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Abstract

Time series modeling and analysis is central to most financial and econometric data
modeling. With increased globalization in trade, commerce and finance, national
variables like gross domestic productivity (GDP) and unemployment rate, market
variables like indices and stock prices and global variables like commodity prices are
more tightly coupled than ever before. This translates to the use of multivariate or
vector time series models and algorithms in analyzing and understanding the rela-
tionships that these variables share with each other.

Autocorrelation is one of the fundamental aspects of time series modeling. However,
traditional linear models, that arise from a strong observed autocorrelation in many
financial and econometric time series data, are at times unable to capture the rather
nonlinear relationship that characterizes many time series data. This necessitates
the study of nonlinear models in analyzing such time series. The class of bilinear
models is one of the simplest nonlinear models. These models are able to capture
temporary erratic fluctuations that are common in many financial returns series and
thus, are of tremendous interest in financial time series analysis.

Another aspect of time series analysis is homoscedasticity versus heteroscedasticity.
Many time series data, even after differencing, exhibit heteroscedasticity. Thus, it
becomes important to incorporate this feature in the associated models. The class
of conditional heteroscedastic autoregressive (ARCH) models and its variants form
the primary backbone of conditional heteroscedastic time series models.
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Robustness is a highly underrated feature of most time series applications and mod-
els that are presently in use in the industry. With an ever increasing amount of
information available for modeling, it is not uncommon for the data to have some
abberations within itself in terms of level shifts and the occasional large fluctuations.
Conventional methods like the maximum likelihood and least squares are well known
to be highly sensitive to such contaminations. Hence, it becomes important to use
robust methods, especially in this age with high amounts of computing power readily
available, to take into account such abberations.

While robustness and time series modeling have been vastly researched individually
in the past, application of robust methods to estimate time series models is still quite
open. The central goal of this thesis is the study of robust parameter estimation of
some simple vector and nonlinear time series models.

More precisely, we will briefly study some prominent linear and nonlinear models in
the time series literature and apply the robust S-estimator in estimating parameters
of some simple models like the vector autoregressive (VAR) model, the (0, 0, 1, 1)
bilinear model and a simple conditional heteroscedastic bilinear model. In each case,
we will look at the important aspect of stationarity of the model and analyze the
asymptotic behavior of the S-estimator.

Keywords : Vector models, multivariate time series, robust estimation, outlier prop-
agation, stationarity, vector autoregression, bilinear series, conditional heteroscedas-
ticity, S-estimator, Fast-S.



Résumé

La modélisation et I'analyse de séries temporelles est un sujet fondamental des
mathématiques financieres et de la modélisation de données économiques. Avec
la mondialisation accrue des échanges, du commerce et de la finance, les variables
nationales telles que le produit intérieur brut (PIB), le taux de chomage, des vari-
ables telles que les indices et les cours boursiers ainsi que des variables globales telles
que les prix des produits de base sont de plus en plus étroitement liées. Cela se
traduit par l'utilisation de plusieurs variables ou des modeles de séries temporelles
vectorielles dans I'analyse et la modélisation.

L’autocorrélation est un des aspects fondamentaux de la modélisation des séries tem-
porelles. Toutefois, les modeles traditionnels linéaires, qui sont inspirés de la forte
autocorrélation des données financieres et économétriques, ne sont parfois pas en
mesure de saisir la relation, plutot nonlinéaire qui caractérise de nombreuses séries
temporelles. La classe de modeles bilinéaires est 'un des modeles non linéaire le plus
simple. Ces modeles sont capables de capturer des fluctuations erratiques qui sont
courantes dans de nombreuses séries de rendements financiers et, pourtant, sont d’un
grand intéréet dans ’analyse financiere.

Un autre aspect de l'analyse des séries temporelles est le contraste entre la varia-
tion constante (homoscédasticité) et la variation elle-méme variable dans le temps
(hétéroscédasticité). Beaucoup de séries temporelles, méme apres la dérivation, mon-
trent de telles sous-structures de la variabilité. Ainsi, il devient important d’intégrer
cette fonctionnalité dans les modeles associés. La classe d’hétéroscédasticité condi-
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tionnelle autorégressive (Les modeles ARCH) et ses variantes constituent 1’ossature
primaire de tels modeles.

La robustesse est une caractéristique sous-estimée dans la plupart des applications
des séries temporelles et de modeles qui sont actuellement en usage dans I'industrie.
Avec le volume croissant d’informations disponibles pour la modélisation, il n’est
pas rare pour les données de contenir des aberrations en termes de changements de
niveau et les fluctuations occasionnelles large. Les méthodes conventionnelles comme
le maximum de vraisemblance et des moindres carrés sont bien connues pour étre
tres sensibles a de telles contaminations. Il devient donc important d’utiliser des
méthodes robustes, qui limitent I'influence de telles données.

Alors que la robustesse et la modélisation des séries temporelles ont été largement
étudiées individuellement dans le passé, 'application de méthodes robustes pour es-
timer les séries temporelles est encore ouvert. L’objectif central de cette these est
I’étude de 'estimation des parametres robustes de certains vecteurs simples et non
linéaire des modeles de séries temporelles.

Plus précisément, nous allons brievement étudier quelques-uns des modeles linéaires
et non linéaires de premier plan dans la littérature des séries temporelles et d’appliquer
le S-estimateur robuste l'estimation des parametres de certains modeles simples
comme le vecteur autorégressif (VAR) modele, le modele (0, 0, 1, 1) bilinéaire et
un modele bilinéaire simple hétéroscédastiques conditionnel. Dans chaque cas, nous
étudions ’aspect important de la stationnarité du modele et analysons le comporte-
ment asymptotique du S-estimateur.

Mots-clés : Modeles vectoriels, séries multivaries, estimation robuste, outlier prop-
agation, stationnarité, autorégression vectorielle, séries bilinéaire, hétéroscédasticité
conditionnelle, S-estimateur, Fast-S.
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CHAPTER 1

Introduction

1.1 Time series - Motivation and definition

Time series analysis is central to many financial and econometric applications. Sim-
ply put, a time series refers to any indexed dataset {x; : t = 1,..,T} where x; is
a d-dimensional vector that represents the value of some variable at time ¢. Daily
closing prices of the IBM stock in the year 2008 is an example of a time series. The
annual gross domestic output (GDP) of Switzerland for the years between 1960 and
2008 is another example of a time series. When d = 1, the series is termed univariate
while in the case of d > 1, it is termed multivariate. Figure 1.1 shows the daily
log returns (based on the daily closing price) of the IBM stock listed on the New
York stock exchange (NYSE). For further discussion, we will restrict ourselves to the
univariate case.

Statistical analysis of time series generally involves studying the evolution of data
over time. The aim of such a study could be to forecast future movements, dis-
cover any underlying driving factors or variables, or simply better understand the
dynamics of the series in terms of its variance and other characteristics. Considering
the examples cited before, one could be interested in forecasting the annual gross
domestic product (GDP) of Switzerland for 2009 or perhaps understanding how the
IBM and NASDAQ composite daily closing affect each other’s present and future
movements. One could also be interested in quantifying the volatility of the daily
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Figure 1.1: The daily log returns of the IBM stock on the NYSE. The return of a

stock is defined as r; = H;t—ljtl‘l where P, is the closing price on day t.
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closing price of IBM shares and use that in pricing some derivative.

1.2 Modeling

Studying a time series typically involves assuming a dependence of future values on
past values by way of some stochastic functions. In the finance parlance, this is
known as technical analysis. Consider a stochastic process {X;}icz. Let {x;}1ez be
a realization of this process. Then, a simple mathematical model for this stochastic
process is :

X = ft(Xt—laXt—Qa ) + gt(Xt—la Xi9, ---)Et (1-1)

where

1. {¢& : t = 1,...,T} are independent and identically distributed (i.i.d) random
variables having some distribution F, with zero mean and unit variance,

2. f; and g; are measurable functions that govern the conditional mean and vari-
ance respectively, of x;. That is, the conditional mean and standard deviation
of X; given (Xy_1, X; o, ...) are fi(x;_1,24o...,) and g;(z4_1, 745 ..., ) respec-
tively.

€; 1s the new information at time ¢ and is often referred to as the innovation or shock
at time t. The series {¢;} itself is referred to as a white noise series. In simple models,
f: and g; are linear combinations of past shocks. However, as will be seen later in
the chapter on nonlinear time series modeling, they could also contain nonlinear
combinations of past shocks. Stochastic processes are not usually written in this
form. If one attempts to do it, regularity conditions are required to assure existence
of a corresponding stochastic process.

1.3 Homoscedasticity and heteroscedasticity

The model given in Equation (1.1), in its present form, is of little use since it is too
general. Hence, most time series models assume f; and g; to be independent of ¢ as
in f; = f and ¢g; = g. This is the first level of tractability since we now have two
rather than 2(7" — 1) functions to deal with.

Further tractability is achieved by assuming some forms for f and g. In the most
trivial case, we can assume f(.) = ¢, a constant, and ¢(.) = ¢,, another constant.
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In this case, we have a sequence of i.i.d random variable realizations and we can use
the empirical data characteristics to summarize the time series. In particular, when
¢y = 0 and ¢, = o, the series {z;} is called a white noise series with variance o2
If g is not constant, then the time series is termed conditional heteroscedastic. In
other words, when the conditional variance of x; is not time-invariant, the series is
called conditional heteroscedastic. Sometimes, this definition is simply referred to
as heteroscedasticity. In general, heteroscedasticity refers to the time varying nature
of the marginal variance of z;. In contrast, when g = ¢4, a constant, the series
is termed homoscedastic. In this thesis, we will use the terms heteroscedasticity
as well as conditional heteroscedasticity to refer to the time variant nature of the
conditional variance of a series. Figure 1.2 illustrates the heteroscedastic nature of

the daily NASDAQ index returns.

1.4 Multivariate analysis

In many econometric applications, it is not unusual to study many time series to-
gether. This is where considering x; as a vector comes in handy and thus multivariate
time series analysis comes into play. Examples for multivariate time series in econo-
metrics include population growth, GDP and unemployment rate since these are
highly interrelated. In financial applications, one might be interested in studying
many indices like the SMI, NASDAQ and BSE, together. Figure 1.3 shows the si-
multaneous evolutions of the daily log returns of IBM and NASDAQ. Even though
the overall trends of the two series do not show any relationship, they seem to tend to
move together locally. This suggests that the two series may have some dependence.
This is valuable information that can be utilized in studying the series by consider-
ing them jointly as opposed to in isolation. Hence vector time series modeling is an
important tool in financial applications.

1.5 Robustness

We saw that in time series modeling, we assume some kind of dependence structure
in the data. The next natural step is to try and find this structure. This is where
some of the major hurdles arise. The main reasons for this can be listed as follows :

1. The dependence structure we assume may not be the right one in the first
place. For example, we may assume a linear dependence, i.e., autoregression,
while the actual dependence may be quadratic.
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Figure 1.2: The daily NASDAQ log returns.
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Figure 1.3: The daily log returns for IBM and NASDAQ.
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2. The assumption of the nature of F,, which is also important in modeling the
series, may not be accurate.

3. There may be aberrant data in the series that may not behave according to
the model that is adequate for the majority of the data. Such data are called
outliers in the statistics parlance.

The first problem mentioned can be tackled to a large extent by running simple tests
to see if the data fits into the proposed structure. For example, to check for linear
dependence, one can look at empirical correlations and significance tests to see their
strengths. One can fit the data to the model by estimating the parameters and then
test the residuals to see how they behave.

The second problem mentioned can be tackled to some extent by plotting the resid-
ual series (the series of the residuals) and analyzing its behavior.

The third problem is where the actual method employed to find the dependence struc-
ture, comes into play. This is because depending on the sensitivity of the method to
outliers, one could get misled to a completely different structure. This can be seen in
Figure 1.4 where the method of least squares, which is known to be highly sensitive to
even a single outlier, estimates the single parameter (the slope of the line, in red) of
a linear regression problem, with a large error. The correct parameter is represented
by the blue line. This is where robustness comes into the picture. The way to tackle
the problem with outliers is to have the methods robust enough so as to withstand
some amount of contamination in the data. Ideally, one would like to have methods
that withstand up to 50% contamination since any further contamination renders
the data without the structure that we are interested in finding in the first place.

The theory of robust statistics is as old as that of statistics itself. However, robust
methods have not been very popular in actual applications until very recently. This is
because the insensitivity of these methods to outliers comes at the cost of efficiency.
Robust methods typically involve complex calculations that are difficult and time
consuming. Also, there are no closed form expressions for most robust estimators
and in almost all cases, one depends on some heuristics to compute the estimator.
However again, with recent advents in computing technologies, complex computa-
tions is no longer an issue and hence robust statistics is gaining more importance now.

While time series analysis and robust statistics have both been studied extensively,
applications of robust methods in time series analysis still has some open areas. In
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particular, application of robust methods in multivariate time series models’ estima-
tion has been somewhat limited. The work by Li and Hui (1989) [33] looks at robust
multivariate linear time series modeling. In particular, they study the application
of the residual autocovariance (RA) method to the problem of parameter estimation
in vector autoregressive (VAR) models. Ben et al. (1998) [5] further refined this
method to make it affine equivariant (independent of the choice of co-ordinate axes
of the data). Further, Ben et al. (2001) [6] proposed the 7-estimator for a VAR
model which is also affine equivariant. More recently, Croux and Joossens (2008)
[18] applied a multivariate least trimmed squares (MLTS) method to estimate pa-
rameters of VAR models. The central aim of this thesis is to study the VAR model
and examine the application of a special T-estimator, the S-estimator, in estimating
parameters of this model. The reason for choosing the S-estimator is its good robust-
ness and computational properties. It has a breakdown point of 50%, an asymptotic
convergence rate of O(y/n) and its objective function can be computed in O(n) time.
In addition, the Fast-S method of Yohai and Salibian-Barrera (2006) [76] is an iter-
ative algorithm for computing an approximation of the S-estimator in a reasonable
time. This algorithm will be adapted to the multivariate regression scenario as is the
case in VAR models.

1.6 Nonlinear modeling and conditional
heteroscedasticity

The form of the conditional mean equation, f(.), of a time series has been studied
primarily within the linear framework. However, there is a need for inclusion of
nonlinear terms that is driven by observed nonlinearity in many financial time series
data. By considering stochastic parameters in a traditional linear model, one can
think of modeling conditional heteroscedastic time series data in a simple yet more
effective manner than simple linear modeling. Such a consideration leads one to the
well known bilinear model. The bilinear model of Granger and Andersen (1978) [24]
is one of the few nonlinear models that considers a quadratic form for f. Another
aim of this thesis is to study the bilinear model. In particular, application of the S-
estimator in parameter estimation will be examined for the univariate bilinear model.
In addition, we will briefly examine the vector bilinear model specification.

Conditional heteroscedasticity in time series is a widely observed phenomenon and
the literature in this area is vast. The autoregressive conditional heteroscedastic
(ARCH) and generalized ARCH (GARCH) are some of the famous models that are
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central to conditional heteroscedastic time series modeling. The main idea of these
models is to fit an autoregressive model to the squared residual series. However,
estimating parameters of these models jointly with those of the conditional mean
equation is not straightforward. The final aim of this thesis is to study a particular
kind of conditional heteroscedastic model that considers a simple linear conditional
mean equation and is easy to deal with in estimating and interpreting the param-
eters. In particular, the stationarity conditions and robust parameter estimation
using the S-estimator will be considered.

The analysis of common robust estimators in nonlinear regression problems has been
studied to a large extent. Stromberg and Ruppert(1992) [64] have analyzed the
breakdown points of the least squares and least median of squares estimators in
some nonlinear regression problems. Sakata and White (2001) [63] further studied
the properties of the S-estimator in the nonlinear regression context and found it to
be resistent and consistent. Hence our persistence with the S-estimator for the robust
estimation of parameters of the bilinear and conditional heteroscedastic models as
well.

1.7 Outline

To summarize, there are three aims of this thesis which are as follows :

1. To study the VAR model and apply the S-estimator in robustly estimating its
parameters.

2. To study the class of univariate bilinear models and apply the S-estimator in
robustly estimating the parameters of a simple model in this class.

3. To study conditional heteroscedasticity in time series by analyzing a conditional
heteroscedastic bilinear model that integrates linear conditional mean functions
and a simple ARCH type conditional variance function.

Chapter 2 gives a short introduction to time series analysis that includes multivariate
time series as well. In particular, it talks about, among other topics, concepts of
stationarity and autocorrelation that are central to time series analysis. It also
briefly describes the need for robust models in time series analysis and in particular,
discusses the M-estimator. In Chapter 3 we will see how to compute an S-estimator
for a VAR model using the Fast-S method of Yohai and Salibian-Barrera (2006)
[76]. Chapter 4 talks about bilinear models in time series applications. In chapter
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5, we will look at a conditional heteroscedastic diagonal bilinear model to handle
conditional heteroscedasticity in time series. Finally, we will summarize the analysis
in the concluding chapter.
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Introduction




CHAPTER 2

A short introduction to robust linear time series analysis

2.1 Introduction

The data used in the examples of this thesis are mainly financial. It is therefore good
to briefly look at some of the basic terminology and methods used when dealing with
financial data.

Financial data mostly refers to indices, prices and returns (of assets as well as com-
modities) and also macroeconomic variables like GDP and interest rates. Most appli-
cations in this domain deal with returns rather than actual prices. Amongst the rea-
sons for this are two important ones. Firstly, returns are dimensionless and therefore
easily comparable across industries and sectors. Secondly, returns exhibit interesting
statistical properties like stationarity (which will be discussed later) that prices do
not. A further refinement involves dealing with log returns rather than returns itself
since properties of log returns are more tractable. For example, the variance of log
returns is smaller than that of returns. Also, a multi-period log return is simply the
sum of simple one-period log returns whereas in the case of returns, it is the product.

Mathematically, consider the price series {p; : t = 1,...,T}, where ¢ denotes the
time index. A time index refers to a particular time in a series of equally spaced
times. A series may be hourly, weekly, monthly, yearly, etc.. For example, we could
have T" = 52 where each index represents the week in the year 2008. Then, the
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one-period simple return, ¢, is given by

_ Pt — Pt—1 Dt

a4t = - L
Pi—1 Pi—1
The simple one-period log return, x;, is given by
p
vy = log(1+ ¢;) = log (——).
Pi—1

Note that when p; = 0 for some ¢, then all the following prices, {ps : s > t}, are
also all equal to zero, which is a property of typical financial data like prices. Such
a scenario would occur when a company goes bankrupt, for example.

Log returns are typically intra-correlated. That is, there is a correlation between x;
and x;_;. This can be seen in typical bull and bear runs in a stock market. This is
termed as autocorrelation which is described is the next section. Then, one can also
observe trends and seasonal variation in many return series. For example, a typical
index like NASDAQ tends to have a long term positive trend. Commodity prices
always have a long term positive trend due to inflation. Sales data typically exhibit
seasonal trends. Sales generally go up just around festival times which is followed by
a period of lull.

Time series analysis thus involves studying various characteristics of data like trends,
seasonality and autocorrelation. When empirical evidence suggests a trend or sea-
sonal component, it is usually removed before analyzing the data further for the
presence of autocorrelation.

In this chapter, we will briefly examine the fundamentals of time series modeling and
look at some simple linear models. In addition, we will also look at robust analysis
of time series problems. In the following sections, we will look at some of these
concepts, namely, autocorrelation, stationarity and causality.

2.2 Autocorrelation

Time series models are generally concerned with the conditional mean function, f,
and the conditional variance function, g. Since f = ¢y, a constant, is mathematically
too simple and empirically very rare if not impossible, we look at the next most simple
function - the linear function :
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t—1

X, Xiay ) = 4 ¢iXess (2.1)
i=1

where p and ¢; are constants. This form of f appeals to the statistician because it

captures dependence in a time series in the most simple way - linear dependence.

There is ample empirical evidence of linear dependence within many time series data

and hence to study f in this form seems like a good idea. Restricting f to the linear

family is referred to as linear time series analysis.

Linear dependence is synonymous with correlation. When correlations exist in a time
series, it is termed as autocorrelation or serial correlation. For a given time series
{zy :t =1,..,T}, corr(xy, x5) = pis is the correlation between z; and xs. When x;
is a vector, corr(xy;, xs;) is termed as cross-correlation, while corr(xy;, z;) is termed
as concurrent-correlation.

2.3 Stationarity, causality and invertibility

The concept of stationarity is central to time series analysis. A time series {x;} is said
to be strictly stationary if the joint distribution of (zy,,...,x, ) is identical to that
of (@4, 4s,...,%t +s) for all s where k is an arbitrary positive integer and (¢y,. .., %)
is a collection of k positive integers. Put succinctly, strict stationarity requires the
joint distribution of (zy,,...,2, ) to be invariant under time shift. This is a rather
strong condition that is difficult to verify empirically.

{z} is said to be weakly stationary if both the mean of z; and the covariance between
x; and x;; are finite and time invariant, where [ is an arbitrary integer. More pre-
cisely, weak stationarity requires that E[z;] = p, a constant, and Cov(zy, x41;) = i,
which only depends on [, the lag. In applications, weak stationarity enables one to
construct forecast models for time series data. Henceforth, we will refer to a weakly
stationary series as a stationary series.

Another form of stationarity is the periodic stationarity. {z;} is said to be periodi-
cally stationary with period d, a positive integer, if E[x;] = p; and Cov(xy, z41y) =
v:(k) for all integers k, are both bounded and periodic functions of ¢ with the same
period d. Examples of periodically stationary time series data are sales data which
typically have a monthly and/or yearly period since most people tend to spend more
during the beginning of the month (hence monthly) when they have the money as
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well as during festive seasons (hence yearly).

Causality is another important concept in the domain of time series analysis. A time
series {z;} having an associated model

Xy = (X1, Xea, o) + 6,

where f is the conditional mean function and {e;} is a white noise process, is said to
be causal if there exists a sequence, (¢;), such that

oo
Z || < o0
i=0

and

Ty = i (bietfi- (22)
1=0

Invertibility is yet another aspect of time series analysis. A time series {z;} with an
associated model f given by

vy = f(@1, .y Tip) T &
where {¢;} is a white noise process with zero mean, is termed invertible if there exist
constants mg, 7, ... such that
€t = 7T(B>l't
and

[e.e]

> mil < o0

=0
where 7(B) = Y7 mB" and B is the back-shift operator, i.e., B(z;) = x4_1.

2.4 The linear time series model

A time series {x;} is said to be linear if it can be written as

Ty =p+ Z Gi€t—i, (2-3)
i=0
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where ¢y = 1,

o0
Z |¢i] < o0
i=0

and {e;} is a sequence of independent and identically distributed random variables
with mean zero and a well-defined distribution, i.e., {¢;} is a white-noise series. It is
easy to see that a linear time series is causal, since the mean can be adjusted with
the white noise process in order for Equation (2.2) to be satisfied.

If {2} as defined in Equation (2.3) is stationary, then its mean and variance can be
obtained as

E(x) =

and

Var(z) =02 ¢?
=0

where o2 is the variance of €. Since {z;} is stationary, Var(z;) < oo and so we must
have that {¢?} is a convergent series converging to zero, that is, ¢7 — 0. Hence,
for a stationary series, the impact of the remote shock ¢;,_; on the current value z;
diminishes with 1.

After some simple calculations, it can be seen that the lag-l autocovariance is given

by

W= Cov(xy, xip1) = 02 Y Githis. (2.4)
i=0
Consequently, the lag-l autocorrelation is given by

pL= COTT(% $t+l) = X Zi:o bt . (2-5)

Yo B 1"'2;21@2

Since, under stationarity, ¢? — 0, it’s clear from the above equation that p; — 0 as
[ — oo.
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2.5 The Autoregressive (AR) Model

The fact that the monthly return x; of the Bombay Stock Exchange (BSE) index
has a statistically significant lag-1 autocorrelation indicates that the lagged return
241 might be useful in predicting x;. A simple linear model that makes use of such
predictive power is the AR(1) model defined as :

Ty = o + 1241 + €, (2.6)

where {¢;} is a white noise series with zero mean and variance 2. This model is in
the form of the simple linear regression model with x; being the dependent variable
and z;_; the explanatory variable.

The AR(1) model described has some interesting properties. From Equation (2.6),
the conditional distribution of the return x; given x;_; is given by

E(z|mi1) = ¢po + ¢17e—1, and Var(zz,_) = Var(e) = o,

That is, given the past return x;_1, the present return is centered around ¢g+ ¢12,_1
with standard deviation .. This is a Markov property since conditional on x;_1, the
return x; does not depend on z;_; for ¢ > 1.

The AR(1) model considers the immediate past, i.e., the lag-1, return to determine
the present return. A natural generalization of this is the AR(p) model that takes
into account the last p returns to determine the distribution of the present return as
follows :

P
T = Qo + Z GiT—; + €, (2.7)

i=1

where p is a positive integer and {e;} is as defined in Equation (2.6). Again, this
model is in the form of a multiple linear regression model with the p lagged values
acting as the explanatory variables and the current return as the response variable.

2.5.1 Properties of AR models
AR(1) model

In this section, we will look at some basic properties of AR models. We start with
the most simple AR(1) model. We begin by looking at the stationarity properties of
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this model. First, we look at the mean of the series. Suppose the model is causal
and stationary. Then, we must have

p=E(x) = ¢o + g1 E(xi-1) = o + P14t

Hence, p = 1f—° For this to make sense, we must have ¢; # 1. Next, we look at the
variance of the series. Under stationarity, we must have
o2 = Var(x,) = ¢ivar(z,_y) + 02 = ¢pjo> + o2

since Cov(e, x4—1) = 0 because ¢ is independent of the past (recall that ¢; is the

. . . . 2
innovation at time ¢ and the process is causal). Hence, we have that o2 = 1f5¢2. For
1

this to make sense, we must have |¢;| < 1. The stationarity as well as mean and
variance results can also be obtained in another way.

Considering ¢g = (1 — ¢1)p and |¢1] < 1, the AR(1) process can be rewritten as

st =xp — p=1(Te1 — p) + & = 1511 + €.

By repeated substitutions, we have that

oo
i
St =Ty — U= E Prap—;.
i=0

From the above equation, it is clear that the unconditional mean and variance of
this AR(1) process is exactly as derived earlier. In addition, from Equation (2.5), it
is clear that the lag-l autocovariance does not depend on t and is finite. Hence, the
necessary and sufficient condition for stationarity of an AR(1) process is that |¢;| < 1.

We now look at the autocovariance in an AR(1) model. From Equation (2.6), it can
be deduced that

M =¢1y-1 for [ >0. (2.8)
From the above, it is clear that

p=¢) for 1>0.

That is, the autocorrelation of a stationary AR(1) process decays exponentially with
rate ¢y.
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AR(2) model

We will now examine an AR(2) model to see how the addition of a single lag affects
the properties of the model. An AR(2) model can be written as

Ty = Qo + Q1241 + Gax4_o + €, (2.9)

where ¢, is as defined in Equation (2.6). Using the same technique we used in the
AR(1) case, we obtain, under the assumption of stationarity,

o
= E €T = Y,
pE P =1,
for ¢1 + ¢ # 1. For the variance and autocovariance, we can use the well known

Yule-Walker equations. From the model definition, the following sets of equations
can be arrived at :

oy = Var(z,) = (¢7 + ¢3)0; + 07 + 2¢1¢09m

and

Y1+ 17 = op + 1(07 + p17) + ¢a(y1 + p°) since vy =y
From the above two equations, v, and o, can be found as

2

02 _ O
1= (97 + 95+ 20016)
and
= 00_3257
where 0 = 1?;2. From the autocovariance equation, we get the recurrence relation

for the autocorrelation as

P = O1p1—1 + Pap—o for [ > 0. (2.10)

Denoting by B, the backshift operator, i.e., B(p;) = p;_1, we can rewrite the above
equation as

(1 —¢1B — ¢2B*)p = 0.

This is known as a difference equation. This equation determines the properties of the
autocorrelation function (ACF) of a stationary AR(2) process. Corresponding to this
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difference equation is the second order polynomial equation called the characteristic
equation given by

1= g1z — goa® = 0,

solutions of which are

. b1+ \/F + 4y
—2¢9 '

In time series analysis, inverse of these two solutions are known as the characteristic
roots of the AR(2) model. Denote the two solutions of the characteristic equation as
w1 and wy.

If both w; are real valued, then the second order difference equation of the model
can be factored as

(1 — wlB)(l — u)gB)

and the AR(2) model can be thought of as an AR(1) model operating on top of
another AR(1) model. The ACF of x; is then a mixture of two exponential decays.
In the other case, when the roots are complex, a plot of the ACF of z; would show
a picture of damping sine and cosine waves, which represent business cycles in many
econometric and financial time series. A business cycle can be thought of as a
sequence of expansions and contractions in a time series data.

2.5.2 Stationarity

A necessary condition for stationarity of AR models is that the its characteristic
roots be less than one in modulus. Under such a condition, for an AR(2) model,
it is easy to see that the ACF given in equation (2.10) converges to zero with the
lag [. Applying this condition to an AR(1) model gives us the characteristic root
of the difference equation 1 — ¢y = 0, which is ¢; (recall that the characteristic
root of the difference equation is the inverse of the root of the difference equation).
The condition on the characteristic root to be less than one in modulus is the same
condition we obtained before.

The results of the AR(2) model can be generalized to AR(p) models in the context of
stationarity. That is, a necessary condition for the stationarity of an AR(p) model is
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that all its characteristic roots lie within the unit space. In this case, the difference
equation is given by

1-— zp: pix’ = 0.
=1

Unit root non-stationarity

When the stochastic process governing the evolution of a time series has a root of
its associated difference equation on the unit space, the time series is non-stationary
and is called unit root non-stationary.

Unit root non-stationary process are useful in modeling non-stationary processes.
A consequence of the presence of unit roots is the non-decaying effect the shock at
time ¢ has on all future realizations. Unit root non-stationarity can be overcome
by differencing a series. Differencing a series {x;};er once yields the series {y;}ier
where 3, = x; — x;_1. When a series has a unit root of order greater than one, the
series can be differenced multiple times to achieve a stationary series.

2.5.3 Model identification, estimation and checking

The first step in fitting an AR(p) model to a time series is to determine the order, p.
This is typically done in either of two ways. The first method is to use the partial
ACF plot to determine the order while the second is to use some information criteria
like the Akaike information criteria (AIC). Once identified, the next step involves
estimating the autocorrelation parameters, ¢;. This can be done by using either
the least squares method or the maximum likelihood method. In both the methods,
for a given time series {x; : t = 1,...,T}, the sample size becomes T — p since
the first p — 1 data give information regarding only the impulse variable. Finally,
the fitted model is checked for the goodness of fit. This is done by looking at the
behavior of the residual series as well as the statistical significance of the parameter
estimates. If the residual series does not behave like a white noise series and shows
some evidence of autocorrelation or some of the estimated parameters are statistically
insignificant, then the model is refined, re-estimated and checked again. The R-
square (R?) statistic is also employed as a measure of the goodness of the fitted
model.
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2.6 Linear multivariate time series analysis

Multivariate time series models are natural in econometric applications because one
is often interested in modeling many variables jointly. There are strong underlying
relationships between and within market variables and macro-econometric indicators
like indices, GDP, unemployment rate, etc.. Thus, it becomes important to study
these quantities together rather than in isolation. In this section, we will look at
linear time series analysis from a multivariate perspective. The ideas of the preceding
sections can be extended to the multivariate context.

2.7 Cross-correlation and the vector autoregres-
sive (VAR) model

Before we get to multivariate models, it is important to understand cross covariance.
Earlier, we saw the concept of autocorrelation. In a multivariate model, however,
in addition to a time series being correlated with its own past, it could also be cor-
related with another time series. This is termed as cross-correlation and just like
autocorrelation, will be central in the definition of stationarity.

More precisely, consider a d-dimensional vector time series {x; : t = 1,...,T} where
Xy = (241,...,749)7. Then, weak stationarity means that the mean, u, of x¢, and
the lag-l autocovariance, 3;, between x; and x;_;, are both time-invariant and finite.
Mathematically,

2
L1107 <. P1d1010¢
z]l - )

2
Pd110401 ...  Pdd10g4

where ¢? is the stationary variance of x;; and piji is the correlation between z; and
T(¢—1y,;- While py; represents the autocorrelation within the univariate series {w;},
piji for @ # j represents the cross correlation between z;; and x;;. When [ = 0, p;j0
represents the concurrent correlation within the vector x;.

With the above definitions, we are now ready to define and analyze a vector autore-
gressive (VAR) model. For the vector time series, {x;} as defined above, a VAR
model or order p, VAR(p), is defined as
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P
Xt = A() + Z Aixt—i + €4, (211)
i=1
where {€,;} is a d-dimensional vector white noise process with zero mean and variance
Ye, Ag is a d-dimensional constant vector and A; are d x d matrix parameters
governing the model behavior [69].

2.7.1 Properties of the VAR model

We start with a zero mean stationary VAR(1) process to understand its properties.
Consider the d-dimensional VAR(1) model defined as

Xt = A1Xt_1 + €4, (212)

where {€;} is a white noise process with covariance matrix 3. and Ay is a d x d
constant matrix. Note that we have omitted the mean vector g or Ay from the
equation without loss of generality since any weakly stationary AR process can be
written in a mean-corrected form by a simple linear transformation.

If all eigenvalues of A; are less than one in modulus, then by repeated substitutions,
the above equation can be rewritten as

o
Xt = E All €.
=0

The above equation is well-defined since we have assumed all eigenvalues of A; to
be less than one in modulus which makes the infinite sum in the above equation
well-defined. We can now use this equation to compute the form of the lag-I auto-
covariance matrices as

I =) A" (A"
=0
Such a VAR(1) process, with modulus of all eigenvalues of the sole parameter matrix,
A1, less than 1, is called a stable VAR(1) process. This result can be extended to the

general VAR(p) model as well by considering it as a VAR(1) model; see Liitkepohl
(2007) [38] for more details. A VAR(p) model is said to be stable if

det(Igp — Az) #0 for |z| <1,
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where I4p, is the dp x dp identity matrix and A is the dp X dp matrix given by :

Al Ay ... Ayl A,
I, 0 ... 0 ©

A—-|l 0o 1. .. 0o o | (2.13)
0 0 ... I O

The above condition can be simplified to the familiar characteristic equation that we
saw in the univariate case as follows. Consequently, a VAR(p) process as defined in
Equation (2.11) is stable if

det(Ia — Ajz — ... — Apa?) #0 for |z| < 1.

Stability implies stationarity and unstable process are of little interest in time series
analysis. However, stationarity does not imply stability.

Just like we considered the VAR(p) process as a VAR(1) process with a modified
matrix parameter, to arrive at the stability condition, we will arrive at the form of
the lag-l autocovariance matrix of a stationary VAR(p) process as follows. Consider
the dp x 1 vector

Xt
Xt—1
Xt =

Xt—p+1

Then, for the modified pd x 1 process {X}, we get the following expression for the
lag-0 autocovariance :

I'x(0) = AT x(0)A' + X,

where A is as defined in Equation (2.13) and X, is the covariance matrix of the VAR
associated white noise process. From the above equation, it is easy to see that

VeC(Px(O)) = (I(dp)z — A &® A)*lvec(EE).

Computing directly the lag-0 autocovariance matrix for {Xy}, we get
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L'« (0) [k (1) I(p—1)
Fx(O) _ E(XtXtT) _ FX(:_l) I‘X:(O) . Fx(p:— 2) ’
To(-p+1) Tu(—p+2) ... Tx(0)

where T'z (%) is the lag-i autocovariance matrix for the original process, {x¢}, of in-
terest. From the equations defining the lag-i autocovariances we can deduce I'y(7).
Parameters of a VAR model can be estimated by the least squares method or the
maximum likelihood (MLE) method. Both methods yield estimates that are asymp-
totically normal.

2.8 Parameter estimation in AR and VAR models

In this section, we will briefly look at the least squares method to estimate parameters
in AR and VAR models. This will include the computation of the estimator as well
as its asymptotic properties.

2.8.1 The AR model

Recall the definition of an AR(p) model given in Equation (2.7). This model is in the
form of a multivariate linear regression model with the explanatory vector variable

(1,24-1,...,7,p)" and the response variable x;. Define the following :
IrT zo
y=| : |, &= |,
. :
p+1 ¢p
1 rr—1 ... TT—p €T
X=1|: o : and A =
1z, ... x €pt1

Then, equation (2.7) can be written in a concise matrix form as :

Y =X®é +A.
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This is the familiar multiple linear regression model and the least squares parameter
estimate is given by :
d = (XTX)'XTY = @ + (XTX)'XTA.

If Xx = E[XTX/(T — p)] exists and is nonsingular, then, from the law of large
numbers, the above equation implies that

A

(& — &)L N(0,02S5h).

5~

From the definition of X, we can compute X x as

L popop

22 ] YT Y2 - Yp-1
se= |0

H 'Vp—2 ’Yp—3 R (1 a!

B Yp-1 VYp-2 - 71 70

where ~; is the lag-i autocovariance of the stationary AR process, {x;}, and p is its
mean.

2.8.2 The VAR model

The VAR model can also be written in the form of a multiple linear regression model.
Consider the general VAR(p) model given in Equation (2.11). To be clear, let

Xt = (xtla--thd):
€t = (Etla"‘aetd)7
u; = (]_,Xt_l,...,Xt_p),

(I)() = AO = (A(]l, . ,Aod) and

Gitts - - Pitd
, t=1,...,p.
Gid1, - - - Pidd
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Now define the (dp + 1) x d matrix ® as

Then, we can write equation (2.11) succinctly as

Xy = ut(I) —|— €¢.
Writing
Xt Uy €
Y = : , X = : , and A= : ;
Xp+1 Up+t1 €p+1

Equation (2.11) can be written in a concise matrix form as :

Y =X®é +A.

This is the familiar multiple linear regression model and the least squares parameter
estimate is given by :

d = (XTX)"IXTY = & + (XTX)'XTA.
As in the AR case, if Xx = E[X*X/(T — p)] exists and is nonsingular, then, from
the law of large numbers, the above equation implies that

L (vee(®) — veo(®)) S N(0,3 & BT,

VT

From the definition of X, we can compute X x as

L p I
[,LT Fo ]_-‘1 Fz e Fp—l
[,LT F]_ FO F]_ e Fp—2
Yx = : : . : : ;
.T . . . . .
v’ Fp_z Fp_g R Fo Fl
ll,T Fp—l Fp—2 R Fl FO

where T'; is the lag-i d x d autocovariance matrix of the stationary VAR process {x},
and p is its 1 X d stationary mean vector.
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2.9 Robustness in time series models : The need

Sudden and unexpected transient yet large movements in financial and econometric
time series data are not uncommon due to external factors like political and regula-
tory changes. In Figure 2.1, the sharp one day rise of the Bombay Stock Exchange
(BSE) Sensex index, highlighted by the box, from 12173.42 on 15 May 2009 (time
index 2930) to 14284.21 on the 18" May 2009 (time index 2931) of 2110.79 points
(17.33%), can be attributed to the fact that the 2009 general assembly election results
in India were announced on the 18", The incoming government was perceived by
the investor community to be highly investor friendly which in turn boosted investor
confidence. Minor corrections took place post the 18" but the general positive trend
continued. This can also be seen in Figure 2.2. In addition, in spite of the digital
age, faulty observations and corrupt data exist due to the various data warehousing
processes involved.

When fitting a model to data, such large and/or erratic movements tend to have a
sizeable impact on the fitted model, which is not desirable. For example, in fitting a
trend to time series data, one could be interested in, not the precise data but rather
the general path the series follows over time. Smoothing by taking the moving aver-
age over some lag gives one an idea about this trend. However, any malicious values
in the time series data could potentially alter the trend curve.

Thus robust time series models are important. In the context of multivariate models,
cross-correlations need to be taken into account in categorizing outliers. For exam-
ple, in the 2-dimensional standard Normal distribution with a significant positive
correlation coefficient, the value (0.5, 1.5) could possibly be considered as an outlier
even though the first component in itself is not one.

2.10 Robust methods : definition and properties

Robust statistics is somewhat underrated in financial applications. This is probably
because of two reasons. One is the simplicity of standard non-robust methods in
comparison to robust methods. Secondly, robust methods typically involve complex
computations that are time and resource intensive. Both these reasons are, how-
ever, countered by the recent advances in computing technologies. Hence, robust
methodologies are now starting to gain some attention.
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Figure 2.1: Daily closing of the Bombay Stock Exchange (BSE) Sensex index.
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BSE Sensex Index Log Returns
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Figure 2.2: Log returns for daily closing of the Bombay Stock Exchange (BSE) Sensex
index.
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2.10.1 Robustness and outliers

A resistant method or model is one that, in analyzing any underlying structures of
a given dataset, is resistant to reasonable amounts of contaminations in the dataset.
Ideally, one would like the model to be resistant to any contaminations less than 50%
since any further contamination renders the data void of any structure. Any data
point that is distinct from the majority of the data points in terms of the structure we
are interested in analyzing, is termed as an outlier. Hence, the definition of an out-
lier depends on the properties the data we are interested in studying. For instance,
in wanting to study the mean characteristics of a given data, one may encounter
location outliers that tend to be far away from the majority of the data. In linear
regression or quadratic regression, an outlier could be thought of as a data point
lying far away from the line or second order curve respectively, that characterizes
the majority of the data. Let us look in detail at an example.

Suppose we are given a two dimensional stationary time series, {xy = (x4, 74p2) 1 t =
1,...,T}, with a strong positive correlation of 0.9 and individual variance of 1.0 each.
First, suppose we are interested in estimating its stationary mean p = (0,0). Sup-
pose (241, Ts) = (0.5,0.5) for some 1 < s < T. The sample mean Xp = Y1, /T
is a consistent estimate of . Now suppose now we corrupt the data by letting
(51, xs2) = (0.5, —0.5). Then, as far as estimating the mean of the bivariate series is
concerned, the contaminated data is not an outlier since both the series individually
maintain their respective mean structure.

Second, suppose now that we are interested in estimating the correlation between x;;
and z;5. We now see that, the contaminated point shows an exact opposite structure
(perfectly negative correlation) to that of the general data which is highly positively
correlated (correlation of 0.9). Hence, in this application of estimating the correla-
tion of the bivariate series, the contaminated data acts as an outlier.

Hence, the definition of an outlier is dependant on the context in which it is being
defined. A corollary of the above example is when xg is contaminated as (x4, Ts2) =
(2,2). In this case, this point acts as an outlier when estimating the mean of the
series while in the estimation of the correlation, it does not act as an outlier since it
preserves the strong positive correlation.
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2.10.2 Properties : Breakdown point (BP), influence func-
tion and sensitivity curve

Robustness in a model or method is measured by certain properties. These are the
breakdown point (BP) and sensitivity curve which we will briefly discuss here.

As the name suggests, the breakdown point (BP) of a robust estimator of param-
eters in a model is the point at which the estimator breaks down. The point here
refers to a level of contamination and breaking down means deviating from the true
parameter by an arbitrarily large amount. Mathematically, assume a given dataset
X ={x¢:t=1,...,T} of size T. Assume that this data follows some model Hg
with parameters 6. Consider another dataset, X', which is a copy of X but with a
fraction € of the data contaminated arbitrarily. Contamination refers to a data point
being modified by an arbitrarily large amount in any direction (positive or negative).
Let 9(X) be an estimator of 8. Then the mazimum bias of this estimator for this
contamination is defined as

bias(e, X, 0) = supx/|0(X') — O(X)].
The finite sample BP of an estimator 0 for a data sample X is defined as

€(0,X) = inf{e : bias(e, X, 0) = oo}

2.10.3 Influence function

Simply put, the influence function (IF) measures the influence of the addition of a
data point to the sample data on the model parameter estimator.

The empirical IF or sensitivity curve measures the IF by actually adding the addi-
tional data point and comparing the new estimate with the estimate obtained with
the original sample data. Mathematically, for a given data sample Xp = {x; : t =

1,...,T} and a parameter estimator @(Xr), the sensitivity curve is defined point-
wise as

0(Xr(Xr) U{z}) — 6(Xx)

/T '
While the sensitivity curve measures the influence of a data point on the estimator
6 by simply adding that point to the sample data, the influence curve measures
this influence by altering the underlying data distribution. Specifically, suppose the

SCT<X) ==
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distribution of the sample data is F' and é(F) is now the estimator for a given data
distribution F'. Let A, denote the point mass distribution concentrated at x. Then,
the IF is defined point-wise as

IF(x, F,6) = lim 0((L—t)F +tA,) — 0(F)

t—0 t ’

(2.14)

if this limit exists for every x.

2.11 Robust linear regression : The case of pa-
rameter estimation in AR and VAR models

We saw earlier that one can employ the method of least squares in estimating the
parameters of AR and VAR models by considering them as a linear regression prob-
lem. However, it is known that the method of least squares is not robust to even
small levels of contamination in the data. In this regard, we will look at some robust
alternatives. In particular, we will study briefly the M-estimator and look at some
of the more sophisticated robust estimators. All these estimators can be used as an
alternative to the method of least squares and, hence, in analyzing AR and VAR
models.

Recall the linear regression model for a data given by {ug, v¢}i—1, 1, where uy is the
p-dimensional impulse variable and vy is the ¢g-dimensional response variable. The
linear regression model is given by

V¢ = aug + b + €

where {€;} is a g-dimensional white noise process with zero mean, a is . The method
of least squares estimates (a, b) by minimizing the sum of square of residuals given
by

T ~
Z I'y (57 b)
i=1
where r¢(a, E)) = v — au; — b are the residuals.

Consider the zero mean d-dimensional stationary time series {x¢ : t = 1,...,T}.
Suppose we wish to fit a zero mean VAR(p) model to this series, denoted by
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p
Xy = E Pixi_ i+ €
i=1

where €; is a vector white noise series with covariance X and ®; are d x d matrix
parameters. This can be looked at as a regression problem by considering

— (T T \T dp
u = (X g5, % p) €RY,

Vi = Xt

and

B =[®q]...|®,) € R¥*%,

Then, the VAR(p) equation can be rewritten in the regression notation as

Vi = ,Bllt + €.

By putting a VAR model in this form, we can use the method of least squares to
estimate the parameters of the VAR model. Note that the maximum likelihood
estimator (MLE) reduces to the method of least squares when the noise distribution
is assumed to be Gaussian. We will limit the scope of our discussion on robust
methods applied to time series models to the Gaussian white noise case. This is
because we are primarily concerned with dealing with outliers in the data rather
than faulty white noise distribution assumptions.

2.11.1 The M-estimator and other estimators in brief

The M-estimator minimizes

ZP(H(B)/S)

where p is an M-function or p-function (symmetric, passing through the origin, mono-
tone non-decreasing for positive arguments and continuously differentiable on all but
a finite number of exceptional points), r; are the residuals (for a given parameter es-
timate 3) and s is a robust estimate of the scale of these residuals. When p(r) = r2,
the M-estimator reduces to the least squares estimator. A particular difficulty is the
estimation of the scale of the residuals, which has to be done off-line.
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The reason for introducing the scale in the optimization equation is to distinguish
outliers and extreme values from the general data. Suppose we momentarily ignore
s (i.e. assume s = 1) in the M-function, Then, when the variance of the associated
white noise is large, the M-estimator will tend to try and fit the model in a way that
maximizes the number of residuals close to zero. However, given the large variance,
this number will be low and not representative of the underlying distribution. On
the other hand, when the variance of the associated noise is small, the estimator will
tend to try and bring the larger residuals closer to zero since all the residuals will
already be close to zero due to the small underlying variance. Again, this will put less
weights on the majority of the residuals. Thus, in both cases, the estimator will tend
to overlook the majority of the residuals and therefore incorrectly estimate the model
parameters. Put succinctly, dividing the residuals by s standardizes them thus giving
a more accurate idea about the general distribution of the noise as well as potential
outliers. This is necessary because outlyingness depends on the relative size of the
residual rather than on the absolute size. This in turn leads to the estimator putting
more weight on the majority of the residuals that are actually representative of the
true noise distribution and thus makes the estimator less sensitive to the potentially
outlying minority residuals.

The generalized M-estimator (GM Estimator) was introduced with the idea of bound-
ing the influence of the outlying x; (the explanatory variables in the regression model)
as described below.

Define

o(r) = ——p(r)

Then, minimizing 3, p(rs(3)/s) is done by solving the following equations for 3 :

Zw a” Z¢ ri(B — 0. (2.15)

From the above equation, it is clear that an outlier in the impulse variable z; will
adversely affect the estimate. Such an outlier is termed as a bad leverage point. The
GM Estimators bound this influence of the outlying x; using some weight function
w. The Mallows type proposes to replace Equation (2.15) by

Zw($1)¢(rz(3)/s)xz _

%
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while the Schweppe type suggests to use

> wl@)e(r(B)/ (wlw:)s))z;
in place of equation (2.15). However, all GM Estimators have a breakdown point of
at most 1/(1 + p) where p is the dimension of the explanatory variable.

As seen above, the main idea of the M-estimators is the use of a penalty function
(the M-function) that is more slowly increasing than the quadratic function used in
the least squares procedure.

Here, it is worthwhile mentioning about the redescending M-estimators. An M-
estimator is termed redescending if the corresponding -function, ¥(.) = p/(.), is
redescending. By this, we mean that

lim ¢(x) = 0. (2.16)

r—00
Often, a redescending ¥-function is also defined as that for which a constant ¢ exists
such that ¢(z) =0 V x > c¢. The main purpose of using redescending estimators
is to straightaway reject gross outliers, especially those resulting from bad leverage
points. The cost of this insensitivity is the added complexity of the optimization
function that defines the estimator. However, advanced computer power means that
this drawback can be overcome in most cases.

By using redescending estimators, outliers will not get a lot more weight than the
good points as the method will try to fit a model that brings data points having
small to medium sized residuals closer to the fit rather than trying to minimize the
size of the largest residuals. This is because, after a certain size, determined by the
auxiliary scale parameter s, the residuals have a much smaller effect on the objective
function to be minimized. In other words, the typical objective function is most
sensitive to residual values in the range [—s, s] and thereafter the sensitivity tends to
decrease. This can be seen in Figure 2.3 where the p-function for Tukey’s bi-weight
M-function is seen, which is equal to

pe(r) = { sll-{l- (/o] it <c

2 .
¢ otherwise

6

The corresponding -function is given by
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rll —(r/c)?]? if|r| <c
0 otherwise

0 ={

The LMS (least median of squares, which minimizes the median of the residual
squares) and LTS (least trimmed squares which minimizes the sum of the h smallest
residuals squares) methods have a maximum breakdown point of 50%. However,
the LMS converges at the rate of n='/3. Even though the LTS has a favorable
convergence rate of n~'/2, the computation of its objective function (for fixed p)
takes O(n log n) steps (because of the ordering) compared to only O(n) for the LMS.
The S-estimator, which will be discussed in the next chapter, was proposed with the
intention of having an affine equivariant (independent of the choice of the coordinate
axes of the z;), 50% breakdown estimator with a convergence rate of n=/2, an O(n)
objective function and a higher asymptotic efficiency than that of the LTS.

2.12 Summary

In this chapter, we saw some basic concepts related to robust time series analysis.
We looked at stationarity, causality, linearity, autocovariance and autocorrelation
in both, univariate, as well as multivariate, setups. We then examined the most
simple linear time series model - the autoregressive (AR) model and looked at the
properties of some simple AR models. We also saw the vector AR (VAR) model
and its properties. We then saw the need for robust models in time series modeling.
In the end, we saw briefly the M-estimator and some other estimators that are all
robust alternatives to the least squares estimator. With this short introduction to
simple robust linear time series models, we are now ready to move forward to see
how to apply the S-estimator to the VAR model.
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Figure 2.3: Tukey’s 1-function : v.(r) = { r[1 = (r/c)”]

1.0

if |r] <c¢
0 otherwise



40

A short introduction to robust linear time series analysis




CHAPTER 3

Robust estimators for VAR models : The S-estimator

3.1 Introduction

We saw in the last two chapters the concepts of autocorrelation, linear models and
stationarity as well as the need for multivariate and robust models. We saw the
simple VAR model and some of its important properties. Further, we saw some of
the standard robust estimators and their properties. In this chapter, we will see how
we can combine the concepts of robustness and multivariate time series models to
come up with a robust estimator for the VAR model.

Recall the definition of a VAR model. Given a d-dimensional stationary time series
x¢ = (T14,...,2q) 7, t =1,...,T, a VAR(p) model for x; is given by

(In = B—...—¢,B")(x¢ — p) = € (3.1)
where B is the backward shift operator (B(x¢) = X¢—1), Im is the d x d identity
matrix, ¢, are the d x d matrix autoregressive parameters, g is a d x 1 vector of
constants and €; are independent d-dimensional white noise with zero mean and co-
variance matrix ..

As seen in the last chapter, the presence of outliers coupled with strong cross-
correlations necessitate the study of robust models for multivariate time series. Ro-
bust estimation of time series models is a widely researched area. The problem of
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fitting VAR models robustly has been looked at already, but open questions remain.
In particular, the application of S-estimators to estimate the VAR model parameters
has yet to be studied.

In the next section, we will briefly describe the various kinds of outliers encountered
in time series data and how they propagate. After that, we will briefly describe the
residual autocovariance (RA) and the multivariate least trimmed squares (MLTS)
methods which are the state of the art in robust VAR modeling. Then, we will give
the motivation, definition and properties of the S-estimator for the univariate as well
as multivariate cases. We will then present the Fast-S methods to compute these
S-estimates. In the following section, we will compute the S-estimator for a simple
2-dimensional VAR(1) model using the multivariate Fast-S method. We will then
give some comparative statistics of the S-estimator, the RA estimator and the least
squares estimator. Finally, we will summarize the results in the last section.

3.2 QOutlier classifications and propagation in time
series data

3.2.1 Classification

There are two primary kinds of outliers in time series data. These are the Innovative
Outliers and the Additive Outliers.

Innovative outliers (I0) occur when a data value is corrupted and the corruption
gets propagated further according to the underlying mechanism. In other words,
when the innovation or noise at any time index gets corrupted, it is an instance of
an innovative outlier. This could happen, for example, as an effect of some politi-
cal or regulatory development as can be seen in the spike (highlighted in the box)
at index 2931 in Figure 2.2. Innovation outliers thus, by definition, are model de-
pendent in that an outlier at any index is propagated further according to the model.

Additive outliers (AO) occur when a data value is corrupted in isolation and hence
there is no propagation of that contamination. This could happen, for example,
during the data warehousing processes. For a univariate series {x|t = 1,...,T},
replacing zs by zs + a leads to an additive outlier contamination of the observation
at time s. Again, this shows that additive outliers are model independent. That
is, one can artificially contaminate a time series data with additive outliers without
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having any knowledge of the underlying model that governs the evolution of the time
series.

3.2.2 Propagation
Innovative outlier propagation

Since innovative outliers propagate further, even a single contamination leads to the
contamination of all further data values. However, the effect of that single contami-
nation on latter values diminishes with distance when the series is causal.

More precisely, consider a univariate time series model {z; : t = 1,...,T} that
evolves according to the model

xt:f(mtfla"'aml)—i_et

where f(z;_1,...,x1) is a measurable function with respect to the o-field of all in-
formation prior to time ¢t and ¢, are independent and identically distributed (i.i.d)
Gaussian white noise with variance o2.

Suppose x; for some 1 < s < T is an 10. Then x,,; also gets contaminated since
Tsr1 = f(Ts,...,71) + €s11. The same holds for all x; : ¢ > s. Thus, IO contam-
ination propagates. The outlier itself is called innovative because it is most easily
thought of as an isolated outlier in e,.

Suppose we are dealing with a simple stationary and causal zero mean AR(1) process.
That is,

xy = f(x4_1,...,71) + € = ¢xy_1 + ¢ where |¢p| <1, (3.2)

where 1 <t < T and x; = ;. Suppose, like before, x, for some 1 < s < T is an 10.
We leave it to the reader to check that from Equation (3.2) we obtain

s+k—1

)
Lst+k = § ¢ €s+k—i-
=0

The above result can be verified by the principle of mathematical induction as well.
The direct contribution of €, to x,,, is the term ¢*e, which diminishes with k, since
|¢| < 1. Thus, an 10 creates a ripple effect which dies down with time. This is often
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termed as a level shift.

Fortunately, x4, is not an outlier in the context of the model and parameter esti-
mation methods. This is because it still maintains the relationship with x, that is
governed by the model. Again, the same holds for all x; : ¢ > s. Thus, if a% of
the time series data is contaminated by 10, any method that tries to estimate the
parameters of the model that the time series follows, will encounter the same a%
contamination.

In the sense of parameter fitting, being model dependent, innovative outliers in time
series preserve the contamination percentage in the process of fitting autoregressive
time series data.

Additive outlier propagation

Consider once more the causal and stationary univariate zero mean AR(1) model

T = QTi_1 + €.

This can be viewed as a regression model fitted to the doublets {(x1, z2), ..., (x7_1,27)}.
Being model independent, AO do not propagate like IO. However, this is a drawback
since an AO will show up as, not only a vertical outlier, that is an outlier in the
second value of a doublet, but also a leverage point in the first value of a doublet.
To be more precise, suppose that x4 is an AO. That is, we replace x5 by 7, = s+ A
for some arbitrarily large value A. We will now have two outliers in this dataset in
(xs_1,T5) (where Z is a vertical outlier) and (Zs, z541) (where Z, will act as a bad
leverage point).

More generally, in any autoregressive model of order p, a single additive outlier in
the time series data shows up as p 4+ 1 outliers in the regression model as p leverage
points and one vertical outlier. Thus, estimators that have a breakdown point of o %
could potentially breakdown when the time series data is corrupted through additive
outliers by only a/(p+ 1) %. This phenomenon can be seen later in the penultimate
section when a simulated time series data is corrupted by 20% which leads to a 40%
corruption in the VAR(1) model data. Thus, additive outliers are the more difficult
to deal with.

In the latter section that deals with simulations, we thus limit ourselves to additive
outliers.
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3.3 A short review of existing procedures

3.3.1 The residual autocovariance (RA) method

A widely cited method for univariate linear time series models is the one introduced
by Bustos and Yohai (1986) [9], which is based on the so called residual autoco-
variance (RA). Li and Hui (1989) generalize the RA method in order to propose
a robust estimation procedure for a vector time series. The method is based on
formulating the estimating equations in terms of the residuals and then using appro-
priately scaled values of these residuals to obtain the estimates. More precisely, given

a d-dimensional stationary time series x¢ = (214, ..., %), t = 1,..., 7T, that evolves
according to a zero mean VAR(p) model with Gaussian white noise €; with a given
covariance matrix 3, and parameters ¢y, ..., ¢, the maximum likelihood equation
(MLE) for

13 = VeC<¢) = VeC(¢)1, ey ¢p)
is obtained by minimizing

5> A=)

t=p+1

where rt(B) are the residuals for a given parameter 3, that is,

p
I't(/g) = Xt — Z q)JXt,]
j=1

Note that the determinant of ¥ does not appear in the MLE equation since it is
assumed known. In that respect, this can be termed as the conditional MLE. Let

(la—¢B—...—$,B") ' => m(B)B".

where 14 is the d-dimensional identity matrix. Then, the estimating equations reduce
to

~

SN miB)ruBri——i(B) =0, j=1....p; h=1.4d (3.3)

where r,,(8) is the h'™ component of r¢(3) and ry(3) = 0 for t < p+ 1. To

A

robustify the method, the products rt,h(ﬁ)rt_j_i,k(é) are scaled appropriately by
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an odd, bounded and continuous function, n(u,v). Two possible choices for this
function are n(u,v) = ¥ (u)(v) and n(u,v) = 1 (uv), where ¢(.) is an odd, bounded
and continuous function. The former choice is said to be of Mallows type and the
latter of Hampel type. The function (.) may be in the Huber family

Yu(u) = sgn(u) min(|ul, c)

or the biweight family

Upe(u) = u(l —u?/c*)?  (0< |u <o),

Ben et al. (1998) [5] further refined the RA method to make it affine equivariant.
In this version, the residual vectors are first robustified by an odd and bounded
function, 1(.), as follows. A weight function is defined as follows :

The modified residuals are then defined as

¢(B) = rdB)w (Vrf (BT r(B)).

where 3 is assumed known or estimated robustly offline. The RA estimating Equa-
tion (3.3) can be rewritten in vector notation as

~

S mBrB (B =0 j=1...p

From the above equation it can be seen that the difference between the standard RA
and the affine equivariant RA method lies in the robustifying method of the residuals.
While Li and Hui (1989) robustify the product of residuals component-wise, Ben et
al. (1998) robustify the entire residuals individually and then consider the products.
This refinement makes the RA method affine equivariant as now a residual that is
not an outlier component-wise yet is an outlier (by way of its covariance structure for
example) is downweighted accordingly as opposed to in the non affine equivariant
RA method where the product of residuals gets downweighted only if there is an
outlier in at least one component of any of the two residuals.
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3.3.2 The multivariate least trimmed squares (MLTS) esti-
mator

Recently, a multivariate least trimmed squares (MLTS) method was described for

the VAR model by Croux and Joossens (2008) [18]. This method is based on the

idea of the minimum covariance determinant (MCD) estimator of Rousseeuw (1985)

[57]. The MLTS selects the subset of h observations having the property that if

we performed a least squares fit to these observations, then the determinant of the
covariance matrix of the corresponding residuals, is minimal.

More formally, consider the zero mean d-dimensional stationary time series {x¢ : t =
1,...,T}. Suppose we wish to fit a zero mean VAR(p) model to this series, denoted
by

p
Xy = E P,x¢ i+ €
i=1

where €; is a vector white noise series with covariance > and ®; are d x d matrix
parameters. This can be looked at as a regression problem by considering

_ (T T \T dp
U = (X g5, X p) €RY,

Vi = Xt

and

B =[®y]...|®,) € R

Then, the VAR(p) equation can be rewritten in the regression notation as

vi = Bug + €.
Now, given the series {x; : t = 1,...,T}, to use the MLTS to estimate 3, consider
the dataset X = {(ug,v¢) : ¢ = p+1,...,T}. Denote by U, the matrix consisting
of the rows of the explanatory variable ug. That is, U = (upy1,...,ur)?. Similarly,
define the matrix V = (vpi1,...,vp)'. Les H={H C {p+1,...,T} | #H =h}
be the collection of all subsets of size h. For any subset H C H, let B, ¢(H) be the
classical least squares fit based on the observations of the subset. This is given by :

BOLS(H) = (UsUn) 'Ug Vs,
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where Uy and Vg are sub-matrices of U and V, consisting of the rows of U and
V, respectively, having an index in H. The corresponding scatter matrix estimator
computed from this subset is then :

Sors(H) = T (VH ~ UnBors(H))" (Va = UnBors(H)).

The MLTS estimator is then defined as :

BMLTS(X) = BOLS(ﬁ) where H = afgmian]H{det(EOLS(H))}-

3.4 The S-estimator

3.4.1 The univariate version

The motivation for the S-estimator comes from a desire to have a high breakdown
point yet highly efficient estimator that has an O(y/n) asymptotic convergence rate
and is also not hard to compute. We will now briefly discuss its definition in the
linear regression case. The S-estimator of Rousseeuw and Yohai (1984) [75] is a robust
estimator with high breakdown point. It is defined as an estimate of the regression
parameters with the smallest robust scale. Formally, the estimating procedure is
defined as follows :

~ ~

Minimize; s = s(ri(8),...,7rr(3)) (3.4)
subject to
1 I
? p r(3)/s) = b. (3.5)
Here, s(r (B), . ,TT(B)) is a robust scale estimate, 3 is the parameter of interest, b

is a constant, typically equal to Eg[p(X)] where X is a random variable having the
same distribution G as that of the white noise in the model (to ensure consistency)
and p is an M-Function. Existence of the solutions to the above optimization is
briefly studied in Lopuhad (1989) [37].

Properties

The least squares estimator is a special case of the S-estimator when p is chosen to
be p(r/s) = (r/s)? and b = 1. The following assertions about the S-estimator are in
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the context of the standard linear regression problem. The following theorem is due
to Maronna and Yohai (1981) [39].

Theorem 1. Suppose p satisfies the following properties :

1. There exists a ¢ > 0 such that p is strictly increasing on [0, ¢] and constant
on [c, 00). The corresponding v function is then called redescending.

2. E,[p(X)]/p(c) = 1/2, (X being a white noise random variable with density
function g).

It follows that the breakdown point of the corresponding S-estimator is

&, =([n/2] —p+2)/n (3.6)
which converges to the favorable 50% as n — oo. In condition 2, if E,[p(X)]/p(c) =
A where 0 < X\ < 1/2, then the corresponding S-estimator has a breakdown point
converging to A as n — oco. When g is the Standard Normal Density, ¢ = 1.547
satisfies condition 2. Values of ¢ > 1.547 yield better asymptotic efficiencies at a
Gaussian model, but smaller breakdown points.

Consistency of the S-estimators follows from Theorems 2.2 and 3.1 of Maronna and
Yohai (1981) because S-estimators satisfy the same first order necessary conditions
as do M-estimators. The other necessary conditions for consistency are :

[C1]. ¥(u)/u is non-decreasing for v > 0 and

[C2]. Exl||z||] < oo where z is the explanatory variable and H is its distribution.

Asymptotic normality of the S-estimators follows from Theorem 4.1 of Maronna and
Yohai (1981). The other necessary conditions for the asymptotic normality are :

[N1]. ¢ is differentiable in all but a finite number of points, |¢'| is bounded and
['d¢p >0 and

[N2]. Eg[zz”] is non-singular and Ex|||z]%] < oo.

When the above conditions are met,
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L JvPde

n'/%(B = 8) = N(O, Balaa ™ s

)

and

[ (p(y) — b)2d¢(y))
C ([ y(y)do(y))?

An implicit assumption made in the above assertions is an i.i.d form of the regression
data {(x;,y;) :i=1,...,n}.

n 26— o) B N(O

3.4.2 The multivariate version

In multivariate regression, which is needed for fitting VAR models, the S-estimator
is defined as in the univariate case except that we minimize a measure of the size of
the covariance matrix estimate S = S(ry,...,r,) instead of the variance s*. Possible
size criteria include the determinant, the trace and the maximal eigenvalue. The ar-

A ~

gument of the M-function also has to be appropriately adapted to 1/r(3)S~'r(8)"
instead of r/s.

In the following, we discuss the estimation problem :

Minimize Det(S(rq,...,rn)) under the constraint

NS o0 /1(B)S m(B)7) = b (37)

The multivariate S-estimator enjoys all the asymptotic and robustness properties of
the univariate S-estimator. It has a favorable asymptotic breakdown point of 50%
and is resistant to leverage points when ¢ (.) is redescending. For a detailed anal-
ysis of the regression case, the reader is referred to Van Aelst and Willems (2005) [72].

It is clear from Equation (3.7) that the S-estimator penalizes a data point even if
only a few of its components are contaminated. If we were to, on the other hand,
compute d independent S-estimators corresponding to the d components of y;, a
data point may be penalized by some S-estimators but not by the others depending
on the component values. However, given the cross-correlation in the data, it is
perhaps better to down-weight the entire data point which is what the multivariate



3.4 The S-estimator 51

S-estimator does. Hence, a VAR S-estimator is more appropriate than separate S-
estimators in that it takes into account the cross-correlation in the data.

3.4.3 S-estimator for linear time series models

Given that in the linear autoregression version of a time series model, the explana-
tory and response variables are both random and come from the same time series,
contamination in the data leads to leverage points. The use of high breakdown es-
timators such as the S-estimator is called for in estimating the parameters of the
model. The breakdown characteristics and asymptotic behavior of the S-estimator
in multivariate time series models remain essentially intact.

Breakdown point

The maximum breakdown point of 50% continues to be achievable since this depends
only on the choice of a suitable ¢(.) function and not on any assumptions on the
distribution of the data.

Consistency

Rousseeuw and Yohai (1984) [60], in their introduction to S-estimators for the re-
gression scenario, showed consistency and asymptotic normality under an i.i.d as-
sumption on the carrier variables (the impulse variables). However, Davies (1990)
[19] showed the consistency and asymptotic normality of the S-estimator under some
milder conditions on the carrier variables. In linear time series models, the impulse
variables are lagged versions of the response variables and hence the i.i.d assumption
of the corresponding regression data is not valid anymore. However, simulations con-
ducted by us seem to confirm consistency of the S-estimator in estimating parameters
of AR and VAR time series models. Denote the regression data in a multivariate
linear regression problem as {(x;,y;) : ¢ = 1,...,n} where x; are of dimension d,.
The conditions required of the data for consistency of the S-estimator for linear re-
gression models as given by Davies are :

1. There exist positive numbers 7;, 172 and ng such that

n
T
g XiX; Lxg<m — n2la,

=1
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is positive definite for all n > ng, where I, is the d, dimensional identity
matrix.

o1
lim —Z HXiH21Hxill>5\/ﬁ =0V 6>0 (3.8)

n—oo M,

Note that the other required conditions concern the p(.) function which are fulfilled
by most p-functions used in practice. Looking at the above two conditions, one
observes that these conditions are expected to be fulfilled by a stationary VAR time
series since in this case, stationarity implies a finite and constant covariance matrix.
Thus, one could expect the S-estimator to be consistent for stationary VAR time
series models which is in line with what our simulations demonstrate.

Affine equivariance

In the general regression model, the S-estimator is affine-equivariant. By this, we
mean that if we transform the data affinely, then the parameter estimate with the
modified data will be a related affine transformation of the parameter estimate with
the old data.

In the time series context, as opposed to the general regression context, the impulse
and response variables are dependent and come from the same time series. Thus, an
affine transformation of a time series data transforms the impulse as well as response
variables in the corresponding regression scenario of the associated model. More for-
mally, given a d-dimensional multivariate time series {x;}, an affine transformation,
T(a,B), transforms the series into a new series {y;} where y; = Ax; + B where A is
a d x d invertible matrix and B is a d-dimensional vector.

Now consider a stationary VAR(p) model for {x;} given by

p
Xy = p+ E PXi—i + €,
i=1
where {€;} is a vector white noise with covariance ¥. Now consider the transformed

series {y;} as defined earlier which is an affine transformation of {x;}. It is easy to
see that this series also follows a stationary VAR(p) model given by

P
yi=p + Z @iyi-i + 0y,
i=1
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where
p
pW=Ap+(1-> ApA B
i=1
¢; = AﬁbiA_l
and
(St == AGt.

Definition 1. Consider the two series, {x¢} and {y+}, as defined above. Consider an
estimator T of the parameters of a VAR (p) model. Denote the estimator correspond-
ing to the original series by T, = (f1,, (}bxl, ey é’)xp, 295) Denote the same estimator
but now corresponding to the transformed series by T, = (ﬂy,(}Syl,...,cAﬁyp, Ey)
Then, T s called affine-equivariant iof

p
fr,=Ap,+(1-) A¢,A "B,

=1

and
3, =A%, AT

Theorem 2. The S-estimator of the parameters of a stationary VAR(p) model is
affine equivariant.

Proof. Let {x;} be a realization of a stationary d-dimensional VAR(p) model. Let
y: = Ax; + B where A is a d x d invertible matrix and B is a d-dimensional vector.
Consider the S-estimators of the series {x;} and {y:}. As in the definition above,
the indices z and y of these parameter estimates indicate the data used. Consider
the auxiliary parameters defined by

p
p’ = Ail(ljl’y - (I - Z ¢yz)B)7
1=1
ész = A_lgbyiAv

and
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¥ =A"13, (A7)

These are well defined since A is invertible. Let T = (f, &, f)) Then,

and
3, = AZAT (3.9)
Then, our aim is to show that
fo= fb,,
é’)z = é,):mﬁ
and
3 =3,

Denote by r,(T,) the t* residual for the S-estimator T, for the original series and
by r,(T,) the ¢ residual for the S-estimator T, for the transformed series. It is
easy to see that

r,(T,) = Ary(T,) (3.10)

By definition, the S-estimator of the original data is given by

Min Det(32,) subject to 37, p(\/rft(Tx)ﬁglrﬁ(Tw)) =c.

Now consider the definition of the S-estimator of the transformed series which is
given by

Min Det(3,) subject to th(\/rgt(Ty)ﬁ;lryt(Ty)) =c.
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Substituting for the parameters by their parameterized definitions (using the auxil-
iary parameters) and using Equations (3.9) and (3.10), the above reduces to

Min Det(ASAT) subject to Do p(\/rft(T)ﬁ_lrmt(T)) =c.

But minimizing Det(ASAT) is the same as minimizing Det(3) since A being a d x d
square matrix, we have that

Det(AZAT) = Det(2) % Det(A)? (3.11)

and A is a constant matrix. Combining the reduced minimization equation and con-
straint we get that the parameterized S-estimator of the transformed data is defined

by

Min Det(3) subject to th(\/rgt(T)fl_lrm(TD =c.

But this optimization problem is the same as the one that defines the S-estimator of
the original data. Hence, we must have that

l'l' = l"’x?
¢z = d)m'i?
and
=3,
Thus, the S-estimator for a VAR time series model is affine equivariant. ]

Asymptotic analysis

An important tool in the asymptotic analysis of the S-estimator is the fact that
it satisfies the same first order conditions as the M-estimator. This can be easily
seen by using the Lagrange multipliers in the constrained optimization equation that
characterizes the S-estimator. See Lopuhad (1989) for details. As a consequence, the
asymptotic behavior of the S-estimator is similar to that of the M-estimator.

In the following, we will compute the asymptotic covariance matrix of the S-estimator
of a zero mean VAR model. For the following theorem, we will need some context
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and definitions.

Definition 2. Assume a given dataset {zy = (X¢,y¢) : t = 1,...,T} for which we
wish to fit the linear regression model yy = 0%y + €; where X is the p-dimensional ex-
planatory variable, yy is the q-dimensional response variable, {€;} is a g-dimensional
multivariate white noise process with covariance matriz e and 6 1is the ¢ X p matriz
parameter.

Suppose now that we estimate the parameters of this model using the S-estimator.
Assume the data is contaminated with contamination percentage r < 50%. We saw
earlier, in Equation (3.6), that the S-estimator is bounded for contaminations less
than 50%. Hence, the S-estimator is bounded for this data as well. Thus, the S-
estimator, és, stays in some fived compact subset of O, the parameter space.

Denote by T, the class of all distributions on RPTY, the data space. Let S(.) be a
vector-valued mapping from a subset of F into ©. If A, denotes the atomic probability
distribution concentrated in z € RPT1, then the influence function of S(.) at F €
Domain(S(.)) is defined point-wise as

IF(z:S, F) = lim S((1—h)F +hhAZ) - S(F)’

(3.12)
if this limit exists for every z € RPYI.

Theorem 3. Consider a zero mean d-dimensional stationary VAR (p) time series of
size T given by {z, : t = 1,...,T}. Consider the S-estimator, ,[;'z, of the parameter
matrices, considering them as a vector of size pd?, of this model, (3, with the asso-
ciated p-function, p(.). Denote the distribution of the associated white noise process
by F.. Assume the following conditions to hold. These correspond to the conditions
concerning the p-function as well as the data, given in theorem 8 of Davies (1990).

1. This condition concerns F.

(a) F. has a bounded density f.
(b) fe(r) = fd(—=r), i.e., fe is symmetric around the origin

(¢) fe is non-increasing on the positive side of the origin.

2. This condition concerns the p-function.
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(a) 3 ¢ such that p(.) is strictly increasing on [0, c|] and constant on [c, o],
i.€., the corresponding -function is redescending.

(b) ¥(.) = p'(.) is bounded.

(c)
lim R(v,1+s)— R(0,1+ s)

(v,8)—(0,0) V2

<0 (3.13)

where

R(v,s) = /m“‘“)fe(u), >0

S

3. p and f. have a common point of decrease on the positive side of the origin.
4. This condition concerns the data.
(a) There exist positive numbers 1y, 1 and ng such that

T
T
E 247y 1HZ1£||<771 —nnply

t=1
is positive definite for all T > ngy, where 1 is the d dimensional identity
matrix.

(b) X
Jim > llzelPLy,, a5y =0 Y >0 (3.14)

Further, assume Bz to be asymptotically normal with mean B. This is expected to
hold under the conditions given in theorem 8 of Davies (1990).

Then the asymptotic covariance matrix of Bz 15 given by

73 ® E;l

where X is the covariance matriz of the white noise and

I, I I, ..T,,
Fl F(] Fl e Fp_Q
EX = FQ Fl F() e Fp—3

r,, Iy, T,s ... T,
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where T'; is the lag i autocovariance of the series and vy is a constant which depends
on F,, the p-function (chosen in the S-estimator) and d. The asymptotic norming

factor is V/T.
Proof. We can write the VAR model as follows :

21t—1
Zd,t—1
21,t—2
21t $111 o Prig - ¢p11 e ¢p1d . €1t
Zy = : = : : : : ‘ : ' + )
Zdt—1
2t Gra1 - Pidd - Ppdt oo Ppdd . €dt
Zlytip
Zd,t—p
where €; = (€14, ...,€4)" is a d-dimensional white noise series with distribution F..
) )
_ T _
Denote Xt = (zl,t—lu cee s Rdt—15 R1t—2y -+ 5 Rdt—25 -+ -5 Rl L—ps -+ s Zd,t—p) y Yt = 24t and

G111 - Quid oo Ppri1 oo Ppld
b, = : : : : :
Grar - Prdd -+ Ppdt .- Ppdd

Then, we can write the multivariate linear regression model above succinctly as

Vi = @ X¢ + €,

where now, y is the d-dimensional response, x is the pd-dimensional impulse, ¢,
is the pd x pd matrix parameter and €; is the d-dimensional white noise. Denote
st = (xg,yt) and call this model H. Then, Van Aelst and Willems (2005) showed
that the influence function of the S-estimator, ¢es, at a point s = (x,y), for the
above model is given by

IF(s; pes, H) = Ex[xxT] 'xIF (y; Mg, F.)7, (3.15)

where My is the d-dimensional S-estimator of the location of y. Lopuhaé (1989) had
shown that
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where
5= n (1 3) Vel + 20/l

where ag is a sample random variable from the distribution F,. The asymptotic
covariance matrix of ¢.s can be computed by means of the influence function as

ASC(¢.,) = EnlIF(s; Bz, H) @ IF(s: Bz, H)'].
Denoting ¥, = Ex[xx*], it follows from Equation (3.15) that

2oy -1
cs) — d,L'e ) .
ASC(es) = ASV(Ma, F.) @ 3 (3.16)

where ASV (Mg, F,) is the asymptotic covariance of the S-estimator of the location
of y, Mg, under the distribution F,. Lopuhaé (1989) showed that

«

ASV(Ma, F) = 5%, (3.17)

where

1 2
a = —Er Y (Jaol)];

where ag, as defined earlier, is a sample random variable from the distribution F,
and ( is as defined earlier. From the definition of x, we compute 3, as

r, I I, .. T,
r, T, I, ..T,,

>, = ryL 1, Iy ... I3 (3.18)
r,, T, T,.5 ... T,

From Equations (3.16), (3.17) and (3.18), we get
~ % _
ASC(¢CS) = EE & Em 17
where o and 3 are as defined earlier. This completes the proof for the asymptotic
covariance matrix form for the S-estimator for a zero mean VAR(p) model. O
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Ben et al. (2001) [6] had studied the application of the 7-estimator to the VAR
model. They gave a heuristic proof of the consistency of the estimator. The form
of the asymptotic covariance matrix for the S-estimator for the VAR model agrees
with that of the m-estimator with appropriately tuned parameters. Ben et al. used
an iterative algorithm based on weighted least squares to compute the 7-estimator
for a VAR model. In the special case of the S-estimator, we will make use of the
Fast-S method by extending its use in the multivariate regression case.

3.5 The Fast-S method to compute S-estimators

The computation of S-estimators is not easy. The Fast-S algorithm, proposed by
Yohai and Salibian-Barrera (2006) [76], is an algorithm for the S-estimator. We will
propose an extension of the Fast-S algorithm for the multiple regression scenario
with particular applications to VAR Models.

3.5.1 The Fast-S algorithm for the univariate scenario

The univariate Fast-S algorithm is a recursive method, analogous to the fast-LTS
algorithm (which in turn is based on the fast-MCD or fast minimum covariance de-
terminant algorithm), to compute S-estimates. Given a starting parameter estimate
3, the improvement step (I-step, which is the core of the algorithm) is as follows.

1. Compute the residuals 7#(3) = (71(0), ..., 77 (0)).

2. Compute an approximate scale § of 7() by applying to Equation (3.5), one step
of any iterative algorithm starting from the MAD (median absolute deviation). Here,
the iterative algorithm is chosen to be the Newton-Raphson method.

This ensures that we are close to, if not within, the feasible region. By starting from
the MAD, we try to avoid outliers’” influence on the scale estimate and by applying
the iterative algorithm to Equation (3.5) starting from this value, we try to get closer
to the feasible region. We perform just one step of this iterative algorithm to be ef-
ficient in terms of speed. Since the overall I-Step process is iterative, under suitable
conditions, we will converge to a point in the feasible region.

3. Compute the weights
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(3.19)
where ¢ = p/.

4. The improved candidate §* is obtained by a weighted least squares with weights
defined by (3.19). Steps 3 and 4 ensure that the new estimate has a smaller scale
value than that of the previous estimate.

The S-estimator satisfies the same first order condition as the M-estimator does and
steps 3 and 4 are part of the iteratively re-weighted least squares (IRLS) method to
satisfy this condition. For more details regarding the algorithm, refer to Yohai and
Salibian-Barrera (2006) [76].

3.5.2 The Fast-S algorithm for the multivariate scenario

In the multiple regression scenario, with the scale being replaced by a covariance
matrix 3, one needs to define how to perform a step of the iterative method (in
the I-Step) of step 2. We introduce a novel way of applying the Newton-Raphson
method to move to the next point from a staring point.

Consider the general R? — R function y = f(z1,...,74) whose roots we are inter-
ested in finding using the Newton-Raphson method. Then, given that we are at step
n of the iteration at the point r, = (Xn,¥n) = (Tn1, - - -, Tnd, Yn), We are interested in

improving to a better point x,1.

The tangent at ry, is a hyperplane that intersects the domain in a hyperplane (which
we will refer to as the cutting hyperplane henceforth). Thus, for the next point, one
has infinitely many points to choose from, in this cutting hyperplane.

One way of moving forward in a consistent way is to consider the point on the cutting
hyperplane that is in the direction of the gradient to the function f(xy) at xp.

This is equivalent to working with a projection of the function onto a plane that is
perpendicular to the domain plane and contains the gradient vector at x,. Then,
this is the same as restricting the domain to the projection of the gradient at x,.
We thus reduce the problem to the familiar 2-dimensional case.
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The convergence of the above mentioned method is guaranteed under appropri-
ate conditions as is the case in the univariate Newton-Raphson method. Sufficient
smoothness and starting close to a root of the equation are two key conditions.

As an example, consider the simplest non-trivial case of a 3-dimensional space. We
are interested in finding the roots of the equation z = 2? + y* — 50. Starting from
Xn = (7,7), we find that the gradient vector is given by (22| 7), g—Z|(777)) which in
3-dimensions, corresponds to the plane x = y. Restricting our function z to this
plane reduces to the trivial case of considering 2’ = 222 — 50. Starting from 2’ = 7,
we see that the next approximation is 2” = 5.28. Thus, by constraining ourselves to
remain on the line y = x, we make an improvement from (7,7) to (5.28,5.28) which
is already close to a solution (5,5). This is illustrated in Figure 3.1.

Formally, the improvement step is as follows.

1. First, we restrict the domain to the line

T1 — Tnl Tqg — Tnd

oy /0w L. =1

Tn

o Oy/Oxg

This is the line in the domain that is the projection of the gradient vector at
the current point.

2. Next, we compute the cutting hyperplane

(zi — Tng) <g—i

d

3. We now find the intersection of the cutting hyperplane and the restricted do-
main space to be

=1

Tn+1,i = Tni —

d 1=1,...,d
Zi:l (Oy/0x; |, )? 0x;
which is the next point we are interested in. It is clear that when d = 1, the

next point is the same as that found by the Newton-Raphson method for the
univariate case. This is because in the univariate case, the restricted domain
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The plane x=y in the 3-D space

The function z = x*2 + y"2 - 50

-50
|

-10 -5 0 5 10

The line y=x on the x-y plane

Figure 3.1: An example of performing the Newton-Raphson method in a 3-D space.
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(given in (1)) is the whole domain itself which is y = 0 while the cutting
hyperplane is just a point which is the next point x,1 1.

3.6 S-estimator for a VAR time series

In this section, we will see the application of the Fast-S method for obtaining the
S-estimator for a d-dimensional VAR(p) time series model using the Fast-S method

described in the earlier section. Given x¢ = (241, ..., %)’ , the model is as follows :
Tt1 p ¢j11 e ¢j1d Tr—j1 €t1
Tyd =1 Gjar - Djad Tt—jd €td
To simplify the formulae, we will use the notations
Q11 - Ojid
®;j=1 i
Gjar -+ Pjad
and
€ = (€1,...,6q)" ~ N(0,%)
where
2
01 .-+ P1d0104q
Y = :
Pd10q01 ... 0'3
where p;; = pj; is the correlation between ¢, and €. Let ® = (®4,...,®,). The

S-estimator for this model is defined as that © = (ﬁ], <i>) which satisfies the following
optimization equation.

Minimize Det(32)

subject to

! 3 T (@)S r(@) = b (3.21)
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where rt(@) is the t*" residual, p is the M-function and b is a constant, typically
equal to E[p(X)] where X ~ N(0,I) is a d-dimensional standard Normal random
variable.

The Fast-S being based on sub-sampling, we start the process by randomly choosing
a predetermined number of points in the pd? dimensional parameter space. Due to
stationarity, this space is a subset of the unit pd® dimensional space and we select
the starting points in this unit space. The way we choose a random point in this
unit parameter space is by randomly choosing pd points in the regression space cor-
responding to the time series data space and then computing the parameter that
corresponds to the hyperplane that contains these pd data points. Since each regres-
sion data point gives us d equations, pd regression data points give us pd? equations
and thus, we can compute the parameter vector (consisting of pd?® scalar compo-
nents) that satisfies these pd? equations exactly. In case the system of equations
corresponding to this choice of regression data points does not have a unique solu-
tion, we can ignore these data points and repeat the process of randomly choosing pd
regression data points until the system of equations corresponding to these regression
data points has a unique solution.

In their introduction to the Fast-S, the authors suggest starting with a number, N,
of sub-samples such that

log(a) _ ~log(a)
“logl— (-9~ T—en

where ¢ is the dimension of the explanatory regression data and € < ¢),0 < a < 1
where ¢ is the breakdown point of the estimator and 1 — « is the probability that
the breakdown point of the resulting algorithm is at least e. This number, N, grows
exponentially with the dimension, ¢, of the explanatory regression variable. In the
d-dimensional VAR(p) case, ¢ = pd® and hence both, the dimension as well as the
lag parameter p, play a role in the choice of the number of sub-samples to start the
Fast-S process from. We now look at the core of the Fast-S algorithm applied to the
d-dimensional VAR(p) model, the I-step.

(3.22)

In thq I-Step of the Fast-S, let the parameter estimate at the n'® step be called
(®,,,3,). Then the (n + 1) step involves the following.

1. Compute the residuals r(®,,) = (rp1(®y), ..., r0(®n)) = (Fpr1, ..., F1).
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2. Compute an approximate covariance estimate 3 of r((i)n) by applying to equa-
tion (3.21), one step of the Newton-Raphson algorithm (as described in the earlier
section) starting from any robust covariance estimate like the minimum covariance
determinant (MCD) estimate.

For simplicity and more importantly speed, one can start from the covariance esti-
mate whose components are computed robustly as

’A}/ij = Mediant{ftiftj} — Mediant{fti}l\/[ediant{ftj} for Z,j = 1, ce ,d.

2.1 Call this starting covariance estimate, ZA); and

T
1 s To. -
fu(Z) = T > pre(®n) Tr(®n)) — b (3.23)
p t=p+1
Then the 3,41 estimate turns out to be as follows.
n(Xin) fn,, (Bn
&i,n+1=0; pl— fo(Zn)f 1( ) , 1=1,...,d

T 2, (Ba) + T f2,, (Zn)]

and

Fa(S0) fu, ()

~ N
Pijn+1 = Pijn —

S B+ S 12, ()]
where
fu() = 22

Note that we need —1 < p;;,,4+1 < 1 and hence, when this condition is not met, we
reset pjjn41 to zero.
3. Compute the weights

w(\/rtT(‘i’n)Erﬁﬁt)

\/rtT(‘i’n)E;iﬁt

Wiy = (3.24)

where ¢ = p’

4. The improved candidate <i>n+1 is obtained by a weighted least squares with weights
defined by (3.24).
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3.7 Examples

Example 1. In this example, we look at the IBM and NASDAQ daily log returns
based on the daily closing price. The plots of the daily log returns starting from 5th
February 1971 until 9" November 2009 are given in Figure 1.3. The autocorrelation
functions (ACFs) of the two series are also given in figures 3.2 and 3.3. The IBM
and NASDAQ composite show a significant autocorrelation at lag 1. The sample
correlation between the two returns is 0.037 which, though small, is not insignificant.
Based on this, a VAR(1) model is fit for the bivariate series assuming a Normal
noise component. The sharp fall in the IBM price around time index 2000 (from 304
on the 31 of May 1979 to 76.25 on the next day, 15t of June 1979; a log return of
-0.6) acts as a strong additive outlier making parameter estimation difficult. The pa-
rameters are estimated using the multivariate least squares (MLS), the RA estimator
and the S estimator.

To gauge the effectiveness of the robust methods (RA and S) versus the conventional
non-robust MLS method, we use 70% of the data to estimate the parameters and the
remainder 30% to determine the forecast quality. We use the mean residual quadratic
norm (MSE) as a measure of the forecast quality. In addition, we contaminate a sin-
gle point in the NASDAQ returns data at time index 3000 to 10.0 in one case and
a single point in the IBM returns data at index 3000 to -100.0 in another case and
re-estimate the parameters and their corresponding forecast qualities. The results are
given in the following table. The zero mean VAR(1) model has a single 2 X 2 matriz
parameter ®.
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Figure 3.2: The ACF of the daily log returns of IBM closing.
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Figure 3.3: The ACF of the daily log returns of NASDAQ closing.
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No artificial contamination

The S-estimator

Estimator Estimate of ® (standard error) MSE (x107)
20.008 (0.0125) -0.002 (0.0127)
MLS 0.068 (0.0131)  0.263 (0.0115) 9-16
g -0.0006 (0.0116) -0.002 (0.0127) 9.2
0.139 (0.0125)  0.273 (0.0127) '
RA -0.018 (0.0115) -0.0002 (0.0125) 9.98
0.113 (0.0135)  0.303 (0.0125) '
NASDAQ[3000] replaced by 10.0
Estimator FEstimate of ® (standard error) MSE (x107)
20.007 (0.0121]  0.195 (0.0135)
MLS 0.0001 (0.0117) 0.0005 (0.0145) 9.01
g -0.0003 (0.0115) -0.002 (0.0145) 9.2
0.140 (0.0115)  0.273 (0.0155) '
RA -0.017 (0.0121) -0.0009 (0.0129) 0.99
0.109 (0.0125)  0.286 (0.0122) '
IBM[3000] replaced by -100.0
Estimator Estimate of ® (standard error) MSE (x107°)
-0.0001 (0.0115) 0.000006 (0.0166)
MLS -1.705 (0.0111) 0.263 (0.0125) 19.07
S ~0.0006 (0.0113) -0.002 (0.0119) 0.2
0.140 (0.0111)  0.273 (0.0123) '
RA 0.010 (0.0127) -0.0006 (0.0125) 9.97
0.063 (0.0122)  0.313 (0.0155) '

The results show all three estimators doing about equally well in terms of forecasting
when there is no artificial contamination. The lag-1 estimates for the IBM series
in all the three cases are not significant. The NASDAQ lag 1 data seems to be a
leading indicator for both the IBM and the NASDAQ series. In the case of artificial
contaminations, the MLS estimator clearly breaks down giving different estimates
each time. The RA and S estimators, however, show resistance and their estimates
remain consistent.
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3.8 Simulations

In this section, we will present some performance metrics after running some simu-
lations.

3.8.1 Scenario 1

For the simulations, for simplicity, we generated 100 samples of size 1000 each, of
two-dimensional zero mean VAR(1) data with normal white noise that was then
contaminated with additive outliers to varying degrees and the Fast-S method was
applied to obtain the S-estimator of the parameters. Parameters were also estimated
using the multivariate least squares (MLS) method which is equivalent to the con-
ditional maximum likelihood estimator. Finally, the mean squared error (MSE) was
calculated for each of the four parameters of the two estimators (S-estimator and
the Least Squares) using all the 100 samples. Given a two-dimensional zero mean
VAR(1) model, there are four regression parameters and hence four MSE are re-
ported respectively. The following table gives details of the results.

Contamination % MLS MSE S-estimator MSE
0 0.0005 0.0006 0.0005 0.003
0.0009 0.0007 0.001  0.0005
] 0.01 0.02 0.0005 0.0002
0.01 0.01 0.003 0.0007
10 0.05 0.05 0.01 0.02
0.06 0.08 0.02 0.02
2 0.07 0.06 0.06 0.05
0.09 0.07 0.09 0.06

As can be seen, the S-estimator and the least squares estimator have similar MSE un-
der no contamination. The marked increase in the MSE under even a small one per-
cent contamination is visible for the least squares estimator whereas the S-estimator
remains unaffected at this level of contamination. At 10% and 20% contamination
levels, that transform to 20% and 40% contaminations in the corresponding regres-
sion data respectively, we see the S-estimator also beginning to get affected.

3.8.2 Scenario 2

In this simulation, we compare the bias and variance of the MLS, RA and S estimators
under various rates of contamination and noise covariances. Like in the previous
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scenario, we start with no contamination and then progressively increase it. We use
samples of size 100 and run 100 simulations to compute the bias and root mean
squared error (RMSE) statistics. We will also vary the correlation of the bivariate
white noise to see how the results are affected. The variance of the noise components
remain the same at 0.0001 and 0.0009 respectively. The additive contaminations
happen by contaminating components of individual data points with a Normal noise
of variance 0.01. Specifically, we will look at the following scenarios.

No contamination case with noise correlation of 0.7

0.05 —0.23
®= ( 0.39 0.12 )

Estimator Bias RMSE
0.001  0.005 0.065 0.063
MLS -0.005 -0.018 0.035 0.113
RA 0.003 0.025 0.07 0.21
-0.005 -0.022 0.03 0.11
g -0.001  0.0008 0.07 0.21
-0.006 -0.022 0.03 0.011

No contamination case with noise correlation of -0.7

0.36  —0.42
®= ( —0.23  0.21 >

Estimator Bias RMSE
-0.018 0.040 0.09 0.25
MLS -0.005 0.009 0.03 0.11
RA -0.013  0.039 0.09 0.23
-0.006 0.004 0.03 0.12
g -0.010 0.024 0.09 0.95
-0.001 -0.001 0.03 0.11

No contamination case with noise correlation of 0.0

0.40 —0.12
®= ( 0.11 —0.46 )
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Estimator Bias RMSE
-0.004 0.014 0.09 0.31
MLS 0.001 -0.002 0.03 0.08
RA -0.005 0.033 0.09 0.032
0.002 -5.31x107° 0.03 0.09
S -0.003 0.003 0.09 0.033
0.001 -0.003 0.03 0.09

1% contamination case with noise correlation of 0.7

—0.23  0.38
(I’—( 0.21 —0.29>

Estimator Bias RMSE
0.012 -0.013 3.21 3.22
MLS -0.017  0.007 3.35 3.34
RA -0.027 -0.052 0.35 0.45
0.017 0.037 0.31 0.35
g -0.001 -0.052 0.07 0.29
0.002 0.037 0.03 0.11

5% contamination case with noise correlation of 0.7

0.03 0.46
®= ( 0.46 0.34 )

Estimator Bias RMSE
0.032 0.039 6.67 6.78
MLS -0.002 -0.010 6.88 6.34
RA -0.195 -0.198 1.01 1.11
0.155 0.148 0.29 0.95
g -0.009 -0.016 0.19 0.38
0.001 -0.0007 0.08 0.11

10% contamination case with noise correlation of 0.7

—0.41  0.24
®= ( 0.47 —0.41 >
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Estimator Bias RMSE
0.804 0.803 4.89 4.45
MLS -0.715 -0.714 4.67 4.56
RA 0.104 0.099 0.75 0.79
-0.234 -0.233 0.75 0.81
g 0.007 0.007 0.15 0.11
-0.001 0.005 0.19 0.19

Like in scenario one, the S-estimator and the least squares estimator have similar
bias and MSE under no contamination. The marked increase in the MSE under even
a small one percent contamination is visible for the least squares estimator whereas
the S-estimator is affected relatively slightly at this level of contamination. At 5%
and 10% contamination levels, that transform to 10% and 20% contaminations in
the corresponding regression data respectively, we see the S-estimator also beginning
to get affected, albeit to a much lower level compared to the least squares estimator.

3.9 Summary

As seen in the last section, the S-estimator is highly robust and useful in estimating
parameters for VAR(p) models, especially under additive contamination. The Fast-S
is an efficient method to compute the S-estimator in a reasonable time period. In this
chapter, we demonstrated the use of a multivariate version of the Fast-S to compute
the S-estimator for a vector autoregressive model. Using the S-estimate as a starting
value, one can then obtain an M-estimate leading to the well known MM-estimator
which uses a robust starting estimate to compute the an M-estimate.

We also saw the propagation of outliers in time series data and how that can blow
up the outlier proportion in the associated model data. This is a serious drawback of
all methods that base the estimation techniques on optimizing some function of the
residuals. This problem is briefly discussed in the next chapter on bilinear models
where the problem’s seriousness increases manifold.



CHAPTER 4

Nonlinear time series analysis : The bilinear model

4.1 Introduction

While linear time series models are relatively easy to analyze, interpret and use in
many data analysis applications, the very simplicity of these models is also a weak-
ness. This is because many real-life data are complex enough that linear models are
unable to capture their features. For example, it is well known that the conditional
variance of a financial time series is not constant but in fact, volatile. This can be
seen when comparing the scenarios of a positive versus a negative trend. There is
comparatively lesser volatility during a bull market run versus a bear market run.
This can be attributed to the nervousness of the investors, especially the retail ones,
when the market is going down. This translates to a pressure to sell which contributes
to the already increased volatility. Thus, models like the autoregressive conditional
heteroscedastic (ARCH) and the generalized ARCH (GARCH) come into play that
incorporate nonlinearity in the conditional variance equation of the time series model.

Many nonlinear models have been proposed in the time series literature. The idea of
using simulation and data driven methods is central to these models. Most recently,
nonparametric and semi-parametric methods like kernel regression and neural net-
works have also been studied in the context of time series modeling.

In this chapter we will examine the class of bilinear models and look at the application
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of the S-estimator to robustly estimate parameters of a simple model of this class. In
the next section, we will briefly look at some of the commonly used nonlinear models
in time series analysis.

4.2 State of the art

Traditional nonlinear models for time series include the bilinear model of Granger
and Andersen (1978) [24], the threshold autoregressive (TAR) model of Tong (1978)
[67], the state-dependent model of Priestley (1980) [50] and the Markov switching
model of Hamilton (1989) [25]. The primary idea behind these models is to model
the conditional mean using some parametric nonlinear function.

More recently, taking advantage of the advances in computing technologies, a num-
ber of nonlinear models have been proposed. These include the nonlinear state-space
modeling of Carlin, Polson and Stoffer (1992) [10], the functional coefficient autore-
gressive (FCAR) model of Chen and Tsay (1993) [13], the nonlinear additive autore-
gressive model of Chen and Tsay (1993) [14] and the multivariate adaptive regression
spline of Lewis and Stevens (1991) [32]. The ideas in these models is to use either
simulation methods to describe the evolution of the conditional distribution of z; or
data-driven methods to explore the nonlinear characteristics of x;.

Finally, most recently, nonparametric and semi-parametric methods such as kernel
regression and artificial neural networks have also been applied to time series analysis
to study nonlinear properties of data. We next briefly discuss some of the above
mentioned models.

4.2.1 Threshold Autoregressive (TAR) Model

This model came about to describe the asymmetry in declining and rising patterns
of a process, as discussed before. It uses piecewise linear models to obtain better
approximations of the conditional mean process. However, as opposed to periodic
processes modeling that use piecewise linear models incorporating periodicity in the
time space, TAR models use the data space by incorporating thresholds to switch be-
tween piecewise linear models. The thresholds are commonly referred to as regimes.

Consider the following simple 2-regime AR(1) TAR model.
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2 = { —1.5z_1+¢ if ;1 <O, (4.1)

0-55515—1 + € if Ti—1 Z 0,

where ¢; is a white noise process with zero mean and variance o2. This model illus-
trates some characteristics of TAR models.

Firstly, in spite of the coefficient -1.5 in the first regime, the process x; is geometrically

ergodic and stationary. The ergodic theorem refers to the property that shows that

the sample mean of a mean stationary time series, {z;}, given by Zp = (3./_, )/ T,

converges to u, the stationary expectation of x; as T" — oo. In fact, one can go a

step further and look at a general 2-regime AR(1) TAR process given as
ari1+ € if v <O,

e { Briq+e€ ifx g >0, (42)

For this model to be geometrically ergodic, a set of necessary and sufficient conditions
are

a<l, (<1 and af<]1.

For more details on this model and the derivation of these conditions, the reader is
referred to Petrucelli and Woolford (1984) [47] and Chen and Tsay (1991) [12].

Secondly, the series exhibits an asymmetric increasing and decreasing pattern. If
x_1 is negative, then x; tends to switch to a positive value due to the negative and
explosive coefficient -1.5. At the same time, however, when z;_; is positive, it takes
x; multiple time indices to reduce to a negative value. As a consequence, the time
plot of x; shows that regime 2 has more observations than regime 1. In addition, the
series contains large upward jumps when it becomes negative.

Finally, the model does not contain any constant terms yet F(z;) # 0. In general,
E(z;) is a weighted average of the conditional means of the two regimes, which are
Non-zero.

The two regime TAR AR(1) model described before can be generalized to a k-regime
TAR AR(p) model with threshold variable x;_4 as follows :

P
Ty = i + Z GijTi—j + €, iy <@g <y
j=1
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where

1. k and d are positive integers,
2.0=1,...k,
3. 7; are real numbers such that —co = <11 < ... < %1 < 7% = 00 and

4. €;; is a white noise process for each ¢ and they are mutually independent.

The parameter d is referred to as the delay parameter while the ~; are referred to as
the thresholds. Such TAR models where the thresholds are compared to some series
values are referred to as self-exciting TAR (SETAR) models. The SETAR model is
linear for k = 1.

4.2.2 The smooth transition AR (STAR) model

A possible drawback of the SETAR model is the discontinuity of the conditional
mean equation. The thresholds, {v;}, are the discontinuity points of the conditional
mean function p,;. To overcome this, smooth TAR models have been proposed in
Chan and Tong (1986) [11] and Terdsvirta (1994) [66]. A series {x;} is said to follow
a 2-regime STAR(p) process if it satisfies the following :

p p
Ti_g— 0
Ty = co+ g G0iTt—i + F<—t U; > <C1 + g Cbuxt—z‘) + €, (4.3)
i=1 i=1

where d is the usual delay parameter, § and s are parameters representing the location
and scale of the model transition process, and F(.) is a smooth transition function.
In practice, F(.) commonly assumes one of the following three forms, namely, lo-
gistic, exponential or a cumulative distribution function. From Equation (4.3), the
conditional mean of a STAR model is a weighted linear combination of the following
two equations :

p
M1 = Co + E D0iT—;
i=1

and

p

2 = (co + 1) + Z (Goi + G15)T4—i.

i=1
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The weights are determined in a continuous manner by F'((z;_q — ¢)/s). The above
two equations also determine some properties of a STAR model. For example, a
necessary condition for the stationarity of a STAR model is that all zeros of both the
AR polynomials be outside the unit circle. A possible advantage of the STAR model
over the TAR model is that the conditional mean function is differentiable. However,
empirical studies have shown that the estimation of the transition parameters ¢ and
s is a difficult problem. In particular, the standard errors of these estimates are often
quite large, resulting in t-ratios of about 1.0; see Terésvirta (1994). This uncertainty
leads to complications in interpreting an estimated STAR model.

4.2.3 The Markov switching model

The idea of using probability switching in nonlinear time series analysis is discussed
in Tong (1983) [68]. Using a similar idea, but emphasizing aperiodic transitions
between various states of an economy, Hamilton (1989) [25] considered the Markov
switching autoregressive (MSA) model. Here the transition is driven by a hidden
two state Markov chain. A time series z; is said to follow a two state MSA model if

- co + 25;1 Goiti—1 + €9 if s =0, (4 4)
t L+ Gt e i s =1, .

where s;, taking values in {0, 1}, is a first order Markov chain with transition prob-
abilities

P(St = ]-|St—1 = O) = Wy and P(st = O|St—1 — 1) = w;.

The series {e;} and {e;} are mutually independent white noise series. 1/w; is the
expected duration of the process to stay in state i. An MSA model thus uses a hidden
Markov model chain to govern the transition from one conditional mean function to
the other. This is a differentiating factor from the SETAR model where the transi-
tion is determined by the value(s) of lagged variable(s). As a consequence, a SETAR
model uses a deterministic scheme to govern the model transition whereas an MSA
model uses a stochastic scheme.

In practice, the stochastic nature of the state in an MSA model implies that one is
never certain about which state x; belongs to at any given time instant . When
the sample size is large, one could possibly use some filtering techniques to draw
inferences on the state of z;. In contrast, as long as x;_4 is observed, the regime
of x; is known in a SETAR model. This difference has important practical conse-
quences in forecasting. For example, forecasts in an MSA model are always a linear
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combination of forecasts produced by sub-models of individual states. But those of
a SETAR model come from only a single regime provided x;_, is observed.

Forecasts of a SETAR model also become a linear combination of those produced
by sub-models of individual regimes when the forecast horizon exceeds d, the delay
parameter. It is much harder to estimate parameters in an MSA model than in other
models since the states are not directly observable. Hamilton (1990) [26] used the
EM algorithm, a statistical method involving iterations between taking expectations
and maximizations, while McCulloch and Tsay (1994) [42] considered a Markov chain
Monte Carlo (MCMC) method to estimate a general MSA model.

McCulloch and Tsay (1993) [41] generalized the MSA model in Equation (4.4) by
considering the transition probabilities wy and w; to be logistic or probit functions
of some explanatory variables available at time ¢ — 1. The MSA model can be
generalized to the case involving more than two states. However, the computational
intensity involved in estimating the model increases rather rapidly. For more on
Markov switching models in econometrics, see Hamilton (1994, Chapter 22) [27].

4.2.4 The functional coefficient autoregressive (FCAR) model

The phenomenon of differences in characteristics of increasing and decreasing pat-
terns of a typical financial time series motivates one to consider models with time-
variant parameters. The simple linear model can be extended to incorporate such
time varying parameters. The functional coefficient autoregressive (FCAR) model is
such a model. It is an AR model with variable parameters that are in turn driven
by past data. More precisely, the model is as follows :

P
Ty = E GriTi—; + €
i=1

where {¢;} is a white noise process and ¢y; represent the dynamic AR coefficients.
These parameters are assumed to be functionally driven by past data as ¢, =
fixi—1, ..., 24—q) for some lag gq. Kernel regression and local linear regression, as
described in the last section, are typically used to estimate these functional parame-
ters. While the functions, f;(.), are assumed to have some properties like continuity
and twice differentiability, research into stability and stationarity properties of the
FCAR model has been somewhat limited.
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4.2.5 The nonlinear additive AR model

A major difficulty in applying nonparametric methods to nonlinear time series mod-
eling is the curse of dimensionality. Considering a general nonlinear autoregressive
model of lag p as

= f(ze1,... 7‘rt—p> + €,

we see that estimating f(.) without assuming any form of f would require p-dimensional
smoothing. This is hard to do when p is large, particularly when the available data
size is small. One way of going around this problem, without assuming any para-
metric models, is to assume an additive form of f(.). That is, assume

f(ﬁt—l, e 7$t—p) = Z fi(xt—i)~
i=1

With such a model, only 1-dimensional smoothing is required to estimate the function
in a nonparametric way. The nonlinear additive AR (NAAR) model is thus defined
as

m=folt)+ ) filwi) + e
i=1

where {¢;} is a white noise process, f;(.) are nonparametric functional coefficients
with fo(t) representing the time dependent trend component.

4.2.6 The nonlinear state-space model and neural networks

A simple state-space model for time series modeling is as follows :

st = fi(se—1) + uy, zy = ge(St) + v,

where s; is the unobservable state vector, z; is the observed time series, f;(.) and
g+(.), the transition functions, are known functions of some unknown parameters and
{u;} and {v;} are mutually independent white noise series. Monte Carlo methods
are typically used to estimate the transition functions while the use of smoothing
and Monte Carlo Markov chain (MCMC) methods is somewhat limited.

With advances in computing technologies, neural networks have been used in analyz-
ing nonlinear time series data. Section 10 of Ripley (1993) [54] gives some remarks
concerning applications of neural networks in financial applications.
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4.2.7 Nonparametric models

There exist financial and econometric applications where one may not have sufficient
knowledge about the dependence structure within the data. Yet, one is interested
in analyzing the functional relationship that drives the data. In such situations, one
could turn to nonparametric methods. However, these methods have a cost asso-
ciated with them. They are highly data driven and can therefore easily result in
over-fitting.

Smoothing is central to non-parametric methods and models. Consider the following
dependence structure.

ye = [(2¢) + &,

where {(z,v;)} is a two dimensional time series with z; driving y; by the relationship
function f, and {¢;} is a white noise series. Suppose we are interested in estimating
the dependence function f. To start with, suppose further that we are interested in
estimating f at a particular value x of x;. That is, we are interested in estimating
f(z). Suppose further that for z; = x, we have s repeated independent observations
iny as {Y.1,--.,Yzs}- Then, we have that

ym:f(l')‘f‘am, i=1,...,s.
Taking the sample mean for this sample, we have

S S
Ui 1 Gy
ym — 22—1 yIl _ f(.fL') + Zz—l .’m.
s S
By the law of large numbers, the average of the innovations converges to zero as
s — oo. Therefore, the sample average, 7, is a consistent estimator of f(x). This
demonstrates the method of smoothing.

In most real-life data oriented applications, we do not have the luxury of repeated ob-
servations like in the above example. But if the dependency function f is sufficiently
smooth, then y,(= f(x;)), for which z; &~ z, still provides a good approximation for
f(z). Similarly, y; for which x; is far away from x provides lesser reliable information
regarding f(z). This leads to the idea of using a weighted average of y; with the
weights being inversely proportional to some distance metric between z; and x. More
precisely, given a time series data {z} = {xy, 5, : t = 1,..., T} with a dependence
function f, we can write a smoothed estimate of f(x) as
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T
f(I) = Zw(m, th)yt,
i=1
where w is the standardized weight function such that .. w(z,z;) = 1. Tt is clear
from the above equation that the estimate is simply a locally weighted average with
weights determined by the distance metric used and the weight function w. Kernel
regression and local linear regression are two examples of smoothing techniques to
estimate dependence functions.

4.3 The bilinear model

4.3.1 The univariate bilinear model

A natural way to move from linear to nonlinear models is to introduce quadratic
terms in the model equation. One can thus formulate a general second order model
for a time series as follows :

p a
Ty =+ E Bixi—; + E Vj€t—j
i=1 j=1
pI:E q:l:z
+ E E NawijTi—iTi—j
i=1 j=1

Pee Qee (45)

+ Z Z Neeij€t—i€t—j

i=1 j=1
pCEe qze

+ Z Z NaeijTe—i€t—;
i=1 j=1

+ €

The first line of the above equation, consisting of the first three terms, is simply
an autoregressive moving average (ARMA) model. The other three terms are the
quadratic terms, of which, the last one considers cross products between innovations
and the series itself.

The bilinear model focuses on this last heterogenous term and does not consider the
homogenous terms involving only the innovations and series terms respectively. The
reasons for avoiding the homogeneous terms is because these terms make the model
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less tractable and less stable. More precisely, the quadratic terms involving only
the innovations makes the model non-invertible. This is not desirable since from an
application point of view, invertibility is essential. For example, forecasting is an im-
portant application in time series modeling and lack of invertibility makes prediction
a hard problem. On the other hand, homogeneous terms involving only the series’
terms renders the time series hard to analyze, which, from an analysis point of view,
makes studying the properties of the series difficult.

A bilinear model of order (p, ¢, r, s) is defined as

P q
Ty =+ Z Bixi—i + Z Vi€t—j
i=1 j=1

+ Z Z NijTi—i€—j

i=1 j=1
+ €

(4.6)

Special extensions of the bilinear model incorporate conditional heteroscedasticity as
follows :

P q
Ty =+ Z Biwi—i + Z V;€t—j
i=1 j=1

+ Z Z NijTi—i€—j

i=1 j=0
+ €

(4.7)

The subtle difference in the conditional heteroscedastic bilinear model is the inclusion
of cross-product terms involving the current innovation and past series values in the
definition of the current series value. In this chapter, we will focus on univariate
bilinear models and robustly estimating their parameters.

Bilinear model categories

Bilinear models are typically classified into three categories. These are the diagonal,
sub-diagonal and super-diagonal bilinear models. While the sub-diagonal model’s
cross-product terms look like
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T S
E E Ty—i€t—j,

i=1 j=1
j<i

the super-diagonal model’s cross-product terms look like

T S
E E l't_z‘et_j.

i=1 j=1
G>i

Finally, the diagonal bilinear model’s cross-product terms are given by

-,
g Li—i€t—i-
i=1

Analysis

Bilinear models are known to be able to model occasional large fluctuations in time
series. Figure 4.1 depicts an example. One can see the intermittent large fluctua-
tions in the series that characterizes the occasional large variance. In such situations,
bilinear models are useful in modeling time series where the conditional variance is
stochastic.

These models have been studied extensively in the literature. An early paper is
Granger and Anderson (1978). The bilinear model is so called because it has linear
components in z; and ¢; separately. In this section, we will briefly study some prop-
erties of simple bilinear models.

In order to demonstrate the properties of bilinear models, they are often put in a
matrix form. That is, Equation (4.6) is written as follows. Define

Ty
Yyt =
Tg—1+1

and
€t
Zy = )

€t—q
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Figure 4.1:
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where [ = max(p,r). Now define the [ x [ matrices
Br B2 ... B 0 .00
1 0 ... 0 0 ... 0
A = o 1 " 0
0 0 0O 1 0
and
Mj  12; ey 0 ... 0
0 O 0 ... 0
B =
0 0 0 O 0
and the [ X (¢ + 1) matrix
I m Ya
0 0 0
C—
0 0 0
With the above notations, Equation (4.6) can be written as
vyt = Ayi1 + Czg + Z Bjyt-16-5, (4.8)
j=1
which can further be simplified as
Yt = (A + Z Bjet—j)Yt—l + CZt. (49)
j=1
In the case where s = 1 and ¢ = 0, the above equation reduces to
€t
0
ye = (A+Be1)ye1+ : (4.10)
0

Akamanam et al. (1983) [1] showed that under the conditions
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E(e) =0 and E(e) =02 < oo, (4.11)

Equation (4.10) has a strictly stationary solution provided the maximum eigenvalue
of the matrix

A®A+0’BeB

is strictly less than unity. Here, we can see that the eigenvalues of the matrix B need
not necessarily be less than unity. This can be explained by looking at the dimension
of the components of B. If we call the dimension of the returns series d,,, then the
dimension of the components of B is d, 1 and hence these components are expected
to be of order (100,)~! which can take values larger than unity. The reason for
dividing by 10 is that otherwise, the product bx;_;,_; (b being a component of B)
could explode. In other words, looking at the product, we could expect bz, ;| < 1
for the product to not explode.

Marginal Distribution

While the conditional distribution of x; in a bilinear time series model is the same,
F,, as that of the associated white noise process {€; }icr, its marginal distribution is
not easy to compute. This can be demonstrated by looking at the (0, 0, 1, 1) model.

t—1
Ty =aTi_ 161+ € =€+ Z aiet,iﬂézlet,j
i=1
This equation shows that z; is a sum of random variables that are in the form of a
product of i.i.d random variables. Distributions of products of up to three Gaussian
variables have been computed. However, as is seen, the products involved in the
summation are O(t).

However, it is possible to compute the first and second moment of this marginal
distribution. These are given below.
Elz;) = ao?

and

1_(a20.2)t
_ 2 2.4 2 4
Var(z,) = o2 + a°; - a%} —a‘o
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where 72 is the fourth moment of ¢;. We will now study two simple bilinear models,
the (0,0, 1, 1) and (1, 0, 1, 1) diagonal bilinear models and understand their behavior.

The (1,0,1,1) bilinear model

We consider a bilinear (1,0,1,1) model given by :

Ty = bTi_1 + ami_161 + € (4.12)

where {€;} is a white noise process with distribution F, and variance o?. We start
the analysis of this model by looking at the conditional distribution. Given the past
information until time ¢ — 1, it is easy to see that

2
$t|1’t—17 Tp2,y... ™~ Fe(bxt—l +ar;_ 161, Ue)-

That is, the conditional distribution of the present X, value given the past informa-
tion until time ¢t — 1 is centered around bx;_1 4+ ax;_1€;_1 with standard deviation o..

Next, we look at stationarity and causality in the context of this simple bilinear
model. Similar to the definition in the linear time series case, the definition of
causality for a general bilinear model as defined in Equation (4.6) is as follows. A
bilinear process {x;} of order (p,q,r,s) is said to be causal if there exists a measur-
able function f: R* — R, such that z; = f(e;, ¢1,...) a.s. forall t € (0,£1,...).

For the simple bilinear model defined by Equation (4.12), Pham and Tran (1981)
[48] have shown that the condition

b +ao? < 1 (4.13)

is necessary and sufficient for the existence of a causal stationary solution. Similar
results for higher order bilinear models can be found in Liu and Brockwell (1988)
[36]. From Equation (4.12), it can be seen that the variance and autocovariance
of a stationary solution will involve higher order moments. This is because of the
presence of cross-product terms in the model equation. By repeated substitutions in
Equation (4.12), we get the following :

o0

Ty = Z et_iﬂé-zl (b + CLEt_j).

i=0
Thus, when condition (4.13) is met, the above expression shows that that this bilinear
process is causal. Under stationarity and a Gaussian white noise, we can compute the
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stationary mean, variance and autocovariance functions for the (1, 0, 1, 1) bilinear
model. These computations give us the following.

a0
Mz = 1 — b’
5 y 1+ atc? +a?{(1 —b)*11/0? — 20%(1 — V*)} + 4b(1 — b)a’o?

Te =70 = 0 (1—b2(1 — a202) ’

a~o

1-0

2 4
€

" = by +

and

Ve = bye—1, k> 1

We can see that the autoregressive parameter a drives the autocovariance function.
The stationarity condition given in Equation (4.13) ensures that |b| < 1 which ensures
that the autocovariance function diminishes with the lag. The lag-1 autocorrelation
is positive irrespective of the model parameters. The sign of the stationary mean,
iz, is determined by the sign of the bilinear parameter, a. The stationarity condition
given by Equation (4.13) ensures that b # 1 which in turn ensures that the above
mentioned moments are well defined.

The (0, 0, 1, 1) Bilinear Model

In this section, we will study the most simple diagonal bilinear process, the (0, 0, 1,
1) bilinear model. This is given by

Ty = ATr—1€—1 T €,

where {€;} is a white noise process with variance 2. Simple arithmetic shows that,
under stationarity, the stationary mean and variance of the process are given by

2 2 o1 +a'ol +a*(r!/o? — 207)
[y =aoc>, o:=7Y=0 :
RO 6 1= a2

where 74 is the fourth moment of the white noise ¢;. The stationarity condition in
this case reduces to a?c? < 1. Further, simple calculations yield the following.

a’cd k=1
%:{ 0 k>1 (4.14)
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The mean corrected version of this model is as follows :

Ty =b+avi_16_1 + €,
where b is the new term in the model that, when equal to —ao?, renders the stationary
mean of the series zero. The general stationary mean and variance of this model is
. =b+aoc?

and

2 = el atol +a(rd/o¢ —20¢) + a®b(b+ aoe)

* ‘ 1 — a?0?

The stationary covariance in this case is given by

2 2 _
%:{ acZ(b+aoc?) k=1 (4.15)

4.3.2 Outlier propagation in bilinear models

In a VAR(p) model, we saw how an additive outlier at time index ¢ transforms into
(p+1) outliers in the associated regression model as p outliers in the regressor and
one outlier in the response variable. A similar but much more serious effect exists
in bilinear models. This is because, a single additive outlier at index t corrupts the
entire dataset in the associated regression model starting from that index. This is
demonstrated in a (0, 0, 1, 1) bilinear model next :

Ty = ATy 16t 1 + €,y

where {¢;} is a white noise process with variance o2. By repeated substitution, this
equation can be rewritten as :

t—1 t—1

xt:—Z( a)'z? ZH’ Lo ]—i—et—Zaet ZHz e+ e (4.16)

i=1 i=1

From the above formulation, it is clear that a single additive contamination at index
s shows up as an outlier, not only in the response variable at index s, but also in
the impulse variables for all further data points. Again, as in the VAR case, the
effect of this outlier on further regression data points diminishes according to the
parameter a and the distance t — s. However, recalling the stationarity condition for
a bilinear model, it is seen that the parameter a can take values greater than unity
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in modulus for a sufficiently small o2. Hence, the dampening effect of the outlier in
the regression data indirectly depends on the variance of the white noise process.

Thus, for a given bilinear series {x; : t = 1,...,2T+1}, any additive contamination at
or before the time index T, contaminates more than 50% of the associated regression
data and thus any estimator will break down in such a scenario. This is a serious
drawback of estimators based on residuals like the least squares, Generalized M,
least trimmed median of squares and S estimators. The drawback can, however,
be alleviated to some extent by using robust filters to compute the residuals as
introduced by Masreliez (1975) [40]. Further research in this direction can be found
in the work of Muler et al. (2009) [45] who introduces the Bounded Innovation
Propagation ARMA (BIP-ARMA) model to limit the affect of a single outlier to a
single data point within the associated regression model.

4.3.3 Parameter estimation for a simple univariate bilinear
model

We now look at parameter estimation techniques for the (0, 0, 1, 1) diagonal bi-
linear model discussed before. The conditional maximum likelihood (MLE) method
(conditional on the first max(p, ¢, r, s) data points) is commonly applied to estimate
parameters in bilinear models. When the white noise is assumed to be Normal, the
conditional MLE reduces to the method of nonlinear least squares.

It is easy to see that the optimization problem does not have a nice closed form
solution as in the usual linear regression problem. The Newton-Raphson method
can be applied to compute the nonlinear least squares estimate of the autoregressive
parameters. Alternately, an iterative least squares procedure can also be used to
compute the estimate.

Like in the case of vector autoregressive models, the application of robust methods
in analyzing bilinear models has been somewhat limited. Gabr (1998) [21] studied
the application of the generalized M-estimator in the estimation of parameters in
bilinear models. However, little is known about the asymptotic properties of this
estimator in the bilinear model context. As a second aim of this thesis, we will
study the application of the S-estimator to the univariate bilinear model parameter
estimation problem. In particular, we will compute and analyze the S-estimator for
the (0, 0, 1, 1) bilinear model.
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The (0, 0, 1, 1) bilinear model estimation
Recall the definition of the (0, 0, 1, 1) diagonal bilinear model. This is given by :

Ty = QATp_1€41 + €¢, (417)

where {z; : t = 1,..,T} is the time series in question and {¢ : ¢t = 1,.. T} is the
associated white noise process with variance o2.

The least squares estimator

In this case, the optimization equation of the least squares method for estimating
the sole parameter a is given by :

Minimize Y 1, r?(a),
where r,(a) = z; — ar;_1x;_1 are the residuals.

Pham and Tran (1981) showed the consistency of the nonlinear least squares esti-
mator for a first order bilinear time series which is the (1, 0, 1, 1) bilinear model.
Liu (1990) [34] further analyzed the asymptotic distribution of this estimator under
some conditions. Next, we will briefly look at how to compute this estimator and its
asymptotic properties.

The diagonal bilinear model as given in equation (4.17) can be written, as in equation
(4.16) as :

t—1

Ty = — Z (—a)ixt,iﬂézlxt,j + €.

i=1

Hence, the residuals are given by :

t—1

ri(a) = Z (—a)imt,iﬂzzlxt,j + 2.

i=1

The least squares estimator is the solution to :

> ri(a)ri(a) =0

From the definition of the residuals, we can simplify the above to :
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T

Z (v — axy_yri_1)ry(a) =0

t=2
One can now expand r¢(a) and 7,(a) in the above equation using the definition of
the residuals and perform a Newton Raphson procedure to compute the solution.

Given weights {w; : t = 2,..., T}, the weighted version of the nonlinear least squares
can be done by solving for the weighted version of the above equation given by

T
Z (v — axy_qri_1)ry(a)w, = 0

t=2

Liu (1990) showed that when

E[r*(ag)] < oo, and E[|r](ag)|] < oo,

where aq is the true parameter value, i.e., r(ag) = €,

VT (i — ag) % N(0,02/E[r(ag)]). (4.18)
In the case of the diagonal (0, 0, 1, 1) model, the necessary conditions reduce to :

t_
E[( i(—a)i_lmt_iﬂ§:1xt_j)2] < 00
1

—_

)

and

-1
E|| Zz(z —1)(—a) Il 3] < oo,
i=1

Thus, when the above conditions are met, the least squares estimator of the diagonal
(0, 0, 1, 1) model is asymptotically normal as given in equation (4.18).

Pham and Tran (1981) had earlier, in their analysis of the first order bilinear time
series model, left the analysis of the asymptotic distribution open. The reason was
their doubt regarding whether the above mentioned conditions could be met at all.
This is because, as is clearly seen, the terms involved in the sums representing r}(a)
and r(a) are of the type Hézlxt,j and hence higher order moments come into play.
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Rao (1981) [52] studied the general (p,0,r,s) bilinear model and showed that the
maximum likelihood estimator had an asymptotic multivariate Gaussian distribu-
tion. Kim et al. (1990) [30] considered the method of moments estimator for the (1,
0, 1, 1) bilinear model and showed that it was asymptotically normal.

Brunner and Hess (1995) [8] provide a succinct critique of the bilinear model. They
list some undesirable properties of this model with particular emphasis on parame-
ter estimation. The main critique has been the bimodal nature of the maximizing
objective function and the narrow spike that characterizes the true optimum. This
further reduces the power of the associated t-tests for hypothesis testing.

The above mentioned problem can be tackled to a large extent by using advanced
optimization tools like artificial neural networks and advanced computing power to
search a large parameter subspace.

We now look at estimating parameters of a bilinear time series model when the
data is contaminated. In particular, we will look at the S-estimator and analyze its
asymptotic distribution.

The S-estimator

Recall the definition of the S-estimator from the last chapter. For the bilinear (0, 0,
1, 1) model, the S-estimator is defined as

Minimize s? subject to

o o n)fs) = o (119

t=2

where s represents a scale estimate, r,(a) are residuals, n is the sample data size, «
is a constant, typically equal to Er(p(X)) (where F' is the white noise distribution
and X is a random variable having this distribution but with unit variance) and p
is an M function like the Tukey’s bi-weight function. Like before, we use the Fast-S
method to compute the S-estimate.

Given a starting parameter estimate 8,, = (a,, S,) at step n, the improvement step
(I-step, which is the core of the algorithm) is as follows.
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1. Compute the residuals 7#(6,,) = (72(0y), ..., 71(0,)).

2. Compute an approximate scale § of 7(6,,) by applying to Equation (4.19), one
step of any iterative algorithm starting from the MAD (median absolute deviation).
Here, we use the Newton-Raphson method.

Call the median of the computed residuals §,. Then, the one step Newton-Raphson
improvement is given by

5 + Zthl p(74(0y)/5n) — (T — 1)
C ST (4 (0n)/30) (746, /52)

Sn+l =

3. Compute the weights

= L1(0n)/3ns1)
' 72t(on)/gnJrl

(4.20)
where 1) = p'.

4. The improved candidate 6,11 is obtained by a weighted nonlinear least squares
with weights defined by (4.20).

In the case of nonlinear models too, the S-estimator tends to retain its favorable
characteristic of a 50% breakdown point. For more on this, the reader is referred to
Sakata and White (2001) [63].

Asymptotic distribution

Like in Liu (1990), we establish the asymptotic normality of the S-estimator under
some regulatory conditions. However, we will assume consistency of the S-estimator
since simulations support this assumption.

Theorem 4. Consider a (0, 0, 1, 1) stationary bilinear time series, {x; : t = 1,.., T},
given by
Ty = ATr—1€-1 T €,

where {€;} is a white noise process with variance o. Consider the S-estimator of

a, a, with the associated p function given by p(.). Denote by ri(a) the residual of
the t'" observation for a given parameter estimate a. Assume that p'(ri(a)/s) =
¥(ry(a)/s) = r(a)ay where r;*(a) is not a factor of oy and
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1). Ele;oy] =0,

2). ozt is independent of {e;—; : i > 0},

3). Ellr{(a)l] < oo

0. Ellcoai@)?] = o2Elofr?(@)] = ot < .
5). Elrf(a)ay] =72 < o0,

6). w() is redescending and bounded and

7). The S-estimator is consistent.

Then,

VT(a—a) % N(0,0%1 /).

Proof. The proof follows from the standard Taylor expansion of the minimizing equa-
tion. We can do this since the estimator is assumed to be consistent and hence for
a large sample size, we can assume the estimator to be close enough to the true
parameter. The optimization equation of the S-estimator is :

Min s? subject to

—1)> plri(a)/s) =b.

t=2

Using Lagrange multipliers, we get the unconstrained minimization problem as :

Min[s® + M p(ri(a)/s) — b(T = 1)}].

t=2
Differentiating and solving for a gives the same conditions as those for the classical
robust M-estimator, namely :

Zw a)/s)ri(a) = 0.

t=2

From the primary assumption, namely ¥ (r;(a)/s) = r(a)ay, the above equation
simplifies to

Denote
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T
E T’t Oét’f’t
t=

Then, standard Taylor expansion of f () at a gives
0= f(a) = f(a)+ (@—a)f'(a) + Op((a - a)*).

Under consistency, ignoring second order terms, we thus get

_ fla)
f'(a)

A

Since ry(a) = €,

T T T
= Z ri(a)ayri(a Z eoyry(a Z 5.
=2

t=2 t=2

From assumptions 1 and 2, we get

(8] =0 since r4(a) does not depend on ¢

and from assumption 4, we get
E (@2 )=o0 62 Y-

From the central limit theorem then, we conclude that

T-1) KR N(0,0%v,).

ervri(a)/(

]~

fl@) /(T =1) =

t=2

We now look at f’(a). We have that

f'la) =

7} a)a; + ri(a)airi(a) + re(a)agri(a)].

Once again noting that rt(a) = ¢, we can simplify the above to

f'(a) = Z [r?(a)oy + er)(a) + eaqr) (a)].

t=2
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From assumptions 1 and 2 and noting that r}(a) and 7} (a) do not depend on ¢, the
expectations of the second and third term in the summand vanish. From assumption
5, we then get

lim f'(a)/(T' = 1) = 7.

T—oo

Combining the equations governing f(a) and f'(a), we arrive at the desired result
which is

VT(a —a) % N(0, 0271 /2).
]

Note how a; = 1 reduces the estimator to the least squares estimator and conditions
3 and 5 then are exactly as in the least squares case as was given by Liu (1990),
described earlier. Conditions 1 and 2 are met by any standard p function like the
Tukey’s biweight function. Conditions 3, 4 and 5 involve higher order moments and
therefore are similar in nature to the least squares estimator case.

Simulations and Examples

In this section, we will look at an example time series data and a simulated series.

Example 2. The daily log returns of the NASDAQ composite is given in Figure 1.2.
The ACF was plotted and is given in Figure 3.3 and a string lag-1 autocorrelation
was observed. To account for the observed conditional heteroscedasticity in the data
plot, a bilinear (0, 0, 1, 1) model was fitted for a sample of the first 714 data points.
This was done because the iterative methods used to compute the least squares and
S-estimator are of O(n®). A mean correction was not done to maintain simplicity.
To gauge the quality of the model and the fit, the sample data was divided into two
parts. The first part, consisting of 710% (500) of the data, was used to fit the bilinear
model. The second part, consisting of the remainder data (200), was used to calculate
the median absolute forecast error (MAFE). Next, the NASDAQ data was contami-
nated with a single additive outlier (AO). This was done by replacing the data point
at index 495 by 10.0 first and then by 100.0. The parameters were then estimated
under each contamination respectively. The estimated parameters are given in the
following table.
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AO Estimator | Estimate (standard error) | MAFE
0.0 | Least Squares 16.00 (0.0003) 0.0014
0.0 S 16.88 (0.0023) 0.0014
10.0 | Least Squares | —2.32 x 107° (0.0039) | 0.0015
10.0 S 20.16 (0.0002) 0.0014
100.0 | Least Squares | —2.32 x 107° (0.0041) | 0.0015
100.0 S 20.16 (0.0003) 0.0014

As discussed before in the section about outlier propagation in bilinear time series
data, the single additive outlier at time index 495 results in 5 outliers in the regres-
sion model which corresponds to a 1% contamination level in the regression model.
Even such a low level results in drastically altering the least squares estimate. The
S-estimator, however, appears to be reasonably resistant at this level of contamina-
tion. The degree of contamination (10 versus 100) does not seem to be affect either
estimator in any substantial way. This suggests that the contaminant level of 10 itself
1s perhaps higher than the threshold above which the estimators are affected in any
reasonable way.

Another point to note is the value of the estimators when the data is not contami-
nated. The values of 16 and 20.16 are clearly greater than unity which is atypical of
most stationary time series models. However, as discussed before, the stationarity
condition of a bilinear model allows the parameters to be greater than unity in mod-
ulus depending on the variance of the associated white noise process. The estimated
values are of O(10) which corroborates with ﬁ since g, ~ O(0.01).

Simulation scenario 1

We will now present some performance metrics after running some simulations. For
the simulations, for simplicity, we generated 100 samples of size 100 each, of bilinear
(0, 0, 1, 1) data with normal white noise with variance 0.01, and parameter a = 9.0,
that was then contaminated with a single additive outlier by replacing the value at
time index 97, by 10.0 first, 100.0 next, and 1000.0 finally, in three separate contam-
ination scenarios. This translates to a 3% contamination in the associated regression
model. The Fast-S method was applied to obtain the S-estimator of the parameter.
The sole parameter was also estimated using the least squares (LS) method which
is equivalent to the conditional maximum likelihood estimator. Finally, the bias and
root mean squared error (RMSE) were calculated for the two estimators (S-estimator
and the Least Squares) and the following table gives details of the results.
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Additive outlier | LS (Bias and RMSE) | S-estimator (Bias and RMSE)
N/A 7.78 x 107°, 0.03 —1.089 x 107%, 0.031
10 -2.211, 26.34 0.005, 0.032
100 -5.99, 11.28 -0.002, 0.031
1000 -9.69, 8.51 —5.115 x 107°, 0.031

The simulations show how a single additive outlier affects the least squares estimator
while the S-estimator shows some resistance to the contamination.

Simulation scenario 2

In this next simulation exercise, we generated 100 samples of size 100 each, of bilinear
(0, 0, 1, 1) data with normal white noise with variance 0.01, and parameter a = 9.0,
that was then contaminated with additive outliers. Bias and root mean squared
errors (RMSE) were calculated for the S-estimator and the least squares estimator
of the forecast parameter a. The contamination was done by replacing the value at
time index 95 by 100.0 which translates to a 5% contamination in the associated
regression model. The following table gives details of the results.

Additive outlier | LS (Bias and RMSE) | S-estimator (Bias and RMSE)
100 -6.03, 7.93 6.503 x 1074, 0.03

4.3.4 The multivariate bilinear model

As discussed in earlier chapters, multivariate models are important in analyzing
econometric and financial time series data because of the presence of correlation
within various time series data. In this section, we will briefly look at the multivari-
ate bilinear model.

We start with the definition and some properties of the multivariate bilinear model.
This model, of order (p, q,r, s) and dimension d, is defined as

p q r s
Xy = @+ Z Aixe_;i + Z Bjey_; + Z Z CijVec(xt_ief_j) + €4, (4.21)
i=1 j=1

i=1 j=1

where {x¢} is the d-dimensional time series in question, p is a d-dimensional con-
stant vector, A; and B; are d X d square matrix parameters, C;; are d X d* matrix
parameters that dictate how the second order interactions between the innovations
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and series contribute to the conditional mean equation and {e;} is a d-dimensional
vector white noise with covariance matrix X..

Like in the univariate case, multivariate bilinear models are also analyzed by putting
them in a matrix form. Assume without loss of generality, that p > r and ¢ > s and
define the following :

Xt
_ Xt—p+1
Zy = € )
€t—q+1
Ay A,1 A, | B By1 By
I 0 0 | 0 0 0
: | :
0 I 0 | 0 0 0
B=| — — — — — — — — — |
\ 0 0 0
0 | I 0 0
| :
| 0 I 0
€t+1
0
w 0
¢ €t4+1
0
0

and a matrix C which contains the elements of the C;; matrices in a suitable ar-
rangement such that

Z Z Cijvec(yt,ie;_j) = Cvec(zzy).

i=1 j=1
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Then, we can write the bilinear model in a state space form as

zi11 = Bzi + wi + Cvec(zz; ),

Yt = [Id 0 . O]Zt

where I4 is the d-dimensional identity matrix, z; represents the unobservable state of
the system and y, represents the observable output of the system. Since this equa-
tion involves nonlinear terms, namely vec(zyz}), this is an example of a nonlinear
state space system.

The vector bilinear models are estimated using standard nonlinear least squares and
the M-estimator and S-estimator can be used to estimate parameters robustly as
in the VAR case. Having already demonstrated the use of robust procedures like
the S-estimator in the univariate bilinear model, we leave the application of the S-
estimator in the multivariate case open. Apart from other reasons, an important
reason for this is the present lack of use of multivariate bilinear models in real life
applications due to the rather strict stationarity conditions that are hard to verify
empirically.

4.4 Summary

Many financial and econometric time series data exhibit nonlinear characteristics. In
this chapter, we saw some prominent nonlinear models in time series modeling. We
took a brief look at various nonlinear models proposed in literature like the threshold
based, semi-parametric and nonparametric models.

We analyzed the bilinear model in particular since it is the most natural way to move
from linear to nonlinear models. We saw the stationarity conditions associated with
this model and looked at other properties like causality. We also saw the multivariate
version of this model and how it model could be specified in a state-space framework.

We saw briefly the drawback of estimators based on residuals, in estimating bilin-
ear models. This drawback, due to the fast propagation of additive outliers in a
bilinear time series model, can be overcome by using robust filters and models based
on bounded innovation propagation (BIP). Such models seem to be best suited to
time series modeling because of the phenomenon of outlier propagation. Hence, ap-
plication of BIP based models in modeling bilinear time series would give us good
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alternatives to the M and S estimators.

Finally, we applied the multivariate Newton-Raphson method to compute the non-
linear least squares (LS) estimate of the parameters of the bilinear (0, 0, 1, 1) process
and could immediately see its lack of resistance to outliers. As a result, we computed
the S-estimator, using the Fast-S method, which is a robust estimator, and compared
it with the LS estimator. The simulation results demonstrate the advantage of using
robust estimators when there is even little contamination in the data.



CHAPTER b

Conditional heteroscedasticity in time series

5.1 Introduction

As discussed in the earlier chapters, financial and econometric data often exhibit
conditional heteroscedasticity which means that the conditional variance of the data
series varies with time.

The study of the evolution of this conditional variance is important in many financial
and econometric applications. For example, derivatives pricing is highly dependent
on the volatility of the underlying asset’s returns. The well known Black-Scholes
options pricing formula consists of the variance term. Another application is quan-
tifying the Value-at-Risk or VaR of an asset or a portfolio of assets. Finally, the
volatility index of a market has recently become a financial instrument. The VIX
volatility index from by the Chicago Board of Option Exchange (CBOE) is an ex-
ample.

Many statistical models have been proposed in the statistical and econometric liter-
ature to study this aspect of time series. Most of these models deal with specifying
an equation for the varying conditional variance. We saw some simple linear and
nonlinear models in earlier chapters that dealt with the conditional mean equation
governing the evolution of a time series. Combining the two aspects of conditional
mean and variance is typically done by
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1. specifying a mean equation first by testing for serial dependence,

2. using the residuals from the mean equation to test for serial dependence within
the squared residual series,

3. if any serial dependence is found in the squared residual series, then specifying
a volatility model for it and performing a joint estimation of the mean and
volatility equations and finally

4. checking the fitted model for statistical significance of the parameters and re-
fining if necessary.

The first step is done by specifying any linear or nonlinear model for the mean
equation by looking at the partial autocorrelation function (PACF) and having some
understanding of the data context. The second step involves looking at the square
of the residuals and checking for any serial dependence in that series. This can again
be done by looking at the PACF of the squared residual series. If any such serial
correlation is found, then one can specify some volatility equation for the noise ¢;.
Given a time series data {z;} and an associated model it follows, given by

vy = f(@-1, . Tip) T &

where f is a measurable function, a volatility equation can be specified as

€ — O'tét, 0'252 = f(xt_l, T2, )

where ¢ is the shock at time ¢, 7 is its variance and {d;} is a white noise series
with unit variance. Then, one can estimate parameters of the mean and volatility
equation jointly and finally refine the model if any parameters are found to be sta-
tistically insignificant.

The process of joint estimation is not straightforward as one needs to use an iterative
procedure to solve for the estimating equations. This is because the estimating
equation, even in the simplest cases, is highly nonlinear in nature. A further aim of
this thesis is to consider a simple model that incorporates a linear conditional mean
equation and a linear conditional variance equation in a single model and study its
properties. This is the first order diagonal conditional heteroscedastic bilinear model.
This will be the focus of this chapter. Before that, we will briefly discuss some of
the primary models for conditional heteroscedasticity that are in existence today. In
the following section, we briefly look at some volatility characteristics and basics of
volatility model building.



5.2 Volatility characteristics 107

5.2 Volatility characteristics and testing for con-
ditional heteroscedasticity

A special feature of volatility of a financial or econometric series is that it is not
directly observable. That is, as opposed to returns, volatility is not realized. More
precisely, given Ry represents the return at time ¢ and V;? represents its conditional
variance (both {R;}ier and {V;?}ier being stochastic processes), one knows x;, the
realization of Ry, precisely at time ¢ while one does not know o?, the realization of
V2, at any time. Hence, one uses s2 = (2, — fi(24_1,T1_s,...))% as an approximate
realization of V2 (where f,(.) is the conditional mean equation of R, and f(.) is an
estimate of f;(.)). This is analogous to the lack of knowledge of the true variance
of the white noise process in most standard linear regression problems. One uses an
approximation (sample median absolute deviation (MAD) or standard deviation) to
infer properties like asymptotic variance of the least squares estimator.

An an example, the daily volatility is not observable for the daily log return series of
the NASDAQ index. This is because there is only one observation per day for this
return series. However, intra-day data such as fifteen minute returns or the daily
high-low range can possibly be used as an estimate of the daily volatility. This said,
the precision of such estimates warrants some study and analysis.

Then there is the concept of implied volatility. As the name suggests, the volatility
here is derived from some model that implicitly implies the volatility. For example,
if one accepts the hypothesis that asset prices follow a geometric Brownian motion
and the corresponding options are priced according to the Black-Scholes model, then
the Black-Scholes options pricing formula could be used to deduce the volatility of
the asset price series. As seen, the underlying hypothesis is rather strong and in
cases where it is not met, using implied volatility could lead to incorrect modeling
and analysis.

Testing for ARCH (autoregressive conditional heteroscedasticity) effects is the start-
ing point for constructing volatility models. This is done by looking at the squared
residual series and applying the Ljung-Box statistics or Lagrange multipliers test of
Engle (1982) [20], to this series. Conditional heteroscedastic models can be classi-
fied into two general categories. Those in the first category use an exact function
to describe the evolution of the conditional variance, o?, while those in the second
category use a stochastic equation for the same. We will now look at some of the
well known conditional heteroscedastic models currently in use.
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For the remainder of this chapter, we will refer to the conditional mean as y;, con-
ditional variance as o2 and innovation or shock as ¢;.

5.3 State of the art

The autoregressive conditional heteroscedastic (ARCH) model of Engle (1982) uses
autoregression to describe the evolution of ¢2. The primary idea governing this model
is that ¢;, the white noise component of the associated model, is serially uncorrelated
but dependent and that this dependence can be quantified by a simple quadratic
function of lagged values. Mathematically, an ARCH(m) model is given by

€ =0, 0r=ag+ Zaiaf_i, (5.1)
i=1
where {d;} is a white noise series with unit variance and o; > 0 V ¢ > 0. Like
in the AR(p) model, the coefficients must satisfy some regularity conditions for the
ARCH model to be stable, i.e., for o2 to be finite. It can be seen from the above
equation that large shocks (in modulus) are followed by large shocks. This is quite
often observed in financial time series and is referred to as volatility clustering.

ARCH models have some weaknesses. Most important among them is the assump-
tion that positive and negative shocks have the same effect on volatility. In practice,
it is observed that prices respond differently to positive and negative shocks. More
precisely, negative shocks are typically followed by higher volatility than volatility
that follows positive shocks.

The order of an ARCH model can be determined using the partial autocorrela-
tion function (PACF). The parameters can be estimated using the conditional least
squares or conditional maximum likelihood methods. The estimating equations here
are conditioned on the first m shocks which are usually assumed known and hence
dropped from the equation. Post estimation, the model is checked for adequacy by
looking at the standardized residuals

€

€& = —.

Ot

Bollerslev (1986) [7] proposed an extension of the ARCH model called the generalized
ARCH (GARCH) model. The idea here was to use past conditional variances, in
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addition to past shocks, to describe the evolution of o;. Mathematically, a GARCH
(m, s) model is given by

€ = 0104, Ut2 = Qg+ Z aia?—i + Z @'Ut{ia (5-2)
i=1 i=1

where, as before, {d;} is a unit variance white noise process and all parameters are
nonnegative. For stability of the process, the sum of squares of all parameters is
assumed less than unity. The estimation of parameters in a GARCH model is more
involved than in the ARCH case. A two pass estimation method, whereby one es-
timates the conditional mean equation first ignoring any ARCH effects and then
uses the residual series as an observed series to estimate the conditional volatility
model, works well with a large sample size. However, the statistical properties of
this method has not been rigorously investigated.

Just like the autoregressive integrated moving average (ARIMA) model that has a
unit root in its AR polynomial, the integrated GARCH (IGARCH) model has a unit
root in its AR polynomial. More precisely, an IGARCH(1, 1) model is defined as

2 2 2
€& =00, 0 =9+ oo;+(1—ay)eq,

where {d;} is the usual unit variance white noise process and 0 < a; < 1. As men-
tioned in Chapter 1, such processes with unit roots in the characteristic equations
are useful in modeling non-stationary processes. The resulting non-stationarity can
be removed by differencing the series.

In financial return series, the return of a derivative may depend on its volatility. This
is typically the case with speculative derivatives. To model such a phenomenon, one
could use the MGARCH model, where the "M” stands for GARCH in the mean. In
this case, the conditional volatility equation is the same as in the GARCH model
but the conditional mean equation now becomes

! 2
Py = P + €O,
where the parameter c is called the risk premium parameter. The above conditional
mean equation implies serial correlations in the return series x;, now given by

/
Ty = [y + €.

These correlations are introduced by those in the volatility process {o?}. The ex-
istence of a risk premium may thus be another reason that many historical asset
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returns have serial correlations.

We saw earlier that a weakness of the ARCH model is that positive and negative
shocks impact the volatility of further shocks the same way. This weakness exists
in the GARCH, IGARCH and MGARCH models as well. To overcome this, Nelson
(1991) [46] proposed the exponential GARCH (EGARCH) model. In particular, to
allow for asymmetric effects between positive and negative shocks, he considered the
EGARCH(m, s) model given below.

& =0y, In(c}) =ap+

1+ 3 BB

1 Zmi1 ng(5t—1)7
- Zj:l @

where g is a constant, B is the back-shift operator (B(g(d;)) = ¢g(d;—1)), all roots

of the numerator and denominator polynomials have roots outside the unit circle

(meaning that the absolute values of the roots are greater than 1) and finally g(.),
the weighted innovation, is defined as

9(00) = 00, +v{1o:] — El|oc]]},

where # and 7 are real constants. This weighted innovation function serves to induce
the asymmetric effects between positive and negative returns that is observed in real
financial time series data.

Another model used to model asymmetric effects between positive and negative re-
turns is the threshold GARCH or TGARCH model. A TGARCH(m,s) model is
defined as

S m
€ =00, 07 =ag+ Z (i +7iNig)a? , + Zﬁjat{j,
i=1 j=1
where V; is an indicator function for —¢; (i.e., Ny = 1 if ¢, < 0 and 0 otherwise) and
a;,7; and [3; are nonnegative real parameters satisfying conditions similar to those of
the GARCH models. This model uses zero as its threshold to separate the impacts
of past shocks as can be seen in the definition of the indicator function N;. However,
in general, other thresholds can also be used.

The conditional heteroscedastic ARMA (CHARMA) model uses second order inter-
action terms of past shocks to describe the conditional volatility as

€ = €m0t + My,
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Figure 5.1: An example of the weighted innovation function of the EGARCH model.
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where €, = (€,_1,...,€_m) is a vector of lagged values of ¢, available at time t — 1,
{m} is a white noise process with variance o7 and {d¢} = {(ds1, ..., m)" } is a vector
white noise process, independent of {r,}, with covariance matrix Q. The conditional
variance can then be derived as
op = 02 + €€l .

The random coefficient (RCA) model, as the name suggests, considers time-varying
parameters in the conditional mean equation. However, this property also implies
conditional heteroscedasticity. Hence, this is a conditional heteroscedastic model
also. An RCA (p) model is given by

p
T = ¢o + Z (@i + Opi)Te—i + €,

i=1
where {¢;} is a white noise process with variance o2 and {8} = {(0y1,...,04)" } is a
vector white noise process, independent of {¢;}, with covariance matrix Q5. While
the conditional mean of this process is the same as that of an AR(p) process, the
conditional variance is given by

o =02+ (ze_1, ., 1 p)Qs(T1, .., 1),

which is the same form as in the CHARMA model with the subtle difference that
the past shocks are replaced by the past returns now.

All the models mentioned so far are deterministic in that given the past informa-
tion, the conditional volatility of the present returns is perfectly determined. The
stochastic volatility (SV) model, as the name suggests, is stochastic in nature in that
it incorporates randomness in the conditional volatility equation. An SV(p) model
is defined as

p
e = o0, (1— ZaiBi)ln(af) = g + 1,
i=1
where {4,} is a white noise process with variance o, {,} is a white noise process,
independent of {d;}, with variance o2, B is the back-shift operator, oy is a real con-
stant and all zeroes of the associated AR polynomial are greater than 1 in modulus.

In the beginning of this chapter, we saw how joint estimation of the conditional
mean and variance equations’ parameters is a part of the model building process
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for a time series. It was mentioned then that such a joint estimation method is not
straightforward. This is now clear since, as is evident from the ARCH and GARCH
type models seen just now, the conditional variance equations involve past shocks and
variances and hence it is not possible to arrive at an explicit form for the parameter
estimates. A natural way to alleviate this problem is involving past returns in the
conditional variance equation rather than past shocks and volatilities. The main
idea of conditioning the present volatility on past information continues to remain
intact. The parameters can also be interpreted more concretely as contributions from
specific lagged returns. In the following section, we will look at such a model and
analyze its properties.

5.4 A conditional heteroscedastic autoregressive
(CHAR) model

In this section, we will introduce a special autoregressive model that incorporates
conditional heteroscedasticity as well. We will call this the conditional heteroscedas-
tic autoregressive (CHAR) model. A simple CHAR model of order (1, 1) is defined
as follows.

= (a4 fri1) + (1 + yai—q)e,

where {¢;} is a white noise process with variance o2. This model can be regarded

as an AR(1) model with time-varying conditional variance which is again an AR(1)
process with unit mean. We consider the unit mean since any other constant can
be absorbed in the variance, o2, of the associated white noise process {¢;}. How-
ever, this is different from the GARCH process combined with an AR conditional
mean equation. The difference lies in the conditional variance equation. While the
GARCH conditional variance equation links the present conditional variance to the
past conditional variances and shocks, the CHAR model links the present conditional
variance to the past returns directly. This difference has consequences in the model
properties and estimation that we will see later. This model is also a conditional

heteroscedastic (1, 0, 1, 1) bilinear model.

Another aspect of this model is that positive and negative returns have different
impacts on the conditional variance of the future returns. This, as described in the
E-GARCH model, is a desired property of volatility models since it is observed in
empirical financial data. The difference in impact, on the conditional variance, of the
past positive and negative returns can be seen in the CHAR(1, 1) model when one
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considers a negative 7. A negative x;_; means the conditional variance of r; given
x;_1 is proportional to (1 + yxt_l)z which is greater than one. A positive z;_1 by
the same token, lowers this proportion. By a similar argument, a positive v reverses
this effect. That is, when v > 0, positive returns are followed by returns with higher
conditional variance.

5.4.1 Analysis

Under stationarity, taking expectations, we have

,ux:E[xt]:a—i_ﬁ,ux - ,u:r:a/(l_ﬁ)

Thus, for stationarity, we require § # 1. For the conditional mean, we have

Ktjt—1 = E[$t|$t—1a Ti—2, ] = a+ friy.

Moving towards volatility, the stationary variance of this process can be calculated
easily and is given by
2 _ 2 L4294,
o, = 0. :
1— (8 +7%02)
Hence, for this process to be weakly stationary, we need that 3% + %02 < 1. The
conditional variance is given by

ofe 1 = (14 7yw1)°0?.

Under non-stationarity, the variance is given by

op = 0; (8% +7%02) + (1 + 2y, )0’

We can see from this equation that in order for it to have a stationary solution, we
must have that 32 + 7262 < 1. The above equation can be solved for explicitly by
recursively substituting for previous terms. If we start from time index ¢y = 0, then
the solution has an exponential form and is given by

142y
2 2 | 2 2\t 2 x
o, =0 o o .
t (6 +7 e)+ 61_(52_’_720_62)
where 6 is some arbitrary constant. We can see that this solution either explodes or
converges to the stationary solution given before depending on whether 3% +~%0? < 1
or 32 + «?02 > 1 respectively. For 3? + %02 = 1, this has no solution.

(5.3)
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Figure 5.2: An example of the conditional variance of the CHAR(1, 1) model.
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As seen, for the process to have zero mean, « = 0. The parameter « thus plays
a role only in the mean equation. Also, even under non-stationarity, the process
converges to stationarity under the appropriate condition : 3% + ~%¢% < 1. Given
that one is interested in stationary processes (given its tractable properties) and that
this particular bilinear model converges to a stationary process under appropriate
conditions, we will limit ourselves to the stationary case. Note, however, that even
under stationarity, the conditional variance is not constant.

We now examine the autocovariance of this process. The lag-i autocovariance can
be calculated easily as

Yi = Bvi1 with =02

This is the same as in an AR(1) process. Note that the stationarity condition im-
plies |3] < 1 which ensures that the autocorrelation function diminishes as the lag
increases. Figures 5.3, 5.4 and 5.5 show simulated stationary zero mean CHAR (1,
1) models with same parameters but of different sample sizes. One can see the con-
ditional heteroscedasticity in the first figure while the later two figures show the
stationarity of the mean and variance of this process.

Marginal Distribution

While the conditional distribution of r, in a CHAR model is the same, F,, as that
of the associated white noise process {€ }er, its marginal distribution, like in the

bilinear model, is not easy to compute. This can be demonstrated by looking at the
zero mean CHAR(1, 1) model.

xp=axi1 + (L+bry_q1)es = (a+ bep) w1 + €
Expanding x;_; recursively, we get

t—1

Ty = Z et_iﬂj;%](a + be_j).

=0

Like in the bilinear model, this equation shows that x; is a sum of random variables
that are product of i.i.d random variables. The products involved in the summation
are O(t). Yet, if |b| < |a|, then we can ignore O(b®*9) terms (i > 0) in comparison
to O(ab) terms and see that
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Figure 5.3: An example of a stationary zero mean CHAR(1, 1) data of size 100.
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Figure 5.4: An example of a stationary zero mean CHAR(1, 1) data of size 1000.
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Figure 5.5: An example of a stationary zero mean CHAR(1, 1) data of size 10000.
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t—1

i1
Ty ~ Z er—i(a’ + abz €1—j).
=0 §=0

1=

This form of z; now involves only second order product terms and when F,(.) = ®(.),
the Gaussian distribution, the distribution function for the product is given by

Kol
F€2(:C): (06)7

2
TO?

where Ky(.) is a modified Bessel function of the second kind. From this, we can see
that the marginal distribution function of the zero mean CHAR(1, 1) process is that
of a sum of Gaussian and second order products of Gaussian.

However, from the expanded form of x; we can compute the first two moments of
the marginal distribution directly as as given below.

E[I‘t] = Ut = 0
and

1 — (a® + b?0?)t
Var(z;) = af = 062 = (@ 1 o)

As seen above, under the stationarity condition, namely a* + b*0? < 1, we see that
o? converges to the stationary variance of

2
2 O

*T 1= (@ + b%0?)

g

We also see that putting 0 = —be%g) and noting that p, = 0 in Equation (5.3)
gives us the expression we just obtained for the marginal variance.

5.4.2 The general CHAR model

We now move to the general CHAR(p, ¢) model and analyze its properties. A
CHAR(p, q) model is defined as

p q
Ty = (ag + Z aixt,i) + (1 + Zﬁjxt,j)et, (54)
=1

J=1
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where {€;} is a white noise process with variance o2. We can generalize the station-
arity condition here as

p q
Za?%—afZﬁ? <1.
i=1 j=1

The exact form of the stationary variance and autocovariances can be calculated
using the Yule-Walker equations.

The stationary mean of this model is

.= ap/(1— Zai).

Thus, for stationarity, we need Y > a; # 1. The conditional mean is given by

Mjt—1 = Qo + E O,

i=1

which is the same as in an AR(p) process.

An important aspect of this model is to estimate its order. We can use individual AR
and ARCH model characterizations to get an idea of p and ¢. Since this is a nonlinear
model in the parameters, an iteratively re-weighted least squares technique can be
used to calculate the least squares estimator. Alternately, the Newton Raphson
method could also be employed to compute the estimator. Using similar approaches,
one can also robustly estimate the parameters. In a latter section, we will look at
the least squares estimator and the robust S-estimator for a CHAR model.

5.5 The multivariate CHAR model

We saw in earlier chapters the need for multivariate models in time series analysis
due to the presence strong of cross-correlations in multiple time series data. Hence,
we can extend the CHAR model to the multivariate case also. The multivariate
d-dimensional CHAR(p, ¢) model is defined as

Xt = a0+zazxt i +6 ( +Z/63Xt —Jj

=1
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where (a; : 4 > 0) and (B; : j > 0) are now matrix parameters, g is a vector
constant and

€41 0 0
6* B 0 €42 0
t : : . :
0 0 P
where
€1
€ =
€td

is a vector white noise process with covariance matrix .. Note that there are no
cross-product terms involving the white noise components in this equation. This
is because the concurrent and cross dependencies are taken into consideration by
involving cross product terms between returns. Since the vector white noise has its
own dependence through 3., we will not introduce further dependencies by involving
cross product terms between the components of the white noise.

Like in the univariate case, we will start the analysis with the simple multivariate
CHAR(1, 1) model defined below.

<$t1>:[(@01)+(0611 0612)(%1,1)}L
T2 Qo2 Qg1 g2 Tt—1,2
€1 0 [ 1 + B Bz Te-11 ]
0 e 1 521 ﬁ22 Tt—1,2 '
The stationary mean of this model is given by

1
U = Hr1 _ Il —an  —ag Qo1
* Hr2 —g1 1 —ag agy )

Hence, for this process to have a stationary mean, we must have (1 —aq1)(1 — agg) #
Q12021

(5.5)

The stationarity condition for this process is highly restrictive as will be shown now.
For simplicity, we will take a zero mean model; i.e., we will take a¢g = 0. For this
model, the stationary covariance matrix is given by
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2
Ny — 0,1 PrOr10r2
X — 2 9

PrOr10r2 0.9
where
2 2
i N
—_ * * *\]—
) =[I-(« + X2 1)] 03
PrOr10y2 pPO102
where
2 2
* 2 2
o = a3y Qg 2091 (9 ,
Q11Qia1  Q20iag (2091 + Q1 Qg9
o? 0 0
* 2
3= 0 o3 0
0 0 PO102
and
2 2
B By 2611512
* 2 2
/61 = I3 B3 2321322
Bi1Ba1 Bi2faz Bi2fa1 + i
where

S

PO102 0y
As seen, for stationarity, we must have Det[I — (a* 4 X*37)] > 0. This is a very
restrictive condition on the parameters, that too, for the most simple 2-dimensional
zero mean CHAR(1, 1) model. Hence, although the model is able to capture some
interesting properties like conditional heteroscedasticity in a multivariate time series,

it imposes very strict conditions on the parameters for stationarity which makes it
difficult to deal with. Thus, we will proceed further with the univariate case.
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5.6 A zero mean CHAR(1, 1) model identification

In this section we will estimate the parameters of a zero mean CHAR(1,1) model in
the standard as well as robust fashions. We will use the Fast-S method to compute
the S-estimator. In addition, we will compute the nonlinear least squares estimate
and compare the two estimates in the sense of mean squared errors.

Given a time series {z; : t = 1,..,T}, a zero mean CHAR(1, 1) model is given by

Ty = ATy + (1 -+ ba:t—l)et (56)
where {¢ : t = 2,..,T} is the associated white noise process with variance o? and

kurtosis 74

€

5.6.1 The least squares estimator

For this model, the least squares estimator, 6 = (a, ZA)), of @ = (a,b) minimizes the
sum of squares of residuals given by

T

> ri(), (5.7)

t=2

where 7,(6) = 5= are the residuals. Differentiating w.r.t. 0, the least squares

estimating equation then is

> r(@)ri(6) =o. (5.8)

Like in the bilinear model nonlinear least squares estimation, the weighted version
of the nonlinear least squares estimation for the CHAR(1, 1) model is given by

> r(@)ry(O)w, = 0. (5.9)

=2
where {w; : t =2,...,T} are the weights.

Asymptotic properties

We will now derive the asymptotic covariance of the least squares estimator in the
following theorem. However, like in the bilinear model, we will assume consistency
of the estimator as supported by our simulations.
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Theorem 5. Consider a stationary zero mean CHAR(1, 1) process defined as in
Equation (5.6). Denote the associated white noise process by {e;}. Denote the true
parameter by

00 = (ao, bo)

and the least squares estimator by

6 = (a,b)
Define
Oét(a’ b) n 1 + bxt )
If

1. E[at(ao, bo)] =0
2. The least squares estimator is consistent

3. a? being the variance and T being the kurtosis of the associated white noise
process {€; :t =2,..,T} are well defined and finite,

4. B = E[a?(ag, bo)] is well defined and finite and
5. Ele}] =0,

then the least squares estimator, as given by Equation (5.8), is asymptotically normal
with mean Oy and covariance

1{d* 0

B\ 0 52

Proof. Define 1y = ri(ag, bo) and a9 = ay(ag, by). The proof follows from the stan-
dard Taylor series expansion of the optimization equation given in (5.8). Like before,
the assumed consistency of the estimator allows us to do this. From the definition
of the residuals

Ty — Q-1

re =ri(a,b) = .

and the fact that r;g = € it can immediately be seen that
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87”,5
- = —O—
3& (a07b()) t=1,0
and
37}
— = —y_10€
ob (a0.b0) t—1,0¢¢

Let f = Zthg 0Tt (a0, bp). Then, by the above definitions of the partial derivatives,
we can write

£ — ( 23:2 €®—1,0 )

T 2
D o €010

From the definition of ay(a,b)

804,5(&, b) _
da 0
and
Oay(a,b)
T = —0y (CL, b)

Noting that r;y = €, and using the above partial derivatives, the jacobian, r{(ag, by) =
f” = J is then given by

T 2 T 2
- ( Z%:z Qi1 2 Z%:2 €010 )
2 2. 2 :
2> s €019 3 Do € Q10

It is clear from the definition of a1 that it is independent of ¢;. By the Tay-
lor expansion of the optimization equation defining the least squares estimator and
ignoring the second order terms due to consistency, we have

(a,0)" = (ag,by)" = I7'f.
If Elag) =0,

E[f] = E[( e €010 )] — 0.

T 2
D i €110

Now coming to the asymptotic variance, noting that E[e}] = 0, we have
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oz 0 az 0
==/ =il (5 5 ) =5 (T 0.
Hence, by the central limit theorem, we have

£/(T—1) % N(0,3y)
On the other hand, from the definition of the jacobian,

1meT—U_2J_myaum_Epy<é32)_5(532).@m)

T—o0

Combining the limiting distribution of £ /(7"—1) and the limiting value of the jacobian
J/(T — 1) and noting that (X517 = 25, we get that

VT(@,b)" = (ag,bo)"] = N(0, 25" %,35").

From the definitions of 3 ; and X, we arrive at the desired result (which completes
the proof) which is

. o 1 (a2 O
ﬁ[(a,b) — (ap, bo) ]_>N<O’B< 0 97;44 ))

€

O

Note that the condition E|ay(ag,by)] = 0 may not be satisfied in many cases. How-
ever, when this condition is not met, a bias is introduced only in the estimate of
b. In addition, the asymptotic covariance of G remains unchanged. The other con-
ditions regarding the second and fourth moments of the white noise being finite
and 3 < oo are also generally met by stationary time series. Thus, the nonlinear
least squares estimator of a, the forecast parameter, is asymptotically Normal even
if Efoy(ao, bo)] # 0.

5.6.2 The S-estimator

The S-estimator was defined in Chapter 3. Recalling this definition, we have that
the S-estimator, @ = (a,b), minimizes a robust scale estimate s, which is defined as
the solution to the following optimization problem :

Min s? subject to
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T
~1) Y r(0)/) = € (511)
t=2
where ¢ is a constant, equal to E[p(X)] where X is a random variable with the same
distribution as the white noise but with unit variance and r,(.) are residuals for a
given parameter estimate.

Using Lagrange multipliers, we see that the S-estimator satisfies the same necessary
condition as those that are satisfied by the classical robust M-estimator, namely,

T—1) Zp r(6)/s) =0 (5.12)

We will use the Fast-S method to compute the S-estimate. The steps of this al-
gorithm pertaining to the zero mean CHAR(1, 1) model follow. Given a starting
parameter estimate 6,, at step n, the improvement step (I-step, which is the core of
the algorithm) is as follows.

1. Compute the residuals 7#(6,,) = (72(0y), ..., 77(6,)).

2. Compute an approximate scale § of 7(6,,) by applying to Equation (5.11), one
step of any iterative algorithm starting from the MAD (median absolute deviation).
Here, we use the Newton-Raphson method.

Call the median of the computed residuals s,,. Then, the one step Newton-Raphson
improvement is given by

i1 P(7(0n)/30) — E(T — 1)

Spr1 = Sp + T

2= (71(On) /30) (71(On) /57)

3. Compute the weights
U (7(On)/5n+1)

71(0n) /3011

(5.13)

Wt =

where 1 = p'.

4. The improved candidate 6,41 is obtained by a weighted nonlinear least squares
with weights defined by (5.13).
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As mentioned in the last chapter, in the case of nonlinear models also, the S-estimator
in most cases retains a 50% breakdown point.

Asymptotic distribution

Like in the case of the least squares estimator, we establish the asymptotic normality
of the S-estimator for the zero mean CHAR(1, 1) model under some regulatory con-
ditions which includes the important assumption of consistency which is supported
by simulations.

Theorem 6. Consider a stationary zero mean CHAR(1, 1) process defined as in
Equation (5 6). Suppose the associated white noise process is given by {e} with
variance 0. Denote the parameter as 6 = (a,b). Denote the true parameter by

00 = (CL(), bo)
and the S-estimator by
6 = (a,b).
Define
x
ai(a,b) = N —|—tbxt'

Denote p'(x) = ¢ (x). Suppose the following conditions hold :

1. Y(z)

xy(x) where 1/x is not a factor of vy(x)

2. v (z) = xd(x) where 1/x is not a factor of 6(x)
3. Elaw(ag, by)] =

4. E[e* 171(70(@0,190))] =0 V kleN

5. Bl Vsl (r(ag, b)) =0 V kileN

6. ¥(.) is redescending and bounded.

7. The S-estimator is consistent.

8. Ele3] = 0.

9. Ele}] < o0.
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10. B = E[a?(ag, by)] < oo
Define

1. (a,b) = Y(ry(a,b))
2. v(a,b) = v(ri(a,b))
3. 8,(a,b) = 8(r:(a,b))
4. o= Ely(ag, by)]

5. 0% = E[26,(ag, by)]
6. 02 = E[e}v(ao, bo)]
7. 02 = Ele3y?(ao, bo)]
8. 4 = Ele*d,(ag, by)]

9. 72, = El€/vi(ao, bo)]

€y

These are well defined and finite due to the the variance and kurtosis of the white
noise being bounded and the redescending nature of V(.).

Then the S-estimator of this model, as given by Equation (5.11), is asymptotically
normal with mean B¢ and covariance

o2y 0

l (025+a)? .
15} 0 _ Ty
(302, +74)2

Proof. Define

1. ri9 = r(ao, bo)
2. ayy = ay(ao, bo)
3. Y0 = Yi(ao, bo)
4. 540 = 64(agp, by).
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The proof then follows from the standard Taylor series expansion of the optimization
equation given in (5.12). We can do this because we have assumed consistency of
the estimator. From the definition of the residuals

Ty — AT

re =1r(a,b) = T

and the fact that r,g = ¢, it can immediately be seen that

67}
JR— = —
0a |(ag,bo) w0
and
8Tt
— = —u€
b 1(ao,bo) e
From the definition of ay(a,b)
80[15(@, b) _ O
da
and
0 b
00ulB) _ —o3(a.).
From the definition of (a, b), the conditions in the theorem and noting that r;y = €
Oy (a,b
% (a0.b0) = —5t0€tat—1,0
a0,00
and
0ve(a,b
—%éb ) (a0.00) = —5150630%—1,0-

Let £ = 3.7 o1, (ao, by). Then, by the above definitions of the partial definitions,
we can write

f— < Zfzg €40 1040 )

T 2
Zt:Q Et at—15t0

The jacobian, r{(ag, by) = f” = J is then given by
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T 2 2 T 2 3 2
o ( TZt:Q O‘tfl,(](’yto + € 5t0) 2 Zt:QT [Et%oatfl,o + € 5150051671,0] )
2 3 2 2 9 4 92 .

2 Zt:Q [Et’Ytht—l,o + €& 5t0at—1,0] 3 Zt:Q €10 T €& at—1,05t0

It is clear from the definition of a;_; that it is independent of ¢;. By the Taylor
expansion of the optimization equation defining the S-estimator and ignoring the
second order terms due to consistency, we have

(du E)T - (CL(), bO)T =J7'f.
Under the conditions mentioned in the theorem,

Elf] = E[( 22 101070 )] —0.

T
Yoo 6?%-1,0%0

Now coming to the asymptotic variance, noting the conditions of the theorem and

the initial definitions given in this proof, we have

T 06277 0
Sy = BET/(T-1]=5( % 5 ).
Hence, by the central limit theorem, we have

£/(T —1) % N(0,%).
On the other hand, from the definition of the jacobian,

limJ/(T—l):EJ:E[J/(T—l)]:ﬁ(0525+a 0 ) (5.14)

T—oo 0 30627 + 7—645

Combining the limiting distribution of f/(7'—1) and the limiting value of the jacobian
J/(T — 1) and noting that (£7)~! = =7, we get that

N d _ _
VT(a,b)T = (ag,bo)"] = N(0,Z7'Z,271).
From the definitions of 3 ; and 3¢, we arrive at the desired result (which completes

the proof) which is

2

; 1 T 0
VT((a,5)" = (ao, bp)"] % N<O’B R )

(302, +72%)?
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As in the least squares estimator case, the condition E[a(ag,bg)] = 0 may not be
satisfied in many cases. However, when this condition is not met, a bias is intro-
duced only in the estimate of b. In addition, the asymptotic covariance of a remains
unchanged.

Further, the other conditions of the theorem concerning the form of the p and
functions are met by most commonly used functions such as the Tukey’s biweight
function and the Welsch function. Finally, the two conditions concerning the zero
expectations of the products are also expected to be met by the aforementioned
functions since these are even functions in the argument and hence, when the white
noise has a symmetric distribution, so will these functions. Thus, products of odd
powers of the white noise variable and even powers of the functions v(.) and 4(.) will
be expected to have zero expectation.

The conditions regarding the variables introduced being well defined and finite are
expected to be met by most white noise distributions and time series in practical
applications.

5.6.3 Examples

Example 3. In this example also, we will consider the NASDAQ log returns data
as it shows both, a strong autocorrelation at lag 1, as well as clear conditional het-
eroscedasticity. For simplicity, we take a sub-sample of size 1428 starting from the
first time index. From this, we take a sample of the first 1000 data points to fit a
CHAR(1, 1) model and use the sample of the remainder 428 data points to gauge the
quality of the model and fit by computing the median absolute forecast error (MAFE).
Like before, we then artificially contaminate the data with an additive outlier by re-
placing the value at index 500 by the value 10 first, and 100 finally, in two separate
contamination scenarios. We refit this data and recompute the MAFE. In all the
cases, we compute the conventional least squares (LS) estimate using the multivari-
ate Newton-Raphson method and the robust S-estimate using the Fast-S method. The
results, consisting of the estimates and the MAFE, are given in the following table.
The sensitivity of the LS method is seen as the contaminant value increases. Also
note the highly negative value of b which shows that a negative return is followed
by a larger conditional variance compared to the conditional variance that follows a
positive return.
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Outlier Value LS S-estimator
(a,b (standard error), MAFE) | (a,b (standard error), MAFE)

N/A 0.85, -18.10, 3.30 x 107° 0.56, -18.47, 3.29 x 107°
(0.0003), (0.009) (0.0003), (0.011)

10 0.44, 108.08, 3.68 x 10°° 0.33, -26.36, 3.37 x 100
(0.0031), (0.12) (0.0003), (0.009)

100 ST70749, -414, 1287370 0.53, -26.51, 3.37 x 107°
(0.0029), (0.29) (0.0003), (0.098)

5.6.4 Simulations
Scenario 1

In this section, we will present some performance metrics after running some sim-
ulations. For the simulations, for simplicity, we generated 1000 samples of size 100
cach of zero mean CHAR(1, 1) data with normal white noise with variance 0.0001,
and parameters a = 0.7, b = —0.8, that was then contaminated with additive outliers
to varying degrees and the Fast-S method was applied to obtain the S-estimator of
the parameter a. This parameter was also estimated using the least squares method
which is equivalent to the conditional maximum likelihood estimator. Finally, bias
and root mean squared errors (RMSE) were calculated for the two estimators (S-
estimator and the Least Squares). The following table gives details of the results.
The contamination was done by replacing a single data point in the series by 1, 10
and 100 respectively, giving three different contamination scenarios.

Cont. % | Outlier Value LS of a : S-estimator of a :
Bias and RMSE | Bias and RMSE

0 N/A -0.01, 0.06 -0.01, 0.08

1 1 -0.68, 0.71 -0.02, 0.10

1 10 20.69, 0.74 20.02, 0.09

1 100 -0.70, 0.70 -0.01, 0.08

As seen in the table, the least squares estimate shows a marked increase in bias and
variance in the case of a single contaminant while the S-estimator remains resistant.

Scenario 2

In this next simulation exercise, we generated 1000 samples of size 1000 each of zero
mean CHAR(1, 1) data with normal white noise with variance 0.0001, and param-
eters a = 0.7,0 = —0.8, that was then contaminated with additive outliers. Bias
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and root mean squared errors (RMSE) were calculated for the S-estimator and the
least squares estimator of the forecast parameter a. The contamination was done by
replacing a single data point in the series by 100. The following table gives details
of the results.

Cont. % | Outlier Value LS of a: S-estimator of a :
Bias and RMSE | Bias and RMSE
0.5 100 -0.69, 0.70 —9.42 x 107%, 0.02

5.7 Summary

In this chapter, we saw the concept of conditional heteroscedasticity and its role in
time series modeling. Heteroscedasticity is important in time series analysis because
many financial and econometric time series data exhibit this characteristic. We took
a brief look at the various heteroscedastic models proposed in literature such as the
ARCH, GARCH and its variations.

We then defined a special conditional heteroscedastic model that incorporated an au-
toregressive conditional mean equation. This model , the conditional heteroscedastic
autoregressive (CHAR) model, is different from ARCH and GARCH type models
in that it associates the conditional standard deviation with past returns and not
past shocks and volatilities. This model could be thought of as a conditional het-
eroscedastic bilinear model with no other second order terms. We saw the stationarity
conditions associated with this model and looked at other properties like the auto-
correlation functions.

We saw the difficulty in extending this model to the multivariate setup. The primary
obstacle was the rather strict conditions on parameters for the model to be station-
ary. We demonstrated this with the simple multivariate CHAR(1, 1) model.

We then applied the Newton Raphson method to compute the least squares estimate
of the parameters of the zero mean CHAR(1, 1) process and could immediately
see its lack of resistance to outliers. As a result, we computed the S-estimator,
using the Fast-S method, which is a robust estimator, and compared it with the two
least squares estimators. The simulation results show the advantage of using robust
estimators under even slight contaminations.
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CHAPTER 6

Summary

The idea of robust estimation of time series models is central to the aim of this thesis.
While robustness and time series modeling have been vastly researched individually
in the past, application of robust methods to estimate time series models is still quite
open. In addition, with opening up of markets and economies all over the world, the
global economy is all the more highly interconnected. In time series analysis, this
necessitates building multivariate models.

The first aim of this thesis was to study some prominent linear and nonlinear models
in the time series literature. The second aim was to study the multivariate vector
autoregressive (VAR) model to understand cross and concurrent correlations. The
third aim was to study some simple bilinear models in detail. The fourth aim was to
analyze conditional heteroscedasticity in time series models since it is an important
aspect in time series modeling. After examining the state of the art in this area, a
special bilinear model was studied that incorporated a linear conditional mean equa-
tion. We noticed here that even simple conditional heteroscedastic bilinear models
can have very strict conditions on the parameters for stationarity. The multivariate
representation of this model was also analyzed briefly.

Robustness is essential in modeling financial and econometric data yet underrated.
Finally, aspects concerning the robustness of the above mentioned models was stud-
ied. In particular, outlier propagation was analyzed and a robust method, the S-
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estimator, was used to estimate the parameters of the models and compared to the
estimates from the very popular and still widely used, least squares method. The
simulation study showed that even under small levels of contamination, the least
squares method breaks down easily whereas the S-estimator remains largely unaf-
fected.

Given that the area of robust methods in time series modeling is still in its nascent
stages, many further interesting applications remain to be seen in this context. For
example, application of the MM-estimators and the more recent multivariate gen-
eralized S-estimators by Roelant et al. (2009) [55] are interesting prospects in time
series analysis that are yet to be explored in detail. In addition, we saw briefly, the
propagation of outliers in time series modeling and how it can break down even ro-
bust estimators. Here again, the recent work by Muler et al. (2009) on the bounded
innovations propagation (BIP) based models gives us a rich platform from where one
can start tackling the problem of outlier propagation. Further, given the slow tilt of
balance in favor of nonlinear models as opposed to linear ones, study of extensions of
the CHAR type models seems an interesting prospect from the point of view of ex-
plaining the ever growing complex behavior of econometric and financial time series,
thanks to the increasing globalization of the economy.
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