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We present a method for retrieving illuminant spectra from a set of images

taken with a fixed location camera, such as a surveillance or panoramic one.

In these images, there will be significant changes in lighting conditions and

scene content, but there will also be static elements in the background. As

color constancy is an under-determined problem, we propose to exploit the

redundancy and constancy offered by the static image elements to reduce the

dimensionality of the problem. Specifically, we assume that the reflectance

properties of these objects remain constant across the images taken with a

given fixed camera.

We demonstrate that we can retrieve illuminant and reflectance spectra

in this framework by modeling the redundant image elements as a set of

synthetic RGB patches. We define an error function that takes the RGB

patches and a set of test illuminants as input and returns a similarity measure

of the redundant surfaces reflectances. The test illuminants are then varied

until the error function is minimized, returning the illuminants under which

each image in the set was captured. This is achieved by gradient descent,

providing an optimization method that is robust to shot noise. c© 2010

Optical Society of America

OCIS codes: 330.0330, 330.1690, 330.1715.

1. Introduction

We propose to solve for color constancy for a set of images containing a small number of

redundant elements. More precisely, we are considering N images captured with a fixed

location camera under N daylight illuminants. These images exhibit changes in lighting and
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content, but also contain a number of static background elements, as illustrated in Figure 1.

These objects are unknown, but their reflectance remains unchanged across images. We thus

propose to use this additional information to reduce the dimension of the underdetermined

problem of illuminant retrieval. Formally, we express all illuminant E(λ) and reflectance

S(λ) spectra by linear models, invert a series of images formation models in parallel, and

force their output reflectances to match, allowing to deduce the illuminant in each image.

This is achieved through the minimization of an error function, which is a measure of the

surfaces’ similarities as a function of the illuminant descriptors. Each illuminant is defined by

three scalars, the error function thus depends on 3N variables and is minimized by gradient

descent.

We demonstrate the validity of this approach by applying our algorithm on a set of syn-

thetic RGB values generated for different types of reflectances and daylight illuminants and

representing the redundant image elements. We observe that the illuminant estimation be-

comes more robust when considering an increasing number of images and returns a median

angular error under 3◦ [1] when taking into account sets of four, or more, images. We also

show that the results returned by this method are only slightly reduced in the presence of

shot noise. Our algorithm generally outperforms the single light method Shades of Gray [2],

especially in the presence of shot noise.

Our algorithm presents most similarities with the two-stage linear recovery for illuminant

and reflectance descriptors developed by D’Zmura and Iverson [3–5]. The authors express all

illuminants and reflectances by linear models of fixed dimensions and create a single system

of equations from the image formation models for a small number of redundant surfaces

viewed under N illuminants. Their approach ensures a perfect recovery of the descriptors

when the considered spectra can be exactly represented by linear models, but it starts to

fail when only small deviations from the ideal conditions are introduced. Contrarily, our

approach only returns an approximation of the illuminants, but remains much more stable

in the presence of noise.

This article is structured as follows: Section 2 presents linear models for reflectance and

illuminant spectra and several relevant color constancy algorithms. Section 3 details our

algorithm, while Section 4 reports the experiments and results. Section 5 concludes the

paper.

2. Background

2.A. Linear models of illuminants and reflectances

A way of reducing the dimension of the illuminant retrieval problem is to express the illumi-

nant spectrum E(λ) and the reflectance spectrum S(λ) as linear sums of a limited number of

basis functions. Determining their spectra then reduces to determining their weights, which
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we call illuminant and reflectance descriptors.

Most natural and man-made surfaces reflectance spectra are smooth enough to be repre-

sented by a linear combination of a low number of basis functions. Cohen [6] demonstrated

that Munsell surface reflectances could be approximated by the average reflectance plus two

additional components, i.e., by a sum of three basis functions. However, later work showed

that five to seven [7] or even eight [8] basis functions were necessary to accurately represent

real surface spectra.

These basis functions can be computed by principal component analysis on a large set of

reflectance spectra [9, 10] and expressed as

S(λ) =
Nσ∑
i=1

σiSi(λ) , (1)

where σi are the weights or reflectance descriptors, Si(λ) the surface reflectance basis func-

tions, and Nσ the number of basis functions.

Similarly, Judd et al. [11] decomposed daylight illuminant spectra as sums of three basis

functions Ei, i.e.,

E(λ) =
Nε∑
i=1

εiEi(λ) , (2)

where εi are the illuminant descriptors, E1(λ) is the average daylight, and Nε = 3 is the

number of basis functions. The authors computed these basis functions by principal compo-

nent analysis on a total of 622 spectra from three sets of daylight measurements. Using only

three basis functions, i.e., the average daylight E1 plus two orthogonal characteristic vectors,

they could reconstruct the illuminant spectra dataset with good accuracy, measured as the

variance between real and reconstructed spectra.

We start from the image formation model, which describes the red, green, and blue sensor

responses ρk(x) as

ρk(x) =

∫

λ

E(x, λ)S(x, λ)Rk(λ)dλ, k = 1, 2, 3 , (3)

where Rk(λ) are the sensor sensitivities and λ ranges from 400 nm to 700 nm. We express the

spectra as (1) and (2) and consider that all quantities are spatially constant, i.e., independent

of x, the three equations (3) are then rewritten as

ρk =

∫

λ

Nε∑
i=1

εiEi(λ)
Nσ∑
j=1

σjSj(λ)Rk(λ)dλ =
Nε∑
i=1

εi

Nσ∑
j=1

σj

∫

λ

Ei(λ)Sj(λ)Rk(λ)dλ (4)

We define the Nε ×Nσ matrix Λk by its elements

(Λk)i,j =

∫

λ

Ei(λ)Sj(λ)Rk(λ)dλ . (5)
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We represent the quantities S(λ), E(λ), Rk(λ), Ei(λ), and Sj(λ) by their spectra sampled at

10 nm intervals and denote them, respectively, by the vectors s, e, rk, E i, and Sj. Equation

(3) becomes

ρk = sT diag(e)rk , (6)

where diag(e) is a 31 × 31 matrix with the vector entries of e on its diagonal. It can be

rewritten with linear models as

ρk = εTΛkσ = σTΛT
k ε , (7)

where ε and σ are Nε × 1 and Nσ × 1 vectors containing the illuminant and reflectance

descriptors.

This image formation model using linear models for the illuminant and reflectance spectra

is called bilinear. It is illustrated by the form of (7) in which σ and ε have symmetrical roles.

If we fix ε, the system becomes linear in σ, and vice versa. If the illuminant is fixed, (7) can

be written as

ρk = Λε,kσ , (8)

where Λε,k = Λkε is the lighting matrix. It can also be expressed in the form

ρ = Λεσ , (9)

with the 3×Nε matrix Λε = Rdiag(e)Bs, where R is a 3× 31 matrix containing the sensor

sensitivities and Bs is a 31×Nσ matrix containing reflectance basis functions. σ and ρ are

Nε×1 and 3×1 vectors, respectively. For a sensor response corresponding to a given surface,

we compute its reflectance descriptors for any illuminant characterized by ε by inverting (9)

as

σ = Λ+
ε ρ , (10)

where + represents the Moore-Penrose pseudo-inverse, which can be constructed directly as

Λ+
ε = ΛT

ε (ΛεΛ
T
ε )−1 , (11)

whenever the matrix Λε is of full rank [12], which should be the case. In practice, it is

computed by singular values decomposition. In the expression (10), σ is an Nσ × 1 vector,

Λ+
ε is an Nσ × 3 matrix, and ρ is a 3× 1 vector. Finally, the image formation (4) reduces to

the expression (9) and can be easily inverted for any given test illuminant.

2.B. Color constancy algorithms

Color constancy algorithms aim at retrieving illuminant descriptors or illuminant indepen-

dent reflectance descriptors from RGB images. The dimension the problem can be reduced

by introducing assumptions on the image or scene content. These algorithms can be classified
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in two categories: Single light methods exploit the content of one scene or image to retrieve

illuminant information, whereas multiple lights methods retrieve illuminant descriptors from

a set of two, or more, images containing redundant information.

The illuminant can be estimated by introducing simple assumptions on the scene content.

The max-RGB [13] algorithm relies on the presence of a white patch in the scene to retrieve

the illuminant descriptors. More precisely, it assumes the scene white-point to correspond

to the maximum sensor response in each channel of an image. The gray world algorithm

estimates the illuminant by assuming that the average of an image is gray, i.e., that the

average reflectance of the objects present in the scene is constant [14]. The scene white-point

is estimated by calculating the average value of each color channel. Variations of the gray

world algorithm include the weighted gray world [15], gray edge hypothesis [16], and shades

of gray [2].

A series of algorithms [17–20] resulted from the observation that not all colors can arise

under any illuminant. For example, a bright blue cannot been seen under an incandescent

light. The underlying idea of these algorithms is to compare the gamut spanned by the

colors in an image with the gamuts corresponding to the colors that can arise under a set

of reference illuminants. The image illuminant is then chosen as the reference illuminant for

which the respective gamuts are the closest.

Maloney and Wandel [21] express illuminants and reflectances by linear models and assume

the number of sensors to be superior to the number of degrees of freedom of the reflectance

descriptors. In this framework, they retrieve the illuminant by inversion of a linear system.

If we apply this approach to the case of an RGB camera, we have three sensors and can thus

approximate the reflectances by a sum of only two functions, which is not accurate enough

[6–8].

There are other color constancy approaches that consider multiple lights or images. Two

images taken under different illuminants or several surfaces viewed under different lights pro-

vide redundant information that can be exploited to solve for color constancy. The flash/no

flash method takes two images of one scene captured with and without flash [22,23]. Know-

ing the flash properties, information on the illuminant can be retrieved. The authors take

an image pair to compute an estimate of the scene lit by the flash only and, knowing the

flash’s spectral power distribution, use this last image to retrieve objects reflectance func-

tions. They finally employ these reflectances to estimate the illuminant in the image taken

without flash. The chromagenic approach takes two images of one scene captured with and

without a colored filter placed in front of the camera [24,25]. The filter is chosen such that

the relationship between the filtered and unfiltered RGB values depends strongly on the

illumination. The knowledge of its transmittance is used to solve for color constancy. The al-

gorithm is tested on a set of precomputed illuminants. These methods take advantage of the
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difference between images pairs (the flash spectra and the filter transmittance, respectively)

to retrieve the illuminant in one image.

Finlayson [26] presents a method to retrieve illuminant descriptors taking two sets of three,

or more, surfaces viewed under two different illuminants. The illuminant and reflectance spec-

tra are modeled by tri-dimensional linear models. He considers the transforms M1,2 mapping

the sensor responses under the first illuminant to the ones under the second illuminant. He

shows that the illuminant descriptors ε1 = (ε1
1, ε

1
2, ε

1
3) and ε2 = (ε2

1, ε
2
2, ε

2
3) can be found by

solving

Qε1 = Pε2 , (12)

where P is a 9 × 3 matrix containing the stretched out 3 × 3 basis lighting matrices

Λi, i = 1, 2, 3. The three columns of Q are the matrices M1,2Λi in the form of 9 × 1

vectors. The solution of (12) is the intersection of the two tri-dimensional spaces spanned by

the columns of P and Q and is found by the method of the principal angles, which chooses

ε1 and ε2 such that the angle between Qε1 and Pε2 is minimized, returning the descriptors

for both illuminants. In [27], the authors note that all the possible transforms mapping the

chromaticity coordinates of a surface viewed under a unknown illuminant to a canonical

one roughly lie on a straight line and that these transforms for different unknown illumi-

nants lie on different lines. By intersecting them, they can recover illuminant independent

chromaticities for the surface.

D’Zmura and Iverson [3–5] present a solution for illuminant and reflectance retrieval when

Np surfaces are viewed under N illuminants. Illuminant and reflectance spectra are expressed

by linear models and the image formation is expressed as (4). The authors write (4) for all

the surfaces and illuminants and combine the resulting equations in the compact form

Fσ̃ = 0 , (13)

where σ̃ is built using exclusively the reflectance descriptors σj and F depends on the il-

luminant descriptors εi, the illuminant and reflectance basis functions Ei(λ) and Sj(λ), the

sensors responses Rk(λ), and the color responses ρ. The first step of the method is to solve

(13) by singular value decomposition and retrieve the reflectance descriptors σj from σ̃. At

this stage, the reflectances are known and the illuminant descriptors can be retrieved in a

second step. Indeed, the problem is now reduced to a simple linear system in εi. The case

Nσ > Nρ, with Nρ the number of channels of the imaging device, is not generally solvable.

The authors [5] report the conditions on the number of color channels Nρ, the number of

surfaces Np, the number of illuminant descriptors Nε, the number of reflectance descriptors

Nσ > Nρ, and the number of illuminants N under which the illuminants and reflectances

can be simultaneously retrieved. The conditions are of the form Np = Nε = Nσ = N > Nρ.

The authors also suggest that conditions of the form N = Np > Nε = Nσ > Nρ may lead to
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perfect recovery. Moreover, the illuminant and reflectance models need to have exactly Nε

and Nσ degrees of freedom, respectively, to ensure a good result.

3. Our approach

At each pixel location, the image formation model gives a system of three linear equations

of the form (7). In the present framework, we know the color responses ρk for each surface

and the camera sensitivities Rk(λ), while both the illuminant and reflectance spectra are

unknown. Their spectra are represented by, respectively, Nε = 3 and Nσ = 7 descriptors,

i.e., by ε = (ε1, ε2, ε3) and σ = (σ1, ..., σ7).

We consider N unknown scenes taken with fixed location cameras and that contain a

few static background elements. They are viewed under N unknown illuminants, which we

assume to be uniform. We extract Np patches of uniform color from the objects present

in every image and average their pixel values, which we denote p. For each of the NNp

surfaces, we solve a system of three linear equations (9): each surface’s mean RGB value p

allows computing the corresponding reflectance descriptors σ for any illuminant. We thus

compute NNp systems (10) in parallel for a series of N test illuminants and obtain a set of

NNσ reflectance descriptors. By forcing the reflectances of each surface to match across the

N images, we can deduce the N illuminants.

Rather than matching reflectances descriptors σ directly, we compute and compare, for

each patch, the corresponding color responses as viewed under the standard daylight illumi-

nant D65, which we denote pD65. The argument in favor of this approach is the following:

the inverse image formation model (10) returns only one set of reflectance descriptors for

each test illuminant, while there always exists a set of metameric surface reflectances that

yield to the same RGB values and that we cannot discriminate using this approach. There

is thus no intrinsic reason to match reflectance spectra directly. Instead, we are computing a

Euclidian distance between the points in R3 representing the color responses pD65 for each

illuminant and each surface. This distance is more meaningful than a Euclidian distance be-

tween reflectance descriptors in RNσ . Indeed, the three RGB components contribute equally

to the resulting color, as opposed to the reflectance descriptors, which correspond to basis

functions having different contributions to the reflectance spectra.

The color responses pD65 = (pD65
1 , pD65

2 , pD65
3 ) are computed as

pD65
k =

[ Nσ∑
i=1

σiSi

]T

diag(eD65)rk, k = 1, 2, 3 , (14)

where σi are related to a test illuminant etest(λ) via Λε (10). For any combination of N

illuminants we can compute a set of NNp color responses pD65, which allows defining an

error function reaching its minimum when the sensor responses under illuminant D65 match
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or, indirectly, when the reflectance spectra match. The illuminant spectra are represented

by linear sums of three basis functions (2) and fe is defined as a function of the illuminant

descriptors. The error function is the Euclidean distance between the NNp sensor responses

pD65 and to a combination of N illuminants represented by Ek = (e1(εk), ..., eN(εk)),

fe(εk) =
1

Np

1

N

[ Np∑
np=1

N∑
j=2,j>i

N∑
i=1

[pD65
i,np

(Ek)− pD65
j,np

(Ek)]
2
] 1

2
, (15)

where the indices i and j run over the images and np runs over the Np patches. The double

sum on i and j > i indicates that the distance is summed over the
(

N
2

)
possible image pairs;

for example, if we consider three images, Equation (15) becomes

fe(εk) =
1

Np

1

3

[ Np∑
np=1

[(pD65
1,np

− pD65
2,np

)2 + (pD65
2,np

− pD65
3,np

)2 + (pD65
1,np

− pD65
3,np

)]2
] 1

2
. (16)

A least square error function is used for computational simplicity.

The N scene illuminants corresponding to the N images satisfy

Êk = arg min
εk

fe(εk) . (17)

We find the solution of (17) by performing a gradient descent on fe, which is minimized with

the following the gradient estimate

∇εk
fe = fe(εk + ε)− fe(εk − ε) ∝ fe(εk + ε)− fe(εk − ε)

ε
, (18)

where ε = (ε1, ε2, ε3). The step size εi is fixed. If εi is too small, the convergence may be slow,

whereas a large εi may lead to erroneous results.

At each step, the illuminant descriptors ε = (ε1, ε2, ε3) are updated according to

εk+1 = εk − α[fe(εk + ε)− fe(εk − ε)] . (19)

We use fixed α and εi. In cases where εi is too large, it can generate oscillations. To overcome

this issue, the sign of the gradient is stored at each step and compared at successive steps.

Changes of sign are interpreted as oscillations and, if they occur, the amplitude of εi is

reduced.

4. Experiments

4.A. Gradient descent on fe = fe(ε1, ε2, ε3)

We created sets of RGB values for a series of illuminants and reflectances using the images

formation model (9). The illuminants database consists of a total of 173 spectral power
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distributions containing both computed and measured illuminant spectra, including the 89

measurements from [31], from which we created a subset of real daylight illuminants (45 spec-

tra). Examples of illuminant spectra are represented in Figure 2. The reflectance database

contains 24 MacBeth, 462 Munsell, and 219 Natural spectra. We computed RGB patches

values for each of the 24+462+219 = 705 reflectance spectra and the 45 illuminant spectra.

The sensor sensitivities are the ones of a Canon 350D camera. RGB values were normalized

such that the overall maximum is equal to one for each different set of reflectances and each

of the 45 illuminants. In other words, the normalization factor varies among illuminants such

that it is representative of how RGB images are generally normalized, i.e., such that their

maximum value is one. We generated series of 103 random combinations of N illuminants

and Np reflectances for each of the three illuminant and three reflectance types and test our

algorithm on the resulting RGB values. N takes the values 2, 3, 4, 6, and 10 and Np takes

the values 6 and 10.

The error is reported as the angle between the vectors ρE and ρ̂E formed by the real and

retrieved white-points in sRGB and is called the angular error [28–30]

eang = arccos(
ρE ◦ ρ̂E

‖ ρE ‖‖ ρ̂E ‖) . (20)

An error under 3◦ is generally considered as acceptable [1].

Table 1 reports the median and maximum angular errors obtained from the gradient de-

scent algorithm for the MacBeth, Munsell, and Natural reflectances. Figure 3 shows examples

of real and retrieved illuminant spectra. The results become more robust with an increas-

ing number of illuminants. When considering four illuminants, the gradient descent method

returns a median angular error under 3◦. The influence of the number of illuminants N is

also visible on the maximum error, ranging from 18.04◦ when N = 2 down to 8.37◦ when

N = 10.

4.B. Noisy sensor responses

We now run our algorithm for N = 4 illuminants and Np = 6 reference surfaces represented

by the same RGB sensor responses, but with added shot noise. The noisy sensor responses

are modeled as

ρi = ρi,o ± σshot noise , (21)

where ρi,o is the ideal sensor response and σshot noise is modeled by a Poisson process of

parameter λp =
√

ρi,o, i.e., centered around
√

ρi,o. The index i runs over the red, green, and

blue sensor responses. In order to control the amount of noise, we introduce a parameter

Anoise ∈ [0, 1] scaling σshot noise. To create a model representative of an actual imaging device,

the RGB are converted into integer digital values in [0, 255] and calculated as

ρ
[0,255]
i = ρ

[0,255]
i,o ± round(Anoiseσshot noise) . (22)
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Figure 5 shows the median and maximum angular errors in sRGB as a function of Anoise.

The corresponding numerical values can be found in Table 2. Figure 4 shows examples of

real and retrieved illuminants spectra for an increasing amount of shot noise.

The minimization on fe(ε1, ε2, ε3) is not sensitive to the quantization error and quite robust

to shot noise with only a moderate change in performance: The median (resp. maximum)

angular error increases from eang = 2.96◦ (resp. eang = 13.00◦) for Anoise = 0 to eang = 3.42◦

(resp. eang = 18.64◦) for Anoise = 1.

4.C. Comparison with the Shades of Gray algorithm

We compare the performance of our algorithm with a single image one. The gray edge algo-

rithm [16] relies on the gray world assumption, yet not applied on the color image, but on

its derivative. While this algorithm shows good performance, it can only be applied to real

images and is thus not adapted to a simulation on synthetic data. Instead, we use the shades

of gray (SoG) method [2], which also relies on the gray world assumption, but employs the

Minkowsky p-norm

‖ X ‖p=
{ N∑

i=1

|Xi|p
}1/p

, (23)

where X = [X1, ..., XN ] is a vector in RN . More precisely, rather than estimating the white-

point from the scene average, it applies the gray world algorithm on the p-norm of the

image.

The gray world and the max-RGB algorithms are two particular cases of SoG with, re-

spectively, p = 1 and p = ∞. In [2], the authors showed that the best results are obtained

for p = 6. In [16], the authors report that, while the p = 6−norm gray edge performs better

than the p = 6−norm SoG, both return good results, with angular errors computed on a set

of real images of 5.7◦ and 6.3◦, respectively.

Table 3 reports the resulting median and maximum error for the SoG algorithm for all

reflectance types and varying N and Np and should be compared with Table 1 reporting the

equivalent results for the gradient descent method. Table 2 reports the results for SoG in the

case N = 4 and Np = 6 for an increasing amount of shot noise.

The results obtained by gradient descent are generally better than the the ones obtained

with SoG, except when considering a larger number of MacBeth reference surfaces (Np = 10).

Indeed, taking Np = 10 surfaces out of the 24 MacBeth reflectances ensures are large variety

of colors, resulting in a good performance of SoG. Nevertheless, our algorithm generally

outperforms SoG in terms of median angular error, that is, exploiting redundancy across

images returns significantly better results.
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4.D. Comparison with D’Zmura and Iverson’s algorithm

D’Zmura and Iverson’s algorithm [3] is extremely sensitive to any deviation from ideal data

and only leads to perfect recovery of the illuminants and reflectances if their spectra can

be exactly represented by linear models. Moreover, it is only applicable for specific numbers

of illuminants, surfaces, and descriptors. We consider now Np = 3 surfaces viewed under

N = 2 illuminants. The algorithm must then be applied with Nε = 3 illuminant and Nσ = 3

reflectance descriptors. In the section, we present comparative results with our algorithm,

which we run with the same parameters, i.e., Np = 3 , N = 2, Nε = 3, and Nσ = 3.

To ensure a perfect recovery of the descriptors, we first build a set of RGB sensor values

from ideal tri-dimensional spectra. To do so, we compute the three first basis functions

for the illuminants and reflectances by principal component analysis over the 13 standard

illuminants and the 24 MacBeth reflectances. Then, for each of them, we build back the tri-

dimensional spectra, i.e., compute the (ε1, ε2, ε3) and the (σ1, σ2, σ3) descriptors minimizing,

respectively,

‖ ε1E1(λ) + ε2E2(λ) + ε3E3(λ)− E(λ) ‖ (24)

and

‖ σ1S1(λ) + σ2S2(λ) + σ3S3(λ)− S(λ) ‖ (25)

and then construct the approximated spectra

E(λ) ' ε1E1(λ) + ε2E2(λ) + ε3E3(λ) (26)

and

S(λ) ' σ1S1(λ) + σ2S2(λ) + σ3S3(λ) . (27)

We finally build RGB sensors responses from these approximated illuminants (26) and re-

flectances (27) with the image formation model (6). We apply both algorithms on these

perfectly tri-dimensional RGB sensor responses and observe their outcomes for an increasing

amount of shot noise (22).

Figure 6 reports the median and maximum angular errors for both algorithms as a function

of the shot noise amplitude. Our algorithm’s performance under the influence of shot noise

is only slightly decreased with a median (resp. maximum) angular error ranging from 3.3◦

(resp. 13.9◦) for Anoise = 0 to 3.9◦ (resp. 17.9◦) for Anoise = 1. The median angular error

for D’Zmura and Iverson’s algorithm [3] is around 25◦ (resp. 150◦) even in the absence of

noise. While this result may seem surprising, the instability of the algorithm for Anoise = 0 is

explained by its high sensitivity to small deviations from ideal data and, in the present case,

the error is introduced by the quantization of the digital values. If we run the same experiment

for smaller Anoise while keeping all RGB in floating point, we see that the algorithm indeed

performs perfectly and returns a zero median angular error in the absence of noise. It starts
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to diverge for small values of Anoise and reaches its maximum median error for Anoise ' 0.08,

as illustrated in the second row of Figure 6. While our algorithm only approximates the

illuminants and never guarantees a perfect recovery of the descriptors, it is more stable than

D’Zmura and Iverson’s in more realistic conditions.

5. Conclusions

We proposed to solve for color constancy using a set of images containing a small number

of redundant surfaces. This framework corresponds to fixed location cameras, which take

images presenting static background elements. We assume that these elements’ reflectances,

though unknown, remain constant across images. While this assumption still holds in prac-

tice, the application on real images will rise several issues, namely variation of intensity

across the images, mixed illuminants, shadows, and specularities, whose influences remain

to be investigated. We invert a series of image formation models in parallel for a set of test

illuminants and, by forcing the output reflectances to match, deduce the illuminants under

which each image was captured. We define an error function reaching its minimum when the

output reflectances match. The redundant elements are modeled by synthetic RGB patch

values. We demonstrate the validity of our method using such patches generated from real

daylight illuminants and three types of reflectances.

We observed that the estimation becomes more robust as the number of illuminants N

increases. The minimization by gradient descent on fe = fe(ε1, ε2, ε3) showed good perfor-

mances, including in the presence of shot noise. It also generally outperformed the results

obtained with the single image algorithm shades of gray, especially in the presence of shot

noise.

The principal comparative advantage of our method with D’Zmura and Iverson’s algorithm

[3] is that it only imposes weak constraints on the number of images N , reflectance descriptors

Nσ, and surfaces Np. While the quality of the illuminant estimation will depend on these

parameters, the formalism presented here can be applied to any N > 2, Nσ > 3, Np > 1,

and Nε > 1. Moreover, it is significantly less sensitive to noise. The main comparative

disadvantage is that our method requires many iterations and is thus slower.

It must be emphasized that we did not impose any positivity or shape constraint on the

illuminant and reflectance spectra, but only set the initial descriptors to be representative

of actual illuminants, such as initializing all illuminants to D65. Moreover, our illuminant

estimation method by gradient descent uses linear models to represent illuminant and re-

flectance spectra, but with the advantage of not imposing upper limits on the number of

their descriptors. The framework developed here can thus be to extended linear models of

arbitrarily high dimensions; that is, it could be applied to non-daylight illuminants, which

require to be represented by more than three basis functions.
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Table 1. Median angular errors eang for the Gradient Descent in absence of

noise.

MacBeth Munsell Natural

N Np med eang max eang med eang max eang med eang max eang

2 6 3.96 18.04 3.91 18.20 3.98 17.98

3 6 3.38 16.02 3.33 15.40 3.42 15.62

4 6 2.96 13.00 2.90 12.90 2.95 13.46

6 6 2.52 11.79 2.43 11.47 2.57 11.34

6 10 2.51 11.36 2.44 11.11 2.59 11.33

10 6 2.19 8.37 2.10 8.30 2.28 9.81

The algorithm was run 103 times using different combinations of Np patches and N real

daylight illuminants. The illuminants are described by three illuminant descriptors and the

error function fe = fe(ε1, ε2, ε3) is minimized by gradient descent.
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Table 2. Comparative median angular errors eang in presence of shot noise.

Gradient descent Shades of Gray

Anoise med eang max eang med eang max eang

0.0 2.96 13.00 4.16 36.03

0.1 2.97 13.08 4.21 36.06

0.2 2.95 12.89 4.20 37.05

0.3 2.99 12.90 4.22 34.90

0.4 3.00 13.22 4.28 35.88

0.5 3.03 14.93 4.29 36.96

0.6 3.12 14.15 4.42 35.89

0.7 3.25 15.23 4.49 33.77

0.8 3.25 15.90 4.79 33.18

0.9 3.34 15.06 4.88 36.36

1.0 3.42 18.64 5.22 33.18

The algorithm was run 103 times using Np = 6 patches and N = 4 daylight illuminants.

This table reports the median and maximum angular errors eang as a function on the amount

of shot noise added to the sensor responses for the gradient descent on fe = fe(ε1, ε2, ε3) and

for Shades of Gray.
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Table 3. Median angular errors eang for the Shades of Gray in absence of noise.

MacBeth Munsell Natural

N Np med eang max eang med eang max eang med eang max eang

2 6 4.06 34.18 5.09 31.89 7.78 27.19

3 6 4.13 36.03 5.12 32.61 7.75 27.03

4 6 4.16 36.03 5.10 32.74 7.83 26.91

6 6 4.07 35.02 5.09 32.65 7.77 27.19

6 10 1.53 22.26 4.01 22.85 6.30 29.84

10 6 4.13 35.71 5.08 32.86 7.73 27.07

The algorithm was run 103 times using different combinations of Np patches and N real

daylight illuminants.
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7. List of Figure Captions

Fig.1 Images captured with fixed location cameras exhibit changes in lighting and content,

but also contain constant static elements.

Fig.2 Examples of measured daylight illuminants

Fig.3 Examples of real (solid lines) and retrieved (dashed lines) illuminant spectra. Each

of the three rows represents a different combination of N = 4 images and Np = 6

reference surfaces. The median angular errors for rows 1, 2, and 3 are, respectively,

0.23◦, 3.02◦, and 4.76◦.

Fig.4 Examples of real (solid lines) and retrieved (dashed lines) illuminant spectra when

noise is added to the sensor responses. The spectra are the ones of Figure 3, plots

(a)-(d), for Anoise = 0.2, 0.6, and 1.0. The median angular errors corresponding to the

rows 1, 2, and 3 are, respectively, 0.51◦, 1.58◦, and 2.73◦.

Fig.5 The left and right graphs show, respectively, the median and maximum angular errors

in sRGB obtained by gradient descent on fe = fe(ε1, ε2, ε3) (top row) and for the Shades

of Gray algorithm (bottom row) for an increasing amount of shot noise. The simulations

were run for N = 4 illuminants and Np = 6 reference surfaces.

Fig.6 The left and right graphs show, respectively, the median and maximum angular errors

in sRGB obtained for both D’Zmura and Iverson’s and our algorithm. The results are

represented by, respectively, the blue triangles and the red circles and squares.
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Figure 1. Images captured with fixed location cameras exhibit changes in light-

ing and content, but also contain constant static elements.
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Figure 2. Examples of measured daylight illuminants.
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Figure 3. Examples of real (solid lines) and retrieved (dashed lines) illuminant

spectra. Each of the three rows represents a different combination of N = 4

images and Np = 6 reference surfaces. The median angular errors for rows 1,

2, and 3 are, respectively, 0.23◦, 3.02◦, and 4.76◦.
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Figure 4. Examples of real (solid lines) and retrieved (dashed lines) illuminant

spectra when noise is added to the sensor responses. The spectra are the ones

of Figure 3, plots (a)-(d), for Anoise = 0.2, 0.6, and 1.0. The median angular

errors corresponding to the rows 1, 2, and 3 are, respectively, 0.51◦, 1.58◦, and

2.73◦.
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Figure 5. The left and right graphs show, respectively, the median and maxi-

mum angular errors in sRGB obtained by gradient descent on fe = fe(ε1, ε2, ε3)

(top row) and for the Shades of Gray algorithm (bottom row) for an increas-

ing amount of shot noise. The simulations were run for N = 4 illuminants and

Np = 6 reference surfaces.
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Figure 6. The left and right graphs show, respectively, the median and max-

imum angular errors in sRGB obtained for both D’Zmura and Iverson’s and

our algorithm. The results are represented by, respectively, the blue triangles

and the red circles and squares.
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