Linear (Hull) and Algebraic Cryptanalysis of the
Block Cipher PRESENT

Jorge Nakahara Jr!', Pouyan Sepehrdad!, Bingsheng Zhang?*, Meiqin Wang>**

! EPFL, Lausanne, Switzerland
2 Cybernetica AS, Estonia and University of Tartu, Estonia
3 Key Laboratory of Cryptologic Technology and Information Security, Ministry of
Education, Shandong University, Jinan 250100, China
{jorge.nakahara, pouyan.sepehrdad}@epfl.ch, b.zhang2009@gmail.com,
mgwang@sdu.edu.cn

Abstract. The contributions of this paper include the first linear hull
and a revisit of the algebraic cryptanalysis of reduced-round variants
of the block cipher PRESENT, under known-plaintext and ciphertext-
only settings. We introduce a pure algebraic cryptanalysis of 5-round
PRESENT and in one of our attacks we recover half of the bits of the key
in less than three minutes using an ordinary desktop PC. The PRESENT
block cipher is a design by Bogdanov et al., announced in CHES 2007
and aimed at RFID tags and sensor networks. For our linear attacks,
we can attack 25-round PRESENT with the whole code book, 296-68 25.
round PRESENT encryptions, 2'° blocks of memory and 0.61 success
rate. Further we can extend the linear attack to 26-round with small
success rate. As a further contribution of this paper we computed linear
hulls in practice for the original PRESENT cipher, which corroborated
and even improved on the predicted bias (and the corresponding attack
complexities) of conventional linear relations based on a single linear
trail.

Keywords: block ciphers, RFID, linear hulls, algebraic analysis, systems of
sparse polynomial equations of low degree

1 Introduction

This paper describes linear (hull) and algebraic cryptanalysis of reduced-round
versions of the PRESENT block cipher, a design by Bogdanov et al. aimed at
restricted environments such as RFID tags [3] and sensor networks. For the linear

* This author is supported by Estonian Science Foundation, grant #8058, the Eu-
ropean Regional Development Fund through the Estonian Center of Excellence in
Computer Science (EXCS), and the 6th Framework Programme project AEOLUS
(FP6-IST-15964).

** This author is supported by 973 Program of China (Grant No.2007CB807902) and
National Outstanding Young Scientist fund of China (Grant No. 60525201).

case, our analysis include linear hulls of reduced-round variants of PRESENT,
which unveils the influence of the linear transformation in the clustering effect
of linear trails. The computation of linear hulls also served to determine more
accurately the overall bias of linear relations, and consequently, more precise
complexity figures of the linear attacks.

Previous known analyses on (reduced-round) PRESENT, including the re-
sults in this paper, are summarized in Table 4 along with attack complexities.

Our efficient attacks reach 25-round PRESENT under a known-plaintext
setting and 26-round with small success rate, and 15 rounds under a ciphertext-
only setting. The algebraic attacks, on the other hand, can recover keys from
up to 5-round PRESENT in a few minutes, with only five known plaintext-
ciphertext pairs.

This paper is organized as follows: Sect. 2 briefly details the PRESENT block
cipher; Sect. 3 presents our algebraic analysis on PRESENT; Sect. 4 describes
our linear cryptanalysis of reduced-round PRESENT; Sect. 5 describes our linear
hull analysis of PRESENT; Sect. 6 concludes the paper.

2 The PRESENT Block Cipher

PRESENT is an SPN-based block cipher aimed at constrained environments,
such as RFID tags and sensor networks. It was designed to be particularly com-
pact and competitive in hardware. PRESENT operates on 64-bit text blocks,
iterates 31 rounds and uses keys of either 80 or 128 bits. This cipher was de-
signed by Bogdanov et al. and announced at CHES 2007 [3]. Each (full) round
of PRESENT contains three layers in the following order: a bitwise exclusive-or
layer with the round subkey; an S-box layer, in which a fixed 4 x 4-bit S-box
(Table 5) is applied sixteen times in parallel to the intermediate cipher state; a
linear transformation, called pLayer, consisting of a fixed bit permutation. Only
the xor layer with round subkeys is an involution. Thus, the decryption oper-
ation requires the inverse of the S-box (Table 5) and of the pLayer. After the
31st round there is an output transformation consisting of an exclusive-or with
the last round subkey. One full round of PRESENT is depicted in Fig. 1. Our
attacks are independent of the key schedule algorithm. Further details about the
key schedule, for each key size, can be found in [3].

3 Algebraic Analysis

Algebraic cryptanalysis is attributed to C.E. Shannon, who mentioned in [27]
that breaking a good cipher should require ”as much work as solving a system
of simultaneous equations in a large number of unknowns of a complex type”.
Contrary to linear and differential attacks, that require a large number of chosen
or known plaintexts (which makes it roughly impractical in reality), algebraic
cryptanalysis requires a comparatively small number of text pairs. Any algebraic
attack consists of two distinct stages: the adversary writes the cipher as a system
of polynomial equations of low degree over GF(2) or GF(2¥) [7,23]. Then, it

Fig. 1. One full round of PRESENT.

solves the corresponding system which turns out to be overdefined and sparse.
The methods already proposed for solving polynomial system of equations are
Grobner basis including Buchberger algorithm [4], F4 [15], F5 [16] and algorithms
like ElimLin [9], XL [6] and its family [7], and Raddum-Semaev algorithm [26].
Converting these equations to Boolean expressions in Conjunctive Normal Form
(CNF) [9] and deploying various SAT-solver programs is another strategy [14].
Algebraic attacks since the controversial paper of [7] has gotten considerable
attention, has been applied to several stream ciphers (see [8]) and is able to
break some of them but it has not been successful in breaking real life block
ciphers, except Keeloq [11,18].

In this paper we deploy ElimLin algorithm proposed by Courtois against DES
[9] and F4 algorithm by Faugére [15] and we break up to 5-round PRESENT for
both key sizes. Then we compare our results using these two approaches. Cour-
tois and Debraize in [10] have already proposed a Guess-then-Algebraic attack
on 5-round PRESENT only for the 80-bit key version. In fact, our main focus
in this paper is a comparison between the efficiency of ElimLin algorithm which
uses simple linear algebra and the recent so called efficient implementation of
F4 algorithm under PolyBori framework. Although there exist other types of at-
tacks for larger number of rounds, we believe this result is interesting, because
we can recover many key bits with a relatively few known plaintext-ciphertext
pairs. Moreover, the designers of PRESENT in [3] have mentioned that they
were unsuccessful to obtain any satisfactory result in reasonable time using al-
gebraic cryptanalysis (F4 algorithm under MAGMA [21]) to break two rounds
of a smaller version of the cipher having only seven S-boxes per round compared
to the real PRESENT cipher having sixteen S-boxes per round.

3.1 ElimLin Algorithm and Attack Description

The ElimLin algorithm stands for Eliminate Linear and is a technique for solving
systems of multivariate polynomial equations of degree mostly 2, 3 or 4 over a
finite field, specifically GF(2). Originally, it was proposed in [9] to attack DES
and was reported to break 5-round DES.

ElimLin is composed of two distinct stages, namely: Gaussian Elimination
and Substitution. All the linear equations in the linear span of initial equations
are found. Subsequently, one of the variables is nominated in each linear equation
and is substituted in the whole system. This process is repeated up to the time
when no linear equation is obtained in the linear span of the system.

3.2 F4 Algorithm under PolyBori Framework

F4 is currently the most efficient algorithm for computing the Grébner basis of
an ideal. The most efficient implementation of F4 is available under PolyBori
framework [2] running alone or under SAGE algebra system. PolyBori is a C++
library designed fundamentally to compute Grobner basis applied to Boolean
Polynomials. The ring of Boolean Polynomials is a quotient ring over GF(2),
where the field equation for each variable is 22 = . A Python interface is used,
surrounding the C++ core, announced by the designers to be used from the
beginning to facilitate ”parsing of complex polynomial systems” and ”sophis-
ticated and easy extendable strategies for Grobner base computation” [2]. It
uses zero-suppressed binary decision diagrams (ZDDs) [17] as a high level data
structure for storing Boolean Polynomials which results in the monomials to be
stored more efficiently with respect to the space they occupy in memory and
making the computational speed faster compared with other computer algebra
systems. We used polybori-0.4 in our attacks.

3.3 Algebraic Representation of PRESENT

It is a straightforward procedure to demonstrate that every 4 x 4-bit S-box has
at least 21 quadratic equations. The larger the number of equations, the weaker
the S-box. In fact, the S-box of PRESENT has exactly 21 equations. Writing
the whole 80-bit key variant of PRESENT as a system of quadratic equations
for 5 rounds, we obtained 740 variables and 2169 equations. In our attack, we
fix some of the key bits and we recover the remaining unknown ones. In fact, we
introduce an attack on both PRESENT with key sizes of 80 and 128 bits. Notice
that for both key sizes one pair is not enough to recover the key uniquely and
we need at least two pairs.

The summary of our results is in Table 1. All the timings were obtained
under a 2Ghz CPU with 1Gb of RAM and we used an efficient implementation
of ElimLin available in [12]. As it is depicted in Table 1, the timing results of
ElimLin and PolyBori are comparable except the time in which PolyBori crashed
4 due to probably running out of memory. As our experiments revealed, in all
cases ElimLin used much less memory compared to F4 under PolyBori which
turns out to be due to the Grobner basis approach of increasing the degree of
polynomials in the intermediate stages.

4 In Appendix, we give the intermediate results of ElimLin for one of the cases in
which PolyBori crashes.

Table 1. Algebraic attack complexities on reduced-round PRESENT

rounds|#key bits|#key bits| full key |# plaintexts| notes
fixed | (hours)
5 80 40 0.04 5 KP |ElimLin
5 80 40 0.07 5 KP PolyBori
5 80 37 0.61 10 KP |ElimLin
5 80 37 0.52 10 KP |PolyBori
5 80 36 3.53 16 KP |ElimLin
5 80 36 Crashed!| 16 KP |PolyBori
5 80 35 4.47 16 KP |ElimLin
5 80 35 Crashed!| 16 KP |PolyBori
5 128 88 0.05 5 KP |ElimLin
5 128 88 0.07 5 KP PolyBori

Since the time complexity of the experiment depends on the system instance,
Table 1 represents the average time complexity. We had some instances revealing
that the times it takes to recover 45 bits of the key is much less than that for
44 bits. This seems very surprising at the first glance, but it can be justified by
considering that the running time of ElimLin implementation in [12] is highly
dependable on the sparsity of equations. So, our intuition is that as we have
picked distinct plaintext and key randomly in each experiment, by pure chance
the former system of equations turns out to be sparser than the latter and it is
also probable that more linear equations are generated due to some combination
of plaintexts and keys randomly picked.

In [1], Albrecht and Cid compared their result with exhaustive key search
over PRESENT assuming that checking an arbitrary key takes at least 2 CPU
cycles which seems ambitious implying that recovering 45 bits of the key should
take at least more than 9 hours, while we could recover the key in less than two
hours using only sixteen KP in our best attack.

We tried to break 6 rounds of PRESENT by ElimLin and F4, but ElimLin
did not give us any satisfactory result and PolyBori crashed after a while due
to probably running out of memory for 6-round PRESENT. In [10], the results
are compared with F4 implementation under MAGMA which is specified not to
yield any satisfactory results in reasonable time. Although PolyBori crashes in
much fewer cases, we could not get anything better by using F4 under PolyBori
compared to ElimLin in this specific case.

4 Linear Analysis

Linear cryptanalysis (LC) typically operates under a known-plaintext (KP) or
a ciphertext-only (CO) setting, and its origin dates back to the works of Matsui
on DES [22]. The main tool for this attack is the linear relation, which consists
of a linear combination of text and key bits, holding with a relatively high
parity deviation from the uniform parity distribution. The effectiveness of a

linear relation is measured by a parameter called bias, denoted ¢, which is the
absolute value of the difference between the parity of the linear relation from
1/2. The higher the bias, the more attractive the linear relations are, since they
demand less plaintext-ciphertext pairs. These relations form the core of a linear
distinguisher, namely, a tool that allows one to distinguish a given cipher from
a random permutation, or to recover subkey bits.

Our linear analysis of the PRESENT cipher started with a study of the
Linear Approximation Table (LAT) [22] (Table 6) of its 4 x 4 S-box (Table 5).
In Table 6, the acronym IM stands for the Input Mask (leftmost column); OM
for the Output Mask (top row); the entries for non-zero masks are either 0, 2,
—2, 4 or —4, that is, the S-box is linearly 4-uniform. Thus, the largest entry
for non-trivial (non-zero) bitmasks corresponds to a bias of 4/16 = 272, Thus,
entries in the LAT correspond to 16 - €, except for the sign; a negative entry
implies that the parity is closer to ’0’, while the absence of a sign means the
parity is closer to ’1’.

One-round and multiple-round linear approximations were derived by com-
bining the LAT with the bit permutation pLayer that follows each S-box layer.
Our analysis indicated that the most promising linear relations shall exploit

— one-bit-input-to-one-bit-output bitmasks in order to minimize the number
of active S-boxes per round;

— the pLayer bit permutation following the S-box layer has order three, that
is, if we denote this permutation by P, then P(P(P(X))) = P?}(X) = X, for
all text blocks X; this fact motivated us to look for iterative relations across
three rounds. Particular bit positions of pLayer, though, have much smaller
order, such as the leftmost bit in a block which is unaffected by pLayer, that
is, it is a fix-point. There are four such fix-points in the pLayer. Thus, the
branch number [13] of pLayer is just two. This means that diffusion is quite
poor in PRESENT. Due to the fix-points of pLayer, and the LAT profile of
the S-box, iterative linear relations exist for any number of rounds.

Taking the order of pLayer into account, it is straightforward to find 3-round
iterative linear relations with only three active S-boxes (there cannot be less
than one active S-box per round due to the SPN structure). Nonetheless, the
S-box design minimizes the bias of single-bit linear approximations. The bias
for each such approximation is 2/16 = 272, which gives a maximum bias of
22-3-3-3 = 27 for any 3-round linear relation.

Let us denote a 64-bit mask by

I' = y07172737475 Y6 Y78 Y9 Y10Y11Y12Y13Y14715

where v; € Z3, 0 < i < 15, that is, a nibble (4 bits). An interesting example of
1-round linear relation for PRESENT is

8000000000000000,, 5 8000000000000000,, (1)

where the linear approximation 8 >, 8 for the S-box was used for the leftmost
nibble (the leftmost S-box), with bias 273, and % means one round transition.

Note that this bias is not the highest possible, but the non-zero bit position in
the mask is a fix-point for the pLayer. Thus, (1) is an iterative linear relation
with a single active S-box. If we denote a text block as X = (xg,1,...,%63),
then (1) can be expressed simply as

po®co = ki D k3, (2)

where k} and k3 are the leftmost (most significant) bits of the first two round sub-
keys. For a distinguish-from-random attack, the complexity for a single round is
N = 8:(273)72 = 29 KP and equivalent parity computations (2). Notice, though,
that if the plaintext is composed of ASCII text, then the most significant bit of
every plaintext byte is always zero, and the attack actually requires 2° cipher-
texts only (CO). Iterating (1) for up to 14 rounds requires 8 - (21373*14)=2 —= 261
CO and an equivalent amount of parity computations. If we allow a lower success
probability, we can attack up to 15-round PRESENT using 4 (21473*15)=2 = 264
CO, and equivalent number of parity computations. But, since the codebook is
exhausted, the KP or CO settings are the same.

Other two 1-round iterative linear relations with the bias 273, also based on
fix-points of pLayer are

0000000000200000, LA 0000000000200000,, (3)
and
0000040000000000, LiA 0000040000000000,.. (4)

A linear relation based on the fourth fix-point of pLayer is not effective since the
LAT entry is zero.

An example of 2-round (non-iterative) linear relation for PRESENT with
maximum bias is

1000000000000000, = 0000800000008000,, > 0808080808080000,, (5)

with bias 22727272 = 274 and three active S-boxes. The local S-box approxi-

mations used were 1 > 5 and 8 > 14, both with bias 272. Reducing the number
of active S-boxes to only two across two rounds would decrease the bias to
21=3-3 = 275 Thus, the trade-off of three active S-boxes versus the bias, across
two rounds, is the best possible. The attack complexity is N = 8- (274)72 = 211
KP and equivalent parity computations.

For three rounds, one of the simplest, most-biased and iterative linear rela-
tions we have found is

0800000000000000,, 25 4000000000000000,, =5

6

0000800000000000,, -5 0800000000000000,, ©
where the S-box linear approximations were 8 S 8and 4 > 4, both with bias
273, The overall bias is 22737373 = 277 Relation (6) is an example that demon-
strates a trade-off between the number of active S-boxes per rounds versus the
overall bias of linear relations involving single-bit-input-single-bit-output masks.

Relation (6) allows to mount a distinguish-from-random linear attack on
3-round PRESENT with N = 8- (277)72 = 2!7 KP and equivalent number
of parity computations (less than one encryption) and negligible memory. For
six rounds, the attack complexity becomes N = 8- (2172*7)=2 = 229 KP and
equivalent parity computations. For nine rounds, the complexity becomes N =
8 . (2273*T)=2 = 241 KP and equivalent number of parity computations. For
twelve rounds, the attack complexity becomes N = 8- (2374*7)=2 = 253 KP and
equivalent parity computations. For fifteen rounds, if we allow a smaller success
rate, then N = 4. (2475*7)=2 = 264 KP are required, and an equivalent number
of parity computations (which is about the effort of one-round computation).
Actually, in the 12-round case, the first and last round S-box approximations
can be improved, leading to

7700000000000000, EiA 0000C00000000000,, EA 0800000000000000, Ly

7
0800000000000000,, =5 4000000000000000, ~5 8000000080008000,, @

where the S-box approximations were 7 >, 4 with bias 272 in the lst round;
C > 8 with bias 22 in the 2nd round; 8 >, 8 with bias 23 in the 15th round;
43 B, with bias 272 in the last round. The notation = means an z-round
transition. The overall bias is 2727272-312=3-2+16 — 9=31 ' A (istinguish-from-
random attack using the 16-round relation (7) costs N = 4 - (2731)72 = 264
KP.

Additional 16-round linear approximations can be derived taking into account
other fix-points of pLayer. For instance, using (3):

00000000A0A400000,, -5 0000000000400000, 5 0000000000200000,, -

8
0000000000200000, EiA 0020000000200020,,, ®)
where the S-box approximations were A >, 9 with bias 22 in the 1st and 2nd

rounds; 2 > B with bias 22 in the last round. The overall bias is 2—3"(2+13)=2+16 _
2731,

Further, using (1), we have

CC00000000000000, % C000000000000000, % 8000000000000000,, -2

9
8000000000000000, EiA 8000800080000000,, ®)

where the S-box approximations were C >, 8 with bias 22 in the 1st and 2nd
rounds; 8 >, E with bias 22 in the last round. The overall bias is 2~ 3 (13+2)=2+16
— 2—31.

A 1R key-recovery attack can be applied at the top end of (9) would require
guessing the subkeys on top of four S-boxes, because C'C'00000000000000, has
four active bits. It means a complexity of 264116 /4 = 278 1_round computations,
or 27 /17 ~ 2791 17-round computations. The memory complexity is a 16-bit
counter and the success rate [28] is about 0.37. Recovering subkeys at the bottom

end requires guessing only twelve subkey bits since 8000800080000000,, has only
three active bits. It means 264712 .3/(16 - 17) ~ 26950 17-round computations.
The memory complexity is a 12-bit counter and the success rate is about 0.63.
Applying this attack at both ends (2R attack) requires 264F16+12.7/(16 - 18) ~
286:64 18 round computations (applies only to 128-bit keys). The success rate is
about 0.03.

For the remaining 100 key bits, we use (8), which has the same bias as (9).
So, the effort to recover further 24+12 key bits is 264+24+12.8 /(16 - 18) ~ 29683
18-round computations. The remaining 64 key bits can be found by exhaustive
search.

5 Linear Hulls

The concept of linear hulls was first announced by Nyberg in [24]. A linear hull
is the LC counterpart to differentials in differential cryptanalysis. Therefore, a
linear hull stands for the collection of all linear relations (across a certain number
of rounds) that have the same (fixed) input and output bitmasks, but involves
different sets of round subkeys according to different linear trails. Consequently,
the bias of a linear hull stands for the actual bias of a linear relation involving
a given pair of input and output bitmasks. When there is only a single linear
trail between a given pair of input and output bitmasks, the concepts of linear
relation and linear hull match.

The linear hull effect accounts for a clustering of linear trails, with the con-
sequence that the final bias may become significantly higher than that of any
individual trail. Due to Nyberg [24], given the input and output masks a and b
for a block cipher Y = Y (X, K), the potential of the corresponding linear hull is
denoted

1
ALH(a,b):Z(P(a-X@b-Y@c-Kzo)—§)2262 (10)
where ¢ is the mask for the subkey bits. Then, key-recovery attacks such as
Algorithm 2 in [22] apply with
t t

Ne— - -
ALH(a,b) €

known plaintexts, where t is a constant. An advantage to use linear hulls in key-
recovery attacks, such as in Algorithm 2, is that the required number of known
plaintexts can be decreased for a given success rate. Keliher et al. exploited this
method to attack the Q cipher [19].

For PRESENT, in particular, it makes sense to choose input/output masks
that affect only a few S-boxes, because it minimizes the number of key bits
to guess in key-recovery attacks around the linear hull distinguisher. Moreover,
minimizing the number of active S-boxes in the first round may also minimize
the number of linear trails to look for, which speeds up our search program for
all possible linear paths and the corresponding bias computation.

Our approach to determine linear hulls for PRESENT used a recursive al-
gorithm (in ANSI C) employing a depth-first search strategy. It is a classical
technique to find exhaustively all linear trails systematically and with low mem-
ory cost. Fixed input and output (I/O) bitmasks and a number of rounds were
provided as parameters, and the algorithm computed all possible linear trails
starting and ending in the given I/O masks, the corresponding biases and the
number of active S-boxes. One objective of the linear hull search was to dou-
ble check if the linear relations we derived in (1), (5) and (6) actually had the
predicted biases (which have been confirmed).

An interesting phenomenon we have observed is the rate of decrease of the
bias in linear hulls with some fixed input/output bitmasks of low Hamming
Weight (HW), for increasing number of rounds. In particular, we have focused
on a few cases, where the input and output masks are the same (iterative linear
relations) and have low HW. We have studied all 64-bit input and output bit
masks with HW = 1. Further, to optimize the search, we have focused only
on the linear trails with the highest bias (single-bit trails), which we call the
best trails (with a single active S-box per round). The best results we obtained
concern the mask 0000000000200000,, (both at the input and at the output).
Table 2 summarizes our experiments, where “computed bias” denotes the bias
of the linear hull for the given number of rounds computed according to 10. For
up to four rounds, all trails were found. For five rounds or more, only the trails
with highest biases were accounted for. The values under the title “expected
bias” indicate the bias as computed by the Piling-up lemma.

From Table 2, we observe that the bias for linear hulls in PRESENT does
not decrease as fast, with increasing number of rounds, as in linear relations as
dictated by the Piling-up lemma. Fig.2 compares the computed and the predicted
bias values in Table 2. Our experimental results indicate that the linear hull effect
is significant in PRESENT even for a small number of rounds. For five rounds
or more, we could not determine all linear trails, but we looked for the ones with
the highest bias values, so that their contribution to the overall ALH would be
significant. We have searched for linear trails with r up to r + 2 active S-boxes
across r rounds. Thus, the values for more than four rounds represent a lower
bound on the overall bias of the linear hulls.

In Table 2, consider the linear hull across five rounds. We have found nine
trails with bias 27 !! inside this linear hull. Repeating it three times, we arrive
at 93 15-round linear trails. The ALH (0000000000200000,., 0000000000200000,,)
for 15 rounds is (2731)%2 . 93 = 2762+9:51 — 95249 We extend this 15-round
linear hull to a 17-round linear hull with 9 17-round linear trails by choosing
an additional 1-round relation at the top and at the bottom ends of it:

0000000000.A00000, LN 0000000000200000, 157

11
0000000000200000,, =5 0020000000200020,,, 1D

where the ALH for the 17-round linear hull is (2733)2.93 = 2766+9.51 — 2—56.49
This linear hull can be used to distinguish 17-round PRESENT from a random
permutation with 2°6:49 . 8 = 25949 KP, and equivalent parity computations.

10

T
“hullr —— |

T
0 - log_2(bias) "expected” —-—--

215 +

25 |

35 - S i

45 b v T
0 5 10 15 20 mounds

Fig. 2. Behaviour of linear hull bias (ALH) against expected bias (by Piling-up lemma)
for increasing number of rounds of PRESENT (data from Table 2).

Table 2. Computed bias (cb) and expected bias (eb) of linear hulls in PRESENT for
input /output mask 0000000000200000 .

rounds 1 2 3 4 5 6 7 8
trails 1 1 1 9 9 27 72 192
(cb) 9-3 9-5 97 9—8.20 9—9.40 9—10.61 9—11.90 9-13.19
(eb) 9-3 95 917 9-9 9-11 9-13 915 9-17
rounds 9 10 11 12 13 14 15 16
trails 512 1344 3528 9261 24255 63525 166375 435600
(cb) 9—14.48 9-15.78 9—1T.08 9—18.38 9—19.71 9—21.02 9—22.33 §-23.63
(eb) 9-19 9—21 923 925 9-27 9—29 9—31 933
rounds 17 18 19 20 21 22 23
trails 1140480 2985984 7817472 20466576 53582633 140281323 367261713
(cb) 9—24.94 9—26.25 9-27.55 —28.85 -—30.16 9—31.47 9—32.77
(eb) 9—35 9—37 939 9—41 9—43 9—45 9—47

11

Applying a key-recovery (1R attack) at the top end of (11) requires guessing
only eight bits because there are only two active bits in 0000000000A00000,. The
attack complexity becomes 2°949+8.2/(16-18) = 26933 18-round computations.
The memory complexity is just an 8-bit counter and the success rate is about
0.997.

For six rounds, and still using mask 0000000000200000,,, we have found 27
trails, each with bias 27!3 inside this linear hull. Concatenating the linear hull
three times, we arrive at 273 18-round trails. The ALH (0000000000200000,,
0000000000200000,,) for 18 rounds is (2737)2 - 273 = 275973, Extending it to 20
rounds by choosing carefully an additional relation on top and at the bottom of
it results in

0000000000.A00000, LN 0000000000200000,, 187

0000000000200000, LIS 0020000000200020,.

The ALH of (12) is (2739)2-273 = 276373, Thus, (12) can be used to distinguish
20-round PRESENT from a random permutation using the full codebook. A key-
recovery (1R) attack at the top of (12) leads to a complexity of 2648 /(8. 21) ~
204-60 21_round computations. The memory needed is an 8-bit counter and the
success rate is about 0.246. For 80-bit keys, the remaining 80-12 = 68 key bits
can be found by exhaustive search.

For nine rounds and mask 0000000000200000,,, we have found 512 trails, each
with bias 2719 inside this linear hull. Concatenating the linear hull twice, we ar-
rive at 5122 18-round trails. The ALH (0000000000200000,, 0000000000200000,,)
for 18 rounds is (2737)% . 5122 = 2756, Extending it to 20 rounds, just like (12),
leads to an ALH of (273%)2 . 5122 = 2760, A key-recovery (1R) attack at the
top of this linear hull results in a complexity of 8 - 2608/(8 . 21) a 26360 21.
round computations. The memory needed is an 8-bit counter and the success
rate is about 0.997. For 80-bit keys, the remaining 72 key bits can be found by
exhaustive search, leading to a complexity of 272 encryptions.

For ten rounds and mask 0000000000200000,, we have found 1344 trails,
each with bias 272! inside this linear hull. Concatenating the linear hull twice,
we arrive at 13442 20-round trails. The corresponding ALH (0000000000200000,,,
0000000000200000,,) for 20 rounds is (2741)2 - 13442 = 276122 Extending it to
21 rounds leads to

(12)

0000000000.400000,, =5 0000000000200000,, 2

(13)
0000000000200000,,

with an ALH of (2742)2.1344% = 2763:21_ A key-recovery (2R) attack at both ends
of this linear hull requires guessing 16 key bits. The effort becomes 263-21+16 /(16.
23) a 26068 23_round computations. The memory needed is a 16-bit counter. For
80-bit keys the remaining 64 key bits can be found by exhaustive search, leading
to a final complexity of 264 encryptions.

For the 21-round linear hull, with bitmask 0000000000200000,,, we have found
53582633 trails with bias 2743 and the accumulated bias is 273016, These trails
always have one single active S-box per round. In order to improve the accumu-
lated bias, we identify the second best trails across 21 rounds in which 23 active

12

S-boxes are involved. Unlike the best trails, the second best ones have a '2-way
branching’ that is the trail splits from one to two S-boxes. This branching later
merges back into a single S-box (Fig. 3) after three rounds. We developed an-
other depth-first search program to find the 2nd-best trails for a variable number
of rounds. The results are listed in Table 3. From the empirical results in Ta-

Table 3. Number of second best trails using bitmask 0000000000200000 .

rounds|# best trails|# 2nd best trail|bias of 2nd best trails
5 9 18 2712.915
6 27 81 2—13.830
7 72 288 914915
8 192 960 9—16.046
9 512 3072 917207
10 1344 9536 Q~18:376
11 3528 28896 9~ 19-565
12 9261 85995 220771
13 24255 252021 9721990
14 63525 730235 2723219

ble 3, the number of 2nd best trails seems to be (# rounds-3) times more than
the number of best trails. This means that the contribution of the second best
trails to the overall bias of the 22-round hull is about /18 - 53582633 - 2=47 or
2732077 Combining the biases of the 1st best trails and 2nd best trails results
in \/(2730.16)2 + (2—32.077)2 ~ 9—30.11

We now make the key recovery attack on 25-round by guessing 20 bits at both
ends of the 21-round linear hull. This means 204+16+16+4+4 .10 /16 = 210333 1_
round computations, or 2103:33 /25 ~ 298:68 25_round computations, which only
applies to 128-bit keys. For the remaining 88-bit subkey, we can search it ex-
haustively. The success rate is 0.61.

For the 22-round linear hull, with bitmask 0000000000200000,,, we have found
140281323 trails, each with bias 27%° and /19 - 1402813232749 trails each with
bias 274°. The corresponding ALH is (2745)2.140281323+(19-140281323)-274% ~
276283 which means an accumulated bias of 2731415 We use this 22-round
linear hull to make a key recovery attack on 26-round PRESENT. This means
204+16+16+4+4 .10 /16 = 210333 1round computations, or 2193-33 /26 ~ 29862
26-round computations, which only applies to 128-bit keys. The success rate is
only 0.00002.

It is reasonable that the linear trails in a linear hull could not be indepen-
dent. Kaliski et al., though, showed that the linear dependency of the linear
approximations has no effect for the attack [20].

13

6 Conclusions

This paper described the first linear hull attacks and revisited algebraic attacks
with a comparison between two distinct algorithms on reduced-round versions
of the block cipher PRESENT. The analysis based on linear hulls were used to
detect any significant variation in the bias, which would impact the linear attack
complexities; and, to assess the linear hull effect in PRESENT and its resilience
to LC. We have confirmed that the linear hull effect is significant even for a small
number of rounds of PRESENT.

Table 4 lists the attack complexities for PRESENT for increasing number of
rounds and in increasing order of time complexity.

Table 4. Attack complexities on reduced-round PRESENT block cipher.

#Rounds Time Data Memory Key Size Source Comments

(bits)
5 2.5min 5 KP — 80 Sect. 3 KRt, AC
5 2.5min 5 KP — 128 Sect. 3 KRf1, AC
5 1.82h 64 KP — 80 [10] KR, AC
6 226 2 KP all eq. (6) DR* + KR, LC
7 Q1001 9243 cp 277 128 [30] IC
14 26t 26t co — all eq. (1) DR* + KR, LC
15 2356 935.6 cp 232 all 5] KR, SC
15 204 204 KP all eq. (1) DR* LC
16 202 202.CP 1Gb all 1] KR, AC + DC
16 204 o6t cp 232 all [29] KR, DC
17 20950 964 Kp 212 80 eq. (9) KR, LC
17 27891 964 Kp 216 80 eq. (9) KR, LC
17 2104 963 cp 258 128 [25] KR, RKR
17 2% 202 CP 1Gb 128 [11 KR, AC + DC
18 2% 202.CP 1Gb 128 1] KR, AC + DC
19 218 262 C0P 1Gb 128 1] KR, AC + DC
24 257 25T cp 2% all [5] KR, SSC
25 20868 o6t Kp 210 128 Table2 KR, LH
26 29862 964 Kp 240 128 Table 2 KR, LH

*: time complexity is number of parity computations; t: recover half of the user key;
DR: Distinguish-from-Random attack; KR: Key Recovery attack

LC: Linear Cryptanalysis; DC: Differential Cryptanalysis; AC: Algebraic Crypt.;
SSC: Statistical Saturation analysis; IC: Integral Cryptanalysis;

RKR: Related-Key Rectangle; LH: Linear Hull; ML: Multiple Linear;

CP: Chosen Plaintext; KP: Known Plaintext; CO: Ciphertext Only

A topic for further research is to look for the 3rd and 4th best trails inside a
linear hull. The issue is to find out their contribution to the overall bias of the

14

linear hulls, that is, if they can further improve the bias as the 2nd best trails

did.

Acknowledgements

‘We

would like to thank anonymous reviewers for their very important comments.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

Albrecht,M., Cid,C.: Algebraic Techniques in Differential Cryptanalysis. Fast Soft-
ware Encryption, Springer, pp. 193-208 (2009)

Brickenstein,M., Dreyer,A.: PolyBoRi: A framework for Grobner basis computa-
tions with Boolean polynomials. Electronic Proceedings of MEGA 2007, available
at http://www.ricam.oeaw.ac.at/mega2007/electronic/26.pdf

Bogdanov,A., Knudsen,L..R., Leander,G., Paar,C., Poschmann,A., Rob-
shaw,M.J.B., Seurin,Y., Vikkelsoe,C.: PRESENT: an Ultra-Lightweight Block
Cipher. CHES 2007, Springer, LNCS 4727, pp. 450-466 (2007)

Buchberger,B.: An Algorithm for Finding the Basis Elements of the Residue Class
Ring of a Zero Dimensional Polynomial Ideal. Ph.D Dissertation (1965)
Collard,B., Standaert,F.X.: A Statistical Saturation Attack against the Block Ci-
pher PRESENT. CT-RSA’09, Springer, LNCS 5473, pp. 195-210 (2009)
Courtois,N., Shamir,A., Patarin,J., Klimov,A.: Efficient Algorithms for Solving
Overdefined Systems of Multivariate Polynomial Equations. Adv. in Cryptology,
Eurocrypt 2000, Springer, LNCS 1807, pp. 392-407 (2000)

Courtois,N., Pieprzyk,J. : Cryptanalysis of Block Ciphers with Overdefined Sys-
tems of Equations. Asiacrypt 2002, Springer, LNCS 2501, pp. 267287 (2002)
Courtois,N., Meier,W.: Algebraic Attacks on Stream Ciphers with Linear Feedback.
EUROCRYPT 2003, Springer, LNCS 2656, pp. 345-359 (2003)

Courtois,N., Bard,G.V.: Algebraic cryptanalysis of the data encryption standard.
IMA Int. Conference, Springer, LNCS 4887, pp. 152-169 (2007)

Courtois,N., Debraize,B.: Specific S-box Criteria in Algebraic Attacks on Block
Ciphers with Several Known Plaintexts. Research in Cryptology, Second Western
European Workshop, WEWoRC, Springer, LNCS 4945, pp. 100-113 (2007)
Courtois,N., Bard,G.V., Wagner,D.: Algebraic and Slide Attacks on Keel.oq. Fast
Software Encryption Workshop, Springer, LNCS 5086, pp. 97-115 (2008)
Courtois,N.: Tools for experimental algebraic cryptanalysis.
http://www.cryptosystem.net/aes/tools.html

Daemen,J., Rijmen,V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer (2002)

Eén,N., Sorensson,N.: MiniSat 2.0. An open-source SAT solver package.
http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/

Faugére,J.: A new efficient algorithm for computing Grébner bases (F4). Journal
of Pure and Applied Algebra, pp. 61-69 (1999)

Faugére,J.: A new efficient algorithm for computing Grébner bases without re-
duction to zero (F5). Symbolic and Algebraic Computation - ISSAC, pp. 75-83
(2002)

Ghasemzadeh,M.: A New Algorithm for the Quantified Satisfiability Prob-
lem, Based on Zero-suppressed Binary Decision Diagrams and Memoriza-
tion. Ph.D. thesis, Potsdam, Germany, University of Potsdam, available at
http://opus.kobv.de/ubp/volltexte/2006,/637/ (2005)

15

18.

19.

20.

21.
22.

23.

24.

25.

26.

27.

28.

29.

30.

Indesteege,S., Keller,N., Dunkelman,O., Biham,E., Preneel,B.: A Practical Attack
on KeeLoq. EUROCRYPT 2008, Springer, LNCS 4965, pp. 1-18 (2008)
Keliher,L., Meijer,H., Tavares,S.: High Probability Linear Hulls in Q. Second
NESSIE Conference (2001)

Kaliski,B.S., Robshaw,M.J.B.: Linear Cryptanalysis Using Multiple Approxima-
tions and FEAL. FSE’94, Springer, LNCS 1008, pp. 249-264 (1994)

Magma, software package, http://magma.maths.usyd.edu.au/magma/.
Matsui,M.: Linear Cryptanalysis Method for DES Cipher. Adv. in Cryptology,
Eurocrypt 1993, Springer, LNCS 765, pp. 386-397 (1994)

Murphy,S., Robshaw,M.J.B.: Essential Algebraic Structure within AES. Adv. in
Cryptology, CRYPTO 2002, Springer, LNCS 2442, pp. 1-16 (2002)

Nyberg,K.: Linear approximation of block ciphers. Adv. in Cryptology, EURO-
CRYPT 1994, LNCS 950, Springer, pp. 439-444 (1995)

Ozen,0., Varici,K., Tezcan,C., Kocair,C.: Lightweight Block Ciphers Revisited:
Cryptanalysis of Reduced Round PRESENT and HIGHT. ACISP 2009, Springer,
LNCS 5594, pp. 90-107 (2009)

Raddum,H., Semaev,I.: New technique for solving sparse equation
systems. Cryptology ePrint Archive, Report 2006/475, available at
http://eprint.iacr.org/2006,/475 (2006)

Shannon,C.E.: Claude Elwood Shannon collected papers. Piscataway: Wiley-IEEE
Press (1993)

Selguk,A.A., Bigak,A.: On Probability of Success in Linear and Differential Crypt-
analysis. SCN 2002, Springer, LNCS 2576, pp. 174-185 (2003)

Wang,M.: Differential Cryptanalysis of reduced-round PRESENT. AfricaCrypt
2008, Springer, LNCS 5023, pp. 4049 (2008)

Z’aba,M.R., Raddum,H., Henricksen,M., Dawson,E.: Bit-Pattern Based Integral
Attack. Fast Software Encryption Workshop, Springer, LNCS 5086, pp. 363381
(2008)

Table 5. The 4 x 4-bit S-box of PRESENT and the inverse S-box.

z |0 123456 7 8 9101112131415
Sz] [125 6 11 901013 3 14158 4 7 1 2
S Tz][5 1415 8 121 2 1311 4 6 3 0 7 9 10

A ElimLin Intermediate Results

Table 7 depicts the intermediate ElimLin results for 5-round PRESENT-80
where 36 bits of the key are fixed and we try to recover the remaining key
bits. In the third column, T represents the total number of monomials and Ave
is the average number of monomials per equation.

16

S

S|S|S|S

D

[§
Y

q
k

q
N

€55 - - Db b - - - - D> D> - - -y
R A A T s S e S e e S e P s P S P T P e P e S P P S P P P P P P

S|S|S|S|S|S|S|S|S|S

S|S|S|S|S|S|S|S|S|S

SSSSSSSSSSS/SSSSS

Fig. 3. Example of branching inside a trail, from single S-box to two S-boxes, and

box.

merging back to one S

17

Table 6. Linear Approximation Table (LAT) of the S-box of PRESENT.

oM
M|{01234567389101112131415
0|8000000000O0OO0OO0ODO0OO0OO
1{00000-40-400000-40 4
210022-2-2002-2040 4-22
3100222-2-40-22-49020 0-2-2
4100-22-2-204-2-20-400-22
5100-22-220022-49040 2 2
6 1 000-400-400-400 4000
71000440000-4000040
§1002-200-22-2200-22 4 4
9104-2-2002-2-2-2-40-22 00
10/0040222-2000-42 2-22
11/0-400-2-22-2-400 0 2 2 2 -2
12/0000-2-2-2-2400-4-22 2 -2
13/0440-2-2220000 2-22 -2
14002 2-44-2-2-2-200-2-200
15/04-2200-2-2-224 02 2 00

Table 7. ElimLin result for 5-round PRESENT-80 when 36 bits of key are fixed.

Variables|# Equations (Ave/ # Linear

Monomials) |Equations
10340 46980 7/ T= 46321 6180
4160 46980 8/ T= 48744 1623
2537 46980 9/ T= 40763 1069
1468 46980 14/ T= 43155 405
1063 46980 76/ T= 73969 165
898 46980 158/ T= 145404| 201
697 46980 77/ T= 85470 584
113 46980 0/ T= 413 113

18

