
Policy Adaptation through Tactile Correction
Brenna D. Argall and Eric L. Sauser and Aude G. Billard 1

Abstract. Demonstration learning is a powerful and practical tech-
nique to develop robot behaviors. Even so, development remains a
challenge and possible demonstration limitations, for example corre-
spondence issues between the robot and demonstrator, can degrade
policy performance. This work presents an approach for policy im-
provement through a tactile interface located on the body of the
robot. We introduce the Tactile Policy Correction (TPC) algorithm,
that employs tactile feedback for the refinement of a demonstrated
policy, as well as its reuse for the development of other policies.

1 Introduction
Motion control is fundamental to many robotics applications, yet the
development of motion behaviors remains a challenge. The develop-
ment of control policies, that map world state to robot actions, typ-
ically requires a significant measure of effort and expertise. More-
over, many of the challenges associated with policy development
only grow with domain and robot complexity, for example high de-
gree of freedom humanoids. To refine a policy based on execution
experience however can reduce the requirements placed on a devel-
oper, by increasing policy robustness. Some development effort also
might be mitigated if a new policy is built by bootstrapping from
an existing policy. The approach to policy development taken in this
work is founded on both ideas, of policy refinement and reuse.

Under our approach a policy initially develops within a Learning
from Demonstration (LfD) paradigm. Under LfD, teacher executions
of a desired behavior are recorded and a policy is derived from the
resultant dataset. LfD has seen success on a variety of robotics ap-
plications, and has the attractive characteristic of being an intuitive
means for human teacher to robot learner knowledge transfer, as well
as being an accessible policy development technique for those who
are not robotics-experts. For a full review of LfD design decisions,
we refer the reader to [2] and [5].

Even with the advantages secured through demonstration, policy
development typically is still a non-trivial task. Our algorithm incor-
porates human feedback in order to further reduce the strain placed
on the policy developer. Feedback is used for policy updating in two
capacities (Sec. 1.1), and is provided through a tactile interface n the
robot body (Sec. 1.2).

1.1 Policy Refinement and Reuse
To have a robot learn from its execution performance, or experience,
is a valuable policy improvement tool for any development tech-
nique. Within the context of LfD specifically, execution experience
can be used to overcome limitations in the demonstration dataset.
One typical limitation is dataset sparsity, since demonstration from

1 École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland,
email: [brennadee.argall, eric.sauser, aude.billard]@epfl.ch

every world state is infeasible in all but the simplest domains. Other
limitations include the issue of correspondence between the teacher
and learner, and deficiencies in the performance of the teacher, who
may in fact provide suboptimal or ambiguous demonstrations. Over-
coming potential dataset limitations is key to good policy perfor-
mance, since a LfD policy depends heavily on the quality of the
demonstration data from which it is derived.

A variety of routes may be taken to incorporate information gath-
ered from experience into a LfD algorithm, and thus refine the resul-
tant policy. For example, execution experience is used to update state
transition models [1] and state values [12]. Other approaches pro-
vide more demonstration data, driven by learner requests for more
data [7, 8] or more teacher-initiated demonstrations [6].

Given the challenge of developing robust control policies, the abil-
ity to reuse existing policies, designed to address related tasks, is a
practical feature for any policy learning system. Policy reuse under
LfD occurs most frequently in the form of behavior primitives, or
simpler policies that contribute to the execution of a more complex
policy. Examples include hand-coded primitives used within [11] or
automatically extracted from [4] demonstrated tasks, and primitives
learned from demonstration [3]. In this work we consider the ap-
proach of policy bootstrapping; that is, of building a new policy from
an existing policy able to accomplish a different task. Moreover, sim-
ilar characteristics between the tasks are automatically extracted for
reuse by our approach.

1.2 Tactile Corrections

The algorithm presented in this paper uses corrective feedback from a
human teacher to refine and reuse policies. A fundamental considera-
tion for such an approach is the mechanism used to provide feedback
to the learner; for example, feedback might be provided verbally to
indicate successful task completion [9]. The feedback form we ex-
plore is this work is that of tactile corrections.

We posit that tactile feedback furthers one of the strengths of
demonstration-based learning. Namely, humans use touch to instruct
other humans in certain contexts, for example when demonstrating
a pose or motion that requires a particular position or trajectory in
3-D space, like a ballet posture or tennis swing. Moreover, one of the
attractive features of demonstration-based policy development is ac-
cessibility to those who are not robotics experts. Policy development
by non-experts strongly suggests robot operation around humans, in
which case t The detection of tactile interactions can be crucial for
safe robot operation. These tactile detections may be exploited to
further knowledge transfer from human to robot.

A handful of works within the field of Human-Robot Interactions
(HRI) utilize human touch for the development of robot behaviors.
Tactile feedback is detected in order to minimize the support forces
provided by a teacher during humanoid behavior learning [10], and



behavior selection is adapted by using tactile reward signals [13].
Under our framework, tactile feedback provides a correction on the
policy execution. We consider correcting poor policy predictions to
be a particularly direct approach to addressing potential LfD limita-
tions, since it provides not only a performance evaluation, but also
an indication of a more suitable alternate prediction.

Policy correction has seen limited attention within LfD. Most ap-
proaches have a human teacher indicate the correct prediction from
a discrete set of actions with significant time duration [7, 11], though
some work provides corrections within continuous state-action do-
mains sampled at a rapid rate [3]. Our work targets similarly oper-
ates within rapidly sampled continuous state-action spaces, targeting
low-level motion control domains.

2 The Tactile Policy Correction Algorithm
We introduce Tactile Policy Correction (TPC) as an algorithm for
the refinement and reuse of motion policies, accomplished via tactile
feedback from a human teacher.

Under TPC, a policy is initially derived from demonstrations of
a task by a teacher. We formally define the world to consist of ac-
tions A ∈ R` and observations Z ∈ R(m+n) of world state. An
observation z ∈ Z consists of two components, z = (zϕ, z¬ϕ),
where zϕ ∈ Rm describes the robot pose, and z¬ϕ ∈ Rn describes
any other observables that are of interest to the policy.2 We define
a demonstration to consist of a sequence of observations {zj}Tj=1,
recorded during teacher execution of the task. The collected set
D = {zj}Nj=1 of demonstrations, totaling N recorded observa-
tions, is then provided to the robot learner. From this set a policy
π : Z → A is derived, that enables the selection of an appropriate
action given the observed state.

Following demonstration and policy derivation, the robot exe-
cutes with its policy and receives tactile corrections from the human
teacher. Tactile corrections are used within two capacities, either to
refine the existing policy or to build a new policy bootstrapped on
the demonstrated policy. Pseudo-code for this approach is provided
in Algorithm 1.

Algorithm 1 Tactile Policy Correction
1: Given D
2: initialize w ← 0, Dc ← {}
3: derive π ← policyDerivation(D,Dc, w)
4: while correcting do
5: initialize ϕ̃0 ← 0, z0 ←

`
z0

ϕ = ϕ0, z0
¬ϕ

´
6: for t = 1 to T do
7: Policy π execution:
8: predict ϕ̂t ← regression

`
zt−1

´
9: adjust ϕ̂t ← ϕ̂t + ϕ̃

10: execute ϕt ← controller
`
ϕ̂t

´
11: if detect touch ϑt then
12: map δt ← M

`
ϑt

´
13: correct ϕt ← controller

`
ϕt + δt

´
14: record ϕ̃t ← ϕ̃t−1 + δt

15: end if
16: update zt ←

`
zt

ϕ = ϕt, zt
¬ϕ

´
17: record Dc ← Dc ∪ zt

18: end for
19: update w
20: rederive π ← policyDerivation(D,Dc, w)
21: end while
22: return π

2 Pose information is necessary for the TPC algorithm, and so zϕ 6= ∅.
The presence of additional observation information however is application-
dependent, and possibly absent such that z¬ϕ = ∅.

2.1 Algorithm Execution

The first phase of the TPC algorithm consists of task demonstration
by the teacher, producing datasetD from which the learner derives an
initial policy π. The second phase of the algorithm involves learner
execution with the policy π, and corrective tactile feedback. If during
this phase the policy is used to accomplish the demonstrated task,
then refinement of the demonstration policy is the result. If instead
the policy is used to accomplish a different, undemonstrated, task,
then a new policy is the result and policy reuse has been accom-
plished. In either case, this second phase of the algorithm consists of
learner execution with the policy π, followed by teacher correction
and a policy update to incorporate the correction. This execution-
correction-update cycle continues to the satisfaction of the teacher.

A single execution-correction-update cycle is presented in lines 5-
20 of Algorithm 1. Policy execution (lines 7-10) at timestep t consists
of two phases: prediction of a target pose ϕ̂t, and the selection of an
action at ∈ A to accomplish that pose. Pose prediction is accom-
plished via regression techniques, based on state observation zt−1

(lines 8). Action selection is accomplished via a robot-specific con-
troller, and its execution results in a new robot pose ϕt (line 10).

The human teacher may choose to offer a tactile correction at any
timestep of an execution. If detected, the robot learner translates the
tactile feedback ϑt into an incremental shift δt ∈ Rm in the robot
pose, according to the defined mapping M (line 12). The form taken
by the feedbackϑt is platform-specific, depending both on the tactile
sensors employed to detect human touch and how the sensor feed-
back is processed.

The robot controller is then passed the new adjusted pose, for
which the incremental shift δt is added to the current robot pose ϕt

(line 13). The influence of this incremental shift is maintained over
multiple timesteps, through an offset parameter ϕ̃t ∈ Rm that main-
tains a sum of all adjustments seen during the execution (line 14) and
is added to the pose prediction at each execution timestep (line 9).

The timestep concludes with the recording of observation zt, into
the set of corrected execution points Dc (line 17). The tactile correc-
tion thus also is recorded, since the current pose ϕt has been cor-
rected by tactile feedback and this corrected pose is recorded into
observation zt through component zt

ϕ.
Upon completion of the entire execution, policy π is rederived

from demonstration set D and the set of corrected executions Dc

(lines 20); the corrected execution thus is treated as a new demon-
stration for the policy. Policy derivation furthermore gives greater
importance to the corrected data, through weight w (Sec. 2.2.2).

Important to note is that the TPC algorithm is agnostic to the tech-
niques used for pose prediction (regression) and action selection
(controller) during policy execution, as well as to the technique
that translates tactile feedback into a pose adjustment (mapping M ).
The following section describes the formulation for the mapping M
in our initial implementation of the TPC algorithm.

2.2 Tactile Corrections

The tactile interface of our empirical implementation consists of Er-
gonomic Touchpads3 located on the manipulator arm. The pads de-
tect contact presence and relative motion, which we map to a change
in end-effector position and orientation (Sec. 2.2.1). The movement
that results then is recorded into the demonstration dataset and incor-
porated into a policy update (Sec. 2.2.2).

3 http://www.ergonomictouchpad.com/



2.2.1 Online Modification of Policy Execution

Four touchpads, T0 · · ·T3, encircle the lower forearm of the robot
arm (near the wrist), and one, T4, is located on the back of the robot
hand (Fig. 1a). In practice, we decompose the mapping M : ϑ → δ
into two distinct parts which operate separately on the wrist (end-
effector) and hand of the robot arm (Fig. 1b), which proved an intu-
itive mapping in practice for the human user providing corrections.

Figure 1. a) Setup of the touchpads on the wrist and hand of the robot. b)
Schematic of the pads controlling the wrist. c,d) A sliding movement on

opposite pads results in either rotational or translational arm motion.

The first part operates on the first 5 DoF leading to the wrist of our
7-DoF manipulator. The pads T{0..3} can be seen as an interface for
controlling the manipulator within the 6-DoF Cartesian space (posi-
tion and orientation). As shown in Figure 1 (c,d), sliding the fingers
along two opposite touchpads can lead to either a translational or ro-
tational motion command, depending on the directional congruency
between the motion of the fingers. When motion is detected on the
touchpads, the commands are resolved by an inverse kinematic con-
troller which moves the joints of the robot accordingly.

The second part of the mapping relates to the final 2 DoF con-
trolling the robot hand. Since the last pad has 2 DoF as well, the
mapping of motion commands is one to one. Finally, the target pose
adjustement δt is computed by taking the pose ϕt of the robot end-
effector after correction and by substracting the pose ϕ̂t predicted by
the model to it.

Tactile feedback from the touchpads is somewhat limited in com-
parison to more sophisticated tactile sensors, for example that pro-
vide force information or a finer spatial resolution. As a result, in
practice corrective repositioning is not always as responsive as the
teacher requires. Therefore, our implementation pauses policy execu-
tion while a target adjustment is being offered to the learner, such that
lines 12-13 of the algorithm psuedo-code loop until corrective posi-
tioning is complete. Note however that this limitation results from a
deficiency in our hardware, rather than in the algorithm. We plan to
validate TCP on a more sophisticated tactile sensor in future work.

2.2.2 Incorporation into a Policy Update

Upon completion of an execution corrected with tactile feedback,
new data is incorporated into the policy. Policy execution in the TCP
algorithm consists of a pose prediction via regression techniques, fol-
lowed by action selection by a controller. Under our implementation
the controller is statically defined, and so policy derivation (Alg. 1,
policyDerivation) consists of regression parameter estimation

only. Policy derivation gives greater importance to the corrected data,
through a weight wj

wj =

8<:
“

1− N
N+Nc

”
(1− w̄(τ) zj ∈ D“

1− Nc
N+Nc

”
w̄(τ) zj ∈ Dc

for point zj ∈ D ∪ Dc, where N is the number of datapoints in
D, and Nc the number in Dc, and w̄(τ) is a global weight function,
that in our implementation depends on execution time τ which is
encoded in zj

¬ϕ. Note that to preferentially weight the new data ef-
fectively amounts to forgetting the behavior of the original policy. It
therefore is not expected that the behavior of a policy reused within
the TCP algorithm will continue to be expressed after tactile guid-
ance to produce an alternate behavior.

3 Discussion and Conclusion
We have introduced Tactile Policy Correction (TCP) as an algorithm
for the refinement and reuse of policies through tactile feedback from
a human teacher. With tactile corrections, we aim to mitigate some
potential limitations in demonstration-based learning. A first valida-
tion of TCP, on a small 57-DoF humanoid learning to position the
end-effector of its 7-DoF arm for the grasping of different objects at
various locations, has shown promising results that will be published
in later work.

ACKNOWLEDGEMENTS
This research was funded by EU Projects IST-2004-004370
(RobotCub), IST-04169 (feelix-growing) and FET-7 grant number
231500 (RobotSkin).

REFERENCES
[1] Pieter Abbeel and Andrew Y. Ng, ‘Exploration and apprenticeship

learning in reinforcement learning’, in Proceedings of ICML, (2005).
[2] Brenna Argall, Sonia Chernova, Brett Browning, and Manuela Veloso,

‘A survey of robot learning from demonstration’, Robotics and Au-
tonomous Systems, 57(5), 469–483, (2009).

[3] Brenna D. Argall, Learning Mobile Robot Motion Control from Demon-
stration and Corrective Feedback, Ph.D. dissertation, Robotics Insti-
tute, Carnegie Mellon University, Pittsburgh, PA, March 2009.

[4] Darrin C. Bentivegna, Learning from Observation Using Primitives,
Ph.D. dissertation, College of Computing, Georgia Institute of Tech-
nology, Atlanta, GA, July 2004.

[5] Aude Billard, Sylvain Callinon, Rudiger Dillmann, and Stefan Schaal,
‘Robot programming by demonstration’, in Handbook of Robotics,
eds., B. Siciliano and O. Khatib, Springer, New York, NY, USA, (2008).

[6] Sylvain Calinon and Aude Billard, ‘Incremental learning of gestures by
imitation in a humanoid robot’, in Proceedings of HRI, (2007).

[7] Sonia Chernova and Manuela Veloso, ‘Learning equivalent action
choices from demonstration’, in Proceedings of IROS, (2008).

[8] Daniel H. Grollman and Odest Chadwicke Jenkins, ‘Dogged learning
for robots’, in Proceedings of ICRA, (2007).

[9] Andrea Lockerd and Cynthia Breazeal, ‘Tutelage and sociallyl guided
robot learning’, in Proceedings of IROS, (2004).

[10] Takashi Minato, Yuichiro Yoshikawa, Tomoyuki Noda, Shuhei Ike-
moto, Hiroshi Ishiguro, and Minoru Asada, ‘CB2: A child robot with
biomimetic body for cognitive developmental robotics’, in Proceedings
of IROS, (2007).

[11] Monica N. Nicolescu and Maja J. Mataric, ‘Methods for robot task
learning: Demonstrations, generalization and practice’, in Proceedings
of AAMAS, (2003).

[12] Martin Stolle and Christopher G. Atkeson, ‘Knowledge transfer using
local features’, in Proceedings of ADPRL, (2007).

[13] Kazuyoshi Wada and Takanori Shibata, ‘Social effects of robot ther-
apy in a care house - change of social network of the residents for two
months -’, in Proceedings of ICRA, (2007).


