevaluated since they have been published in Beyer et al. [2006]).

Table 3.2. Properties of reinforcing steel used for construction of TUA and TUB.

fy fu fu/fy εsu
1)

[MPa] [MPa] [-] [%]
TUA: D12 bars 488 595 1.22 12.6

TUB: D12 bars 471 574 1.22 12.7

TUA and TUB: D6 bars 518 681 1.32 8.4
1) The strain capacity εsu was defined as the strain at maximum stress.

3.3 Test setup, loading history and instrumentation

An isometric view of the test setup for TUA and TUB is shown in Figure 3.4; a photo of it
is shown in Figure 3.5. To control the two horizontal, translational and one twisting degrees
of freedom of the wall heads, the walls were loaded with three actuators: The EW actuator,
which loaded the web, and the NS actuators, which loaded the flanges. The alignment of
the test units with the directions as well as the labelling of different web and flange regions is
shown in Figure 3.6a. The force on the web (EW actuator) was applied at h = 3.35m while
the forces on the flanges (NS actuators) were applied at h = 2.95m (Figure 3.3c and f). At
the top of the wall – where the actuators were connected to the wall – the wall thickness was
increased to 0.3m. This collar replaced the solid slab, which had been used as a load stub in
the tests at Ispra (Figure 3.1); reasons for the choice of the collar instead of the solid slab are
given in Beyer et al. [2006].
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Figure 3.4. Isometric view of the test setup for TUA and TUB.

Figure 3.5. Photo of the test setup for TUA and TUB.
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Figure 3.6. Cardinal points and labelling of different wall sections (a) and target displacement
pattern (b).

As outlined in the introduction to this chapter the key objective of the experimental work
was to characterise the behaviour of U-shaped walls for different directions of loading. Five
different directions of loading were distinguished within this study and labelled with different
letters (Figure 3.6b):

• Parallel to the web (Positions A and B),

• Parallel to the flanges, flange ends in compression (Position C),

• Parallel to the flanges, web in compression (Position D),

• In the diagonal direction, one flange end in compression (Position E and H),

• In the diagonal direction, one corner in compression (Position F and G).

When loading in the NS or the diagonal direction the displacement was controlled at h =
2.95m, for loading in the EW direction the displacement was controlled at h = 3.35m. The
diagonal direction was defined as the geometric diagonal of the section that joins the outer
corner with the outer edge of the flange end. Hence, for the diagonal movement the ratio of
the displacements parallel to the web and flanges corresponded to the ratio of the web and
flange lengths, i.e. 1.3 : 1.05. Due to money and time constraints only one specimen of
each of the two test units could be built and tested. Since the objective of the project was
to assess the behaviour of the walls for different directions of loading, the test units had to
be subjected to a bi-directional loading history. The chosen loading history is based on a
pattern developed by Hines et al. [2002a] who proposed a history comprising a "sweep" and
a diagonal at each level. The particularity of the "sweep" is that a yield displacement is also
defined for the diagonal direction and hence the pattern seems to be more rounded than the
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rectangular clover leaf pattern. The clover leaf pattern leads to large displacements in the
diagonal directions and tends to impose higher ductility demands in the diagonal directions
than in the principal directions. In the tests described here, the pattern developed by Hines
et al. [2002a] is preceded by a full cycle parallel to the web and a full cycle parallel to the flanges.
The complete loading history for one cycle is hence (see Figure 3.6b):

• EW cycle: Full cycle parallel to the web (O→A→B→O),

• NS cycle: Full cycle parallel to the flanges (O→C→D→O),

• Diagonal cycle: Full cycle in the diagonal direction (O→E→F→O),.

• "Sweep" (O→A→G→D→C→H→B→O).

During these cycles the twist of the wall head was restrained. Only at Positions O, A, B, C
and D during the cycles of ductility levels 1.0 and 4.0 small rotations were applied in order
to determine the torsional stiffness of the walls. Altogether, the load pattern corresponded to
three cycles parallel to the web and the flanges if the diagonal and the "sweep" were projected
onto the principal directions. In terms of the number of plastic excursions (NPE) and the
sum of normalised plastic deformation ranges (SNPDR) [Applied Technology Council, 1992;
Krawinkler, 1996] the loading regime was hence more severe than the loading regime of the
bi-directional test at Ispra, in which the wall was loaded with a full clover leaf pattern, which
corresponded to two cycles in the two principal directions at each ductility level. The total
loading history that was applied to TUA and TUB was the repetition of the load pattern
at different ductility levels (Figure 3.6b). The first four levels were within the elastic range
of the wall. The amplitudes of these cycles were force-controlled with limits of 25%, 50%,
75% and 100% of the lateral forces at first yield according to the prediction. During these
cycles the sweep was replaced by the second diagonal (O→H→G→O). After first yield of
the longitudinal reinforcing bars had been reached the nominal yield displacements in the five
directions were determined on the basis of mean strains of vertical bars at the wall base in
conjunction with the prediction made prior to the test (Table 3.6). The loading pattern was
then repeated at displacement ductility levels of 1, 2, 3, 4, 6, 8 until failure occurred.

During the testing the behaviour of the walls was documented by taking notes and pho-
tographs as well as a large number of measurements. In total, 120 hard-wired instruments
were installed, which measured local and global deformations, strains of selected transverse re-
inforcing bars as well as the applied forces. In addition, Demec measurements from Whitmore
plugs were taken on the inside faces of the web and flanges in order to record the deforma-
tion pattern of the lower half of the wall. Finally, the width of selected cracks was measured
manually at instants of peak displacements and zero loads.
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The most important measurements were the actuator forces, the displacements of the wall
head, the sliding displacements at the wall base, the elongation of the wall edges, and the shear
displacements (Figure 3.7). The elongation of the edges was measured by four chains of linear
variable displacement transducers (LVDTs). Each chain consisted of eight devices; the base
length of the devices varied between 50mm at the base and 1000mm at the top. The lowest
device measured the variation in length between h = 50mm and the foundation, i.e. the
measured displacement included the opening of the base joint due to strain penetration into
the foundation. The shear displacements were measured by diagonal string pots on the outer
faces of the web and the two flanges. Each face was covered by three crosses; the first cross
covered the height interval between h = 50−850mm, the second between h = 850−1650mm
and the third between h = 1650 − 2650mm. With this instrumentation it was possible to
determine the shear deformations for the web, the West and the East flange independently.
A more detailed description of the instrumentation and the data acquisition systems can be
found in Beyer et al. [2008].

Figure 3.7. Instrumentation of TUA and TUB.
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3.4 Design of test units

The design of the two test units did not follow a particular code but design approaches were
selected that were judged reasonable in order to achieve a ductile behaviour of the test units. In
this section the key aspects of the design process are described and discussed. The discussion
is extended to aspects that concern the design of real U-shaped walls rather than test units
and also includes further insights and considerations regarding the design of U-shaped walls
that resulted from observations of the experiments. The section is divided into three parts
covering the flexural design (Section 3.4.1), the shear design (Section 3.4.2), and the detailing
of U-shaped walls (Section 3.4.3).

3.4.1 Flexural design

When designing the test units care was taken that the moment resistance about the positive
and negative axis parallel to the web were approximately the same. For loading about the
symmetry axis the positive and negative moment capacity were naturally identical. Equal
moments in positive and negative direction are desirable in order to avoid an accumulation of
maximum and residual displacements on the side with the smaller resistance over the course
of the seismic excitation. If the U-shaped wall forms part of a larger lateral load resisting
system, the moment resistance of the equilibrium of the entire structure should be considered.
However, most structural elements that are used in combination with U-shaped walls (e.g.
frames, rectangular walls) provide equal resistance in the positive and negative direction of
loading and hence the U-shaped wall should likewise provide similar moment resistances in
the positive and negative direction.

Figure 3.8 shows the moment-curvature relationships for TUA and TUB. These curves were
computed before carrying out the experiments; updated moment-curvature relationships that
were computed after completion of the experiments are included in Section 6.1.1. Before
the experiments were carried out only first estimates of the strain capacity of the reinforcing
bars were available. From these preliminary tests the strain capacity was estimated as 10%.
The curvature was therefore limited to a curvature associated with 0.6x10% = 6% maximum
steel strain [Priestley et al., 2007]. The reduction of the ultimate steel strain capacity by 40%
accounts, for example, for effects on the tensile strain capacity due to buckling and compres-
sive strains (see also Section 2.5.2). Table 3.3 summarises the nominal and ultimate moment
capacities. The nominal moment was determined as the moment for which the maximum
steel strain reached 1.5% or the concrete compressive strain 0.4%, whichever occurred first
[Priestley et al., 2007].
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Figure 3.8. Predicted moment-curvature relationships for TUA and TUB

Table 3.3. Predicted nominal and ultimate moment capacities for TUA and TUB.

Nominal moment Ultimate moment
MEW MNS MSRSS MEW MNS MSRSS

[kNm] [kNm] [kNm] [kNm] [kNm] [kNm]
TUA
Position A, B 1500 1640

Position C 1230 1310

Position D 1130 1230

Position E, H 1430 1080 1790 1490 1130 1870

Position F, G 1390 960 1690 1440 1020 1760

TUB
Position A, B 1470 1620

Position C 1240 1340

Position D 1010 1190

Position E, H 1430 1040 1770 1480 1010 1790

Position F, G 1350 830 1580 1440 880 1690

MEW Moment due to forces in the EW direction.
MNS Moment due to forces in the NS direction.
MSRSS Moment resulting from the vectorial addition of MEW and MNS.

3.4.2 Shear design

a) Shear demand.
For the shear design of TUA and TUB it was assumed that shear forces are carried as in-plane
forces only, i.e. the shear force parallel to the web was entirely attributed to the web while
the shear force parallel to the flanges was distributed between the two flanges. For loading
parallel to the flanges, the shear force was distributed equally between the two flanges. For
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loading in the diagonal direction, however, the shear force parallel to the flanges was entirely
attributed to the flange in compression while the flange in tension was assumed to carry no
significant portion of the lateral load. This load distribution scheme for the diagonal direction
was proposed by Reynouard and Fardis [2001]. Table 3.4 summarises the nominal and ultimate
shear demands on the web and on one flange for the different directions of loading. For
loading in the diagonal direction the shear force demand on the critical flange, i.e. the flange
in compression, is given.

b) Diagonal tension shear capacity.
Once the shear demand on the web and flanges was determined, the web and flanges of the
U-shaped walls were designed as independent rectangular wall sections according to the modi-
fied UCSD shear model (Section 2.5.3). For the design a cracking angle of 30◦ with respect to
the element axis was assumed. Table 3.5 summarises the different contributions to the shear
resistance dependent on the direction of loading for the web and one flange. For loading in
the diagonal direction the resistance of the critical flange, i.e. the flange in compression, which
is assumed to carry the entire shear force in the NS direction, is given. The values were com-
puted with the final material properties summarised in Section 3.2; safety factors were not
included in the calculations. The contribution of the concrete to the shear resistance (Equa-
tion 2.26c) was computed for µ∆ = 6.0 and bi-directional loading, thus leading to k = 0.0625.
When the web was in tension (Position E) any contribution of the concrete to the shear re-
sistance was disregarded since large crack widths were expected to reduce the shear resistance
of the concrete considerably. The relatively large safety margin between demand and capacity
was originally not intended but resulted mainly from a smaller yield strength of the D12mm
longitudinal bars (Table 3.5). While according to the steel mill the characteristic strength,
i.e. the 5%-fractile, of the Topar-S 500C, which was used as main longitudinal reinforcing
bar, is fy = 500MPa, the actual strengths of the batches used for construction of TUA and
TUB were 488MPa and 471MPa respectively. For the design of the construction units a yield
strength of 580MPa had been assumed. As a consequence, the shear capacity was less critical
than originally intended.

While for the design of the test units the contribution of the axial load to the shear capacity
was considered in order to omit unnecessary conservatism, it is questionable whether it should
also be considered when designing U-shaped walls that form part of a real structure. There are
several reason for this reservation: In the experiment the axial load was applied at the centroid
of the section but in most real structures (e.g. Fig. 3.2) the centroid of the U-shaped wall does
not coincide with its centre of the tributary area. Hence, if the axial load is accounted for in
shear design, the actual location of the resultant axial force should be considered. However,
while for the experiments the location of the resultant axial force was known, in real, statically
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Table 3.4. Nominal and ultimate shear force demands on the web and the critical flange.

Nominal shear force demands Ultimate shear force demands
TUA TUB TUA TUB

Vn,web Vn,fl Vn,web Vn,fl Vult,web Vult,fl Vult,web Vult,fl

[kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN]
Pos. A, B 447 439 490 484

Pos. C 209 210 222 227

Pos. D 191 170 208 202

Pos. E, H 427 367 428 353 445 383 442 342

Pos. F, G 414 325 404 280 430 346 430 298

Table 3.5. Shear force capacities of the web and the critical flange.

Web Critical flange
Vp Vc Vs Vtot Vtot/Vult Vp Vc Vs Vtot Vtot/Vult

[kN] [kN] [kN] [kN] [-] [kN] [kN] [kN] [kN] [-]
TUA
Position A, B 133 86 423 642 1.31

Position C 68 70 341 479 2.16

Position D 37 70 341 448 2.15

Position E, H 123 0 423 546 1.22 125 70 341 536 1.40

Position F, G 111 86 423 620 1.44 66 70 341 477 1.38

TUB
Position A, B 133 48 423 604 1.25

Position C 68 39 341 448 1.97

Position D 37 39 341 417 2.06

Position E, H 123 0 423 546 1.24 125 39 341 505 1.43

Position F, G 111 48 423 582 1.35 66 39 341 446 1.59

indeterminate structures, it can only be estimated. The magnitude and location of the resultant
axial force is influenced by internal forces due to creeping and shrinking of the concrete. The
redistribution might be particulary strong if the core wall is slip-formed before the rest of the
structure is constructed. Apart from the shear capacity the eccentricity of the axial load also
influences the flexural capacity, which contributes to the lateral load resistance of the system.
When computing the flexural capacity, it is suggested to neglect the axial load eccentricity and
consider the axial load applied at the centroid of the section.



Seismic design of torsionally eccentric buildings with U-shaped RC Walls 55

c) Diagonal compression shear capacity (web crushing).
When designing the test units the web crushing capacity of TUA and TUB was assessed ac-
cording to the formula given in the final version of EC8 (see Section 2.5.3). For TUA the
diagonal compression capacities of the web and a single flange were 860kN and 694kN, re-
spectively. For TUB these values reduced to 473kN and 382kN. For both TUA and TUB
the capacity checks regarding web crushing were therefore satisfied even though the capacity
estimates given in the final version of EC8 were rather low when compared to its draft version
(Section 2.5.3).

When reassessing the web crushing after the experiments had been completed, alternative
approaches were considered that accounted for the effect of the ductility demand on the web
crushing capacity. From the observations during the experiments it was concluded that web
crushing might become particularly important in the unconfined parts of the web and flanges.
Due to the bi-directional loading, spalling of the concrete tends to extend deeper into these
parts of the wall than into confined wall parts. The effective thickness of the unconfined
wall sections is therefore considerably reduced. As a remedy the boundary elements could be
extended further into the web and flange sections in order to confine and therefore protect a
larger part of the wall from extensive spalling. Alternatively, a reduced wall thickness should
be considered when the web crushing capacity is checked. As a first estimate the wall thickness
could be reduced by four times the maximum aggregate size.

d) Sliding shear capacity.
For typical floor layouts, the tributary area for gravity loads of a U-shaped wall is often of
similar size to the one of a rectangular wall (Figure 3.2b). Due to their large cross sectional
area, when compared to rectangular walls, the axial load ratio P/Agf

′
c of U-shaped walls tends

to be quite small. Walls with low axial load ratios are particularly prone to sliding shear failure.
Sliding interfaces are typically cold joints where the bond between the two concrete sections is
limited, e.g. at the interface between the foundation and the wall. Since sliding was considered
to be a potential failure mode care was taken that the interface between wall and foundation
was representative of such interfaces in real structures. In order to achieve this, the wall and
foundation were cast in two stages: First, the foundation was cast upright. The surface of
the foundation forming the interface with the wall was roughened when the concrete began
to stiffen. After a couple of days the foundation was turned by 90◦ and wall and collar were
cast horizontally as one entity. Casting the wall upright as well was impossible due to height
restrictions in the concrete factory. According to EC8 [CEN, 2003] both TUA and TUB
would have failed in sliding shear. To prevent this type of failure diagonal reinforcement in
the lower 0.5lw or 0.5H (whichever is the smaller) of the wall would have been required.
However, diagonal reinforcement is relatively difficult to place and in particular in medium
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seismicity regions builders are often not used to such construction details. More importantly,
it was felt that the design approach in EC8 does not reflect important parameters that influence
sliding shear failure. Therefore, an alternative design approach was developed, which will be
presented in a future study.

3.4.3 Detailing

The test units were detailed for large ductility demands. This meant that (i) all large diameter
bars were stabilised by hoops, (ii) the spacing of the hoops was selected to prevent prema-
ture buckling of the longitudinal bars, and (iii) the confinement ensured the integrity of the
concrete compression zone up to large compressive strains. A 50mm spacing of the hoops
was chosen, which corresponded to 4.2 times the diameter of the main longitudinal reinforc-
ing bars (12mm). The hoops were closed by 135◦-hooks while the shear reinforcement had
180◦-hooks at both ends. To ease the construction of the units the confinement was limited
to boundary elements at the corners and flange ends; this is also the typical detail used for
real constructions. The extent of the boundary elements into the web and flanges were deter-
mined from section analysis as the area where the maximum compression strain exceeds 0.004;
also considered were other restraints as, for example, the layout of the vertical reinforcement.
Loading in the diagonal direction caused the deepest compression zones in both the flange
ends and the corners and therefore dictated the size of the confined zones.

Based on the observations during testing it is now believed that in particular the boundary
elements in the corners were essential for the integrity of the section when the wall was sub-
jected to large lateral displacement demands. When designing a U-shaped wall it is therefore
recommended to pay particular attention to this detail.

3.5 Experimental results: Failure mechanisms

In this section a brief description of the failure mechanisms of TUA and TUB is given. Em-
phasis is placed on the description of the damage state indicators, such as concrete spalling,
concrete crushing and reinforcing bar buckling and fracture. In Chapter 4 these indicators
will be related to strain limits, which are employed to define displacement limits in plastic
hinge analysis. Also included in the present chapter is a discussion on the significance of out-
of-plane deformations of the web and flanges and sliding shear displacements along the wall
base. Table 3.6 summarises the yield displacements of TUA and TUB in the five directions of
loading and also lists maximum attained displacements and drifts. A discussion of the magni-
tude of the yield displacements is given in Section 6.1.2b. Figure 3.9 shows the actual imposed
displacement pattern as seen from the top. The comparison to the target displacement pattern
(Figure 3.6b) shows that the actuator control system worked very effectively.



Seismic design of torsionally eccentric buildings with U-shaped RC Walls 57

Table 3.6. TUA and TUB: Yield displacements and drifts and maximum displacements and drifts
for the different directions of loading.

TUA TUB
∆y δy ∆max δmax ∆y δy ∆max δmax

[mm] [%] [mm] [%] [mm] [%] [mm] [%]
Position A, B (h = 3.35m) 10.4 0.31 83.2 2.48 13.5 0.40 81.0 2.42

Position C (h = 2.95m) 9.8 0.33 78.4 2.66 12.7 0.43 76.2 2.58

Position D (h = 2.95m) 13.0 0.44 104.0 3.53 15.0 0.51 90.0 3.05

Position E (h = 2.95m) 8.8 0.30 70.4 2.39 12.7 0.43 76.2 2.58

Position F (h = 2.95m) 10.5 0.36 84.0 2.85 12.1 0.41 72.6 2.46
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Figure 3.9. TUA and TUB: Actual imposed displacement history as seen from the top.

3.5.1 TUA

Test Unit A failed due to fracture of the longitudinal bars. Buckling of the longitudinal bars
was observed for the first time at µ∆ = 6.0 during the cycle in the diagonal direction. At
Position E the buckled D12 bar in the outer corner of the West flange buckled; at this time
the curvature of the bar was still fairly moderate. The first bar fractures occurred in the EW
cycle at µ∆ = 8.0 when loading to Position B: Two D6 bars in the West flange ruptured
(Figure 3.10); these bars had previously buckled because their cover concrete had been lost.
During the following NS cycle a distinct "bang" during the loading from O→C indicated that
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a further D6 bar must have ruptured. However, the ruptured bar could not be identified.
It was probably a bar in the web that had not previously buckled but which strain capacity
had been exceeded due to the large crack spacings. The first D12 bar ruptured when loading
from C→D at µ∆ = 8.0. It was the outermost D12 bar in the West flange end, which had
previously buckled. The then following cycle in the diagonal direction at µ∆ = 8.0 was the
final cycle: When loading to Position E (flange end in compression) two further D6 bars in the
web ruptured that had buckled during preceding cycles. The two D12 bars at the West flange
end, which had not yet ruptured, kinked very much towards the inside of the wall. Upon load
reversal (E→F) these two bars ruptured. In addition, one further D12 and all remaining D6
bars in the West flange ruptured causing the final failure of the TUA.

Figure 3.10. TUA: Longitudinal bars that fractured during the cycles of µ∆ = 8.0.

Failure of concrete in compression was not observed for TUA. Onset of concrete spalling was
observed at µ∆ = 3.0 during the sweeping motion. However, spalling at this stage was still
very limited and became only significant from the diagonal cycle at µ∆ = 4.0 onwards. Until
the end of the test the concrete in all four confined boundary elements was in a fairly good
condition whereas the unconfined concrete of the flanges and the web seemed to "decompose"
during the cycles at µ∆ = 8.0, i.e. it did not form a unit anymore but was divided by cracks
into pieces that moved relative to each other. Due to the bi-directional loading history a
complex crack pattern on the web and flanges had formed (Figure 3.11). While the crack
pattern of the web looked fairly similar to the typical crack pattern of a rectangular wall under
uni-directional excitation, the flanges showed cracks of very different angles for the different
directions of loading. The steepest cracks occurred at Position E and H, respectively, within
the flange whose end was in compression.
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Figure 3.11. TUA: Crack pattern towards the end of the test (photos taken at Position A and B
during EW cycle with µ∆ = 6.0): South face (a), West face (b), North face (c) and East face (d).
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Figure 3.12. TUA: West flange end showing the ruptured D12 bars (a) and the lower part of
the West flange and the web (b) at Position F during the diagonal cycle with µ∆ = 8.0 (point of
failure).

Due to restrictions to the instrumentation, out-of-plane movements were not measured but
could only be observed visually. Out-of-plane deformations were only observed within the
lowest 50cm of the wall where crack widths were wide enough to accommodate lateral move-
ments. The first out-of-plane deformations that were noted during testing of TUA occurred
at Position B during the sweep at µ∆ = 3.0: In the vicinity to the West corner, which was at
this instant under tension, the West flange and the web moved inwards. Along two cracks at
heights of h ∼= 20cm and 44cm the horizontal offset along the crack was about 0.5mm. Dur-
ing later cycles the same out-of-plane movement could be observed when the wall was pushed
towards Position B. During the cycles of ductility level 6.0 out-of-plane movements were ob-
served in further wall sections: At Position E during the diagonal cycle at µ∆ = 6.0 a slight
outward movement of the West flange end occurred. The crack in which the out-of-plane
movement was concentrated was 30cm above the wall base. It is likely that the movement
took place during the unloading phase from D to E when the cracks in the flange end were
still open because at Position D (during the NS cycle) the flange ends had been in tension.
The lateral movement was, however, so small that it did not cause a stability problem. At
Position G the West corner moved outwards by about ∼ 2mm. The crack in which the lat-
eral movement was located was at h ∼= 20cm above the wall base. At Position B out-of-plane
movements were also observed for the East flange: The part of the flange above a crack at
h ∼= 20cm moved outwards; the offset was approximately ∼ 5mm. Finally, large out-of-plane
deformations within the web occurred during the final cycle. At the point of failure (Position
F) the maximum lateral offset within the web was ∼ 15mm. The presence of out-of-plane de-
formations showed that out-of-plane forces played a role in the load transfer mechanism when
the wall was not loaded along its symmetry axis. In particular loading in the diagonal direc-
tion caused out-of-plane deformations. However, during all but the final cycle the out-of-plane
deformations were relatively small and did not impair the capacity of the wall.
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Throughout the test, sliding shear displacements at the wall base were fairly small. At peak
displacements of the EW, NS and diagonal cycles at µ∆ = 6.0 the maximum sliding displace-
ment of the web, West and East flange were 2.5mm, 1.2mm and 1.6mm, respectively, which
corresponded to 4.4%, 3.0% and 2.0% of the top displacements at these instants. For cycles
of smaller ductilities the sliding displacement were considerably smaller. As described before,
during the cycles at µ∆ = 8.0 the unconfined concrete near the wall base degraded consider-
ably. The devices that measured the sliding shear displacements were fixed to the unconfined
concrete. Due to the relative movement of the pieces, the sliding displacement measurements
became less reliable and the intensive cracking caused some instruments measuring the sliding
displacement to fall off. At the end of the test, when the base crack was in some parts about
one centimetre wide, one could see that at least one of the shear keys in the West flange had
sheared off. The condition of the other shear keys could not be inspected.

3.5.2 TUB

TUB failed due to crushing of compression diagonals in the unconfined part of the web when
loading from H→B during the sweep at µ∆ = 6.0. For TUB concrete spalling initiated already
during the cycles at µ∆ = 2.0 but longitudinal reinforcement did not become visible until the
NS cycles at µ∆ = 4.0. As a result of the bi-axial loading, spalling of the concrete spread
from the boundary elements towards the unconfined regions. In the unconfined regions the
loss of section width due to spalling was significantly greater than in the confined regions
(Figure 3.14). The reduction of the wall width led eventually to the web crushing failure. In
the region where the compression struts finally failed the width of the wall had in some parts
been reduced to as little as ∼ 3cm. After failure of the compression struts there were even a
number of continuous holes through the web. The crack pattern that developed as a result of
the bi-directional loading history is shown in Figure 3.13. In comparison to TUA the spacing
of the cracks was smaller (see Section 3.2) and the upper part of the wall had cracked more
severely. In addition, the steep cracks forming in the West and East flanges at Position E and
H, respectively, were even slightly steeper than for TUA (∼ 25◦ compared to ∼ 30◦).

Unlike typical web crushing failures the failure of the wall was not very catastrophic since
part of the lateral load could be transferred to the well-confined boundary elements at the
corners. These then acted as short columns while the web part above the failed compression
strut acted like a stiff "beam". Figure 3.14 shows the South and North face of the web at the
point of failure. In particular at the East edge a distinct drift of the short column is clearly
recognisable. The concrete of the confined corner elements was still in a very good condition.
However, the system did become softer and the lateral load dropped by more than 20% with
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Figure 3.13. TUB: Crack pattern towards the end of the test (photos taken at Position B during
EW cycle with µ∆ = 6.0): South face (a), West face (b), North face (c) and East face (d).
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respect to the loads attained at Position B during previous ductility levels. It was therefore
decided to stop the test and the wall was unloaded.

As outlined in Section 3.4.2c During the design of the test units the web crushing capacity
was determined according to EC8 [CEN, 2003]. According to this approach the web crushing
capacity exceeded the shear demand. The following reasons, which had not been considered
during design, might explain the discrepancy between predicted and actual web crushing ca-
pacity:

• The in some parts of the wall extensive reduction of the wall thickness had not been
accounted for when designing the wall against web crushing.

• Independent of the reduction of the wall thickness the web crushing capacity tends to
reduce with increasing ductility demand. This is not explicitly accounted for in the
equation given in EC8 [CEN, 2003], which is intended for structures of the ductility
class DCH. This ductility class corresponds roughly to a maximum displacement duc-
tility of about 3.01, which is only half of the ductility that TUB reached. The limited
ductility level had not been considered during the design stage; this might partially
account for the inadequate web crushing capacity.

Figure 3.14. TUB: South face (a) and North face (b) at Position B during the sweep at µ∆ = 6.0
(point of failure).

None of the longitudinal bars of TUB had fractured when the wall failed due to crushing of
the compression diagonal in the web. Buckling of the bars had, however, occurred. It was first
observed during the diagonal cycle (O→E) at µ∆ = 6.0 for the two bars of the West flange

1According to [CEN, 2003] the behaviour factor q for uncoupled slender walls is 4.0 assuming a
redundancy factor αu/α1 of unity. With a typical overstrength factor of Φo,w of 1.5 a q-factor of
4.0 corresponds to a displacement ductility of 2.7 (applicable to period ranges for which the equal
displacement approximation holds).
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end, which were then under compression. The longitudinal bars were only visible between
the first and second hoop (the first being at base level). Hence, the buckling mode was a single
bent between these two hoops. During the cycles of the subsequent sweep the cover concrete
was lost up to the fourth and fifth hoop at the East and West flange ends respectively. As a
consequence, when the flange ends were loaded in compression again, buckling occurred up
to the heights were the longitudinal bars were bare.

Although the wall sections of TUB were fairly slender out-of-plane movements were limited.
During cycles of smaller ductilities indications for out-of-plane deformations were limited to
vertical cracks on the inner faces of the flanges in the vicinity of the corner. Such cracks had
not been observed for TUA. The first of the vertical cracks appeared at Position B during
the sweep at µ∆ = 2.0. It appeared on the inner face of the East flange about 21cm away
from the corner. From then on, every time the wall was pushed to Position B, some existing
vertical cracks on the inner face of the East flange elongated and/or new vertical cracks formed.
The same happened at Position A on the inner face of the West flange: The first vertical
crack formed at Position A during the EW cycle at µ∆ = 3.0. The crack was about 23cm
away from the corner. During later cycles further vertical cracks appeared and existing ones
propagated further up the wall. Apart from the vertical cracks there was only very limited
indications for out-of-plane movements. Some lateral displacement of the West flange end
could be observed at Position E at µ∆ = 6.0. Probably due to out-of-plane shear forces that
were transferred from the wall to the foundation within the compression zone at the flange
end a small lateral movement was recognisable. The lateral movement showed up as two small
kinks (i.e. concentrated rotations within cracks) at about 15 and 30cm above the wall base.
The magnitude of the lateral movement was a few millimetres. However, the shape of the wall
did not give the impression that failure due to out-of-plane movements was imminent.

Sliding displacements at the wall base were even smaller than for TUA. The maximum sliding
displacements that were measured before the sweeping motion at µ∆ = 6.0 was commenced
were 1.00mm, 1.70mm and 4.04mm for the web, West and East flange respectively. These
sliding displacements made up 1.2%, 2.2% and 4.4% of the top displacements.

3.6 Experimental results: Force-displacement hystereses

The internal force distribution within the U-shaped walls under bi-directional loading is very
complex and requires some consideration when designing U-shaped walls. To give an idea of
how the forces varied during the cycles at one ductility level the actuator forces during the
µ∆ = 4.0 cycles are discussed in Section 3.6.1. The forces are considered mostly as individual
actuator forces. In addition, the moments and displacements in the EW and the NS direc-
tion are combined in SRSS quantities. By definition the SRSS moment and displacement are
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always positive quantities. For plotting hysteresis loops the SRSS moment and displacement
were multiplied by the sign of the displacement in the NS direction. The SRSS moment and
displacement are hence defined as:

MSRSS =
√

(FEW · 3.35m)2 + (FNS · 2.95m)2 · sign(FNS) (3.1a)

∆SRSS =
√

∆2
EW,2.95m + ∆2

NS,2.95m · sign(∆NS) (3.1b)

where FEW is the EW actuator force that was applied at h = 3.35m and FNS is the sum of the
NS actuator forces that were applied at h = 2.95m. The diagonal displacement was computed
at the height of the NS actuators (h = 2.95m).

3.6.1 Cycles with µ∆ = 4.0

In this section, the force distribution during the µ∆ = 4.0 cycles is discussed in a qualitative
manner. Note that during the testing of the walls only the forces applied by the actuators could
be measured while the force distribution at the wall base could not be recorded. The forces
plotted in the subsequent graphs are hence actuator forces. The actuator forces during the
µ∆ = 4.0 cycles are presented in two types of graphs: Figure 3.15 and 3.16 show a graphical
representation of the forces at the peak displacements during the cycles at µ∆ = 4.0 while
Figure 3.18 shows the force-displacement hystereses of TUA and TUB for ductility level 4.0.
The force-displacement pairs that belong to peak displacements are marked in the figures with
letters corresponding to the respective positions.

When a U-shaped wall is loaded parallel to its flanges (Positions C and D), the force distribu-
tion is simple since the wall is displaced parallel to its symmetry axis: The lateral force in the
NS direction is split in equal parts between the two flanges while the force applied to the web
diminishes. In practice, different states of cracking of the two flanges and different stress states
in the preceding cycle lead to slightly different flange forces. For example, at Position C the
West flange was typically softer and hence attracted less force. The softness of the West flange
was caused by the cracks that had opened at Position B, i.e the loading position that preceded
the NS cycle. Although the wall was pushed back to the zero position before the cycle in the
NS direction was commenced, the cracks in the West flange were still wider than in the East
flange, which had been in compression. As a consequence, at the onset of the NS cycle, the
in-plane stiffness of the West flange tended to be smaller than the in-plane stiffness of the East
flange and therefore the West flange attracted slightly less force than the East flange.

Unlike loading in the NS direction, loading in the EW direction (Positions A and B) was
not parallel to an axis of symmetry. If the wall would have been solely loaded by the actuator
loading the web, the wall would have twisted since the shear centre of a homogenous U-shaped
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Figure 3.15. TUA, µ∆ = 4.0: Forces applied to flanges and web at different positions.
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Figure 3.16. TUB, µ∆ = 4.0: Forces applied to flanges and web at different positions.
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wall lies outside the section. Twisting of the wall head was, however, restraint throughout the
test – with the exception of those instants during the loading history when a small twist was
applied in order to determine the torsional stiffness of the section. To restrain the twist of
the wall head, a torsional moment had to be applied by the two actuators in the NS direction
at Position A and B. This did, however, not imply that the wall over the entire height did
not twist: The position of the shear centre is likely to have varied over the height since it is
dependent on the cracking state of the wall [Pégon et al., 2000c]. It should also be noted that
the sum of the forces in the NS direction was not zero when the walls were loaded in the EW
direction although the NS displacement was kept as close as possible to zero during the EW
cycles. Since the reinforcement was not equally distributed along the flanges a moment about
the EW axis resulted when for example one flange and the web had yielded. It is interesting to
note that the resulting NS forces were of opposite signs for TUA and TUB. This is probably
caused by the additional D12 bar at the two flange ends of TUA.

The direction of loading that is the most complex regarding the load transfer is the diagonal
direction. The following aspects contribute to this effect:

• The stiffnesses of the flanges are different; the flange in compression is stiffer than the
flange in tension.

• The open base crack reduces the locations where shear forces can be effectively trans-
ferred to the base.

• Out-of-plane bending is likely to be a relevant part of the load transfer mechanism.

The forces on flanges and web during the diagonal cycles are a result of forces required to push
or pull the wall along the diagonal direction and a force couple applied by the NS actuators
to restrain the wall head from twisting. At Positions E and H, when one of the flange ends
was in compression, the forces from these two origins added up to a large force in the push-
direction on the flange in compression and a small force in the push (or even pull) direction in
the opposite flange. At Positions F and G, when one of the corners was in compression, the
force couple required to restrain the wall from rotating reduced the force in the compression
flange and increased the force in the flange in tension; the forces were therefore more equally
distributed between the two flanges. The interaction of forces required for bending and for
twisting restraint at the Positions E and F is illustrated in Figure 3.17.
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Figure 3.17. Qualitative sketch of the forces at Positions E and F (grey patches: concrete area that
is according to section analysis in compression).

3.6.2 Cycles in the EW, NS and diagonal directions

The objective of this section is to give an overview of the force-displacement behaviour of
TUA and TUB. The combination of three actuators and cycles in three different directions
(EW, NS and diagonal direction) and a sweeping motion led to a large number of potential
hysteresis plots. Only the most important ones were included here. The focus is set on the cy-
cles in the EW, NS and diagonal directions; the sweeping motion is not included. For the three
directions the hysteretic behaviour is presented in separate graphs, i.e. each graphs contains
only cycles from one directions. For TUA the force-displacement hystereses are shown in Fig-
ure 3.19; the force-displacement hystereses for TUB are plotted in Figure 3.20. For both EW
and NS cycle two different plots are presented, one that shows the hysteresis loops of the EW
actuator and one for the NS actuators. For the diagonal cycles four different hysteresis plots
are presented: In the first plot (plot e) the hysteresis in the EW and NS direction are combined
in the SRSS moment and the SRSS displacement, which were defined in Equation 3.1; in the
three subsequent plots (plots f-h) the hystereses of the EW and NS actuators are plotted sepa-
rately. In the following the most important features of the force-displacement hystereses will
be discussed. Unlike the failure mechanisms the main characteristics of the hysteresis curves
of TUA and TUB are not very different and therefore only general remarks that apply to both
test units will be made.

EW cycle: Figures 3.19a (TUA) and 3.20a (TUB) show the force-displacement curve of the
EW actuator for EW cycles only. Although the force-displacement history is assembled
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Figure 3.18. TUA and TUB: SRSS moment-displacement hysteresis and force-displacement hys-
tereses of the three actuators for the cycles at µ∆ = 4.0.
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using only the EW cycles from the complex loading history, the hystereses loops look
similar to those of a symmetric rectangular wall that is subjected to uni-axial cyclic
loading. When loading in the EW direction, the NS actuators were used to restrain the
wall head from twisting. The forces applied by the NS actuators during the EW cycles
are shown in Figures 3.19b and 3.20b. The force couple was necessary since the shear
centre of the U-shaped wall lay outside the section and hence the applied EW force did
not pass through the shear centre. With increasing ductility demand on the wall the
magnitude of the required force couple reduced since the shear centre moved closer to
the centre of the web [Pégon et al., 2000d].

NS cycle: Figures 3.19c and 3.20c show the force-displacement curves of the two individual
NS actuators as well as the total force in the NS direction. Although the moment ca-
pacities in the positive and the negative NS direction were approximately the same,
the hysteresis loops looked quite different in the two directions: For positive displace-
ments, when the web was in compression, the hysteresis loops were fat. For negative
displacements, when the flange end was in compression, the loops looked similar to
those for loading in the EW direction. If the wall had just been loaded in the NS di-
rection, in theory, no EW force would have been necessary in order to maintain zero
EW displacement. At the beginning of a cycle in the NS direction, however, the force
in the EW actuator was always negative (Figures 3.19d and 3.20d). This force resulted
from the previous cycle in the EW direction. Since the wall was pushed back to zero
EW displacement before starting the NS cycle, the EW force at the beginning of an NS
cycle corresponded to the EW force in the EW cycle at zero displacement. This force
decayed rapidly during the NS cycle and was usually close to zero when Position C was
reached.

Diagonal cycle: Figures 3.19e and 3.20e show the SRSS moment plotted against the SRSS dis-
placement. The shape of the loops is somewhat peculiar. Since the SRSS moment and
displacement are by definition positive quantities the SRSS quantities were multiplied
by the sign of the NS displacement (Equation 3.1). The jumps in the unloading branches
resulted from the fact that the SRSS moment was not zero when the NS displacement
was zero. Figures 3.19f and 3.20f show the hysteresis loops of the EW actuator. There is
a clear difference to the loops for loading in the EW direction (Figures 3.19a and 3.20a):
The loops are more pinched and in particular at Position E the maximum attained force
is considerably smaller than at Position A. The opposite holds for the NS direction: At
Position E the maximum total force in the NS direction is only slightly smaller than
at Position C while at Position F the total NS force is considerably smaller than at Po-
sition D. The individual actuator forces are shown in Figures 3.19h and 3.20h. When
loading from O→E the maximum force in the East flange was not attained at the peak
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displacement but shortly after the zero displacement. The force then dropped continu-
ously and at the peak displacement it was much smaller than the force in the West flange
whose flange end was in compression. At Position F the inverse situation occurred for
TUA, but for TUB the forces in the two actuators were of similar magnitude. Only
the shape of the loops was very different: While the force in the East flange increased
towards the peak displacement the force in the West flange reached its maximum at a
top displacement corresponding to µ∆

∼= 2.0.

3.7 Summary of the experimental work

The objective of this chapter was to present selected results of the quasi-static cyclic tests on
two U-shaped walls. The results of the experiments on the two U-shaped walls were discussed
in terms of failure mechanism and force-displacement hystereses. The experiments have shown
that the adopted design approach led to a ductile behaviour of TUA and TUB, which reached
displacement ductilities of 8 and 6 respectively. TUA failed due to rupture of the longitudinal
reinforcing bars after buckling – a failure mode that is also often observed for well detailed and
capacity designed rectangular walls. TUB failed due to web crushing. This was not the targeted
failure mechanism even though the well-confined corner elements prevented sudden crushing.
The concrete crushing failure in the web was caused by the reduction of the effective wall
thickness due to spalling of the unconfined concrete outside of the boundary elements. During
the design it had not been considered that bi-directional loading might favour the spalling of
concrete in these regions. The bi-directional loading history was fairly complex involving
cycles in three different directions (EW, NS and diagonal) and a sweeping motion. For the
design of U-shaped walls, it is important to understand the force distribution between the
different wall sections (web and flanges). It was shown that in particular the force distribution
between the two flanges during the diagonal cycles was very complex and originated from two
sources, i.e. from the forces required to impose the lateral displacements and from the forces
required to restrain the wall head from twisting. In the following chapters the experimental
results will be analysed further and compared with the numerical predictions.
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Figure 3.19. TUA: Force-displacement hystereses for cycles in the EW direction (a+b), in the NS
direction (c+d) and in the diagonal direction (e-h).
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Figure 3.20. TUB: Force-displacement hystereses for cycles in the EW direction (a+b), in the NS
direction (c+d) and in the diagonal direction (e-h).





4. COMPARISON OF PREDICTED QUANTITIES
USED IN PLASTIC HINGE ANALYSIS WITH

EXPERIMENTAL RESULTS

The state-of-the-art equations for the plastic hinge length and some of the approaches for es-
timating the shear deformations are empirical equations (Section 2.1). These equations were
calibrated with data from uni-axial tests on rectangular or barbelled walls and rectangular or
circular columns. Plastic hinge analysis is appealing because it is relatively simple to carry
out and yields in general good estimates for the displacement capacity of RC members un-
dergoing inelastic deformations; it is therefore desirable to extend its application to U-shaped
walls. However, before the current state-of-the-art equations are applied to U-shaped walls
they should be validated against experimental evidence for U-shaped walls; the two quasi-
static cyclic tests that were presented in Chapter 3 will be used for this purpose. Naturally,
a comparison with the results of two test units cannot constitute a thorough validation but
must be considered as a first step within the process.

The objective of this section is therefore to estimate quantities important to plastic hinge
analysis from the current equations and compare these estimates with the experimental results.
The following variables are considered:

• Yield curvature (Section 4.1)

• Ultimate strain limits (Section 4.2)

• Plastic hinge length (Section 4.3)

• Shear deformations (Section 4.4)

4.1 Yield curvatures

Curvatures of cracked RC sections are more a concept convenient to the design engineer than
a determinable quantity from experiments (Section 2.1.3b). Nevertheless, it will be attempted
to estimate the yield curvatures from the experimental results and to compare these with
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analytical estimates. At the ultimate displacement, however, analysis and experiments will be
compared via strains rather than curvatures (Section 4.2).

Curvatures cannot be measured directly but average curvatures are derived from the LVDT
measurements along the edges which yield average strains (Section 3.3, Figure 3.7). For exam-
ple, the curvature of the West flange determined from the measurements of the i-th instru-
ments from the base is:

ϕi =
δNW,i
∆hi

− δSW,i
∆hi

l′fl
(4.1)

where δNW,i and δSW,i are the elongations measured by the i-th instruments along the NW edge
and the SW edge respectively, ∆hi is the height interval covered by the i-th instrument and
l′fl is the horizontal distance between the LVDT chains along the NW and SW edges. For the
East flange the LVDT chains along the NE and SE edge were considered and for the web the
chains along the NW and NE edge were used. The base curvature cannot, however, be derived
in such a way since the lowest devices recorded mainly the effects of strain penetration into
the foundation rather than the deformation of the wall section itself. Hence, the base curva-
ture must be estimated from the curvatures at larger heights. Different schemes are possible
to derive the base curvature, the following is used here: The base curvature is linearly ex-
trapolated from the curvatures computed at larger heights. The assumption that the curvature
profile at yield is approximately linear over the entire wall height could not be confirmed from
measurements. Only curvatures from the base up to about midheight of the wall followed an
approximately linear trend. Hence, to obtain a realistic estimate of the base curvature only
curvatures up to this height are included when extrapolating the linear profile to the base. The
curvature profiles of TUA and TUB at first yield are plotted in Figure 4.1. The grey, straight
lines indicate the height over which the linear curvature profile was fitted. This linear profile
was then extrapolated to the base to determine the base curvature ϕ′y.

The points of first yield were determined as the instants when the average strain δ/h between
50 − 250mm above the wall base first exceeded the yield strain of the D12 reinforcing bars.
The average strain between h = 50 − 250mm was computed from the LVDT measurements
between h = 50−150mm and h = 150−250mm. Using the strain between h = 50−150mm
alone yielded unreliable results since the crack spacing at first yield was larger than 100mm.
Of course, at the instant when the average strain between h = 50 − 250mm equalled εsy

the longitudinal reinforcement would have already yielded within cracks. The nominal yield
curvature ϕy was then computed as the product of the curvature at first yield multiplied by
the predicted ratio of nominal moment to first yield moment:

ϕy = ϕ′y ·
Mn

M ′
y

(4.2)
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Figure 4.1. TUA and TUB: Curvature profiles at first yield for the different positions.

Table 4.1 summarises for TUA and TUB the experimental yield curvatures in the form of
the proportionality constants K1 (Equation 2.7) which were computed from the experimental
data. For the EW, NS and diagonal directions the wall length lw was taken as lweb, lfl and
ldiag =

√
l2web + l2fl , respectively. The experimental results are compared with the values for I-

and T-profiles that were proposed by Paulay [2002] on the basis of a parametric section analysis
(Section 2.1.2). Also included in the table are numerical results from section analyses of TUA
and TUB that will be presented in Section 6.1.1; the results for the nominal yield curvatures
are anticipated here in order to complete the picture regarding the available yield curvature
estimates.
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Table 4.1. Comparison of predicted, experimental and numerical values for the constant K1 (Equa-
tion 2.7).

TUA TUB TUA TUB Prediction
Exp. Exp. Analysis Analysis Paulay [2002]

Positions A and B 1.73 1.44 1.42 1.38 1.4

Position C 1.76 2.23 1.67 1.81 1.8

Position D 1.42 1.53 1.46 1.47 1.4

Positions E and H 2.12 2.07 2.04 2.07 -
Positions F and G 2.00 1.87 2.03 1.98 -

With the exception of the yield curvature of TUA at Positions A and B and the yield curvature
of TUB at Position C, there is a very good agreement between the experimentally determined
yield curvatures and the yield curvatures derived from section analysis. At Positions A and B
for TUA and Position C for TUB the experimentally derived yield curvatures are about 20%
larger than the yield curvatures derived from section analysis. These are also the only two
directions of loading where the experimentally derived yield curvatures for TUA and TUB
differ significantly; for all other directions the yield curvatures of TUA and TUB are fairly
similar. Hence, it is likely that the experimentally derived yield curvature that deviate strongly
from the yield curvature obtained from section analysis were rather high estimates of the actual
yield curvatures. This could be, for example, caused by unequal crack spacings. The results
of the section analysis compare very well to the estimates by Paulay [2002]. For the diagonal
directions such estimates of the coefficient K1 have not yet been derived; as for the principal
directions (Positions A, B, C and D) mean values of the K1-coefficients could be derived from
parametric section analyses. Such mean values are very convenient in preliminary design stages
when the exact layout of the section has not yet been determined. However, as long as such
mean coefficients for the diagonal direction of bending are not yet available, section analysis of
the individual U-shaped section has been shown to yield good estimates of the yield curvature.

4.2 Strain limits

To draw a comparison between the limits suggested in the literature and experimentally de-
termined values, compressive, tensile, and total excursion strains along the four outer edges
of the test units A and B were computed and are summarised in Table 4.2. The given strains
are average strains between h = 50 − 150mm. This height interval represents best the ac-
tual bar strain at the wall base where bar buckling and fracture was observed and where axial
stresses in the concrete were highest. The lowest instrument (h = 0−50mm) measured chiefly
the elongation of the wall edge due to strain penetration into the foundation rather than the
wall deformation between h = 0 − 50mm. The strain values were corrected for the distance
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between the LVDT and the edge of the corner or flange end. The given values correspond
therefore to strains on the outer, vertical edges of corner and flange ends. Note that, when
determining the yield curvature, mean strains were computed over h = 50− 250mm whereas
the strains for post-yield load steps, which are presented in Table 4.2, are mean strains over
h = 50 − 150mm. At first yield the crack spacing was still fairly large and using the mean
strain over h = 50 − 150mm only would have yielded unreliable results. At larger ductility
demands the crack spacing reduced and the mean strains over h = 50 − 150mm yielded the
best estimate of the maximum strain.

The tensile and compressive strains are the measured strains at the given load step, i.e. these are
not necessarily the largest strains measured up to this instant but strains at preceding positions
might have been larger. For the total excursion strains, however, the maximum of εs − εc

of all the values measured up to the considered load step are given. For each position, the
total excursion strain refers to the corner or flange end that is at this position in compression.
For example, the total excursion strain at Position E is computed as the absolute maximum
compressive strain that was measured up to this moment at the West flange end plus the
maximum tensile strain measured up to this moment at the West flange end. At Positions C
and D the strains in the two flanges were averaged and for the cycles in the EW direction the
strains were computed at the corners and averaged for Positions A and B. For the sweeping
motion, the Positions G and H on the second diagonal are considered. The tensile strain
capacities of the D12 bars of TUA and TUB were 12.6% and 12.7%, respectively (Table 3.2).

Section 2.5 summarised different values for strain limits on confined concrete crushing, bar
buckling and fracture that were found in the literature. In the following sections these limits
are compared to the strain values obtained experimentally.

4.2.1 Ultimate concrete strain

Failure of the confined concrete boundary elements was observed for neither TUA nor TUB
(Sections 3.5.1 and 3.5.2). Hence, it is not possible to check whether the equations for the
compressive strain capacity of the confined concrete, which were given in Section 2.5.1, are
appropriate for determining displacement limits for TUA and TUB. The comparison of pre-
dicted strain capacities with experimentally obtained strain values shows, however, that the
predicted strain capacities are with one exception well above the observed values (Table 4.3).
The exception concerns the compressive strain at the NE corner of TUB. The maximum com-
pressive strain of −0.036 was measured at the point of failure of TUB (µ∆ = 6.0, Position B
during sweeping motion, not included in Table 4.2). Failure of the confined boundary ele-
ment of the NE corner was not observed but the measured strain exceeds the ultimate strain
capacity according to Mander et al. [1988b] by about 60%. It is, however, 40% smaller than
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Table 4.2. Experimental flexural strain values (average strain between h = 50− 150mm): Maxi-
mum tensile, compressive and total excursion strains for different directions of loading.

Pos. µ∆ = 1.0 µ∆ = 3.0

εs εc εs − εc
εs−εc
εsu

εs εc εs − εc
εs−εc
εsu

[0/00] [0/00] [0/00] [-] [0/00] [0/00] [0/00] [-]
EW cycle A+B TUA 2.6 −0.7 4.9 0.039 5.0 −1.5 6.3 0.050

TUB 4.1 −0.5 7.7 0.061 12.4 −1.8 14.1 0.112

NS cycle C TUA 2.9 0.0 4.2 0.033 7.0 −0.4 5.6 0.045

TUB 4.2 −1.7 3.5 0.028 11.9 −3.2 23.3 0.185

D TUA 4.1 −0.8 3.9 0.031 24.7 −2.3 9.3 0.074

TUB 4.1 0.0 4.8 0.038 25.9 −1.5 13.6 0.108

Diag. cycle E TUA 2.9 −1.5 6.3 0.050 13.1 −3.0 30.3 0.241

TUB 12.91) −0.71) 33.91) 0.269 25.9 −7.5 39.0 0.310

F TUA 3.8 −1.5 5.2 0.041 25.9 −3.7 16.9 0.134

TUB 7.0 0.0 14.5 0.115 26.2 −2.3 28.6 0.227

Sweep G TUA 4.2 −1.4 5.1 0.040 22.1 −3.3 9.6 0.076

TUB 2.5 −1.3 11.0 0.087 25.5 −5.8 16.4 0.130

H TUA 3.4 1.1 6.0 0.047 9.2 0.4 23.9 0.190

TUB 3.0 −1.4 4.5 0.036 23.4 −2.2 27.9 0.221

Pos. µ∆ = 6.0 µ∆ = 8.0

εs εc εs − εc
εs−εc
εsu

εs εc εs − εc
εs−εc
εsu

[0/00] [0/00] [0/00] [-] [0/00] [0/00] [0/00] [-]
EW cycle A+B TUA 33.7 −1.5 33.6 0.267 47.1 2.3 47.4 0.376

TUB 34.6 −4.1 40.6 0.322 - - - -
NS cycle C TUA 30.5 −1.0 31.4 0.249 46.5 5.7 46.4 0.368

TUB 31.2 −4.4 39.6 0.314 - - - -
D TUA 43.2 −1.6 33.0 0.262 86.8 5.3 49.0 0.389

TUB 48.7 −3.9 36.8 0.292 - - - -
Diag. cycle E TUA 48.9 −3.1 56.9 0.452 70.4 - - -

TUB 43.2 −13.7 60.7 0.482 - - - -
F TUA 55.3 −2.5 52.7 0.418 - 2.9 74.2 0.589

TUB 45.1 −8.9 52.5 0.416 - - - -
Sweep G TUA 35.3 −3.0 34.7 0.276 - - - -

TUB 53.0 −16.1 48.9 0.388 - - - -
H TUA 33.1 4.3 37.1 0.295 - - - -

TUB 50.3 −9.1 66.0 0.524 - - - -
1) Before loading in the diagonal direction at µ∆ = 1.0 a sudden impact probably due to a fault

in the control system loaded the wall beyond µ∆ = 1.0 [Beyer et al., 2008]. Thus the strain
values for TUB at µ∆ = 1.0 are distorted.
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the ultimate strain capacity according to Scott et al. [1982]. At the point of failure the concrete
in the web crushed and shear deformations at the East corner, where the compressive strain
of −0.036 had been measured, were large. These might have influenced the axial strain mea-
surement and hence it is questionable whether the measurement is accurate. For comparison,
up to the point of failure the maximum measured compressive strain at the opposite corner of
TUB (NW corner) was only −0.016. While the experimentally determined maximum strain
of −0.036 might be biased, the equation by Mander et al. [1988b] is also known to underes-
timate the compressive strain capacity for members under combined axial load and flexure;
Priestley et al. [2007] quoted a factor of 1.3 − 1.6 between predicted and actual compressive
strain capacity (Section 2.5.1). To summarise, the equations by Scott et al. [1982] and Mander
et al. [1988b] (considering an amplification factor of 1.3 − 1.6) results in compressive strain
capacities of the concrete that are larger than the measured maximum compressive strains; this
is consistent with the observation that the confined boundary elements of TUA and TUB
were still in very good shape when the test units failed due to longitudinal bar rupture and
web crushing, respectively.

Table 4.3. Comparison of predicted and measured compressive strain values.

TUA TUB
Flange end Corner Flange end Corner

[0/00] [0/00] [0/00] [0/00]

Scott et al. [1982] 46 47 42 60

Mander et al. [1988b] 14 14 17 22

Experiment 3 4 14 36

4.2.2 Longitudinal bar buckling and fracture

The behaviour of the longitudinal bars during testing of TUA and TUB was described in
Sections 3.5.1 and 3.5.2. In both tests, the onset of extensive buckling was observed at Position
E during cycles with µ∆ = 6.0. In the case of TUA, bars fractured during cycles at µ∆ = 8.0
and caused the failure of the wall. In the case of TUB, the test had to be stopped due to
compression strut failure in the web just before the wall could be loaded with cycles at µ∆ =
8.0. The finding that the onset of buckling was associated with cycles at µ∆ = 6.0 and bar
rupture with cycles at µ∆ = 8.0 is consistent with the observations by Hines [2002]. At
the onset of buckling, the total excursion strain was 0.057 and 0.061 for TUA and TUB,
respectively. This is just outside the range of strain values characteristic for the onset of bar
buckling suggested by Hines (0.035 ≤ εs − εc ≤ 0.05.) and it compares fairly well with
Restrepo’s expression (Equation 2.22) which equates to 0.058 for sh = 50mm and db = 12mm
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(Section 2.5.2). According to Priestley et al. [2007] the reinforcing bars should not have buckled
before reaching 0.6εsu since the spacing of the stabilising reinforcement sh = 50mm was less
than sh,max = 52mm.

Fracture of the main longitudinal bars of TUA occurred during the diagonal cycle at µ∆ =
8.0 when loading from E to F. The bars that ruptured were situated in the West flange end.
During the preceding cycle in the NS direction, they had been subjected to large strains when
the wall was pushed to Position D. In the final, diagonal cycle they were first subjected to
compressive strains and then, upon load reversal, to tensile strains. During this last cycle the
strain measurements are incomplete since due to the large deformations and the significant
spalling of the concrete the LVDT measuring the strain at the West flange end between h =
50 − 150mm had to be dismounted. At Position D, the tensile strain at the flange ends was
0.087. In the cycles at µ∆ = 6.0 a maximum total strain excursion for the flange end of
0.057 was recorded at Position E. The strain limits for bar fracture suggested by Restrepo
(Equation 2.23), which is here controlled by the upper limit of 0.5εsu = 0.063, or by Priestley
et al. [2007] (0.6εsu = 0.076) yield reasonable estimates for TUA whereas the strain limit
by Priestley et al. [1996] (0.75εsu = 0.095) seems slightly too high when buckling causes
premature fracture of the reinforcing bar.

If the same strain limit is applied for the computation of the pushover curves of TUB, the
displacement capacities should be overestimated since none of the longitudinal bars in TUB
had fractured. However, from a comparison of the buckling deformations of the longitudinal
bars of TUA and TUB at µ∆ = 6.0 it is postulated that the bars of TUB would have ruptured
during the cycles at µ∆ = 8.0 had shear failure not ended the test at the end of the cycles with
µ∆ = 6.0. At this instant the maximum total strain excursion εs − εc was 0.066, which was
measured at the East flange end at Position H during the sweeping motion. This strain value
is even slightly larger than the maximum excursion strain measured for TUA at Position E for
µ∆ = 8.0 (while the ultimate strain capacities εsu of the D12 bars of TUA and TUB were
almost equal). Hence, it is very likely that – had TUB been tested beyond cycles at µ∆ = 6.0
– the longitudinal bars would have ruptured soon.

To summarise, the estimates on the reinforcement strain capacity by Restrepo [2006] and
Priestley et al. [2007] yield reasonable results which compare relatively well to the experimen-
tal data. Since Restrepo’s estimate for the strain limit for bar buckling was closest to the strain
at Position E at µ∆ = 6.0, his estimate will also be used for predicting the point of reinforc-
ing bar fracture for TUA. Therefore, in the plastic hinge analysis in Section 6.1 a strain limit
of 0.5εsu will be employed for computing the displacement capacity of TUA. For TUB, the
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displacement capacity was limited by the web crushing capacity, which decreased with the
ductility demand.

4.3 Plastic hinge lengths

In Section 2.1.3 the different components of plastic hinge lengths were discussed and the most
commonly used empirical equations for plastic hinge lengths were introduced. The objective
of this section is to derive plastic hinge lengths from the experimental results of TUA and
TUB and compare these to the values from Equations 2.10a and 2.10b, Equation 2.11 and
the modified, less conservative version of the latter (Equation 2.12). First, these equations
are evaluated for the different directions of loading (Section 4.3.1). Then, in a second step,
equivalent plastic hinge lengths are derived from the LVDT measurements (Section 4.3.2).
Finally, the experimentally determined plastic hinge lengths are compared with the estimates
of the existing empirical equations and conclusions are drawn on whether these equations,
which have been derived from data of rectangular, barbelled and circular walls and columns,
are also applicable to U-shaped walls (Section 4.3.3).

4.3.1 Predicted values of plastic hinge lengths

A summary of the predicted plastic hinge lengths according to Equations 2.10a and 2.10b and
Equation 2.11 is given in Table 4.4; the plastic hinge lengths were once computed for the EW
direction (lw = lweb) and once for the NS direction (lw = lfl). The comparison of the results
for the different equations shows that the new equation for the plastic hinge length (Lph3) gives
almost identical values to the maximum of the two established equations (max(Lph1, Lph2)). In
the equation "modified Lph3" the term for inclined shear cracking was replaced by 0.2lw as
originally suggested by Paulay and Priestley [1992].

If the empirical equations for the plastic hinge length are also applied for the prediction of the
displacement capacity in the diagonal direction, one needs to decide which measures for the
wall length and the wall height are most appropriate. For the wall length, three choices seem
possible:

• The length of the diagonal, i.e. ldiag =
√

l2web + l2fl , which was also used when deriving
the yield curvature.

• The length of either the web or the flanges.

• The arithmetic mean of the length of the web and the length of the flanges, i.e. (lweb +
lfl)/2.
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Considering that the term in the plastic hinge length equations that includes the wall length
represents the spreading of the plasticity due to inclined shear cracking, it seems logical to use
a wall length measure that is directly linked to the shear transfer mechanism. Shear forces are
assumed to be carried as in-plane forces by either the web or the flanges. It is argued, therefore,
that either the length of the web or the length of the flanges should be used when deriving
the plastic hinge length for displacement in the diagonal direction. A similar argumentation
can be used for the wall height. It is suggested that the plastic hinge length for loading in the
diagonal direction should be taken as the maximum of the plastic hinge lengths in the EW and
NS directions.

Table 4.4. Plastic hinge lengths for TUA and TUB according to empirical equations given in
Section 2.1.3.

0.022dbfy Lph1 Lph2 Lph3 Lph3,mod Lph3,mod
∗

[mm] [mm] [mm] [mm] [mm] [mm]
TUA:
EW cycle 129 397 407 406 536 471

NS cycle 129 365 340 363 468 404

TUB:
EW cycle 124 392 407 401 531 469

NS cycle 124 360 340 358 463 401

Lph1 = 0.08H + 0.022dbfy

Lph2 = 0.2lw + 0.044H

Lph3 = kH + 0.1lw + 0.022dbfy

Lph3,mod = kH + 0.2lw + 0.022dbfy

Lph3,mod
∗ = kH + 0.2lw + 0.011dbfy

4.3.2 Experimentally determined values of the plastic hinge lengths

At different ductility levels and for the different positions of the load cycle the plastic hinge
length was determined from the plastic displacement ∆p, the plastic curvature ϕp, and the
effective height H of the wall:

Lph =
∆p

ϕpH
(4.3)

Before the plastic hinge length can be determined, estimates of the plastic displacement ∆p and
the plastic curvature ϕp are required. At first yield it was found that the curvatures obtained
from section analyses corresponded well to the experimentally obtained base curvatures if the
latter were derived by linearly extrapolating the curvatures between h = 50 − 1650mm to
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the base level (Section 4.1). Therefore, the same procedure was applied when determining the
plastic curvature ϕp; solely the height interval, over which the best-fit linear curvature profile
was determined, was reduced to h = 50− 1250mm for the EW and NS directions and to h =
50−850mm for the diagonal direction. These are the height intervals for which the curvature
profiles of the inelastic walls were approximately linear. The plastic base curvature ϕp was
determined as the total base curvature ϕb (gained from extrapolation) minus the nominal
yield curvature ϕy (first two K1-columns of Table 4.1). The plastic displacement ∆p was
determined in two different ways: (a) in the "indirect" way by subtracting the measured shear
displacement ∆s, the measured sliding shear displacement ∆sl and the flexural displacement at
nominal yield ∆yf from the total measured top displacements ∆top and (b) by integrating the
mean curvatures derived from LVDT measurements and subtracting the flexural displacement
at nominal yield:

∆p = ∆top −∆s −∆sl −∆yf (4.4a)

∆p =
∫ htop

h=0

θ(h)dh−∆yf (4.4b)

A portion of the plastic hinge length according to Equation 4.3 can be attributed to strain
penetration into the foundation. This portion, i.e. the equivalent strain penetration length
Lsp, can be computed separately from the difference between the actual measured rotation θb

over the base interval (h = 0− 50mm) and the total curvature ϕy + ϕp, which was derived by
linear extrapolation from the curvatures at larger heights, times the length of the base interval:

Lsp · ϕp = θb − 50mm · (ϕy + ϕp) (4.5)

The portion of the plastic displacement of the wall that is associated with inelastic deforma-
tions above the wall base can be computed from the difference of the total plastic hinge length
and the equivalent strain penetration length, i.e. Lph − Lsp.

4.3.3 Comparison of analytical and experimental values

In Figures 4.2a and b experimental values for the post-yield strain penetration length Lsp are
normalised by the longitudinal bar diameter db and their yield strength fy and compared to
the proportionality constant of 0.022 given by Paulay and Priestley [1992]. For µ∆ ≥ 3.0
the experimentally derived length Lsp was in the majority of cases smaller than the predicted
length. During testing of TUA and TUB the footing was prestressed horizontally since the
entire footing was assembled from the foundation connected to the wall and separate foun-
dation blocks. It is likely that the bi-axial compression state of the foundation reduced the
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strain penetration into the foundation. As a first estimate it will be assumed that the strain
penetration length Lsp for a prestressed foundation is about half the length for a foundation
with mild reinforcement only [Hines, 2002]; the modified plastic hinge lengths are included as
Lph3,mod

∗ in Table 4.4. For µ∆ = 2.0 the values of Lsp were in many cases larger than 0.022.
At this loading stage the plastic curvatures ϕp were small. Hence, small increases in the base
rotation θb led to large values of Lsp. Since the walls were detailed for high ductility demands,
the strain penetration lengths at µ∆ = 2.0 were not very relevant for determining the ultimate
displacement capacity.
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Figure 4.2. TUA and TUB: Comparison of the experimentally derived plastic hinge length due to
strain penetration (Lsp) to the predicted value 0.022dbfy.

As outlined before, because the foundation was prestressed horizontally, the strain penetration
length Lsp into the foundation was biased low. It is therefore interesting to compare experi-
mental and empirical values for plastic hinge components other than the strain penetration
term. In Figure 4.3 the term for strain penetration is excluded from both the experimental
and the predicted values of the plastic hinge length. Note that the equation for Lph2 does not
include a strain penetration term; this estimate of the plastic hinge length is therefore not
included in the following discussion.

The deviation of the experimentally derived values from the empirical equation was greatest
for smaller ductilities. For small ductility levels the effect of the uncertainties that were related
to the yield displacement and to the shear displacement measurements were greater than for
larger ductilities. It is assumed that the conclusions drawn from cycles with µ∆ ≥ 4.0 are more
reliable than those from cycles with µ∆ ≤ 3.0. Ductilities smaller than 3.0 are of interest if
the structural member is designed for medium ductility levels (as for example in EC8, see
footnote on page 63). Figure 4.3 includes values for Lph − Lsp that were computed from the
two different estimates of the plastic displacement ∆p according to the indirect method and
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Figure 4.3. TUA and TUB: Comparison of the experimentally derived values for Lph − Lsp to
values from empirical equations for plastic hinge lengths (excluding the term 0.022dbfy for strain
penetration). The filled and unfilled markers represent values that were computed from plastic
displacements according to Equations 4.4a and 4.4b, respectively.
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the integration method (Equation 4.4). Ideally, the two methods should yield identical results.
For real experiments, this is never the case but the difference is for most directions of loading
relatively small.

For µ∆ ≥ 4.0 the design equations for the plastic hinge length minus the strain penetration
length (i.e. Lph1 − Lsp, and Lph3 − Lsp) are for the EW and NS directions of loading smaller
than the empirically derived equations. It was the intention of Paulay and Priestley [1992] and
Priestley et al. [2007] that the design equations for the plastic hinge length underestimate the
actual plastic hinge length to some extent in order to maintain a safety margin between the
ultimate design displacement and the displacement causing collapse. The modified version of
Lph3, which is less conservative with respect to the term representing the spreading of plasticity
due to inclined shear cracking, yielded estimates that came closer to the experimental values
for the EW and NS direction though it still underestimated the experimental values. For the
diagonal direction the experimental values were mostly between the lengths predicted by the
design equations and the assessment equation.

To summarise, it was proposed that the plastic hinge length for displacements in the diagonal
direction should be estimated as the maximum of the plastic hinge length for displacements
in the two principal directions. The preceding comparison of predicted and experimental
values has shown that the empirical design equations for plastic hinge lengths (Lph1, Lph2 and
Lph3), which were chiefly derived from rectangular walls and columns, also led for U-shaped
walls to estimates of Lph that are smaller than those derived from the experimental data. This
applies for all three directions of loading (EW, NS and diagonal direction) and therefore these
design equations for Lph should yield safe estimates of the displacement capacity. The plastic
hinge length Lph3,mod produced less conservative estimates of the plastic hinge length, which
can be used for assessment purposes or the prediction of test results. Although the design and
assessment estimates of Lph are suitable for all three directions, the estimates are biased low for
the principal directions and slightly biased high for the diagonal direction. To achieve similar
ratios of experimentally determined to predicted plastic hinge lengths the predicted plastic
hinge lengths for the diagonal direction would need to be reduced by 40− 50%.

4.4 Shear deformations of TUA and TUB

For plastic hinge analysis it is most convenient to characterise the shear displacements as a ratio
of the flexural displacements (Section 2.1.1). Therefore, the ratio ∆s/∆f will be used in the
following to characterise the shear deformations of TUA and TUB. Before the experimentally
determined ratios ∆s/∆f are presented in Section 4.4.2 it is briefly outlined in Section 4.4.1
how flexural and shear displacements were computed from the experimental measurements.
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In Section 4.4.3 existing approaches are employed to predict the ∆s/∆f -ratios and the results
are compared to the experimentally determined ratios.

4.4.1 Determining the different displacement components

The total top displacement is typically interpreted as the sum of four displacement compo-
nents, i.e. (i) the sliding displacement ∆sl at the base of the wall, (ii) the deformation com-
ponent ∆θ due to opening of the joint between the wall base and the foundation, (iii) the
flexural deformation ∆′

f of the wall and (iv) the shear displacement ∆s. In the following the
displacement components ∆θ and ∆′

f are treated as the total flexural displacement ∆f . This
corresponds to the approach taken in plastic hinge analysis in which the strain penetration
into the foundation is included in the plastic hinge length equation (Equation 2.12). While
the top displacements of TUA and TUB were measured directly against reference columns
(Section 3.3), the individual displacement components needed to be derived from local dis-
placement measures. For TUA and TUB, the sliding displacement at the wall base could be
readily obtained from gauges at the base of the web, the West and the East flange measuring
the relative horizontal displacements between the wall and the foundation. The computation
of the remaining two displacement components, i.e. the flexural and the shear displacements
are described in following two sections.

a) Flexural displacements.
The flexural deformations of the web and the flanges were obtained from the four chains of
LVDT devices along the four outer edges of TUA and TUB (Section 3.3, Figure 3.7). From
these measurements average curvatures were derived (Equation 4.1) and the flexural deforma-
tion of the three wall faces were computed by double integration of the curvature profiles.
The LVDT chains only extended to a height of h = 2650mm; between h = 2650mm and
the height where the actuator force was applied (hNS = 2.95m, hEW = 3.35m) the wall was
assumed as rigid. The EW flexural deformations of the web were computed from the LVDT
chains along the NE and NW edges. The NS flexural deformations of the West and East
flanges were derived from the LVDT chains along the NW and SW edges and the NE and SE
edges, respectively.

b) Shear displacements.
The shear displacements were determined from the diagonal measurements on the outer faces
of the web and the two flanges. Assuming the centre of rotation is at the midheight of the
panel, the shear distortion γ can be determined as (e.g. Dazio et al. [1999]):

γ =
∆s

hsh
=

1
4bhsh

((d + δ2)2 − (d + δ1)2) (4.6)
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In some studies this equation is simplified to (e.g. Hines et al. [2002b]):

γ =
d

2bhsh
(δ2 − δ1) (4.7)

For the definition of the variables see Figure 4.4a. Equation 4.6 can be derived using Pythago-
ras’ theorem within the triangles ABC and DEF. Equation 4.7 corresponds to the zero and
first order terms of the Taylor series of Equation 4.6.

Figure 4.4. Original method for evaluating the shear displacements: Assumed variation of lengths
of diagonals for shear deformations (a), flexural deformations (b) and vertical and horizontal elon-
gation (c).

Based on the deformation schemes shown in Figure 4.4 it is often argued that only shear
deformations cause a different variation in lengths of the two diagonals d1 and d2 whereas
flexural deformations and elongations extend the two diagonals by the same amount. Hiraishi
[1984] showed that Figure 4.4 reflects the special case of constant curvature over the height
of the panel. If the curvature is not constant (Figure 4.5), estimates according to the original
equations (Equations 4.6 and 4.7) overestimate the actual shear displacements. Note that this
finding is based on the assumption that the curvature decreases from the base to the top.
Hiraishi [1984] showed that a term needs to be subtracted from Equation 4.7 in order to
account for the variation of curvature:

γ =
d

2bh
(δ1 − δ2)− (α− 0.5)θ (4.8)

where θ is the rotation at the top of the panel and α a measure for the variation of the curva-
ture:

θ =
∫ h

z=0

ϕ(z)dz

α =

∫ h

z=0
θ(z)dz

θ · z (4.9)
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where z = [0; h] defines the height of the panel and ϕ(z) is the curvature over the height of
the panel. For a constant curvature the rotation increases linearly with height and the flexural
displacement at the top of the panel is θ · h/2 and hence α = 0.5. For this special case, the
original method is correct; if the curvature decreases from the bottom to the top, the original
method overestimates the actual shear displacements. For TUA and TUB the maximum dif-
ference in shear displacements determined according to the two different methods was 70%
(Position F, East flange); for most directions of loading the difference was, however, between
10 and 20%. It is obvious that the modified method by Hiraishi [1984] requires the measure-
ment of the flexural deformations of the panel by means of transducers along the two vertical
edges of the panel. The finer the subdivision of these two chains of transducers the higher the
accuracy with that α can be determined.

Figure 4.5. Modified method by Hiraishi [1984] for evaluating the shear displacements: Assumed
variation of lengths of diagonals for shear deformations (a), flexural deformations (b) and vertical
and horizontal elongation (c).

Since Hiraishi’s method accounts for the effect of the curvature distribution on the shear dis-
placement measurements it seems superior to the original method. Analysis of the results
obtained for TUA and TUB and the rectangular walls tested by Dazio et al. [1999] has, how-
ever, shown that the sum of the shear displacements according to Hiraishi’s method and sliding
and flexural displacements is often less than the measured total displacement. However, this
was not confirmed by the finite element results presented in Section 5.2.2 (e.g. Figure 5.13a)
and might therefore be due to measurement errors or deformations that were not captured.
For the sake of completeness it is stated here that the findings by Massone and Wallace [2004]
are in contrast to the observations that the sum of the shear displacements according to Hi-
raishi’s method and sliding and flexural displacements is often less than the measured total
displacement. Massone and Wallace [2004] found that, if the shear displacements are evalu-
ated according to Hiraishi’s method, the total of shear and flexural displacements matches the
measured top displacement very well. But it is important to note that Massone and Wallace
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[2004] could not compute α from measurements since the vertical elongations of the wall edges
were only measured with one device per panel height. Hence, they estimated α as 2/3 and
found good agreement. However, verifying Hiraishi’s method with a best guess estimate of
the all-controlling factor α seems hardly sound. Massone and Wallace [2004] stated themselves
that the presented findings would be stronger if α could have been determined directly from
measurements.

As alternative to Hiraishi’s and the original method, the shear deformations can be determined
indirectly as the difference of the total displacement ∆top minus the flexural displacement ∆f

and the sliding displacement along the base of the wall ∆sl:

∆s = ∆top −∆f −∆sl (4.10)

Although the method by Hiraishi was found to result in low estimates of ∆s when compared
to the indirect method, it is preferred to the original method. Whether Hiraishi’s method or
the indirect method for determining the shear deformations is better suited depends on the
type of measurement available.

4.4.2 Experimentally derived ratios of ∆s/∆f for TUA and TUB

Using the techniques described in the previous section, the flexural, shear and sliding shear
displacement components were determined for all peak displacements of the load histories to
which TUA and TUB were subjected. Figures 4.6 and 4.7 show for TUA and TUB, respec-
tively, the contribution of the three displacement components to the total displacement for
the different directions of loading. The shear displacements which are included in these fig-
ures were computed according to Hiraishi’s method (Section 4.4.1). In plot a of these figures
the displacement components of the web for EW cycles are plotted; plot b shows the average
of the displacement components of the West and East flange for NS cycles. For the diago-
nal cycles the displacement components of the web, the West and East flange are presented
in three separate plots (plots c-e). As Dazio [2000] had postulated, the contributions of one
displacement component to the total displacement remained approximately constant over the
entire ductility range (Section 2.6). Whereas the contributions of the sliding displacements to
the total displacements were very small for all directions of loading, the shear displacements
constituted for some directions of loading and wall sections a significant part of the total dis-
placements.

To illustrate the variation in ∆s/∆f -ratios for different positions and wall sections the ratios
are presented in graphical form in Figures 4.8 and 4.9 for TUA and TUB, respectively. The
given ∆s/∆f -ratios are mean ratios, which were computed as the average ratio of the cycles
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Figure 4.6. TUA: Displacement components for cycles in the EW (a), NS (b) and diagonal (c-e)
directions.

with µ∆ = 2.0−8.0 for TUA and as average ratios of the cycles with µ∆ = 2.0−6.0 for TUB.
Cycles with µ∆ < 2.0 were not included when computing the mean ∆s/∆f -ratios since in
particular for TUA measuring very small shear displacements led to inaccurate results. During
testing of TUA the connection between the string pots measuring the diagonal deformations
and the filaments, which were used to elongate the string pots, lacked stiffness. As a conse-
quence the string pot measurements showed signs of a small hysteresis and slip, which affected
in particular the measurements at small cycle response, and therefore the small cycles were
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Figure 4.7. TUB: Displacement components for cycles in the EW (a), NS (b) and diagonal (c-e)
directions.

not included when computing the mean value. For testing of TUB the setup was improved
and the string pot measurements are believed to be fairly accurate for small displacements too.
Figures 4.8 and 4.9 show the following:

• Shear displacements constituted a considerably larger portion of the total displacement
for the slender wall TUB than for the wall TUA whose wall thickness was 1.5 times the
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wall thickness of TUB. For most positions the shear displacement ratio of TUB was
1.4− 2.0 times greater than the shear displacement ratio of TUA.

• The shear displacement ratio that is most conspicuous is the ratio for the East flange at
Position E, which is negative, i.e. the shear displacements and the flexural displacements
have opposite signs. When loading in the diagonal direction the force in the East flange
did not reach its peak at the maximum displacement (Position E) but dropped from the
force at the origin (Position O) to the final value at Position E (Section 3.6.2). This drop
in force probably led to a reverse of the shear displacements in the East flange.

• When the wall sections were under net tension (web at Position E, West flange at Posi-
tion F) the ratio of the shear displacements to flexural displacement was largest.

• When the compression zone passed through the wall section the order of magnitude of
the ∆s/∆f -ratio was similar to ∆s/∆f -ratios of rectangular walls.

Table 4.5 summarises the mean ratios of shear to flexural deformations for the web and flanges
in the different direction of loading. To demonstrate the sensitivity of the results to the dif-
ferent methods, the ∆s/∆f -ratios for TUA and TUB were computed using all three methods
that had been introduced in Section 4.4.1. In most cases the sum of the flexural displacements,
sliding displacements and the shear displacements derived according to Hiraishi’s method was
slightly smaller than the total measured displacement (Figures 4.6 and 4.7). Hence, the indirect
method led to ratios that were slightly larger than those derived according to Hiraishi. Only
in some cases was the difference significant; these concern mostly cases in which the ratio
∆s/∆f was rather small because in these cases small absolute differences yield large relative
differences. As expected, computing the shear displacements according to the original meth-
ods led in all cases (apart from the negative ratios) to larger ratios than for Hiraishi’s method.
Since there is mathematical evidence that the original method overestimates the actual shear
displacements these will not be considered in the following. Which of the remaining two
methods is more accurate is difficult to determine. In the following the values according to the
indirect method will be used. The difference between the ratios clearly shows that the ratios
cannot be considered as exact but represent approximate figures only.
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Figure 4.8. TUA: Average ratios of ∆s/∆f for different directions of loading (shear deformations
were determined according to the indirect method).

Figure 4.9. TUB: Average ratios of ∆s/∆f for different directions of loading (shear deformations
were determined according to the indirect method).



Seismic design of torsionally eccentric buildings with U-shaped RC Walls 97

Table 4.5. TUA and TUB: Comparison of the ratios of shear to flexural deformations for different
methods of evaluating the shear displacements.

TUA TUB
∆s1
∆f

∆s2
∆f

∆s3
∆f

∆s1
∆f

∆s2
∆f

∆s3
∆f

Position A, B Web 0.18 0.25 0.20 0.32 0.38 0.33

Position C Flanges 0.08 0.14 0.10 0.15 0.20 0.17

Position D Flanges 0.13 0.17 0.16 0.18 0.22 0.21

Position E Web 0.30 0.28 0.33 0.61 0.63 0.66

West flange 0.14 0.26 0.15 0.25 0.28 0.27

East flange −0.09 −0.06 −0.08 −0.07 −0.01 −0.07

Position F Web 0.17 0.32 0.18 0.27 0.35 0.26

West flange 0.53 0.43 0.59 0.72 0.76 0.83

East flange 0.05 0.15 0.08 0.08 0.16 0.11

∆s1 Computed according to Hiraishi [1984]
∆s2 Indirection method: ∆s2 = ∆top −∆f −∆sl

∆s3 Original method

4.4.3 Predicting the shear deformations of TUA and TUB with existing methods

In Section 2.6 the approaches by Hines et al. [2004] and Priestley et al. [2007] for predicting
shear deformations of RC walls were introduced. These two approaches were applied to TUA
and TUB and the predicted ∆s/∆f -ratios are compared with the experimentally determined
ratios. Table 4.6 summarises the experimental and predicted ratios; a graphical comparison
of the values is shown in Figure 4.10. The approach proposed by Priestley et al. [2007] could
in many cases not be applied since the shear cracking force Vcr was larger than the total shear
force demand. Assuming the section remained uncracked in shear led to very small shear
displacements; in most cases this approach therefore underestimated the ratio ∆s/∆f . If
the shear demand was larger than Vcr, the ratio ∆s/∆f was often overestimated. The semi-
empirical approach of Hines et al. [2004] led to quite good estimates provided that the wall
section was not under net tension. When the wall section was under net tension, the ratios
∆s/∆f were grossly underestimated.
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Table 4.6. Ratios of shear to flexural displacement for TUA and TUB according to Priestley et al.
[2007] and Hines et al. [2004].

TUA TUB
Exp. Hines Priestley Exp. Hines Priestley

et al. et al. et al. et al.
[2004] [2007] [2004] [2007]

Position A, B Web 0.25 0.17 0.15 0.38 0.20 0.93

Position C Flanges 0.14 0.10 0.02 0.20 0.13 0.10

Position D Flanges 0.17 0.10 0.02 0.22 0.10 0.04

Position E Web 0.28 0.13 0.04 0.63 0.16 0.32

West flange 0.26 0.13 0.05 0.28 0.20 0.49

East flange −0.06 0.09 0.01 −0.01 0.09 0.01

Position F Web 0.32 0.17 0.05 0.35 0.17 0.67

West flange 0.43 0.07 0.01 0.76 0.09 0.04

East flange 0.15 0.09 0.03 0.16 0.09 0.04

Figure 4.10. TUA and TUB: Comparison of the experimentally determined ∆s/∆f -ratios to the
predicted ratios according to Priestley et al. [2007] and Hines et al. [2004].

4.5 Summary and Conclusions

The objective of this chapter was to evaluate whether the current state-of-the-art equations in
plastic hinge analysis could also be used for the plastic hinge analysis of U-shaped walls. This
was open to debate since most of these equations are empirical or semi-empirical equations
that have been calibrated with databases that did not contain U-shaped walls. Four different
aspects of plastic-hinge analysis have been considered; these were: (i) the yield curvature, (ii)
the strain limits for ultimate displacement, (iii) the plastic hinge length, and (iv) the ratio of
shear to flexural displacements. The findings are briefly recapitulated in the following.
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For the yield curvatures ready-made estimates derived from parametric section analyses are
currently only available for the two principal directions. For the diagonal direction, the engi-
neer needs to compute the yield curvature from a section analysis of the considered U-shaped
section on a case-to-case basis. Both types of estimate compare fairly well to the actually mea-
sured yield curvatures and hence one can conclude that at the onset of yielding the assumption
of plane sections seems to lead to good results. The strain limits on concrete and reinforcement
derived for walls or columns with different cross sections can be applied without limitations
to walls with U-shaped cross sections. In the experiments carried out the contribution of the
strain penetration to the spreading of inelasticity was small since the foundation had been
prestressed laterally. With respect to the other mechanisms contributing to the plastic hinge
length the modified and less conservative Equation 2.12 yielded fairly good estimates for all
directions. The plastic hinge length in the diagonal direction was estimated as the maximum
of the plastic hinge lengths in the two principal directions (EW and NS direction). For the
principal directions the estimates were typically slightly on the low side while for the diagonal
direction the estimates were slightly larger than the experimentally determined plastic hinge
lengths. Hence, although the match between the estimate and the experimentally determined
values are satisfactory for all directions, the degree of conservatism using Equation 2.12 will be
larger for the principal directions than for the diagonal directions. To remove the bias from the
plastic hinge length Lph3,mod, the predicted plastic hinge lengths for the diagonal directions of
loading would need to be reduced by ∼ 40− 50%.

While the available equations for yield curvatures, strain limits and plastic hinge lengths ap-
pear to be also applicable to U-shaped walls, existing empirical methods for estimating shear
displacements fail to capture the behaviour of wall sections that are under net tension. These
are the web at Position E, the West flange at Position F and the East flange at Position E. The
latter is a special case since the ratio of shear to flexural displacements is negative; it is not
expected that this ratio can be predicted by any of the empirical methods since the complex
force-displacement history of the flange causes the negative ratio. However, the ∆s/∆f -ratios
for the web at Position E and the West flange at Position F should be predictable if the effect
of the net tension on the section could be captured. It would be desirable to gain a better
understanding of the factors controlling the ratio ∆s/∆f and to develop an approach that is
applicable independent of the axial strain in the wall section. This is attempted in Chapter 5.





5. SHEAR DEFORMATIONS OF REINFORCED
CONCRETE WALLS

The ratio of shear to flexural deformations of a RC wall is an important design parameter,
which enters directly into equations for the plastic hinge analysis but is also useful when
estimating shear stiffnesses of elements in stick models or wide-column models. The ratio of
shear (∆s) to flexural deformations (∆f ) is therefore often used for characterising the shear
deformations of RC walls. In Section 4.4.2 the ∆s/∆f -ratios were determined for TUA and
TUB and the variation of these ratios between the web and flanges for the different directions
of loading were discussed. It has also been shown that neither of the two existing approaches
for estimating the ratio of shear to flexural deformation that were introduced in Section 2.6 and
applied to TUA and TUB in Section 4.4.3 yielded entirely satisfactory results. The objective of
this chapter is to look at shear displacements of RC walls in some more depth than in Chapter 4
and to identify alternative ways of estimating the ratio of shear to flexural displacements. The
problem is approached in two different ways: First, in an empirical study key factors affecting
the ratio of shear to flexural displacements in RC walls are identified and a new empirical
equation for estimating the ratio ∆s/∆f is proposed (Section 5.1). Second, two finite element
programs are assessed regarding their capability of modelling shear deformations (Section 5.2).
Unlike the discussion in Section 4.4.1 this chapter is not limited to the experimental results of
TUA and TUB but results from other experiments on RC walls are also included.

5.1 An empirical investigation into shear displacements of RC walls

This section presents a small investigation into the ratio of shear to flexural deformations of
RC walls. The objective is to identify the variables controlling the ratio ∆s/∆f and to derive
an empirical relationship between these key variables and ∆s/∆f . For this purpose a database
of RC walls was assembled. Apart from TUA and TUB, the database contains experimental
and numerical data of 27 walls and columns from five different test series [Oesterle et al., 1976,
1979; Dazio et al., 1999; Hines et al., 1999, 2002b; Reynouard and Fardis, 2001]. All walls were
tested under quasi-static cyclic loading. Most of the walls were subjected to uni-directional
loading, only test units TUA, TUB and IspraXY had been subjected to bi-directional loading.
The walls were built at scale 1 : 3 to 1 : 2 and their cross sections were rectangular, barbelled,
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flanged or U-shaped. The shear span ratios varied between 2.00 to 4.04. Details on these walls
are summarised in Appendix A.

Squat walls with shear span ratios smaller than 2.00 were excluded from the database because
the shear transfer mechanism of squat walls is different to that of slender walls: Squat walls
tend to transfer the horizontal load from the top of the wall to its base via a direct, inclined
compression strut whereas the shear transfer mechanism of slender walls is chiefly related
to the truss mechanism formed by shear reinforcement and compression diagonals. From
Demec measurements and nonlinear analysis it was also found that the region where the shear
strains are concentrated differs for squat and slender walls: In squat walls the shear strains are
concentrated in the region of the compression strut while for slender walls the shear strains
are concentrated in the region of the plastic hinge that is under tension.

As stated above this section describes an empirical study on the ratios of shear to flexural
deformations for RC cantilever walls. To identify possible variables influencing the magni-
tude of the shear displacements, the ratios of shear to flexural deformations of the PCA walls
(Phase I) are discussed in Section 5.1.1 in terms of the associated failure mechanisms and shear
demands. In the same section the strain state of a cracked RC panel is analysed and parallels
are drawn to the findings from the PCA-walls. The ratio of shear to flexural deformations will
obviously also depend on the slenderness of the wall. An option for normalising the ratios for
walls of different geometry is explored in Section 5.1.2. The following two sections discuss
two sets of variables that influence the shear deformations, i.e. the magnitude of the shear
stresses (Section 5.1.3) and the magnitude of the axial strains (Section 5.1.4). In the final sec-
tion a new semi-empirical approach for estimating the ratio of shear to flexural deformations
is introduced (Section 5.1.5).

5.1.1 Variation of the ratios ∆s/∆f with ductility demand

Dazio [2000] found that the ratio of shear to flexural displacements is approximately constant
for peak displacements in the inelastic loading range (Section 2.6). While this finding holds
for most of the walls within the database, there are some walls for which the ∆s/∆f -ratio
varies significantly with the top displacement. To illustrate the differences of these walls to the
others the walls of Phase I of the PCA test series are discussed in the following.

Figures 5.1a and b show the ratio of shear to flexural displacements as a function of the total
top displacement and the displacement ductility, respectively. The ratios are plotted for in-
elastic cycles showing a stable hysteretic behaviour; small amplitude cycles at the beginning
of the test and cycles at the end of the test when either bar fracture or web crushing had oc-
curred were omitted. In the following the variation of the ∆s/∆f -ratios for top displacements
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Figure 5.1. PCA, Phase I: Variation of the ratio ∆s/∆f with top displacement (a) and displacement
ductility (b).

∆top ≥ 2.0in is discussed; for cycles with smaller amplitudes the interaction of different ef-
fects that control the variation of ∆s/∆f with top displacement is even more complex than
for large cycle response (see also discussion later in this section). Figure 5.1 shows that for
the walls R1 and B1 the ratio of ∆s/∆f is approximately constant over the entire ductility
range. This is in line with Dazio’s observation (Section 2.6). For F1 only two data points
with ∆top ≥ 2.0in were available and it is therefore not possible to clearly identify a trend.
For the other four walls (R2, B3, B2, B5), the ratio ∆s/∆f tended to increase with displace-
ment demand for ∆top > 2.0in, i.e. with increasing top displacement the shear deformations
contributed a larger portion to the total displacement. Specimens R1 and B1 failed in flexure
whereas specimen F1 failed suddenly due to web crushing. All these three specimens have
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in common that the shear transfer mechanism as such did not deteriorate significantly before
failure. Specimens B3 and B5 experienced concrete crushing and grinding of the web concrete.
From the onset of the crushing of the concrete, the contribution of the shear deformations
to the overall deformations increased significantly. Specimen R2 was subjected to large out-of-
plane deformations which might have contributed to a deterioration of the compression struts
and other parts of the shear transfer mechanism. Specimen B2 is an exception since it failed
suddenly due to web crushing and hence one might expect that the ratio of shear to flexural
deformations remained constant until failure. Yet the ratio constantly increased from about
45% at ∆top = 2.0in to 58% at ∆top = 5.0in.

The walls that Dazio tested (Section A.3) were all capacity-designed and hence shear defor-
mations were smaller than for the PCA-walls (the ∆s/∆f -ratios of the walls tested by Dazio
varied between 0.12–0.22). Nonetheless, the results from the PCA-walls show that Dazio’s
finding is applicable to RC walls if the shear transfer mechanism is not degrading significantly.
For walls for which the shear transfer mechanism is degrading significantly the ratio ∆s/∆f

increases as the top displacement increases. It was found that one arrives at the same con-
clusion if the stress state due to axial load, shear force and moment of a cracked RC panel
with parallel compression struts is considered (Fig. 5.2a). This is outlined in the following
paragraphs.

Figure 5.2. Truss analogy model for a wall element with parallel compression struts (a, adapted
from Oesterle et al. [1984]) and Mohr’s circle representing the strain state at the centre line of the
wall (b, adapted from Rabbat and Collins [1978]).
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Figure 5.2b shows the Mohr’s circle representing the average strain state of the wall panel in
Figure 5.2a. The variable εd refers to the axial strain in the compression strut (hence εd < 0),
εm to the mean axial strain of the section, εh to the horizontal strain, and γ to the shear strain.
The following two relationships can be readily derived:

tanθ = γ/2
εh−εd

tanθ = εm−εd

γ/2

(5.1)

Solving the two equations for γ/2, adding the results together and making use of the relation-
ship that tanθ + cotθ = 2/sin2θ, leads to the following expression for γ:

γ =
εm

2tanθ
+ εh · tanθ − 2εd

sin2θ
(5.2)

The same equation is quoted in Oesterle et al. [1984] but it originates from Rabbat and Collins
[1978] where it was given in a slightly different form. The equation can also be derived using
principles of virtual works on the truss model shown in Figure 5.2a [Oesterle et al., 1984].
Equation 5.2 visualises that there are three different contributions to the shear strain γ: The
first term represents the contribution of the mean axial strain εm. In structural walls subjected
to seismic loading the axial strains are chiefly caused by flexural deformations. Assuming that
the compression zone depth c remains approximately constant, εm is directly related to the
curvature ϕ, which determines the flexural deformations. Therefore, the first term of Equa-
tion 5.2 shows that the shear strains are directly related to the flexural strains. Hence, if the
second and third term are small, the shear displacements are proportional to the flexural dis-
placements – this was the case for Dazio’s walls that were capacity designed. The second term
represents the contribution of the horizontal strains in the shear reinforcement to the shear
strain and the third term the contribution of the strain in the compression diagonal to the
shear strain. Thus, if the walls are either not capacity designed and plastic strains are accumu-
lating in the shear reinforcement or if the compression struts are softening considerably the
shear strains increase disproportionately to the flexural strains. As a consequence, the ratio
∆s/∆f increases with the top displacement.

The importance of flexural strains on shear strains was already recognised by Oesterle et al.
[1979], who observed that "Loss of shear stiffness with reversals was primarily dependent on
the magnitude of inelastic tensile set in the reinforcement from the previous loading. Abra-
sion and loss of material from grinding played a secondary role." They also recommended
that the "large ’effective’ shear distortions" accompanying "flexural hinging (...) should be
considered in structures designed to utilize the inelastic capacity of walls" – a recommenda-
tion which seemed to have been forgotten over some decades but gains significance in the time
of displacement-based design approaches.
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Equation 5.2 offers also an explanation for the reduction of the ratio ∆s/∆f with top dis-
placements up to 2in: The walls represented in Figure 5.1 have nominal yield displacements
between 0.5 − 1.1in (12.7 − 27.9mm). A top displacement of ∆top = 2.0in therefore corre-
sponds to a displacement ductility of µ∆

∼= 2.0 − 4.0. Up to yield, the forces in the section
increase and hence all three components of the shear strain increase (Equation 5.2). Beyond
yield, on the premise that the shear transfer mechanism is not yet degrading, only the first
component is increasing in proportion to the flexural displacements whereas the magnitude
of the last two remains approximately constant. Thus the ratio ∆s/∆f is reducing until the
last two components of γ in Equation 5.2 are so small with respect to the first that the ratio is
remaining approximately constant.

The largest flexural strains and therefore also the largest shear strains in structural walls occur
in the plastic hinge zone. Strictly speaking, Equation 5.2 is not applicable to the plastic hinge
zones where compression struts are not parallel but arrayed in a fan-like pattern. However,
it is believed that Equation 5.2 can help to understand which parameters influence the shear
deformations. In order to increase the chance of identifying trends the study will focus on
specimens that showed no signs of a significantly degrading shear mechanism. Since data points
are scarce the specimens R2, B3, B2 and B5 are not deleted from the dataset but the ratio of
∆s/∆f at ∆top = 2in is taken as an approximation of the ratio ∆s/∆f for a wall in which
neither the horizontal strain in the shear reinforcement nor the strains in the compressive
struts contributed significantly to the shear strains in the inelastic phase of the loading.

5.1.2 Making the ratios ∆s/∆f of different walls comparable

It is obvious that the ratio of shear to flexural displacements also depends on the geometry of a
wall. Hines et al. [2004] chose the shear span ratio as a parameter for making the ratio ∆s/∆f

of different walls comparable. Within this study the ratio of height to plastic hinge length
(instead of the wall length) is chosen as the parameter for normalising the ∆s/∆f -ratios. The
choice of the parameter H/Lph is based on the following considerations: If one assumes (i) that
the flexural deformation is solely caused by the plastic rotation in the plastic hinge and (ii) that
the shear deformations are also concentrated in the plastic hinge region (with an average shear
strain γ) one can write the ratio ∆s/∆f as follows:

∆s

∆f
=

γ · Lph

θp ·H =
γ

θp
· Lph

H
(5.3)

where γ is the shear strain and θp the plastic rotation within the plastic hinge zone. The first
factor γ/θp reflects the dependence of shear strains on flexural strains – this is the ratio for
which we would like to gather experimental information – while the second factor Lph/H

represents the geometry of the test unit. From the experimental data, the ratios ∆s/∆f were
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determined. Hence, in order to make these ratios comparable for walls of different geometries,
∆s/∆f has to be multiplied by H/Lph. It is evident that the parameter for normalisation is
strongly dependent on the assumptions made but this approach seems a satisfactory com-
promise between simplicity and accurateness and is therefore considered as suitable for this
empirical study.

5.1.3 Effect of shear stresses on shear deformations

One of the factors controlling the shear deformations are certainly the shear stresses. Using
again the walls of Phase I of the PCA test serie as an example one can see that at ∆top = 2in the
ratios ∆s/∆f fall into two groups: R1, R2, B1 and B3 have a ratio of ∆s/∆f = 0.15 − 0.33
and B2, B5, F1 a ratio of ∆s/∆f = 0.45 − 0.47. The key difference between the groups
appears to be the nominal shear stress which is defined as:

τ =
Vn

lw · tw (5.4)

For the first group this varies between 0.57 and 1.37MPa whereas for the second group the
values fall between 3.58 and 4.25MPa. Thus, the shear demand seems to be one of the factors
controlling the ratio ∆s/∆f .

Figure 5.3a shows the standardised ratio ∆s/∆f as a function of the nominal shear stress τ . A
weak trend of ∆s/∆f with τ is recognisable. However, there are a large number of specimens
that deviate significantly from the general trend. Two of these outliers are associated with the
East flanges of TUA and TUB at Position E when the ratio ∆s/∆f is negative. Possible reasons
for the negative ratios were discussed in Section 4.4.2; these two ratios will not be included
in the following discussion since it seems beyond the limits of a simple empirical model to
capture the aspect of the complex behaviour of U-shaped walls that led to the negative ratios.
Another group of specimens that produce data points outside the bulk data are three specimens
by Hines et al. [2004]. These three specimens had more than the double shear reinforcement
ratio than the other specimens of Hines’ test series. To account for the fact that the shear
deformations will be dependent on the ratio of shear demand to shear capacity the shear stress
is normalised by the nominal shear stress capacity vn [ACI Committee 318, 2002]:

vn =

√
f ′c
6

+ ρhfyh (5.5)

where f ′c is the cylinder strength of the test unit, ρh the shear reinforcement ratio and fyh the
yield strength of the horizontal reinforcement. For walls that are under net tension the shear
stress capacity vn is reduced to [ACI Committee 318, 2002]:

vn =

√
f ′c
6

(1 +
P

Ag · 3.45MPa
) + ρhfyh ≥ ρhfyh (5.6)



108 Katrin Beyer, Alessandro Dazio, M. J. Nigel Priestley

0 2 4 6 8 10 12 14
−1

0

1

2

3

4

5

6

τ = V
max

/(t
w
 l

w
) [MPa]

∆ s / 
∆ f × 

H
/L

ph

 

 

Pos F, W−fl.

Pos F, W−fl.

Pos E, Web

3A 3B
3C

PCA, Phase I

PCA, Phase II

Dazio

Hines

Ispra

TUA

TUB

a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

0

1

2

3

4

5

6

τ/v
n

∆ s / 
∆ f × 

H
/L

ph

 

 

Pos E, E−fl.

Pos E, E−fl.

Pos F, W−fl.

Pos F, W−fl.

Pos E, Web

Pos E, Web

PCA, Phase I

PCA, Phase II

Dazio

Hines

Ispra

TUA

TUB

b)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

0

1

2

3

4

5

6

(τ−τ
P
)/v

n

∆ s / 
∆ f × 

H
/L

ph

 

 

Pos E, E−fl.

Pos E, E−fl.

Pos F, W−fl.

Pos F, W−fl.

Pos E, Web

Pos E, Web

PCA, Phase I

PCA, Phase II

Dazio

Hines

Ispra

TUA

TUB

c)

Figure 5.3. Shear deformations: The ratio ∆s/∆f as a function of three different shear stress
parameters: τ (a), τ/vn (b) and (τ − τP)/vn (c).
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where P is the axial force, which is defined as negative for tension. For rectangular or near
rectangular walls the section is rarely subjected to large net tension forces; exceptions might oc-
cur if two walls are connected by deep coupling beams. For non-planar walls such as U-shaped
walls, individual rectangular wall sections, i.e. the web or the flanges, might be subjected to
large net axial forces depending on the direction of loading. For these wall sections the nom-
inal shear stress capacity was computed according to Equation 5.6. In the code the effective
shear area is defined as the web width times the distance from the extreme compression fibre to
the centroid of the longitudinal reinforcement in tension [ACI Committee 318, 2002]. How-
ever, it was found that using this more elaborate definition of the shear area did not improve
the correlation of τ/vn to ∆s/∆f . The nominal shear stress is therefore defined as described
in Equation 5.4.

Figure 5.3b shows that normalising the shear stress demand by the shear stress capacity vn im-
proves slightly the correlation with the normalised ratio ∆s/∆f . Note that Hines’ empirical
equation used a similar stress parameter, which was described by the variable α = V

Vs
+ V

Vsc

(Equation 2.39). This parameter was not adopted here since it is believed that the ratio of
shear demand to the diagonal tension shear capacity Vs has a stronger effect on the shear de-
formations than the ratio of shear demand to the diagonal compression shear capacity Vsc. It
is believed that for most walls the diagonal compression strut is a relatively stiff member in the
idealised shear truss mechanism (Figure 5.2a) compared to the shear reinforcement. Therefore
only the shear capacity due to the shear reinforcement and the concrete friction component
are considered when computing the shear stress capacity vn, which is used to normalise the
shear demand τ .

According to the modified UCSD model for the shear capacity of RC walls, the shear stress
is transferred via three principal mechanisms [Kowalsky and Priestley, 2000], i.e. the steel
truss mechanism, the concrete shear resisting mechanism, and an inclined compression strut
due to the axial load. The latter of the three mechanisms seems to be the stiffest mechanism
and it is therefore assumed that shear forces transmitted by the inclined compression strut
do not contribute significantly to shear deformations. The shear capacity due to the inclined
compression strut is Vp and the associated shear stress τp = Vp/(lw · tw); for wall sections
under net tension Vp is zero. Figure 5.3c shows the standardised ratio ∆s/∆f as a function of
(τ − τp)/vn. The variability is slightly reduced with respect to Figure 5.3b. However, there
are still four data points that lie above the general trend; these outliers are data points of TUA,
TUB and IspraXY representing wall sections that had been under net tension while carrying
a significant shear force (i.e. the web at Position E and the West flange at Position F).
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5.1.4 Effect of axial strains: Coupling of shear and flexural deformations

In Section 5.1.1 it was shown that the shear strains are dependent on the mean axial strains,
which can be caused by a moment and an axial force. In typical structural walls the mean
axial strains are chiefly caused by flexural deformations; to improve the readability they will
therefore be called flexural strains in the following. The objective of this section is to identify a
parameter that describes the state of flexural strains and that is correlated with the standardised
ratio ∆s/∆f . Three different parameters will be discussed in the following.

a) Parameter as a function of the compression zone depth.
Equation 5.2 showed that the shear strain is related to the average flexural strain. A parameter
which could identify whether the average flexural strain is relatively large or small is the nor-
malised compression zone depth c/lw. The compression zone depth can be determined from
section analysis. Section analyses were carried out for the 29 walls within the database. The
compression zone depth was determined at the point of the nominal moment, i.e. when the
maximum steel strain reached 1.5%. Details on the section analyses of the walls included in
the database can be found in Appendix A. Note that for the wall sections of TUA, TUB and
IspraXY that are under large net tension forces the compression zone depth is zero.

Figure 5.4 illustrates the effect of the compression zone depth on the mean axial strain εm:
For the same curvature, i.e. for the same flexural deformation, a large compression zone depth
leads to a small medium axial strain and vice versa. It is expected that the larger c/lw the
smaller the ∆s/∆f -ratio; to reach a positive correlation the ∆s/∆f -ratios are plotted against
the parameter (1−c/lw) instead of c/lw (Figure 5.5a). Contrary to expectations there is only a
very weak correlation between 1−c/lw and ∆s/∆f . The scatter is so large that the parameter
c/lw seems hardly suitable as exclusive parameter in an empirical approach for estimating
∆s/∆f .

Figure 5.4. Effect of compression zone depth c on the mean axial strain εm.
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Figure 5.5. Shear deformations: The ratio ∆s/∆f as a function of three different flexural strain
parameters: 1− c/lw (a), εm/(tanθ · ϕ · lw/2) (b) and εm/(tanθ · ϕ · Lph) (c).
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b) Parameter as a function of the mean axial strain - Approach 1.
To account for the effect of flexural strains on shear strains a second alternative parameter
was considered; it is the first term of Equation 5.2. The mean axial strain was taken as the
strain at the centre line from section analyses when the maximum steels strain is εs = 1.5%
(point of nominal moment). The cracking angle θ was taken from observations, i.e. the actual
cracking angle was used. The mean axial strain itself is, however, not a meaningful parameter
since two walls of different length subjected to the same curvature would have different axial
strains at the centre line. The objective of this parameter should be to distinguish between
"normal" rectangular walls that have a compression zone at one end and wall sections of for
example U-shaped walls for which the entire wall section is in tension. It is therefore suggested
to normalise the mean axial strain by the fictive flexural strain at the centre line assuming the
compression zone depth is zero, i.e. by ϕ · lw/2. Figure 5.5b shows ∆s/∆f as a function of
the parameter εm/(tanθ ·ϕ · lw/2). The bulk of the data is concentrated in the first quarter of
the plot, close to the origin. Within this bulk there is no clear trend recognisable. However,
the sections of the test units TUA, TUB and IspraXY that are under net tension are not part
of the bulk of the data but lie to the right of the bulk.

For sections with a compression zone this second parameter (εm) is of course related to the
first parameter (c) since there is a direct relationship between c and εm/ϕ:

c =
lw
2
− εm

ϕ
(5.7)

Hence, the difference between the two parameters is more eminent for wall sections that do
not have a compression zone: Whereas the parameter c/lw is limited to values between 0 and
1, the parameter εm/ϕ allows to define "negative" compression zones. It is therefore possible
to differentiate more strongly between wall sections with and without compression zone. The
overall correlation between the parameter εm/(tanθ·ϕ·lw/2) and the normalised ratio ∆s/∆f

is, however, still fairly poor.

c) Parameter as a function of the mean axial strain - Approach 2.
The third parameter used to characterise the effect of the flexural strain on the shear strain is
very similar to the second one. Instead of normalising the mean axial strain by ϕ · lw/2 the
mean axial strain is normalised by ϕ · Lph. Using the same simple model as in Section 5.1.2
(Equation 5.3) and assuming that the shear strain γ can be expressed by the first term of
Equation 5.2 leads to the following expression of the ∆s/∆f -ratio:

∆s

∆f
=

εm

tanθLph

ϕLphH
=

εm

tanθϕLph
· Lph

H
(5.8)

The second factor in the rearranged form of Equation 5.8 is used to standardise the ratio
∆s/∆f whereas the first factor will be investigated as the third parameter characterising the
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effect of flexural strain on shear strain. It is very similar to the second parameter, only that
half the wall length lw/2 has been replaced by the plastic hinge length Lph. The similarity is
also reflected in Figure 5.5c which is only marginally different from Figure 5.5b.

d) Choice of the parameter characterising the effect of the flexural strains on the shear
strains.
None of the three discussed parameters for characterising the influence of the flexural strains
on the shear strains shows a distinguished correlation with ∆s/∆f over the entire range of
explored x-values (Figure 5.5). Hence, none of these parameter is suited to serve as the single
parameter in an empirical relationship of ∆s/∆f . However, they might be used in conjunc-
tion with the stress parameter (τ − τP )/vn, which was derived in the previous section. The
joint use of the stress and a strain parameter for predicting the ratio ∆s/∆f will be investigated
in the following section.

5.1.5 An empirical relationship for the ratio ∆s/∆f

In the two previous sections it was shown that the ratio of shear to flexural displacement
depends on the shear stress demand to capacity ratio as well as on the axial strains within the
section. Among the investigated stress parameters the parameter (τ−τP )/vn was most suitable
(Section 5.1.3). On the strain side, three different parameters were investigated (Section 5.1.4);
none of the three parameters was clearly superior to the other two and hence all three are
tested in combination with the stress parameter. The results are shown in Figure 5.6. The
overall best agreement is achieved for the third strain parameter, i.e. εm/(ϕ · Lph · tanθ)
(Figure 5.6c). Without question, the scatter of the standardised ∆s/∆f -ratios is still relatively
large. However, with this empirical approach all data points fit into the same general trend
(excluding the two negative ratios for TUA and TUB). To found the empirical relationship on
a more sound basis additional data points for x-values between 1.0 and 2.0 would be required,
but for the time being the following empirical estimate for the ratio ∆s/∆f is suggested:

∆s

∆f
= (1 + 1.5 · τ − τp

vn
· εm

ϕ · Lph · tanθ
)
Lph

H
(5.9)

The proposed linear equation does not pass through the origin. This implies that shear defor-
mations are also present in walls in which – according to the UCSD model – the entire shear
force is transmitted by the inclined compression strut, which transfers the axial load from the
top of the wall to the base. The second factor εm/(ϕ · Lphtanθ) is normally larger than zero
since the compression zone depth is in almost all cases smaller than half the wall length.

Figure 5.7a shows the comparison of the predicted and the experimentally derived ratio of
shear to flexural displacements. The plot clearly demonstrates the correlation between the two
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Figure 5.6. Shear deformations: The ratio ∆s/∆f as a function of the stress parameter
(τ − τP)/vn and three different flexural strain parameters: 1− c/lw (a), εm/(tanθ · ϕ · lw/2)
(b) and εm/(tanθ · ϕ · Lph) (c).
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variables but also highlights the scatter involved in predicting the shear deformations. Never-
theless, if the entire range of the investigated dataset is considered, the new empirical approach
yields better results than the two existing approaches, which were discussed in Section 4.4.3
(Figure 5.7b). In this comparison these three approaches are of course rated unequally since
the new empirical equation was derived from exactly the same dataset that was used for the
comparison while the equation by Hines et al. [2004] were derived only from a number of data
points within the dataset and the approach by Priestley et al. [2007] had not been calibrated at
all with the dataset.

In Table 5.1 the ∆s/∆f -ratios predicted by the new empirical equations are compared with
the experimentally determined ratios. The comparison shows that in particular the smaller
∆s/∆f -ratios of TUA (e.g. at Positions C and D) are typically overestimated by a considerable
margin. It is also noteworthy that the predicted ratios for TUA and TUB are relatively similar
although the shear stresses are fairly different for the two test units. This is because the shear
reinforcement is the same for the two test units; hence the difference in the shear capacity
results solely from the concrete contribution which amounts – dependent on the considered
direction of loading – to a maximum of 48% and 34% of the shear capacity of TUA and TUB,
respectively.

Table 5.1. TUA and TUB: Comparison of the experimentally determined and predicted ∆s/∆f -
ratios for the different wall sections (predicted ratios were estimated with Equation 5.9).

TUA TUB
Exp. Predicted Error Exp. Predicted Error

Pos. A, B Web 0.25 0.36 46% 0.38 0.39 3%

Pos. C Flanges 0.14 0.23 61% 0.20 0.24 20%

Pos. D Flanges 0.17 0.28 69% 0.22 0.28 27%

Pos. E Web 0.28 0.62 121% 0.63 0.68 8%

West flange 0.26 0.22 −15% 0.28 0.20 −29%

East flange −0.06 − − −0.01 − −
Pos. F Web 0.32 0.27 −16% 0.35 0.26 −26%

West flange 0.43 0.34 −21% 0.76 0.49 −36%

East flange 0.15 0.18 20% 0.16 0.17 6%

If the estimate of ∆s/∆f is used for design purposes an estimate of the cracking angle θ is
required. Attempts to estimate the cracking angles for TUA and TUB assuming the shear
reinforcement has yielded led to poor results. A first indication of the cracking angle might be
obtained from Figure 5.8, which shows the observed cracking angles as a function of the stress
parameter (τ − τp)/vn, which is already known during the design stage. The figure indicates
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Figure 5.7. Prediction of the shear deformations: Using Equation 5.9 for the entire dataset (a) and
comparison of the predictions by Priestley et al. [2007], Hines et al. [2004] and Equation 5.9 for
TUA and TUB (b).

that the cracking angle θ measured in degrees against the wall axis can be estimated as:

θ = 50− 12.5 · τ − τp

vn
(5.10)

As alternative, an angle of θ = 45◦ might be assumed; Figure 5.9 shows that for θ = 45◦ the
correlation between the predicted and experimentally determined ∆s/∆f -ratios is almost as
good as if the observed cracking angle is used. When deriving the empirical model the maxi-
mum measured shear force Vmax was used. When the equation is used for design purposes, this
force needs to be estimated by numerical models. For ductile flexural walls with rectangular or
near-rectangular cross-section good estimates can be obtained from section analysis assuming
plane sections remaining plane. For non-planar walls such as U-shaped walls and depending
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Figure 5.9. Prediction of the shear deformation with Equation 5.9 assuming θ = 45◦.

on the direction of loading more elaborate models might be required as will be discussed in
detail in Chapter 6.

5.2 Numerical modelling of shear displacements

The objective of this section is to evaluate two softwares regarding their capability of mod-
elling shear displacements. The two chosen programs are VecTor2 [Wong and Vecchio, 2002]
and Response2000 [Bentz, 2001]. Both programs were developed at the University of Toronto
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and are based on the modified compression field theory (MCFT). The MCFT is a well-known
theory on the stress-strain behaviour of cracked RC panels under a 2D stress state. It is be-
lieved that this theory is one of the most suitable theories for assessing the shear deformations
of RC elements because it unifies shear and axial strain demands in a physical model.

The work in this section is restricted to a preliminary investigation into the topic of numerical
modelling of shear deformations. If one or both of the two programs proves to yield good
estimates of shear deformations, they could be used for adding data points to the plots in the
previous section were experimental results are missing or for computing directly the shear
deformations of a specific wall. For the moment, however, the two programs are limited to
the analysis of simple symmetric wall sections that are loaded along their symmetry axes. A
3D version of VecTor is under development but pre- and post-processors are not yet available
for 3D models.

Before the two programs are evaluated, the MCFT is briefly introduced in Section 5.2.1. Since
the setup and analysis of finite element models in VecTor2 is relatively elaborate, the VecTor2-
program is discussed on the basis of the analysis results for one rectangular and one barbelled
wall, which were tested under cyclic loading (Section 5.2.2). The detailed results obtained
from the analysis are used to compare different methods of evaluating shear deformations. In
addition, the shear deformations under cyclic and monotonic loading is compared. In Re-
sponse2000 which is a section analysis program that can consider monotonic loading only,
new models are setup fairly quickly and the analysis time never exceeds a minute. Hence, in
addition to the two walls that were analysed with VecTor2, all other rectangular, barbelled
and flanged walls included in the database in Appendix A are considered and the results are
discussed in Section 5.2.3. Conclusions regarding the success of computing the ratio of shear
to flexural displacements from the results of the finite element analysis are drawn on in Sec-
tion 5.2.4.

5.2.1 Introduction to the Modified Compression Field Theory

The MCFT was developed by Vecchio and Collins [1986]. It is a numerical model based
on first principle mechanics that describes the stress-strain characteristics of RC in its cracked
state. By subdividing a plane RC member into small elements with constant thickness and uni-
form axial and shear stresses along their edges, it is possible to derive the force-displacement
characteristics of the structural member. The MCFT consists of four main modules: (i) the
average strains of a small cracked RC element and their rotation into the principle directions,
(ii) the equilibrium equations for the small element, (iii) the stress-strain relationships for con-
crete and reinforcement, and (iv) considerations of the local stresses that are transmitted across
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a crack. In the following these four modules will be briefly introduced without presenting any
equations.

Figure 5.10a shows the small membrane element with uniform axial stresses and shear stresses.
The deformed shape of the element due to this stress state is shown in Figure 5.10b. For a
cracked RC element the strains can be written in terms of either the element coordinate axes
x and y or the strains can be decomposed into principal strains (Figure 5.10d). This is best
visualised by means of a Mohr’s circle (Figure 5.10c), which has already been introduced in
Section 5.1.1. The strains shown in Figures 5.10c and d are average strains; however, due to
the discrete cracks the strain state is not uniform over the element.

The stresses within a RC panel element (Figure 5.10a) are resisted by the concrete and the
reinforcement. While it is assumed that the reinforcing bars can only resist axial forces, the
concrete is subjected to axial stresses and shear stresses, which are decomposed into principal
stresses parallel and perpendicular to the cracks. To link the strains and stresses in reinforce-
ment and concrete, it is necessary to formulate average stress-average strain relationships for
these two materials. The relationships for the average stress-strain state can be different to
stress-strain relationships for the local material behaviour. For the reinforcement a classical
elasto-plastic material model is assumed. For the concrete the average stress-average strain re-
lationships are formulated in the two principal directions. It is assumed that these coincide for
the stresses and strains and are therefore parallel and perpendicular to the cracks. The novelty
for the average stress - average strain relationship along the principal compressive axis is the
dependence on the transverse tensile strain: the larger the transverse tensile strain, the smaller
the compressive stress capacity.

In a last step the local stresses across the crack are considered. At a crack the concrete tensile
stresses are zero and therefore the stresses in the reinforcing bars will be larger. Hence, it is
necessary to check that the capacity of the reinforcing bars is not exceeded. The local stress

Figure 5.10. MCFT: Loading (a), deformation (b), Mohr’s circle of average strains (c) and average
strains in the cracked element (d); figures from Vecchio and Collins [1986].
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also accounts for aggregate interlock across a crack. Aggregate interlock allows to transmit
shear stresses across the crack although in an average sense the crack corresponds to a principal
direction. The magnitude of the shear stresses that can be transmitted across the crack will
depend on the crack width, the aggregate size and the concrete strength.

5.2.2 VecTor2: A shell element analysis program based on the MCFT

VecTor2 is a two-dimensional nonlinear finite element program for RC membrane elements
[Wong and Vecchio, 2002], which is based on the MCFT. It has a substantial library of inelastic
reinforcing steel and in particular concrete material models for both monotonic and cyclic
loading. The program is delivered with the pre-processor "Formworks" and the post-processor
"Augustus", which allow an easy handling of the input data and of the results. Within this case
study the program VecTor2 is used to analyse the Wall WSH3 that was tested by Dazio et al.
[1999] and the walls B3 and B4 that were tested by Oesterle et al. [1976]. The wall WSH3 was
selected as an example of a capacity-designed wall since all the experimental data are available
in electronic format and the experiment is very well documented. Among the six test units
tested by Dazio et al. [1999] WSH3 was the one with the largest ratio of shear to flexural
displacements (Section A.3). The test units B3 and B4 were selected as examples of walls that
were not capacity designed. The two test units have the same reinforcement layout but were
subjected to different loading schemes: While specimen B3 was subjected to cyclic loading,
specimen B4 was loaded monotonically. This wall configuration was chosen because it allows
to study the impact of cyclic loading on shear displacements and to assess the capability of the
program VecTor2 to account for the difference between monotonic and cyclic loading.

a) Analysis of test unit WSH3.
Finite element model of WSH3
The cross section of the test unit and the principle instrumentation are shown in Figure 5.11a
and b. The test unit WSH3 was modelled using plane membrane elements; the finite element
mesh is shown in Figure 5.11c. The wall was divided into three areas with different properties;
these are the boundary element of the wall, the web of the wall and the load stub. These
three areas were assigned different RC properties and wall thicknesses. The longitudinal and
horizontal reinforcement ratios as well as the compressive and tensile strength of the concrete
are shown in Figure 5.11c. The load stub of the physical test unit was post-tensioned and hence
cracking was very limited within this regions. To simplify matters in the numerical model,
the load stub was assigned no reinforcement but a large concrete tensile strength; hence it
remained uncracked during the analyses.

From the library of material models the following were selected (details on these models can be
found in Wong and Vecchio [2002]): The concrete back-bone curve is assembled of Hognested’s
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Figure 5.11. WSH3: Cross section (a), instrumentation (b) and finite element mesh and virtual
instruments in VecTor2 (c).

parabola for pre-peak response and the Popovics/Mander model for the post-peak response.
Compression softening was modelled by Vecchio’s 1992-A model. Tension stiffening was also
included and was modelled using the modified Bentz approach. Cracking of the concrete was
determined on the basis of Mohr’s circle for stresses. The hysteretic response of the concrete
was modelled using Palermo’s model from 2002. The crack width check used as reference
length 20% of the aggregate size. The reinforcement was modelled as smeared reinforcement;
the cyclic behaviour follows the hystereses rule by Seckin, which includes the Bauschinger
effect. By using smeared reinforcement, buckling of the reinforcement bars could not be
included in the model. Although the physical wall had failed after buckling of the longitudinal
reinforcing bars (see Appendix A.3) this approach was preferred over the discrete modelling
approach for reinforcing bars since it tends to lead to more stable analysis results and reduces
the analysis time.

In order to compare the numerical and experimental results the mesh of the wall was gener-
ated in such a way that a node was placed at every position of an instrument that had been
mounted on the wall WSH3 (Figure 5.11b). Using the displacements of these nodes, it was
possible to compute the numerical equivalent to the measurement of an instrument mounted
on the physical wall [Hines et al., 2002a]. From the results of these "virtual instruments" flex-
ural and shear deformations were computed applying the same procedures as to experimental
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measurements. In this way the possibility could be eliminated that differences between the nu-
merical and experimental results originated from differences in the procedures for evaluating
the shear and flexural deformations.

Pushover analysis of WSH 3
In a first step the wall was subjected to a centric constant axial load (P = 686kN) and an
increasing top displacement at h = 4.56m. Figure 5.12 shows that the numerical model reflects
the force capacity of the physical test unit very well. Note that the ultimate displacement of
the numerical model was not determined from strain limits but the analysis was stopped at
the displacement corresponding to µ∆ = 6.0 since the focus of this case study is set on the
numerical modelling of shear displacements and not on determining the ultimate displacement
capacity. In a 2D model in which the wall is subdivided into a number of elements along
its length there are different possibilities of calculating the shear displacement at the top of
the wall. On one hand, there are the experimental approaches, i.e. the shear displacements
can be computed from the "measurements" of the virtual instruments in the same manner
as it has been done for the experiments. On the other hand, the shear displacement can be
computed from the shear strains of the elements. The aim of this section is to compare these
two approaches in order to draw conclusions on their comparability.

The experimental approaches for computing the shear displacements were explained in Sec-
tion 4.4.1. In this section three different approaches were distinguished: the original method,
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Hiraishi’s method and the indirect method. The latter two demand that the flexural deforma-
tions can be determined. The flexural deformations were computed from the virtual instru-
ments along the wall edges following the method described in Section 4.4.1.

The second set of shear displacements were computed from the shear strains of the finite
elements. When computing the shear displacements at h = 4.56m from the shear strains
of the elements it is necessary to average the shear strains over each section along the wall
length and then to integrate these average shear strains over the wall height. For computing
the average of the shear strains over the wall section different approaches exist:

• The average shear strain γxy of a section is computed as the average of the element shear
strains within the section weighted by the lengths of the element. In the following this
shear strain will be referred to as γm.

• Alternatively the average shear strain can be computed from principles of virtual work
(Bentz, private communication, 2007). The average shear strain is therefore defined as

γVW =
∑N

i=1 τi · γi · lel,i∑N
i=1 τi · lel,i

(5.11)

where N is the number of elements per row, τi the shear stress within element i, γi the
shear strain of element i and lel,i its length.

• Bentz, who developed in collaboration with Collins the program Response2000, argued
that taking the average of the shear strain over the entire section might overemphasise
the zero shear strain at the edges of the wall (Bentz, private communication, 2007). He
therefore computed the average shear strain of the section as the average of the shear
strain within the central 45% of the wall length1. This definition is included here in
order to provide a context for the discussion in Section 5.2.3 of the results obtained with
Response2000. The average shear strain computed with this approach will be labelled
γm,0.45

Once the average shear strains are determined for each section the shear displacements at the
top is obtained by integrating the average shear strains over the height. Figure 5.13a and c
show the displacements due to shear and flexural deformations. In Figure 5.13a the shear
displacements were computed from the measurements of the virtual instruments whereas in

1In our email correspondence, Bentz wrote that he computed it over the central two thirds or three
quarters of the wall length. However, when computing the average shear strain for a number of shear
strain profiles obtained from Response2000 results, it was found that the average shear stain is probably
computed over only 45% of the wall length.
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Figure 5.13b the shear displacements were computed from shear strains of the finite elements.
The best fit between the sum of shear and flexural deformations (∆s + ∆f ) and the actual top
displacement was obtained for Hiraishi’s method of evaluating the virtual instruments and the
average shear strain γm.

Figure 5.13b and d show the ratios of shear to flexural deformations. It is noteworthy that the
shear displacements according to the original method led to ∆s/∆f -ratios, which remained
constant for ∆top > 20mm. For all other methods of evaluating the shear displacements the
ratio dropped off until ∆top ∼= 40mm before it remained approximately constant. Hiraishi’s
method and the indirect method led to relatively similar results; they also compare well to the
ratios based on shear displacements computed from shear strains of the finite elements (pos-
sibly with exception of the virtual work approach which leads to slightly lower ratios). For
the wall section analysed here the approximate method by Bentz (γm,0.45) coincided almost
exactly with the simple average strain γm. Bentz’ concern, that the zero shear strains at the
wall edges might be overemphasised by γm, seems therefore not justified in the considered
case but the situation might be different for walls with larger shear deformations. From these
comparisons one can conclude that the two experimental methods that were identified as suit-
able in Section 4.4.1 (Hiraishi’s method and the indirect method) lead to similar estimates of
the shear displacements as computing the shear displacements from shear strains of finite ele-
ments. Of course, this conclusion was drawn from the analysis of a single wall configuration.
To generalise it, a larger set of walls should be studied, in particular walls with larger shear
deformations should be included.

Figure 5.13e shows the comparison between the numerical and experimental results of the
∆s/∆f -ratios. For all three methods of evaluating shear displacements that are included in
the figure (indirect, original and Hiraishi’s method) the experimentally determined ratios of
∆s/∆f are larger than the numerically determined ratios. In particular the indirect method
applied to the experimental data led to ∆s/∆f -ratios that were significantly larger than any
of the other ratios. The large variability among the experimental results renders it difficult
to compare the experimental and numerical results in detail. One can, however, observe that
for both experimental and numerical measurements the ∆s/∆f -ratios evaluated according to
the original method tend to remain constant with increasing top displacements whereas the
∆s/∆f -ratios evaluated according to Hiraishi’s method or the indirect tend to slightly drop
off.

Cyclic analysis of WSH3
In the previous section it was shown that the numerical results led to slightly smaller ratios
of shear to flexural displacements than the experimental results. A possible reason for the
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discrepancy between numerical and experimental results could be the type of loading: While
the analysis was conducted as pushover analysis the physical test units were subjected to cyclic
loading with cycles of increasing amplitude. Hence we need to investigate whether cyclic
loading tends to increase the shear displacements. For this purpose the different contributions
to shear strains which were described in Equation 5.2 are considered once again. These were
the contributions due to the mean axial strain εm, the horizontal strain εh and the strain in
the compression diagonal εd. To ease the reading Equation 5.2 is repeated here:

γ =
εm

2tanθ
+ εh · tanθ − 2εd

sin2θ

The mean axial strain εm is chiefly caused by flexural deformations; hence any variation in
εm will have similar effects on the magnitude of the shear and flexural deformations and will
therefore not affect the ratio ∆s/∆f . Whether the horizontal strain εh will be larger for cyclic
loading than for monotonic loading depends on the strain level in the shear reinforcement. If
the shear reinforcement remains elastic, i.e. if the wall has been capacity designed, the strains
in the horizontal reinforcement remain relatively small and therefore the difference between
monotonic and cyclic loading will be small. If the shear reinforcement yields, positive plastic
strains will accumulate and grow with the number of cycles since independent of the direc-
tion of the top displacement the shear reinforcement is always under tension. Hence, in this
case, the shear deformations will be larger if the wall is loaded cyclically than monotonically.
The last term in Equation 5.2 describes the effect of the strains in the compression diagonal
εd on the shear strains. The strains in the concrete compression diagonal will be larger for
cyclic loading than for monotonic loading since the compression struts tend to soften under
cyclic loading. The ratio of E-moduli of concrete under cyclic and monotonic loading are ap-
proximately 0.6− 0.72. For typical walls, however, the concrete compressive strains are quite
small when compared to the mean axial strains and their effects on the total shear strains are
probably not very large.

To sum up, considerations on the basis of Equation 5.2 show that shear displacements will
be larger for cyclic loading than for monotonic loading if the shear reinforcement yields. In
addition to the accumulation of plastic strains in the shear reinforcement, the softening of
the compression strut under cyclic loading might also contribute to this effect. For capacity
designed walls, however, the difference between the ratio of shear to flexural displacement for
cyclic and monotonic loading should be small. The wall WSH3 was capacity designed and

2Priestley et al. [2007] suggested to use a modular ratio of n = 10 when computing shear dis-
placements for cyclically loaded walls or columns. Typical modular ratios for monotonic loading are
n = 6 − 7. Therefore the ratio of E-moduli under cyclic and monotonic loading was estimated as
0.6− 0.7.
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displacements (b) for cyclic analysis; comparison of ∆s/∆f -ratios from pushover analysis and cyclic
analysis (c) and comparison of ∆s/∆f -ratios from cyclic analysis to experimentally determined
ratios (d).

hence it is expected that the ratio of shear to flexural displacements is similar for monotonic
and cyclic loading. This is confirmed by a cyclic analysis of the VecTor2 model of WSH3.
Figure 5.12 shows the good agreement of the numerical and experimental force-displacement
hystereses. The comparison of the ratios of shear to flexural displacements obtained for mono-
tonic and cyclic loading are shown in Figure 5.14c. The ratios obtained for cyclic loading are
indeed slightly larger than those for monotonic loading but the difference is so small that
it cannot be considered relevant for design purposes. Hence, for design purposes the shear
displacements of capacity designed walls could also be estimated on the basis of a pushover
analysis. The objective of the following section is to study walls under monotonic and cyclic
loading which have not been capacity designed.
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b) Analysis of test units B3 and B4.

Among the PCA walls tested during Phase I, two specimens (B3 and B4) had the same cross
section and the same reinforcement layout. Specimen B4 was tested under monotonic loading
whereas B3 was subjected to cyclic loading; the latter was also included in the discussion in Sec-
tion 5.1.1. Specimen B3 failed due to fracture of longitudinal reinforcing bars; from ∆top > 4in
onwards until failure it was subjected to significant crushing and grinding of the web concrete.
It is supposed that this led to the increase in the ∆s/∆f -ratios for top displacements greater
than 4in as shown in Figure 5.1. Specimen B4 failed also due to fracture of longitudinal re-
inforcing bars. However, in contrast to specimen B3 crushing of the web concrete was not
observed for specimen B4. It is therefore expected that the ratio of shear to flexural displace-
ments is larger for specimen B3 than B4 in particular for ∆top > 4in. This is confirmed by
Figure 5.15b, which shows the comparison of the experimentally and numerically determined
ratios of shear to flexural displacements for specimens B3 and B4. Whereas the ∆s/∆f -ratios
of B3 increased continuously for ∆top > 4in, the ratios of B4 were approximately constant for
all imposed top displacements. This finding holds for both experimentally and numerically
determined ∆s/∆f -ratios. The comparison of the two specimens therefore shows, that the
ratios of shear to flexural displacements are of similar magnitude for cyclic and monotonic
loading as long as the shear transfer mechanism does not degrade significantly (i.e. no yielding
of the horizontal reinforcement and no crushing or grinding of the web concrete). If the shear
transfer mechanism degrades, shear deformations constitute a larger part of the total displace-
ments when the wall is subjected to cyclic loading than to monotonic loading. VecTor2 is
hence capable of reflecting the difference between monotonic and cyclic loading on the ratio
of shear to flexural deformations. However, VecTor2 predicts smaller ratios than those derived
from experimental evidence. Figure 5.15a shows that the numerical model overestimated the
loading stiffness. Possible reasons for the difference between numerical and experimental re-
sults are of course not only related to the numerical model but could also be related to biased
experimental measurements.

5.2.3 Response2000: A section analysis program based on the MCFT

The second program whose capabilities of computing shear displacements were assessed was
Response2000. Response2000 is a section analysis program for RC members subjected to ax-
ial force, moment and shear [Bentz, 2000]. It is primarily based on a publication by Vecchio
and Collins [1988] that outlined the procedure for section analysis of RC beams based on the
MCFT. According to this procedure the beam is considered as a number of concrete and rein-
forcement layers. These layers are analysed individually but strain compatibility and equilib-
rium requirements are satisfied. For the strain compatibility the assumption of plane sections
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hystereses of test unit B3 (a); comparison of numerically and experimentally determined ratios of
shear to flexural deformations for specimens B3 and B4, which were identical in their configuration
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remaining plane is made. Equilibrium requirements are split into two aspects: First, the sum
of the stresses of all layers must be in equilibrium with the global axial force, bending moment
and shear force. Second, the shear stress variation over the depth of the concrete section is
derived by analysing a second section of the beam which is at a small distance (approximately
one sixth of the beam depth) from the first section. Bentz [2000] improved the approach by re-
ducing the distance of the two sections to zero and using the derivative of the stiffness matrix.
The shear force is then computed by integrating the shear stresses over the section.
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Figure 5.16. Response2000: Clipping of the active shear forces in Response2000 for a simply sup-
ported beam (a) and a cantilever wall (b).

Since Response2000 is actually a section analysis program, it computes the member response
by integrating over the deformations of several sections. To do so, assumptions on the load
transfer mechanism in the support regions are required. Bentz [2000] proposed that "within a
distance d from a point load and d from a support there are other support mechanisms that
mean the entire load is not supported in a sectional mode". He names direct strut action and
clamping from the load and the support as mechanisms which can enhance the capacity of the
member in these regions. To account for these other mechanisms Bentz clipped the shear force
diagram at distance d from a load or a support. He introduced a linear transition from zero
shear at the section of the support or load to the actual shear force at the section at distance
d (Figure 5.16). Both the capacity check as well as the computation of the shear deformations
are based on the clipped shear force diagram; the bending moment diagram remains unaltered.
The assumed value for d could not be found neither in his thesis [Bentz, 2000] nor in the man-
ual to Response2000 [Bentz, 2001] but shear displacements obtained from the Response2000
analysis of uncracked members suggest that d is taken as 0.85lw. For beams the length of the
clipped regions diminishes with respect to the total beam length (Figure 5.16a). Hence, it is
expected that for beams the effect of the clipping on the computation of the total shear dis-
placements is relative small. For cantilever walls, however, the length of the clipped regions to
the overall length can be large. For a cantilever wall with a shear span ratio of 3.0, for example,
only 43% of the wall height lie outside the clipped regions (Figure 5.16b), whereas for a wall
with a shear span ratio of 2.0 this ratio reduces even to 15%. Hence, in the latter case the
shear displacements of 85% of the wall length are computed on the basis of the approximate
clipped shear force profile. Experimental evidence has shown that the major part of the shear
displacement of RC cantilever walls occurs in the plastic hinge region. With Response2000,
however, shear displacements in the plastic hinge region (which lies within the clipped region)
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are only computed in an approximate way. This is no criticism on Response2000 but any
program based on section analysis will have to make some assumptions on the behaviour in
the plastic hinge zones. A further approximation of the computation of the shear deforma-
tions in Response2000 relates to the computation of the average shear strain of a section. In
Section 5.2.2 it was discussed that Response2000 computes the average shear strain of a section
as the average of the shear strains within the central 45% of the wall length (this average shear
strain was called γm,0.45). From the comparison of different values of γ it was found that – at
least for the wall WSH3 that is considered here – the approach of computing the average shear
strain that is adopted in Response2000 yields very similar results to other methods.

Analysis of test unit WSH3

In the following the wall WSH3 is analysed using the program Response2000 and the results are
compared to the experimental data as well as the results obtained from the VecTor2 pushover
analysis. Figure 5.17 shows the comparison of the force-displacement envelope obtained with
Response2000 to the experimentally determined force-displacement hysteresis. The agreement
of the predicted force capacity is remarkably good. Response2000 underestimates, however,
the displacement capacity by about a quarter (flexural displacements due to strain penetration
into the foundation are included).
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Figure 5.17. Test Unit WSH3: Comparison of Response2000 analysis results to the experimental
force-displacement hysteresis.

Figure 5.18 shows the comparison of the ratios of shear to flexural displacements obtained
from Response2000, VecTor2 and the experiment. For the VecTor2 analysis the shear dis-
placement based on γm,0.45 is shown; the shear displacements obtained from Response2000
and VecTor2 were therefore evaluated according to the same method. The shear to flexural
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Figure 5.18. Test Unit WSH3, Response2000 and VecTor2 analyses: Ratio of shear to flexural
displacements obtained experimentally and numerically. For the Response2000 analysis the flexural
displacements were computed once with (label ’Response2000’) and once without accounting for
strain penetration into the foundation (label ’Response2000 (NSP)’).

displacements from Response2000 are computed twice; once including flexural displacements
due to strain penetration into the foundation and once neglecting such displacements. In Vec-
Tor2 the reinforcement was modelled as smeared and hence the base rotation due to strain pen-
etration into the foundation was not captured. The Response2000 analysis results for which
strain penetration was not considered agreed remarkably well with the VecTor2 results. It
is, however, also noteworthy that the ratio of shear to flexural displacements obtained from
Response2000 analysis dropped continuously and did not level off for larger displacement
ductilities as the results from the VecTor2 analysis and experimental results did. As noted
previously for the results of the VecTor2 analysis, the numerically determined ratios tend to
be smaller than the experimentally determined ratios. Only for µ∆ < 2.0 equal the numerical
ratios the experimental ratios according to the original method and the method by Hiraishi.

Analysis of the rectangular, barbelled and flanged walls in the database
The fact that Response2000 analysis tends to lead to smaller ratios of shear to flexural displace-
ments than what is obtained from experiments was also confirmed when a larger set of walls
was considered. Figure 5.19 shows the comparison of the numerical and experimental ratios
for the PCA walls of Phase I and II [Oesterle et al., 1976, 1979] and the walls tested by Dazio
et al. [1999] and Hines et al. [1999, 2002b]. The computation of the experimental ratios was
outlined in Appendix A. The ratios from the Response2000 analysis are average ratios for top
displacement between twice the experimentally determined yield displacement and the dis-
placement at which the analysis stopped because a strain limit was exceeded. For a number of
specimens the Response2000 analysis stopped before twice the yield displacement was attained
and hence these data points were not included in Figure 5.19; the omitted specimens were:
B6, B7, B9 and F2 from PCA, Phase II and Hines’ test units 2B and 3B. For all specimens the
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Figure 5.19. Comparison of ratios of shear to flexural displacements obtained from experiments
and Response2000 analysis.

Response2000 analysis predicted a smaller ∆s/∆f -ratios than obtained from the experimental
results. In average the numerical ratios were about 50% smaller than the experimental ratios.

5.2.4 Discussion of the numerical results

The two programs that were assessed regarding their capability of computing shear displace-
ments were VecTor2 and Response2000. Both programs are based on the modified compres-
sion field theory but VecTor2 is a two-dimensional finite element program and Response2000
a section analysis program. VecTor2 allows analysing structural walls along their symme-
try axis for imposed displacements that can be either monotonically increasing or quasi-static
cyclic with increasing amplitudes. Two wall configurations were analysed for monotonic and
cyclic loading; the two configurations corresponded to Dazio’s wall WSH3 and Oesterle’s wall
B3. The two test units differed regarding the evolution of shear displacements with ductility
demand: For test unit WSH3 the ratio of shear to flexural displacements was fairly stable for
the entire ductility range whereas it increased with increasing top displacements for B3. It is
assumed that the increase of the ratio of shear displacements was associated with the degrada-
tion of the web concrete. A test unit of the same configuration as unit B3 was tested under
monotonic loading and this wall B4 showed a stable ratio of shear to flexural displacements.
Hence, the test units B3 and B4 were used to assess whether VecTor2 is capable of capturing
the difference in behaviour between monotonic and cyclic loading. The findings from the
VecTor2 analysis were as follows:



134 Katrin Beyer, Alessandro Dazio, M. J. Nigel Priestley

• For WSH3, which shear deformations were limited, VecTor2 predicted the ratio of
shear to flexural displacements fairly accurately (considering the significant variation
of the experimentally determined ratios depending on the method of evaluation). For
test units B3 and B4, which were not capacity designed, the experimentally determined
∆s/∆f -ratios were relatively large. For these test units VecTor2 underestimated the
shear deformations. It did, however, capture the difference between the behaviour of
the wall under monotonic and cyclic loading.

• Two fundamentally different methods of evaluating the shear displacements of numer-
ical models were compared. The first group of methods used virtual instruments to
compute shear displacement in the same way as they are computed for experimental
measurements. The second group of methods were based on the shear strains of the
finite elements. The two methods were compared for the analysis of WSH3. It showed
that all results with the exception of the original method led to similar ratios. The orig-
inal method led to ratios of shear to flexural displacements which were larger than the
ratios obtained from the other methods.

To summarise, VecTor2 is suited to predict shear displacements of walls for which the shear
displacements constitute a relatively small portion of the total displacements (test unit WSH3).
For walls in which shear deformations contribute significantly to the total wall deformation
the shear displacements were underestimated (test units B3 and B4) although the general shear
behaviour such as the increase in shear displacements for cyclic loading were well captured.
The sources for this discrepancy should be investigated further.

Since Response2000 is a section analysis program it is required to integrate the results of the
section analysis over the member length in order to determine the member response. As a
consequence, Response2000 cannot compute rigorously the shear deformations in regions in
which load transfer mechanisms such as direct strut actions contribute significantly to the
shear capacity (e.g. plastic hinge zones). In these regions assumptions regarding the distri-
bution of the shear forces on the different load transfer mechanisms have to be made and
shear deformations can only be estimated in an approximate manner. Since a large portion of
the shear deformations of the considered structural walls originated from deformations in the
plastic hinge zone this is a significant short-coming when predicting the ratio of shear to flex-
ural displacements. All rectangular, barbelled and flanged walls included in the database were
modelled with Response2000. For all walls were the ratios of shear to flexural displacements
computed with Response2000 smaller than the ratios determined from the experimental re-
sults. It is therefore concluded that for structural walls Response2000 is not very well suited
for the assessment of shear deformations. The shear force capacity of a structural wall, how-
ever, can be very well assessed with Response2000 since it is typically smallest at a section at
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some distance to the support for which direct strut actions no longer contribute to the shear
capacity. For these sections Response2000 is well suited for assessing the shear behaviour.

5.3 Summary and conclusions

The objective of this chapter was to identify methods that have the capability of estimating the
ratio of shear to flexural deformations of RC structural walls. The problem was approached in
two different ways: First, it was attempted to develop an empirical relationship for the ratio of
shear to flexural deformations (∆s/∆f ). Second, analyses with two computer programs were
carried out in order to assess their capability of modelling the shear deformations. To develop
the empirical equation and to validate the analysis results, a small database of quasi-static cyclic
tests of structural walls was set up.

When developing an empirical relationship for the ratio of ∆s/∆f it was sought to identify
parameters that are related to shear displacements. The parameters were first classified into
stress and strain parameters and of each group one parameter was chosen that seemed to lead
to the best correlation with the experimental data. These two parameters were then linked in
an empirical relationship for the ratio of ∆s/∆f . However, despite the choice of the best fit-
ting parameters, the correlation between the predicted and observed ratios of shear to flexural
displacements is relatively weak. Part of the variability can be certainly linked to deficiencies
of the empirical model but some variability is most likely also associated with uncertainties re-
lated to the experimentally determined shear displacements. Sources of these uncertainties can
be the choice of the method for evaluating shear displacements, the subdivision of measure-
ments (i.e. the location of the devices on the test unit) and the quality of the data. Although
the herein developed empirical equation is certainly not the last word on the subject of shear
displacements of structural walls, it will be used in Chapter 6 when carrying out plastic hinge
and wide-column analysis of TUA and TUB. It should be noted that this empirical approach
for estimating the ∆s/∆f -ratios is only applicable to walls whose shear transfer mechanism is
not degrading significantly under cyclic loading. For walls whose shear reinforcement is yield-
ing or whose concrete compression struts are softening considerably, the evolution of shear
displacements with top displacements is strongly dependent on the loading history. For these
walls the ratio of shear to flexural displacements is typically not constant over the ductility
range and hence the developed empirical equation cannot be applied.

In a second phase the capability of the computer programs VecTor2 and Response2000 of
predicting shear displacements was assessed. The two programs were chosen because both
are based on the modified compression field theory. The scope of the assessment of the two
programs was that of a preliminary investigation. The purpose of the study was to assess the
suitability of the two programs for estimating the ratio of shear to flexural displacements for
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structural walls. If the programs have this capability, they could be used for either adding data
points in the regions of the empirical study where data points are missing or for predicting
directly the ratio of shear to flexural displacements for a particular wall configuration. Note
that for the moment the latter is limited to walls which are loaded along the symmetry axis.
From the analysis results it was concluded that Response2000, which is a section analysis
programs, is not suited for estimating the ratio ∆s/∆f for structural walls with shear span
ratios as small as 2.0 since the load transfer mechanism in the plastic hinge region cannot be
accounted for properly. The program VecTor2 led to promising results although for one of
the two analysed wall configurations it underestimated the ratio ∆s/∆f considerably. A more
detailed study is required to detect possible causes; this should also include a reassessment of
the accuracy of the experimentally determined ratios ∆s/∆f .



6. NUMERICAL MODELS OF TUA AND TUB

In Chapter 2 four different types of structural analysis models of U-shaped walls were re-
viewed. These were the plastic hinge model, the stick model, the wide-column model and
shell element models. The objective of this chapter is (i) to apply two of these models to Test
Units A and B, (ii) to compare the predicted behaviour to the experimental results, and (iii) to
formulate modelling guidelines for these two types of models when applied to U-shaped walls
that respond under lateral loading in the inelastic range. The two chosen models are the plastic
hinge model (Section 6.1) and the wide-column model (Section 6.2). The plastic hinge model
was selected for the sake of its simplicity and its ability of estimating displacement capacities
on the basis of empirical quantities (see also Chapter 4). The wide-column model was chosen
because unlike a stick model it represents the U-shaped wall as a three-dimensional structure
while it is still relatively simple and easy to set up when compared to shell or solid element
models. The chapter concludes with a comparison of the merits and drawbacks of the two
types of models (Section 6.3).

6.1 Plastic hinge analysis of TUA and TUB

The plastic hinge analysis (PHA) consists of two analysis steps: First, a moment-curvature
relationship of the considered cross section is derived (Section 6.1.1). In a second step this
moment-curvature relationship is transformed into a force-displacement relationship (Sec-
tion 6.1.2). One of the key functions of the PHA is the estimation of displacement capacities.
Based on the quantities studied in Chapter 4 and estimates for the ratio of shear to flexural
displacements (Chapter 5) the displacement capacities of TUA and TUB for the different di-
rections of loading are computed and the main sources for discrepancies between experimental
and numerical results are identified. In the last section (Section 6.1.3) the differences between
the predicted and observed moments for bending in the diagonal direction are investigated in
more detail.
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6.1.1 Moment-curvature relationships

The moment-curvature analyses of the open wall sections were carried out using the zero-
length fibre element of the program "Opensees" [Mazzoni et al., 2005]. The U-shaped sections
were subdivided into approximately 260 concrete and reinforcement fibres. The concrete
area was grouped into different zones depending on the degree of confinement. The material
behaviour of the concrete fibres was modelled using the stress-strain relationship by Mander
et al. [1988b] model. The approach by Mander et al. [1988b] was also used for estimating the
strength and strain capacity of confined concrete regions. Mander’s approach is known to
underestimate the actual strain capacity (Section 2.5.1); for the computation of the moment-
curvature relationship the concrete strain capacity was hence increased by a factor of 1.3,
which is the lower limit of the factors suggested by Priestley et al. [2007]. For an increase in
strain capacity of the confined concrete by 30%, the ultimate curvature for all directions of
loading was controlled by the maximum reinforcement strain. The reinforcement behaviour
was modelled using the Giuffré-Menegetto-Pinto model [Menegotto and Pinto, 1973] with the
default parameters in Opensees. Example of stress-strain relationships for reinforcement and
confined concrete are shown in Figure 6.1.

e) f)

Figure 6.1. TUA and TUB: Material models for section analysis (a-d, as an example for the concrete
materials the stress-strain curves for the flange ends are shown) and the subdivision of the sections
into concrete and reinforcement fibres (e and f, the different shades of grey indicate the areas with
different concrete properties).
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Figures 6.2a and b show the moment-curvature relationships of TUA and TUB for the five
different directions of loading. The analyses were carried out neglecting any tensile strength
of the concrete. All curvatures and moments were plotted as positive values. For each direc-
tion of loading, the ultimate curvature was determined as the curvature that first exceeded half
the strain capacity of the D12 reinforcing bars (Table 3.2); judging from the experimentally
determined strain values at failure, this criteria was found to be the most appropriate (Sec-
tion 4.2). The monotonically increasing curves show that crushing of the confined concrete
did not occur prior to reaching the ultimate strain capacity of the reinforcing bars. Had the
strain capacity of the concrete been based on Mander’s approach neglecting the amplification
factor suggested by Priestley et al. [2007] this would have not been the case for Direction E
of TUB: a sudden drop in the moment capacity at about ϕ = 0.04m−1 indicated that the
confined concrete at the flange end that was in compression had reached its strain capacity.

0 0.02 0.04 0.06 0.08
0

500

1000

1500

2000

Curvature [1/m]

M
om

en
t [

kN
m

]

 

 
TUA

a)

Pos. A, B
Pos. C
Pos. D
Pos. E, H
Pos. F, G

0 0.02 0.04 0.06 0.08
0

500

1000

1500

2000

Curvature [1/m]

M
om

en
t [

kN
m

]

 

 
TUB

b)

Pos. A, B
Pos. C
Pos. D
Pos. E, H
Pos. F, G

Figure 6.2. TUA and TUB: Moment-curvature relationships for the five different directions of
loading that were examined during the experimental testing.

An important quantity when transforming the moment-curvature relationship into a force-
displacement relationship is the nominal yield curvature, which is the threshold between the
elastic and the inelastic deformation. The nominal yield curvature is computed according to
Equation 4.2:

ϕy = ϕ′y
Mn

M ′
y

where ϕ′y is the curvature at first yield and Mn/M ′
y the ratio of nominal to first yield mo-

ment. In the following paragraphs the first yield curvatures and ratios of nominal to first
yield moment obtained from the moment-curvature analyses are compared to experimentally
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determined values. Differences between the experimental and numerical values and possible
reasons are identified and discussed:

First yield curvature For the moment-curvature analysis the curvature at first yield ϕ′y was
determined as the curvature for which one of the corner D12 bars first exceeded a
strain of fy/Es. In Table 6.1 the values of ϕ′y from the analysis are compared with the
experimentally derived yield curvatures (Section 4.1). In all cases the section analysis
underestimated the experimental curvature at first yield. There are a number of possible
explanations: To determine the instant of first yield in the experiments, the strains
over a height interval of 200mm were averaged (Section 4.1). The onset of yielding
was determined as the instant when the average strains first reached the yield strain
of the reinforcement. Hence, at this moment, the reinforcing bars would have already
yielded in cracks and, therefore, it is likely that the experimental curvatures at first yield
were biased high. A further discrepancy was introduced accidentally by evaluating the
experimental yield strains on the basis of the measured Es-moduli (195GPa and 192GPa
for the D12 bars of TUA and TUB, respectively). The section analyses were, however,
carried out assuming Es = 200GPa. Hence, the experimentally determined first yield
curvatures were slightly overestimated.

Ratio of nominal to first yield moment (Mn/M ′
y) For both experimental and numerical re-

sults the first yield moment was defined as the moment at the instant of the first yield
curvature. For the moment-curvature analysis the nominal moment capacities were
defined as the moment for which one of the corner D12 bars first exceeded a strain of
1.5%. For the experimental results, the nominal moment capacities were computed
as average of the peak moments of cycles with µ∆ ≥ 2.0. The fact that, for the
experimental data, the first yield curvatures were overestimated, was also reflected in
Mn/M ′

y-ratios which were lower than the numerically derived ratios (Table 6.2). The
most significant difference between TUA and TUB concerned the experimental ratios
Mn/M ′

y at Positions E and F. While for TUB the ratios were about the same as for the
other directions of loading they were significantly larger for TUA. It was not possible
to identify the exact cause for this observation. It is, however, possible that different
crack spacings contributed to this effect. For bending of TUA in the diagonal direction
only very few cracks opened up initially. The deformation was concentrated in few
cracks close to the base and therefore the first yield moment was relatively low. This
led in return to a large ratio of Mn/M ′

y. For the principal directions of loading the
crack distribution during the initial cycles was slightly more even but it is not certain
whether the crack pattern alone qualifies as an explanation.
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The discrepancy between the nominal yield curvatures ϕy obtained from experiments and
analyses will be the product of the discrepancies of the first yield curvature ϕ′y and the ratio
Mn/M ′

y (Table 6.31). In some cases the error in the prediction of the first yield curvature
and the ratio Mn/M ′

y were of opposite sign and therefore the nominal yield curvature was
predicted relatively accurately (TUA: Positions D and F, TUB: Positions: D, E and F). Even
if the errors did not cancel out the overall agreement between numerical and experimental
nominal yield curvatures is quite satisfactory; errors of 20% seem acceptable.

Table 6.1. Comparison of the curvatures at first yield obtained from experiments and moment-
curvature analysis.

TUA TUB
Exp. Analysis Difference Exp. Analysis Difference

[1/km] [1/km] [%] [1/km] [1/km] [%]
Position A, B 2.70 2.40 −11 2.30 2.22 −3

Position C 3.47 3.20 −8 4.40 3.38 −23

Position D 3.10 2.80 −10 3.16 2.72 −14

Position E 2.30 2.22 −3 2.73 2.09 −23

Position F 2.43 2.23 −8 2.36 1.95 −17

Table 6.2. Comparison of ratios Mn/M′
y obtained from experiments and moment-curvature anal-

ysis.

TUA TUB
Exp. Analysis Difference Exp. Analysis Difference

[-] [-] [%] [-] [-] [%]
Position A, B 1.23 1.11 −10 1.20 1.13 −6

Position C 1.21 1.21 1 1.18 1.20 2

Position D 1.09 1.21 11 1.12 1.21 8

Position E 1.38 1.34 −3 1.11 1.40 26

Position F 1.23 1.33 8 1.16 1.43 23

The moment-curvature analysis results that were shown in Figure 6.2 were carried out in a
displacement-controlled mode. That means that for example for the diagonal direction the
sections were forced to have neutral axes perpendicular to the diagonal of the section. It is
believed that this reflects best the imposed displacement in the diagonal direction during the
experimental testing. As an alternative to the displacement-controlled analysis the pushover

1Note that the same results but in terms of the proportionality constant K1 rather than the actual
curvature were presented in Table 4.1 in the columns "TUA Exp." and "TUB Exp.".



142 Katrin Beyer, Alessandro Dazio, M. J. Nigel Priestley

Table 6.3. Comparison of nominal yield curvatures from experiments and moment-curvature anal-
ysis.

TUA TUB
Exp. Analysis Difference Exp. Analysis Difference

[1/km] [1/km] [%] [1/km] [1/km] [%]
Position A, B 3.32 2.66 −20 2.76 2.51 −9

Position C 4.16 3.87 −7 5.19 4.06 −22

Position D 3.38 3.39 −0 3.54 3.29 −7

Position E 3.17 2.97 −6 3.03 2.93 −3

Position F 2.99 2.97 −1 2.74 2.79 2

analysis could be conducted in a force-controlled mode for which the resultant moment is
perpendicular to the diagonal. Even if it is believed that the displacement-controlled mode is
more appropriate, the results of the moment-curvature analysis in the force-controlled mode
are included here. Figures 6.3a and b show the moment-curvature relationships in the diagonal
direction for the two types of moment-curvature analysis. The plots show that the type of
analysis has relatively little influence on the moment capacities although the orientation of
the neutral axes (Figures 6.3c and d) differs considerably.

6.1.2 Force-displacement relationships

In this section the PHA method is applied to TUA and TUB. Details on the moment-
curvature analysis were given in the previous section (Section 6.1.1). The discussion of the
force-displacement relationship is divided into a section on the elastic branch (Section 6.1.2b)
and a section on the inelastic branch of the pushover curve (Section 6.1.2c). To transform
the curvatures into displacements estimates on the contribution of the shear displacements are
required; these are derived in Section 6.1.2a according to the empirical approach developed in
Chapter 5.

a) Shear deformations.
For the following plastic hinge calculations the ratio of shear to flexural displacements is
estimated according to the newly developed empirical equation which was presented in
Section 5.1.5 (Equation 5.9). The predicted ∆s/∆f -ratios for TUA and TUB were given in
Table 5.1. Since the walls are capacity designed, it is assumed that the ratio of shear to flexural
displacements remains approximately constant over the entire range of the displacement
demand. When the sections are analysed for diagonal bending the ∆s/∆f -ratios of the web
and the two flanges need to be reduced to a single ratio of the shear displacements to the
flexural displacements. As an estimate the ∆s/∆f -ratios of the flanges and the web are



Seismic design of torsionally eccentric buildings with U-shaped RC Walls 143

−0.06 −0.04 −0.02 0 0.02 0.04 0.06

−2000

−1500

−1000

−500

0

500

1000

1500

2000

Curvature [1/m]

M
om

en
t [

kN
m

]

 

 

Pos. E

Pos. F

TUA: Diagonal cycles
a)

Displ−contr.

Force−contr.

−0.06 −0.04 −0.02 0 0.02 0.04 0.06

−2000

−1500

−1000

−500

0

500

1000

1500

2000

Curvature [1/m]

M
om

en
t [

kN
m

]
 

 

Pos. E

Pos. F

TUB: Diagonal cycles
b)

Displ−contr.

Force−contr.

c)

 

 

Pos. E

Pos. F

Displ−contr.

Force−contr.

d)

 

 

Pos. E

Pos. F

Displ−contr.

Force−contr.

Figure 6.3. TUA and TUB: Moment-curvature relationships for bending in the diagonal direction
for displacement- and force-controlled pushover analysis (a,b) and orientation of the neutral axes
for the two types of analyses (c,d).
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The ratio ∆s/∆f for the flanges is approximated by the ratio of the West flange at Position
E since the West flange carries the largest part of the load in the direction of the flanges. At
Position F, the forces applied to the two flanges are of similar magnitude and hence ∆s/∆f

is computed as the average ratio of the East and West flange. The following ( ∆s

∆f
)diag ratios

result: TUA: Position E: 0.44, Position F: 0.26; TUB: Position E: 0.45, Position F: 0.28.

b) Yield displacements.
Nominal yield displacements are used to express the displacement demand or capacity in terms
of displacement ductility and are in this regard an important design parameter. Commonly,
the estimates for the nominal yield displacements are based on the assumption of a linear
curvature profile with a nominal yield base curvature that is derived from section analysis
(Section 2.1.1). A linear curvature profile tends to overestimate the flexural displacements in
the upper part of the wall and the discrepancy is commonly assigned to account for shear
displacements and flexural displacements due to strain penetration into the foundation. In
the following, this simple approach is replaced by a more complex approach that attempts to
break down the nominal yield displacement into its actual components; these are (i) flexural
deformation due to bending of the wall, (ii) deformations due to strain penetration into the
foundation and (iii) shear deformations. The nominal yield displacement is hence predicted
using an equation that differs from the equation by Hines (Equation 2.4) only with regard to
the factor κ:

∆y = ϕ′y
Mn

M ′
y

· (κ

3
H2 + LspyH) · (1 +

∆s

∆f
) (6.2)

The factor κ is a newly introduced reduction factor that accounts for the fact that at yield
the wall is typically not cracked over its entire height but cracks concentrate in its lower part
whereas upper parts might still be uncracked. Calculations on the basis of a linear curvature
profile – corresponding to a constant stiffness along the wall height – might therefore
overestimate the flexural displacement at first yield. To determine the flexural displacement at
first yield it might be more appropriate to assume a curvature profile of a wall whose bottom
part is cracked and whose upper part is uncracked. For the same base curvature ϕ′y the top dis-
placement of the partially cracked wall can be expressed as the ratio κ of the fully cracked wall:

κ = α + (1− α) · ( h3
cr

H3
− 3h2

cr
H2

+
3hcr

H
) (6.3)

where α is the ratio of the cracked to the uncracked flexural wall stiffness (EI II/EI I). The
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stiffness of the uncracked wall section EI I was taken as the gross sectional stiffness and the
stiffness of the cracked section EI II was computed as M ′

y/ϕ′y. The height hcr up to which the
wall is cracked was determined as the larger value of the wall length and the height at which
the moment equals the cracking moment Mcr; the wall length was used as a lower bound for
hcr in order to account for the effect of inclined shear cracks. The cracking moment Mcr is
determined from moment-curvature analysis including the tensile strength of the concrete.

Table 6.4 benchmarks the analytical flexural displacements of a partially cracked and a fully
cracked wall against the flexural displacements obtained from integrating the experimentally
determined curvature profile at first yield. In order to draw conclusions regarding the best as-
sumptions on the curvature profile, both analytical flexural displacements (partially and fully
cracked) were evaluated for the experimentally determined base curvature. Hence, the an-
alytical and experimental cases differ only regarding the curvature profile whereas the base
curvature is in all three cases the same. For almost all directions of loading (exceptions are
Position A and D of TUB) the displacement on the basis of the partially cracked profile ap-
proximates the experimentally determined flexural displacement at first yield better than the
displacement on the basis of the fully cracked profile. Assuming a partially cracked wall seems
therefore the most suitable approximation when the flexural displacements at first yield are
determined.

Table 6.4. Comparison of the experimental and analytical flexural top displacements at first yield
(excluding the displacement due to strain penetration into the foundation); the analytical displace-
ments were computed for the experimentally determined base curvature.

TUA TUB
Curv. profile Fully Partially Curv. profile Fully Partially

integrated cracked cracked integrated cracked cracked
[mm] [mm] [mm] [mm] [mm] [mm]

Position A, B 5.9 10.1 8.0 8.1 8.6 6.9

Position C 6.7 10.1 7.8 10.0 12.8 10.0

Position D 8.5 9.0 8.0 9.0 9.2 8.5

Position E 4.6 6.7 6.1 6.7 7.9 7.4

Position F 6.3 7.0 6.7 6.4 6.8 6.7

Having evaluated different possible sources of discrepancies between experimental and ana-
lytical results (i.e. first yield curvature, ratio Mn/M ′

y, curvature profile and ratio of shear to
flexural displacements), the nominal yield displacements of TUA and TUB were computed.



146 Katrin Beyer, Alessandro Dazio, M. J. Nigel Priestley

The results are summarised in Table 6.5 and compared to the experimentally determined nom-
inal yield displacements. For clarification the main assumptions for the computation of the
nominal yield displacements are repeated here:

• The curvature at first yield ϕ′y and the ratio Mn/M ′
y were obtained from section anal-

ysis with ft = 0MPa.

• The wall remained uncracked in the upper part and hence the factor κ was introduced.
The factor κ describes the flexural displacement ratio of a partially cracked to a fully
cracked wall. It was derived from a section analysis with ft > 0MPa.

• The yield penetration length Lspy was estimated as 0.011dbfy which is the approximate
mean value of the observed values (Section 4.3). The strain penetration length was
smaller than what is typically observed because the foundation was prestressed hori-
zontally.

• The ratios of shear displacement to flexural displacement ∆s/∆f were estimated fol-
lowing the new empirical equation developed in Section 5.1.

Table 6.5. Comparison of the nominal yield displacements obtained from the experiments and
from the section analysis.

TUA TUB
Exp. Analysis Difference Exp. Analysis Difference
[mm] [mm] [%] [mm] [mm] [%]

Position A, B 10.4 11.5 10 13.5 11.2 −17

Position C 9.8 11.6 19 12.7 12.3 −3

Position D 13.0 12.1 −7 15.0 12.1 −19

Position E, H 8.8 12.3 40 12.7 13.3 5

Position F, G 10.5 11.1 5 12.1 10.2 −15

The discrepancy between analytical and experimental values vary strongly between the dif-
ferent directions and test units. The largest error is obtained for Position E of TUA. It was
chiefly caused by overestimating the flexural displacement despite introducing the factor κ. In
other cases, e.g. the yield displacement of TUB at Position C, the small error of just 3% must
not stimulate the impression of a "perfect" match between analysis and experiment but the
small error was caused by the lucky combination of over- and underestimating different com-
ponents of the yield displacement. Hence, the question poses whether the obtained estimates
of the nominal yield displacement are any better than those obtained from the simple estimate
according to Equation 2.2 (see first paragraph of this section). In Figure 6.4 the results from
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both approaches are plotted against the experimentally obtained nominal yield curvatures. For
TUA the agreement with the experimental values is indeed of similar kind: While the simple
approach (linear curvature profile) tends to underestimate the experimentally determined yield
displacements, the here introduced more elaborate approach generally overestimates the nom-
inal yield displacements. For TUB, however, the agreement is improved if the components
are predicted one-by-one. This can be mainly traced back to the curvature profile at first yield
which itself is in some cases already close to the linear profile, therefore reducing the mar-
gin which could account for displacements due to shear deformation and strain penetration.
The simple approach hence underestimates the actual nominal yield displacements. One may
therefore conclude that the simple approach yields in satisfactory results if the wall section at
first yield is not excessively cracked and if the shear deformations are not larger than for typi-
cal rectangular walls. If one of the two conditions is not fulfilled the simple approach tends to
underestimate the actual yield displacements.

2 4 6 8 10 12 14

2

4

6

8

10

12

14

∆
y
 from experiment [mm]

∆ y f
ro

m
 a

na
ly

si
s 

[m
m

]

 

 

TUA: ∆
y

a)

Predicting components

Simple approach

2 4 6 8 10 12 14

2

4

6

8

10

12

14

∆
y
 from experiment [mm]

∆ y f
ro

m
 a

na
ly

si
s 

[m
m

]

 

 

TUB: ∆
y

b)

Predicting components

Simple approach

Figure 6.4. TUA and TUB: Comparison of the analytically with the experimentally obtained nom-
inal yield displacements. Two types of different analytical approaches are included in the plot:
(i) predicting the single components of the yield displacements and combining these according
to Equation 6.2 and (ii) estimating the total displacement from a linear curvature profile (Equa-
tion 2.5).

c) Displacement capacities.
Once the nominal yield displacement is determined, the inelastic part of the force-
displacement relationship can be readily determined (Equation 2.6). The following assump-
tions were made:
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• The plastic hinge lengths were estimated according to Equation 2.12 which seems –
from comparison to experimentally derived plastic hinge lengths – suitable for assess-
ment tasks such as the prediction of test results. Note, however, that the component
of the plastic hinge length that accounts for strain penetration into the foundation was
reduced to half the value in Equation 2.12 since the foundation was prestressed hori-
zontally (see Section 4.3.3). The corresponding plastic hinge lengths for TUA and TUB
were summarised in the column Lph3,mod

∗ in Table 4.4.

• For all directions of loading the displacement capacity was determined as the capacity
for which the strain of a D12 reinforcing bar first reaches 0.5εsu. Note that this is not
absolutely correct since the limit of 0.5εsu in fact applies to the total excursion strain
and not to the tensile strain alone (Section 2.5). However, in PHA it is difficult to
combine compressive and tensile strains. Since the compressive strains are typically
small the resulting error is acceptable. Displacement limits dictated by the strain or
strength capacity of the concrete were not critical for computing the force-displacement
relationship; limits on the displacement capacity due to web crushing are discussed
towards the end of this section.

• The ratio of the shear to flexural displacements is assumed to be the same as at the onset
of yielding (Section 6.1.2a). They were estimated using the new empirical equation
presented in Section 5.1.

The force-displacement relationships which are based on the aforementioned assumptions will
be referred to as "assessment" curves since the objective was to remove any conservatism in
the prediction and to aim for expected values. In design, the objective is different in the re-
spect that one is interested in conservative estimates instead of mean estimates of the expected
displacement capacity. A standard procedure for estimating the design displacement capacity
with the PHA method is based on the following assumptions:

• The plastic hinge length is estimated as the maximum of the two equations for the plas-
tic hinge length that are given in Paulay and Priestley [1992] (Lph1 and Lph2 in Table 4.4).

• The displacement capacity is limited to the displacement for which the maximum ten-
sile strain reaches 0.6εsu. For ductile reinforcing bars the strain capacity is often esti-
mated as 10%. The ultimate displacement is hence linked to a maximum steel strain of
6% (note that this yields in approximately the same strain limit as for the assessment
curves since 0.5εsu equates to 6.3% and 6.4% for TUA and TUB, respectively).

• The shear displacements are typically accounted for by a nominal factor of 1.15 [Dazio,
2000], i.e. the ratio of shear to flexural displacements is estimated as 0.15.
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Figures 6.5 (TUA) and 6.6 (TUB) show the envelopes resulting from the "assessment" and
"design" PHA in comparison to the experimental force-displacement hystereses. Cycles of the
sweeping motions were omitted since it is not possible to carry out PHA for bi-directional
loading histories.

Computing displacement capacities using design estimates for plastic hinge length and shear
displacements yields ultimate displacements that are all smaller than the actually achieved dis-
placements. Hence, the experiments confirmed that the design equations yield safe estimates
of displacement capacities not only for rectangular but also for U-shaped walls. Apart from
the direction in that failure occurred it is not possible to quantify how close the actual dis-
placement capacities were approached. This is one of the disadvantages of subjecting a single
test unit to a bi-directional loading history instead of testing several specimens of the same
wall configurations under different directions of loading.

The following discussion focuses on the assessment case since test results for U-shaped walls
have not been compared to PHA results before and therefore it seems more appropriate to
focus on the prediction of expected values of displacement capacities rather than conservative
estimates. It is then possible to reduce these predicted capacities in order to introduce a safety
margin for design purposes. This can be done by either reducing the plastic hinge length (as it
has been done in the past) or by reducing the strain limit.

TUA failed at Position F during the cycles at µ∆ = 8.0. While the maximum imposed dis-
placement corresponds quite well to the predicted displacement capacity, the first rupture of
a D12 bar occurred much earlier (i.e. when passing µ∆

∼= 6.0 during the µ∆ = 8.0 cycle).
According to Park [1988] the displacement capacity should be defined as "that post-peak de-
formation when load has reduced by a small specified amount, or when the reinforcement
fractures or buckles, whichever occurs first". In the study here, buckling of reinforcement was
not considered as criterion for the definition of the ultimate displacement capacity. The PHA
overestimated the displacement capacity in the Direction F since fracture of the bars occurred
for displacements smaller than the derived ultimate displacement capacity. However, the dis-
placement at which failure occurred might have been also influenced by strain demands in
preceding cycles. In particular the large tensile strains in the D12 reinforcing bars at the flange
ends when loading to Position D at µ∆ = 8.0 (Table 4.2) might have reduced the displacement
capacity when loading in Direction F.

At Position E the predicted displacement capacity exceeds the imposed displacement demand.
This finding is in-line with the observation that at this position only two further D6 bars had
ruptured but none of the D12 bars. Nevertheless, the predicted displacement capacity would
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have probably slightly exceeded the true experimental capacity had the wall been pushed fur-
ther in this direction. Based on the strain limit for bar buckling by Restrepo (Section 2.5.2), the
PHA predicts that onset of buckling occurs at ∆ ≈ 63mm which is about the displacement
imposed at µ∆ = 7.0. However, buckling had already been observed at Position E during
the cycle at µ∆ = 6.0. Hence, for Position E, it is likely that also the displacement capacity
associated with bar fracture was slightly overestimated by the assessment curve.

TUB failed at the end of the sweeping motion with µ∆ = 6.0 (Position B) due to web crushing.
Hence, the reinforcement strain limits do not really apply when determining the displacement
capacity of TUB. However, from the degree of buckling of the D12 bars in the flange ends it
was assumed that the bars would have ruptured soon had the loading been continued (most
likely at Position E or F during cycles at µ∆ = 8.0). Whether the compressive strain capacity
of the concrete would have soon set a limit to the displacement capacity when loading in
Direction E is difficult to extrapolate from the experimental evidence. At Position E at µ∆ =
6.0 the flange end was in clear distress due to a slight outward movement of the flange end but
not due to excessive axial compression. The former effect can not be captured by moment-
curvature analysis. Moreover, determining displacement capacities on the basis of ultimate
compressive strains is most often related to large uncertainties; this is for two reasons: First,
estimates of the strain capacity of concrete are not as dependable as those for reinforcing bars.
One reason for this is that equations for the compressive strain capacity of concrete have
been derived for pure axial instead of combined axial-flexural loading (Section 4.2.1). Second,
empirical equations of plastic hinge length were typically calibrated to yield good estimates
of the displacement capacity if the reinforcing bar strain capacity was critical. In conjunction
with compressive strain limits of the concrete the displacement capacity estimates are less
reliable (Section 2.1.3b).

The limit on the displacement capacity due to crushing of the compression diagonal in the
web are included in Figure 6.7; shear capacities were computed according to the approaches by
Oesterle et al. [1984] and Paulay and Priestley [1992], which were summarised in Section 2.5.3.
According to Paulay and Priestley [1992] web crushing would have occurred already at µ∆ ≈
3.0. However, one needs to keep in mind that the equation by Paulay and Priestley [1992] is
explicitly intended for design and not for assessment purposes and it therefore seems natural
that it underestimates the actual capacity. The equation by Oesterle et al. [1984] was calibrated
with experimental data. The prediction by Oesterle et al. [1984] comes very close to the
force at which web crushing occurred although Hines and Seible [2004] claimed that for walls
with boundary elements the approach by Oesterle et al. [1984] yielded conservative results.
The reduced web thickness near the SE corner where web crushing finally occurred (tw was
reduced to ∼ 3cm in some parts of the web, Section 3.5.2) renders it difficult to judge on the
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Figure 6.5. TUA: Comparison of results of pushover analyses to experimental force-displacement
hystereses for loading parallel to the web (a), the flanges (b) and in the diagonal direction (c).
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Figure 6.6. TUB: Comparison of results of pushover analyses to experimental force-displacement
hystereses for loading parallel to the web (a), the flanges (b) and in the diagonal direction (c).
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accurateness of the predicting equations since the actual web crushing capacity would have
been reduced by the extensive spalling of the unconfined concrete (Section 2.5.3).

6.1.3 Moment capacities

The main discrepancy between the predicted force-displacement curves and the experimen-
tally determined hystereses, which were shown in Figures 6.5 (TUA) and 6.6 (TUB), does not
concern the displacement capacities but the moment capacities: At Position E and F for both
TUA and TUB the predicted moment capacities exceed the actual observed moments consid-
erably. The predicted moment-capacities in the diagonal directions are larger than in any of
the principal directions. Decomposing the predicted moments at Position E and F into the
components parallel to the principal axes shows that these are almost as large as for bending
in the principal directions. For TUA, at the nominal yield point, the NS-moment component
at Position E corresponds to 88% of Mn at Position C and the EW-moment component to
95% of Mn at Position A; at Position F the nominal moment is composed of 85% of Mn at
Position D and of 93% of Mn at Position B. For TUB, the ratios are very similar: at Position
E the nominal moment is composed of 84% of Mn at Position C and 98% of Mn at Position
A whereas at Position F the nominal moment is composed of 82% of Mn at Position D and
92% of the Mn at Position B. This is also illustrated in Figure 6.8, which shows the first yield
and nominal moments for all directions of loading.
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Figure 6.8. TUA and TUB: First yield and nominal yield moments for all directions of loading.

The main difference between the experimental and numerical moment capacities for displace-
ments towards Position E resulted from the moment capacities MEW, for which the experi-
mental value reached only about two thirds of the numerical value (Table 6.6). At Position
F, the difference between the experimental and numerical values was less at Position E. The
remaining difference resulted chiefly from the moment MNS that was smaller for the experi-
ments than the moment obtained from the section analyses. One of the key objectives of the
wide-column analysis presented in Section 6.2 is to identify possible reasons for these differ-
ences.

Table 6.6. Comparison of maximum moments at Positions E and F obtained from the experiments
and the section analysis.

Experiment Analysis
MEW MNS MSRSS MEW MNS MSRSS

[kNm] [kNm] [kNm] [kNm] [kNm] [kNm]
TUA
Position E 1030 970 1415 1500 1140 1880

Position F 1440 770 1640 1440 1020 1770

TUB
Position E 1050 860 1360 1480 1010 1790

Position F 1340 671 1497 1440 880 1690

MEW Moment due to forces in the EW direction
MNS Moment due to forces in the NS direction
MSRSS Moment resulting from the vectorial addition of MEW and MNS
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6.1.4 Summary of findings from plastic hinge analysis

The findings from the PHA of TUA and TUB concern both strength and displacement as-
pects:

Strength capacity: For bending parallel to the flanges and the web the strength capacity can
be predicted as accurately as for rectangular walls. For bending in the diagonal direction,
in particular when one flange end is in compression (Position E), the moments are
grossly overestimated. The analysis of the wide-column models in the following section
will explain this discrepancy.

Yield displacement: The yield displacements were estimated using a simple approach that
uses only the yield curvature and a more elaborate approach that attempts to predict
the displacement components at yield due to flexure, base rotation and shear. For TUA
both approaches achieved a similar match with the experimental results. For TUB,
the elaborate approach yielded slightly better results. On a whole, the match between
analytically and experimentally determined yield displacements was mediocre: The an-
alytical results deviated up to 20−40% in both directions from the experimental results.
However, the discrepancy is not alone related to deficiencies in the analytical models
but also to uncertainties when determining the experimental yield displacements.

Displacement capacity: A design and an assessment approach were distinguished when the
ultimate displacement capacity of the U-shaped walls for different directions of loading
was predicted. For all directions of loading the design approach predicted displacement
capacities smaller than the maximum displacements reached during the testing. This is
inline with the intention of the design approach, which leaves a safety margin between
the predicted and the actual displacement capacity. On the contrary, the assessment
approach was able to yield reasonable, yet in most cases probably slightly too large,
estimates of the actual displacement capacities. The displacement capacities were deter-
mined on the basis of a maximum tensile strain of 0.5εsu, which – from comparison to
experimental results – seemed to predict the measured ultimate total strain excursion
fairly well. It is, however, difficult to draw exact conclusions since the test units could
only fail in one direction; for the other four directions of loading a displacement ca-
pacity could not be determined. This is certainly one of the drawbacks when testing a
single unit under a bi-directional loading history instead of testing several units under
cyclic loading in different directions.
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6.2 Wide-column models

In the course of the literature research on wide-column models (WCMs) it was found that
there is a lack of reports on the properties and the performance of WCMs with inelastic
properties (Section 2.3.5). The objective of this section is therefore to model TUA and TUB
with WCMs and to compare the numerical and experimental force-displacement hystereses.
When building a WCM of a U-shaped wall the engineer needs to take decisions regarding the
following modelling parameters:

• Subdivision of the U-shaped section into planar wall sections.

• Vertical spacing of the horizontal links.

• Number of vertical elements representing the planar wall sections between horizontal
links (a wall section between two horizontal links is typically subdivided into a number
of column elements).

• Properties of the links.

• Properties of the vertical elements: In the study here the axial and flexural properties
were defined via a fibre section. The shear and torsional stiffness of these elements had
to be defined independently.

Existing modelling guidelines for WCMs are based on studies of elastic systems. The objective
of the following study is to test the sensitivity of analysis results of WCMs with inelastic
properties to these modelling parameters and to identify appropriate choices of the modelling
parameters for such models. The section is divided into two parts: In a first step (Section 6.2.1)
reference WCMs for TUA and TUB are defined. Where such exist, the choice of the modelling
parameters follows the recommendations for elastic models which were found in the literature.
These models of TUA and TUB are also referred to as WCMs with state-of-the-art properties.
In a second step, the sensitivity of the analysis results to the five key modelling assumptions,
which were listed above, is tested. The sensitivity study is divided into three sections: The
first concerns the geometry of the WCM, the second the shear and torsional properties of the
vertical members and the last the properties of the horizontal links. Recommendations of
the choice of the modelling parameters are based on the sensitivity of the analysis results and
the appropriateness of the modelling assumptions for a RC sections undergoing large inelastic
deformations. In the final section the modelling recommendation are summarised and applied
to TUA and TUB showing the goodness of fit between the numerical and experimental results.

All WCMs of TUA and TUB that are presented in the following sections were analysed using
the program Opensees [Mazzoni et al., 2005]; that is the same program that has also been used



Seismic design of torsionally eccentric buildings with U-shaped RC Walls 157

for the section analyses required for the plastic hinge models in Section 6.1. Although the
element library of Opensees comprises a wide range of special elements and force-displacement
hysteresis rules only standard element types and rules are used since the objective of this study
is to develop a WCM that could be analysed with any standard engineering software packages
which offers nonlinear fibre elements. The properties of the reinforcing steel and concrete
were identical to those used in the PHA (Section 6.1.1). Only the limits on the concrete strains
were omitted; the stress-strain relationship of the concrete was hence defined according to the
curve by Mander et al. [1988b] but no ultimate strain was defined for which the stress level
would suddenly drop to zero. The reason for this modification was twofold: First, concrete
crushing had not been observed during the experiment. It is also generally acknowledged
(Sections 2.5.1and 4.2.1) that the strain capacity predicted according to the mechanical model
by Mander et al. [1988b] tend to be too low if the member is subjected to axial load and flexure.
Second, and most importantly, the strains at the integration points of the elements are strongly
dependent on the formulation of the elements and the element length. It will be shown that
without accounting for the element length and the element formulation, the strains at the
integration points are of little meaning and cannot be employed directly for determining limit
states of the structural element.

6.2.1 Description of the reference WCM for TUA and TUB

This section describes the reference WCM for TUA and TUB which is assigned state-of-the-art
properties. Figure 6.9 shows the layout of the reference WCM for TUA and TUB. The WCM
is a frame model with vertical and horizontal elements. Five different types of frame elements
are distinguished:

• Wall elements: The column elements representing the web and flange sections between
the wall base and the lower edge of the collar. The bottom wall elements were assumed
to be fully fixed at the wall base.

• Collar elements: Column elements within the collar.

• Wall links: Horizontal links within the wall. The links within the flanges join the
flange elements and the corners. The links within the web join the web elements and
the corners.

• Collar links: Horizontal links within the collar.

• The small elements joining the links of the walls and collar at the lower edge of the
collar (h = 2.72m) were modelled as rigid in both shear and flexure.

The designation "vertical elements" is used when both wall and collar elements are meant.
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The collar elements were offset towards the outside by 75mm and 50mm for TUA and TUB
respectively (see isometric views of TUA and TUB in Figure 3.3) since the vertical elements
were always placed at the centre line of the wall sections they were representing. Figure 6.9d
shows a close-up of the collar of the WCM. The four horizontal links within the collar were
at heights of h = 2.72m (lower edge of collar), h = 2.95m (height of actuators in the NS
direction), h = 3.35m (height of actuator in the EW direction) and h = 3.56m (top edge of
collar). The actuators were represented by zero-length spring elements (Figure 6.9d). When
the WCM was analysed for imposed top displacements, the displacements were imposed on the
free end nodes of the actuator springs. The spring elements were rigid in the line of action of
the actuators and were used to measure the applied forces which corresponded to the actuator
forces.

In the following paragraphs only the reference model for TUA is described in depth; the
reference WCM for TUB was built along the same lines with only small adaptations where
required by the different geometry of the cross section. The paragraphs follow the sequence
of the modelling parameters which were given in the introduction to the section on WCMs
(i.e. subdivision of the U-shaped section, vertical spacing of the horizontal links, number of
vertical elements between links, properties of the links and properties of the vertical elements).

a) Subdivision of the section.
For the reference WCM of TUA the section was subdivided into three rectangular sections, i.e.
the web and the two flanges. The corner areas were half attributed to the web section and half
to the flange sections (Figure 6.9b). Since most structural analysis programs only allow the
definition of reinforcing bars within the rectangular concrete sections, the inner corner bar
was attributed to both the web and the flange section whereas the outer bar was not assigned
to any section; the total reinforcement are was therefore modelled correctly. The web section
was 1.15m long and 0.15m wide while the flange section was 0.975m long and 0.15m wide.
Figure 6.9c shows the in-plan location of the vertical elements representing the web and the
flange sections. The wall sections were modelled as fibre sections because of their ability to
capture the axial elongation at the centroid and the axial force-bending moment interaction of
RC sections; this was considered important since the axial load on the individual wall sections
will change greatly throughout the bidirectional loading history to which TUA and TUB were
subjected during the testing. The discretisation of the sections (Figure 6.9b) was kept similar
to the discretisation of the U-shaped section for the PHA (Figure 6.1) only that the section
was divided into planar web and flange sections.
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Figure 6.9. WCM: Isometric view (a), wide-column model (b), fibre cross sections of TUA (c) and
details of collar of WCM where the lateral displacements are imposed (d).

b) Spacing of the horizontal links.
While the spacing of the horizontal links within the collar was basically dictated by the ge-
ometry of the collar and the location of the lines of action of the actuators, the spacing of
the horizontal links within the wall region (i.e. between h = 0 − 2.72m) could be chosen
more freely. Stafford-Smith and Girgis [1986] suggested to limit the link spacing to about one
fifth of the overall wall height (Section 2.3.3) which corresponds for TUA and TUB to a link
spacing of 590mm and 670mm for the NS and EW direction, respectively. For the reference
WCM it was decided to place the links at hsp = 680mm intervals dividing the wall into four
parts of equal height (Figure 6.9c).

c) Number of vertical elements between links.
The vertical elements of the reference WCM were modelled by means of two-nodes,
displacement-based beam elements with two Gauss-Legendre integration points along their
length [Mazzoni et al., 2005]. Two beam elements between consecutive links were used.
Hence, the length of every beam element in the wall was l = 0.5hsp = 340mm; the length of
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the collar elements varied since the spacing of the links was not constant. A beam length of
l = 0.5hsp also required that additional nodes at mid-height between the links were introduced
(Figure 6.9b).

d) Shear and torsional properties of the vertical elements.
By assigning a fibre section to the wall elements only the axial and flexural properties were
defined. The other flexibilities (i.e. shear and torsion) were decoupled from the axial and
flexural properties. The nonlinear displacement-based element implemented in Opensees is
rigid in shear and flexible in torsion. To account for shear flexibility of the wall elements
zero-length spring elements were introduced at the nodes at midheight between the links.
These zero-length springs were assigned stiffnesses in the two horizontal translational degrees
of freedom; all other degrees of freedoms of the two nodes were slaved. The stiffnesses of
the springs represented the in- and out-of-plane shear stiffness of the two wall elements above
and below the spring. For the reference WCM of TUA and TUB the spring properties were
computed to represent the shear stiffness of uncracked sections:

ks =
GcAsh

hsp
(6.4)

where the shear area Ash was taken as 0.8Ag.

While the displacement-based element in Opensees has no shear flexibility, it has a torsional
flexibility. For the reference WCM of TUA the torsional stiffness of the web and flange sec-
tions was computed as the torsional stiffness of a slender rectangular, homogenous section
with elastic properties:

GK = Gc · lw · t3w
3

(6.5)

e) Link properties.
As suggested by Reynouard and Fardis [2001] the links were assigned infinite flexure and shear
stiffnesses. Only the torsional degree of freedom was given the flexibility (Equation 2.19)
corresponding to an elastic, uncracked section. Hence, out of the aforementioned four types
of elements of the WCM (wall and collar elements, wall and collar links) only the wall elements
were assigned inelastic properties for the coupled axial and flexural behaviour. The shear and
torsional stiffness of these elements as well as all properties of the other element types were
assigned elastic properties.

f ) Load cases and results.
During the testing TUA and TUB were subjected to an axial load and imposed lateral displace-
ments. In the experiments the axial load was applied near the centre of the gross section; in
addition the selfweight of the test unit and the weight of any equipment mounted onto the
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wall contributed to the axial load. The resultant axial force at the wall base was 780kN for
both TUA and TUB. In the WCM the axial load was modelled as three point loads which were
applied at the top nodes of the collar elements; the selfweight of elements was not modelled.
For TUA, the load applied to one flange was P = 265kN and the force applied to the web
P = 250kN (TUB: flange: 257kN, web: 266kN). The total axial force was hence P = 780kN,
which corresponded to the axial load at the base of the physical test units. Note that the axial
loads were not distributed according to the cross section areas of the web and flanges. The
proportion of the axial load applied to the web and flanges was computed to yield a resultant
axial load at the centroid of the wall section but the forces were applied to the collar nodes,
which did not align with the wall nodes.

The WCMs of TUA and TUB were analysed for two types of loading: In a first step pushover
analyses in the five directions of loading were carried out (for the description of the directions
see Section 3.3). In a second step, the models were analysed for the entire loading history
which had been applied to TUA and TUB (excluding those instants of the loading history
when a small twist was applied to the wall head). For both the pushover and the full load path
analysis the displacements were imposed at the free end nodes of the zero-length elements
representing the actuators.

As an example for the obtained analysis results Figure 6.10 shows the forces of the wall ele-
ments at Position A during the EW cycles with µ∆ = 4.0.

Figures 6.11 and 6.12 show the comparison of the analysis and the experimental results. The
results are compared in terms of the hysteresis loops for the cycles in the EW, NS and diagonal
directions and in terms of the loops of the actuator forces during the cycles at µ∆ = 4.0. While
the WCMs predict the moment capacity for cycles in the EW and NS directions fairly well,
they overestimate the capacity in the diagonal direction – in particular at Position E – consider-
ably. The analysis results for both TUA and TUB are characterised by a too large loading and
unloading stiffness for all directions of loading. The same observation was made for the PHA
which was presented in Section 6.1. As for the PHA the moment capacity in the diagonal
direction was overestimated by the WCM with state-of-the-art properties. The numerical and
experimental results differed also significantly with respect to the actuator forces (plots d-f).
One of the objectives of the sensitivity analysis which is presented in Sections 6.2.2 to 6.2.4
will be to identify possible modelling parameters that could account for these discrepancies.
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Figure 6.10. TUA, WCM: Internal forces at Position A at µ∆ = 4.0; the forces are given in the
global coordinate system.
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Figure 6.11. TUA, WCM with state-of-the-art properties: Comparison of analysis and experimental
results for cycles in the EW, NS and diagonal directions (a-c, also included are the results of the
pushover analyses of the WCM) and comparison of actuator forces obtained from analysis and
experiment during the cycles of µ∆ = 4.0 (d-f).
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Figure 6.12. TUB, WCM with state-of-the-art properties: Comparison of analysis and experimental
results for cycles in the EW, NS and diagonal directions (a-c, also included are the results of the
pushover analyses of the WCM) and comparison of actuator forces obtained from analysis and
experiment during the cycles of µ∆ = 4.0 (d-f).
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6.2.2 Sensitivity of the WCM analysis to the geometry of the model

Based on the reference models for TUA and TUB, which were described and analysed in the
previous section, the sensitivity of the analysis results to different modelling assumptions is
tested. The first decisions required when building a WCM of a structure concern the geome-
try of the model. The geometry of the model is characterised by three principal parameters,
i.e. (i) the subdivision of the non-planar wall section into rectangular sections, (ii) the spacing
of the horizontal links and (iii) the number of vertical wall elements connecting the horizontal
links. The literature on these issues is very scarce. The objective of this section is therefore to
investigate the sensitivity of analysis results with respect to the three aforementioned geomet-
rical parameters. The study is limited to TUA. It is, however, assumed that the conclusions
can be expanded to TUB since the configuration of the two walls is very similar. When fur-
ther experimental evidence is available, the study should be broadened to include these wall
configurations, in particular if E-shaped walls or more irregular configurations were tested.

a) Subdivision of non-planar wall sections.
The wide-column analogy requires the subdivision of non-planar wall sections into planar
subsections, which can typically be undertaken in different ways. Figure 6.13 shows three
possible division schemes for a U-shaped wall that differ regarding the allocation of the corner
areas to the web and flange sections:

• Scheme A: The web element includes the corner areas whereas the flange elements end
before the corner area.

• Scheme B: Scheme B is similar to Scheme A but the corner area is attributed to the
flange elements instead of the web element.

• Scheme C: The corner area is split between the flange and the web elements. The corner
bar is not assigned to any element2, in return the bar near the inner edge is covered by
both web and flange element. The horizontal links join where the web and flange
elements meet.

Assuming the links are perfectly rigid, the gross section properties of Scheme A and B equal the
properties of the U-shaped wall section. Scheme C models the gross area correctly while the
centre of mass is slightly further away from the web than for the gross section; the moments of

2In Opensees it is possible to define reinforcing bars outside the concrete section. Opensees also
allows to define non-rectangular concrete sections; it would hence be possible to divide the section along
the connection of the inner and the outer corners. In most structural analysis programs reinforcing bars
cannot be defined outside the concrete section, which in turn has to be rectangular. Therefore, only such
sections are used in the study presented here.
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Figure 6.13. TUA: Different schemes for subdividing the U-shaped section into planar wall sections
(all dimensions are in millimetres).

inertia about the x- and the y-axes are slightly smaller than those of the gross section ( 1%). The
differences are, however, so small that they are hardly of significance in seismic engineering,
in particular if the structure is expected to respond in the inelastic range.

Figure 6.14 shows the comparison of the pushover curves of the three models for the EW
direction (plot a) and for Direction F (plot b). The difference between the three models is
relatively small. For pushover analyses in the EW direction the response of the model with
the subdivision "Scheme C" laid in between the responses of the other two models. When
the WCM was analysed for a displacement in the diagonal direction towards Position F the
model with the subdivision "Scheme C" resulted in slightly smaller moments than the other
two models because the missing corner piece caused a small reduction of the lever arm. This
became less significant for larger displacements when the other two models lost part of their
cover concrete at the corner.
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Figure 6.14. TUA: Influence of the subdivision of the section on the pushover curves in the EW
direction (a) and in the Direction F (b).
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Figure 6.15 displays selected results for the three models when analysed for the entire loading
history to which TUA was subjected. As examples, the hysteresis curves for displacements in
the diagonal direction (plot a) and the force applied by the NS-W actuator during the cycles at
µ∆ = 4.0 were selected. Out of the six graphs which were shown in Figure 6.11 the results
displayed in these two plots proved to be the most sensitive to the modelling assumptions.
The comparison of the three models with respect of their cyclic response showed that – as for
the uni-directional loading – the differences were fairly small between the three models. The
model "Scheme C" led again in most cases to moments or forces that were in between those of
the other two models. Hence, this subdivision scheme seems suitable if the WCM is analysed
for different directions of loading.
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Figure 6.15. TUA: Influence of the subdivision of the section on the hysterese curves for the
diagonal cycles (a) and the force of the NS-W actuator for cycles with µ∆ = 4.0 (b).

b) Spacing of the horizontal links.
The horizontal links connect the vertical elements, which represent the planar wall sections.
When a WCM is setup, it is common practice to set the link spacing equal to the storey
height (e.g. Xenidis and Avramidis [1999]). From a modelling point of view a larger link
spacing is preferable since it reduces the number of elements in the model. However, the
spacing of the links directly influences the behaviour of the WCM in two respects: First,
at the location of the links compatibility of the axial elongation and the rotation of the wall
elements representing different wall sections is enforced. Second, it was shown in Section 2.3.3
that the spacing of the horizontal link also influences the parasitic bending moments which
occur as a consequence of the transmission of shear forces from the links to the wall elements.
The larger the spacing of the links the larger the parasitic bending moments introduced into
the wall elements. Stafford-Smith and Girgis [1986] suggested to limit the link spacing to one
fifth of the overall wall height in order to control the deformations due to parasitic bending
moments.
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The objective of this section is to investigate the effect of the link spacing on the general
behaviour of WCMs with inelastic properties. For this purpose three WCMs of TUA with
different link spacings were built. The first model had a link spacing of 1360mm, which cor-
responded at full scale to 2720mm, i.e. 80% of the storey height of the reference building
for TUA and TUB. This model served as a proxy for WCMs with link spacings equal to the
storey height. In the second model the link spacing was reduced to 680mm, which corre-
sponded roughly to the one fifth of the wall height suggested by Stafford-Smith and Girgis
[1986], and in the third to 453mm. Figure 6.16 shows the element layout of the three WCMs.

As a first example, the behaviour of the WCMs for loading in the EW direction is compared
(Positions A and B). Figure 6.17a shows the pushover curves for the three models. Before the
onset of yielding the stiffness of the model is larger for smaller links spacings. The difference
is caused by the parasitic bending moments, which reduce the stiffness of the WCM. With
increasing link spacing the parasitic bending moments and also the deformations due to these
moments increase. The difference between the three models is, however, relatively small and
it seems irrelevant for seismic engineering concerns for which the elastic stiffness of a system
responding in the inelastic range is normally not of great importance.

The moment capacities of the three models were fairly similar. Differences can be partly
attributed to different heights of the first integration points above the base and different strains
and hence stresses at this point (in particular due to the post-yield stiffness of the reinforcing
steel). The three models were built with displacement-based elements with two integration
points per element. Between two successive links (or the base and the first link) each wall
section was represented by two elements. The elements were integrated using the integration

Figure 6.16. TUA: Wide-column models with link spacings of 1360mm (a), 680mm(b) and 453mm
(c).
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Figure 6.17. TUA: Influence of the spacing of the horizontal links on the pushover curves (a) and
the moment distribution (b); as an example the pushover curves for loading in the EW direction
(Positions A and B) and the moments in the web at Position A at µ∆ = 4.0 are plotted.

rule by Gauss-Legendre. The first integration point above the base was hence at h = 143mm,
h = 71mm and h = 48mm for the model with hsp = 1360mm, hsp = 680mm and hsp =
453mm, respectively. The fact that the lowest integration point is at a certain distance to the
wall base reduces the effective lever arm. The effective lever arm was hence smallest for the
model with the largest link spacing and hence the base shear capacity of this model tends to
be slightly larger.

The element length also affected the strain distribution over the height of the model. The ulti-
mate displacements derived from the tensile strain limit 0.5εsu in the outermost steel fibre are
included as small marks along the pushover curves in Figure 6.17a. The derived displacements
are very different for the three models. The dependence of the fibre strains on the element
length is a general shortcoming of inelastic beam elements and applies to both displacement-
based and force-based elements [Coleman and Spacone, 2001]. Without adaption of the strains
to account for the element length, the strains extracted at the integration points of the beams
are basically meaningless to the engineer and should not be used for determining displacement
limits.

Figure 6.17b shows the bending moments of the wall elements representing the web at Posi-
tion A. These moments are plotted to illustrate the effect of the link spacings on the moment
distribution over the height. The horizontal jumps in the moment profile were caused by the
parasitic bending moments that were introduced by the horizontal links. The comparison of
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the three curves confirm that the larger the link spacing the larger the parasitic bending mo-
ments. If the jagged appearance of the moment profiles is smoothed out the moment profiles
of the three models are very similar. Hence, the parasitic bending moments affect the mo-
ments at the locations where the wall elements are connected to the links but at mid-height
between the links they are fairly independent of the link spacing. This observation does not
quite hold near the base where the elements yield.
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Figure 6.18. TUA: Influence of the spacing of the horizontal links on the hysterese curves for the
diagonal cycles (a) and the force of the NS-W actuator for cycles with µ∆ = 4.0 (b).

For uni-directional loading it was shown that the difference in stiffness and strength between
the three models is relatively small; for cyclic loading, however, the difference between the
three models was more predominant. Figure 6.18 shows selected results for the three WCMs
when analysed for the entire loading history to which TUA was subjected. As an example
the hysteresis curves for displacements in the diagonal direction (plot a) and the actuator force
during the cycles of ductility (plot b) are shown. While there was a relatively large difference
in the hysteresis curves for the WCMs with hsp = 1360mm and hsp = 680mm, the difference
between the WCMs with hsp = 680mm and hsp = 453mm was significantly smaller. For
the following analyses the model with hsp = 680mm was chosen because it combines the
merits of few elements with a good accuracy (using the WCM with the smallest link spacing
hsp = 453mm as a benchmark). As shown before, the link spacing of 680mm is only slightly
larger than one fifth of the wall height, which is the criteria suggested by Stafford-Smith and
Girgis [1986]. For TUA and TUB it also corresponds to about 50% of the longer wall length
(lweb = 1300mm). For elastic homogenous elements the wall length was – next to the link
spacing – the second geometric parameter that affected the apparent shear flexibility due to
the parasitic bending moments (see Equation 2.19). It is suggested that both dimensions of
the wall, i.e. the wall height and the wall length, should be considered when selecting a link
spacing.
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c) Number of elements between links.
Once the spacing of the links has been decided on, the engineer needs to select the number of
elements between the horizontal links. In the simplest solution two horizontal links would
be connected with one vertical element for each wall section. However, if displacement-based
elements are used – which are the standard type elements in most element libraries – this is
not appropriate. Most commonly, cubic Hermitian interpolation functions are used as shape
functions for displacement-based beams. For these elements the curvature is linear along beam
elements (note that the curvature is not continuous across nodes). If the curvature variation
along one element varies strongly nonlinearly those elements lead to wrong solutions. This
is illustrated using the example of the WCM for TUA. In the reference model, nodes at inter-
mediate heights between the links were introduced and the vertical element length was hence
lel = hsp/2. Results from the reference model are compared with the results of WCMs with
lel = hsp (one element between consecutive links) and lel = hsp/3 (three elements between
consecutive links).

Figures 6.19a and b show the pushover curves and the moment distribution in the web for
TUA for cycles in the EW direction for a horizontal link spacing of hsp = 680mm. The
different curves represent models with one, two and three elements between the horizon-
tal links. The moment capacity for one displacement-based element was significantly greater
than for two or three elements whereas the difference between models with two and three
displacement-based elements between links was relatively small. Also included in the figure
are the results of the analysis of a model with force-based elements (dashed line). Force-based
elements are elements were the interpolation functions describe the force-distribution along
the element; based on the stress state the flexibility matrix is derived and the element defor-
mations computed [Taucer et al., 1991]. For the model with force-based elements one element
between horizontal links was sufficient since force-based elements are capable of reflecting the
nonlinear strain distribution along the element. Comparing the results of the force-based el-
ements to the displacement-based elements shows that the difference between the two types
is smallest if at least two elements between links were used for the model with displacement-
based elements. It is not clear what caused the difference between the displacement-based
models with two or three elements between links and the force-based model. For a link spac-
ing of h = 1360mm, for example, these two types of model yielded approximately the same
results regarding the pushover curves. The small markers in Figure 6.19a illustrate again the
displacement capacities determined from the strains at the first integration point above the
wall base. The significant differences between the models underline the finding from the pre-
vious section that in its original form, the strains measured at the integration points are hardly
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suitable for determining the displacement capacity of the wall since they are strongly depen-
dent on the element formulation and the element length. The sensitivity of the cyclic analysis
results to the number of elements was not larger than for monotonic results (Figure 6.20).
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Figure 6.19. TUA, hsp = 680mm: Influence of the number of elements between horizontal links
on the pushover curves (a) and the moment distribution (b); as an example the pushover curves
for loading in the EW direction (Positions A and B) and the moments in the web at Position A at
µ∆ = 4.0 are plotted (fb=force-based element formulation).
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Figure 6.20. TUA: Influence of the number of elements between horizontal links on the hysterese
curves for the diagonal cycles (a) and the force of the NS-W actuator for cycles with µ∆ = 4.0 (b).

It is therefore suggested, either to use force-based elements and connect the horizontal links
with a single continuous element or to use two displacement-based elements instead and add an
additional node at midheight between the links. Hence, the number of degrees of freedoms of
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the model with displacement-based elements is larger than the number of degrees of freedoms
of a model with force-based elements. However, the solution algorithm for the force-based el-
ements is considerably more elaborate than the solution algorithm for the displacement-based
elements and it is therefore often quite difficult to achieve convergence of models with force-
based elements. In addition, most common engineering softwares do not offer the choice
between different nonlinear beam elements but have only the displacement-based element im-
plemented. Hence, in most engineering studies a WCM with two displacement-based elements
between consecutive links (lel = hsp/2) will be most suitable.

6.2.3 Shear and torsional stiffness of wall elements

In this part of this study the sensitivity of the analysis results to the in-plane and out-of-
plane shear stiffness and the torsional stiffness of the wall elements is examined. The axial
and flexural properties of the vertical elements were defined by means of fibre sections since
this is the most suitable method for modelling the interaction of the axial and the flexural
capacities of RC members. The remaining flexibilities, i.e. the in- and out-of-plane shear
flexibility and the torsional flexibility, are decoupled from the axial and flexural properties.
In most structural analysis programs the shear and torsional stiffness of beam elements are
constant and cannot be assigned nonlinear and inelastic properties. The focus of this section
is therefore on the choice of appropriate equivalent elastic stiffness estimates.

a) Equivalent elastic shear stiffness of wall sections undergoing inelastic flexural displace-
ments.
In the reference WCMs of TUA and TUB with state-of-the-art properties the shear stiffness
of the web and flanges was based on the properties of a homogenous, elastic section. Though
this is still a common modelling assumption it is certainly too stiff if a cracked RC section
is considered. It has been shown in previous chapters (Section 2.6, Chapter 5) that the shear
stiffness of a RC wall is not constant but reduces simultaneously to the flexural stiffness. More-
over, the shear stiffness also varies with the axial load level on the wall section. Ideally, one
would therefore update the shear stiffness of the web and flanges of a U-shaped wall over the
course of an analysis as a function of the axial load on the wall section and of the peak lateral
displacements. In most structural analysis programs – including the program Opensees – it
is, however, at present not possible to update the element properties during the analysis. The
engineer therefore faces the difficulty of selecting a single shear stiffness that best represents
the shear stiffness over the entire loading history.

If the ratio of shear to flexural displacements ∆s/∆f of a wall section is known or can at least
be estimated the shear displacements at the ductility level µ∆ can be computed as follows:
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α =
∆s

∆f
→ ∆s = ∆top · α

1 + α
with ∆top = µ∆ ·∆y (6.6)

During the experiment only the actuator forces were measured whereas the base shear forces
could not be measured. However, it seems reasonable to assume that for most directions of
loading the proportion of the lateral load which is carried as out-of-plane shear force was
relatively small. Hence the base shear forces of the wall sections can in a first approximation
be estimated as the actuator forces applied to the particular wall sections. To be explicit, the
base shear force of the web can be estimated as the EW actuator force, the base shear of the
West and East flange as the NS-W and NS-E actuators respectively. If the shear force Fn acting
on the section is known, the shear stiffness ks can then be simply computed as:

ks =
Fn

∆s
(6.7)

To exclude the uncertainty associated with the prediction of the ratio ∆s/∆f the shear stiff-
nesses ks were at first computed for the experimentally determined ratios ∆s/∆f , which were
summarised in Table 4.5 (∆s2/∆f ). At a later stage (Section 6.2.5), when recommendations on
the modelling of U-shaped walls have been formulated, the analyses are rerun using stiffness
estimates that were obtained from the empirical equation derived in Chapter 5 (Equation 5.9).
Table 6.7 summarises the equivalent elastic shear stiffnesses of the test units for different duc-
tilities and the corresponding ratio of the gross shear stiffness based on 0.8AgGc. The given
shear stiffness values are global stiffnesses of the test units, i.e. the ratio of total base shear in
either the EW or NS direction divided by the top displacement.

Figure 6.21a illustrates for TUA the difference in shear deformation if the shear stiffness is
computed for µ∆ = 2.0, 4.0 and 6.0. The smaller the shear stiffness (i.e. the larger the dis-
placement ductility for which the equivalent elastic shear stiffness was computed), the smaller
the total stiffness of the wall. The lateral force capacity of the model is not affected by the
shear stiffness of the wall sections. Since the shear stiffness is set constant, the ratio of shear
to flexural displacements varies during the analysis. This is shown in Figure 6.21b, which dis-
plays the variation of the ∆s/∆f -ratios as a function of the top displacement. Also included
in the figure are the couples of top displacements and ∆s/∆f -ratios for which the equivalent
stiffnesses were computed. The black horizontal line in Figure 6.21b represents the average
experimentally determined ratio ∆s/∆f = 0.25, which was approximately constant over the
tested ductility range. In the following the equivalent elastic shear stiffness for TUA and TUB
will be computed as equivalent elastic stiffnesses for µ∆ = 4.0 since µ∆ = 4.0 lies approx-
imately in the middle of the imposed ductilities on TUA and TUB; for TUA and TUB the
maximum imposed displacement ductilities were µ∆ = 8.0 and µ∆ = 6.0, respectively.
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Table 6.7. Equivalent elastic shear stiffnesses of TUA and TUB in the EW and NS directions for
different ductilities levels.

µ∆ = 2.0 µ∆ = 4.0 µ∆ = 6.0

Ks,µ∆=2 .0
Ks,µ∆=2.0

Ks,g
Ks,µ∆=4 .0

Ks,µ∆=4.0

Ks,g
Ks,µ∆=6 .0

Ks,µ∆=6.0

Ks,g

[kN/mm] [-] [kN/mm] [-] [kN/mm] [-]
TUA
Pos. A, B (EW) 110 0.12 55 0.06 37 0.04

Pos. C (NS) 175 0.11 88 0.06 58 0.04

Pos. D (NS) 97 0.06 49 0.03 32 0.02

Mean C, D (NS) 136 0.09 68 0.04 45 0.03

TUB
Pos. A, B (EW) 59 0.11 30 0.05 20 0.04

Pos. C (NS) 99 0.11 50 0.06 33 0.04

Pos. D (NS) 59 0.07 29 0.03 20 0.02

Mean C, D (NS) 79 0.09 40 0.04 26 0.03
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Figure 6.21. TUA, Direction A, B: WCMs with different shear stiffnesses (stiffness of uncracked
section and equivalent linear-elastic stiffnesses for different ductility levels); pushover curves in the
EW direction (a) and ratio of shear to flexural displacements (b).

When loading to Position E the shear stiffnesses of the two flanges was very different (Ta-
ble 4.5). The East flange, which was under tension, had a very small shear stiffness while the
West flange, whose flange end was in compression, was fairly stiff. The stiffness of the East
flange could not be computed from the experimental results since its experimentally deter-
mined ratio of ∆s/∆f was negative; it was therefore arbitrarily assumed that the stiffness of
the East flange was one tenth of the stiffness of the West flange. Figure 6.22a shows the effect
of the unequal and reduced shear stiffnesses on the pushover curve for diagonal displacements
towards Position E. As for loading in the EW direction the reduced shear stiffness affected
mainly the loading stiffness whereas the moment capacity remained the same. The line with
markers in the plots shows the SRSS moments at Positions E, which were attained during the
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test at the different ductility levels. The greatest difference between the two WCMs is, how-
ever, noticed when the individual actuator forces are compared: Figure 6.22b shows the three
actuator forces for the two models as well as the actuator forces attained at Positions E during
the experiment. While in the reference WCM with state-of-the-art properties the stiffnesses
of the two flanges were the same they were different in the model with cracked section prop-
erties. This caused a reduction of the force couple required to restrain the wall from rotating
since the shear centre moved towards the stiffer West flange. As a consequence, the signs of
the West and East NS actuators were the same which reflects the observations during the test.
The figure also confirms that the difference between the experimentally attained moments at
Position E and the pushover curve in the diagonal direction are mainly caused by a difference
in the shear force in the web (Section 6.1.3).
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Figure 6.22. TUA, Direction E: WCMs with different shear stiffnesses (stiffness of uncracked
section and equivalent linear-elastic stiffnesses for µ∆ = 4.0); pushover curves for displacement in
the diagonal direction towards Position E (a) and actuator forces (b).

By means of the examples of pushover analyses for the Directions A and E it was shown that
the shear stiffness assigned to the web and flange elements affected the stiffness of the total sys-
tem as well as the distribution of the base shear between the two flanges; the ultimate moment
capacity for uni-directional loading of the system was not affected by the shear stiffnesses of
the wall section. In a next step the effect of the shear stiffness on the cyclic behaviour is exam-
ined. When analysing the wall with a bi-directional loading history, the approximate nature of
the equivalent elastic shear stiffnesses is even stronger since a constant stiffness cannot account
for the variation of stiffness with the direction of loading. Hence in addition to the previously
discussed short-coming that a constant shear stiffness cannot reflect the decreasing shear stiff-
ness with increasing flexural displacements which was observed from the experiments a further
approximation has to be introduced by neglecting the dependence of the shear stiffness on the
direction of loading. It was found that estimating the equivalent elastic shear stiffness of the
web and the flanges from the ∆s/∆f -ratios obtained for the principal directions of loading
yielded the best results. That means that for the web the shear stiffness was computed from
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Figure 6.23. TUA, WCM with improved shear stiffness of wall elements: Comparison of analysis
and experimental results for cycles in the EW, NS and diagonal directions (a-c); comparison of
actuator forces obtained from analysis and experiment during the cycles at µ∆ = 4.0 (d-f).
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the ∆s/∆f -ratio at Positions A and B while the shear stiffness of the flanges was computed
as average of the shear stiffness corresponding to the ∆s/∆f -ratios at Positions C and D. All
other properties of the model correspond to those of the reference WCM. Figure 6.23 shows
the hystereses of TUA for displacements in the EW, NS and diagonal directions (plots a-c) and
the actuator forces during the cycles of ductility level 4.0. The same plots but for the reference
model with state-of-the-art properties were shown in Figure 6.11. Comparing the figures for
the different WCMs shows that replacing the shear stiffness representing uncracked sections
by shear stiffnesses representing cracked sections at µ∆ = 4.0 improves the match between the
numerical and experimental results significantly. It is, however, important to note that assum-
ing a constant equivalent elastic stiffness which was computed for µ∆ = 4.0 overestimated the
shear deformations at small displacements considerably; as a consequence the stiffness of the
test unit for small displacements was significantly underestimated. The contrary was the case
for displacements with µ∆ > 4.0: For these displacement demands the shear stiffness – and
therefore also the total stiffness – of the test unit was overestimated.

b) Distribution of shear stiffnesses over the height.
So far the shear stiffness of the wall elements was modelled as constant over the height (with
exception of the collar elements, which in all WCMs were assigned shear stiffnesses based
on uncracked section properties). In the experiments, however, the shear deformations were
unequally distributed over the wall height: most of the shear deformation took place in the
zone undergoing plastic deformation. About 65 − 85% of the shear deformations at peak
displacements occurred in the lowest of the three panels (h = 50 − 850mm) over which
the shear deformations were measured while the shear deformations within the upper two
panels were fairly small (see Section 3.3). In order to investigate the sensitivity of the analysis
results to the assumptions on the distribution of the shear stiffness over the height of the
wall the WCM of TUA is modified such that 50% of the shear flexibility was assigned to the
elements below the first horizontal link (h = 0 − 680mm) and 50% to the elements above
(h = 680 − 2720mm); the shear deformations of the collar are negligible. Figure 6.24 shows
as an example the hysteresis loops in the diagonal direction and the NS-W actuator force at
µ∆ = 4.0. The difference between the results for the two WCMs is extremely small and can
be neglected for engineering purposes because the relative stiffnesses of flanges and web were
the same for the two models. Note that, although the distribution of the shear stiffness was
not an important parameter for the analyses conducted here, a reasonable distribution should
be chosen when the WCM of a U-shaped wall is part of a larger model representing an entire
building. Forces due to interaction with other structural elements might be sensitive to the
shear stiffness distribution over the height of the wall.
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Figure 6.24. TUA: Influence of the distribution of the shear flexibility over the wall height (shear
flexibility evenly distributed between h = 0− 2.72m and shear flexibility concentrated in the plas-
tic hinge zone) on the hysterese curves for the diagonal cycles (a) and the force in the NS-W actuator
for cycles with µ∆ = 4.0.

c) Out-of-plane shear stiffnesses.
In the state-of-the-art model, the in-plane and out-of-plane shear stiffnesses of the wall sections
(web and flanges) were of the same magnitude whereas for the updated model with cracked sec-
tion properties the out-of-plane shear stiffness of the wall sections was assumed as small and
was modelled as one percent of the in-plane stiffness of the wall section. Both assumptions
represent extreme situations. The actual out-of-plane stiffness of cracked wall sections cannot
be determined from experimental results since out-of-plane deformations were not measured
during the testing. Moreover, the portion of the forces carried as out-of-plane forces by the
different wall sections could also not be determined from the experimental results since the
only forces measured during the testing were the actuator forces. Hence, making some rel-
atively arbitrary assumptions regarding the out-of-plane shear stiffness of the wall elements
seems inevitable.

For design purposes, it is recommended to set the out-of-plane shear stiffness to zero (or a very
low value). Out-of-plane shear forces are typically not accounted for in design; setting the out-
of-plane shear stiffness to zero ensures that all lateral forces are carried as in-plane shear forces
and are therefore considered in the design process. For assessment purposes or the modelling
of experiments more realistic assumptions could be required if the results proved sensitive to
these assumptions. Based on the observations during testing it is assumed that out-of-plane
forces played a role in the load transfer mechanism of TUA and TUB. For example, when
loading to Position E or H, only the flange end was in compression. Apart from the shear
forces that were transmitted by concrete interlocking and dowel action along the open part of
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the base crack, the shear forces had to be transmitted in the compression zone from the wall
to the foundation. As a consequence, some portion of the shear force component parallel to
the web was probably transmitted as out-of-plane shear force in the flange in compression.
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Figure 6.25. TUA: Influence of the out-of-plane shear stiffness of the wall elements on the hysterese
curves for the diagonal cycles (a) and the force of the NS-W actuator for cycles with µ∆ = 4.0 (b).

Figure 6.25 shows the sensitivity of the cyclic response to the out-of-plane stiffness of wall
elements. The WCM of TUA was analysed for four different values of out-of-plane shear stiff-
nesses: In the first case, the out-of-plane stiffnesses were very small (i.e. 1% of the in-plane
stiffness). In the second case, the out-of-plane stiffnesses of the wall elements were reduced to
25% of the in-plane stiffnesses to account for cracking of the wall. In the third case, the out-
of-plane and the in-plane shear stiffnesses were equal and in the fourth case, the out-of-plane
stiffnesses were much larger than the in-plane stiffness. In this case the out-of-plane stiffnesses
were set to the elastic shear stiffnesses of the wall sections. For all four cases the in-plane and
out-of-plane shear stiffness of the collar elements were based on the properties of an elastic,
homogenous section since due to lateral prestress the collar remained largely uncracked. The
in-plane stiffness of the wall elements was the equivalent elastic stiffness computed from the
shear deformations in the principal directions at µ∆ = 4.0. Figure 6.25a and b show selected
results of the cyclic analyses of the three models with different out-of-plane stiffnesses. The
results showed that varying the out-of-plane stiffness had almost no effect on the global hys-
teretic response (Figure 6.25a) and the effect on the force distribution between the NS-W and
NS-E actuator was relatively small (Figure 6.25b). There was little difference between case two
(out-of-plane stiffnesses were 25% of the in-plane stiffnesses) to four (out-of-plane stiffnesses
were set to the elastic shear stiffnesses). It is believed that in these cases the maximum shear
forces that could be carried as out-of-plane shear forces were limited by the out-of-plane bend-
ing capacity of the wall. The out-of-plane bending capacity was accounted for in the fibre
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sections, which had in-plane and out-of-plane dimensions. In the first case, for which the out-
of-plane shear stiffnesses were very small, the out-of-plane bending capacity of the wall could
probably not be reached because the wall sections were too soft in out-of-plane shear. Among
the investigated cases approximating the out-of-plane shear stiffness as 25% of the in-plane
shear stiffness seems most reasonable and hence this estimate will be used for the following
calculations.

To conclude, for design purposes it was argued that it is most likely on the safe side to neglect
any out-of-plane stiffness of the wall elements. In this way, all shear forces are transmitted
as in-plane shear forces in the model and will therefore be considered in the design of the
wall sections. For assessment purposes, out-of-plane shear stiffnesses might be included in
the model although it was shown that it had almost no effect on the global hystereses. Only
the internal force distribution was affected. It could also be shown that the magnitude of the
out-of-plane shear stiffness was of secondary importance since the out-of-plane shear forces
were limited by the out-of-plane bending capacity of the wall section and are therefore always
relatively small.

d) Torsional flexibility of wall elements.
During the experiment the wall head was restraint from rotating. Only at Positions O, A, B,
C and D during the cycles with µ∆ = 1.0 and 4.0 a small rotation was applied to the wall head
in order to determine the rotational stiffness of the wall (see Section 3.3). These rotations,
however, were not included in the previous WCM analyses since the torsional stiffness of the
walls will be the topic of a future study (the limits to the scope of the study presented here
were described in Section 1.2).

Figure 6.26 shows the comparison of the hystereses curves for the diagonal direction (plot a)
and the force in the NS-W actuator for wall sections with rotational stiffnesses of uncracked
sections and for wall sections with reduced rotational stiffnesses to account for the effect of
cracking. For TUA the ratio of the rotational stiffness of the cracked to the uncracked section
was estimated as 2.5%, which corresponds approximately to the ratio of the shear stiffnesses
of the cracked to the uncracked section (the shear stiffness of the cracked section was based
on the shear deformations in the principal directions at µ∆ = 4.0). The plots show that the
results of analyses for which the wall head is restraint from twisting are not sensitive to the
torsional stiffness of the wall elements.

The torsional stiffness of the vertical elements becomes, however, more important if the wall is
also subjected to rotation instead of pure translational movements. To demonstrate the effect
a pushover analysis in the Direction D was carried out until a top displacement of ∆top =
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Figure 6.26. TUA: Influence of the torsional stiffness of the wall and collar elements on the hys-
terese curves for the diagonal cycles (a) and the force of the NS-W actuator for cycles with µ∆ = 4.0
(b). The term "large GK" refers to the torsional stiffness of uncracked, homogenous sections and
"small GK" refers to the rotational stiffness of cracked sections (as an approximation the torsional
stiffness was reduced by the same ratio as the shear stiffness).

52mm (µ∆ = 4.0) was reached. The wall head was then subjected to a torsional moment
of ±100kNm3. Figure 6.27a shows the resulting actuator forces NS-W and NS-E for the two
WCMs with different rotational stiffnesses of the vertical elements. In Figure 6.27b the applied
torsional moment is plotted against the wall head rotation. Reducing the torsional stiffnesses
of the wall elements to 2.5% of their original values reduced the torsional stiffness of the WCM
to about 30% of the original stiffness. If the WCM is subjected to a load history involving
torsion it is hence necessary to develop appropriate estimates of the torsional stiffness of wall
elements and to test the sensitivity of the analysis results to the assumptions made. Note that
the results shown here are only the results of a preliminary investigation into the modelling
of the rotational stiffness of U-shaped walls, the results have not yet been validated against
experimental data for the rotational stiffness, which has been gathered during the experimental
testing of TUA and TUB.

6.2.4 Link properties

The reference models of TUA and TUB featured links that were rigid for all sectional forces
but for torsion. The torsional stiffness of the links was computed based on thin-walled section
theory according to Equation 2.19. In this section the sensitivity of the analysis results to the
torsional and to the shear stiffness of the links is discussed.

3Note that during the experimental testing at µ∆ = 4.0 the test unit was subjected to a smaller
torsional moment. The torsional moment of ±100kNm was used for illustrational purposes in this
analysis.
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Figure 6.27. TUA: Influence of the torsional stiffness of the wall and collar elements on the actuator
forces (a) and the torsional stiffness (b) when the WCM is first subjected to a translation in the
Direction D and then to a rotation of the wall head.

a) Torsional stiffness of the links.
Up to now the links were modelled as rigid except for the torsional flexibility which was
assigned the properties of an elastic, uncracked section (Equation 2.19, Section 6.2.1). The
horizontal links were assigned this torsional flexibility in order to account for the warping of
the section. Reynouard and Fardis [2001] stated that "in this way the beam elements are al-
lowed to bend relatively independently of each other". To investigate the effect of the torsional
stiffness of the links on the analysis results, five different models with decreasing stiffness were
considered: In the first model (labelled as "rigid") the links were assumed to be rigid also in
torsion. In the second model ("Avramidis") following the suggestion by Avramidis [1991] and
Xenidis et al. [1993], only the web links were given a torsional flexibility corresponding to the
stiffness of the elastic section (Equation 2.19) while the flange links were modelled as rigid. In
the third model ("GKel") the link properties correspond to those of the reference model. In
the fourth model ("0.25GKel") the torsional stiffness of all wall links was reduced to account
for the effect of cracking of the concrete and yielding of the longitudinal reinforcement on the
warping stiffness of the U-shaped section. In the fifth model ("pinned") the torsional stiffness
of all wall links was set to zero by introducing torsional pins at their ends. During the testing
the collar remained elastic and largely uncracked, the stiffness of the collar links was hence not
reduced. It is believed that this also reflects the situation in a real building in which the upper
storeys remain largely uncracked. While the geometry of these five models is the same as for
the reference model with state-of-the-art properties (Section 6.2.1), the shear properties of the
vertical wall elements have been updated according to the recommendations formulated in the
previous section (Section 6.2.3).

Figure 6.28a shows the effect of the torsional stiffness of the horizontal links on the pushover
curves in the Direction E. While there was a significant difference between modelling the links
as rigid and assigning them the flexibility of an elastic homogenous member, the difference
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between the latter case and increased flexibility up to the pinned connection was relatively
minor. This finding is confirmed when the actuator forces for the pushover analysis in the
Direction E (Figure 6.28b) or cyclic analysis results (Figure 6.29) are considered. Figure 6.29a
shows that the maximum reached capacity during the diagonal cycles was larger for the WCM
with rigid links than for the WCMs with pinned or flexible links. Hence, assigning the links
a rotational flexibility influences the loading and unloading stiffness of the U-shaped wall and
as a consequence also the maximum reached capacity during the diagonal cycles.
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Figure 6.28. TUA, Direction E: WCMs with different torsional stiffnesses of the horizontal links:
Pushover curves for displacement in the diagonal direction towards Position E (a) and actuator
forces (b).

Figure 6.29. TUA: Influence of the torsional stiffnesses of the horizontal links on the hysterese
curves for the diagonal cycles (a) and the force of the NS-W actuator for cycles with µ∆ = 4.0 (b).

b) Shear flexibility of the links.
In order to account for the shear deformations resulting from the vertical in-plane shear
stresses transmitted from the web to one flange along the corners, the links were also assigned
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an in-plane shear flexibility. This is normally not done in WCMs because of the strain compat-
ibility issues discussed in the following. The shear flexibility of the wall links was estimated
on the basis of the analogous truss model proposed by Park and Paulay [1975] assuming that
the shear deformations concentrate in the regions with small diameter vertical reinforcement
outside the boundary elements. Alternatively, the shear stiffness of the elastic, homogenous
link section could be reduced by the same factor as the in-plane shear stiffness of the wall
elements (for TUA and TUB at µ∆ = 4.0 these two approaches yielded very similar results).
The shear flexibility of the collar links was computed based on the properties of the elastic and
uncracked gross concrete sections. As a consequence, these links were almost rigid in shear.

Figure 6.30 compares two models, one with links that are rigid in shear and one with links
that are flexible in shear. The first model corresponds to the model "0.25GKel" of the previous
section while in the second model the links were also assigned a shear flexibility. The links
were modelled as elastic beam elements which have – as the nonlinear displacement-based
elements – only a torsional but no shear flexibility in Opensees. The shear flexibility of the
links was hence modelled by zero-length spring elements that were placed at the corners and
at the centres of the flange sections. The spring elements were assigned an elastic translational
stiffness in the vertical direction; all other degrees of freedom of their two end nodes were
slaved. The results in Figure 6.30a show that introducing a shear flexibility to the links brings
the analysis results in terms of the hysteresis curve in the diagonal direction closer to the
experimental results. The reduction in the moment capacity at Position E results mainly from
a smaller EW shear force, the actuator force in the NS-W direction, for example, is hardly
affected by the shear flexibility of the links (Figure 6.30b).
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Figure 6.30. TUA: Influence of the shear flexibility of the horizontal links on the hysterese curves
for the diagonal cycles (a) and the force of the NS-W actuator for cycles with µ∆ = 4.0 (b).
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In the reference WCM the rectangular sections that make up the U-shaped section remain
plane while the U-shaped wall section as a whole does not remain plane due to the torsional
flexibility of the links. This modelling assumption was supported by Demec measurements
(Whitmore gauge measurements) taken on the inner faces of the web and flanges of TUA and
TUB during testing. As an example, Figure 6.31 shows the vertical strain profiles obtained
from the Demec measurements at Position E in the µ∆ = 3.0 cycles. Since the crack spac-
ing was of the same magnitude as the length over which average strains were measured the
strain profiles appear slightly erratic but the results suggest that the assumption of linear pro-
files over individual wall sections (i.e. one flange or the web) is reasonable. The dashed lines
in Figure 6.31 are best fit linear profiles over the individual wall sections. Assigning a shear
flexibility to the links in the WCM leads to a discrepancy of the longitudinal strains of the
web and flange sections at the corner, which was not observed during the tests. However,
the analysis of elastic non-planar walls for which the ratio of shear to flexural deformations
∆s/∆f was in the order of those encountered for TUA and TUB (see Section 4.4.1) indicated,
that the links should be assigned shear flexibilities in order to model the overall stiffness of the
wall correctly. This conclusion was drawn when comparing the results from elastic WCMs
to elastic shell element models. In the latter the deviation from the assumption of rectangu-
lar sections remaining plane increased with decreasing shear stiffness of the walls. However,
for shear stiffnesses corresponding to ∆s/∆f -ratios up to about 0.5, this deviation was small
and could therefore be compatible with the jagged strain profiles obtained from the Demec
measurements. It is believed that in WCMs, the shear flexibility of the links compensates for
the stiffening effects resulting from the assumption that the individual web and flange sections
remain plane. That in WCMs the shear flexibility of the links leads to a strain incompatibil-
ity at the corners is an acceptable drawback since it was already shown in Section 6.2.2 that
strains extracted at the integration points of the wall elements are not suitable to determine
performance limits. Moreover, it was shown in Figure 6.30 that introducing the shear flexibil-
ity of the links improves the match of the numerical results with the experimental evidence
considerably.
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Figure 6.31. TUA: Vertical strain profile of TUA at Position E with µ∆ = 3.0 (at Position E the
West flange end was in compression). The grey lines represent the grid of the Demec measurements,
the grey shaded areas the vertical strains and the dashed black lines the best fit linear strain profiles
over one wall section.

6.2.5 Summary of findings and recommendations for properties of WCMs of U-
shaped walls

The objective of Section 6.2 was to deduce guidelines for properties of WCMs of U-shaped
walls. The following is a summary of the findings of the sensitivity analysis of a WCM
for TUA, which were presented in Sections 6.2.2 to 6.2.4. Only wide column models with
displacement-based beam elements as vertical elements to which fibre sections were assigned
are addressed. This type of element was chosen for two reasons: First, the displacement-based
formulation is the most commonly implemented beam element formulation in structural anal-
ysis programs. Second, fibre sections allow capturing the interaction of the axial and flexural
capacity. This was considered important since the axial load on the web and flange sections
varied significantly during the loading of TUA and TUB.

Subdivision of the section: Three different schemes of subdividing the U-shaped section
into rectangular sections were investigated. For Scheme C the corners were half at-
tributed to the web section and half to the flange sections. Since most structural analysis
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programs only allow the definition of reinforcing bars within the concrete section, the
inner corner bar was attributed to both the web and the flange section while the outer
corner bar was not assigned to any section; the total reinforcement area was therefore
modelled correctly. This subdivision scheme was chosen because it led for most di-
rections of loading to intermediate results between the other two schemes and hence
seemed most suitable for a WCM that was analysed for different directions of loading.

Spacing of the horizontal links: The spacing of the horizontal links affects the magnitude
of the parasitic bending moments and hence also the apparent shear stiffness. It was
found that the effect was more pronounced during the unloading phase of cyclic loading
than during monotonic loading. Stafford-Smith and Girgis [1986] suggested to limit the
link spacing to about one fifth of the total wall height. Setting the link spacing equal to
the storey height, which is often done when the U-shaped wall is modelled as part of
an entire building, might lead to a softer structure than intended. In a secondary way
the horizontal link spacing also affects the length of the vertical elements and hence the
height of the integration point closest to the base. If the first integration point is at
some distance to the wall base the lateral load capacity might be overestimated. Instead
of altering the link spacing a larger number of elements between the links might be
chosen (see the following point).

Number of elements between links: Connecting two horizontal links with a single vertical
element would be the simplest solution. One should, however, refrain from it in re-
gions undergoing significant inelastic deformations, since standard displacement-based
elements are not capable of capturing large nonlinear curvature variations. Hence, at
least two elements having each an element length of hsp/2 should be used for connecting
two consecutive horizontal links. For the case of TUA with hsp = 680mm it was found
that the difference between using two or three elements between consecutive links was
small. To keep the model simple the links were connected with two elements.

In-plane shear stiffness of the vertical elements: When assigning shear and torsional stiff-
nesses to vertical wall elements, regions undergoing inelastic deformations and regions
that remain largely uncracked and elastic should be distinguished. The following sum-
mary refers to the wall elements that are expected to undergo inelastic deformations.
In reality, the shear and torsional stiffness of a web or flange section is dependent on
the state of cracking and the axial and flexural strains. This varies during the course
of the loading. In most structural analysis programs shear and flexural stiffnesses need,
however, to be assigned constant values that cannot be updated during the loading his-
tory. The objective of this part of the study was therefore to test the sensitivity of the
results to different assumptions and to propose an appropriate constant value, which
could be used for TUA and TUB when analysed for the entire loading history. It was
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shown that based on the ∆s/∆f -ratios, which were gained from the experimental re-
sults, in-plane shear stiffness estimates could be derived. If the WCMs were analysed
for the entire bi-directional loading history, the shear stiffnesses were best derived from
the ∆s/∆f -ratios for the principal directions of loading at µ∆ = 4.0 which represents
an intermediate ductility level. Consequently, for smaller displacement demands the
shear stiffnesses were underestimated while for larger displacement demands they were
overestimated. For the analysis of the isolated U-shaped wall it did little matter whether
the shear flexibility was distributed constantly over the wall height or whether the shear
flexibility was concentrated within the plastic hinge zone. If the U-shaped wall is part of
a larger structure, the distribution of the shear flexibility should reflect the distribution
of the expected inelastic deformations.

Out-of-plane shear stiffness of the vertical elements: The out-of-plane shear stiffness of
the wall sections undergoing inelastic deformations is even more difficult to estimate
than the in-plane shear stiffness since no out-of-plane deformation quantities were mea-
sured, which could help in deducing a stiffness. The sensitivity analysis showed, how-
ever, that the magnitude of the out-of-plane shear stiffness was not that important (as
long as some stiffness was assigned) since the shear force was limited by the out-of-plane
bending capacity. Depending on the ratio of wall length to wall width of the considered
section, the out-of-plane stiffness could be estimated as a fraction of the in-plane stiff-
ness (e.g. 25%). If the U-shaped wall is analysed to derive design forces (rather than for
assessment of an existing structure or modelling of a test unit) the out-of-plane shear
stiffness might be set to zero. In this way, all shear forces are carried as in-plane shear
forces and are therefore included in the design process.

Torsional stiffness of the vertical elements: The torsional stiffness of the vertical elements
was not the focus of this study since the WCM were only analysed for translational
deformations; this type of loading was not sensitive to the assumed torsional stiffnesses
of the vertical elements. Without having it yet verified by experimental results, it is
recommended that the torsional stiffness is reduced to allow for the inelastic deforma-
tions. As a first estimate the torsional stiffness might be reduced by a similar ratio as
the in-plane shear stiffness.

Link properties: As recommended by Reynouard and Fardis [2001] the links were assigned
a torsional flexibility in order to allow warping of the section. Reynouard and Fardis
[2001] suggested to use the elastic torsional stiffness of the links GK = Gc · hsp/3 ·
t3. Reducing the torsional stiffness of the links further had relatively little effect on
the analysis results, while the difference in analysis results between flexible and rigid
links was considerable. Hence, it is suggested to use either the properties suggested
by Reynouard and Fardis [2001] for all links or to reduce this stiffness a little further
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in regions where inelastic deformations of the wall sections are expected to reduce the
warping stiffness of the section. Unlike all previous studies of which we are aware, it is
also proposed to assign an in-plane shear flexibility to the links. This shear flexibility
is introduced to account for deformations in the physical test unit, which were caused
by vertical shear stresses transmitted from the web to one flange along the corners.
Assigning the horizontal links such shear flexibility caused a discontinuity in the strain
profile at the corners. Considering that the WCM is in all cases only a very simple
approximation of the real physical test unit, it was judged that this is acceptable. The
shear stiffness of the wall links could be either estimated on the basis of the truss model
developed by Park and Paulay [1975] or the shear stiffness of the elastic, uncracked
section could be reduced by the same amount as the shear stiffness of the vertical wall
elements.

Shifting from values for the in-plane shear stiffness of the vertical wall elements representing
elastic, uncracked sections to values that account for the effect of the inelastic deformation
had the largest effect on the force-displacement hystereses. Also the introduction of a shear
flexibility to the horizontal links had a significant effect; this was in particular noticeable for
the moment hysteresis in the diagonal direction. These two modifications to the reference
models with state-of-the-art properties brought the numerical results in terms of the unload-
ing stiffness, the force distribution between the East and West actuator and most importantly
the maximum reached moments for loading in the diagonal direction fairly close to the experi-
mentally determined values. Modifying the torsional stiffness of the links had the same effect,
i.e. a reduction of the stiffness of the system, but to a far smaller extent. From a modelling
point of view it is therefore important to find appropriate estimates for the in-plane shear
stiffness of the wall elements.

The analysis has also shown that the maximum capacity reached for the pushover analysis was
not affected by the choice of the modelling parameters that were discussed in this section; the
pushover analysis always reached the same moment capacity. Hence, one can conclude that
the moment capacity that was reached during the testing of TUA and TUB for displacements
in the diagonal direction were not the ultimate moment capacities but that the loading in the
diagonal direction was in fact always stopped before the ultimate capacities were reached, since
the system was much softer than expected due to the large shear deformations.

Up to now the in-plane shear stiffnesses of the wall elements were computed from the ex-
perimentally determined ∆s/∆f -ratios. This was done to reduce the number of factors that
introduce an uncertainty in the comparison of the numerical results from the WCM and
the experimental results. In Chapter 5 an empirical equation for the prediction of the ratio
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of shear to flexural deformations was developed. Although the predicted ∆s/∆f -ratios (Ta-
ble 5.1) were in particular for TUA in some cases too large this hardly affected the results of
the WCM analyses. Figures 6.32 and 6.33 show the force-displacement hystereses for cycles
in the EW, NS and diagonal directions and the actuator forces during the cycles at µ∆ = 4.0.
For the global hystereses there is almost no difference between the WCMs whose shear stiff-
nesses were based on the predicted and experimentally determined ∆s/∆f -ratios. There is
a slight difference for the actuator forces between the two models; it is, however, relatively
small. Hence, it seems that the models were not very sensitive to the chosen shear stiffnesses
as long as the stiffness was in the right ballpark. For TUA both WCMs tend to be a little too
soft when the maximum reached moment during the diagonal cycle at µ∆ = 4.0 as well as
the NS-W and NS-E actuator forces are considered. For the experimental ∆s/∆f -ratios the
shear displacement was determined according to the indirect method. Compared to the other
two methods the indirect method led to the largest ratios of shear to flexural deformations. It
is therefore possible that the shear flexibility of the wall elements was slightly overestimated.
For TUB, the difference between the three methods was less significant. On the whole, how-
ever, the agreement between the experimental results and the numerical predictions is rather
satisfactory and much improved when compared to the results obtained from the reference
models with state-of-the-art properties (Figures 6.11 and 6.12).
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Figure 6.32. TUA, final WCM with in-plane shear stiffnesses derived from experimentally deter-
mined and predicted ∆s/∆f -ratios: Comparison of analysis and experimental results for cycles in
the EW, NS and diagonal directions (a-c); comparison of actuator forces obtained from analysis and
experiment during the cycles of µ∆ = 4.0 (d-f).
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Figure 6.33. TUB, final WCM with in-plane shear stiffnesses derived from experimentally deter-
mined and predicted ∆s/∆f -ratios: Comparison of analysis and experimental results for cycles in
the EW, NS and diagonal directions (a-c); comparison of actuator forces obtained from analysis and
experiment during the cycles of µ∆ = 4.0 (d-f).
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6.3 Discussion of results from plastic hinge and wide-column models and outlook
on future research

The objective of this chapter was to apply the plastic hinge and the wide-column model to
TUA and TUB and to compare the analysis results to the experimental results. The results
showed that the plastic hinge model was well suited to predict displacement capacities. How-
ever, the pushover curves for loading in the diagonal direction that were derived by means of
plastic hinge analysis resulted in much larger moment capacities than were actually attained
during the experiments. Here, the limits of the capabilities of plastic hinge model were reached
because the reasons for the difference laid in the difference of cyclic and monotonic loading.
This could be shown when wide-column models were analysed. Due to shear flexibilities,
which were relatively large when compared to those of rectangular walls, the loading and
reloading stiffness was reduced and hence the maximum moment capacity in the diagonal di-
rection was probably never reached. The comparison of the global forces and deformations
obtained from wide-column analysis to the experimental results proved that the wide-column
analogy is a powerful tool when analysing 3D structures. It is the simplest of the 3D models
(shell and solid elements models being others) yet it is also the most convenient for the design
engineer since it allows the direct extraction of section forces and moments. A novelty of
the proposed wide-column models is the introduction of a shear flexibility of the links. This
proved to be the final step that was required to achieve a good match between the numeri-
cal and experimental results. In contrast to the plastic hinge model the wide-column model
was not ideally suited to determine displacement limits. The strains that can be extracted at
integration points of elements were strongly dependent on the element length and it would
therefore be required to use different measures such as the average rotation over the plastic
hinge length (Yazgan, 2007, personal communication) to determine displacement capacities
from wide-column analyses.

The evaluation of the different types of models and hence the choice of the modelling param-
eters for the wide-column models was based on the experimental results for TUA and TUB.
Validating against two experiments can only be a start but cannot result in final conclusions.
It is therefore important that more experimental results on the cyclic behaviour of U-shaped
walls (or walls with other non-planar sections) become available.



7. ACCOUNTING FOR TORSIONAL RESPONSE IN
DDBD

7.1 Introduction

The objective of this thesis is to contribute to the seismic design of RC buildings with U-shaped
walls (Section 1.2). While in the previous chapters the seismic behaviour of isolated U-shaped
walls has been examined, this chapter will provide a missing piece to the conceptual design of
the entire building rather than the design and analysis of a single structural member. A key
characteristic of buildings with U-shaped walls is their plan-asymmetry. In many buildings the
U-shaped wall is placed at the perimeter of the plan layout in order to create large open floor
areas. Since the U-shaped wall is typically stiffer and stronger than other structural elements,
the building is in most cases asymmetric regarding the stiffness and strength distribution over
the plan area. As a result the structure will not only translated but will also twist when
subjected to seismic excitation. This was illustrated in Figure 1.2 of the introduction to this
report. Figure 1.2 showed a building in which a U-shaped wall and three rectangular walls are
the lateral strength providing elements. During an earthquake, the lateral resistance provided
by the U-shaped wall and other walls are different, resulting in a twist of the structure. The
most important consequence of the twist is the increase in displacement demand on some
structural components [Paulay, 1997].

Torsional provisions in codes are predominantly based on elastic considerations. Paulay [1997]
pointed out that such provisions are hardly suitable to describe the torsional behaviour of
structures that are expected to respond in the inelastic range. The study presented here fol-
lows Paulay’s argumentation and the torsional response of inelastic rather than linear elastic
systems will be examined. While most design codes still focus on force rather than displace-
ment demands, a number of displacement oriented design approaches have been developed
over the last two decades. Such design approaches allow the engineer to estimate displace-
ment demands on structural components and thus protect these components from excessive
deformations that would lead to unacceptable damage. One of the most completely developed
approaches is the direct displacement-based design (DDBD) approach, which has been devel-
oped by Priestley and his co-workers [Priestley, 2000; Priestley and Kowalsky, 2000; Priestley
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et al., 2007]. In its current form, this design approach can be applied to any kind of MDoF
system that is symmetric in-plan but not to in-plan asymmetric buildings. Therefore, next to
examining the torsional response of inelastic systems, the second objective of this chapter is
to develop a simple method that allows to account for additional displacement demand due to
twist within the framework of DDBD.

While the focus of this project is on buildings with U-shaped walls, the following study on
the torsional response is based on buildings with rectangular RC walls. This was done to
simplify and generalise the parametric study on the response of in-plan asymmetric buildings.
It is believed that for the preliminary stages of conceptual design, when the displacement
demand on the structural elements is estimated, the U-shaped wall can be idealised as two
rectangular walls since in most cases the torsional stiffness of the U-shaped wall is relatively
small compared with the rotational stiffness of the entire structure. This applies, for example,
to the system in Figure 1.2. The lever arm between the walls at the perimeter of the slab
is considerably larger than the lever arm between the two flanges of the U-shaped wall and
therefore the torsional stiffness and strength of the entire building is much larger than that
of the U-shaped wall. The error introduced by neglecting the torsional stiffness of the U-
shaped wall is relatively small and hence acceptable during the conceptual design stage. When
verifying the design by means of nonlinear time history analysis, the U-shaped wall can then
be modelled as a three dimensional structure that also possesses a torsional stiffness. The wide-
column analogy, which was applied to TUA and TUB in Chapter 6, seems suitable for this
purpose. However, at present, its capabilities of reflecting the correct torsional stiffness of the
U-shaped walls has not been examined; this will be the topic of a future study.

If the torsional stiffness of the U-shaped wall is not negligible when compared with the tor-
sional stiffness of the entire system, the simplification of representing the U-shaped wall as
two rectangular walls is not acceptable. An extreme case of such a building is shown in Fig-
ure 7.1: In this building the entire lateral resistance is provided by the core wall; all other
vertical structural elements carry only gravity loads. In such a case, the torsional resistance of
the U-shaped wall should be considered when designing the structure. Also considered should
be the location of the shear centre of the U-shaped wall, which varies depending on the degree
of damage to the structural wall [Pégon et al., 2000a]. Since the torsional stiffness and the loca-
tion of the shear centre have not yet been addressed, structures whose predominant torsional
resistance results from the U-shaped wall are excluded from the following design approach.
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Figure 7.1. Photo of a RC structure with flat slabs and gravity columns and a very eccentric
core structure, which is the only member providing lateral strength (photo by the courtesy of
H. Bachmann).

7.1.1 Objectives of this chapter and limitations to the study

The objective of this study is twofold: First, it is aimed to characterise the seismic response of
in-plan asymmetric building systems that respond in the inelastic range. The seismic response
is characterised in terms of the displacement demands on structural elements. The second
and principal objective is to develop for such systems a simple approach for estimating the
displacement demand on the centre of mass and the structural elements. This approach can
then be used in conjunction with DDBD for designing in-plan asymmetric structures. The
study is limited to the class of "regular asymmetric systems", which was defined by Hejal and
Chopra [1989]. The characteristics of such systems are:

• The vertical resisting elements must be arranged on an orthogonal grid.

• The centres of mass of all the floors must line up vertically.

• The ratio of rotational inertia to mass must be constant over the height of the structure.

• The stiffness matrices of all lateral load resisting elements must be mutually propor-
tional over the height of the wall.

The example structures used in this study are all simple wall-type structures that are regular
in elevation. Note that due to the last requirement for regular asymmetric walls, a mixed
frame-wall structure is strictly speaking not a regular asymmetric system because the stiffness
matrices of walls and frames do not vary in the same way over the height of the structure [Hejal
and Chopra, 1989]. Both, uni-directional and bi-directional input will be considered for the
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nonlinear time-history analysis. For the uni-directional analysis, artificially generated spectra
will be used. The bi-directional analysis are carried out using the two horizontal components
of real records.

7.1.2 Layout of this chapter

The section following this introduction gives a short summary of the principles of DDBD
and then focuses on previous studies on torsional response of in-plan asymmetric structures
(Section 7.2). The analysis method and earthquake records used for this study are presented in
Section 7.3. The results of the parametric study on 2D asymmetric systems are presented in
Section 7.4. Based on these results a method for estimating the displacement demand on 2D
asymmetric systems is developed; with this tool it is possible to extend the DDBD approach to
in-plan asymmetric structures (Section 7.5). In the last section (Section 7.6), the key findings
from this study on the torsional response of inelastic systems are summarised and suggestions
for future research made.

7.2 Literature review on DDBD and torsional response of in-plan asymmetric
structures

The aim of this study is to extend the DDBD approach to structures that are asymmetric in
plan. To set the study in context, a brief overview of the principles behind DDBD are given
(Section 7.2.1). The main part of the literature review section focuses on previous studies on
torsional response of in-plan asymmetric structures. This part is subdivided into four sections:

• An overview on research activities regarding torsional response (Section 7.2.2).

• 2D models for in-plan asymmetric structures and the definition of relevant terms (Sec-
tion 7.2.3).

• Results of previous studies on the response of 2D models of in-plan asymmetric struc-
tures (Section 7.2.4).

• Different design approaches considering the torsional response of in-plan asymmetric
structures (Section 7.2.5).

7.2.1 Direct displacement-based design

The DDBD approach characterises a multi-degree of freedom system by a substitute linear
single-degree of freedom system. The substitute system is characterised by the secant stiffness
at the design displacement of the structure and a viscous damping value accounting for the
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combined effects of elastic and hysteretic energy dissipation in the nonlinear multi-degree
of freedom system [Priestley and Kowalsky, 2000]. The design displacement corresponds to
the maximum displacement that leads to acceptable displacement and drift demands. With
some fundamental knowledge of the hysteretic characteristics of the main structural elements,
the effective viscous damping can be estimated and the effective period at peak displacement
can be obtained from elastic response spectra for different levels of damping. Knowing the
effective period and the design displacement, the required strength can be readily obtained. To
reduce the multi-degree of freedom system to a single degree of freedom system, assumptions
regarding the displaced shape over the height of the structure at maximum displacement are
required. Appropriate shape functions have been developed for a number of structural systems
such as structural wall type and frame type buildings. The shape functions are dependent on
the displacement profile of the structure at yield and the inelastic mechanism the structure is
expected to develop.

The DDBD approach is an instrument that allows the engineer to design structures focusing
on displacement rather than force demands. The effectiveness of this design approach has
been proven in a number of studies considering different types of structures (e.g. Priestley and
Amaris [2002]; Pettinga and Priestley [2005]; Sullivan et al. [2006]). However, in its current
form, the design approach is limited to structures that only translate and do not twist when
subjected to seismic excitation. While earthquakes produce also a rotational component of
motion, this is typically assumed to be negligible and it is therefore not considered in seismic
design. Hence, structures that can be addressed by means of DDBD in its current form are
structures that are symmetric in plan. For this type of structures the translational compo-
nents of seismic excitation do not cause the structure to twist and hence produce a constant
displacement demand over one floor level.

If the system is asymmetric in plan and torsional response is expected to occur under seismic
loading, the displacement demand on elements at one particular floor level is no longer uni-
form. To reduce the multi-degree of freedom system to a single degree of freedom system,
it has been shown that it is sufficient to estimate the displacement demand at the centre of
mass at each storey level [Castillo, 2004]. However, to assess the structural performance, not
only the displacement demand at the centre of mass but also at the locations of the structural
elements needs to be addressed. This will be the main focus of the study presented in this
chapter.

7.2.2 Selected studies describing the torsional response of buildings

The torsional response of buildings when subjected to seismic excitation has been the focus of
a number of research groups for many years. Different approaches have been taken with the
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objective of understanding and describing the torsional response of buildings. The research
approaches of the last 30 years can be broadly grouped into five categories:

Torsional response of elastic systems: In particular in the early years most researchers fo-
cused on the torsional response of elastic systems. The objectives were chiefly the
derivation of modal properties of different in-plan asymmetric buildings and estima-
tion of peak displacements and forces using response spectrum analysis. Some key ref-
erences for this direction of research are: Kan and Chopra [1977], Rutenberg et al. [1978]
and Hejal and Chopra [1989]. A more recent study by Lopez et al. [2000] proposed a
method for estimating the maximum response of in-plan symmetric and asymmetric
elastic structures when subjected to multi-component earthquakes using different rules
for combining the response of several modes.

Base-shear torque surface: De la Llera and Chopra [1995] introduced the base-shear torque
surface (BST-surface), which is a failure surface for an asymmetric in-plan 2D system.
The method is based on static considerations and failure is defined as the formation of a
mechanism. The BST-surface is an interesting concept for visualising the interaction of
base shear and torque capacity. From a seismic design point of view, however, it has a
number of short comings: First, it does not address base shear and torque demands but
solely the structure’s capacity. Second, it does not address the displacement demand on
the structure under seismic excitation. Finally, the definition of failure that is applied
for the BST-surface is unsuitable for dynamic considerations in which a mechanism is
allowed to form as long as the displacement capacity of the structure is not exceeded.
The concept of the BST-surface has also been studied and extended by a number of
other researchers, e.g. Rutenberg and De Stefano [1997a], Kilar and Fajfar [1999] and
Sommer [2000].

Pushover analysis of asymmetric buildings: Several uni-directional pushover analysis
methods for in-plan symmetric buildings have been developed in the past and have
in some cases also been implemented in seismic design codes. These pushover
methods can not be applied to buildings that are asymmetric in plan. A number
of researchers hence developed extensions of pushover analysis tools for in-plan
asymmetric structures, which can be implemented in structural analysis programs.
Different approaches were for example proposed by Kilar and Fajfar [1997], Tso and
Moghadam [1997], Chopra and Goel [2004] and Fajfar et al. [2005]. The main drawback
of static pushover methods (apart from the modal pushover methods) consists in the
difficulty of properly accounting for the effect of rotational inertia, which is, however,
crucial for the rotational response of elastic and inelastic systems (see Section 7.2.3).
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nonlinear time history analysis of asymmetric buildings: Since the computer power be-
came sufficient large to carry out inelastic analysis of buildings, nonlinear time-history
analyses have been carried out for many different configurations of asymmetric build-
ings. Simple in-plan 2D systems have often been used to identify key parameters influ-
encing the torsional response. Results of two selected studies [Sommer, 2000; Castillo,
2004] are presented in detail in Section 7.2.4. More complex models of 3D structures
that are asymmetric in-plan have also been studied but due to the large number of pa-
rameters involved in 3D models, such analyses are often restrained to case studies.

Design-oriented studies: Paulay developed design approaches for different torsional systems
(see Section 7.2.5), which were purely displacement-oriented [1996; 1997; 1999; 2001].
Unlike other researchers, he focused on the mechanisms of the system that could de-
velop when subjected to torsional response. He pointed out that rotations are not of
primary concern when assessing the performance of an in-plan asymmetric system that
is asymmetric in plan and suggested that displacement or drift demands on structural
and non-structural components should be addressed directly. His earlier studies were
later complemented by nonlinear time-history analyses of simple 2D models by his stu-
dent Castillo [2004]. Castillo’s work is described in detail in Section 7.2.4. Sommer
[2000] and Trombetti et al. [2002] both developed methods for estimating the rotational
response of asymmetric 2D systems based on the torsional response of elastic systems,
the method of the latter is also known as the "alpha"-method. While Trombetti et al.
[2002] considered the ratio of maximum translation to maximum rotation of the elastic
system under free vibration, Sommer [2000] considered maximum translation and rota-
tion of an elastic system under seismic excitation. The application of these approaches
to inelastic systems is based on the assumption that rotations of inelastic systems are
always smaller than rotations of their elastic counterparts. Both approaches neglect
that maximum translation and maximum rotation do not occur at the same instant.
Sommer’s [2000] approach will be described in more detail in Section 7.2.5.

More comprehensive reviews of the past and ongoing research activities on the torsional re-
sponse of in-plan asymmetric structures including extensive reference lists can be found in
the following publications: Rutenberg [1992], Rutenberg and De Stefano [1997b], Rutenberg
[2002] and De Stefano and Pintucchi [2006].

7.2.3 Simple 2D models and the definition of terms relevant to torsional response

In order to carry out parametric studies, it is beneficial to reduce the number of degrees of
freedoms of the model. Regular asymmetric 3D systems, which were defined in Section 7.1.1,
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can be approximated by 2D systems. In such 2D systems the lateral strength providing struc-
tural elements (e.g. walls or frames) are represented by a spring that is characterised by the
deformations of the structural element at the effective height and its base shear capacity. The
springs are connected to the CoM by rigid links assuming the deformability of the slabs are
small. The storey masses are reduced to an effective mass, which is lumped at the centre of
mass. To account for the fact that the mass in reality is distributed over the floor area, it is also
assigned an effective rotational inertia. Such a 2D model has three degrees of freedom, i.e. two
horizontal, translational degrees of freedom and one rotational degree of freedom about the
vertical axis. Many parametric studies on in-plan asymmetric structures have been based on
such 2D systems. In the following sections, the classes of torsionally restrained and torsion-
ally unrestrained 2D systems are introduced (Section 7.2.3a) and the characteristic properties
of such systems are defined (Section 7.2.3b).

a) Torsionally restrained and torsionally unrestrained systems.
The classification of in-plan asymmetric structures into torsionally restrained (TR) and tor-
sionally unrestrained (TU) was introduced by Paulay [1996]. Figure 7.2 shows plan layouts
of simple TR and TU systems. The mass of the system is distributed over the floor area; the
location of the centre of mass coincides in the examples with the geometric centre of the slab
but this is not mandatory. The lateral strength is provided by RC walls. Their out-of plane
stiffness and strength is not considered in the following. The main characteristics of the two
types of systems are discussed in depth by Castillo [2004]. For completeness, they are repeated
here in brevity.

Figure 7.2. Torsionally unrestrained and torsionally restrained systems: Examples of systems that
are for excitation in the x direction classified as TU system (a) and TR system (b).

Figure 7.2a shows an example of a TU system that is asymmetric for excitation in the x direc-
tion. Such systems are characterised by the absence of a wall couple in the z direction, which
would provide a rotational restraint. When the 2D system from Figure 7.2a is subjected to
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seismic excitation in the z direction the resistance is provided by the single wall through the
centre of mass. For this direction of excitation the system is symmetric and hence this direc-
tion is not considered in the following. For excitation in the x direction the lateral resistance
is provided by the two walls at the perimeter of the slab. The walls have unequal lengths and
hence their yield displacements, which are inversely proportional to the wall length, will also
be different. If the reinforcement ratios of the walls are similar, the strength and stiffness will
be greater for the long wall than for the short wall. In the following the edge of the slab with
the long wall is referred to as "stiff edge" and that with the short wall as "soft edge". If the
entire mass of the system would be concentrated at the centre of mass, i.e. if the system had no
rotational inertia, the reaction forces in the long and short wall due to seismic excitation in the
x direction would always be equal. Figure 7.3a shows the displacement profile of the system
one would obtain for zero rotational inertia: The long and strong wall would remain elastic
and its deformation would be small. The short and soft wall would yield and be subjected to
large displacement demands. In reality, however, there will always be some rotational inertia
associated with the distributed mass of the slab and the mass of the walls at the perimeter of
the slab. When the slab rotates, a torsional moment due to the rotational inertia is created
and the forces in the two walls are no longer equal. As a consequence, the difference in dis-
placement demand on the long and short wall is typically reduced and in most cases both walls
respond in the nonlinear range. Once the two elements have reached their inelastic state, there
are no further structural elements, which restrain the rotation of the system. At this stage,
only the rotational inertia limits the rotation of the slab. The difference in behaviour between
TU systems with and without rotational inertia underlines the fact that torsion cannot be
looked upon as a static problem; consideration of the rotational inertia is very important in
understanding the dynamic behaviour of in-plan asymmetric systems.

Figure 7.3. Maximum displacement profiles if rotational inertia is considered or neglected (a)
and example of a system for which the definition of TR or TU is dependent on the direction of
excitation (b): Direction 1: TU, direction 2: TR, direction 3: The system is symmetric.
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A sketch of a TR system is shown in Figure 7.3b. In contrast to the TU system, the resistance
in the z direction is provided by two walls at the perimeter of the slab rather than a single
wall passing through the centre of mass. Hence, if the system is subjected to rotation, the
wall elements in the z direction contribute to the rotational resistance. For the hypothetical
case of uni-directional excitation in the x direction, the two walls in the direction of excitation
are expected to yield. The walls in the z direction will in most cases remain elastic and will
provide resistance to rotation. As a consequence, the rotations of a torsionally restrained sys-
tem will be much smaller than the rotations of a torsionally unrestrained system. Due to the
effects of the rotational inertia, maximum displacement demands on the stiff and soft edge and
maximum rotation do not occur simultaneously during seismic excitation. In the following,
the focus is set on the displacement demand on structural elements and not on the maximum
system rotation since the structural displacement demands are the important design quanti-
ties [Paulay, 1996]. Sommer [2000] rightly pointed out that the classification of asymmetric
systems into torsionally restrained and unrestrained systems is dependent on the considered
direction of excitation (Figure 7.3b). In the case of a square slab with identical walls on either
side of the slab, for example, the system would be classified as torsionally restrained when ex-
cited parallel to the orientation of the walls and as torsionally unrestrained when excited along
the diagonals of the floor. In general terms, a system will always be torsionally unrestrained
when excited parallel to its principal directions of strength. It will be torsionally unrestrained
in more than two directions if the structural components in x or z direction cannot sustain a
moment. However, the labelling of torsionally restrained and unrestrained systems as intro-
duced by Paulay [1996] helps to distinguish between preferable and less favourable wall layouts
of systems that are asymmetric in plan and therefore this classification is also adopted in this
study.

b) Definition of terms.
In this section, all terms relevant for the following discussion of the design of structural walls
and the torsional response of asymmetric systems are introduced. The list includes definition
of component properties and system properties. If the same quantity is defined for compo-
nents as well as for the system (e.g. the yield displacement), system properties are marked
with the subscript "s" while component properties (i.e. wall properties) carry a number as a
subscript.

Effective height and effective mass of a structural wall system
To reduce a MDoF system to a substitute SDoF system the effective properties of the system
have to be computed. The effective properties are a function of displacement profile over
height. In DDBD, the effective properties are computed based on the displaced shape at the
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design point, i.e. the maximum displacement. The effective mass of a system is defined as:

meff =
(
∑

∆j ·mj)2∑
∆2

j ·mj
(7.1)

where ∆j is the design displacement at storey j and mj is the storey mass. The effective height
of a system is defined as:

heff =
∑

∆j ·mj

meff
(7.2)

Stiffness and yield displacement of one structural wall
The lateral load bearing components of the analysed systems are structural walls. The mean
nominal yield curvature ϕy of a structural wall is a function of the wall length lw and the
yield strain εsy of the longitudinal reinforcement (Section 2.1.2). For rectangular walls the
coefficient K1 is often assumed as 2.0:

ϕy = 2
εsy

lw
(7.3)

Based on the classical beam theory the flexural stiffness after cracking of the component can
be computed as:

EI =
Mn

ϕy
(7.4)

where Mn is the moment capacity at nominal yield. The nominal base shear capacity Vn is the
ratio of the nominal moment Mn and the effective height H . Typically, during the conceptual
design stage, the nominal yield displacement of a wall is estimated assuming a linear curvature
variation over the height of the wall (for a discussion of this issue see Section 2.1.1 and 6.1.2).
The nominal yield displacement ∆y at the effective height H can be expressed as a function of
the total height hn of the wall:

∆y = ϕyH2 · (1
2
− H

6hn
) (7.5)

From the nominal base shear capacity Vn and the yield displacement ∆y of a wall the equiva-
lent wall stiffness k is defined as:

k =
Vn

∆y
(7.6)

System yield displacement and uncoupled translational period
The yield displacement of the system is defined as the translational displacement only, i.e.
when computing the system yield displacement, it is assumed that the system is restrained
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against rotation. The system yield displacement ∆ys is the ratio of translational system
strength and system stiffness in one particular direction (i.e. the x or the z direction):

∆ys =
∑

Vni∑
ki

=
∑

Vni∑
Vni/∆yi

(7.7)

where the subscript i stands for the i-th wall contributing to the strength in the considered
direction. The uncoupled translational period in one particular direction is defined as

T0 = 2Π
√

meff∑
ki

(7.8)

Centre of mass, rotational inertia and radius of gyration of mass
The origin of the coordinate system with axes x and z in the plane of the slab is defined at the
centre of mass (CoM). The mass M is the mass contributing to the horizontal inertia of the
system. The rotational inertia Irot depends on the distribution of the mass over the slab. For
a uniform mass distribution, the rotational inertia of a rectangular slab is:

Irot =
M

12
(b2

x + b2
z) (7.9)

where bx and bz are the horizontal dimensions of the slab (Figure 7.2). The radius of gyration
of mass rm is defined as:

rm =

√
Irot

M
(7.10)

Castillo [2004] introduced a reference parameter for the rotational inertia that is the radius of
gyration of mass of a square slab with equal area and uniformly distributed mass:

r0 =

√
bxbz

6
(7.11)

The ratio of rm/r0 gives a good indication by how much the rotational inertia of a slab deviates
from the reference square slab with uniform mass distribution.

Translational system stiffness and centre of stiffness
The system translational stiffness in one direction is the sum of the stiffness of all components
providing resistance in this direction:

Kx =
∑

kxi and Kz =
∑

kzi (7.12)

The distance of the centre of stiffness from the CoM is computed as:

erz =
∑

kxizi

Kx
and erx =

∑
kzixi

Kz
(7.13)
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xi and zi are the lever arm of the component i from the CoM and kxi, kzi the component
stiffnesses in the x and z directions. The position of the centre of stiffness is annotated with
"CR".

System strength and centre of strength
The system strength and the strength eccentricity are defined in analogy to the translational
system stiffness and stiffness eccentricity. The system strength in the x and z directions is
defined as:

Vnxs =
∑

Vnxi and Vnzs =
∑

Vnzi (7.14)

The coordinates of the centre of strength in the x and z directions are:

evz =
∑

Vnxi · zi

Vnxs
and evx =

∑
Vnzi · xi

Vnzs
(7.15)

The position of the centre of strength is annotated with "CV".

Radius of gyration of stiffness
The square of the radius of gyration of stiffness is the ratio of rotational and translational
stiffness of the elements in one principal direction [Castillo, 2004]. The rotational stiffness
Krot,x of elements acting in the x direction and the radius of gyration of stiffness rrx in the
x direction are:

Krot,x =
∑

kxi · (zi − erz)2 and rrx =
√

Krot,x

Kx
(7.16)

For the z direction:

Krot,z =
∑

kzi · (xi − erx)2 and rrz =
√

Krot,z

Kz
(7.17)

Radius of gyration of strength
The radius of gyration of strength is defined similar to the radius of gyration of stiffness. For
the x and z directions:

Vrot,x =
∑

Vnxi · (zi − evz)2 and rvx =
√

Vrot,x

Vnx
(7.18)

Vrot,z =
∑

Vnzi · (xi − evx)2 and rvz =
√

Vrot,z

Vnz
(7.19)

Rotational stiffness
The rotational stiffness is computed either about the centre of mass or about the centre of
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stiffness. If the system is rotated about the centre of mass the sum of the forces in the x and
z directions for a pure rotation is non-zero. The rotational stiffness about the centre of mass
is

Krot,CoM =
∑

kxiz
2
i +

∑
kzix

2
i (7.20)

By definition the sum of the forces in the x and z directions is zero for rotation about the
centre of stiffness. The rotational stiffness about the centre of stiffness is

Krot = Krot,x + Krot,z = Krot,CoM −Kxe2
rz −Kze

2
rx (7.21)

The rotational stiffness about the centre of mass is therefore always greater than the rotational
stiffness about the centre of stiffness.

Definition of additional terms
Stiff edge and soft edge: The term stiff edge refers to the edge with the long wall, which is
usually stronger and stiffer than the soft edge with the short wall (Figure 7.2).

Nominal rotation: From the profile with the maximum absolute displacement demand on the
edges and the centre of mass a nominal rotation can be computed, which links the maximum
edge displacement to the maximum centre of mass displacement. In general the nominal
rotation will be different for the stiff edge and the soft edge. The nominal rotation is only
a concept to describe the maximum displacement demand on the edges and is not a quantity
that can be directly observed; the actual maximum rotation will always be greater than the
nominal rotation. The concept of nominal rotations was introduced by Castillo [2004].

Skew attack: Skew attack refers to analysis in which a uni-directional excitation is not applied
parallel to the x or z axis but at varying angles. Skew attack is not equivalent to bi-directional
excitation in which the two horizontal components of one ground motion are applied in
perpendicular directions.

7.2.4 Previous studies on torsional response of 2D models

Out of the studies on asymmetric 2D systems, which have been conducted in the past, the
results of the two most comprehensive ones are presented in the following. These two studies
are part of the Ph.D. theses by Sommer [2000] and Castillo [2004]. A large number of ear-
lier studies were based on the erroneous assumption that stiffness and strength of a cracked
RC member are independent rather than directly proportional; Paulay [2001] and Rutenberg
[2002] warned that the conclusions drawn from these studies should therefore be treated with
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caution. Castillo first published results on TU systems in Castillo et al. [2001, 2002]. In the
following, however, reference will only be made to his Ph.D. thesis [Castillo, 2004], which
contains all results of his parametric study including those presented in the earlier two pub-
lications. Within the scope of his Ph.D. thesis, Castillo [2004] analysed 2D systems similar
to the ones shown in Figure 7.2. For the analyses, he used the inelastic dynamic analysis
program "Ruaumoko" [Carr, 2004]. Castillo analysed TU and TR systems with strength and
stiffness eccentricities in one horizontal direction. He also studied systems with more than
four elements; as the other systems these multi-element systems had strength and stiffness ec-
centricities in only one horizontal direction. Most analyses were carried out applying a single
component of motion in the x direction (Figure 7.2). However, Castillo also included analyses
of TR systems subjected to skew attack. Bi-directional excitation was not considered.

Castillo applied the elasto-plastic hysteretic rule to elements in TU systems. He conducted a
sensitivity study comparing results for the elasto-plastic model, a bi-linear model with post-
yield stiffness, the modified Takeda model and the Al-Bermani model, in which the transition
from the elastic to the post-yield stiffness is gradual. Based on the results of this sensitivity
study Castillo concluded that displacement demands on the structural elements are not sensi-
tive to the hysteresis model. It is not clearly stated, which hysteretic model was used for the
analysis of TR systems but most likely Castillo concluded in analogy to the TU systems that
the choice of the hysteretic model had little influence on the analysis results and therefore used
also elements with an elasto-plastic behaviour.

For the time-history analysis of the 2D systems, Castillo used two real earthquake records and
an artificial record that was obtained from modifying the El Centro record to match the New
Zealand loading standard design spectrum for intermediate soils. This spectrum has a spectral
displacement of 0.25m at T = 2s for 5% damping. All records consisted of a single horizontal
component only. In his thesis, Castillo plotted the spectra only for periods smaller than 2s
but overdamped elastic spectra (ζ = 5− 40%) and inelastic spectra for displacement ductilities
of up to µ∆ = 5.0 were also shown. From a DDBD point of view, response spectra of elastic
systems with longer periods would have been of particular interest since a typical uncoupled
translatory period of an elastic TR system in Castillo’s study is Tel = 1.3s and a typical design
displacement ductility µ∆ = 5.35. Hence, the effective period at the design point for which
the spectral displacement is of interest is about Teff = Tel

√
µ∆

∼= 3s.

Some years before Castillo commenced his studies on torsion, Sommer [2000] had carried out a
similar parametric study on asymmetric 2D systems. Since he doubted the appropriateness of
the classification of in-plan asymmetric buildings into TR and TU systems (see Section 7.2.3a),
he did not distinguish between the two types but the systems he analysed covered TR and TU
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systems as defined by Paulay. The scope of Sommer’s parametric study on 2D systems was sim-
ilar to Castillo’s study. In addition to the systems studied by Castillo, Sommer also included
systems with eccentricities in both horizontal directions rather than only one. Nevertheless,
Sommer limited his study to analyses with uni-directional excitation. As Castillo he designed
the systems for an approximate system ductility of 5.0. The hysteretic behaviour of the walls
was modelled as elasto-plastic with a smooth transition from the elastic to the plastic state.
The systems were analysed using the finite element program ABAQUS. For the time-history
analyses Sommer used six artificial records, which all matched the design spectrum in the Swiss
Code SIA160 [1989] for medium stiff soil. The displacement spectrum had no corner period
but increased linearly up to 5s. For 5% damping the spectral displacement at 5s was 0.2m. The
seismic displacement demand was therefore less than half as onerous as the demand imposed
by the records in Castillo’s study. The duration of the records varied between 10 and 12s, the
peak ground acceleration of all records was 0.16g. The nonlinear time-history analyses were
carried out using 5% tangent stiffness and mass proportional Rayleigh damping in the first
and third mode.

Although the range of systems that Sommer considered was slightly greater than the range of
systems analysed by Castillo, Castillo’s thesis is used as the main reference since in particular
his design recommendations (Section 7.2.5) give the framework to the study presented here.
Castillo’s and Sommer’s main findings on TR systems are summarised in the following para-
graphs. To improve the readability, no reference is given if the finding results from Castillo’s
study. Additional findings by Sommer are marked with a reference to Sommer’s Ph.D. thesis
[Sommer, 2000].

a) Rotations and mass rotational inertia.

• Rotations are not a suitable measure for the behaviour of asymmetric structures because
in general the maximum rotation and the maximum displacement demand on the CoM
do not occur at the same instant. Instead, the displacement demand on the structural
elements should be addressed directly (see also Paulay [1997]).

• Unlike static considerations would suggest (Section 7.2.3a), the stiff wall of TU systems
generally reaches a post-yield state provided the rotational inertia is greater than zero.
Thus, it is important to consider the rotational inertia when studying the torsional
response of in-plan asymmetric systems.

• The mass rotational inertia of the diaphragm restricts system rotations caused by
strength and stiffness eccentricities. Rotations are further reduced in case of TR sys-
tems where transverse elements provide a torsional restraint.
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• The response of TR systems is fairly insensitive to the magnitude of the rotational
inertia if the structure is excited parallel to a principal axis (i.e. parallel to the walls in
the x or z direction).

• Sommer [2000] found that the displacement demand on the soft edge for Irot > 0 was
only slightly larger than the displacement demand on the soft edge for Irot = 0. For
the stiff edge the displacement demand was larger for Irot > 0 than for Irot = 0 since
in the first case the stiff wall reached the inelastic state while in the latter it remained
elastic.

b) Displacement demand and translatory mass.

• The displacement demand on the CoM can be predicted by an equivalent SDoF system.
The equivalent SDoF should be assigned the effective translatory mass of the system and
the total lateral stiffness (Kx and Kz).

• The accuracy of the equivalent SDoF model reduces with increasing ratio of the wall
lengths of the long and the short wall as well as for very stiff systems (uncoupled trans-
latory period T0 < 0.7s).

• Mass eccentricity is not having an effect on the torsional response. The mass eccentric-
ity is defined as the distance between the geometric centre of the slab and the CoM.

c) Stiffness and strength eccentricity.

• Stiffness eccentricity plays a minor role when assessing the torsional behaviour of duc-
tile systems. Independent of the stiffness eccentricity, the displacement demand on
CoM, stiff and soft edge is approximately the same if the strength eccentricity is zero.
It should be noted that Castillo only considered seismic intensities that led to relative
large displacement ductility demands (µ∆

∼= 5.0).

• Strength eccentricity is acceptable provided it results from strength in excess of the one
required for zero strength eccentricity. This is one of Castillo’s most important findings
and it is also reflected in his design guidelines. According to these, strength eccentricity
must always be coupled to an increase in base shear capacity if the displacement demand
on the stiff and soft edge is not to be larger than for zero strength eccentricity.

• Sommer [2000] examined the effect of stiffness and strength eccentricity regarding the
displacement ductility demand and not (as Castillo did) regarding the displacement de-
mand on the elements. To obtain similar displacement ductilities in the elements on
the soft and stiff edge Sommer [2000] found that the position of the centre of strength
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should be between the centre of stiffness and the centre of mass. This seems convenient
since it is the typical position of the centre of strength if the elements have similar rein-
forcement and axial load ratios. Hence, most of the existing buildings would have been
designed to result in similar ductility demands on the stiff and soft edge. However, for
design purposes it seems more convenient to address the displacement demand directly
rather than aiming for equal displacement ductilities. For example, if drift limits govern
the design, the limiting displacement ductility demands will be different for long and
short walls.

d) Transverse elements (TR systems).

• Changes in strength and stiffness of the transverse elements do not significantly affect
the displacement demand on the elements parallel to the direction of excitation. Note,
however, that Castillo only considered uni-directional excitation and hence the trans-
verse elements always remained elastic.

e) Multi-element systems.

• Multi-elements systems are systems in which more than two elements provide lateral
stiffness and strength in one direction.

• Castillo found that multi-element systems can be represented by a two-element system
with similar stiffness, capacity and corresponding eccentricities. For this reason, only
systems with a maximum of two walls in each direction will be considered in this study.

f ) Skew attack.

• For skew attack the systems were excited at angles to the principal directions (i.e. in the
x and the z direction). The principal directions refer to the directions parallel to the
elements. The magnitude of the excitation remained unchanged.

• Due to yielding of the transverse elements torque and rotations increased significantly
for skew attack. As a consequence, the displacement demand on the stiff edge was in
some cases larger for skew attack than for excitation in longitudinal direction. However,
the maximum displacement demand on the elements was bounded by the displacement
of a zero-strength eccentricity system excited along its principal direction. (note: only
systems with uni-directional eccentricities were studied). Castillo’s results confirmed
Sommer’s findings [Sommer, 2000] for systems with uni-directional eccentricity if the
excitation was applied in longitudinal directions. Sommer had also studied systems
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with bi-directional eccentricity, for which he found that the demand was maximum
for the direction that maximised the strength eccentricity. Note that both Castillo and
Sommer considered only uni-directional excitation.

7.2.5 Different design approaches for estimating the torsional response

Paulay [2001] was the first to point out that most of the earlier studies were based on the
erroneous assumption that stiffness is independent of strength. He also pointed out that the
elastic properties of a structural system – on which most codified provisions for torsional re-
sponse were (and still are) based – are fairly irrelevant when considering the torsional response
of an inelastic system. He proposed to consider the strength eccentricity ev rather than the
stiffness eccentricity er when assessing the in-plan irregularity of a system that is expected to
respond in the nonlinear range. As a direct consequence, he suggested to aim for zero strength
eccentricity when designing systems that are irregular in plan [Paulay, 1999].

Myslimaj and Tso [2002] carried out a study on the torsional response of 2D systems with
the objective of identifying a criterion for the strength distribution that minimises torsional
effects. Their study is based on the correct relations between element strength, stiffness and
yield displacement. Unlike Paulay [1999], Myslimaj and Tso suggested that neither the stiff-
ness nor the strength eccentricity is the most relevant measure for the irregularity of a system
since during strong ground shaking a system passes through a number of stages in which none,
all or some of the walls will have yielded. By means of a parametric study, they found that the
rotational response was smallest for systems for which the centre of strength was located on
the opposite side of the centre of mass as the centre of stiffness (Figure 7.4a). They named this
type of strength distribution "balanced CV-CR location criterion". The rotational response
was measured as the cumulative rotational energy of the system. It is, however, question-
able whether the magnitude of rotational energy is relevant when designing a structure. It
is believed that Paulay’s and Castillo’s design philosophy of directly addressing the displace-
ment demand on structural elements is more appropriate. The strength distribution criterion
suggested by Myslimaj and Tso leads for structures like the one shown in Figure 7.4a to the
result that the short wall must be given a larger moment capacity than the long wall. As a
consequence the reinforcement content of the short wall will be significantly higher than the
reinforcement content of the long wall. It is questionable whether such a design approach is
feasible. The design approach might be more feasible if there is a larger number of short walls
along the soft edge than long walls along the stiff edge (Figure 7.4b).

Sommer [2000] derived a design method for regular asymmetric buildings (Section 7.1.1). The
method is based on a force-based design approach but addresses also the displacement de-
mand on structural elements due to the combined translational and rotational response of
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Figure 7.4. "Balanced CV-CR location criterion" according to Myslimaj and Tso [2002] for the TR
system (a) and wall layout for which it might be feasible to satisfy this criterion without excessive
reinforcement ratios in the short walls (b).

the system. The design method is based on Sommer’s findings from linear and non-linear
time-history analyses of 2D systems. Selected results of this studied were presented in Sec-
tion 7.2.4. From these analyses Sommer found that the rotation of elastic systems tended to
be larger than the rotation of the corresponding inelastic systems. For design purposes, Som-
mer therefore approximated the rotation of the inelastic system by the rotation of the elastic
system. Sommer based his design recommendations on the response of planar 2D systems
with three degrees of freedoms. Using response spectrum analysis he combined for each of
the two horizontal axes the two contributing modes using the CQC method assuming that
the frequencies of both modes lie within the constant velocity range of the spectrum (i.e. in
the range where spectral displacements increase linearly with period). From the combined
modal displacements Sommer derived a dynamic eccentricity edyn. This eccentricity is defined
as the eccentricity with respect to the CoM at which the static design force needs to be applied
to result in the estimated maximum rotation. When a force is applied at the distance edyn to
the CoM, the resulting displaced shape of the elastic system is hence similar to the combined
modal displacements (i.e. the CoM displacement and the rotation scale by the same factor).
The displacement demand on the soft edge is computed by multiplying the displaced shape
with the displacement at the CoM. Since, according to Sommer, the rotation of the elastic
system is an upper bound to the rotation of the inelastic system, this method would yield in
non-conservative estimates of the displacement demand on the stiff edge.

One of Castillo’s [2004] central observations concerned the displacement demand on the soft
edge (see also Section 7.2.4c): He found that the displacement demand on neither the soft edge
nor the stiff edge increased with strength eccentricity if the strength eccentricity ev resulted
from an increase in strength with respect to the required strength for ev = 0. At ev = 0,
the strength was distributed between the walls to satisfy static equilibrium. Castillo defined
an excess strength ratio λi, which is the ratio of the actual strength of a wall to the required
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strength of this wall when ev = 0:

λi =
Vni

V0i
(7.22)

where V0i is the strength of wall i required when ev = 0 and Vni the actual assigned element
strength. If the CoM is at midspan between Wall 1 and 2, V01 and V02 are equal. Based on the
key finding that the displacement demand on the soft edge does not increase if the strength
eccentricity results from excess strength Castillo suggested the following displacement oriented
design procedure:

• First, the displacement capacity of each structural element is determined.

• It is then assumed that for zero strength eccentricity the displacement demands on
CoM, stiff and soft edge are equal. The displacement demand of the system at zero
strength eccentricity is limited to the displacement demand of the element with the
smallest displacement capacity.

• The system strength required can be obtained by means of an equivalent SDoF approach
(e.g. DDBD). The properties of the equivalent SDoF system are the translatory system
properties for suppressed rotation (Section 7.2.3b). A strength eccentricity may be in-
troduced to the system only if it results from one or several elements having strength
in excess of the strength required for zero strength eccentricity. In this case, the dis-
placement demand on any structural element will not be larger than for zero strength
eccentricity.

Castillo’s design approach is very appealing since it is simple and addresses the displacement
demand on the structural elements of the stiff and soft edge directly. It will therefore be taken
as the starting point for the study on 2D systems in Section 7.4.

7.3 Analysis method applied in this study and earthquake records for dynamic
analyses

Within the scope of this study nonlinear time-history analyses of simple 2D models were car-
ried out. The 2D models were similar to those used in the studies by Sommer [2000] and
Castillo [2004] but apart from the uni-directional excitation with records that have linearly
increasing displacements spectra also analyses with records with a constant spectral displace-
ment range and analyses with bi-directional excitation were carried out. Some of the analyses
in this study overlap with analyses by Sommer [2000] and Castillo [2004]. This redundancy
was intended for two reasons: First, to validate the models used in this study and second, to
give a more complete picture regarding the key parameters controlling the torsional response
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of in-plan asymmetric systems. From the results of the parametric studies of 2D systems, semi-
empirical equations are derived in Section 7.5 that can be used to estimate the displacement
demand at the stiff and soft edge of the structure as a function of the displacement demand
at the centre of mass. These equations can be employed to extent the DDBD approach to
buildings that are asymmetric in-plan.

As Sommer’s and Castillo’s studies, most of the following parametric studies will be carried
out considering one component of the horizontal ground motion only. This is of course a
simplification but with this approach it is easier to identify the parameters controlling the
torsional response. At a later stage, the models were analysed for bi-directional input motion
from recorded accelerograms. Three different sets of records are used for the analysis of the
2D systems:

• Set A: Set A contains five artificial accelerograms with a single horizontal component
only. The displacement spectra increase linearly to about 4s, which is the upper limit
of the period range of interest.

• Set B: As Set A, Set B consists of five artificial accelerograms with a single horizontal
component. The corner period of displacement spectra of the records in Set B is, how-
ever, only 2s. For longer periods the spectral displacement is approximately constant.

• Set C: Set C contains 20 real accelerograms with both horizontal components.

7.3.1 Design spectrum and artificial accelerograms with a corner period of
TD = 4s (Set A)

The 2D systems were designed for a displacement spectrum with spectral displacement of
Sd,5% = 0.6m at TD = 4s. The five artificial accelerograms of Set A were generated by
Priestley and Amaris [2002] using the program Simqke [Carr, 2003]; Priestley and Amaris used
the accelerograms in their study on cantilever walls. The duration of all accelerograms was 25s.
The five accelerograms matched in average the design spectrum up to the corner period TD.
Beyond the corner period the average spectrum of the accelerograms increased almost linearly
with period whereas the target spectrum was level. However, periods greater than TD = 4s
were of minor concern in the parametric study carried out here since the effective periods of
the examined systems were smaller than 4s. The response of higher damped SDoF systems
were approximately spectrum compatible if the target spectrum is adjusted according to the
formula in the meanwhile superseded version of EC8 [CEN, 1994]:

Sd,ξ = Sd,5%

√
7

2 + ξ
(7.23)
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Figure 7.5. Acceleration and displacement spectra for the five artificial records of Set A.

The acceleration and displacement spectra are shown in Figure 7.5. The accelerograms of Set
A are used for the analyses in Section 7.4.2 to 7.4.6.

7.3.2 Artificial accelerograms with a corner period of TD = 2s (Set B)

To investigate the behaviour of structural systems with effective periods longer than the corner
period of the displacement spectrum, a second set of artificial accelerograms was generated
using the program Simqke [Carr, 2003]. The duration of all accelerograms was again 25s. The
corner period of the target displacement spectrum was reduced to 2s and when selecting the
accelerograms care was taken that the displacement spectra of the accelerograms was in deed
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Figure 7.6. Acceleration and displacement spectra for the five artificial records of Set B.

level for periods greater than the corner period TD = 2s. The average of the five accelerograms
has a spectral displacement of about 0.45m for TD = 2s and ξ = 5%. The acceleration and
displacement spectra for the accelerograms of Set B are shown in Figure 7.6. The accelerograms
were used for the analyses in Section 7.4.5.

7.3.3 Real records for bi-direction analysis (Set C)

Set C contains twenty ground motions consisting each of the two horizontal translational
components. The ground motions were selected from the NGA-database [PEER, 2005] to
match the shape of the geometric mean displacement target spectrum. The records were then
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scaled by factors between 0.83 and 5.88 in order to achieve a good match of the absolute
ordinates; the two components of one record were scaled by the same factor. The geometric
mean Sa,GM of the two horizontal spectral displacements Sd,x and Sd,y at the period Ti is defined
as

Sd,GM(Ti) =
√

Sd,x(Ti) · Sd,z(Ti) (7.24)

The geometric mean of the spectral accelerations is defined accordingly. Figure 7.7 shows the
geometric mean acceleration (plots a and b) and displacement (plots c and d) spectra. The
displacement spectra of the individual components for 5% damping are shown in Figures 7.7e
and f. The records are used for the analyses presented in Section 7.4.7.

7.4 Torsional response of 2D systems

The aim of the parametric study is to identify the key parameters that affect the displacement
demand on the structural elements of an in-plan asymmetric systems (see Section 7.3). The
investigated parameters are the following:

• Strength eccentricity (Section 7.4.2)

• Rotational inertia (Section 7.4.3)

• Seismic intensity (Section 7.4.4)

• Spectral shape (Section 7.4.5)

• Skew attack (Section 7.4.6)

• Second horizontal component of ground motion (Section 7.4.7)

Both TR and TU systems are covered. However, the focus is set on TR systems since the
conceptual design of new buildings should aim for layouts of the lateral strength providing
system that correspond to TR systems. TU systems are therefore only treated within the
first three sections (Sections 7.4.2 to 7.4.4), which examine the effect of system properties on
the torsional response. In the last three sections (Sections 7.4.5 to 7.4.6), in which the effect
of the seismic input is investigated, only TR systems were analysed. In the next section the
properties of the investigated systems are summarised. The results of the parametric study
will be presented in the then following sections and are summarised at the end of this chapter.

7.4.1 TR and TU 2D systems for parametric study

The parametric studies on TR and TU systems are based on an 8-storey RC wall structure
(Figure 7.8a). The height of the building is 24m; the building has a storey mass of M = 309t
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Figure 7.7. Acceleration (a and b), and displacement spectra (c-f) for the 20 artificial records of
Set C. Plots a-d show the geometric mean of the spectral acceleration and the spectral displace-
ment respectively. Plots e and f show the displacement spectra for the horizontal ground motion
components in x and z direction.
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and a rotational inertia per storey of Irot = 23200tm2. The floor diaphragms are assumed to
be rigid in plane; the floor dimensions are 25m x 15m.

Figure 7.8. Approximation of a 3D system by a 2D system with springs and lumped mass: Example
of a 3D wall-type structure (a), plan view of the asymmetric system (b), 2D system with springs
and lumped mass (c).

As outlined in Section 7.2.3, regular asymmetric 3D systems can be approximated by horizon-
tal 2D systems. The force-displacement relationship of each structural wall was represented
by a bi-linear spring (Figure 7.8c) . The structural walls were represented by their effective
properties, i.e. the flexibilities at the effective height (heff = 17.8m) and the base shear forces.
The effective mass (meff = 1788t) was lumped at the centre of mass. It was assumed that the
ratio of effective rotational inertia to storey inertia and effective mass to storey mass were
equal. The effective rotational inertia was therefore Irot,eff = 1.36 · 105tm2.

The plan layout of the TR and TU building and the 2D representation of the building with
springs are shown in Figures 7.9 and 7.10. Both systems have four walls, which are labelled
with numbers from 1 to 4. The longitudinal walls are 8m and 4m long. In the following the
8m wall is labelled as "Wall 1", the shorter wall as "Wall 2". The transverse Walls 3 and 4 have
the same dimensions (lw = 5.0m) and strengths. The "longitudinal direction" is the direction
parallel to Wall 1 and 2 (x direction) while the "transverse direction" is the direction parallel
to Wall 3 and 4 (z direction).

Using the DDBD method the walls were designed for a maximum drift of 2%. The design spec-
trum has a spectral displacement of Sd,5% = 0.6m at 4s (Section 7.3.1). For critical damping
ratios greater than 5% the spectral displacements were adjusted according to Equation 7.23.
To limit the displacement of the transverse walls (Walls 3 and 4) to 2% drift, the walls re-
quired each a nominal moment capacity of 17400kNm assuming a post-elastic stiffness ratio
rF = 0.05. The nominal base shear of each transverse wall equated to Vn = 977kN. Using
Equation 7.5 the yield displacement at the effective height was 0.107m. The plastic hinge
length Lph was computed for all walls as the maximum of the following two equations [Paulay
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Figure 7.9. TR system for parametric study: Plan layout of floor system (a) and 2D representation
of the structure with springs and lumped mass (b).

Figure 7.10. TU system for parametric study: Plan layout of floor system (a) and 2D representation
of the structure with springs and lumped mass (b).

and Priestley, 1992]:
Lph = 0.2lw + 0.03hn

Lph = 0.054hn + 0.022fydb

(7.25)

where lw is the wall length in metre, hn the entire height of the building in metre, fy the
yield strength in MPa of the main vertical bars and db the diameter of the main vertical bars
in millimetres.

In the longitudinal direction, Wall 1 and 2 were designed for zero strength eccentricity. Fol-
lowing Castillo’s observations (Section 7.2.5), nominal rotations were small if the strength
eccentricity diminished and hence the displacement demand on the long and short wall are
expected to be approximately equal. For the same displacement, the drift of a shorter, free-
standing wall is greater than the drift of a longer free-standing wall. It is assumed that the
displacement profiles of the two walls can be approximated by those of free-standing walls
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neglecting the effect of any forces transmitted by the floor diaphragms on the displacement
profiles.

Limiting the drift of the short wall to 2% and designing the system for zero strength eccen-
tricity yields in nominal moment capacities of Mn = 16690kNm (Vn = 937kN) for both
the long and the short wall (Wall 1 and 2). At maximum displacement the two walls reach
not the same moment since the curvature ductilities at the maximum displacement differ by
about a factor of two (µϕ1 > µϕ2). The strength eccentricity at the maximum displacement
was approximately 1.0m=0.04bz . The design displacement of 0.253m corresponded for the
long wall (Wall 1) to a displacement ductility of µ∆2 = 3.82 and for the short wall (Wall 2)
to a displacement ductility of µ∆1 = 1.85. The properties of the transverse walls and the lon-
gitudinal walls when designed for zero strength eccentricity are summarised in Table 7.1; the
system properties are given in Table 7.2. The hysteretic behaviour of the walls was modelled
by means of the modified Takeda rule with the unloading stiffness parameter α = 0.5 and the
reloading stiffness parameter β = 0.0.

Table 7.1. 2D parametric study on TR systems: Properties of the walls when designed for zero
strength eccentricity.

lw tw Lph ∆y ∆d µ∆ ki Vn rF

[m] [m] [m] [m] [m] [-] [kN/m] [kN] [-]
Wall 1 8.0 0.20 2.32 0.066 0.253 3.82 14160 937 0.05

Wall 2 4.0 0.30 1.52 0.136 0.253 1.85 6890 937 0.05

Wall 3+4 5.0 0.20 1.72 0.107 0.267 2.49 9120 977 0.05

tw Wall thickness
rF Post-elastic stiffness ratio

Table 7.2. 2D parametric study on TR systems: Properties of the system when designed for zero
strength eccentricity.

Vns K ∆ys ∆d µ∆s

[kN] [kN/m] [m] [m] [-]
longitudinal direction (x) 1874 21050 0.089 0.253 2.84

transverse direction (z) 1954 18240 0.107 0.267 2.49

The first two natural periods of the 2D system with three degrees of freedom were about
1.97s, the third natural period was 1.09s. The first mode shape consisted of a translational
component in the x direction and a rotational component. The second mode shape was a
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pure translation in the z direction. The third mode shape was predominately a rotational
movement with some translation in the x direction. The nonlinear time-history analyses
of the 2D systems were carried out using the structural analysis program "Ruaumoko3D"
[Carr, 2004], which was also used by Castillo [2004] for his parametric study on 2D systems.
The analyses were performed with tangent-stiffness proportional Rayleigh damping with 5%
damping for the second mode.

7.4.2 Strength eccentricity

To investigate the effect of strength eccentricity on the displacement demand on the stiff and
soft edge, the strength of the stiff edge was successively increased. The TR and TU systems that
were described in Section 7.4.1 had zero strength eccentricity. By increasing the strength of the
long wall, the strength eccentricity ev increased and the centre of strength CV moved towards
the longer wall. The same applied to the stiffness eccentricity and the centre of stiffness CR
since stiffness is directly related to strength (Equation 7.4). The increase in strength of Wall 1
corresponded to excess strength factors λ1 between 1.1 − 1.8. The strength of Wall 2, 3 and
4 remained unaltered (i.e. λi = 1.0). The properties of the nine systems corresponding to
λ1 = 1.0− 1.8 are given in Table 7.3. Figure 7.11 shows the strength and stiffness eccentricity
and the total base shear capacity in the z direction as a function of λ1. Note that the values of
λ1 on the x axis are increasing from the right to the left since CV and CR in Figures 7.9 and
7.10 move to the left towards Wall 1. This convention is also applied in all following figures
that show the strength eccentricity ratio evz/bz on the x axis.

Table 7.3. 2D systems with different strength eccentricities.

Strength Ecc. Wall 1 Wall 2 Wall 3+4 System
λ1 evz/bz Vn1 k1 Vn2 k2 Vn3,4 k3,4 Vnxs Vnzs

[kN] [kN/m] [kN] [kN/m] [kN] [kN/m] [kN] [kN]
1.0 0.000 937 14160 937 6890 977 9120 1870 1950

1.1 −0.024 1030 15570 937 6890 977 9120 1970 1950

1.2 −0.046 1130 16990 937 6890 977 9120 2060 1950

1.3 −0.065 1220 18400 937 6890 977 9120 2160 1950

1.4 −0.083 1310 19820 937 6890 977 9120 2250 1950

1.5 −0.100 1410 21240 937 6890 977 9120 2340 1950

1.6 −0.115 1500 22650 937 6890 977 9120 2440 1950

1.7 −0.130 1590 24070 937 6890 977 9120 2530 1950

1.8 −0.143 1690 25480 937 6890 977 9120 2620 1950
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Figure 7.11. 2D systems with strength eccentricity: stiffness and strength eccentricity (a) and
element and system strength (b) as a function of the excess strength ratio λ1.

Figure 7.12a shows the variation of the displacement demand on the CoM, the stiff edge (Wall
1) and the soft edge (Wall 2) for the different strength eccentricity ratios evz/bz . Plotted are
only the average results of the five time-history analyses. The average was here defined as the
average of the absolute maximum displacements, i.e. the sign of the displacement demands was
omitted. The results confirmed the following findings by Castillo [2004]: First, the displace-
ment demand on the CoM and the stiff edge reduced with increasing strength eccentricity
(the strength eccentricity is plotted as negative values to make the figure compatible with the
sketch of the 2D system in Figure 7.9). Note that this is chiefly caused by the increase in
system strength with increasing strength eccentricity ratio (Table 7.3). Second, the displace-
ment demand on the soft edge remained fairly constant for the range of strength eccentricities
that were investigated. Contrary to Castillo’s finding, the displacement demands on the CoM,
stiff and soft edge at zero strength eccentricity were not exactly equal. At zero strength ec-
centricity the stiffness eccentricity was −4.32m, which corresponded to erz/bz = −0.17.
Hence, it appears that the stiffness eccentricity had some influence on the displacement de-
mand. Castillo analysed mainly systems that were subjected to larger displacement ductility
demands than the ductility demands applied in this study. It appears that the influence of
the stiffness eccentricity on the displacement demands on the structural elements is larger for
smaller displacement ductilities than for larger displacement ductilities. This will be further
investigated in Section 7.4.4.

Figure 7.12b shows the maximum and the nominal rotation. A definition of the nominal
rotation was given in Section 7.2.3b. The maximum rotation is the maximum rotation of the
in-plane rigid system that occurred over the course of the earthquake. The nominal rotation
was about 20− 25% smaller than the maximum rotation.
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Figure 7.12. TR system: Displacement demand on CoM, stiff and soft edge (a) and maximum and
nominal rotation (b) for different strength eccentricity ratios evz/bz.
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Figure 7.13. TU system: Displacement demand on CoM (solid line), stiff edge (dashed line) and
soft edge (dotted line) (a) and maximum and nominal rotation for different strength eccentricity
ratios evz/bz (b).

Figure 7.13 contains the same information as Figure 7.12 but this time for the TU system
instead of the TR system. The layout of the TU system was shown in Figure 7.10. The element
properties were the same as for the TR system (Table 7.3). Comparing the displacement
demands for the TU system to those of the TR system, it becomes obvious that the loss of the
torsional restraint affected in particular the displacement demand on the soft edge (Wall 2): For
evz = 0 it increased from about 0.34m to about 0.47m. The displacement demand on the stiff
edge was slightly reduced for small strength eccentricities while the displacement demand on
the CoM was about the same for TR and TU systems. The maximum and nominal rotations
(Figure 7.13b) were almost independent of the strength eccentricity. This is a fundamental
difference between TU and TR systems; for the latter both maximum and nominal rotations
increased with strength eccentricity (Figure 7.12b).
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In Figures 7.14 and 7.15 the displacement demands on the TR and TU systems with inelastic
elements are compared with the displacement demands for the equivalent elastic systems. For
the TR system, the difference in displacement demands between the elastic and the inelastic
model was not very significant if the strength eccentricity was larger than evz/bz ≥ 0.07.
The small difference is probably related to the only very brief excursions of Wall 1 into the
inelastic range. For evz/bz = 0.0, the displacement ductility demand on Wall 1 is about
µ∆1 = 3.9 while for evz/bz = 0.07 the displacement ductility demand on Wall 1 is reduced
to about µ∆1 = 2.7. The nominal and maximum rotations of the TR system were generally
greater for the elastic than for the inelastic model. This confirms Sommer’s [2000] finding
that approximating the rotation demand of the inelastic system by the rotation demand of
the elastic system is generally a conservative assumption. However, for evz/bz = 0.14 the
maximum rotation is just about larger for the inelastic than for the elastic system. Hence, it is
possible, that for extreme eccentricities Sommer’s assumption no longer holds. Such systems
with extreme strength and stiffness eccentricities are, however, not the subject of this study
because very uneven plan layouts should generally be avoided.
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Figure 7.14. TR system: Comparison of displacement (a) and rotation (b) demand for elastic (grey
lines) and inelastic (black lines) systems.

For TU systems the difference in displacement demands between the elastic and the inelastic
system is generally larger than for TR systems. When the elastic system is taken as a proxy of
the inelastic system, it significantly underestimates the displacement demand on the soft edge
and the nominal and maximum rotation. Hence, for TU systems Sommer’s approximation is
not valid. His design approach should be limited to newly designed buildings that correspond
to TR systems with only medium-sized eccentricities (evz/bz < 0.15). The elastic model also
underestimated to a lesser extent the displacement demand on the CoM and the stiff edge.
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Figure 7.15. TU system: Comparison of displacement (a) and rotation (b) demand for elastic (grey
lines) and inelastic (black lines) systems. For the legend the reader is referred to Figure 7.14.
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Figure 7.16. TR systems with constant base shear: Displacement demand on CoM (solid line), stiff
edge (dashed line) and soft edge (dotted line) (a) and maximum and nominal rotation for different
values of evz/bz (b).

To stress the effect of the rule that – in order to protect the soft edge from excessive displace-
ment demands – strength eccentricity should result from element strength in excess of the
strength required at ev = 0, analysis results of systems are presented for which this rule was
not observed. For this purpose a set of TR systems were analysed with strength eccentricities
between 0.0 − 0.14evz/bz . The layout of the systems and the properties of Wall 3 and 4 are
identical to the systems analysed previously (Figure 7.9, Table 7.3). However, the increase in
strength of Wall 1 was compensated by a decrease in strength of Wall 2 so that the base shear
remained constant for all strength eccentricities (Vns = 1870kN ). The stiffnesses of Wall 1 and
2 were adjusted accordingly. Figure 7.16a shows the displacement demand on the CoM and the
stiff and soft edge. The displacement demand on the CoM was relatively independent of the
strength eccentricity. This confirms the finding by Castillo [2004] that the CoM displacement
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can be estimated assuming a pure translational movement of the mass. The nominal rotations
of the stiff and soft edge (Figure 7.16b) increased with strength eccentricity; this was also ob-
served for the former analyses of TR systems for which the strength eccentricity resulted from
excess strength (Figure 7.12b). Unlike in the latter cases, the displacement demand on the soft
edge increased with strength eccentricity since the CoM displacement was approximately the
same for all analysed strength eccentricities.

7.4.3 Effect of the rotational inertia

In the previous analyses the translatory mass of the 2D system was 1788t and the rotational
inertia Irot = 1.36 · 105tm2. Hence, the radius of gyration of mass was rm = 8.72m. The ref-
erence radius r0, which corresponds to the radius of gyration of mass of a square slab with the
same area and uniformly distributed mass (Equation 7.11), was 7.91m. The previous analyses
had thus a ratio of rm/r0 = 1.1. In this section the rotational inertia will be altered to yield
rm/r0 ratios of 0.8, 1.3, 1.5 and 1.75. The mass and rotational inertia of the 2D systems as
well as the resulting rv/rm ratios are given in Table 7.4.

Figures 7.17 and 7.18 show the effect of the rotational inertia on the displacement demand on
the CoM and the stiff and soft edges for the TU and the TR systems, respectively. Castillo
[2004] had noted that – as long as the rotational inertia is larger than zero – the magnitude of
the rotational inertia has only a negligible effect on the displacement demands of the structural
elements for excitation parallel to a principal axis. This was not quite confirmed with this
parametric study: The displacement at the CoM was indeed relatively independent of the
rotational inertia but the displacement demand on the edges varied with rotational inertia.
The variation was particular significant for the TU systems in which no transverse elements
were present that could restrain the rotation. For TU systems the trends in displacement
demand on the stiff and soft edge were relatively clear: The greater the rotational inertia, the
smaller was the nominal rotation. As a consequence, for an increasing rotational inertia, the
displacement demand on the soft edge reduced while the displacement demand on the stiff
edge increased.

For the TR systems the trends with rotational inertia in displacement demands on the stiff and
soft edges were less clear (Figure 7.17). For evz = 0, for example, the rm/r0 ratio of 1.3 led
to the greatest displacement demand on the soft edge. The displacement demand for the same
strength eccentricity and a rm/r0 ratio of 0.8 was about 20% smaller. For evz/bz = −0.14,
the trends in displacement demand with rotational inertia were again the same as for the TU
system; the dependence of the displacement demand on the rotational inertia was, however,
considerably weaker. The variable relationship between displacement demand and rotational
inertia was probably caused by the interplay of rotational restraint and rotational energy,
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Table 7.4. 2D systems with different rotational inertias.

M Irot λ1 = 1.0 λ1 = 1.8 λ1 = 1.0− 1.8

[t] [tm2] rvx/rm rvx/rm rvz/rm

rm/r0 = 1.1 1788 1.36 · 105 1.44 1.60 0.86

rm/r0 = 0.8 1788 0.72 · 105 1.98 2.21 1.19

rm/r0 = 1.3 1788 1.89 · 105 1.22 1.36 0.73

rm/r0 = 1.75 1788 3.42 · 105 0.90 1.01 0.54
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Figure 7.17. TR system: Comparison of displacement demands on CoM (a) and stiff and soft edges
(b) for different values of rotational inertia expressed in terms of rm/r0-ratios.
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Figure 7.18. TU system: Comparison of displacement demands on CoM (a) and stiff and soft edges
(b) for different values of rotational inertia expressed in terms of rm/r0-ratios.
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which were both related to the transverse elements and the rotational inertia. Note that the
difference between TR and TU systems manifests itself also when the boundary case of zero
rotational inertia is considered: In a TR system with zero rotational inertia both longitudi-
nal elements could still reach the inelastic state because the transverse elements can establish
moment equilibrium. This is different to the TU systems, in which the absence of rotational
inertia would imply that the stronger element would have to remain elastic (Section 7.2.3a).
For an infinitely large rotational inertia the rotation of both TR and TU systems would be
fully restrained and not rotate at all.

From the results of the analyses it can be concluded that the effect of the rotational inertia on
the displacement demand of TR systems is relatively small for typical values of rotational in-
ertia. Hence, it seems feasible to neglect the influence of the rotational inertia when designing
a TR structure using displacement-based design principles.

7.4.4 Different seismic intensities

To investigate the effect of the seismic intensity on the displacement demand, the five artificial
records were scaled up and down by 50%. The original records are referred to as records of
100% intensity, the newly scaled records have hence intensities of 50% and 150%, respectively.
The TR and TU systems as described in Section 7.4.1 were again used when investigating
the effect of seismic intensity. The left hand column of the plots in Figure 7.19 shows the
displacement demand on the CoM, Wall 1 and Wall 2 while the ductility demands are shown
by the plots in the right hand column. Note that, according to Equation 7.7, the system
yield displacement is not independent of λ1. The system yield displacement reduced from
∆ys = 0.089m for λ1 = 1.0 (evz/bz = 0.0) to ∆ys = 0.081m for λ1 = 1.8 (evz/bz = −0.14).

Independently of the intensity, the overall trends were the same: The displacement demand
on the CoM and the stiff edge reduced with increasing strength eccentricity that was coupled
to an increase in strength of Wall 1 whereas the displacement demand on the soft edge re-
mained fairly independent of the strength eccentricity. For 150% intensity, there was a slight
increase in displacement demand on the soft edge with strength eccentricity, which was proba-
bly caused by the fact that the displacement demand on the CoM did not decrease at the same
rate for strength eccentricities greater than 0.02evz/bz as for smaller strength eccentricities.
For 50% intensity the behaviour of the system was almost elastic and the trends that have
been observed for inelastic behaviour were also confirmed for this range of demand. At zero
strength eccentricity, the displacement demands on the system, Wall 1 and Wall 2 were similar
but the displacement ductilities differed significantly (Figure 7.19). Wall 1 and Wall 2 were
subjected to approximately equal ductility demands at evz/bz

∼= −0.07 and evz/bz
∼= −0.09

for 100% and 150% intensity, respectively. This observation coincided with the finding by
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Figure 7.19. TR system: Comparison of displacement (a-c) and ductility (d-f) demands on CoM
and stiff and soft edges for different seismic intensities.
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Sommer [2000] who noted that ductility demands on the walls were approximately equal if
some strength eccentricity was present. For TU systems (Figure 7.20d-f) the eccentricities
that resulted in approximately the same ductility demand on the two walls were smaller than
for TR systems.
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Figure 7.20. TU system: Comparison of displacement (a-c) and ductility (d-f) demands on CoM
and stiff and soft edges for different seismic intensities.
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It is interesting to note that for the TR system with zero strength eccentricity the difference in
displacement demand between the CoM and the structural elements was almost independent
of the seismic intensity (Table 7.5). Since the strength eccentricity was zero, the difference
in displacement demands must have been controlled by the stiffness eccentricity, which was
caused by the fact that one wall was twice as long as the other (Figure 7.11). For the TU system,
however, the difference in displacement demand on the CoM and Wall 1 or 2 (∆i −∆CoM) at
zero strength eccentricity varied with intensity (Table 7.6).

Table 7.5. TR system: Displacement demands at zero strength eccentricity for different seismic
intensities.

Intensity System Wall 1 Wall 2
µ∆s ∆CoM ∆1 ∆1 −∆CoM

∆1−∆CoM
∆CoM

∆2 ∆2 −∆CoM
∆2−∆CoM

∆CoM

[-] [m] [m] [m] [-] [m] [m] [-]
50% 1.48 0.13 0.10 −0.04 −28% 0.17 0.04 30%

100% 3.35 0.30 0.26 −0.04 −14% 0.34 0.04 15%

150% 5.63 0.50 0.47 −0.04 −7% 0.54 0.04 8%

Table 7.6. TU system: Displacement demands at zero strength eccentricity for different seismic
intensities.

Intensity System Wall 1 Wall 2
µ∆s ∆CoM ∆1 ∆1 −∆CoM

∆1−∆CoM
∆CoM

∆2 ∆2 −∆CoM
∆2−∆CoM

∆CoM

[-] [m] [m] [m] [-] [m] [m] [-]
50% 1.50 0.13 0.08 −0.05 −37% 0.21 0.08 60%

100% 3.34 0.30 0.20 −0.10 −59% 0.47 0.18 59%

150% 5.81 0.52 0.41 −0.10 −20% 0.69 0.18 34%

The findings regarding the effect of seismic intensity on the displacement demand on the CoM
and the stiff and soft edge can be summarised as follows:

• The general trends in displacement demands on the CoM and the stiff and soft edge
were very similar for low, medium and high ductility. More specifically, the dis-
placement demand on the soft edge remained approximately constant with increasing
strength eccentricity (providing the strength eccentricity resulted from excess element
strength [Castillo, 2004]). The displacement demand on the CoM reduced with increase
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in strength eccentricity since the total shear capacity increased. The displacement de-
mand on the stiff edge also decreased with strength eccentricity since its capacity in-
creased and the lever arm to the centre of strength reduced. These findings applied to
both TR and TU systems.

• The displacement ductility demands on Wall 1 and 2 were not equal for zero strength
eccentricity since the two walls had different lengths. The larger the seismic intensity,
the larger was the strength eccentricity for which the seismic demand yielded approxi-
mately equal ductility demands on the two walls. The strength eccentricities, for which
Wall 1 and 2 were subjected to equal ductility demands, were larger for TR than for TU
systems.

• For TR systems, the difference in displacement demand at zero strength eccentricity
between the CoM and the two walls was approximately independent of the seismic
intensity. Since the strength eccentricity was zero, this difference must have been con-
trolled by the stiffness eccentricity.

7.4.5 Long-period structures (Teff > TD)

The averaged displacement spectra of the artificial records that were employed in the previous
sections increased linear with period (Figure 7.5). The corner period of the design spectrum
at 4s was not reflected in the average of the spectra of the artificial accelerograms but the
spectral displacement kept increasing linearly for periods longer than 4s. For records that
have a displacement spectrum with a constant spectral displacement range, the displacement
demand on systems with effective period longer than the corner period is insensitive to a
change in effective stiffness. For such systems, it is expected that an increase in system base
shear capacity does not alter the displacement demand on the CoM significantly (as long as
the effective periods remains longer than the corner period). However, if the increase in base
shear capacity goes along with an increase in strength eccentricity – as an increase in the
parameter λ1 implies – the moment due to strength eccentricity increases. Therefore, the
nominal rotations, i.e. the difference in the edge displacements and the CoM, increases too.
Hence, assuming a constant CoM displacement, the displacement demand on Wall 2 (soft
edge) is expected to increase with strength eccentricity. In this situation, Wall 2 is no longer
protected if the strength capacity of Wall 1 is increased as it was the case for spectral shapes
that increase linearly with period.

To prove the above point, time-history analyses of the TR systems described in Section 7.4.1
were carried out using the five artificial accelerograms of Set B (Section 7.3.2). The corner
period of these records was approximately 2s. The uncoupled translational period (Equa-
tion 7.8) of the system for an excitation in the x direction was T0 = 1.83s for λ1 = 1.0 and
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Figure 7.21. TR systems analysed for skew attack with uni-directional strength and stiffness eccen-
tricity (a) and bi-directional strength and stiffness eccentricity (b).

T0 = 1.48s for λ1 = 1.8. Hence, for displacement ductilities µ∆s ≥∼ 2.0 the effective period
Teff = T0 · √µ∆s of all systems should be larger than the corner period TD = 2.0s.

Figure 7.21a shows the displacement demand on the CoM and the stiff and soft edge. The
results confirmed the expectation that the displacement demand on the soft edge increases
with strength eccentricity while the displacement demand on the CoM remains approximately
constant. The system ductility demand varied between µ∆s = 3.8−4.0. The effective periods
were therefore between ∼ 2.9 − 3.7s. The maximum rotation and the nominal rotations for
Wall 1 and 2 are shown in Figure 7.21b. The rotations followed very similar trends as the
rotations of systems with Teff < TD (Figure 7.12). However, the increase in rotation with
strength eccentricity was not compensated by a decrease in CoM displacement. Therefore,
the rule that the soft edge displacement is independent of strength eccentricity provided the
strength eccentricity results from excess strength [Castillo, 2004] does not apply to systems
with effective periods longer than the corner period of the displacement spectrum.

7.4.6 TR systems with uni- and bi-directional strength and stiffness eccentricities
under skew attack

In this section the effect of the direction of the input component on the displacement demand
on the structural elements is investigated. The analyses were carried out with a single hor-
izontal component of excitation for which the angle α with respect to the system axes was
altered (skew attack). For this purpose, two different sets of TR systems were analysed: The
first set contained the TR systems that have been already studied in previous sections; the key
properties of these systems were given in Table 7.3. The second set of systems were systems
with bi-directional strength and stiffness eccentricities. For these systems, Wall 4 was assigned
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the properties of Wall 1 and Wall 3 the properties of Wall 2. Figure 7.22b shows the posi-
tion of the centre of strength (CV) and the centre of stiffness (CR) for λ1 = λ4 = 1.8 (and
λ2 = λ3 = 1.0). Both, the centre of strength and the centre of stiffness, lie on the diagonal
of the diaphragm because Wall 1 and 4 and Wall 2 and 3 have identical properties. To limit
the number of analysis, only three different systems were considered for both the set with uni-
and bi-directional eccentricities. These three systems corresponded to excess strength factors
of 1.0, 1.4 and 1.8. The respective strength eccentricity ratios were ev/b = 0.0, 0.08 and 0.14
and the stiffness eccentricity ratios are er/b = 0.17, 0.24 and 0.29.

The systems with uni-directional eccentricity were symmetric about the z axis. It was hence
sufficient to analyse these systems for values of the angle α, which defines the orientation of
the single ground motion component with respect to the system axes (Figure 7.22), between
0◦ and 90◦. The angle α = 0◦ corresponds to the z direction, α = 90◦ to the x direction.
The systems with bi-directional eccentricity were no longer symmetric and hence the input
component was applied at angles between 0◦ and 180◦. Angles of α = 31◦ and α = 149◦

corresponded to the diagonals of the 25m x 15m diaphragm.

Figure 7.22. TR systems analysed for skew attack with uni-directional strength and stiffness eccen-
tricity (a) and bi-directional strength and stiffness eccentricity (b).

It is obvious that skew attack with one horizontal component does not reflect the ground
motion excitation during an earthquake. Nevertheless, analyses of systems under skew attack
were carried out for two reasons: First, this type of analysis had been performed by both Som-
mer [2000] and Castillo [2004] and hence the analyses were repeated here for confirmation;
neither Sommer not Castillo carried out analyses with two horizontal input components.
Second, skew attack analysis might allow to identify weak directions of the building, i.e. di-
rections of excitation that lead to large displacement demands on the structural elements.
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a) Systems with uni-directional eccentricities.
Figure 7.23 shows the displacement demand on the CoM and the structural elements in the
x direction (a-c) and in the z direction (d-f). For all three excess strength factors λ1 that were
considered, the displacement demand in the x direction on the CoM and the stiff and soft
edge was largest when the direction of the input component was also in x direction (α = 90◦).
This corresponded to the type of analysis that had been carried out in the previous sections.
The displacement demand on the transverse walls (Wall 3 and 4) was largest when the input
component was applied in the z direction (α = 0◦). It is interesting to note that for α = 90◦

the displacement demand in the z direction was zero for the CoM but non-zero for Wall 3
and Wall 4 since the transverse walls were excited by the rotation of the building due to the
strength and stiffness eccentricity in the x direction. The CoM, however, did not move since
the input energy in the z direction was zero for α = 90◦.

The findings from the skew attack analyses of the TR systems were not exactly in line with
Castillo’s observations (Section 7.2.4). He observed that the demand on the stiff edge was
in some cases greatest when the direction of the input component was applied at some angle
rather than parallel to the structural wall. He linked this observation to the greater rotations
of the system due to the yielding of the transverse elements. When the wall was excited parallel
to the stiff edge (i.e. in the x direction) the transverse elements remained either elastic or the
imposed ductility demands were very small. Figure 7.24a shows the maximum rotation as a
function of the angle α for the three analysed systems (λ1 = 1.0, 1.4 and 1.8). As expected the
rotations were largest for the largest values of λ1, i.e. for the largest strength eccentricity. For
α = 0, the rotation was zero since the systems were symmetric about the x-axis. For α = 90,
the rotation was non-zero since the system had a stiffness eccentricity and for λ1 = 1.0 and
1.4 also a strength eccentricity in the z direction. However, as Castillo [2004] observed, the
rotation was not largest when the structure was excited in the x direction but was largest for
α between 45◦ and 60◦. Unlike in Castillo’s analyses, the larger rotation demand for α 6= 90◦

did not yield in displacement demands greater than for α = 90◦. The nominal rotations of
Wall 1 and 2 (Figure 7.24b) were smaller than the maximum rotations but followed similar
trends.

b) Systems with bi-directional eccentricities.
For systems with bi-directional eccentricities the response to skew attack was complex because,
when the input component was rotated, the demand on the walls in the x and z directions
as well as the "effective" eccentricity changed. The effective eccentricity is here defined as the
distance of a line through the CoM in the direction of excitation to the centre of strength. The
effective eccentricity is maximum for α = 59◦ and it diminishes for α = 149◦ (Figure 7.25).
However, depending on the direction of excitation, not all the elements might yield. Hence,
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Figure 7.23. Skew attack of TR system with uni-directional strength and stiffness eccentricity:
Displacement demand in the x direction (a-c) and the z direction (d-f) for different excess strength
ratios λ1.
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Figure 7.24. Skew attack of TR system with uni-directional strength and stiffness eccentricity:
Maximum (a) and nominal rotation for Wall 1 and 2 (b) for different excess strength ratios λ1.

for example for a direction of excitation close to α = 90◦, the centre of strength might be
relevant for the torsional resistance of the elements in the x direction while the torsional
resistance of the elements in the z direction, which are expected to remain largely elastic,
might be better described by the centre of stiffness. In addition, any inelastic excursions of
the elements in the x and z directions does most likely not occur simultaneously. Hence, the
position of the centre of rotation changed during the duration of the seismic excitation. Apart
from the effective eccentricity, the effective strength varied also with α. The effective strength
was defined as the total strength projected along the direction of excitation. Since the strength
in the x and z directions was the same, the effective strength was maximum for α = 45◦ and
α = 135◦. Note that the effective stiffness was independent of the direction of excitation.

Figure 7.25. TR systems with bi-directional strength and stiffness eccentricity: Angle α for which
the effective eccentricities are maximum (a) and for which the effective eccentricities diminished
(b).
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Figure 7.26 shows the displacement demand in the x direction (plots a-c) and the displacement
demand in the z direction (plots d-f); the maximum rotation and the nominal rotations of Wall
1 and 2 are shown in Figure 7.27. The soft Wall 2, which was aligned with the x direction,
was subjected to the largest displacements for α ∼= 60◦. This is the direction for which the
effective eccentricities were greatest. By contrast, the stiff Wall 1 was subjected to the largest
displacements when α ∼= 110◦. Wall 3 and 4 were subjected to the largest displacements when
the input motion was applied in the z direction or at an angle very close to the z direction. The
difference between the two directions was caused by the different lever arms: For excitation
in the x direction, the large strength eccentricity was restrained by the transverse walls with
the small lever arm while for excitation in the z direction the rotation resulting from the small
strength eccentricity was restrained by the longitudinal walls with the large lever arm.

A note of caution is again issued against conclusions drawn from skew attack analyses: Real
earthquake excitation consists of three translational components of which the vertical is of-
ten disregarded for structural analysis of systems that are not particular sensitive to vertical
excitations. Hence, in most cases it is sufficient to include the two horizontal components
of ground motion in the seismic analysis of a system. However, when the two horizontal
components are considered the intensity of the excitation along a certain direction does not
vary much when the ground motion axes are rotated with respect to the structural axes. This
is very different to skew attack with a single component where the intensity of the excitation
along a certain direction changes significantly with the angle α.

7.4.7 Bi-directional input motion

Real seismic ground motion at a point consists of three translational and three rotational
components. For structural analysis, it is customary to neglect the rotational components
since their effect on the performance of structures is commonly considered as small [Kubo and
Penzien, 1979]. It was assumed that the structural systems analysed here were not susceptible
to vertical ground motions and hence only the two horizontal translational components of a
ground motion were included in the records of Set C. The artificial ground motions in Set A
and B consisted of only a single component, which did not reflect reality. They were used in
the previous sections for the sake of simplicity and to make the analyses directly comparable
to the parametric studies by Sommer [2000] and Castillo [2004], who had also used ground
motions with a single component only. However, in particular for systems with bi-directional
stiffness and/or strength eccentricities it is expected that the orthogonal component has some
influence on the displacement demand of the structural elements. The objective of the analyses
presented in this section is therefore to evaluate the difference in results between analyses
carried out with a single horizontal component and analyses carried out with both horizontal
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Figure 7.26. Skew attack of TR system with bi-directional strength and stiffness eccentricity:
Displacement demand in the x direction (a-c) and the z direction (d-f) for different excess strength
ratios λ1 and λ4.
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Figure 7.27. Skew attack of TR system with bi-directional strength and stiffness eccentricity:
Maximum (a) and nominal rotation for Wall 1 and 2 (b) for different excess strength ratios λ1 and
λ4.

components. In Section 7.4.7a the response of the TR systems with uni-directional strength
eccentricity that have been analysed in the previous sections is discussed. In Section 7.4.7b
additional three sets of TR systems with bi-directional strength eccentricities were analysed
and their median displacement demands for the 20 records of Set C determined.

a) Responses of TR systems to bi-directional excitation.
To demonstrate the effect of the second component of ground motion on the displacement de-
mand the systems were first analysed for bi-directional excitation and then for uni-directional
excitation. For the uni-directional case either the x or the z component of the ground motion
was applied in the structural analysis. This is illustrated in Figure 7.28.

Figure 7.28. TR system: Analysis with bi-directional (a) and – as an example – analysis with uni-
directional excitation for the component in the x direction (b).

Although the ground motions were selected and scaled to match the geometric mean displace-
ment target spectrum (Section 7.3.3), the variation between the real records was considerably
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Figure 7.29. TR system: Comparison of analysis results for bi-directional to uni-directional ex-
citation: Examples of records that led to approximately the same (a), a smaller (b), a larger (c)
and dependent on the strength eccentricity a larger or a smaller (d) response for bi-directional
excitation (black lines) than for uni-directional excitation (grey lines).

larger than between the artificial records of Set A and B. The variation also manifested itself
in the effect of the second component of ground motion on the displacement demand of the
structural analysis. Figure 7.29 shows four out of the 20 records for which the "reactions" of
the systems to the second component of ground motion was very different: Plotted are the
displacement demands in the x direction on the CoM and the stiff and soft edge. For the uni-
directional analysis only the x component of the ground motion was applied to the system.
For Record 18 (plot a) the displacement demand on the CoM, Wall 1 and 2 were not influenced
by the orthogonal ground motion component; the results for uni- and bi-directional excitation
were almost equal. For Record 12 and 15 (plots b an c) the second component of ground mo-
tion had only a small effect on the displacement demand whereas for Record 1 the difference
was considerable different (plot d). These examples show that the ratio of bi- to uni-directional
response can vary strongly between records and underline that it might be difficult to draw
a general conclusion regarding the effect of the second component of ground motion on the
displacement demand.



Seismic design of torsionally eccentric buildings with U-shaped RC Walls 245

In Figure 7.30 the displacement demand in the x direction for bi-directional excitation is plot-
ted against the displacement demand for uni-directional excitation; the data is shown for three
different TR systems corresponding to λ1 = 1.0, 1.4 and 1.8. Equivalent plots for the dis-
placement demand in the z direction are included in Figure 7.31. Each data point represents
the results of one of the 20 records in Set C. Also included in these plots is a diagonal line;
for data points that lie on the diagonal the displacement demands for bi- and uni-directional
excitation were equal.

The displacement demand in the x direction was not strongly influenced by the orthogonal
component of ground motion; most data points lie either on or in vicinity to the diagonal
line. Plots a-c in Figure 7.30 show the x displacement demand on the CoM for uni- and bi-
directional excitation; equivalent plots for the stiff and soft edge (Wall 1 and 2) are shown in
plots d-f. It is believed that the effect of the orthogonal component (i.e. the ground motion
component in the z direction) was small because the system was symmetric for excitation in
the z direction. This orthogonal component did therefore not contribute to the torsional
moment to which the system was subjected; it only subjected the transverse walls 3 and 4
to an additional demand and when these walls yielded the torsional stiffness of the system
was reduced. Note that, had all elements of the system been elastic, the displacement in the
x direction had been independent of the excitation in the z direction.

For the displacement demand in the z direction the situation is somewhat different: Fig-
ure 7.31d-f shows the displacement demand on Wall 3 and 4 (which have equal properties) for
TR systems with λ1 = 1.0, 1.4 and 1.8. For λ1 = 1.0 the displacement demands on Wall 3 and
4 were approximately equal for bi- and uni-directional excitation. For λ1 = 1.4 and λ1 = 1.8,
however, the mean displacement demands were larger if both components of ground motions
were applied. These plots suggest that considering only a single component of ground motion
when analysing or designing the structure leads to biased low displacement demands.

b) Comparison of the median responses of different TR systems to uni- and bi-directional
excitation.
Figures 7.30 and 7.31 showed that the variation between the results for the 20 records was very
considerable. In particular in some cases there were a small number of "outliers" that produced
significantly larger displacement demands than the other records. The mean displacement of
all records will be unduely influenced by these few "outlier" records. The engineer is most
often interested in a "typical" response value that is best represented by the median response.
Unlike the mean response the median response is insensitive to outliers. For the two sets
of artificial records considered in the previous sections the mean and median response were
generally very similar. For the real records considered in this section, however, the median
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Figure 7.30. TR system: Comparison of bi-directional to uni-directional excitation with respect to
the displacement demand in the x direction: Displacement demand on CoM (a-c) and stiff and soft
edge (d-f) for λ1 = 1.0, 1.4 and 1.8.



Seismic design of torsionally eccentric buildings with U-shaped RC Walls 247

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

Uni−dir Analysis: z−Displ. [m]

B
i−

di
r 

A
na

ly
si

s:
 z

−
D

is
pl

. [
m

]

 

 
TR System: λ

1
=1

a)

CoM

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

Uni−dir Analysis: z−Displ. [m]
B

i−
di

r 
A

na
ly

si
s:

 z
−

D
is

pl
. [

m
]

 

 
TR System: λ

1
=1

d)

Wall 3

Wall 4

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

Uni−dir Analysis: z−Displ. [m]

B
i−

di
r 

A
na

ly
si

s:
 z

−
D

is
pl

. [
m

]

 

 
TR System: λ

1
=1.4

b)

CoM

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

Uni−dir Analysis: z−Displ. [m]

B
i−

di
r 

A
na

ly
si

s:
 z

−
D

is
pl

. [
m

]

 

 
TR System: λ

1
=1.4

e)

Wall 3

Wall 4

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

Uni−dir Analysis: z−Displ. [m]

B
i−

di
r 

A
na

ly
si

s:
 z

−
D

is
pl

. [
m

]

 

 
TR System: λ

1
=1.8

c)

CoM

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

Uni−dir Analysis: z−Displ. [m]

B
i−

di
r 

A
na

ly
si

s:
 z

−
D

is
pl

. [
m

]

 

 
TR System: λ

1
=1.8

f)

Wall 3

Wall 4

Figure 7.31. TR system: Comparison of bi-directional to uni-directional excitation with respect to
the displacement demand in the z direction: Displacement demand on CoM (a-c) and Wall 3 and
Wall 4 (d-f) for λ1 = 1.0, 1.4 and 1.8.
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rather than the mean response will be evaluated although the elastic mean and median spectra
were very similar (Figure 7.7). The median displacement demands are plotted in Figure 7.33.

To broaden the study, four different sets of TR systems were analysed; each set contained nine
models:

• TR Systems: This set of TR systems with uni-directional strength and stiffness eccen-
tricity was used for most of the parametric studies in the previous sections (Figure 7.9).
The variation of the strength of Wall 1 corresponded to λ1-values between 1.0 and 1.8.
The strengths of the four walls and the system strengths were given in Table 7.3.

• TR Systems 2: This set of system has bi-directional strength and stiffness eccentricities.
The properties of Wall 3 equal those of Wall 2, and the properties of Wall 4 those of
Wall 1. This set of systems was already analysed in the section on skew attack (Sec-
tion 7.4.6); a plan view of it was presented in Figure 7.22.

• TR Systems 3: The properties of the walls in the z direction (Wall 3 and 4) of these
system are identical to those of Systems 2. The properties of the walls in the x direction
(Wall 1 and 2) were the same for all nine models of this set. The strength of Wall 1 was
V1 = 1690kN and the strength of Wall 2 was V2 = 937kN. This corresponded to excess
strength factors of λ1 = 1.8 and λ2 = 1.0, respectively. A plan view of these systems
with the excess strength factors of Wall 1-4 is shown in Figure 7.32a.

• TR Systems 4: The properties of the walls were identical to those of Systems 2. Unlike
for Systems 2 the slab was square (25m x 25m) and not rectangular (Figure 7.32b).

Figure 7.33 shows the median displacement demands of the 20 records of Set C for the four
sets of TR systems. In the left plot of these figures the displacement demands in the x direction
are plotted, the right plots contain the information for the z direction. For both directions
the response to bi-directional excitation (black lines) was compared with the response to uni-
directional excitation (grey lines).

All graphs within Figure 7.33 show that the CoM displacement was not much affected by the
orthogonal component of motion. The effect of the orthogonal component on the structural
elements (Walls 1-4), however, varied between the different cases. In the following the reaction
of the four sets of TR systems to the orthogonal component of ground motion are described
and discussed. Figure 7.33a and b show the median displacement demand of the TR systems
that have been used in previous sections; for these systems the single data points corresponding
to the 20 records of Set C were already plotted in Figures 7.30 and 7.31. The effect of the
orthogonal component of ground motion on the median displacement demand was noticeable
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Figure 7.32. TR systems: Plan view of models of set TR Systems 3 (a) and models of set TR Systems
4 (b).

– although relatively small – for both the x and z directions. Figure 7.33b shows that, while
the z displacement demand on CoM, Wall 3 and 4 were equal when only the z component
of ground motion was considered, the displacement demands on Wall 3 and 4 exceeded the
displacement demand on the CoM if the system was analysed for bi-directional excitation.
The difference was caused by the rotation that was induced by the asymmetry of the walls in
the x direction. Note that Figures 7.30 and 7.31 had suggested that the effect is negligible for
the x but noticeable for the z direction. However, few outliers distorted the picture and the
median response in the z direction was less affected than the plots in Figure 7.31 had suggested.

The analysis results for the second set of TR systems (TR Systems 2) are shown in plots c and
d of Figure 7.33. These systems have bi-directional strength and stiffness eccentricities. As
a consequence, the differences between the displacement demands on the soft edges (Wall 2
and Wall 3) for uni-directional analysis and bi-directional were considerably larger than those
observed for the first set of systems (plots a and b). The displacement demand on the stiff
edges and the CoM was hardly affected by the orthogonal component of ground motion.

For TR systems of set 3 (TR Systems 3) the properties of the walls in the x direction were
the same for all nine models of this set while the properties of Walls 3 and 4 in the z direc-
tion varied. All nine models had a large stiffness and strength eccentricity in z direction; this



250 Katrin Beyer, Alessandro Dazio, M. J. Nigel Priestley

−0.1 −0.05 0
0

0.1

0.2

0.3

0.4

0.5

0.6

e
vz

/b
z

x−
D

is
pl

. [
m

]

 

 
TR System

a)

CoM

Wall 1

Wall 2

−0.1 −0.05 0
0

0.1

0.2

0.3

0.4

0.5

0.6

e
vz

/b
z

z−
D

is
pl

. [
m

m
]

 

 
TR System

b)

CoM

Wall 3

 Wall 4

−0.1 −0.05 0
0

0.1

0.2

0.3

0.4

0.5

0.6

e
vz

/b
z

x−
D

is
pl

. [
m

]

 

 
TR System 2

c)

CoM

Wall 1

Wall 2

−0.1 −0.05 0
0

0.1

0.2

0.3

0.4

0.5

0.6

e
vz

/b
z

z−
D

is
pl

. [
m

m
]

 

 
TR System 2

d)

CoM

Wall 3

 Wall 4

0 0.05 0.1 0.15
0

0.1

0.2

0.3

0.4

0.5

0.6

e
vx

/b
x

x−
D

is
pl

. [
m

]

 

 
TR System 3

e)

CoM Wall 1 Wall 2

0 0.05 0.1 0.15
0

0.1

0.2

0.3

0.4

0.5

0.6

e
vx

/b
x

z−
D

is
pl

. [
m

m
]

 

 
TR System 3

f)

CoM

Wall 3

 Wall 4

−0.1 −0.05 0
0

0.1

0.2

0.3

0.4

0.5

0.6

e
vz

/b
z

x−
D

is
pl

. [
m

]

 

 
TR System 4

g)

CoM

Wall 1

Wall 2

−0.1 −0.05 0
0

0.1

0.2

0.3

0.4

0.5

0.6

e
vz

/b
z

z−
D

is
pl

. [
m

m
]

 

 
TR System 4

h)

CoM

Wall 3

 Wall 4

Figure 7.33. Different TR systems: Comparison of the median bi-directional excitation (black
lines) to the median uni-directional excitation (grey lines) with respect to the displacement demand
in the x direction (left plots) and in the z direction (right plots).
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was reflected in the difference in displacement demands on the CoM, Wall 1 and Wall 2 (Fig-
ure 7.33e). This plot shows also that the difference between the x displacement demand for
uni- and bi-directional excitation increased with increasing strength eccentricity in the x direc-
tion. Note that the strength eccentricity in plots e and f increases from the left to the right
since Wall 4 with the positive x-coordinate was stronger than Wall 3. The displacement de-
mand in the z direction on Wall 3 (Figure 7.33f) was also larger for bi-directional excitation
than for uni-directional excitation.

The TR systems of set 4 (TR Systems 4), which only differed from the models of set 2 re-
garding the slab dimension bx, show that for a square slab the nominal rotations for the two
directions were almost equal. The difference between the displacement demands for uni- and
bi-directional excitation were similar to those observed for the TR Systems 2.

On the whole, the comparison of displacement demands due to uni- and bi-directional exci-
tation showed that the orthogonal component of excitation had little influence on the dis-
placement demand of the CoM. However, it could not be neglected when determining the
displacement demand on the structural elements (Walls 1-4). The influence of the orthogonal
component of ground motion depended mainly on the strength eccentricity of the system in
the orthogonal direction: If this strength eccentricity was small the effect of the orthogonal
component of excitation was relatively small, although the orthogonal component reduced
the stiffness of the elements in this direction and therefore also the overall torsional stiffness.
This led typically to a slight increase of displacements along the soft edges (e.g. set 1, displace-
ment demand on Wall 2). The effect of the orthogonal component increased with increasing
strength eccentricity since the rotation induced by the strength eccentricity affected the dis-
placement demand in both directions. The effect was stronger for the soft edges (e.g. set 2
and 4, Wall 2 and 3) whereas the effect of the orthogonal component on the stiff edges was
typically less pronounced (e.g. set 2 and 4, Wall 1 and 4).

7.4.8 Summary of the results from the parametric study on 2D systems

Within the scope of the parametric study presented here, 2D systems representing structural
wall buildings that were asymmetric in-plan were analysed. The systems were classified into
torsionally restrained (TR) and torsionally unrestrained (TU) systems. TR systems were anal-
ysed for uni- and bi-directional excitation. TU systems were only considered marginally since
the design approach proposed in the following section will be limited to TR systems. One
reason for excluding TU systems is the relative large dependence of the displacement demands
in particular on the soft edge on the rotational inertia (Section 7.4.3); this makes it consider-
ably more difficult to identify a simple approach for estimating the nominal rotations. In the
following the key findings for TR systems are summarised:
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• Paulay [1999] proposed that for buildings that respond in the inelastic range when sub-
jected to seismic excitation the strength eccentricity is a more important parameter than
the stiffness eccentricity. Although strength eccentricity was considered an important
parameter, it was found that for zero strength eccentricity but non-zero stiffness eccen-
tricity the nominal rotations of the soft and stiff edge were also non-zero. Hence, the
stiffness eccentricity had also some influence on systems that responded in the inelastic
range.

• Castillo [2004] proposed a design rule for plan asymmetric buildings. According to this
rule, strength eccentricity is acceptable as long as it results from excess strength of struc-
tural elements (Section 7.2.5). If this is the case, the displacement demand on the struc-
tural elements and the CoM of systems with strength eccentricity are not larger than for
systems without strength eccentricity. More specifically, the displacement demand on
the soft edge is approximately equal for systems with and without strength eccentricity
while the displacement demands on the CoM and stiff edge reduce with strength eccen-
tricity since the base shear capacity increases [Castillo, 2004]. The parametric analyses
carried out here confirmed Castillo’s finding provided the effective period of the system
Teff was smaller than the corner period TD of the displacement spectrum. If Teff > TD

Castillo’s design approach did not hold. For the stiff edge, Castillo [2004] proposed
to estimate its displacement demand as the CoM displacement, which in turn can be
estimated from an equivalent SDoF. In particular for larger strength eccentricities, ap-
proximating the stiff edge displacement by the CoM displacement was generally found
to be very conservative.

• For zero strength eccentricity the displacement ductility demand on the long wall was
larger than the ductility demand on the short wall. For the system analysed here,
the displacement ductilities of the two walls were approximately equal for strength
eccentricities between 0.05 and 0.1bz . This finding confirmed Sommer’s observation
[Sommer, 2000].

• In a first step, before the systems were analysed for bi-directional excitation, skew anal-
yses were carried out. In this type of analysis a single component of excitation was
applied to the system and the orientation of the component of motion to the system
axes varied. For systems with uni-directional eccentricity the displacement demand on
the elements was largest if the single component of excitation was applied parallel to the
elements. The maximum and nominal rotations often peaked for different angles. This
is, however, not of great significance since rotations are generally not considered as an
important design quantity [Paulay, 1996]. For systems with bi-directional eccentricity
the displacement demands were not always largest when the excitation was aligned with
the considered element. The critical direction depended on whether the element was
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on the stiff or soft edge of the building and on the torsional restrained offered by the
transverse elements. It was cautioned against overrating the findings from skew anal-
ysis since seismic analysis with a single component does not reflect the real excitation
during an earthquake. For in-plan asymmetric buildings that are insensitive to vertical
excitations at least the two horizontal components of ground-motion should be consid-
ered. It is believed that including the orthogonal horizontal component is particularly
important when systems with bi-directional eccentricities are considered.

• To investigate the effect of the orthogonal horizontal ground-motion component on
the displacement demand of the elements analyses with bi-directional input motion
were carried out and compared with results from uni-directional excitation. The results
showed that the effect of the orthogonal component varied between the records. In gen-
eral, however, the orthogonal component of ground motion increased the displacement
demand on the soft edges by reducing the overall rotational stiffness of the system and
by increasing the torsional moment, if the elements in the orthogonal direction were
not symmetric. The effect of the orthogonal component of ground motion on the stiff
edge and the CoM was typically fairly small.

7.5 Accounting for torsional response in DDBD

Based on the parametric studies presented in the previous sections the DDBD approach is
extended to in-plan asymmetric buildings. In order to estimate the displacement demand on
the stiff and soft edge an estimate of the nominal rotation is required. An approximate and
simple method though without mathematical basis is proposed in Section 7.5.1. The design
approach is limited to TR systems since it is generally recommended [Paulay, 1997] to refrain
from TU systems.

7.5.1 Extending the DDBD approach to in-plan asymmetric buildings

In Section 7.4.2 it was shown that the CoM displacement is relatively independent of the stiff-
ness and strength eccentricity if the total base shear capacity remains constant (Figure 7.16).
Hence, as Castillo [2004] suggested, it is feasible to estimate the CoM displacement on the
basis of an equivalent SDOF system assuming zero rotation, i.e. assuming that the stiff and
the soft edge are subjected to the same displacement demands as the CoM. With this assump-
tion the displacement demand on the CoM can be estimated by the DDBD approach. One
of the objectives of DDBD is to protect the structural elements from undue displacement de-
mands, which would lead to excessive damage or even element or system failure. Hence, it
is necessary to estimate the displacement demands on the edges where the walls are placed.
Castillo’s [2004] approach for the soft edge displacement was introduced (Section 7.2.5) and its
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short comings discussed (Section 7.4.8). In this section a different approach is proposed that is
based on an estimate of the nominal rotation. The approach is limited to TR systems; when
designing buildings care should taken that – if the structure has to be asymmetric in-plan –
the layout should at least correspond to that of a TR system in order to restrain the effects of
seismic induced twists to a reasonable limit.

In Section 7.4.2 it was observed that at zero strength eccentricity the nominal rotation for
both the stiff edge and the soft edge is not zero. Hence, the stiffness eccentricity causes some
rotation of the system. It was also found (Section 7.4.4) that the nominal rotation at zero
strength eccentricity was relatively independent of the intensity of the seismic demand since
the transverse walls were always providing a good restraint against excessive rotations. The
fact that the nominal rotation was in general smaller for the stiff edge than for the soft edge is
in the following neglected.

First, an estimate of the nominal rotation for uni-directional excitation is proposed. It is
then extended to bi-directional excitation. For uni-directional analysis it is proposed that the
nominal rotation is estimated as:

θx =
Vnsx · erz

Krot,eff,x
(7.26)

where Vnsx is the system base shear in the considered direction, erz the stiffness eccentricity
in the orthogonal direction and Krot,eff,x the effective rotational stiffness of the system. The
latter is based on the effective stiffness of the walls in the x direction and the elastic stiffness
of the walls in the z direction:

Krot,eff,x =
∑ kxi

µ∆,i
· (zi − erz)2 +

∑
kzi · (xi − erx)2 (7.27)

The definition of all individual terms was given in Section 7.2.3b. It goes without saying
that corresponding definitions for θz and Krot,eff,z apply when the system is considered for
excitation in the z direction. The displacement ductility demand µ∆,i on the stiff and soft
edge can be estimated assuming a zero nominal rotation, i.e. approximating the displacement
demand on the stiff and soft edge by the displacement demand on the CoM.

For bi-directional excitation the torsional moment Vn · er is computed as the sum of the
moments in the two principal directions:

Vn · er = Vnsx · |erz|+ Vnsz · |erx| (7.28)
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The effective rotational stiffness of the system under bi-directional excitation is computed
reducing the stiffness of all walls to their effective stiffness:

Krot,eff =
∑ kxi

µ∆,i
· (zi − erz)2 +

kzi

µ∆,i
· (xi − erx)2 (7.29)

As for the uni-directional analysis the effective stiffnesses of the structural wall elements is
estimated assuming a zero nominal rotation. With these quantities the nominal rotation θ can
be estimated as:

θx =
Vnsx · |erz|+ Vnsz · |erx|

Krot,eff
(7.30)

Having obtained an estimate for the nominal rotation the actual displacement demand on the
stiff and soft edge is estimated by the following equations:

Stiff edge: ∆1 = ∆CoM − θ · L1

Soft edge: ∆2 = ∆CoM + θ · L2

(7.31)

where L1 and L2 are the lengths of the lever arms between the centre of strength and the stiff
and soft edge respectively. The CoM displacement and the nominal rotation θ are entered as
absolute values. As explained before, the CoM displacement can be estimated using the DDBD
approach assuming zero rotation of the system. Equation 7.31 then allows to find estimates
for the displacement demands on the stiff and soft edge. In the following section this approach
is applied to different TR systems.

7.5.2 Examples illustrating the design approach

In this section the design approach that was presented in the previous section is applied to a
number of different TR systems, some of which have been already employed in the parametric
studies in Section 7.4. The section is divided into two parts; in the first part, predictions
for uni-directional excitation are compared with analyses results and in the second part the
prediction and analyses results for bi-directional excitation are compared.

The design approach presented in the previous section is verified by comparing the predicted
displacement demands on CoM, stiff and soft edge with the average displacement demands
obtained from time-history analyses. This method of verification departs from the typical
design situation in the respect that the element strengths are known a priori. The design
process hence needs to be iterated until it yields the a priori chosen element strengths. Two
different cases were distinguished: a) the effective period of the system is smaller than the
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corner period TD of the displacement spectrum and b) the effective period is larger than TD.
In the first case, the iterative procedure is commenced by assuming a design displacement ∆d.
Assuming zero nominal rotation, effective damping ratios of the walls on the stiff and the soft
edge can be computed according to the equation proposed by Priestley [2003] including the
correction factor λ1λ2 on the elastic part of the equivalent viscous damping that was proposed
by Priestley and Grant [2005]:

ξeff = 5 · λ1λ2 + 95 · 1− µ−0.5
∆

π
(7.32)

where
λ1λ2 = 1− 0.095(µ∆ − 1)(1− rF ) (7.33)

where rF is the ratio of the post-yield stiffness to the initial elastic stiffness of the wall. The
effective damping ratio of the system was then computed as

ξeff,s =
∑ Vni∑

Vni
ξeff,i (7.34)

Inserting ξeff,s into Equation 7.23, the damped spectra was computed and assuming a displace-
ment demand of ∆d the effective period Teff could be readily determined. Knowing also the
effective mass of the systems (meff = 1788t, Section 7.4.1) the base shear demand could be
computed. This base shear demand was then compared to the actual base shear capacity Vnsx

and the initially assumed displacement ∆d was modified until a match between the base shear
demand and capacity was obtained. For the second case when Teff > TD the displacement
demand ∆d was altered until a match with the spectral displacement Sd,ξeff,s was obtained. The
spectral displacement depends on the effective damping ratio ξeff,s, which in turn depends on
the displacement demand.
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a) Examples for uni-directional excitation.

For uni-directional excitation, for the following TR systems prediction and analysis results
were compared: (i) systems with constant and non-constant base shear capacity in the x direc-
tion, (ii) different levels of lateral restraints in the z direction and (iii) systems with effective
periods shorter and longer than the corner period TD. Figures 7.34 to 7.36 show the com-
parison of the results from the inelastic time-history analyses (black lines) to the predictions
(grey lines); for reasons of clarity a floor layout of the analysed system is shown to the right of
the plots that compare the predicted and observed displacement demands as a function of the
strength eccentricity. The wall properties are always those described in Section 7.4.2. The fol-
lowing observations regarding the prediction of the CoM displacement and the displacement
demand on the stiff edge and the soft edge were made:

CoM displacement: The CoM displacement was in general well predicted. Hence, it is fea-
sible to represent the asymmetric system by an equivalent SDoF system in order to
estimate the CoM displacement; an observation that has also been made by Castillo
[2004].

Soft edge displacement: In some cases the soft edge displacements were slightly underesti-
mated. However, the design equation for the displacement demand captured the gen-
eral trends and sensitivities rather well. The accuracy of the prediction was deemed
satisfactory for design purposes.

Stiff edge displacement: The displacement demand on the stiff edge was in general overesti-
mated; however, the discrepancy was considerably less than if the stiff edge displacement
had been simply estimated as the CoM displacement, as Castillo [2004] proposed.
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Figure 7.34. TR system with different slab lengths bx: Comparison of analysis results for uni-
directional excitation (black lines) to prediction (grey lines).



Seismic design of torsionally eccentric buildings with U-shaped RC Walls 259

−0.1 −0.05 0
0

0.2

0.4

0.6

e
vz

/b
z

x−
D

is
pl

. [
m

]

 

 
TR System (const. base shear)

CoM

Wall 1

Wall 2

−0.1 −0.05 0
0

0.2

0.4

0.6

e
vz

/b
z

x−
D

is
pl

. [
m

]

 

 
TR System (const. base shear)

CoM

Wall 1

Wall 2

−0.1 −0.05 0
0

0.2

0.4

0.6

e
vz

/b
z

x−
D

is
pl

. [
m

]

TR System (const. base shear)

Figure 7.35. TR system with constant base shear and different strengths of transverse walls: Com-
parison of analysis results for uni-directional excitation (black lines) to prediction (grey lines).
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Figure 7.36. TR system with Teff > TD and different strengths of transverse walls: Comparison
of analysis results for uni-directional excitation (black lines) to prediction (grey lines).
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b) Examples for bi-directional excitation.
Analysis results for bi-directional excitation were presented in Section 7.4.7. For the same
systems that were considered in Section 7.4.7, the displacement demands were estimated
according to the method presented in this section and plotted against the inelastic time-history
analysis results (Figure 7.37). For the displacement demand in the x direction, the agreement
between prediction and analysis results was generally good whereas the displacement demand
on the CoM and the edges in the z direction was typically overestimated. For periods greater
than 2.2s the spectral displacements of the z components of the records were in average
lower than the design displacement (Figure 7.7). Since the fundamental period of the TR
system with ev = 0 is just below 2s, the effective periods were hence longer than 2s and
therefore in the range of the spectrum for which the median spectrum was lower than the
design spectrum. The difference between the prediction and the analysis results is therefore
partly caused by the mismatch of the average displacement spectrum of the z component and
the design spectrum. This mismatch is of course also reflected in the prediction of the edge
displacements (Wall 3 and 4). For the systems for which the lever arm of the walls in the
z direction was smaller than the lever arm of the walls in the x direction (Figure 7.37b, d and
f), the nominal rotations were typically overestimated. For TR system of set 4 (Figure 7.37g
and h), which had square slabs, the agreement between analysis results and prediction varied
with strength eccentricity. For the x direction the stiff edge displacement was underestimated;
this could be of concern from a design point of view. Castillo [2004] suggested to take the
CoM displacement as an estimate of the stiff edge displacement. This, however, seems over
conservative. It is suggested that, if a more conservative than the present estimate for the stiff
edge is sought, the nominal rotation should be computed on the basis of the strength rather
than the stiffness eccentricity:

θ =
Vnsx · |evz|+ Vnsz · |evx|

Krot,eff
(7.35)

7.6 Summary and recommendations for future research

Within the parametric study on 2D systems different parameters were investigated with re-
spect to their effects on the torsional response of the systems. Among these parameters were
the strength eccentricity, the rotational inertia, the orientation angle of a single ground mo-
tion component to the system axes, the seismic intensity, the spectral shape and the orthogonal
component of ground motion. The first three of these have already been included in the para-
metric studies by Sommer [2000] and Castillo [2004] and in most respects the analyses carried
out here confirmed their findings. Regarding the newly included factors, the analyses showed
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Figure 7.37. Different TR systems: Comparison of analysis results for bi-directional excitation
(black lines) to prediction (grey lines).
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that from a displacement-oriented design approach it is important to consider whether the
effective period is longer or shorter than the corner period TD of the spectrum: From the
DDBD approach, it is known that, if the period is shorter than TD, an increase in strength
leads to a reduction in CoM displacement, while if it is longer than TD, an increase in strength
has little effect on the CoM displacement. Since the edge displacements are linked to the
CoM displacement this characteristic is also reflected in the edge displacements. In particu-
lar, Castillo’s postulate that the soft edge displacement is unaffected by strength eccentricity
as long as the latter results from excess element strength of the stiff edge, does not hold for
structures with effective periods longer than TD. It was further shown that the second com-
ponent of ground motion typically increases the displacement demand on the elements. This
was linked to two effects: First, the second component softens the elements in the orthogonal
direction and therefore reduces the rotational restraint. Second, if the orthogonal elements are
not symmetric, the torsional moment is increased and hence the nominal rotations typically
increase. The interplay of the different elements and the two ground motion components is,
however, complex and varied between different records. The findings relate to the median
displacement demands obtained from analyses of 20 real ground motion records with two
horizontal components of motion.

Based on the observations from the parametric study semi-empirical equations were developed
that allow estimating the nominal rotations and therefore also the displacement demands on
the stiff and soft edges in TR systems. The predictions were compared to the analyses of
different systems, some of which were analysed for uni-directional excitation and others for
bi-directional excitation. The agreement was generally satisfactory. In some cases the stiff
edge displacement was underestimated. A modification to the original design equations was
proposed, which leads to safer displacement estimates for the stiff edge.

Since the proposed method for accounting for torsionally induced displacements is basically
an empirical method, it bears the shortcoming of having to be verified for the entire range of
system configurations to which it is later applied. Naturally, only a small portion of system
configuration could be tested within the scope of this study. These could confirm that the
method is capable of capturing the key effects but they cannot guarantee the method holds
with the same accuracy for different systems. However, the method is only a design method
and it is recommended that the displacement demand of systems that are suspected to show a
significant rotational response should be verified by means of nonlinear time-history analysis.

A first investigation into the torsional response of 3D systems showed that if the systems are
regular over the height, i.e. if the system fulfill the requirements listed in Section 7.1.1, then
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the observed trends as well as the agreement between prediction and time-history analyses re-
sults were similar to those observed for 2D systems. The 3D systems that were analysed were
structural wall buildings with a plan view similar to the one shown in Figure 7.2b and had
two, four and eight storeys. For future studies, the analysis of 3D systems should be extended
to frame-wall buildings. These buildings do not fulfill the requirements in Section 7.1.1. Al-
though it is believed that the proposed estimates of the torsional response might be accurate
enough for design purposes, the torsional response of wall-frame buildings should be analysed
further. More so, since wall-frame buildings have often large strength and stiffness eccentric-
ities since walls – and in particular cores – tend to be much stiffer than frames. An example
for such a building is the reference building for the experimental work, which was shown in
Figure 3.2.



8. SUMMARY, CONCLUSIONS AND OUTLOOK ON
FUTURE RESEARCH

8.1 Summary

The objective of this project was to make a contribution to the performance-based seismic
design of RC buildings with cores. Since cores are often placed at the perimeter of a building
and are typically stiffer and stronger than other lateral strength providing structural elements,
many of these buildings possess strength and stiffness eccentricities and are therefore prone
to damage due to twist-induced displacements. The project focused on two aspects of the
design for which the knowledge state was judged unsatisfactory. These were: (i) the inelastic
behaviour of cores under different directions of seismic loading and (ii) the estimation of
displacement demands on structural elements in torsionally eccentric buildings. Hence, the
first aspect concerns the behaviour of a structural element while the second aspect concerns
the overall behaviour of the building. In the following, contributions to these two aspects are
summarised.

8.1.1 Seismic behaviour of U-shaped walls

The scope of this first part of the report was limited to cores with U-shaped sections. This
is the simplest shape of a core, yet is has all the characteristics that set cores apart from, for
example, rectangular walls. These are: its lateral strength and stiffness in both horizontal di-
rections, its torsional stiffness and the open section that is composed of several rectangular
wall sections. Although U-shaped walls are very popular in practice, their inelastic behaviour
under seismic loading has not been examined in detail in the past. One drawback, when com-
pared to the knowledge state of rectangular RC walls, was the scarce experimental evidence of
only a single test series on U-shaped walls, which had been jointly conducted by the labora-
tories in Ispra and Saclay in 1999 and 2000 [Reynouard and Fardis, 2001]. It is believed that
this lack of experimental data prevented a thorough calibration of analytical models and the
derivation of appropriate design guidelines. One key objective of this project was, therefore,
to conduct further quasi-static cyclic tests of U-shaped walls. Two test units were built at half
scale and tested up to high ductility demands. The main difference between the two units



266 Katrin Beyer, Alessandro Dazio, M. J. Nigel Priestley

was their wall thickness. The objective of the experiments was to collect information on the
behaviour of U-shaped walls for loading in different directions and therefore the walls were
subjected to a bi-directional loading regime.

Both test units behaved very ductile. Depending on the direction of loading the maximum
drifts at the point of failure were between 2.4% and 3.5%. The test unit with the larger wall
thickness (TUA) failed during the diagonal cycle at µ∆ = 8.0 due to rupture of longitudinal
bars; most of the bars that ruptured had buckled during preceding cycles. This is a failure type
that is also common for well-detailed and capacity designed rectangular walls. The second test
unit (TUB) with the smaller wall thickness failed due to crushing of the compression struts
in the web at the end of the µ∆ = 6.0 cycles. This was not a targeted failure mechanism
even though the well-confined corner elements prevented sudden crushing and maintained
a residual strength capacity. The failure of the compression diagonal was caused by extensive
spalling of the cover concrete of the web section. Spalling was not just limited to the boundary
elements at the corners but due to the bi-directional loading history spalling extended into
the non-confined regions. In these regions, spalling reduced the effective wall thickness even
further than in the boundary elements. As a consequence, during the cycles of µ∆ = 6.0, the
effective wall thickness in the regions of the web where the crushing of compression struts
finally initiated was reduced to only about one third of its original thickness. This significant
reduction of the wall thickness had not been considered during the design of the test units.

a) Shear deformations.
One key difference of the tested U-shaped walls to rectangular walls concerned the magni-
tude of the shear deformations, which was for some directions of loading considerably larger
for the U-shaped walls than for typical rectangular walls. The shear deformations of the U-
shaped walls were evaluated using three different methods; differences between the results for
the three methods showed that measurements of shear deformations are often associated with
relative large uncertainties. Nevertheless, shear deformations deduced from the experimental
measurements were used to identify trends in the magnitude of the shear deformations. In
this study the shear deformations were described as the ratio of shear to flexural deformations
(∆s/∆f ). Dazio [2000] found that – unlike constant shear stiffness values would suggest – the
∆s/∆f -ratio remained approximately constant over the entire ductility range; the shear stiff-
ness reduced hence in proportion to the flexural stiffness. It could be shown that this finding
is applicable to capacity designed walls, i.e. to walls whose shear transfer mechanisms are not
degrading significantly. Considering the bi-axial strain state of an inelastic RC panel subjected
to uniform shear and axial stresses showed that three sources of flexibility are contributing to
the shear strain: (i) axial strains, which in RC walls are mainly associated with flexural defor-
mations, (ii) tensile strains in the horizontal reinforcement, and (iii) compressive strains in the



Seismic design of torsionally eccentric buildings with U-shaped RC Walls 267

concrete diagonal. For capacity designed walls the latter two components are relatively small
and therefore the shear stiffness reduces in proportion to the flexural strains. If the walls are
not capacity designed and either the shear reinforcement is yielding or the compression diago-
nals are softening considerably, the ratio of shear to flexural deformations are increasing with
increasing ductility demand. Existing semi-empirical models [Hines et al., 2004] and physical
models [Priestley et al., 2007] for determining the ratio of shear to flexural deformations were
not capable of reflecting the large variation of shear to flexural deformations for U-shaped
walls for different directions of loading; in particular the shear deformations of wall sections
that were under net tension for loading in the diagonal direction were underestimated. Based
on the results of 29 rectangular, barbelled, flanged and U-shaped walls that belonged to six
different test series, a new empirical equation for the ∆s/∆f -ratio was developed. Addition-
ally, two structural analysis programs from the University of Toronto that are both based on
the modified compression field theory were evaluated regarding their capability of modelling
shear deformations. In particular one of these programs (VecTor2) seems suitable for this pur-
pose. However, at present it is only available for 2D analysis while the 3D version is under
development.

b) Plastic hinge analysis.
One of the most popular models for determining the force-displacement characteristics of flex-
ural structural elements is the plastic hinge model. It is popular for the sake of its simplicity
and because it results typically in good estimates of the displacement capacity of the structural
element. However, only the moment-curvature relationship is derived from "first principles"
whereas the relationships that are required to transform the curvature into a displacement
and to determine the ultimate displacement capacity are largely empirical relationships. The
key inputs that are required for this transformation are: (i) the curvature profile at first yield,
(ii) the plastic hinge length, (iii) strain limits or ductility dependent shear capacities that de-
termine the displacement capacity, and (iv) the ratio of shear to flexural displacements. The
strain limits on concrete and reinforcement that have been derived from tests of RC walls
or columns with different cross sections can be applied without limitations to walls with U-
shaped cross sections. Ratios of shear to flexural deformations could be predicted with the
newly developed empirical equation. State-of-the-art assumptions on the curvature profile and
in particular existing estimates for the plastic hinge length, however, were derived from exper-
imental evidence of uni-directional cyclic tests of mostly rectangular walls or columns. Before
the current state-of-the-art equations are also applied to U-shaped walls, they should be val-
idated against experimental results of U-shaped wall tests. While a comparison to results of
two tests is certainly not sufficient, it can serve as starting point in the validation process.
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Typically, the curvature profile at first yield is assumed as linear with zero curvature at the
top and the first yield curvature at the base. By doing so, the flexural displacements are over-
estimated and the difference is attributed to account for shear displacements and displace-
ments due to strain penetration into the foundation. Since shear deformations of U-shaped
walls tend to be larger than shear deformations of rectangular walls, a more refined approach,
which accounts explicitly for these two sources of flexibility and in return makes more realis-
tic assumptions on the actual curvature profile at yield, was tested. It led only to marginally
improved estimates of the nominal yield displacements when compared to the experimentally
determined yield displacements. The difference between numerical and experimental results
is, however, not only related to shortcomings of the numerical model; uncertainties related
to determining the yield displacements from experimental data are also considerable. It was
shown that good estimates of the yield curvature, which anchors the curvature profile at yield
at the base, can be obtained from section analysis.

Plastic hinge lengths of the tested U-shaped walls varied for different directions of loading
since the web and flange lengths were different as were the effective heights in the two prin-
cipal directions of loading (i.e. the EW and the NS direction). It was shown that the existing
empirical equations for the plastic hinge length yield conservative estimates of the experimen-
tally determined hinge lengths. This also holds for the diagonal direction if the plastic hinge
length in the diagonal direction is taken as the maximum of the plastic hinge lengths for the
two principal directions; however, the degree of conservatism is less than for the principal di-
rections. The existing equations for the plastic hinge length are design equation, which aim at
providing conservative displacement capacity estimates. For assessment purposes some conser-
vatism associated with the plastic hinge length component accounting for tension shift could
be removed; the modified equation for the plastic hinge length resulted in better estimates of
the experimentally determined plastic hinge lengths. The displacement capacities computed
on the basis of the plastic hinge length equation for assessment purposes were reasonable, yet
in most cases the actual displacement capacities were probably slightly overestimated. One
of the drawbacks of testing a single unit under a bi-directional loading history is that the dis-
placement capacity of the test unit can only be determined for one direction; for the other
directions the maximum reached displacements can only serve as lower bound estimates of
the actual displacement capacity and exact comparisons between analytical and experimental
results are therefore not possible.

While the plastic hinge analysis predicted the moment capacities in the principal directions
fairly accurately, the predicted moment capacities in the diagonal direction exceeded the max-
imum reached moments considerably. By means of wide-column analysis it could be shown
that it is very likely that for the diagonal direction of loading the moment capacities were
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never reached. This was due to the large shear flexibility, which had been underestimated
when deciding on the loading pattern.

c) Wide-column models.
While plastic hinge models are convenient for estimating the displacement capacity, they do
not give information on, for example, the force distribution between the web and flanges of
the U-shaped section. This is, however, an important information for the shear design. From
the experimental results it was found that in particular the force distribution between the two
flanges during the diagonal cycles was very complex and was linked to two mechanisms, i.e.
the forces required to impose the lateral displacements and the forces required to restrain the
wall head from twisting. Depending on the direction of loading the force distribution between
the two flanges varied considerably. To model the force distribution between the wall sections
a three dimensional model of the U-shaped walls with inelastic properties is required. The
wide-column analogy is the simplest model that fulfills these requirements. It is also a suitable
analysis tool for practising engineers while other types of 3D models, such as shell and solid
element models, are in most cases still limited to research applications if elements are assigned
inelastic properties. For the wide-column models studied within the scope of this project
nonlinear displacement-based beam elements with fibre sections were used for the vertical
elements. Fibre sections have the advantage of capturing correctly the interaction of axial and
flexural capacities. This was considered important since the axial force in the individual web
and flange sections changed considerably over the course of the bi-directional loading history.

Existing guidelines for the properties of wide-column models of non-planar walls were almost
exclusively derived from analysis of elastic models. When these guidelines were applied to
inelastic models of the U-shaped walls, the models were generally too stiff. As a consequence,
when the models were analysed for the entire loading history that was applied to the two test
units, the maximum moments in the diagonal direction were – as for the plastic hinge analysis
– overestimated. It was found that the shear flexibility of the vertical elements representing the
web and flange sections and the shear flexibility of the horizontal link were the key parameters
to improve the agreement of the numerical results with the experimental evidence.

In most structural analysis programs the shear and torsional stiffness of nonlinear beam ele-
ments are typically decoupled from the axial and flexural properties. Furthermore, the shear
and torsional properties have to be assigned constant stiffness values which cannot be updated
during the course of an analysis. However, it was explained above, that the shear stiffness
of a RC member undergoing inelastic flexural deformations reduces in parallel to its flexural
stiffness. Therefore, if an equivalent elastic shear stiffness is defined, it can only represent
the correct shear stiffness for one particular top displacement. For top displacements that are
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smaller or larger, the shear stiffness is underestimated or overestimated, respectively. It was
shown that, if the often recommended shear stiffness corresponding to gross sectional prop-
erties (e.g. in FEMA356 [American Society of Civil Engineers (ASCE), 2000]), is replaced by
a shear stiffness equivalent to the shear stiffness at an intermediate ductility level, the agree-
ment between numerical and experimental results in terms of force-displacement hystereses
and force distribution between the two flanges is considerably improved.

Assigning also the horizontal links a shear flexibility was – to the best of our knowledge – a
novel approach. This flexibility was introduced in order to account for deformations due to
vertical shear stresses in the wall sections. While the shear flexibility of the links was necessary
to model the global stiffness of the U-shaped walls correctly, it also led to a discrepancy of
the vertical strains at the corners, which is physically not meaningful. Considering that the
wide-column analogy is only a very simple modelling approach, which has the capability of
reflecting the overall force-displacement characteristics of a structural member but not local
phenomena, such as strains, this drawback was judged acceptable. Assigning a shear flexibility
to the links reduced further the maximum moments in diagonal directions and as result the
numerical model approximated the experimentally determined values fairly well.

Based on the results of sensitivity analyses and considerations regarding the representativeness
of the modelling parameters for RC sections undergoing large inelastic deformations, guide-
lines for the modelling of U-shaped walls by means of the wide-column analogy were formu-
lated. Apart from the already mentioned shear stiffnesses of vertical and horizontal members
in the wide-column models, these comprise recommendations regarding the geometry of the
model and the torsional stiffness of the links.

8.1.2 Displacement demands on in-plan asymmetric structures

The objective of the work on in-plan asymmetric structures was to extend the direct
displacement-based design (DDBD) approach to structures that will not only translate but
also twist when subjected to seismic excitation. The main consequence of the twist is the
increased displacement demand on structural elements [Paulay, 1997], which should be ac-
counted for in DDBD. The problem was approached in two steps: In a first step the key
parameters influencing the twist displacements were identified by means of a parametric study
on in-plan asymmetric structures. In a second step, a simple, semi-empirical approach was
developed that allowed estimating the twist-induced displacements. The parametric study was
the continuation of the work by Sommer [2000] and in particular by Castillo [2004]. Their
work was extended regarding the type of ground motions that were included in the analysis.
Both Sommer and Castillo carried out only analysis with a single horizontal component of
ground motion which had a linearly increasing displacement spectrum for the period range of



Seismic design of torsionally eccentric buildings with U-shaped RC Walls 271

interest. This study here complemented their analyses by using also components for which
the spectral displacement for periods larger than a corner period TD was constant. In addition,
analyses with both horizontal components of ground motion were carried out. The analysis
with records for which the spectral displacement for periods longer than TD were constant
showed that Castillo’s design approach for torsionally eccentric structures, which stated that
strength eccentricity is acceptable if it results from excess strength of the elements, is only
applicable if the effective period of a structure is shorter than the corner period of the dis-
placement spectrum. In New Zealand, where Castillo carried out his research, the corner
period of the design displacement spectrum in NZS1170.5:2004 is at TD = 3s [New Zealand
Standard, 2004]. Hence, a relatively large portion of structures will have effective periods
Teff = Tel

√
µ∆ shorter than the corner period of the spectrum and therefore Castillo’s design

approach is applicable. In Europe, however, the corner period in the present seismic Euro-
pean code EC8 [CEN, 2003] is at TD = 2s and hence many structures subjected to medium to
large displacement ductilities will have effective periods that are longer than the corner period.
Analyses with the two horizontal components of ground motion showed that in most cases
bi-directional analyses led to larger displacement demands than uni-directional analysis. The
newly developed approach for estimating the displacement demand on structural elements of
in-plan asymmetric structures can, independent of the spectral shape, cater for both uni- and
bi-directional excitation although it is generally recommended to use at least the two hori-
zontal components of a ground motion when analysing in-plan asymmetric structures. The
design approach is limited to torsionally restrained systems that are regular over the height
(Section 7.1.1). To compute the displacement demands on the structural elements an estimate
of the seismic induced displacement demand on the centre of mass is required, which can be
obtained from DDBD principles.

8.2 Conclusions

When searching the literature for publications on non-planar RC walls that respond in the in-
elastic range surprisingly few studies were found. Early studies (∼1970-2000) addressed mainly
the response of elastic cores for which different types of models were developed. In these
studies the torsional response of cores was a widely discussed research topic. For cores that
are expected to respond in the inelastic range when subjected to seismic loading elastic mod-
els are of little relevance. The first studies to investigate the inelastic seismic behaviour of
U-shaped walls were those related to the quasi-static cyclic and dynamic tests on U-shaped
walls that had been jointly conducted by the laboratories in Ispra and Saclay [Reynouard and
Fardis, 2001]. Within these studies the flexural behaviour for different directions of loading of
one U-shaped wall configuration was investigated and complex shell models developed. This
project attempted to complement the work on the inelastic seismic behaviour of U-shaped
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walls commenced by Reynouard, Fardis and their co-workers in two respects: First, addi-
tional experiments on U-shaped walls were carried out. The walls had less compact sections
than the ones tested in Ispra and Saclay and were detailed for high ductility demands while the
specimens tested in Ispra and Saclay were designed for intermediate ductility demands. Second,
more simple models, i.e. plastic hinge and wide-column models, were used for the analysis of
the walls. Unlike shell or solid element models, these models are suitable for practical design
applications since they are relatively easy to set up. Hence, this project improved the experi-
mental evidence for U-shaped walls – instead of results for one wall configurations the results
for three are now available – and also contributed to the modelling of such walls. It could be
shown that both modelling approaches that were investigated, i.e. the plastic hinge model and
the wide-column model, have their merits. In particular for the wide-column model guide-
lines were proposed, which should facilitate the setup of wide-column models with inelastic
properties.

A topic that was originally not intended to be investigated in such depth were the shear de-
formations. However, during the analysis of the experimental database it was found that,
depending on the direction of loading, shear deformations can constitute a major part of the
lateral displacements and therefore they influenced considerably the overall behaviour of the
test units. Since none of the existing approaches for estimating shear deformations could cap-
ture the strong dependence of the ratio of shear to flexural displacements on the directions
of loading, it was decided to investigate this topic further. The result of this small study on
shear deformations was mainly a new empirical equation for estimating the ratio of shear to
flexural displacements. The large shear deformations influenced in particular the behaviour of
the test units in diagonal direction. For some time the discrepancy between predicted and ob-
served moment capacities in diagonal direction appeared like a mystery but it could be shown
that, due to the underestimated shear flexibility, the moment capacity in diagonal direction
was never reached. As a major consequence the flange in compression under diagonal loading
was subjected to a smaller shear force than could occur, for example, for loading in diagonal
direction only. Hence, the important aspect of the shear design of U-shaped walls could not be
fully investigated and only few design guidelines were formulated when the design of the test
units was described (Section 3.4). More research efforts are required to arrive at a complete set
of design guidelines for U-shaped walls. In particular, additional experiments and analyses of
U-shaped walls are required, that place emphasis on the shear force and displacement capacity
for loading in diagonal direction.

Since damage to structural elements as well as many non-structural elements is related to im-
posed displacement and drift demands, performance-based seismic design requires estimates
for these quantities. The direct displacement-based design approach is a well-established
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performance-based design approach, which uses acceptable displacements and drifts as starting
point in the design process. In its original form it could only be applied to structures that are
symmetric in-plan, i.e. structures, that only translate but do not twist during an earthquake.
This marked a considerable limitation to the range of structures to which the design method
could be applied since many buildings have in-plan strength and stiffness eccentricities. The
proposed method for estimating the twist-induced displacements was based on parametric
studies of inelastic 2D systems. The basis for this study were the concepts on torsional be-
haviour by Paulay who first advocated that parameters describing the inelastic behaviour of
buildings should be used when the twist induced displacements are estimated. Earlier design
approaches which found their way into today’s codes are based on elastic quantities. The para-
metric studies on 2D systems that were carried out within the scope of this project were a
continuation of the work by Sommer and Castillo.

The proposed method for estimating the twist-induced displacements is limited to torsionally
restrained structures that are regular over the height. This type of structure can be approxi-
mated by 2D systems, which facilitates parametric studies considerably. Not included in this
group of systems are mixed wall-frame structures. Reinforced concrete cores are, however,
often combined with a frame system and a design approach should also include this type of
system. Although the 2D analyses are strictly speaking not applicable to mixed building sys-
tems, it is believed that for conceptual design purposes the proposed approach could also be
applied. However, this should be verified by nonlinear time-history analysis of 3D models of
mixed building systems that consist of a core and frames. Also not considered was the effect
of the torsional stiffness of the U-shaped wall. While this is most likely not very important
in torsionally restrained systems, it becomes more important in buildings in which the lever
arm between walls is relatively small, e.g. for buildings in which the entire lateral strength is
provided by the core or in which the lateral strength providing elements are placed close to
the centre of mass. Neither of the two layouts are advisable but they may occur in existing
buildings and therefore both the magnitude of the torsional stiffness of the core as well as the
effect on the torsional response of the building should be quantified.

While the project treated two central aspects in the design of in-plan asymmetric RC buildings
with U-shaped walls, more work is needed to bring the two pieces together. One important
aspect that was not discussed, concerns, for example, the modelling of U-shaped walls as part
of a building, i.e. the connection of the U-shaped wall to the surrounding structural elements.
The following section gives a list of topics that should be investigated in the future in order
to advance the understanding of the seismic behaviour of such buildings as well as to improve
existing design and modelling guidelines.
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8.3 Outlook on future research

Over the course of the project several aspects were identified that were beyond the scope of
this project but should be investigated in the future. These are:

Torsional stiffness of U-shaped walls: The torsional stiffness of cores has not been covered
within the scope of the thesis. However, during the loading of the two U-shaped test
units small twists were applied in order to determine the torsional stiffness of the walls
at different ductility levels and loading positions. The experimental data gained from
these twists should be examined and the suitability of wide-column models for mod-
elling the torsional stiffness should be addressed. In addition, the effect of the torsional
stiffness of the U-shaped wall on the torsional response of buildings with different struc-
tural layouts should be examined.

Behaviour of U-shaped walls for loading in the diagonal direction: Since TUA failed in
the diagonal direction of loading, this direction must be considered as one of the most
critical ones. Moreover, the shear force demand on the flanges is largest for the diagonal
direction. Due to the underestimated shear flexibility, the moment capacity in diagonal
direction was never reached in the two tests which were carried out within the scope
of this project and therefore this aspect could not be fully investigated. At present the
diagonal direction is often not considered during the design process. To change this
practice clear guidelines for determining the design base shear forces of the flanges due
to translation and rotation are required. Also considered should be an increase of the
shear forces in the flanges due to twist of the U-shaped wall. In addition the displace-
ment capacity for loading in the diagonal direction must be addressed in more detail.
An extension of this topic could cover the behaviour and retrofit of U-shaped walls for
which the shear reinforcement in the flanges was determined based on the demand in
the principal directions rather than the diagonal direction.

Derivation of design guidelines for non-planar walls: In this project, the design aspect
was only touched on when the design of the test units was described (Section 3.4) and
more research efforts are required to arrive at design guidelines for U-shaped walls.
Apart from the additional experimental work regarding the behaviour for loading in
the diagonal direction, analytical work is required on the basis of detailed models of U-
shaped walls (e.g. shell or solid element models). The models should first be validated
against the available experimental evidence for U-shaped walls before they are modified
to cover a wider range of reinforcement layouts and geometries (different ratios of web
to flange lengths and wall thicknesses). Also multi-cellular sections should be consid-
ered. However, the sections should remain simple enough to ensure that transparent
design principles can be applied which result in a predictable and dependable inelastic
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behaviour. Based on these models shear flexibilities, displacement capacities and failure
modes could be assessed and favourable layouts distinguished from less favourable ones.
The models could also be extended to investigate the effects of surrounding slabs, lin-
tel beams across the opening and stairs in U-shaped walls on the inelastic behaviour of
cores.

Assessment of U-shaped walls with inferior design details: The project was restricted to
well detailed U-shaped walls with heavily confined boundary elements at the flange ends
and the corners. It is believed (see Section 3.4) that in particular the boundary elements
at the corners were essential for the ductile behaviour of the U-shaped walls. It would
therefore be interesting to investigate the behaviour of U-shaped walls in which such
boundary elements are either missing or poorly detailed. Since it is generally difficult
to model the effect of inferior details numerically, this topic should also include an
experimental part.

Analysis of buildings with U-shaped walls: The scope of the project was limited to the
analysis of isolated U-shaped walls. In a future study U-shaped walls should be modelled
as part of an entire building. While it is most likely advisable to represent U-shaped
walls as wide-column models, other types of models such as stick models could also be
investigated. In both cases, consideration should be given to the modelling of surround-
ing slabs and beam that are connected to the core. A preliminary discussion of this topic
was given by Reynouard and Fardis [2001] but the given recommendations should be
validated by numerical analyses and sensitivities to the modelling assumptions should
be determined.

Torsional behaviour of buildings comprising a core and a frame system: Once guide-
lines on the modelling of core structures in an entire building are derived, a study on
the torsional behaviour of in-plan asymmetric buildings with a core and a frame system
can be carried out. It was outlined before that such structures strictly speaking do not
fall into the category of "regular asymmetric systems" as defined by Hejal and Chopra
[1989]. Only the behaviour of "regular asymmetric systems" can be represented by the
2D systems that were used for the parametric study on in-plan asymmetric buildings in
Chapter 7. Since cores and frames are frequently combined, 3D models of such systems
should be analysed regarding their torsional behaviour and conclusions regarding the
comparativeness to the simple 2D models should be drawn.

Effect of non-structural components on the torsional response of buildings: Some non-
structural components (e.g. masonry infill panels) are particularly stiff but have only
small displacement capacities. An analytical study could investigate the effect of fail-
ure of non-structural components on the torsional response of a building. Appropriate
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models for the interaction of the non-structural components with the structural com-
ponents are a prerequisite for such a study.
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A. EXPERIMENTALLY DETERMINED RATIOS OF
SHEAR TO FLEXURAL DISPLACEMENTS FOR RC

WALLS

In this section experimental data related to shear deformations of RC walls tested under cyclic
loading is presented. Each test unit is characterised regarding the reinforcement layout and
ratios, the axial load ratio, the failure mode and the ratio of shear to flexural deformations.
Additional information on these tests regarding maximum shear force, the observed cracking
angle and values derived from section analysis are given in Table A.10. The database is used
for the empirical study on shear displacements which is presented in Chapter 5. The mean
ratio of shear to flexural displacements ∆s/∆f is the target parameter of this study. There
is no doubt a certain degree of interserial variability of the ∆s/∆f -ratios due to different
instrumentation and different evaluation techniques used by different authors. The shear
displacement measurements seem particulary sensitive to these factors (see Section 2.6) while
the flexural displacements are always evaluated by double-integrating average curvatures and
differences between test series are mainly associated with different baselengths over which
elongations are measured. Interserial variability of flexural displacement is therefore believed
to be smaller than for shear displacements. It was therefore decided to compute the ∆s/∆f -
ratios according to the indirect method for evaluating the shear displacements (Equation 4.10).
This method has also the advantage that it can be applied to all test units in the database while
Hiraishi’s method for example could only be applied to test units for which the data is available
in electronic format.

The database includes 29 walls which belong to six different test series. These are: PCA, Phase
I (Section A.1), PCA, Phase II (Section A.2), the test series by Dazio (Section A.3), the test
series by Hines (Section A.4), the three U-shaped walls tested in Ispra (Section A.5) and the U-
shaped walls TUA and TUB, which were tested within the scope of this project (Section 4.4).
Out of the 29 walls, 26 walls were tested under a uni-axial loading history and three walls
under a bi-axial loading history (Ispra XY, TUA and TUB). Among the 26 walls tested under
uni-directional loading, there were 7 rectangular walls, 15 barbelled walls, 2 flanged walls and
2 U-shaped walls (Ispra X and Ispra Y). All walls were slender walls with shear span ratios
larger than two. The reasoning behind excluding squat walls was given in Section 5.1.
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A.1 PCA Tests, Phase I

Within the scope of the first phase of the PCA research project Oesterle et al. [1976] tested
seven structural walls under cyclic loading. In addition, one of the seven walls was repaired
and tested again under cyclic loading and an eighth wall was tested under monotonic loading.
These two experiments are not considered in the following. All walls were 1.905m long and
had an effective height of 4.57m. Among the seven walls were two rectangular walls, four
barbelled walls and one flanged wall. All walls were tested with no axial load apart from their
selfweight. The loading history was a uni-directional loading history with symmetric cycles
about the zero position. At each displacement level a wall was subjected to three cycles of the
same amplitude before the displacement demand was increased by 1in (25.4mm). Details of
the specimens are summarised in Table A.2; additional information on the experiments can be
found in Wood [1989].

From the experimental results Oesterle et al. [1976] derived flexural and shear displacements at
the positive peak loads of the first cycle of a ductility level. For the reasons stated in the intro-
duction to this appendix, the shear displacements were computed with the indirect method.
Aside from the consistency, which demands that the indirect method is applied, there are fur-
ther reasons that support the choice of the indirect method: Oesterle et al. [1976] computed
shear deformations according to the original method from diagonal displacement measures.
However, these shear deformations cannot be considered as accurate for the following rea-
sons because the shear deformations were measured across the base construction joints and
the base rotation due to strain penetration into the foundation distorts the computed shear
deformations. Although the ∆s/∆f -ratios obtained from the shear displacements according
to the original method are not used in the study in Chapter 5, the values were evaluated and
compared with those of the indirect method. The ∆s/∆f -ratios obtained for the indirect and
original method are plotted as functions of the top displacement in Figure A.1; the "mean"
ratios obtained for the two methods are compared in Table A.1. While for the larger ratios the
difference between the two methods is relatively small, there is a significant difference for walls
were the indirect methods yields small ratios. The shear displacements were evaluated at the
top of the wall, i.e. at h = 4.57m. For the PCA walls of Phase I the development of the ratios
∆s/∆f with top displacement was discussed in detail in Section 5.1.1; in this section also the
derivation of the "mean" ratios was explained. Note also that all values for the displacement
quantities were obtained as readings from graphs of the test report. The image quality of the
figures in the copy of the test report was relatively poor since the copy had been obtained by
scanning an original hard-copy of the test report. The data is hence less accurate than for the
experiments were the results were available in electronic format. This should be kept in mind
when interpreting the test data.
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Table A.1. PCA, Phase I: Comparison of ratios of shear to flexural deformations for the different
methods of evaluating the shear displacements.

∆s2
∆f

∆s3
∆f

R1 0.15 0.33

R2 0.27 0.40

B1 0.21 0.36

B3 0.33 0.54

B2 0.45 0.45

B5 0.47 0.47

F1 0.47 0.55

∆s2 Indirect method: ∆s2 = ∆top −∆f −∆sl

∆s3 Original method

Top displacement [in]

∆ s/∆
f

 

 
PCA, Phase I: Indirect method
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Figure A.1. PCA walls, Phase I: Ratio of shear to flexural displacements as a function of the top
displacement if the shear displacements are computed according to the indirect method (a) and the
original method (b).
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A.2 PCA Tests, Phase II

In the second phase of the PCA tests [Oesterle et al., 1979], six walls were tested. One wall of
these six walls was repaired and retested; the data of the repaired wall is not considered here.
The wall dimensions were the same as those of the walls tested during Phase I. During Phase II,
however, axial load was applied to the specimens. The six walls comprised five barbelled walls
and one flanged wall. Apart from specimen B9 and B10 the walls were tested using the same
loading regime as for Phase I, i.e. three cycles of the same amplitude with top displacement
increments of 1in (25.4mm).

One pair of barbelled walls (B7 and B9) were used to investigate the effect of the loading
history. Specimen B7 was tested under the incrementally increasing loading history while
specimen B9 was tested using a loading regime under which the wall was subjected to cracking
during the first cycle while in the second cycle the wall was already taken to the predetermined
displacement capacity. After three cycles at this level the displacement demand was reduced
to 80% for three cycles before the displacement demand was reduced further to µ∆ = 1.1 for
six more cycles. Specimen B10 was also tested using this modified loading regime; however,
the vertical reinforcement content of the boundary elements was smaller for B10 than for B7.
Further details on these experiments can be found in Wood [1989]. As for all other walls, the
ratios of shear to flexural displacements were determined in the indirect way (Figure A.2a).
For the sake of completeness, however, also the shear displacements according to the orig-
inal method (i.e. the shear displacements computed by Oesterle et al. [1979] are plotted in
Figure A.2b and the ∆s/∆f -ratios obtained for the two methods are compared in Table A.3.

Table A.3. PCA, Phase II: Comparison of ratios of shear to flexural deformations for the different
methods of evaluating the shear displacements.

∆s2
∆f

∆s3
∆f

B6 0.54 0.35

B7 0.53 0.32

B8 0.40 0.27

B9 0.31 0.45

B10 0.35 0.26

F2 0.58 0.42

∆s2 Indirect method: ∆s2 = ∆top −∆f −∆sl

∆s3 Original method
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Figure A.2. PCA walls, Phase II: Ratio of shear to flexural displacements as a function of the top
displacement if the shear displacements are computed according to the indirect method (a) and the
original method (b).
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A.3 Tests by Dazio

Dazio et al. [1999] tested six rectangular RC walls of similar outer dimensions as the rectangular
walls tested by Oesterle et al. [1976]. Only the wall thickness was approximately 1.5 times
larger than the wall thickness of the PCA walls. The first of the six walls was used to test the
experimental setup and a different type of instrumentation than for the remaining five walls
was used. In the following only the walls WSH2-6 are considered. The walls were capacity-
designed and hence all five walls failed in flexure either due to bar fracture (WSH2, WSH3,
WSH5) or due to failure of the compression zone (WSH4, WSH6). Details of the walls are
given in Table A.6.

Dazio et al. [1999] determined the shear displacements without accounting for the effect of the
location of the centre of rotation on the shear deformations (original method, Section 2.6).
The shear deformations were recomputed according to Hiraishi’s method and the indirect
method. Figure A.3 shows the corresponding ∆s/∆f -ratios at the top of the walls (h =
4.56m, WSH6: 4.52m) for displacement ductilities µ∆ ≥ 2.0; the ratios were computed as the
average of the ratios at the first positive and negative peak of one ductility level. Table A.5
summarises the mean ratios. Note that since the sliding displacement at the wall base had not
been measured the shear displacements according to the indirect method were estimated as
∆top − ∆f . Sliding displacements were also not reported in the test documentation and it is
therefore expected that the resulting error in the ratio ∆s/∆f is relatively small. Figure A.3
shows the ∆s/∆f -ratios at the top of the walls (h = 4.56m, WSH6: 4.52m) for displacement
ductilities µ∆ ≥ 2.0. The ratios are considerably smaller than the ratios observed for the
PCA-walls.

Table A.5. Dazio: Comparison of ratios of shear to flexural deformations for the different methods
of evaluating the shear displacements.

∆s1
∆f

∆s2
∆f

∆s3
∆f

WSH2 0.09 0.13 0.14

WSH3 0.13 0.22 0.16

WSH4 0.08 0.17 0.13

WSH5 0.05 0.12 0.10

WSH6 0.09 0.15 0.14

∆s1 Computed according to Hiraishi [1984]
∆s2 Indirect method: ∆s2 = ∆top −∆f

∆s3 Original method
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Figure A.3. Dazio: Ratio of shear to flexural displacements as a function of the top displacement if
the shear displacements are computed according to Hiraishi’s method (a), the indirect method (b)
and the original method (c).
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A.4 Tests by Hines

Hines tested eight walls with strong boundary elements [Hines et al., 1999, 2002b]. All walls
had similar shapes but different web lengths, web widths and wall heights. The specimens also
differed in horizontal and vertical reinforcement ratios and axial load ratios. All specimens
were subjected to a symmetric cyclic loading history with three cycles at each displacement
level. Testing was divided into three phases; two of the eight walls were tested during Phase I
and three walls each during Phase II and III. The objective of Phase I was to validate for walls
with strong boundary elements the plastic hinge analysis approach as well as existing estimates
for plastic hinge lengths. The two walls tested within this phase were identical apart from the
shear reinforcement ratios. The units of Phase II were designed to fail in three different modes,
i.e. flexural failure, shear failure due to inadequate transverse reinforcement and shear failure
due to web crushing. Phase III of the test series was used to investigate further the aspect
of web crushing of walls with boundary elements. For all three phases, Hines evaluated the
different displacement components and included graphs in the tests reports which showed
the different displacement components at peak displacements during the first cycle of one
displacement level. Since the data was not available in electronic format graphs from the test
reports were scanned in and the data points were read from these graphs.

Unit 2B failed as intended due to excessive transverse strains. As a consequence, the ratios of
shear to flexural displacement were very large (ratios varied between ∆s/∆f = 0.4 − 2.3).
The focus of this study is to determine shear displacements for walls that did not fail in shear.
The wall 2B will hence not be considered in this study. For the remaining walls the ∆s/∆f -
ratios for the original and the indirect method are plotted in Figure A.4; the mean ratios for
the two methods are compared in Table A.7. When computing the mean ∆s/∆f -ratio for a
wall, ultimate cycles for which the ∆s/∆f -ratio increased significantly were disregarded. Also
excluded were ratios of small cycles if they differed strongly from those of larger cycles. As
outlined in the introduction to this appendix, the indirect method of computing the shear
displacements was the preferred method of computing the shear displacements. For the sake
of completeness, also the ∆s/∆f -ratios based on the shear displacements computed according
to the original method are included here. The comparison between the ∆s/∆f -ratios for the
indirect and original method showed that they only differed significantly for test units 1A
and 1B. For these two test units Hines et al. [1999] stated that instruments in the upper part
of the wall were missing hence both flexural and shear deformations were underestimated;
the indirect method therefore resulted in misleading ratios. Hence, for test units 1A and 1B
the ∆s/∆f -ratios according to the original method will be used in the study in Chapter 5.
For all subsequent test units, the instrumentation was improved and hence the ∆s/∆f -ratios
according to the indirect method will be used in Chapter 5.
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Table A.7. Hines: Comparison of ratios of shear to flexural deformations for different methods of
evaluating the shear displacements.

∆s2
∆f

∆s3
∆f

1A 0.27 0.10

1B 0.43 0.10

2A 0.25 0.26

2B 1.69 1.32

2C 0.46 0.45

3A 0.27 0.30

3B 0.26 0.27

3C 0.25 0.23

∆s2 Indirect method: ∆s2 = ∆top −∆f

∆s3 Original method
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Figure A.4. Hines: Ratio of shear to flexural displacements as a function of the top displacement if
the shear displacements are computed according to the indirect method (a) and the original method
(b).
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A.5 Ispra-Tests on U-shaped walls

The three U-shaped walls that were tested in Ispra (Section 3.1) were instrumented with 98
devices measuring local and global deformations as well as forces. Unfortunately the sliding
displacements along the wall base were not measured and there were also no continuous chains
of LVDTs along the edges, which could be used for computing the flexural deformations. The
provided instruments measuring vertical displacements along the edges did not form continu-
ous chains and for different heights the measurements were taken at different positions in plan.
The available instruments measured the deformations between h = 0−0.28m, h = 0−0.78m,
h = 0−2.3m, h = 1.3−2.6m and h = 0−3.6m which renders it necessary to subtract readings
to determine for example the average strain between h = 0.28− 0.78m (note: for the first test
in the Y -direction the vertical spacings were slightly different). The varying location as well
as the subtraction of small deformations introduces an error, which magnitude is difficult to
determine. Nevertheless, the measurements were used to compute the flexural displacements
∆f at the top of the wall. As an alternative it was investigated to determine the shear dis-
placements from the diagonal LVDTs that covered the three outer faces of the U-shaped walls
(each face was equipped with two crosses of LVDTs). Unfortunately, the lower diagonals were
connected to the foundation and measured deformations across the base crack. It is believed
that this distorts the shear measurements (see also Section A.1). In addition, due to the lacking
chain of vertical readings, it was not possible to compute the shear deformations following the
method by Hiraishi [1984]. Hence, both the computation of the flexural and the shear defor-
mations will be biased and it is difficult to judge whether the ratio ∆s/∆f should be better
computed as (∆top −∆f )/∆f or as ∆s/(∆top −∆s). For the two approaches the resulting ra-
tios are given in Table A.9. All values were computed for a top displacement of 40mm, which
corresponded approximately to a displacement ductility of 2.0; for most directions of loading
later readings seemed unreliable. In many cases the ratios obtained from the two approaches
are quite similar while in a few cases the difference is more significant (e.g. Position F, West
and East flange). To be consistent with the other test series in this database the ratio based on
the flexural displacement ∆f is used within this study.

A.6 Tests of TUA and TUB

The ratios of shear to flexural displacements for TUA and TUB were presented in Sec-
tion 4.4.1. In Table 4.5 of this section the ratios according to the three different experimental
methods of evaluating the shear displacements were presented. For the empirical study the
ratios based on ∆s2, i.e. the shear displacements according to the indirect method, were used.
Details on the section analysis of TUA and TUB can be found in Section 6.1.1.
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Table A.9. Ispra: ∆s/∆f -ratios for the different wall sections for different directions of loading
(flange labels correspond to those of TUA and TUB).

∆s
∆f

= ∆s
∆top−∆s

∆s
∆f

=
∆top−∆f

∆f

Ispra X Position A, B Web 0.28 0.31

Ispra Y Position C Flanges 0.16 0.12

Position D Flanges 0.19 0.12

Ispra XY Position E Web 0.95 0.78

West flange −0.02 0.05

East flange 0.12 0.06

Position F Web 0.28 0.31

West flange 0.54 0.20

East flange 0.14 0.27

A.7 Summary of quantities used for the empirical study

For the empirical study on the ratios of shear to flexural displacement that was presented in
Section 5.1 a number of experimental and analytical quantities were used. These are defined
in the following and summarised in Table A.10:

• Vmax: Maximum reported shear force.

• θ: Cracking angle towards the vertical; if the cracking angle was not reported or could
not be determined from photographs a value of 45◦ was assumed.

• Lph: The plastic hinge length was estimated using Equation 2.12.

• c/lw, εm, ϕ: These quantities were determined from section analyses; c/lw is the nor-
malised compression zone depth, εm the strain at the wall centre and ϕ the curvature.
The three quantities were evaluated at the point of nominal moment, i.e. when the steel
strain reached 1.5%. For the walls that were loaded uni-axially the section analyses were
carried out using the program Response2000 [Bentz, 2001], for the U-shaped walls the
program Opensees [Mazzoni et al., 2005] was used. Although Response2000 offers the
option to include the effects of shear strains, these were neglected when computing the
moment-curvature relationships, i.e. the sections were analysed for zero shear forces, a
constant axial load and an incrementally increasing bending moment about the major
axis.

• P : For rectangular, barbelled and flanged walls P is the total axial load applied to the
wall. For the U-shaped walls P was determined separately for the two flanges and the
web. For a web or flange N was determined by integrating over the axial stresses in the
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concrete and reinforcement fibres of the particular wall section. The axial stresses were
obtained from the section analysis at the point of nominal moment. The area of the
web and the flanges both included the corner area; hence the sum of axial forces on the
web and the two flanges does not correspond to the total applied axial force.

• f ′c: The concrete cylinder strength at the day of testing.

• ∆s/∆f : Mean ratio over cycles for which the ratio was approximately constant (excep-
tions for PCA, Phase I and Ispra test units were discussed in Section 5.1.1).
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Table A.10. Summary of experimental and analytical quantities used for the empirical study on
the ratio of shear to flexural displacements for RC walls.

Test Serie Specimen Vmax θ Lph c/lw εm ϕ P f′c ∆s/∆f

[kN] [◦] [m] [-] [10−3] [1/km] [kN] [MPa] [-]
PCA, Phase I R1 118 64 0.85 0.09 6.68 8.55 34 44.75 0.15

R2 217 62 0.87 0.11 6.43 8.55 34 46.4 0.27

B1 271 49 0.87 0.07 6.96 8.55 47 53.0 0.21

B3 276 54 0.87 0.07 6.95 8.55 47 47.3 0.33

B2 704 45 0.91 0.10 6.45 8.55 47 53.6 0.45

B5 762 50 0.91 0.10 6.34 8.55 47 45.3 0.47

F1 836 43 0.87 0.07 7.06 8.55 52 38.4 0.47

PCA, Phase II B6 825 40 0.93 0.16 6.06 9.40 932 21.8 0.54

B7 980 37 0.94 0.14 6.49 9.40 1200 49.3 0.53

B8 978 35 0.93 0.14 6.38 9.40 1200 42.0 0.40

B9 977 34 0.93 0.14 6.43 9.40 1200 44.1 0.31

B10 775 43 0.90 0.13 6.69 9.40 1200 45.6 0.35

F2 887 38 0.87 0.09 6.70 8.55 1190 45.6 0.58

Dazio WSH2 359 52 0.81 0.14 6.39 8.95 691 40.5 0.13

WSH3 451 38 0.75 0.17 5.95 8.96 686 39.2 0.22

WSH4 441 40 0.71 0.18 5.79 8.96 695 40.9 0.17

WSH5 436 53 0.76 0.19 5.57 8.96 1470 38.3 0.12

WSH6 592 37 0.71 0.20 5.44 8.96 1480 45.6 0.15

Hines 1A 320 45 0.77 0.19 5.88 15.4 881 38.1 0.10

1B 310 35 0.77 0.18 6.02 15.4 881 42.8 0.10

2A 600 45 0.57 0.19 5.85 15.4 881 36.6 0.25

2C 600 35 0.58 0.20 5.55 15.4 881 31.1 0.46

3A 800 38 0.67 0.19 5.85 15.4 761 40.9 0.27

3B 685 38 0.48 0.25 4.83 25.2 601 40.9 0.26

3C 980 40 0.91 0.21 5.44 10.2 988 40.9 0.25

TUA Pos. A, B 456 40 0.54 0.06 7.2 12.6 −215 77.9 0.25

Pos. C 208 40 0.47 0.12 6.8 16.8 483 77.9 0.143

Pos. D 181 40 0.47 0.06 7.3 15.8 −357 77.9 0.166

Pos. E, web 294 45 0.54 0 9.5 8.4 −628 77.9 0.28

Pos. E, W-fl. 265 30 0.47 0.23 1.6 6.8 1700 77.9 0.26

Pos. E, E-fl. 55 45 0.47 0 11.3 6.8 −738 77.9 −0.06

Pos. F, web 401 40 0.54 0.19 3.4 8.4 1145 77.9 0.32

Pos. F, W-fl. 62 50 0.47 0 11.3 6.8 −739 77.9 0.43

Pos. F, E-fl. 157 45 0.47 0.27 1.6 6.8 1282 77.9 0.15

TUB Pos. A, B 434 40 0.531 0.06 7.2 12.6 −215 54.7 0.38

Pos. C 212 40 0.46 0.17 6.2 17.7 498 54.7 0.2

Pos. D 176 45 0.46 0.06 7.2 15.7 −291 54.7 0.22

Pos. E, web 303 43 0.53 0 9.4 8.8 −643 54.7 0.63

Pos. E, W-fl. 260 25 0.46 0.33 0.7 7.1 1690 54.7 0.28

Pos. E, E-fl. 18 45 0.46 0 11.3 7.1 −693 54.7 −0.01

Pos. F, web 366 40 0.53 0.23 3 8.5 917 54.7 0.35

Pos. F, W-fl. 98 45 0.46 0 11.4 6.86 −694 54.7 0.76

Pos. F, E-fl. 118 45 0.46 0.33 1.2 6.86 1180 54.7 0.16

Ispra Pos. A, B 904 45 0.59 0.11 6.8 13.2 33 23.7 0.31

Pos. C 760 45 0.54 0.20 5.8 18.5 1279 23.7 0.12

Pos. D 692 50 0.54 0.11 6.8 13.9 −99 23.7 0.12

Pos. E, web 564 40 0.59 0 8.9 7.6 −987 20.8 0.78

Pos. E, W-fl. 460 45 0.54 0.44 0.57 7.6 3637 20.8 0.05

Pos. E, E-fl. 159 45 0.54 0 9.8 7.6 −1081 20.8 0.06

Pos. F, web 785 40 0.59 0.32 1.9 7.3 2468 20.8 0.31

Pos. F, W-fl. 136 45 0.54 0 10.1 7.3 −1082 20.8 0.20

Pos. F, E-fl. 387 45 0.54 0.37 1.2 7.3 2528 20.8 0.27


