Three functions have been suggested to be localized in contact sites between the inner and the outer membrane of mitochondria from mammalian cells: (i) transfer of energy from matrix to cytosol through the action of peripheral kinases; (ii) import of mitochondrial precursor proteins; and (iii) transfer of lipids between outer and inner membrane. In the contact site-related energy transfer a number of kinases localized in the periphery of the mitochondrion play a crucial role. Two examples of such kinases are relevant here: (i) hexokinase isoenzyme I which is capable of binding to the outer aspect of the outer membrane; and (ii) the mitochondrial isoenzyme of creatine kinase which is localized in the intermembrane space. Recently, evidence was presented that both hexokinase and creatine kinase are preferentially localized in contact sites (Adams, V. et al. (1989) Biochim. Biophys. Acta 981, 213-225). The aim of the present experiments was two-fold. First, to establish methods which enable the bioenergetic aspects of energy transfer mediated by kinases in contact sites to be measured. In these experiments emphasis was on hexokinase, while 31P-NMR was the major experimental technique. Second, we wanted to develop methods which can give insight into factors playing a role in the formation of contact sites involved in energy transfer. In the latter approach, mitochondrial creatine kinase was studied using monolayer techniques.