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Abstract

In magnetically confined fusion devices, the energy and particle transport is signifi-

cantly larger than expected from purely collisional processes. This degraded confinement

mostly results from small-scale turbulence and prevents from reaching self-sustained burn-

ing plasma conditions in present day experiments. A better understanding of these nonlin-

ear phenomena is therefore of key importance on the way towards controlled fusion. The

small-scale microinstabilities and associated turbulence are investigated for Tokamak plas-

mas by means of numerical simulations in the frame of the gyrokinetic theory. This model

describes the evolution of the particle distribution functions in phase space together with

self-consistent electromagnetic fields, while neglecting the fast motion associated with the

Larmor orbit of particles around the magnetic field lines.

In the course of this thesis work, substantial modifications to the existing Eulerian

gyrokinetic code GENE have been carried out in collaboration with the Max-Planck-

Institute für Plasmaphysik in Garching, Germany. The code has been extended from a

local approximation, which only considers a reduced volume of a fusion plasma, to a global

version which fully includes radial temperature and density profiles as well as radial mag-

netic equilibrium variations. To this end, the gyrokinetic equations have been formulated

for general magnetic geometry, keeping radial variations of equilibrium quantities, and

considering field aligned coordinates, suitable for their numerical implementation. The

numerical treatment of the radial direction has been modified from a Fourier representa-

tion in the local approach to real space in the global code. This has in particular required

to adapt the radial derivatives, the field solver, and to implement a real space dealiasing

scheme for the treatment of the nonlinearity. A heat source was in addition introduced

to allow for steady state global nonlinear simulations.

An important part of this work also focused on the description of the magnetic equi-

librium. A circular concentric flux surface model as well as an interface with an MHD

equilibrium code were implemented. A detailed investigation concerning the s−α model,

previously used in local codes, was also carried out. It was shown that inconsistencies in

this model had resulted in misinterpreted agreement between local and global results at

large ρ∗ = ρs/a values, with ρs the Larmor radius and a the minor radius of the Tokamak.

True convergence between local and global simulations was finally obtained by correct

treatment of the geometry in both cases and considering the appropriate ρ∗ → 0 limit in

the latter case.
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The new global code was furthermore successfully tested and benchmarked against var-

ious other codes in the adiabatic electron limit in both the linear and nonlinear regime.

A nonlinear ρ∗ scan was in addition carried out showing convergence to the local results

in the limit ρ∗ → 0 and also providing further insight on previous disagreements between

two other global gyrokinetic codes concerning ρ∗ convergence. Linear global simulations

with kinetic electrons have shown consistent behavior with respect to local results.

Using the interface with the MHD equilibrium code, the effects of plasma shaping on

Ion Temperature Gradient (ITG) instabilities were investigated by means of local simu-

lations. A favorable influence of elongation and negative triangularity was observed. It

was shown that these effects could be mostly accounted for by the modifications of the

effective flux-surface averaged temperature gradient. Most importantly, a unique effective

nonlinear critical temperature gradient could be determined for the different considered

elongations and triangularities.

The local code was finally used to investigate particle and energy transport in the

case of TCV discharges presenting an electron Internal Transport Barrier (eITB). It was

shown that at the transition between ITG and Trapped Electron Mode (TEM) dominated

turbulent regimes, the particle flux goes to zero. Interestingly, this effect could be well

reproduced by a quasi-linear approach where all the different unstable wavenumbers are

considered. The nonlinear simulations also revealed that a minimum of the electron heat

diffusivity is observed at the transition between the TEM and ITG regimes. A strong

dependence of this quantity was also noticed with respect to the density gradient. Quan-

titative comparisons with experimental results have shown that a reasonable agreement

could only be reached in regions where the density gradient is small while the flux tube

simulations seem to overestimate the heat transport if one accounts for gradient values

in the center of the transport barrier. Some first nonlinear global simulations appear to

indicate that finite ρ∗ effects could potentially play an important role and thus reduce the

heat diffusivity to realistic values.

Keywords: plasma, tokamak, fusion, turbulence, gyrokinetic, global, shaping, transport

barrier

ii



Version abrégée

Le transport de particules et d’énergie observé dans les machines à confinement magnétique

pour la fusion est bien supérieur à celui attendu en considérant seulement les effets col-

lisionels. Cette dégradation du confinement est le résultat de la turbulence agissant à

petite échelle, qui empêche d’atteindre les conditions nécessaires à une réaction de fusion

auto-entretenue dans les machines expérimentales actuelles. Une meilleure compréhension

de ces phénomènes non-linéaires est par conséquent essentielle en vue d’une maitrise fu-

ture de la fusion comme source d’énergie. Ces microinstabilités, et la turbulence qui

leur est associée, sont étudiées dans les Tokamaks à l’aide de simulations numériques

dans le cadre de la théorie gyrocinétique. Dans ce modèle, le plasma est décrit en ter-

mes des fonctions de distributions des particules dans l’espace de phase, ainsi que des

champs électromagnétiques qui leur sont associés, en négligeant le mouvement cyclotron-

ique rapide des particules autour des lignes de champ.

Au cours de cette thèse, des modifications importantes au code gyrocinétique Eulerien,

GENE, ont été apportées en collaboration avec un groupe du Max-Planck-Institute für

Plasmaphysik à Garching en Allemagne. Alors que le code était initialement limité à

une approche locale, où seul un volume restreint du plasma est considéré, une version

globale a été développée dans laquelle les profils de densité et température, ainsi que

les variations radiales de l’équilibre magnétique, sont pris en compte. Les équations gy-

rocinétiques ont été reformulées dans ce but, pour une géométrie magnétique générale, en

considérant les variations radiales des quantités d’équilibres, et en utilisant un système

de coordonnées alignées avec les lignes de champ. Le traitement de la direction radiale a

par conséquent dû être modifié d’une représentation dans l’espace de Fourier dans le cas

local, à une représentation dans l’espace réel dans le code global. Cette modification a

nécessité d’adapter, entre autres, les dérivées radiales et le calcul des champs, ainsi que

d’introduire une nouvelle méthode d’anti-aliasing dans l’espace réel pour le traitement de

la non-linéarité. Une source de chaleur a également été ajoutée afin de pouvoir effectuer

des simulations non-linéaires dans un état quasi-stationaire.

Une partie importante de ce travail a été également dédiée à la description de l’équilibre

magnétique. Un modèle considérant des surfaces de flux concentriques circulaires a été

introduit ainsi qu’un interface avec un code d’équilibre MHD. Une étude approfondie

d’un autre modèle, le modèle s − α, utilisé dans plusieurs codes locaux par le passé, a

également été conduite. Cette étude a permis de mettre en évidence des incohérences dans
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ce modèle, qui avaient entrainé des conclusions erronnées concernant un accord entre des

codes locaux et globaux pour une valeur élevée de ρ∗ = ρs/a, a étant le rayon mineur du

Tokamak et ρs le rayon de Larmor. La convergence attendue entre simulations locales et

globales a finalement été obtenue en utilisant un traitement correct de la géométrie dans

les deux cas, et en considérant la limite ρ∗ → 0 pour les simulations globales.

Le nouveau code global a été testé et comparé avec succès à plusieurs autres codes dans

la limite des électrons adiabatiques, en régimes linéaire et non-linéaire. Une convergence

non-linéaire en ρ∗ a en outre été conduite, vérifiant la limite locale pour ρ∗ → 0 et perme-

ttant d’apporter un éclairage nouveau sur un précédent désaccord entre deux autres codes

globaux concernant une telle convergence en ρ∗. Des simulations linéaires avec électrons

cinétiques ont finalement montré un bon accord qualitatif avec les résultats locaux.

En utilisant l’interface avec le code MHD, une étude des effets de la forme du plasma sur

les instabilités ITG a été effectuée avec le code local. Un effet favorable de l’élongation

et de la triangularité négative a été mis en évidence. Il a été également montré que l’effet

principal de la géométrie peut être interprété en terme d’un gradient effectif, moyenné sur

la surface de flux. Une observation remarquable de cette étude est l’existence d’un gradi-

ent effectif critique unique pour les différentes formes dans les simulations non-linéaires.

Le code local a finalement été utilisé pour modéliser le transport de particules et de chaleur

dans une décharge TCV présentant une barrière de transport électronique (eITB). Il a été

montré qu’au niveau de la transition entre les régimes dominés par les ITG et TEM, le

flux de particules s’annule. Il est intéressant de remarquer qu’un tel comportement peut

être reproduit au moyen d’une approche quasi-linéaire dans laquelle tous les différents

modes instables sont pris en compte. Les résultats non-linéaires ont également révélé

l’existence d’un minimum du flux de chaleur électronique à la transition entre les régimes

TEM et ITG. Une grande variabilité de la diffusion de chaleur électronique a également

été observée en fonction du gradient de densité. Des comparaisons avec des résultats

expérimentaux ont montré qu’un accord entre théorie et expérience est seulement possible

dans les régions de faible gradient de densité alors que les simulations flux-tube semblent

surestimer le transport de chaleur si l’on considère les gradients au centre de la barrière.

Une étude préliminaire au moyen de simulations globales nonlinéaires semble indiquer

que les effets de ρ∗ fini pourraient jouer un rôle important et par conséquent permettre

d’obtenir des valeurs de diffusivité plus réalistes.

Mots clefs: plasma, Tokamak, fusion, turbulence, gyrocinétique, global, forme, barrière

de transport
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1 Introduction

Since the industrial revolution, which has seen a transition from traditional economies, es-

sentially based on muscle power, towards more complex systems based on external energy

sources, such as coal and steam power, the world energy consumption has been contin-

uously increasing: it has for instance doubled from 1970 to 2009 [1]. Nowadays most

of human activities heavily rely on fossil fuels, such as oil, gas or coal, which represent

82% of the world energy consumption, while the remaining is divided between renewables

(12%) and nuclear energy (6%). Fossil fuels are not renewable, at least not on a human

time scale, and estimates, based on the actual energy demand trend, show that the known

resources of fossil fuels will be depleted in a time scale ranging from 40 years for oil to

two hundred years for coal [2]. In addition to availability issues, these resources, espe-

cially oil, are not equally distributed geographically, often leading to strong geopolitical

tensions, which will inevitably increase as the resources diminish. Finally, the burning

of fossil fuels is also believed to have a strong impact on our environment through the

resulting CO2 emissions, which, in the scientific community, are widely considered to play

a significant role in the present global warming. These different economic, geopolitical,

and environmental aspects show how important it is for our societies to undertake strong

political commitments to reduce our dependence on oil, gas and coal. This will in par-

ticular require to increase the usage of existing alternative energy sources and envisage a

different way of using energy. In parallel to these efforts, research is being carried out to

investigate the feasibility of a potentially new energy source on earth, in fact the same

energy that fuels the sun, namely the nuclear fusion of light elements.

Among the different possible reactions, the fusion of two hydrogen isotopes, deuterium

(2
1H) and tritium (3

1H), has the highest nuclear cross section and is thus considered for
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a future fusion reactor. The products of this reaction are an alpha particle (4
2He) and a

neutron:

2
1H + 3

1H −→ n+ 4
2He + 17.6MeV . (1.1)

Most of the excess energy (14.1 MeV) is carried as kinetic energy by the neutron and

the remaining (3.5 MeV) by the alpha particle. In a power plant, the fast neutrons will

loose their energy by interaction with a dedicated blanket surrounding the device, and the

resulting heat will then be transfered via a working fluid to a steam turbine to ultimately

produce electricity. The fusion reaction is extremely energetic compared to a chemical

reaction, and one kg of deuterium-tritium fuel could potentially cover the need of one

GW power plant for one day [3]. Deuterium is a stable isotope of hydrogen, with a

natural abundance in earths oceans of 0.015% and can be extracted by enrichment and

distillation processes. Tritium, on the other hand, is radioactive, with a half-life of about

12 years, and is thus not present naturally on earth. It can be produced by neutron

induced fission of lithium, which is a relatively abundant element of the lithosphere. In a

reactor, tritium could be therefore produced in situ, using the neutrons from the fusion

reactions, interacting with lithium integrated to the blanket surrounding the device. Based

on the world’s present total yearly energy consumption, the available deuterium would

allow for several billion years of electricity production, while the limiting factor would

be the availability of lithium in land resources, which could nonetheless still cover the

needs for a few thousand years [3]. Lithium could also be extracted from the oceans,

at a higher cost though, and the reserve would then be enough for several million years.

A major positive aspect of fusion energy is therefore the potential availability of its fuel

with respect to other non-renewable energy sources. Another advantage, compared to

nuclear fission power plants, is that a fusion reaction does not generate long-lived nuclear

by-products. A fusion reactor would not be completely free of nuclear waste, as the high

energy neutrons will activate the first wall of the device. However, an appropriate choice

of low activation materials could result in much more manageable waste on a human time

scale than those produced by existing nuclear fission reactors.

In order to obtain fusion reactions, the positively charged deuterium and tritium nuclei

need to be brought to sufficiently high energies to overcome their electrostatic repulsion,

typically of the order of 100 keV. At these high energies, electrons and their nuclei are

2



Chapter 1. Introduction

not bound anymore and constitute a gas of charged particles which is called a plasma.

In such a plasma, the fusion reaction rate is highly dependent on the temperature T ,

density n, as well as the energy confinement time τE. In order to achieve a self-sustained

fusion reaction, referred to as ignition, where the heat resulting from the alpha particles

is sufficient to maintain the reaction, the triple product of these quantities needs to be

above a certain value, which reads for a deuterium-tritium plasma:

nT τE > 5× 1021m−3 keV s . (1.2)

While in the sun the confinement results from the gravitational forces, two different ap-

proaches are envisioned to reproduce these conditions on earth: inertial and magnetic

confinement. In an inertial fusion device, the plasma is heated and compressed using high

energy beams, generally in the form of lasers. The magnetic confinement approach, on

the other hand, takes advantage of the fact that the charged particles which constitute

the plasma follow trajectories essentially constrained to magnetic field lines. The charged

particles are indeed free to move parallel to the magnetic field, but gyrate in a so-called

Larmor orbit in the direction perpendicular to the field as a result of the Lorentz force.

Among different considered devices for achieving magnetically confined fusion, the Toka-

Figure 1.1: Schematic of a Tokamak fusion reactor. Source: Fusion for energy.

mak, on which we shall focus, is the most advanced and studied concept. In this toroidal

device, an axisymmetric magnetic field with both toroidal and poloidal components is

used to confine the charged particles. The toroidal magnetic field is obtained with ex-

ternal coils, while the poloidal component is generated by a toroidal current inside the

plasma, which is itself created by induction with a transformer as illustrated in Fig. 1.1.
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Modeling of microinstabilities

In order to heat the plasma to the required temperature for ignition, about 100 million

degrees Kelvin, several mechanisms may be used, such as ohmic heating from the toroidal

current, Neutral Beam Injection (NBI), and cyclotron resonance heating.

Since its invention in the late 1950s, rapid progress had been achieved in the temperature

and density that could be reached in a Tokamak. It however soon became apparent that

the energy confinement time, essential to reach ignition conditions, was much shorter

than predicted by purely collisional processes, even when so-called neoclassical theory,

which accounts for the toroidal curvature of the magnetic field lines, was considered.

This anomalous energy transport is believed to result primarily from small scale and

low frequency plasma instabilities, referred to as microinstabilities, which are driven by

temperature and density gradients. Among the technical and scientific progress that is

required in the way towards achieving controlled nuclear fusion, the understanding of

microinstabilities and the associated turbulence is a major element, as it directly impacts

the energy confinement time. The study of this so-called microturbulence is the subject

of the present thesis work.

1.1 Modeling of microinstabilities

The term microinstability refers to a large variety of destabilizing mechanisms which

arise from the different dynamics of electrons and ions in an inhomogeneous magnetized

plasma. For typical Tokamak plasma parameters, among the dominant unstable modes

are the toroidal-Ion Temperature Gradient (ITG) and Trapped Electron Modes (TEM).

The toroidal-ITG mode, first identified by Horton and Tang in 1981 [4], is an interchange-

type instability which results from the combined effect of an ion temperature gradient

and the unfavorable curvature of the magnetic field on the low field side (outer edge)

of the plasma. In a Tokamak, the helical structure of the magnetic field allows for the

existence of magnetic mirrors, where particles with a low parallel velocity compared to

the transverse one become trapped. The TEM instability [5] is driven unstable by the

combined effect of the toroidal precessional drift of the trapped electrons and the electron

pressure gradient. A detailed review of ITG modes and TEMs can be found in Ref. [6].
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Chapter 1. Introduction

In addition to these main instabilities, one should also mention the Electron Temperature

Gradient (ETG) modes, driven by an electron temperature gradient, which are the coun-

terpart of ITG instabilities at electron scales [7]. Finally, in the high β limit (β measures

the ratio between plasma and magnetic pressure), electromagnetic modes, the so-called

kinetic ballooning modes (KBM) can be driven unstable [8].

Although some basic understanding of microinstabilities can be obtained with a fluid

approach, an accurate treatment of these modes requires a full kinetic model describ-

ing the evolution of each electron and ion particle species in phase space. In the last two

decades, these instabilities and associated turbulence have been actively studied by means

of numerical simulations in the frame of the so-called gyrokinetic theory, in which the tra-

jectories of particles are averaged over the fast cyclotron rotation around the magnetic

field, thus dropping the information on the gyro-phase and reducing the phase space from

six to five dimensions. A wide variety of codes have been developed to tackle this problem

and among the different physical limits that have been considered, we shall distinguish the

local and global approaches. In the local treatment, the so-called flux-tube approach [9],

only a reduced simulation domain corresponding to a narrow plasma volume aligned with

the magnetic field lines is considered and the radial variations of macroscopic quantities

such as the density and temperature as well as magnetic field are neglected. The main

advantage of this approach is that it can considerably reduce the computational power

required to carry out a simulation in comparison to a global code, which models the full

torus, and significant contributions to the understanding of microinstabilities have been

possible thanks to this approximation. In some cases however, when the characteristic

size of the turbulence is not negligible with respect to the machine size, such as in a

small device, or with respect to a characteristic profile gradient length, such as found in

so-called transport barriers, a global approach may be necessary.

Considering the numerical methods, three main different approaches have been used to

carry out gyrokinetic simulations. In the Eulerian scheme [10, 11, 12, 13, 14], which shall

be considered in this work, the gyrokinetic equation is first discretized on a fixed grid in

phase space and the so-obtained system of ordinary differential equations (ODEs) for the

time evolution of the discretized particle distribution function is then numerically inte-

5



Contribution of this thesis

grated. The Particle In Cell (PIC) method [15, 16, 17, 18, 19, 20, 21], on the other hand,

is based on a Lagrangian description. In this case, the plasma is described by a statistical

sampling of ”markers” in phase space and the method then consists in following their

trajectories. A third method, the so-called semi-Lagrangian scheme [22, 23, 24, 25, 26],

can be seen as a hybrid method between the Eulerian and PIC approaches. At each time

step, the particle distribution function is represented on a fixed grid in phase space, i.e.

an Eulerian description. The distribution is however updated to the next time step by

integrating the trajectories backward in time, starting from each phase space grid point,

and invoking the invariance of the distribution along these characteristics. All these dif-

ferent schemes have their particular advantages and drawbacks. The Eulerian approach,

for instance, is usually computationally more demanding than the PIC method, while

it does not suffer from statistical sampling noise problems faced by the Lagrangian-PIC

method. Since direct comparison with experiment is often not possible, the existence of

such a variety of codes and methods represents a great opportunity, as cross comparisons

and benchmarks enable to increase confidence in simulation results, and provide useful

information to further understand the importance of the different considered approxima-

tions.

1.2 Contribution of this thesis

One of the main goals of this thesis was the extension of the local Eulerian code GENE

[12, 27] to a global version, in collaboration with the group of Prof. F. Jenko at the Max-

Plank-Institut für Plasmaphysik (IPP) in Garching, Germany [28]. This has in particular

required to replace the original Fourier representation used in the radial direction with

a real space treatment, and therefore to modify substantial parts of the code. With re-

spect to the development of the GENE code, the present work has mostly focused on the

implementation of the nonlinear ~E × ~B term in the gyrokinetic equation, the extension

of the magnetic equilibrium models, and an alternative scheme for the treatment of the

gyro-averaging operator. A Krook-type heat source was also introduced in the global code

to allow for quasi-steady state nonlinear simulations. In addition to this implementation

effort, numerous benchmarks and tests were carried out to validate the newly developed
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code, representing a significant part of this thesis work.

The TCV Tokamak, which is located at the Centre de Recherches en Physique des Plas-

mas (CRPP), is a device with minor and major radius 0.24 m and 0.88 m respectively,

toroidal magnetic field on axis 1.4 T and plasma current 1.2 MA, which has the particu-

larity of being very flexible in obtaining various shapes for the plasma. Some experimental

results from this machine [29, 30, 31, 32, 33] and other devices [34, 35] have shown the

beneficial effect of elongation and triangularity on confinement. In order to investigate the

effects of shaping on microturbulence, an interface with the equilibrium code CHEASE

[36] was developed. By comparing gyrokinetic results obtained both with this interface

and the so-called s− α analytical equilibrium model [37], inconsistencies in the standard

implementation of the latter were at first pointed out. The implementation of a corrected

analytical model, referred to as the ”ad-hoc” model, has shown that these inconsistencies

can be removed. The MHD interface was then finally used to address the effect of elon-

gation and triangularity on ITG modes using the local code.

Another specificity of the TCV Tokamak are its powerful and flexible Electron Cyclotron

Heating (ECH) sources, which make it particularly suited for the investigation of experi-

mental electron Internal Transport Barriers (eITBs) scenarios [38, 39]. The local version

of the GENE code was used to address the issue of particle and heat transport for both

electrons and different ion species in the case of realistic eITBs parameters, and compar-

ison with experimental measurement were discussed. One other main goal was also to

compare these local results with global simulations. As a consequence of constraints in

computational power and of some remaining issues with nonlinear global simulations when

considering both kinetic electrons and ions, quantitative comparisons using the experimen-

tal parameters were however not possible during this work. A qualitative comparison was

nevertheless carried out for reduced parameters, still relevant for the TCV Tokamak.

1.3 Outline

The present work is structured as follows. In Chapter 2, the key elements of the deriva-

tion of the gyrokinetic equation and associated field equations are given. These equations

are then expressed in a field aligned coordinate system considering a general magnetic

geometry. In accordance with the global approach, all radial variations of equilibrium
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quantities are at first retained, the local limit being taken and discussed subsequently.

The numerical implementation of the GENE code is then presented in Chapter 3, and the

various modifications required when extending the code from a local to a global version

are addressed. In particular, the new gyro-averaging operator, as well as a real space

dealiasing scheme which is used when dealing with the ~E × ~B nonlinearity are discussed.

Finally, a Krook-type heat source is presented.

Chapter 4 is dedicated to the description of different magnetic equilibrium models which

have been implemented in the code. These include an interface with the MHD equilibrium

code CHEASE and the ”ad-hoc” circular concentric flux surface model. These two models

are valid for both the local and global versions of the code, and a comparison is finally

provided with results obtained using the local s− α equilibrium model.

In Chapter 5, various validations and benchmarks of the newly developed global version

of GENE are presented. A nonlinear ρ∗ scan is in addition carried out showing the im-

portance of global effects on ITG turbulence in small to middle size devices.

Using the interface with the MHD equilibrium code, the influence of plasma elongation

and triangularity on ITG instabilities is investigated in Chapter 6 by means of local linear

and nonlinear simulations. In particular, these shaping effects are interpreted in terms of

effective flux-surface averaged ion temperature gradient.

In Chapter 7, linear and nonlinear local simulations are carried out with the aim of an-

alyzing a TCV discharge presenting an electron internal transport barrier. Inspired by a

previous quasi-linear study [40], ion temperature gradient values for which the electron

particle flux goes to zero are identified. For such particular gradient values, the electron

heat diffusivity is then compared with experimental results. Some quantitative compar-

isons with quasi-linear estimates of the particle flux are also provided. After investigating

the sensitivity of the nonlinear heat diffusivity with respect to some key parameters, an

estimate of global effects for a relevant ρ∗ value is finally given using reduced physical

parameters.

Conclusions are finally drawn in Chapter 8.

Two appendices are also present at the end of the thesis. In Appendix A, we provide some

informations concerning the CHEASE interface, while a description of a local dispersion

equation, used in Chap. 6, is given in Appendix B.
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2 Physical model

2.1 Gyrokinetic theory

Particle and heat transport observed in magnetically confined fusion devices are usually

orders of magnitude larger than those predicted by neoclassical transport theory, which

considers purely collisional processes. This so-called anomalous transport is believed to

result primarily from small-scale fluctuations, referred to as microturbulence, which is

driven by temperature and density gradients. For typical fusion relevant plasmas, the

frequency of the microinstabilities underlying microturbulence is much larger than the

collision frequency and kinetic effects thus need to be retained. Although so-called gyro-

fluid models have been developed [41] in order to account for kinetic corrections in fluid-like

descriptions, providing useful results, the most straightforward and accurate approach

consists in a fully kinetic representation, which describes the evolution of the particle

distribution function in phase space. For each particle species, j, the time evolution of

the associated distribution function fj(t, ~x,~v) is described by the Vlasov equation:

dfj

dt
=
∂fj

∂t
+ ~v · ∂fj

∂~x
+

~Fj

mj

∂fj

∂~v
= 0 , (2.1)

where ~Fj(t, ~x,~v) = qj[ ~E(t, x)+~v× ~B(t, ~x)] is the Lorentz force. The operator d/dt stands

for the total time derivative along particle trajectories. Equation (2.1) thus states that

the distributions fj remain invariant along particle orbits in phase space. The Vlasov

equation is coupled with Maxwell’s equations for computing the self-consistent electric

and magnetic fields ~E and ~B. This would in principle require to solve a nonlinear prob-

lem in the 6-dimensional phase space (~x,~v), with different spatial and time scales varying

by several orders of magnitude: from the Debye length to the machine size (∼ 5 orders

of magnitude) and from the cyclotron frequencies to transport time scales (∼ 11 orders

9



Gyrokinetic theory

of magnitude). Such problem resolution would be out of the scope for today’s computers,

and it is therefore necessary to introduce a set of approximations to retain only spatial and

time scales relevant for the physical phenomena considered here, namely microturbulence.

In Tokamak plasmas, microinstabilities are drift-type waves, characterized by a highly

anisotropic wave vector spectrum. The wavelength parallel to the magnetic field is in-

deed much larger than the perpendicular wavelength (k⊥ � k‖), leading to a quasi-two-

dimensional turbulence in configuration space. From experimental measurements, the per-

pendicular component of the wave vector in core plasmas is of order k⊥ρi ∼ 0.4 [42], where

ρi = vTi/Ωi ' 4 × 10−3 m is the ion Larmor radius, vTi =
√

2Ti/mi ' 9.8 × 105 ms−1

the thermal velocity, Ωi = qiB/mi ' 2.4 × 108s−1 the cyclotron frequency, and having

considered deuterium ions, a typical magnetic field B = 5 Tesla, and an ion temperature

Ti = 10 keV . The characteristic frequency of these fluctuations is of the order of the

diamagnetic frequency w∗ = k⊥ vDi ∼ 2 × 105 s−1, where the ion diamagnetic velocity is

vDi = (Ti/qiB) |∇⊥ lnPi|, with vDi ∼ 2 × 103 ms−1 for a characteristic inverse gradient

length L−1
g = |∇ lnPi| = 1 m−1. The microinstability frequencies are therefore much

smaller than the cyclotron frequency w∗/Ωi ∼ 10−3 � 1, and a time scale separation

between the fast gyromotion of the particles around a magnetic field line and the slower

characteristic time of microinstabilities can therefore be considered. Finally, the relative

fluctuation levels of the microturbulence in the core of the plasma are small compared to

the background equilibrium, typically δn/n ∼ 10−2, where δn stands for the amplitude of

the density perturbation.

The key idea of gyrokinetic theory is to ”average out” the particle gyro-motion from the

Vlasov equation, thus leading to a reduced 5-dimensional problem and eliminating the

high frequency cyclotron time-scale. In this picture, only the information on the guiding

center motion of each particle is retained, together with its finite size Larmor radius,

whereas the phase of the particle on its gyro-orbit is not resolved. From the different

physical quantities described above, the following gyrokinetic ordering is considered:

ω

Ωi

∼ δf

f
∼ e δΦ

Te

∼ |δ ~B|
B

∼ ρi

Lg

∼ ρi

LB

∼ ε , (2.2)
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and

k⊥ ρi ∼ 1 , k‖ ρi ∼ ε , (2.3)

where ε is a small dimensionless parameter, δf, δΦ, |δ ~B| are respectively the fluctuating

component of the distribution function, electrostatic potential, and magnetic field, while

Lg is the characteristic gradient length of equilibrium density and temperature profiles,

and LB the characteristic gradient length of the magnetic field. The typical order of the

gradient lengths are Lg ∼ a and LB ∼ R, where a and R are respectively the minor

and major radii of the tokamak, with the inverse aspect ratio of order a/R ∼ 0.2− 0.4 in

most experiments. In the gyrokinetic ordering, the electromagnetic fluctuations (δΦ, |δ ~B|)

thus represent small perturbations to the particle trajectories in the background magnetic

field ~B.

The nonlinear gyrokinetic equations were first derived in the 1980’s by Frieman and Chen

[43] using an ordering expansion in the small parameter ε. A more systematic approach to

derive such equations based on the Lie transform method consists in introducing a series

of appropriate phase-space coordinate transforms such that the equations of motion for

the particle’s guiding center become independent of the gyro-angle at the desired order

in the small parameter ε. The Lie perturbation method was first applied to guiding

center theory by Littlejohn [44] and applied to the derivation of the nonlinear gyrokinetic

equation considering electrostatic perturbations in Ref. [45] as well as electromagnetic

perturbations in Ref. [46]. A recent review of gyrokinetic theory can be found in the

paper by Brizard and Hahm [47].

2.2 The phase space Lagrangian in gyrocenter

coordinates

In this section, a brief description of the guiding center equation derivation based on

the Lie transform method is given.

We shall first review, following Refs. [44, 48], how one can obtain the equations of motion
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for a Hamiltonian system in an arbitrary coordinate system using the variational principle:

δ

∫
L dt = 0 , (2.4)

where L(t, z, ż) is the so-called phase space Lagrangian. Note that the phase space La-

grangian is obtained from the Lagrangian L(~q, ~p, t) = ~p · ~̇q−H(~q, ~p, t) expressed in canon-

ical variables (~q, ~p), H(~q, ~p, t) being the system’s Hamiltonian, after an arbitrary change

of variables z = z(~q, ~p). The advantage of the variational principle approach is its validity

for any given choice of phase space variables, in particular for non-canonical variables. By

introducing the so-called Poincaré-Cartan one-form γ (sum over indices are implicit):

γ = γµ dz
µ = L dt , (2.5)

where zµ = (z, t), the variational principle (2.4) reads

δ

∫
γµ dz

µ = 0 , (2.6)

which leads to the generalized Euler-Lagrange equations of motion:

ωµν
dzν

dt
= 0 , with ωµν =

∂γν

∂zµ
− ∂γµ

∂zν
. (2.7)

The integrand can then be written in any new coordinate system Zµ using the relation:

γµ dz
µ = γν

∂zν

dZµ
dZµ = Γµ dZ

µ . (2.8)

The equations of motion in the new coordinates are then again obtained by using the

generalized Euler-Lagrange equations (derived this time from δ
∫

Γµ dZ
µ = 0):

ωµν
dZν

dt
= 0 , where now ωµν =

∂Γν

dZµ
− ∂Γµ

dZν
. (2.9)

In the following, we will also make use of the property that the variational principle and

thus the equations of motions remain invariant under a phase space gauge transformation

of the one-form γ:

γ −→ γ + dS , (2.10)

where dS is the exact differential of a scalar function S = S(zµ), called phase space gauge

function.
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The goal of gyrokinetic theory is thus to correctly define the guiding center of the particle

through an appropriate coordinate transformation of the original particle variables (~x,~v) in

the phase space Lagrangian frame work, such that the corresponding equations of motion

are independent of the fast varying generalized gyro-angle (the gyro-angle may itself get

modified by the transformation). In other words, the generalized gyro-angle becomes a

cyclic variable. Through this process, the fast varying gyro-rotation thus gets separated

from the so-defined slow varying guiding center motion. This is achieved systematically to

increasing orders in the small parameter ε, introduced in section 2.1, thanks to successive

combination of phase space coordinate changes based on Lie transforms and phase space

gauge transformations.

We shall now start the description of the actual derivation by writing the one-form γ of

a charged particle in an electromagnetic field:

γ = L dt =

{
~p · ~v −

[
1

2
mv2 + qΦ(~x, t)

]}
dt

=
[
m~v + q ~A(~x, t)

]
· d~x−

[
1

2
mv2 + qΦ(~x, t)

]
dt , (2.11)

having used the relation ~p = m~v + q ~A(~x, t) for the canonical momentum. Assuming no

equilibrium background electrostatic field, the electromagnetic potential fields (Φ, ~A) can

be written:

~A(~x, t) = ~A0(~x, t) + ~A1(~x, t) and Φ(~x, t) = Φ1(~x, t) ,

with the background magnetic field being given by ~B0 = ~∇× ~A0 and (Φ1, ~A1) represent-

ing the electromagnetic fluctuations. The one-form can be similarly separated into an

equilibrium and a perturbation part, γ = γ0 + γ1, with:

γ0 =
[
m~v + q ~A0(~x)

]
· d~x− 1

2
mv2 dt , (2.12)

γ1 = q ~A1(~x, t) · d~x− qΦ1(~x, t) dt . (2.13)

In order to remove from the unperturbed one-form γ0 the fast gyromotion time scale

associated with the background magnetic field, a first transformation to guiding-center

coordinates Zg = ( ~Xg, v‖,g, µg, αg) is introduced, where ~Xg is the guiding center position,

v‖,g = ~v · ~b0 the velocity along the magnetic field, µg = (mv2
⊥,g)/(2B0) the magnetic
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Figure 2.1: Guiding center trajectory in a magnetized plasma (left), and projection of the
particle motion in the plane perpendicular to the magnetic field (right).

moment with ~v⊥,g = ~v − v‖,g · ~b0 , and ~b0 = ~B0/B0 the local unitary vector parallel to

the unperturbed magnetic field. Assuming that the background magnetic field varies

slowly over the Larmor radius (ε ∼ ρi/LB � 1), the motion of the particle in the plane

perpendicular to the magnetic field line is circular to lowest order in ε. The coordinate

transformation from particle variables (~x,~v) to guiding center variables Zg is defined by:

~x = ~Xg + ~ρ , with ~ρ =
v⊥,g

Ω( ~Xg)
~a(αg) , and ~v = v‖,g~b0 + v⊥,g ~c (αg) , (2.14)

where ~a(αg) = cosαg ~e1 + sinαg ~e2 and ~c (αg) = − sinαg ~e1 + cosαg ~e2 are unit vectors

in respectively the radial and tangential directions to the gyro-circle, expressed in the

right-handed local Cartesian coordinate system (~e1, ~e2,~b0), as illustrated in Fig. 2.1, and

αg is the gyro-angle. Up to first order in ε, the unperturbed one-form in guiding center

coordinates Zg reads:

Γ0,g =
[
mv‖~b0( ~Xg) + q ~A0( ~Xg)

]
· d ~Xg +

m

q
µg dαg −

[
1

2
mv2

‖,g + µg B0( ~Xg)

]
dt . (2.15)

after an appropriate gauge transformation Γ0,g → Γ0,g + dS. One notices that after this

process, all gyro-angle dependance has been removed from Γ0,g, so that αg is indeed a

cyclic variable. The associated canonical momentum appears as the magnetic moment

µg, and is thus an invariant of motion of the unperturbed trajectories. We furthermore

express here the phase space jacobian Jg of the transformation from particle variables
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(~x,~v) to guiding center variables Zg:

Jg =

∣∣∣∣∂(~x,~v)

∂Zg

∣∣∣∣ =

∣∣∣∣∂(~x,~v)

∂(~x, ~p)

∣∣∣∣ ∣∣∣∣∂(~x, ~p)

∂Zg

∣∣∣∣ =
1

m3
[det(ω0,ij)]

1/2 =
B∗

0‖

mj

, (2.16)

where the matrix elements ω0,ij are defined in Eq. (2.9), for (i, j) such that Zi, Zj ∈

( ~Xg, v‖,g, µg, αg). In addition, one defines B∗
0‖ = ~B∗

0 · ~b0, with ~B∗
0 = ~∇ × ~A∗0 = ~B0 +

(m/q) v‖,g ~∇×~b0, i.e. ~A∗0 = ~A0 + (m/q) v‖,g~b0.

Let us now carry on by considering the perturbed system. The perturbation contribution

Γ1,g to the one-form in guiding center coordinates Zg reads to order ε:

Γ1,g = q ~A1( ~Xg + ~ρ, t) ·
[
d ~Xg +

1

q v⊥( ~Xg)
~a(αg) dµg +

mv⊥( ~Xg)

q B0( ~X)
~c(αg) dαg

]
− qΦ1( ~Xg + ~ρ, t) dt . (2.17)

In these coordinates, Γ1,g is clearly a function of the fast varying gyro-angle αg. Its

gyro-angle dependence cannot be removed by means of a gauge transformation alone and

a further change of coordinates, using Lie transformations, to the so-called gyrocenter

coordinates Z = ( ~X, v‖, µ, α) is thus introduced. The Lie transforms are continuous, near

identity, coordinate transformations in phase space:

Zg → Z(Zg, ε) = T−1 Zg , (2.18)

where ε is a small ordering parameter and with Z(Zg, 0) = Zg. In the following derivation,

the small parameter ε measures the relative fluctuation level, see Eq. (2.2). The Lie

transform can formally be expressed as

T = exp(−εL) , (2.19)

where L is the Lie derivative operator, which acts respectively on a scalar Fg as:

LFg = gν ∂Fg

∂Zν
g

, (2.20)

and on a one-form Γg = Γg,µ dZ
µ
g as:

(L Γg)µ = gν

(
∂Γg,µ

∂Zν
g

− ∂Γg,ν

∂Zµ
g

)
. (2.21)

where µ and ν run over all indices of the extended phase space (Zg, t) and sums over ν are
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implicit. The Lie transformation is characterized by the so-called generators gν
n defined

by:

gν =
∂Zν

g

∂ε
(Z, ε) . (2.22)

A general expression for the transformation of the one-form Γg resulting from (2.17)

including a gauge transformation, is given by:

Γ = T Γg + dS , (2.23)

where S denotes a gauge scalar field and the operator T stands for an overall transform,

composed of individual Lie Transforms

T = · · ·T3 · T2 · T1 , (2.24)

where the transform Tn enables to carry out the nth order accurate derivation of the

gyrocenter coordinate transform in the small parameter ε, and can be expressed as Tn =

exp−εnLn. Expanding Γg, Γ, S and T in terms of the small parameter ε, the one-form

can be finally written Γ = Γ0 + Γ1 + ..., with:

Γ0 = Γg 0 + dS0 , (2.25)

Γ1 = Γg 1 − L1Γg 0 + dS1 . (2.26)

...

The key idea of this perturbative approach consists, at each order in ε, to specify the

generators and phase-space gauge term so as to remove all gyro-angle dependences from

Γ. A detailed derivation of the one-form in gyrocenter coordinates to first order in ε can

be found in Ref. [49]. One obtains for the generators:

gt
1 = 0 , (2.27)

~g
~X
1 = ~̃A1 ×

~b0
B∗

0‖
−

~B∗
0

B∗
0‖

1

m

∂S1

∂v‖
+

1

q
~∇S1 ×

~b0
B∗

0‖
, (2.28)

g
v‖
1 =

1

m

~B∗
0

B∗
0‖
·
(
q ~̃A1 + ~∇S1

)
, (2.29)

gµ
1 = q

v⊥
B0

~A1 · ~c+
q

m

∂S1

∂θ
, (2.30)
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gθ
1 = − q

m

(
1

v⊥
~A1 · ~a+

∂S1

∂µ

)
, (2.31)

with S1 the gauge scalar chosen as:

S1 =
1

Ω

∫ α
(
qΦ̃1 +

1

B∗
0‖

(~b0 × ~̃A1)µ ~∇B0 − qv‖
~B∗

0

B∗
0‖
· ~̃A1 − qv⊥ ~̃A1 · ~c

)
dα′ . (2.32)

In the above relations, the notation F̃( ~X, µ, α) = F( ~X + ~ρ)− F̄( ~X, µ) is used, where F̄

denotes the gyro-averaging of a given quantity F , defined as:

F̄( ~X, µ) =
1

2π

∮
F( ~X + ~ρ( ~X, µ, α))dα . (2.33)

With this choice for the generators and scalar gauge, the perturbed one-form in gyro-center

coordinates Z = T−1 Zg = ( ~X, v‖, µ, α) finally reads to order ε:

L dt = Γ = Γ0 + Γ1

= (mv‖~b0 + q ~A0 + q Ā1‖~b0) · d ~X +
m

q
µdα

−
[
1

2
mv2

‖ + q Φ̄1 + µ (B0 + B̄1‖)

]
dt , (2.34)

which is indeed such that the transformed gyro-angle α is cyclic, despite the presence of

fluctuating fields. Note that in the following, only transverse magnetic fluctuations related

to A1‖ shall be considered, while the parallel magnetic fluctuations B1‖ will be neglected.

The operator T−1, called the pull-back operator, also enables to transform the particle

distribution expressed in gyrocenter variables f(Z) to the particle distribution in guiding

center variables fg(Zg)
1:

fg(Zg) = (T−1 f)(Zg). (2.35)

Using Eqs (2.20), (2.24) and (2.27)-(2.31), one obtains to first order in ε for the fluctuating

contribution to the distribution function:

fg,1j = f1j +
1

B0

[(
Ωj
∂f0j

∂v‖
− qjv‖

∂f0j

∂µ

)
Ã1‖ + qjΦ̃1

∂f0j

∂µ

]
, (2.36)

where a splitting of the distribution function into a background and perturbation contri-

1Concerning the notation, the character f stands for the distribution function in the original particle
variables (~x,~v), fg for the distribution function in guiding-center variables Zg, and f for the distri-
bution in gyrocenter variables Z. It should be emphasized that f, fg and f all represent the same
physical quantity: the particle distribution.
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The gyrokinetic equations

bution, fj = f0j + f1j, have been considered. Relation (2.36) shall be used later on, when

evaluating quantities such as the density or current density at the particle position, as

described in section 2.7.

2.3 The gyrokinetic equations

Invoking the invariance of the distribution function along the phase space trajectories,

Eq. (2.1), it is straightforward to write the Vlasov equation in gyrocenter coordinates:

dfj

dt
=
∂fj

∂t
+ ~̇X · ∂fj

∂ ~X
+ v̇‖

∂fj

∂v‖
+ µ̇

∂fj

∂µ
+ α̇

∂fj

∂α
= 0 . (2.37)

The required equations of motion for the gyrocenter variables can be evaluated from

the one-form (2.34) using the generalized Euler-Lagrange equations (2.9). Noticing that

~∇× (A1‖~b0) ' ~∇A1‖ ×~b0 +O(ε) one obtains to first order in ε:

~̇X = ~vG = v‖~b0 +
B0

B∗
0‖

(~vE + ~v∇B + ~vc) , (2.38)

v̇‖ = − 1

mj v‖
~vG · (qj ~∇φ̄1 + qj~b0

˙̄A1‖ + µ~∇B0) , (2.39)

µ̇ = 0 , (2.40)

α̇ = Ωj +
q2
j

mj

(
∂Φ̄1

∂µ
− v‖

∂Ā1‖

∂µ

)
, (2.41)

with ~vE the generalized ~E × ~B drift velocity

~vE = −
~∇χ̄1 × ~B0

B2
0

, (2.42)

where χ̄1 is the gyroaveraged modified potential:

χ̄1 = Φ̄1 − v‖Ā1‖ . (2.43)

The grad-B drift velocity is given by

~v∇B =
µ

mjΩjB0

~B0 × ~∇B0 , (2.44)
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and the curvature drift velocity by

~vc =
v2
‖

Ωj

(
~∇×~b0

)
⊥

=
µ0v

2
‖

ΩjB2
0

~b0 × ~∇
(
p0 +

B2
0

2µ0

)
, (2.45)

having made use of the MHD equilibrium force balance relation ~∇p0 = ~j0 × ~B0 and

Ampère’s law ~∇× ~B0 = µ0
~j0 .

To obtain the desired gyrokinetic equation, one still needs to apply the gyro-averaging

operator (2.33) to Eq. (2.37). As α is a cyclic variable, all operators acting on the distri-

bution fj in Eq. (2.37) commute with the gyro-averaging operator (2.33), except for the

term α̇ ∂f/∂α which average out to zero (as fj is 2π-periodic with respect to α). One

thus obtains the so-called gyrokinetic equation:

∂fj

∂t
+ ~̇X · ∂fj

∂ ~X
+ v̇‖

∂fj

∂v‖
= 0 , (2.46)

having made used of Eq. (2.40). Finally, inserting Eqs. (2.38) and (2.39), the gyrokinetic

equation becomes:

∂fj

∂t
+

[
v‖~b0 +

B0

B∗
0‖

(~vE + ~v∇B + ~vc)

]

·
[
~∇fj −

1

mjv‖

(
qj ~∇φ̄1 + qj~b0

˙̄A1‖ + µ~∇B0

) ∂fj

∂v‖

]
= 0 , (2.47)

having identified, notation-wise, the gyro-averaged distribution f̄j to fj.

As already stated, the full distribution function fj is separated into a static background

distribution f0j, representing the equilibrium state, and a fluctuating part f1j:

fj = f0j + f1j , (2.48)

where the perturbed part is assumed to remain much smaller than the static part, f1j/f0j ∼

ε. The background distribution f0j 6= f0j(t) is assumed to be a stationary solution to the

unperturbed gyrokinetic equation:

df0j

dt

∣∣∣∣
u. t.

=

[
v‖~b0 +

B0

B∗
0‖

(~v∇B + ~vc)

]
·
(
~∇f0j −

1

mjv‖
µ~∇B0

∂f0j

∂v‖

)
= 0 . (2.49)
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The collision operator

where d/dt|u.t. stands for the total time derivative along the unperturbed trajectories.

The quantities:

g1j = f1j −
qj
mj

Ā1‖
∂f0j

∂v‖
and ~Γj = ~∇f1j −

qj
mjv‖

~∇Φ̄1
∂f0j

∂v‖
, (2.50)

are now introduced and should not be confused with the Lie generators and one-form

considered in the previous section. Keeping only the ~vE nonlinearity (∝ ~vE · ~∇f1j), and

dropping the so-called parallel non-linearity (∝ ~vG · ~∇Φ1 ∂f1j/∂v‖, which can be neglected

according to Ref. [50]), the gyrokinetic equation finally reads:

∂g1j

∂t
+

B0

B∗
0‖
~vE ·

(
~∇f0j −

µ

mjv‖
~∇B0

∂f0j

∂v‖

)
+
B0

B∗
0‖

(~vE + ~v∇B + ~vc) · ~Γj

+ v‖~b0 · ~Γj −
µ

mj

(
~b0 +

B0

v‖B∗
0‖
~vc

)
· ~∇B0

∂f1j

∂v‖
= 0 . (2.51)

2.4 The collision operator

As mentioned previously, the typical particle collision frequency in a hot, low density

plasma, as found in a magnetic fusion reactor, is much smaller than the characteristic fre-

quencies of microinstabilities. The gyrokinetic equation (2.51) was thus derived assuming

a collisionless plasma. In this description, the interaction between particles only occurs

through the macroscopic electromagnetic fields which result from collective processes. In

some cases however, direct binary interactions between particles may play a sub-dominant

but nonetheless significant role, and are introduced in the model through the so-called

Landau collision operator Cj written in particle variables (~x,~v) as:

Cj (fj) =
∑

j′

Cj j′(fj, fj′) =
∑

j′

∂

∂~v
·
(
Dj j′ ·

∂

∂~v
− ~Rj j′

)
fj , (2.52)

where Cj j′ represents collisions of species j with distribution fj on species j′ with distri-

bution fj′ . The collision operator (2.52) appears as a correction term on the right hand

side of the Vlasov equation (2.1), leading to the so-called Fokker-Planck equation. Note

that in the variables (~x,~v) the Landau operator is an advection-diffusion operator local to

velocity space. The quantities Dj j′ and ~Rj j′ in Eq. (2.52) respectively denote the diffusion
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tensor and friction force:

Dj j′ =
γj j′

m2
j

∂2Gj′

∂~v ∂~v
, and ~Rj j′ =

2 γj j′

mj mj′

∂Hj′

∂~v
, (2.53)

with γj j′ = q2
j q

2
j′/(8πε

2
0) ln Λ, ln Λ being the Coulomb logarithm, and ε0 the vacuum

permittivity. The terms Gj′ and Hj′ are the so-called Rosenbluth potentials, function of

fj′ :

Gj′ =

∫
d~v ′ fj′ u , and Hj′ =

∫
d~v ′ fj′

1

u
, (2.54)

with u = |~v−~v ′|. Considering the decomposition fj = f0j + f1j, and noticing that Cj j′ is

bilinear in its arguments fj and fj′ , the collision operator can be linearized as follows:

Cj j′(fj, fj′) = Cj j′(f0j, f0j′) + Cj j′(f1j, f0j′) + Cj j′(f0j, f1j′) + Cj j′(f1j, f1j′)

' Cj j′(f1j, f0j′) + Cj j′(f0j, f1j′) . (2.55)

In the first line of relation (2.55), the term Cj j′(f0j, f0j′) describes the relaxation of the

background distribution functions which occurs at much larger (transport) time scales

than the characteristic time of microturbulence and is thus not considered. The neglected

nonlinear contribution Cj j′(f1j, f1j′) represents the scattering between the two perturba-

tion components of the distribution functions and is therefore a term of order ε2 in the

gyrokinetic ordering. In the final considered model, the term Cj j′(f1j, f0j′), which repre-

sents collisions of f1j on f0j′ and is a second order differential operator on f1j [see Eq. (2.52],

is treated exactly, while the back-reaction term Cj j′(f0j, f1j′), which is an integral opera-

tor on f1j′ , is replaced by a reduced model for practical reasons of implementation. The

approximate form for Cj j′(f0j, f1j′) nonetheless preserves the conservation properties of

the linearized collision operator, i.e. conservation of mass, momentum and energy.

In order to introduce consistently this linearized collision operator in the gyrokinetic equa-

tion (2.51), the gyro-angle dependence is finally removed by applying the gyroaveraging

operator (2.33). The resulting gyroaveraged operator

C̄l(fj) =
∑

j′

C̄j j′(f1j, f0j′) +
∑

j′

C̄j j′(f1j, f0j′) (2.56)

is then added to the right hand side of the gyrokinetic equation (2.51). Note that the

collision operator, which is a purely velocity space advection-diffusion operator in the
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The gyrokinetic equations in field-aligned coordinates

particle variables (~x,~v) becomes a mixed operator in configuration and velocity space in

gyrocenter variables.

The intent of this section was to give a brief overview of the collision operator that may be

considered in the model, and the reader is invited to consult Ref. [51] for a more detailed

description. In the following, the different equations will however be further derived in

the collisionless limit.

2.5 The gyrokinetic equations in field-aligned coordinates

2.5.1 The field aligned coordinates (x, y, z)

As already discussed, microturbulence tends to have much longer wavelengths parallel

than perpendicular to the equilibrium magnetic field (k⊥ � k‖). One can therefore signif-

icantly decrease the computational cost by using a field-aligned coordinate system which

reflects this property. Although such a coordinate system can be defined for any type of

magnetic equilibrium, as described for example in [52], only axisymmetric equilibria, as

found in Tokamak devices (see Chap. 4), are considered in the present work.

In an axisymmetric system, one can define a straight field line coordinate system (Ψ, χ, φ),

see Fig. 2.2, where Ψ is the poloidal flux function, φ is the toroidal angle and χ is a poloidal

like angle, defined as
dφ

dχ

∣∣∣∣
~B0

=
~B0 · ~∇φ
~B0 · ~∇χ

= q(Ψ) , (2.57)

so that the field lines are straight in the (χ, φ) plane at constant Ψ. The safety factor

q = q(Ψ) represents the number of toroidal revolutions of a given field line to complete

one poloidal revolution. In this coordinate system, the magnetic field can be expressed as

[53]:

~B0 = ~∇Ψ× ~∇(q χ− φ) . (2.58)

The field-aligned coordinate system (x, y, z) is then defined by the following transforma-

tion:

x = Cx(Ψ)− x0 , y = Cy (qχ− φ)− y0 and z = χ , (2.59)
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z = χ

B

y

φx

Figure 2.2: Left: Constant Ψ and χ in the poloidal plane for a circular equilibrium, φ is
the toroidal angle; Right: Illustration of the field aligned coordinate system
(x, y, z).

so that the background magnetic field (2.58) can be written:

~B0 = C(x) ~∇x× ~∇y , (2.60)

having defined the radially dependant quantity C(x) = (dCx(x)
dΨ

Cy)
−1. We note in addition

that the factor Cx(Ψ) and normalization constant Cy are chosen so that x and y take

units of length. The directions ~∇x and ~∇y are perpendicular to the magnetic field, with

x a radial like coordinate and y the binormal coordinate labeling the magnetic lines on

a given magnetic surface (see Fig. 2.2). The center of the simulation domain is defined

by (x0,y0), where in general x0 is taken as x0 = Cx(Ψ0) with Ψ0 the poloidal flux at the

center of the domain, y0 can be chosen arbitrarily due to the axisymmetry of the magnetic

equilibrium. One finally defines z = χ, which, for given x and y coordinates determines

the position along the corresponding magnetic line. The coordinate z will thus be referred

to as the parallel coordinate.

A more detailed discussion on different Tokamak equilibrium models is provided in Chap-

ter 4.

2.5.2 The gyrokinetic equation in (x, y, z) coordinates

In order to evaluate Eq. (2.51) in the (x, y, z) coordinates, the quantities

~B0 × ~∇F · ~∇ and ~B0 · ~∇ , (2.61)
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The gyrokinetic equations in field-aligned coordinates

where F is any scalar field, need to be derived.

Using relation (2.60), one has (sums over indices are implicit):

~B0 × ~∇F · ~∇ = C(~∇x× ~∇y)× ~∇F · ~∇

= C
[
(~∇F · ~∇x)~∇y − (~∇F · ~∇y)~∇x

]
· ~∇

= C
[
(∂iF ~∇ui · ~∇x)~∇y − (∂iF ~∇ui · ~∇y)~∇x

]
· ~∇

= C
[
g1i~∇y − g2i~∇x

]
∂iF · ~∇uj∂j

= C(g1ig2j − g2ig1j)∂iF ∂j ,

with gij = ∇ui · ∇uj the metric tensor elements and ui = (x, y, z).

~B0 · ~∇ = C(~∇x× ~∇y) · ~∇uj ∂i

= C(~∇x× ~∇y) · ~∇z ∂z

=
C
Jxyz

∂z ,

where Jxyz =
[
(~∇x× ~∇y) · ~∇z

]−1

is the Jacobian of the (x, y, z) coordinate system.

Before writing in detail the different terms of the gyrokinetic equation in the (x, y, z) coor-

dinates, some further simplifications are introduced. Using the fact that microinstabilities

tend to align with the magnetic field, |k‖| � |k⊥|, ∂/∂z derivatives of perturbed quantities

are neglected with respect to ∂/∂x and ∂/∂y derivatives2. In addition, one notes that as

a result of the axisymmetry of the equilibrium, all background quantities are independent

of y, so that all y-derivatives of such quantities vanish.

With the above-mentioned approximations, the different terms of the gyrokinetic equation

read:

~vE · ~∇f0j ' C
B2

0

(γ2 ∂z f0j ∂x χ̄1 − γ1 ∂x f0j ∂y χ̄1 + γ3 ∂z f0j ∂y χ̄1) ,

~vE · ~∇B0 ' C
B2

0

(γ2 ∂zB0 ∂x χ̄1 − γ1 ∂xB0 ∂y χ̄1 + γ3 ∂zB0 ∂y χ̄1) ,

~vE · ~Γj ' Cγ1

B2
0

(∂x χ̄1 Γy,j − ∂y χ̄1 Γx,j),

2Some further discussion concering this approximation is provided in section 2.11.
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~v∇B · ~Γj ' Cµ
mjΩjB0

(γ1∂xB0 Γy,j − γ2∂zB0 Γx,j − γ3∂zB0 Γy,j) ,

~vc · ~Γj '
Cv2

‖

ΩjB2
0

(γ1∂xB0 Γy,j − γ2∂zB0 Γx,j − γ3∂zB0 Γy,j) +
µ0v

2
‖C

ΩjB3
0

γ1 ∂x p0 Γy,j,

~b0 · ~Γj =
C

B0 Jxyz
Γz,j,

~b0 · ~∇B0 =
C

B0 Jxyz
∂zB0 ,

~vc · ~∇B0 = 0 +O(βref ρref/Lref) ,

where βref , ρref , Lref are defined in section 2.10.1, and

Γα,j = ∂α f1j −
qj

mjv‖
∂αΦ̄1

∂f0j

∂v‖
, for α = (x, y, z) .

In addition, the following notation was introduced for these particular combinations of

the metric coefficients:

γ1 = g11g22 − (g12)2,

γ2 = g11g23 − g12g13,

γ3 = g12g23 − g22g13.

The gyrokinetic equation (2.51) can thus finally be written :

−∂t g1j =
1

Cγ1

B0

B∗
0‖

[
γ2 ∂z f0j ∂x χ̄1︸ ︷︷ ︸−γ1 ∂x f0j ∂y χ̄1 + γ3 ∂z f0j ∂y χ̄1︸ ︷︷ ︸

− µ

mjv‖
(γ2 ∂zB0 ∂x χ̄1 − γ1 ∂xB0 ∂y χ̄1 + γ3 ∂zB0 ∂y χ̄1) ∂v‖f0j︸ ︷︷ ︸

]
+

1

C
B0

B∗
0‖

(∂x χ̄1 Γy,j − ∂y χ̄1 Γx,j)

+
B0

B∗
0‖

µB0 +mj v
2
‖

mjΩj

(Kx Γx,j +Ky Γy,j) +
1

C
B0

B∗
0‖

µ0 v
2
‖

Ωj B0

∂x p0 Γy,j

+
C v‖

B0 Jxyz
Γz,j −

C µ
mj B0 Jxyz

∂zB0 ∂v‖f1j , (2.62)

where

Kx = − 1

C
γ2

γ1

∂zB0, (2.63)
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Ky =
1

C

(
∂xB0 −

γ3

γ1

∂zB0

)
, (2.64)

and having used the relation B2
0 = C2γ1.

2.6 Choice for the background distribution

One considers the background distribution f0j as being a local Maxwellian of the form

:

f0j(x, z, v‖, µ) =

(
mj

2πT0j(x)

) 3
2

n0j(x) exp

(
−
mjv

2
‖/2 + µB0(x, z)

T0j(x)

)
, (2.65)

where the temperature and density profiles T0j and n0j are function of x, so that:

∂x f0j =

d lnn0j

dx
+

(
mjv

2
‖

2T0j

+
µB0

T0j

− 3

2

)
d lnT0j

dx
− µ

T0j

∂xB0︸ ︷︷ ︸
 f0j , (2.66)

∂z f0j = − µ

T0j

∂zB0f0j , (2.67)

∂v‖f0j = −
mjv‖
T0j

f0j , (2.68)

∂µf0j = −B0

T0j

f0j . (2.69)

One notes that (2.65) is only solution of Eq. (2.49) if one neglects the ~v∇B and ~vc drifts.

In the following, it will nevertheless be assumed that Eq. (2.49) is satisfied. This choice for

f0j leads to a more compact form of Eq. (2.62) since the underbraced terms in Eqs. (2.62)

and (2.66) cancel out.

A true solution to Eq. (2.49), i.e. including the finite orbit width effects resulting from

the drifts ~v∇B and ~vc, would be given by a so-called canonical Maxwellian FCM [21].

The distribution FCM is function of the three constants of motion of the unperturbed

axisymmetric system: the kinetic energy K, the magnetic moment µ, and the canonical

angular momentum Pφ. The local Maxwellian (2.65) can thus be seen as a canonical

Maxwellian in the limit of zero finite orbit width.

26



Chapter 2. Physical model

2.7 Velocity moments of the distribution function

As will be seen in section 2.8, it is necessary to evaluate different velocity moments

of the distribution function in order to solve the field equations. In this section, we

discuss how these moments, which need to be evaluated at fixed particle positions, are

computed given the particle distribution function f , solution of the gyrokinetic equation,

in gyrocenter variables.

The mth v‖ and nth v⊥ moments of the fluctuating part of the particle distribution

fj(~x,~v) are defined as:

Mj,mn(~x) =

∫
f1j(~x,~v) v

m
‖ v

n
⊥ d~v . (2.70)

Using a Dirac function δ(~x′ − ~x), the velocity integral is converted to a full phase-space

integral:

Mj,mn(~x) =

∫
f1j(~x′, ~v) δ(~x′ − ~x) vm

‖ v
n
⊥ d~x′ d~v , (2.71)

which facilitates a first change of variables to guiding center variables f1j(~x,~v) → fg,1j(~Zg),

where ~Zg = ( ~Xg, v‖,g, µg, αg) are defined in Eq. (2.14). One obtains:

Mj,mn(~x) =

∫
fg,1j( ~Xg, v‖,g, µg, αg) δ( ~Xg + ~ρ− ~x) vm

‖,g v
n
⊥,g Jg d ~Xg dv‖,g dµg dαg , (2.72)

where the phase-space Jacobian Jg is given by relation (2.16).

One then makes use of Eq. (2.36), which enables to derive the distribution f1g in guiding

center variables in terms of the distribution function f( ~X, v‖, µ) in gyrocenter variables:

fg,1j(~Zg) = T−1f1j( ~Zg)

= f1j( ~Xg, µg, v‖,g) +
1

B0( ~Xg)

{[
Ωj( ~Xg)

∂f0j

∂v‖,g
( ~Xg, µg, v‖,g)

−qj v‖,g
∂f0j

∂µg

( ~Xg, µg, v‖,g)

]
Ã1‖( ~Xg, µg)

+ qj Φ̃1( ~Xg, µg)
∂f0j

∂µg

( ~Xg, µg, v‖,g)

}
. (2.73)
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Note that in the following, the subscript g shall be dropped. By replacing this last

expression for fg,1j in the moment equation (2.72), one obtains:

Mj,mn(~x) =
1

mj

∫
δ( ~X + ~ρ− ~x)B∗

0‖( ~X, v‖) v
m
‖ v

n
⊥

{
f1j( ~X, µ, v‖)

+
1

B0( ~X)

[(
Ωj( ~X)

∂f0j

∂v‖
( ~X, µ, v‖)

−qj v‖
∂f0j

∂µ
( ~X, µ, v‖)

) (
A1‖( ~X + ~ρ)− Ā1‖( ~X, µ)

)
+ qj

[
Φ1( ~X + ~ρ)− Φ̄1( ~X, µ)

] ∂f0j

∂µ
( ~X, µ, v‖)

]}
d ~X dv‖ dµ dα . (2.74)

Integrating now over the ~X variable leads to:

Mj,mn(~x) =
1

mj

∫
B∗

0‖(~x, v‖) v
m
‖ v

n
⊥

{
f1j(~x− ~ρ, µ, v‖)

+
1

B0(~x)

[(
Ωj(~x)

∂f0j

∂v‖
(~x, µ, v‖)

−qj v‖
∂f0j

∂µ
(~x, µ, v‖)

) (
A1‖(~x)− Ā1‖(~x− ~ρ, µ)

)
+ qj

[
Φ1(~x)− Φ̄1(~x− ~ρ, µ)

] ∂f0j

∂µ
(~x, µ, v‖)

]}
dv‖ dµ dα , (2.75)

where the variations over the Larmor radius have been neglected for all equilibrium quan-

tities, e.g. B0(~x − ~ρ) ∼ B0(~x), as one only works to lowest order in ε. By introducing

the gyro-average f̄1j of the fluctuating component of the distribution function, as well as

the double gyro-average electrostatic potential ¯̄Φ1 and parallel component of the vector

potential ¯̄A1‖, Eq. (2.75) can be written:

Mj,mn(~x) =
2π

mj

∫
B∗

0‖(~x, v‖) v
m
‖ v

n
⊥

{
f̄1j(~x, µ, v‖)

+
1

B0(~x)

[(
Ωj(~x)

∂f0j

∂v‖
(~x, µ, v‖)

−qj v‖
∂f0j

∂µ
(~x, µ, v‖)

) (
A1‖(~x)− ¯̄A1‖(~x, µ)

)
+ qj

[
Φ1(~x)− ¯̄Φ1(~x, µ)

] ∂f0j

∂µ
(~x, µ, v‖)

]}
dv‖ dµ , (2.76)
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where the double gyro-averaging of any scalar quantity F is given, according to (2.33),

by:

¯̄F =
1

2π

∮
dα F̄ ( ~̂X − ~̂ρ) =

1

(2π)2

∮
dα dα′ F̄ ( ~X − ρ− ρ′) . (2.77)

Note that for a Maxwellian equilibrium distribution function f0, the A1‖ contributions

vanish as a result of Eqs. (2.68) and (2.69). In addition, since the perturbed electrostatic

potential does not depend on v‖, these integrals can be evaluated analytically, see [28],

leading to

Mj,mn(~x) = π

(
2B0

mj

)n/2+1 ∫ B∗
0‖

B0

f̄1j v
m
‖ µ

n/2 dv‖ dµ

−
vm

Tj n0j qj B0

T 2
0j

(
2B0

mj

)n/2 [
I(m) +

2µ0 T0j

B2
0

j0‖
qj vTj

I(m+ 1)

]
[(

T0j

B0

)n/2+1

(n/2)! Φ1 −
∫

¯̄Φ1 exp

(
−µB0

T0j

)
µn/2dµ

]
, (2.78)

where j0‖ = ~j0 ·~b0 = (~∇× ~B0/µ0) ·~b0 and the function I(m) is

I(m) = 0 , for m odd ,

and I(m) =
Γ(m+1

2
)

√
π

=
(m− 1)(m− 3)...3 · 1

2m/2
, for m even ,

with Γ(m) the usual gamma function. One in particular has I(0) = 1.

2.8 The field equations

In order to close the system, the perturbed electrostatic potential Φ1 and parallel compo-

nent A1‖ of the vector potential appearing in the gyrokinetic equations are self-consistently

obtained by solving respectively the quasi-neutrality equation and the parallel component

of Ampère’s law.

The quasi-neutrality equation

For typical Tokamak parameters, the Debye length is much smaller than the wavelengths

of the microinstabilities (typically of the order of the particle gyroradius) and one can thus
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assume quasi-neutrality3: ∑
j

qj n1j(~x) = 0 . (2.79)

The perturbed density n1j is given the zeroth order moment Mj,00 of the distribution

function and is obtained using Eq. (2.78). The quasi-neutrality equation (Q.N.) thus

reads:

∑
j

2π qj
mj

∫
B∗

0‖ f̄1j dv‖ dµ−
q2
j n0j

T0j

[
Φ1 −

B0

T0j

∫
¯̄Φ1 exp(−µB0

T0j

) dµ

]
= 0 . (2.80)

We note here that the moment equation (2.78) was obtained using the first order in ε

pull-back operator T−1, so that Eq. (2.80) is a linear integral equation for Φ1. The first

term in Eq. (2.80) is the so-called gyro-density, while the last two terms are referred to

as the polarization density, which results from the difference between guiding center and

gyrocenter coordinates, i.e. an effect related to finite amplitude field fluctuations.

Adiabatic electron case

The general equation (2.80) is used when considering the full kinetic dynamics of a

given species. One can in some cases simplify computations by assuming an adiabatic

electron response, that is considering the limit ω/(k‖vthe) → 0. This limit is in particular

invoked when studying turbulence in the ITG regime. In this case, the electron density

is assumed to follow a Boltzmann distribution:

ne(~x) = N(x) exp

(
eΦ1(~x)

Te(x)

)
= N(x)

(
1 +

eΦ1(~x)

Te(x)

)
+O(ε2) , (2.81)

where a linearization, justified by the gyrokinetic ordering eΦ1/Te ∼ ε, has been carried

out for obtaining the last equality. The coefficient N(x) is set by assuming that the

perturbed electron density cancels on average over a given flux surface:

〈ne(~x) 〉 = 〈n0e(x) + n1e(~x) 〉 = 〈n0e(x) 〉+ 〈n1e(~x) 〉 = n0e(x) , (2.82)

where the flux-surface average 〈 . 〉 is defined for any quantity F as:

〈 F(~x) 〉 =
1

∆V

∫
∆V

Fd3x =

∫
F(~x) Jxyz(x, z) dz dy∫
Jxyz(x, z) dz dy

, (2.83)

3Finite Debye length effects can be, in fact, accounted for in GENE, thus replacing the quasi-neutrality
equation with the Poisson equation. They are however never considered in the present work and
LDebye → 0 is assumed.
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where ∆V is an infinitesimally small volume between two neighboring flux surfaces Ψ and

Ψ + ∆Ψ, |∆Ψ/Ψ| � 1. From Eqs. (2.81) and (2.82), one obtains for N(x):

n0e(x) = N(x)

〈
1 +

eΦ1(~x)

Te(x)

〉
+O(ε2) (2.84)

⇒ N(x) ' n0e(x)

(
1− e〈Φ1(~x) 〉

Te(x)

)
+O(ε2) . (2.85)

By inserting Eq. (2.85) in (2.81), the perturbed electron density finally reads:

n1e(~x) =
n0e(~x) e

T0e(~x)
(Φ1 − 〈Φ1〉) . (2.86)

Introducing this last relation for the electron density fluctuation into the quasi-neutrality

equation, leads to:

−e
2 n0e

T0e

(Φ1 − 〈Φ1〉) +
∑
j 6=e

{
2π qj
mj

∫
B∗

0‖ f̄1j dv‖ dµ

−
q2
j n0j

T0j

[
Φ1 −

B0

T0j

∫
¯̄Φ1 exp(−µB0

T0j

) dµ

]}
= 0 . (2.87)

Additional approximations are made to numerically solve Eq. (2.87). These will be dis-

cussed in section 3.3.5.

Ampère’s law

The potential A1‖ is obtained by solving the parallel component of Ampère’s law for

the fluctuation fields:

−∇2
⊥A1‖ = µ0

∑
j

j1‖,j , (2.88)

having neglected the displacement current, as well as made use of the gyrokinetic ordering

(2.2) and (2.3), which enable to write:

(∇2 ~A1) ·~b0 ' ∇2
⊥( ~A1 ·~b0) = ∇2

⊥( ~A1‖) . (2.89)

The perturbed parallel current j1‖,j is given by the first order v‖ moment of the perturbed

distribution function and is obtained using Eq. (2.78) for Mj,10. One thus obtains:

−∇2
⊥A1‖ = µ0

∑
j

{
2πqj
mj

∫
B∗

0‖ v‖ f̄1j(~x, v‖, µ) dv‖ dµ

−
qj n0j µ0 j0‖

B2
0

(
Φ1 −

B0

T0j

∫
¯̄Φ1(~x) exp

(
−µB0

T0j

)
dµ

) }
. (2.90)
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One notes that given the electrostatic potential Φ1 solution of Eq. (2.80), Eq. (2.90) is a

linear differential equation for A1‖.

2.9 Macroscopic quantities

In order to compare simulation results with experimental measurements and in partic-

ular to address the issue of anomalous particle and heat transport, relevant macroscopic

quantities, namely particle and heat fluxes need to be evaluated. An appropriate form for

these different fluxes can be derived by considering velocity moments of the gyrokinetic

equation, thus obtaining conservation laws for the density and energy of each species.

We note that as the gyrokinetic equation describes the evolution of the particle distri-

bution in gyrocenter variables, one obtains in this way conservation equations for the

gyrocenter density ñj and energy density p̃j:

ñj =

∫
fj J dv‖ dµ; and p̃j =

1

3

∫
mj v

2 fj J dv‖ dµ , (2.91)

where J is the phase-space Jacobian of the transformation from particle to gyrocenter

variables:

J = |B∗
0‖ + ~∇× (A1‖~b0) ·~b0|/m = B∗

0‖/m+O(ε2) , (2.92)

2.9.1 Velocity moments of the gyrokinetic equation

As a starting point, one first seeks to write the gyrokinetic equation in a conservative

form, which can be obtained by considering Liouville’s theorem:

∂J

∂t
+
∑

i

∂

∂Zi

(J Żi) = 0 , (2.93)

where J is the phase space Jacobian (2.92). The gyrokinetic equation (2.46) can thus be

written as:

∂

∂t
( J fj) +

∂

∂ ~X
· ( J ~̇X fj) +

∂

∂v‖
( Jv̇‖ fj) = 0 , (2.94)
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where ~̇X and v̇‖ are given by Eqs. (2.38) and (2.39). Let us now consider the general

velocity moment s = s( ~X, v‖, µ) of Eq. (2.94):∫
s
∂

∂t
(J fj) dv‖ dµ+

∫
s
∂

∂ ~X
· ( J ~̇X fj) dv‖ dµ+

∫
s
∂

∂v‖
( Jv̇‖ fj) dv‖ dµ = 0 . (2.95)

Considering that s may be a function of v‖ and ~X, and that the distribution function

vanishes for v‖ → ±∞, Eq. (2.95) can be express after integration by pasts as:

∂

∂t

∫
s fj J dv‖ dµ−

∂

∂ ~X
·
∫

s ~̇X fj J dv‖ dµ−
∫

~̇X· ∂s
∂ ~X

fj J dv‖ dµ+

∫
v̇‖

∂s

∂v‖
fj J dv‖ dµ = 0 .

(2.96)

Noticing that the total time derivative of s reads:

ds

dt
= ~̇X · ∂s

∂ ~X
+ v̇‖

∂s

∂v‖
, (2.97)

and using the notation, ~vG = ~̇X, the moment equation can finally be written in the more

compact form:

∂

∂t

∫
s fj J dv‖ dµ+

∂

∂ ~X
·
∫

s~vG fj J dv‖ dµ−
∫

ds

dt
fj J dv‖ dµ . (2.98)

By considering first the s = 1 moment, one obtains the continuity equation:

∂ ñj

∂t
+

∂

∂ ~X
· ~̃Γj = 0 , (2.99)

where the gyrocenter density ñj( ~X) is defined in Eq. (2.91) and the notation

~̃Γj =

∫
~vG fj J dv‖ dµ (2.100)

is used to denote the gyrocenter flux.

An equation describing the conservation of energy is obtained with s = mj v
2/2 = mj v

2
‖+

B0 µ:
3

2

∂ p̃j

∂t
+

∂

∂ ~X
· ~̃Qj = P̃j , (2.101)

where the gyrocenter energy density has already been introduced in Eq. (2.91) and with

energy flux defined as:

~̃Qj =

∫
mj

v2

2
~vG fj J dv‖ dµ . (2.102)
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To obtain the power density, one starts by computing the total derivative of v2:

mj

2

d v2

dt
=

mj

2

(
~̇X · ∂

∂ ~X
+ v̇‖

∂

∂v‖

)(
v2
‖ +

2B0 µ

mj

)
= µ ~̇X · ~∇B0 +mj v‖v̇‖

= qj ~vG · ~E (2.103)

where relation (2.39) has been used for v̇‖ and with the electric field ~E = −~∇Φ̄1− ~b0 ˙̄A1‖,

considering only A1‖ magnetic fluctuations. The power density finally reads:

P̃j =

∫
qj ~vG · ~E fj J dv‖ dµ . (2.104)

2.9.2 Radial conservation equations

The conservation equations (2.99) and (2.101) describe the evolution of density and

energy in the three spatial dimensions. However, as transport processes relevant to con-

finement take place in the radial direction, one is mostly interested in the radial evolution

of the flux-surface averaged density and energy.

By integrating Eq. (2.99) over the volume V enclosed by the flux surface x = const. and

using the divergence theorem, one obtains:∫
V

∂ ñj

∂t
dV +

∫
∂V

~̃Γj ·
~∇x
|~∇x|

dS = 0 (2.105)

where the elementary surface element is dS = |~∇x| Jxyz dy dz, with Jxyz the Jacobian to

the (x, y, z) field-aligned coordinates.

The volume integral over the density can be express as:∫
V

ñj dV =

∫ x

0

dx

∫
ñj J

xyz dy dz =

∫ x

0

dx 〈ñj〉V ′ , (2.106)

having introduced

V ′ =
∂V

∂x
=

∫
Jxyz dy dz . (2.107)

and where 〈.〉 is the flux-surface average operator, defined in Eq. (2.83). Finally, differen-

tiating Eq. (2.106) with respect to x, one obtains:

∂

∂t
[〈ñj〉V ′] +

∂

∂x
[ 〈~̃Γj · ~∇x〉V ′] = 0 . (2.108)
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Similarly a radial energy conservation equation is derived from (2.101):

3

2

∂

∂t
[〈p̃j〉V ′] +

∂

∂x
[ 〈 ~̃Qj · ~∇x〉V ′] + 〈P̃j〉V ′ = 0 . (2.109)

We note that if one would solve the gyrokinetic equation (2.47) without further approx-

imations, Eqs. (2.108)-(2.109) would represent exact conservation equations and could

thus be used for instance to monitor the accuracy of the numerical simulations. In the

following, we will however explicit only approximate conservation equations, which are

consistent with the various approximations considered to derive (2.62).

2.9.3 Flux definitions

One now considers the decomposition of the distribution function fj = f0j + f1j and

again assumes that f0j represents a stationary state, so that in particular

~̃Γ0 · ~∇x =

∫ [
v‖~b0 +

B0

B∗
0‖

(~v∇B + ~vc)

]
· ~∇x f0j J dv‖ dµ = 0 . (2.110)

Equation (2.108) thus becomes a continuity equation for the perturbed terms:

∂

∂t
[〈ñ1〉V ′] +

∂

∂x
[ 〈~̃Γ1 · ~∇x〉V ′] = 0 , (2.111)

where

ñ1j =

∫
f1j J dv‖ dµ , (2.112)

and

~̃Γ1 · ~∇x =

∫ [
B0

B∗
0‖
~vE f0j + [v‖~b0 +

B0

B∗
0‖

(~vE + ~v∇B + ~vc)] f1j

]
· ~∇x J dv‖ dµ . (2.113)

The projection of the ~vE velocity (2.42) onto the radial direction reads:

~vE · ~∇x = −
~∇χ1 × ~B0

B2
0

· ~∇x ' −1

C
∂χ1

∂y
, (2.114)

where C is defined in Eq. (2.60) and having again neglected the ∂/∂z terms with respect

to the ∂/∂x contributions. From the definition of the generalized potential, Eq. (2.42),

one furthermore separates the electrostatic and electromagnetic contributions, leading to:

~vE · ~∇x ' −1

C
∂Φ̄1

∂y
+
v‖
C
∂Ā1‖

∂y
. (2.115)
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The two contribution from ~v∇B and ~vc are regrouped together as:

(~v∇B + ~vc) · ~∇x = −C
µB0 +mj v

2
‖

mj Ωj B2
0

γ2
∂B0

∂z
. (2.116)

Considering the definition of the field-aligned coordinates, one has ~b0 · ~∇x ∝ (~∇x× ~∇y) ·
~∇x = 0 such that the v‖~b0 term vanishes in Eq. (2.113). Noticing furthermore that all

equilibrium terms (B0, B
∗
0‖, f0j) are independent of y, the flux-surface average of the f0j ~vE

term in Eq. (2.113) will cancel out, and this contribution is thus not retained. One finally

defines the turbulent radial gyrocenter flux as:

Γ̃j(x) = 〈~̃Γ1 · ~∇x〉 = Γ̃j,es(x) + Γ̃j,em(x) + Γ̃j,B(x) (2.117)

with the electrostatic and electromagnetic contributions respectively defined as:

Γ̃j,es(x) = − 1

C

〈∫
B0

B∗
0‖

∂Φ̄1

∂y
f1j J dv‖ dµ

〉
, (2.118)

Γ̃j,em(x) =
1

C

〈∫
B0

B∗
0‖
v‖
∂Ā1‖

∂y
f1j J dv‖ dµ

〉
. (2.119)

The contribution related to the gradient and curvature of the equilibrium magnetic field

~B0 is given by

Γ̃j,B(x) = − C
mj

〈∫
µB0 +mj v

2
‖

Ωj B0B∗
0‖

γ2
∂B0

∂z
f1j J dv‖ dµ

〉
, (2.120)

which averages out to zero, at least for non-axisymmetric fluctuation modes, and will thus

be neglected.

Considering now the energy conservation and assuming again that the unperturbed dis-

tribution f0 is a stationary state, one obtains from Eq. (2.109) a conservation equation

for the perturbed energy density:

3

2

∂

∂t
[〈p̃1〉V ′] +

∂

∂x
[ 〈 ~̃Q1 · ~∇x〉V ′] = 〈P̃1〉V ′ . (2.121)

As for the gyrocenter flux, one distinguishes the different contributions to the radial heat

flux:

Q̃j(x) = 〈 ~̃Q1 · ~∇x〉 = Q̃j,es(x) + Q̃j,em(x) + Q̃j,B(x) . (2.122)
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The electrostatic and electromagnetic heat fluxes respectively read:

Q̃j,es(x) = − 1

2 C

〈∫
B0

B∗
0‖

(mj v
2
‖ + 2B0 µ)

∂Φ̄1

∂y
f1j J dv‖ dµ

〉
, (2.123)

Q̃j,em(x) =
1

2 C

〈∫
B0

B∗
0‖

(mj v
2
‖ + 2B0 µ ) v‖

∂Ā1‖

∂y
f1j J dv‖ dµ

〉
. (2.124)

and the curvature term is:

Q̃j,C(x) = − C
mj

〈∫ (
1

2
mj v

2
‖ +B0 µ

)
µB0 +mj v

2
‖

Ωj B0B∗
0‖

γ2
∂B0

∂z
f1j J dv‖ dµ

〉
, (2.125)

Note that as for the gyrocenter flux, this last contribution is essentially zero for an up-

down symmetric plasma.

Finally, the perturbed power density reads:

P̃1 = qj

∫
[v‖~b0 +

B0

B∗
0‖

(~vE + ~v∇B + ~vc)] · ~E f1j J dµ dv‖

= qj

∫
[v‖E‖ +

B0

B∗
0‖

(~v∇B + ~vc)] · ~∇Φ̄ f1j J dµ dv‖ , (2.126)

having made use of the relations ~E = − ~∇Φ̄1− ~b0
˙̄A1‖, ~vE · ~E = 0 and (~v∇B +~vc) ·~b0 = 0.

Equations (2.111) and (2.121) can in particular be used to monitor the conservation

properties, up to order ε, in a numerical simulation. We note however that the final

relations for the fluxes (2.100) and (2.102) which have been obtained here by taking

velocity moments of the gyrokinetic equation, i.e. at fixed gyrocenter position ~X, differ

from the relations that one would have obtained by taking velocity moments of the original

Vlasov equation, i.e. at fixed particle position ~x:

~Γj =

∫
~v fj(t, ~x,~v) , (2.127)

and

~Qj =

∫
mj v

2

2
~v fj(t, ~x,~v) d~v , (2.128)

which are strictly speaking the physical quantities of interest. The previous definitions

(2.100) and (2.102) will thus differ from (2.127) and (2.128) by diamagnetic and the

polarization drift terms. The diamagnetic drift corrections are however normal to the

radial direction and since we are mainly interested in radial fluxes, this contribution is

not relevant. Polarization drift terms can on the other hand have a radial component, nut

37



The normalized equations

their contribution is expected to be small for these macroscopic quantities. As a result,

many gyrokinetic codes, including e.g. the ORB5 [54] or GT5D [14], make use of the

gyrocenter fluxes Eqs. (2.118)-(2.119) and (2.123)-(2.124) as approximate diagnostics of

the exact physical fluxes (2.127) and (2.128). More details on the differences between

fluxes definitions can be found in [48].

In Ref. [55], approximate relations for the fluxes (2.127) and (2.128) are derived, which

which are consistent with the gyrokinetic ordering and read:

~Γj =

∫
~vχ fj(t, ~x,~v) d~v and ~Qj =

∫
mj v

2

2
~vχ fj(t, ~x,~v) d~v , (2.129)

where

~vχ = −
~∇χ1 × ~B0

B2
0

, with χ1 = Φ1 − v‖A1‖ . (2.130)

We remark that the drift velocity ~vχ in relation (2.129) is essentially equal to ~vE, apart

from the perturbed fields Φ1 and A1‖, which are not gyroaveraged in (2.130). These

latter fluxes definitions are currently used in the GENE code and one again separates the

electrostatic and electromagnetic radial contributions, which can be expressed in terms of

the velocity moments Mj,mn of the particle distribution, given in Eq. (2.78), as follows:

Γj,es(x) = − 1

C

〈
Mj,00(~x)

∂Φ1

∂y

〉
, (2.131)

Γj,em(x) =
1

C

〈
Mj,10(~x)

∂A1‖(~x)

∂y

〉
, (2.132)

and

Qj,es(x) = −mj

2C

〈
[Mj,20(~x) +Mj,02(~x)]

∂Φ1(~x)

∂y

〉
, (2.133)

Qj,em(x) =
mj

2C

〈
[Mj,30(~x) +Mj,12(~x)]

∂A1‖(~x)

∂y

〉
. (2.134)

2.10 The normalized equations

2.10.1 Normalizations

In view of the numerical implementation, the different quantities appearing in the

gyrokinetic and field equations are normalized appropriately so that the resulting di-
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mensionless quantities are all of order ∼ 1. The dimensional reference quantities are

nref , Tref , Bref ,mref and Lref for the density, temperature, magnetic field, mass, and length

respectively. The choice for these normalization quantities may depend on the physical

problem, in most cases however they are taken as nref = ni, Tref = Te, Bref = B0,mref = mi

and Lref = R. From these quantities, one can further derive reference velocity cref , cy-

clotron frequency Ωref and Larmor radius ρref :

c2ref =
Tref

mref

, Ωref =
eBref

mref

, ρref =
cref
Ωref

.

The hat notation ’ ˆ ’ is used for normalized quantities. The normalization of time and

the coordinates (x, y, z) are:

t =
Lref

cref
t̂ , x = ρref x̂ , y = ρref ŷ , z = ẑ .

Note that when considering equilibrium quantities, derivatives with respect to x shall be

normalized to the macroscopic length Lref rather than ρref . One therefore introduces a

second normalized radial variable x̂eq:

x = Lref x̂eq .

The velocity variables are normalized to:

v‖ = v̂Tj(x0) cref v̂‖j , µ = T̂0,j(x0)
Tref

Bref

µ̂j ,

where vTj(x) =
√

2T0j(x)/mj = cref v̂Tj(x) is the thermal velocity of each species and

x0 is the center of the simulation domain. A subscript j has been added to the velocity

variables (v̂‖j, µ̂j) since they are now species dependent. In addition, the notation T0j(x) =

Tref T̂0j(x) and n0j(x) = nref n̂0j(x) is used for the normalized temperature and density of

each species.

The other equilibrium quantities are normalized as follows:

γ1 = γ̂1 , γ2 =
1

Lref

γ̂2 , γ3 =
1

Lref

γ̂3 , Jxyz = Lref Ĵ
xyz .

According to Eq. (2.60), the coefficient C has the same units as the magnetic field ~B0, and

is therefore normalized to Bref : Ĉ = C/Bref .

The distribution functions are normalized by:

f0j =
nref

c3ref

n̂0j(x0)

v̂3
Tj(x0)

f̂0j , f1j =
ρref

Lref

nref

c3ref

n̂0j(x0)

v̂3
Tj(x0)

f̂1j ,
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and the electromagnetic fields by :

Φ1 =
ρref

Lref

Tref

e
Φ̂1 , A1‖ =

ρref

Lref

BrefρrefÂ1‖ .

We also define

ω̂Tj,x = −Lref
d lnTj0

dx
, ω̂nj,x = −Lref

d lnnj0

dx
, ω̂p = −Lref

d ln p0

dx
.

The plasma pressure is normalized to p0(x) = pref p̂0(x) = Tref nref p̂0(x), and one defines

βref = 2µ0 pref/B
2
ref .

2.10.2 The normalized gyrokinetic equation

Using the normalizations introduced above, the gyrokinetic equation (2.62) reads

∂ĝ1j

∂t̂
= − 1

Ĉ
B̂0

B̂∗
0‖

[
ω̂nj + ω̂Tj

(
v̂2
‖j + µ̂jB̂0

τ0j

− 3

2

)]
f̂0j∂ŷ ˆ̄χ1

− B̂0

B̂∗
0‖

T̂0j(x0)

Zj

2 v̂2
‖j + µ̂jB̂0

B̂0

K̂xΓ̂j,x

− B̂0

B̂∗
0‖

T̂0j(x0)

Zj

[
2 v̂2

‖j + µ̂jB̂0

B̂0

K̂y −
v̂2
‖j

Ĉ
βref

p̂0

B̂2
0

ω̂p

]
Γ̂j,y

− B̂0

B̂∗
0‖

1

Ĉ

(
∂x̂ ˆ̄χ1 Γ̂j,y − ∂ŷ ˆ̄χ1 Γ̂j,x

)
−v̂Tj(x0)

Ĉ
Ĵxyz B̂0

v̂‖j Γ̂j,z +
v̂Tj(x0)

2

Ĉ
Ĵxyz B̂0

µ̂j ∂ẑB̂0
∂f̂1j

∂v̂‖j
, (2.135)

having defined τ0j(x) = T0j(x)/T0j(x0), N0j(x) = n0j(x)/n0j(x0) , Zj = qj/e . The other

normalized quantities read:

ĝ1j = f̂1j +
Zj v̂Tj(x0)

T̂0j(x)
v̂‖j

ˆ̄A1‖ f̂0j ,

Γ̂α,j = ∂α̂ f̂1j +
Zj

T̂0j(x)
∂α̂

ˆ̄Φ1 f̂0j for α̂ = (x̂, ŷ, ẑ) ,

f̂0j =
N0j(x)

[πτ0j(x)]3/2
exp

(
−
v̂2
‖j + µ̂j B̂0(x, z)

τ0j(x)

)
,

ˆ̄χ1 = ˆ̄Φ1 − v̂Tj(x0) v̂‖j
ˆ̄A1‖ ,
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B̂∗
0‖ = B̂0

1 + βref

√
m̂jT̂0j(x0)

2

ĵ0‖

ZjB̂2
0

v̂‖j

 ,

ĵ0‖ =
j0‖

e nref cref
,

K̂x = − 1

Ĉ
γ̂2

γ̂1

∂ẑB̂0,

K̂y =
1

Ĉ

(
∂x̂eqB̂0 −

γ̂3

γ̂1

∂ẑB̂0

)
.

2.10.3 The normalized field equations

The field equations derived in section 2.8 can now as well be written in normalized

units.

The normalized quasi-neutrality equation reads:

∑
j

{
πn̂0j(x0)Zj

∫
B̂∗

0‖
ˆ̄f1j dv̂‖dµ̂j −

Z2
j n̂0j

T̂0j

[
Φ̂1 −

B̂0

τ0j

∫
ˆ̄̄
Φ1 exp(− µ̂jB̂0

τ0j

) dµ̂j

]}
= 0,(2.136)

and for the adiabatic electrons case:

− n̂0e

T̂0e

(Φ̂1 − 〈Φ̂1〉) +
∑
j 6=e

{
π Zj n̂0j(x0)

∫
B̂∗

0‖
ˆ̄f1j dv̂‖ dµ̂j

−
Z2

j n̂0j

T̂0j

[
Φ̂1 −

B̂0

τ0j

∫
ˆ̄̄
Φ1 exp(− µ̂jB̂0

τ0j

) dµ̂j

]}
= 0 . (2.137)

Finally, the normalized Ampère’s law is given by:

−∇̂2
⊥Â1‖ =

∑
j

{
βref

2
Zj n̂0j(x0) v̂Tj(x0)π

∫
B̂∗

0‖
ˆ̄f1j dv̂‖ dµ̂j

−β
2
ref

4

n̂0j ĵ0‖

B̂2
0

Zj

[
Φ̂1 −

B̂0

τ0j

∫
ˆ̄̄
Φ1(~x) exp(− µ̂jB̂0

τ0j

) dµ̂j

] }
. (2.138)

2.11 Local and global approach

2.11.1 The flux-tube approach

With the hypothesis that turbulent transport is essentially a local process and in view

of reducing the computational effort, several gyrokinetic codes have been developed in
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the so-called flux tube or local approximation [9, 18, 11, 12]. In this approach, the

limit ρ∗ = ρi/a → 0, where ρi is the ion Larmor radius and a the minor radius, is

considered, and the variation of equilibrium quantities over the typical spatial turbulence

correlation length, which is of order a ρ∗ (Gyro-Bohm) or a
√
ρ∗ (Bohm), are neglected.

Considering this approximation, the simulation domain can be reduced to a narrow tube,

elongated along a given field line, and spanning only a small fraction of the minor radius

in the radial direction. The flux tube width typically represents a few correlation lengths.

Although temperature and density profiles are assumed constant over this width, their

derivatives are kept in the equation so as to retain the essential driving terms. The local

equations are simply recovered by removing radial dependencies of equilibrium quantities

in Eqs. (2.135)-(2.138):

Ĉ(x), B̂0(x, z), B̂
∗
0‖(x, z, v‖), K̂x,y(x, z), Ĵ

xyz(x, z) −→ Ĉ, B̂0(z), B̂
∗
0‖(z, v‖), K̂x,y(z), Ĵ

xyz(z),

ω̂nj(x) , ω̂Tj(x) , T̂0j(x) , n̂0j(x) , p̂0(x) −→ ω̂nj , ω̂Tj , T̂0j , n̂0j , p̂0 .

2.11.2 The global approach

In the frame of this thesis, the gyrokinetic code GENE [12, 27, 12] has been extended

from a local to a nonlocal or global version where the ρ∗ effects associated with radial

variations of equilibrium quantities are retained. In particular the essential global effect

related with gradient profiles variations [56] are accounted for. Remaining ρ∗ effects

are however still neglected and these different terms shall be compared and classified

among each other by introducing some further sub-ordering. Assuming the typical size of

turbulent eddies to be ∆ ∼
√
ρiLg (gyro-Bohm scaling), we can estimate, as reference, the

corrections introduced in the present global equations by retaining variations of gradient

profiles to be of order

(∆ω′T,n)/ωT,n ∼
√
ρiLg/Lg ∼

√
ρ∗ . (2.139)

The remaining neglected terms are given in the following list, with corresponding scaling:

• The v‖ nonlinearity: Nonlinear term ∝ ~vG · ~∇Φ1 ∂f1j/∂v‖, dropped when deriving

Eq. (2.51); of order ρ∗.
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• Derivatives ∂/∂z of fluctuating quantities have been neglected with respect to ∂/∂x

and ∂/∂y terms. These terms are of order ρ∗ a/r, where r is the local radius. A

scaling may be derived by considering the gradient of any fluctuating field, such as

Φ:

~∇Φ = ~∇x ∂Φ

∂x
+ ~∇y ∂Φ

∂y
+ ~∇y ∂Φ

∂y
. (2.140)

So that e.g |(~∇z ∂Φ/∂z)/(~∇x ∂Φ/∂x)| ∼ |~∇χ/k⊥| ∼ ρi/r ∼ ρ∗ a/r. Note that

similar terms scaling has 1/r are also neglected in the gyroaveraging and are further

discussed in section 3.3.

• The equilibrium distribution f0 is assumed to be a local Maxwellian, instead of a

canonical Maxwellian. The differences between these two distribution is of order ρ∗.

• Neglected equilibrium gradient terms in the computations of moments (2.78), e.g.

B0(~x+ ~ρ) ∼ B0(~x), which enter the field equations and are terms order ρ∗.

This sub-ordering thus justifies the approximations made in the derivation of the gyroki-

netic equation, as the currently retained terms related to radial variations of equilibrium

have a dominant scaling over the neglected ones in most of the plasma volume. We note,

however, that the terms related to derivatives in the z direction, which are of order ρ∗ a/r,

might become important if one considers regions close to the magnetic axis, and they may

have to be corrected in the future. Since these approximations have been introduced at

different steps in the derivation, it might be somewhat tedious at this point to identify

all the terms dropped in the final gyrokinetic equation (2.135). An illustrative way to

identify and summarize the missing terms in the currently considered gyrokinetic equa-

tion is to derive the underlying gyrocenter equations of motion in field-aligned coordinate

(x, y, z). This has been done in Ref. [57] keeping all terms of order ε = ρref/Lref ∼ ρ∗ and

we reproduce here the resulting equations. In normalized units, see section 2.10.1, and

considering only a perturbed electrostatic potential, one has:

dx

dt
= − 1

C

[
∂φ̄1

∂y
+
T0(x0)

Zj

2v2
‖ + µB0

B0

γ2

γ1

∂B0

∂z
+ ε

γ2

γ1

∂φ̄1

∂z

]
(2.141)

dy

dt
=

1

C

[
∂φ̄

∂x
+
T0

Zj

(
2v2

‖ + µB0

B0

(
∂B0

∂x
− γ3

γ1

∂B0

∂z

)
− βref v

2
‖
p0

B2
0

ωp

)
− ε

γ3

γ1

∂φ̄1

∂z

]
(2.142)
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dz

dt
= vT (x0)

C v‖
B0 J

+
ε

C

[
γ2

γ1

∂φ̄1

∂x
+
γ3

γ1

∂φ̄1

∂y
+
T0(x0)

Zj

(
2v2

‖ + µB0

B0

γ2

γ1

∂B0

∂x
− βref v

2
‖
p0

B2
0

γ2

γ1

ωp

)]
(2.143)

dv‖
dt

= −vT (x0)

2

C
B0 J

µ
∂B0

∂z
− ε

1

αB0 J

∂φ̂1

∂z
, (2.144)

where the hat symbol over the normalized variables, and the species index have been

dropped so has to lighten notations, and B∗
0‖ ' B0 was considered. This normalized form

of the gyrocenter equations of motion clearly reveals the terms which are not retained

in our model, corresponding to all the contributions ∼ ε in Eqs (2.141)-(2.144). We in

particular identify in Eqs. (2.141)-(2.143) the ε order terms related to ∂/∂z derivatives.

Keeping the ε order term in (2.144) would lead, on the other hand, to the so-called parallel

nonlinearity.

2.12 Summary

In this Chapter, the gyrokinetic and associated field equations have been expressed

in field aligned coordinates in an appropriate form for their numerical implementation.

These equations in particular retains radial variations of equilibrium quantities suitable

with a global approach. A discussion of the local limit was then provided, as well as

a summary of the different remaining approximations. In the next chapter, a detailed

description of the numerical aspects of the GENE code is given.
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3.1 General description

The GENE (Gyrokinetic Electromagnetic Numerical Experiment) code is an Eulerian

gyrokinetic code which solves the time evolution of the particle distribution functions on a

fixed grid in phase space. Its development was initiated by F. Jenko [12] and continued by

T. Dannert [27] at the IPP Garching, Germany. The original version of the code consid-

ered the flux tube approximation, see section 2.11, and the time evolution of both purely

electrostatic and electromagnetic fluctuations. The code was then further improved by F.

Merz [51], who introduced in particular a collision operator and the possibility to use the

code as an eigensolver.

The present code has now been extended to a global version where most of the flux tube

assumptions have been relaxed, see discussion in section 2.11. This code development was

carried out in a close collaboration between the IPP Garching, and the CRPP Lausanne,

and was in particular part of T. Görler’s PhD [28] and the present thesis work.

The GENE code follows the method of line approach, where the right-hand side of

Eq. (2.135) is discretized on the (x, y, z, v‖, µ) grid, thus leading to large set of coupled

ordinary differential equations in t, which can then be solved as an initial value problem

or as an eigenvalue problem. A general overview of the different numerical aspects of

the code for both local and global versions is given in this section. It is then followed in

later sections by more detailed explanations concerning various parts of the global code

which are more specific to the present thesis work. This concerns the implementation of

the parallel boundary conditions, the gyro-averaging operator and fields solver, as well as

the real space dealiasing which is used when dealing with the nonlinear term. Finally, an

additional chapter, see Chap. 4, is dedicated to the description and discussion of differ-

ent magnetic equilibria which are considered to obtain the magnetic field and associated
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metric coefficients appearing in Eq. (2.47).

3.1.1 Treatment of the phase space directions

The radial direction x

The treatment of the radial direction x represents one of the main differences between

the local and global versions of the code. In the flux-tube version of the code one neglects

the radial variation of all equilibrium profiles and their gradients, and periodic boundary

conditions are considered. The radial direction can thus be treated in Fourier space and

radial derivatives in Eq. (2.135), are thus simply transformed as follows:

∂

∂x
→ i kx , where kx =

2π j

lx
and j is an integer .

One notes that in order to justify the radial periodic boundary conditions, the radial box

length lx needs to be larger than the radial correlation length of the turbulence.

On the other hand, in the global version of the code, radial variations of equilibrium

quantities are retained which makes it inconsistent to consider the periodic boundaries in

this direction. Dirichlet boundary conditions are used instead, and the radial direction

is treated in real space. The radial derivatives are discretized with centered fourth order

finite differences, see [28]:

∂f

∂x

∣∣∣∣
x=xi

' fi−2 − 8 fi−1 + 8 fi+1 − fi+2

12 ∆x
+O(∆x4) , (3.1)

with notation fi = f(xi). We also explicit here the second order x-derivative which are

required in the field solver:

∂2f

∂x2

∣∣∣∣
x=xi

' −fi−2 + 16 fi−1 − 30 fi + 16 fi+1 − fi+2

12 ∆x2
+O(∆x4) . (3.2)

The length lx is in this case defined as a fraction of the minor radius, so that the simulation

volume represents a toroidal annulus excluding a finite volume around the magnetic axis.

We note that it is in fact required for practical reasons to exclude the magnetic axis as

the considered field aligned coordinate system, which is polar-like, becomes singular on

the axis.

As a result of the fourth order centered finite difference scheme, see Eq. (3.1), the grid
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points are strongly coupled to their second next neighbors while only weakly to their direct

neighbors, which can lead to a divergence of the odd and even subsets of grid points. In

order to couple these two subsets a hyperdiffusion term is added to the right-hand side of

Eq. (2.135):

hypx = −νx
∂4f

∂x4
' hx

−fi−2 + 4 fi−1 − 6 fi + 4 fi+1 − fi+2

16
+ (O)(∆x2) . (3.3)

where hx = νx/∆x
4 is a damping coefficient, normalized to cs/R, which is typically of the

order of the linear growth rate. In most cases however, this term is not required for linear

simulations, and hx is set to zero.

The binormal direction y

The binormal direction y is treated in both versions of the code in Fourier space with

periodic boundary conditions, and the y derivatives are transformed as follows:

∂

∂y
→ i ky , where ky =

2π j

ly
and j is an integer .

= cst

B

χ

y

1/q

χ

2 π0

2 π

∆ φ

φ

Figure 3.1: Part of a given flux surface covered by the simulation domain (in gray) in the
(φ, χ) plane.

On a given flux surface, the simulation domain does not necessarily cover the whole

surface, as illustrated in Fig. 3.1. Using the definition of y = Cy (qχ − φ) − y0, the

ly length can be related to the fraction of toroidal angle ∆φ = 2 π/n0 occupied by the
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simulation domain on a constant χ surface by

ly = Cy
2π

n0

. (3.4)

For n0 = 1 the full annulus is covered, and the periodicity condition in y reflects the

natural periodicity in the toroidal direction. When n0 > 1 only part of the flux surface is

covered and the periodic boundary conditions are only justified if the correlation length

of the turbulence in the y direction is smaller than the ly length. In order to allow for the

reconstruction of physical quantities on the whole flux surface using the y periodicity and

without overlapping, n0 is imposed to be an integer, which in turn quantizes the allowed

ly values.

Another point to notice relative to the y direction is that the ky wave number is uniquely

related to the toroidal mode number n. Indeed for a given quantity A(Ψ, χ, φ), with

toroidal mode number n, one has:

A(Ψ, χ, φ) = Â(ψ, χ) exp(i n φ)

= Â(ψ, χ) exp(−i n [(y + y0)/Cy + qχ])

= Ã(x, z) exp(−i n y/Cy)

= Ã(x, z) exp(i ky y) ,

so that ky = −n/Cy. The allowed wavenumbers in the y-direction are however given by

ky = j 2π/ly = j n0/Cy according to (3.4), with j integer. In case the flux tube only covers

a fraction of the magnetic surface, i.e. n0 > 1, only the toroidal mode numbers n = j n0

can be thus represented.

The E ×B nonlinearity

As a result of the Fourier representation in x and y in the local code, and in y in the

global code, the nonlinear multiplication in the E × B term would require to evaluate

a convolution. Such an evaluation is computationally very costly and it is much more

efficient to first transform the perturbed quantities to real space using the fast Fourier

transform algorithm, then to evaluate the multiplication in real space and finally transform

back to Fourier space. In order to avoid pollution of the spectrum by unresolved modes,

resulting from the nonlinear multiplication, an anti-aliasing technique is applied.
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In the local code, the so-called 3/2 rule is employed in both x and y directions, which

consist in extending the numerical grid in these directions by adding small scale modes

with zero amplitude before the transformation to real space. The two extended quantities

are then multiplied in real space, and finally the product function is back-transformed to

Fourier space and the extended mode spectrum is removed.

In the global version of the code, the same procedure is applied to the y direction, whereas

aliasing effects are partially removed in the x direction by using a real space anti-aliasing

scheme, which consits in an interpolation before the nonlinear multiplication followed by

a smoothing operation acting on the product function. This procedure is described in

detail in section (3.4). The real space anti-aliasing scheme alone is not enough to ensure

numerical stability of global nonlinear simulations, and the hyper-diffusion coefficient hx,

see Eq.(3.3), needs also to be adapted.

The parallel direction z

The spatial parallel direction z is treated in real space with centered fourth order finite

differences for both versions of the code, see 3.1. The boundary conditions are defined

so as to be consistent with the physical periodicity of each magnetic surface in variables

(χ, φ).

F(x, y, z + 2π) = F(x, y − Cy q 2π, z) . (3.5)

These boundary conditions are further discussed in section 3.2.1.

As for the x direction an hyper-diffusion term is is added to the right-hand side of

Eq. (2.135) in order to couple odd and even points:

hypz = −νz
∂4f

∂z4
. (3.6)

the 4th order derivative is discretize as in Eq. (3.3), and one introduces the hyperdiffusion

coefficient hz = νz/∆z
4.

The velocity space

The advection in the parallel velocity direction is also computed with fourth order

finite differences in both the local and global code, and Dirichlet boundary conditions are
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considered at the edges. As for the x and z directions an hyper-diffusion term is used:

hypv‖
= −νv‖

∂4f

∂v4
‖
, (3.7)

and one again introduces hv‖ = νv‖/∆v
4
‖. Derivatives in the µ direction are only needed

when considering collisions. In this case, the collision operator is treated separately using

a finite volume scheme for the velocity derivatives, see [51].

3.1.2 The eigensolver

When considering linear calculations, the code can be run as an eigensolver thanks to

an interface with the SLEPc/PETSc library [58]. The computation is carried out with a

matrix-free iterative solver which solves for the (eigenvalue,eigenvector) pairs (λ, {g1j}) of

the discretized right hand side operator of Eq. (2.135):

∂g1j

∂t
= L( {g1j} ) , i.e. L({g1j}) = λ {g1j} . (3.8)

The real and imaginary parts of the eigenvalues λ are then identified respectively to the

growth rates and frequencies of the eigenvectors {g1j}. An iterative solver is particularly

efficient compared to a direct solver when only a small subset of the eigenvalues are

needed. In particular, one can search for the eigenvalue with the largest imaginary part,

that is corresponding to the largest frequency, so as to determine the maximal time step

(CFL condition) for ensuring numerically stable initial value calculations, see section

3.1.3. For the physical study of micro-instabilities, one can also solve for a given number

of eigenvalues with the largest real part, corresponding to the most unstable modes. A

detailed description of the eigensolver capability of GENE is presented in [51].

3.1.3 The time evolution scheme

Explicit time scheme

Although any part of the spectrum is accessible with the eigensolver, for cases where

only the most unstable mode is of interest or for nonlinear computations, the code can

be run as an initial value solver. In such case, the time derivative of Eq. (2.135) is

discretized, and an explicit time scheme is used for solving the time evolution of the

distribution function. Explicit time schemes are relatively straightforward to implement
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compared to implicit schemes, which in general require a matrix inversion, but are however

only conditionally stable, i.e. the time step needs to be below a certain limit, the so-called

Courant-Friedrich-Levy (CFL) limit. Several Runge-Kutta schemes of different orders are

implemented in the code, and an optimum needs to be found between the maximal stable

time step achievable , the computational cost, which both increase with the order of the

scheme, and accuracy. A complete discussion on the different implemented schemes is

provided in [51], and in most simulations, a so-called modified fourth order Runge-Kutta

scheme proposed in [59] is used.

Time step adaption

When considering only the linear part of the gyrokinetic equation, the maximal time

step ∆tlin can be obtained using the eigensolver capability of GENE, solving for the mode

with the highest real frequency ωr,max and applying ωr,max ∆t < 1. When considering

nonlinear simulations, an additional constraint on the time step arises from the E × B

advection term. The E×B advection velocity field evolves in time and the corresponding

time step constraint needs therefore to be adapted at each time step:

∆t = sc min(∆tlin,∆tnl) , (3.9)

where ∆tlin is the maximal time step of the linear gyrokinetic equation, and ∆tnl is the

maximal time step associated with the E ×B velocity.

3.1.4 Code performance and parallelization

For typical TEM nonlinear turbulence studies, the grid resolution requirement in the

(x, ky, z, v‖, µ) directions and considering two active species, is about 128× 32× 24× 48×

8× 2 for local runs and up to 300× 32× 24× 64× 16× 2 for global runs. Considering the

different stages of the 4th order Runge-Kutta scheme, and the different pre-factors entering

the equations, one can evaluated that the equivalent of 5 high dimensional double complex

arrays for the distributions need to be stored at each time step, the memory requirement

is respectively 6 GB and 35 GB for local and global simulations. In addition to the high

memory requirement, the computational power, measured in CPU hours, needed for these

simulations is very high. Indeed, considering a single core (2.93 GHz), the typical time per
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time step to advance one grid point in a nonlinear simulation is around 1.2×10−6 s for the

local code and 2.3×10−6 s for the global code. Considering a realistic mass ratio between
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Figure 3.2: CPU time per time step as a function of the number of processors for a local
and global computations with respective resolution nx×nky×nz×nv‖ ×nµ×
nspec = 128× 32× 24× 48× 8× 2 and 300× 32× 24× 64× 16× 2. This strong
scaling test was carried out on the Jülich HPCFF linux cluster..

electrons and ions, the typical number of time steps required to reach a saturated turbulent

state with enough statistics is about 1 000 000. The overall computational power required

is thus of the order of 25 000 CPU hours for a local nonlinear simulation and 300 000

CPU hours for a global computation. Gyrokinetic simulations would thus be out of reach

without massive parallelization. The code is parallelized with mixed OpenMP and MPI

parallelization along all the (x, y, z, v‖, µ) directions and over species, and shows a very

good scaling with increasing number of processors [60]. Note that the x-parallelization is

only used for the global version of the code. A strong scaling, i.e. increasing the number

of cores while keeping the system size constant, computed on the Jülich HPC-FF linux

cluster machine for the local and global parameters described above is shown in Fig. (3.2).

In addition, a scaling performed by T. Dannert on the Jülich BlueGene/P supercomputer

for a much larger local case, where both electron and ion scales are considered, is shown

in Fig. (3.3), for a resolution 1024× 512× 24× 48× 8× 2.
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Figure 3.3: Strong scaling of the GENE code on the Jülich BlueGene/P supercomputer for
a local multi-scale simulation with resolution nx×nky×nz×nv‖×nµ×nspec =
1024× 512× 24× 48× 8× 2.

3.2 Periodicity and parallel boundary conditions

3.2.1 The parallel boundary conditions

When dealing with field-aligned coordinates in a toroidal system, the boundary condi-

tions in the parallel direction are of great importance and need to be consistent with the

natural periodicity of each magnetic surface. This periodicity can easily be expressed in

variables (Ψ, χ, φ), indeed for any quantity F(Ψ, χ, φ) one has:

F(Ψ, χ+ 2π, φ) = F(Ψ, χ, φ) (3.10)

F(Ψ, χ, φ+ 2π) = F(Ψ, χ, φ) , (3.11)

In the field aligned coordinate system (x = Cx(Ψ)− x0 , y = Cy(Ψ) (qχ− φ)− y0, z = χ),

see Eq. 2.59, these conditions respectively read:

F(x, y, z + 2π) = F(x, y − Cy q 2π, z) , (3.12)

F(x, y + Cy 2π, z) = F(x, y, z) . (3.13)

As stated earlier, see section 3.1.1, the simulation domain may not always cover the whole

flux surface, and in this case a statistical periodicity is assumed in the φ direction:

F(Ψ, χ, φ+ ∆φ) = F(Ψ, χ, φ) , with ∆φ = 2π/n0. (3.14)

53



Periodicity and parallel boundary conditions

We note that Eq. (3.14) naturally reduces to (3.11) for n0 = 1. These boundary conditions

are illustrated in Fig. 3.4. Note that when n0 > 0, as in Fig. 3.4, F(x, y−Cy q 2π, z) may

be outside of the simulation domain and the periodicity in y is then invoked. In general,

conditions (3.12) and (3.13) in (x, y, z) variables becomes:

F(x, y + ly, z) = F(x, y, z) , (3.15)

F(x, y, z + 2π) = F(x,modly(y − Cy q 2πy), z) , (3.16)

having made used of the definition (3.4) for ly.

B

F(x,y,z+2   )

π

π

χ

2 π

1/q

y

0
2 π φ

π

F(x,y − 2    q Cy − ly,z)

F(x,y − 2    q Cy,z)

∆ φ

Figure 3.4: Illustration of the parallel boundary conditions for n0 = 2.

In GENE’s representation, the y coordinate is treated in Fourier space:

F(x, y, z) =
∑

k

F̂k(x, z) exp(2π i k (y − y0)/ly) . (3.17)

and the periodic boundary condition in y, Eq. (3.15), is naturally contained in this rep-

resentation. Boundary condition Eq. (3.16) however reads:

∑
k

F̂k(x, z + 2π) exp(2π i k (y − y0)/ly) =
∑

k

F̂k(x, z) exp[2π i k (y − Cy q 2π − y0)/ly] .

(3.18)

One thus identifies for each y-mode k:

F̂k(x, z + 2π) = F̂k(x, z) exp(−i k 2π Cy q 2π/ly) . (3.19)
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Making use of the relation ly = Cy 2π/n0 the parallel boundary condition in z finally

reads:

F̂k(x, z + 2π) = F̂k(x, z) exp(− i k n0 q 2π) . (3.20)

To summarize, when n0 = 1, the full magnetic surface is covered by the flux tube and in

this case, the physical periodicities in the χ and φ angles are exactly recovered. For n0 > 1

only a fraction 1/n0 of the annulus is covered, χ periodicity is ensured and a statistical

periodicity in the φ direction is assumed.

3.2.2 Contour plot in the poloidal plane

To illustrate that the choice of parallel boundary conditions in z satisfy the natural

periodicity condition in χ, we shall now describe how one can reconstruct contours of any

field quantity in the poloidal plane, knowing its values in GENE coordinates (x, ky, z).

Considering a field quantity F in the coordinates x = x(Ψ), y − y0 = Cy(qχ− φ), z = χ:

F(x, y, z) =
∑

k

F̂k(x, z) exp(2π i k(y − y0)/ly) , (3.21)

one can write

F(Ψ, χ, φ) = F(x = x(Ψ), y = Cy(qχ− φ), z = χ)

=
∑

k

F̂k(x, χ) exp[i k n0 (q χ− φ)] . (3.22)

The periodicity condition in χ is well satisfied:

F(Ψ, χ+ 2π, φ) =
∑

k

F̂k(x, χ+ 2π) exp(i k n0 (q (χ+ 2π)− φ))

=
∑

k

F̂k(x, χ) exp(−n0 i k q 2π) exp[i k n0(q(χ+ 2π)− φ)]

= F(Ψ, χ, φ) , (3.23)

having made use of Eq. (3.19). The periodicity in φ is clearly also verified:

F(Ψ, χ, φ+ 2π) =
∑

k

F̂k(x, χ) exp[i k n0 (q χ− φ− 2π)]

= F(Ψ, χ, φ) . (3.24)
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Figure 3.5: Contour plot of the electric potential reconstructed in the poloidal plane. Note
the absence of any discontinuity.

Using this transformation, the electric potential computed with the global version of

GENE for a linear Ion Temperature Gradient instability with toroidal mode number

n = 19 is shown in Fig. 3.5. The periodicity condition in χ is clearly satisfied. For this

example, we consider a plasma with circular concentric flux surfaces of the form:

R = R0 + r cos θ (3.25)

Z = r sin θ (3.26)

where θ is the geometrical poloidal angle. The relations θ = θ(r, χ) and r = f(Ψ) are

given in Chap. 4.

Note that for representing F(Ψ, χ, φ) a more dense mesh in χ is required than the z

mesh for representing F(x, y, z). Indeed, in the latter case the fast phase dependence of

the mode is entirely contained in the y dependence, while in the former the fast phase

variation is in both χ and φ.

3.2.3 The local limit

In the local code, the safety factor profile, q(x) is linearized

q(x) ≈ q0

(
1 +

r0
q0

dq

dx

x

r0

)
= q0

(
1 + ŝ

x

r0

)
, (3.27)
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where ŝ = (r0/q0)dq/dx is defined as the magnetic shear. The parallel boundary condition

(3.20) thus becomes

F̂k(x, z + 2π) = F̂k(x, z) exp [− i k n0 q0 2π] exp

[
−2πi

k Cy 2π

ly

q0
r0
ŝ x

]
= Fk(x, z) exp [− i k n0 q0 2π] exp

[
−2πi

k 2π

ly
ŝx

]
, (3.28)

having used the particular definition Cy = r0/q0 used in the flux tube code.

Considering now the local code representation where x is treated in Fourier space, (3.28)

becomes:

∑
l

ˆ̂Flk(z + 2π) exp(2πi l x/lx) =

∑
l

ˆ̂Flk(z) exp [−2π in0 q0 k] exp

[
−2π i

k 2π

ly
ŝx

]
exp [2πilx/lx] . (3.29)

By imposing the following condition on the length lx:

lx = nc
ly

2πŝ
, (3.30)

where nc is an integer, one can write:

∑
l

ˆ̂Flk(z + 2π) exp(2πi l x/lx) =

∑
l

ˆ̂Flk(z) exp [−2π in0 q0 k] exp [2πi(l − nc k)/lx] . (3.31)

One can therefore identify for a given (kx = 2 π l/lx, ky = 2 π k/ly) mode:

F̂lk(z + 2π) = F̂l+nc k,k(z) exp(−2π i n0 q0 k) . (3.32)

A given (ky, kx) mode is thus coupled to different (ky, k
′
x = kx + p δkx) modes as a result

of the parallel boundary conditions, where δkx = 2 π nc k/lx .

For convenience, it is assumed in addition that n0 q0 is an integer, so that the corresponding

phase factor in (3.32) is unity. We note that depending on the choice for q0, n0 is thus

not necessarily an integer when using the local version of the code.
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3.3 Gyro-averaging

The gyro-averaging scheme for the global code was first implemented by T. Dannert

[61], using a linearization of the metric to evaluate the particle position around the gyro-

orbit. In this section, this procedure is described in detail and some of its limitations

are discussed. Finally, an alternative scheme is proposed where the particle position is

evaluated through a transformation to a quasi-Cartesian coordinate system.

The gyro-average of several quantities is required in the fields and Vlasov equations, and

is defined for a given field F as:

F̄( ~X, µ) =
1

2π

∮
F( ~X + ~ρ(µ, α)) dα

=
1

2π

∮
F(x( ~X + ~ρ), y( ~X + ~ρ), z( ~X + ~ρ)) dα , (3.33)

where the Larmor vector ~ρ lies in the plane perpendicular to the magnetic field at position

~X. Defining (~e1, ~e2) such that (~e1, ~e2,~b) provides a local, unitary, orthogonal system with

~b = ~B(x)/B(x), one can write:

~ρ = ρ (cosα ~e1 + sinα ~e2) , with ρ =
v⊥
Ωj

=
1

qj

(
2mj µ

B0

)1/2

. (3.34)

As discussed in section 2.11, the z−variations of fluctuating quantities (terms ∼ ∂/∂z)

are neglected with respect to (x, y) variations:

F(x( ~X + ~ρ), y( ~X + ~ρ), z( ~X + ~ρ)) ' F(x( ~X + ~ρ), y( ~X + ~ρ), z( ~X)) . (3.35)

Thus, in order to compute the gyro-average of a quantity F , which is known on the fixed

grid (x, y), one needs to evaluate it around the gyro-circle at positions [x( ~X+~ρ), y( ~X+~ρ)].

These positions do not coincide in general with the (x, y) grid, and interpolations are thus

required. In the global version of the code, as described below, the evaluation of F in the

x direction is carried out with finite elements, whereas the Fourier representation used

in the y direction already provides a continuous description and no further treatment is

required for interpolation. In the local version of the code, the x direction is also treated

in Fourier space, in this case gyro-averaging can simply be described as an analytical,

algebraic operator, as will be presented at the end of this section.
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3.3.1 The mixed finite element and Fourier representation

In the global code, the quantity F which needs to be gyro-averaged is represented in

terms of its ky Fourier components and finite elements in the x direction:

F(x, y, z) =
∑
ky

F̂ky(x, z) e
ikyy =

∑
n,ky

F̂n,ky(z) Λn(x) eikyy , (3.36)

where Λn(x) are the radial basis functions, and F̂n,ky are the corresponding finite element

coefficients for each ky mode. In the present version of the code, a 5th order Hermite

representation is used [28]:

F̂ky(x, z) =
∑

n

F̂n,ky(z) H0,n(x) + F̂ ′
n,ky

(z) H1,n(x) + F̂ ′′
n,ky

(z) H2,n(x) (3.37)

where F̂n,ky = F̂ky(xn), and the 5th order piecewise polynomials Hm,n(x) are the Hermite

elements defined on [xn−1 xn+1] through the relations:

du

dxu
Hm,n

∣∣∣∣
x=xj

= δjn δum (3.38)

with u = 0, 1, 2 and zero outside [xn−1 xn+1]. The x-derivatives F̂ ′
n,ky

(z) and F̂ ′′
n,ky

(z)

are evaluated with 4th order centered finite differences, see Eq. (2.83), such that one can

write:

F̂ky(x, z) =
∑

n

F̂n,ky(z) Λn(x) , (3.39)

with

Λn(x) = H0,n(x) +
H1,n−2(x)− 8H1,n−1(x) + 8H1,n+1(x)−H1,n+2(x)

12 ∆x

−H2,n−2(x)− 16H2,n−1(x) + 30H2,n − 16H2,n+1(x) +H2,n+2(x)

12 ∆x2
(3.40)

The gyro-average of F can now be expressed as:

F̄( ~X, µ) =
∑
n,ky

F̂n,ky(z) e
ikyy( ~X) 1

2π

∮
Λn(x( ~X + ~ρ)) eiky(y( ~X+~ρ)−y( ~X))dα

=
∑
n,ky

F̂n,ky(z) e
ikyy J (x, n, ky, z, µ) , (3.41)
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having defined

J (x, n, ky, z, µ) =
1

2π

∮
Λn(x( ~X + ~ρ)) eiky(y( ~X+~ρ)−y( ~X))dα , (3.42)

where x = x( ~X), y = y( ~X), z = z( ~X) are the field aligned coordinates of the guiding

center position ~X. We note that J is independent of y as a result of the assumed

axisymmetry of the magnetic geometry.

For a given ky component one can thus write:

ˆ̄Fky(xi, z, µ) =
∑

n

Ji,n(ky, z, µ) F̂n,ky(z) , ∀xi (3.43)

with the notation Ji,n(ky, z, µ) = J (xi, n, ky, z, µ). Relation (3.43) can be expressed in

matrix-vector notation:
~̂̄Fky(z, µ) = J (ky, z, µ)

~̂Fky(z) , (3.44)

where J is a two dimensional matrix composed of the elements Ji,n, and
~̂F = {F(xi)}.

3.3.2 Double gyro-averaging

In addition to the simple gyro-averaging, the double gyro-averaging ¯̄F is needed when

computing the quasi-neutrality equation (2.136). This operation on F is defined as:

¯̄F( ~X, µ) =
1

(2π)2

∮ ∮
F( ~X + ~ρ− ~ρ′) dαdα′

=
1

2π

∮ ∑
n,ky

F̂n,ky(z( ~X + ~ρ))J (x( ~X + ~ρ), n, ky, z( ~X + ~ρ), µ) eikyy( ~X+~ρ) dα

'
∑
n,ky

F̂n,ky(z) e
ikyy 1

2π

∮
J (x( ~X + ~ρ), n, ky, z, µ) eiky(y( ~X+~ρ)−y) dα (3.45)

where again z( ~X + ~ρ) ' z( ~X) = z and y( ~X) = y.

Using the finite element representation

J (x( ~X + ~ρ), n, ky, z, µ) =
∑

l

Jl,n(ky, z, µ)Λl(x( ~X + ~ρ)) , (3.46)
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one can write

¯̄F( ~X, µ) =
∑
ky ,n,l

F̂n,ky(z) e
ikyy( ~X)Jl,n(ky, z, µ)

1

2π

∫
Λl(x( ~X + ~ρ)) eiky(y( ~X+~ρ)−y) dα

=
∑
ky ,n,l

F̂n,ky(z)e
ikyy( ~X)Jl,n(ky, z, µ)J (x, l, ky, z, µ) . (3.47)

For a given ky mode one thus has:

ˆ̄̄Fky(xi, z, µ) =
∑

n

∑
l

Jil(ky, z, µ) Jln(ky, z, µ) F̂n,ky(z) , ∀xi (3.48)

which in matrix vector notation can be written as:

~̂̄Fky(z, µ) = J 2(ky, z, µ)
~̂Fky(z) (3.49)

having defined J 2 as the matrix with elements Jin =
∑

l JilJln.

3.3.3 Gyro-averaging by linearizing the metric in field-aligned

coordinates

In the previous sections we have described how one can compute gyro-averaged and

double gyro-averaged quantities using a finite element approach. In order to complete the

procedure and to calculate the α integrals, one still needs to evaluate the field-aligned

coordinates x′ = x( ~X + ~ρ), y′ = y( ~X + ~ρ) of the particle along the gyroring. As a

first approach, the field-aligned coordinates x′ and y′ are estimated approximately by

linearizing the metric around the guiding center position:

x′ = x( ~X + ~ρ) = x( ~X) + ~∇x · ~ρ+O(ρ2) , (3.50)

y′ = y( ~X + ~ρ) = y( ~X) + ~∇y · ~ρ+O(ρ2) . (3.51)

By choosing (~e1, ~e2) as follows:

~e1 =
~∇x
|~∇x|

=
~∇x√
gxx

, (3.52)

~e2 = ~b× ~e1 =
(~∇x× ~∇y)× ~∇x
|(~∇x× ~∇y)× ~∇x|

=
gxx~∇y − gxy ~∇x

g
√
gxx

, (3.53)
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with g2 = gxxgyy − (gxy)2, one obtains:

ρx = ~∇x · ~ρ =
√
gxxρ cosα , (3.54)

ρy = ~∇y · ~ρ =
gxy

√
gxx

ρ cosα+
g√
gxx

ρ sinα , (3.55)

which leads to:

J (x, n, ky, z, µ) =

∮
Λn(x+ ρx) eikyρy

dα . (3.56)

The approximation used in Eqs. (3.50)-(3.51) are problematic near a singularity of the

coordinate system, as is the case close to the center of a polar-like coordinate system.

Indeed, near such a singularity, the metric can vary significantly over the Larmor radius

and lead to unwanted approximations in metric effects.

Illustration in a cylindrical system

In order to illustrate which effects are neglected when the particle position is estimated

by expanding the field-aligned coordinates metric around the guiding center position, we

e
θ
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r

ŕ

e r
z

Figure 3.6: Larmor radius in a cylindrical system.

consider the simpler problem of computing the gyro-average F̄ of a cylindrical symmetric

field F . Considering cylindrical coordinates (r, θ, z), one thus has F = F(r) and F̄ is

evaluated as follows:

F̄ =
1

2π

∫
F(r( ~X + ~ρ))dα . (3.57)
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The particle position r′ = r( ~X + ~ρ), see Fig. 3.6, is given by:

r′ =
√

(r + ρ cosα)2 + ρ2 sin2 α

=
√
r2 + 2 r ρ cosα+ ρ2

' r

[
1 +

1

2

(
2 ρ cosα

r
+
ρ2

r2

)
− 1

8

(
2 ρ cosα

r

)2
]

+O(ρ3)

= r + ρ cosα+
1

2r
ρ2 sin2 α︸ ︷︷ ︸+O(ρ3) , (3.58)

having defined r = r( ~X), and chosen (~e1, ~e2) as (~er, ~eθ). In Eq. (3.58) the underbrace term

is a higher order term, not accounted for in Eqs.(3.50)-(3.51), and kept here to highlight

the differences.

Using a long wavelength approximation, one expands F , further tracking the additional

term in Eq. (3.58):

F̄ =
1

2π

∮ [
F(r) + ( ρ cosα+

1

2r
ρ2 sin2 α︸ ︷︷ ︸ )

∂F
∂r

+
ρ2 cos2 α

2

∂2F
∂r2

]
dα+O(ρ3)

= F(r) +
ρ2

4
(
1

r

∂F
∂r︸ ︷︷ ︸+

∂2F
∂r2

) (3.59)

= F(r) +
ρ2

4

1

r

∂

∂r

(
r
∂F
∂r

)
. (3.60)

From Eq. (3.59) one observes that when evaluating the particle position by simply lin-

earizing the metric as in Eqs.(3.50)-(3.51), the 1
r

∂F
∂r

term would be missing. This term

clearly becomes significant when approaching the axis r = 0.

3.3.4 Gyro-averaging in quasi-Cartesian coordinates

In order to avoid the issues described above with linearizing the metric, one could

compute the field-aligned coordinates (x′, y′, z′) of the particles exactly. To this end,

one could map the guiding center position ~X from the field-aligned coordinates (x, y, z)

to the cylindrical coordinate system (R,Z, φ) in which the position ~x = ~X + ~ρ of the

particle can be conveniently computed. The cylindrical coordinates of the particle than

need to be mapped back to the field aligned coordinates (x′, y′, z′). Although exact, the

implementation of this procedure presents itself as quite cumbersome due to the required
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mapping steps, and a more practical alternative is thus suggested here instead.

As discussed in section 3.3.3 the main issue results from the fact that one is linearizing the

(x, y, z) metric which is singular on axis. A pragmatic approach to overcome this problem

is thus to evaluate the particle position ~x = ~X + ~ρ in the quasi-Cartesian coordinates

(ξ, η):  ξ = x cos z ,

η = x sin z ,
(3.61)

which is not singular at the axis, as illustrated in Fig 3.7. Note that here x is assumed to

go like r at the axis, which is the case when using the circular model since x = r, as well

as with the interface with the MHD equilibrium code by choosing x ∼
√

Ψ, see Chapter

4. In the limit x→ 0 the (ξ, η) coordinate system clearly tends towards a local Cartesian

coordinate system instead of the singular (x, z) polar-like system.
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Figure 3.7: (x, z) and (ξ, η) grids in the poloidal plane for a circular equilibrium plasma.

The particle position can now be evaluated by first linearizing the metric in the (ξ, η) co-

ordinate system and then analytically mapped back to the field-aligned coordinate system

(x, y, z) using the transformation: x2 = ξ2 + η2 ,

tan z = η/ξ .
(3.62)
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One thus obtains:

x′ 2 = x2( ~X + ~ρ) = ξ2( ~X + ~ρ) + η2( ~X + ~ρ)

'
[
ξ( ~X) + ~ρ · ~∇ξ

]2
+
[
η( ~X) + ~ρ · ~∇η

]2
= x2 + 2 ξ ~ρ · ~∇ξ + 2 η ~ρ · ~∇η + (~ρ · ~∇ξ)2 + (~ρ · ~∇η)2

= x2 + 2x ~ρ · ~∇x+ (~ρ · ~∇x)2 + x2(~ρ · ~∇z)2 , (3.63)

having used the relations ~∇ξ = cos z ~∇x − x sin z ~∇z and ~∇η = sin z ~∇x + x cos z ~∇z.

From the definition of ~ρ in Eq. (3.34), and of the local basis vectors ~e1 and ~e2 in Eqs. (3.52)-

(3.53), one obtains:

~ρ · ~∇x =
√
gxx ρ cosα , (3.64)

~ρ · ~∇z =
gxz

√
gxx

ρ cosα+
gxxgyz − gxygxz

g
√
gxx

ρ sinα . (3.65)

In the same way, the z coordinate is estimated as follows:

z′ = z( ~X + ~ρ) = arctan

(
η( ~X + ~ρ)

ξ( ~X + ~ρ)

)

' arctan

(
η + sin z ~ρ · ~∇x+ x cos z ~ρ · ~∇z
ξ + cos z ~ρ · ~∇x− x sin z ~ρ · ~∇z

)

= arctan

(
(x+ ~ρ · ~∇x) sin z + x cos z ~ρ · ~∇z
(x+ ~ρ · ~∇x) cos z − x sin z ~ρ · ~∇z

)

= z + arctan

(
x ~ρ · ~∇z
x+ ~ρ · ∇x

)
, (3.66)

where the trigonometric relation tan(z1 + z2) = (tan z1 + tan z2)/(1 − tan z1 tan z2) has

been used. One finally still needs to evaluate y′ − y, appearing in Eq. (3.42) , with:

y′ − y = y( ~X + ~ρ)− y = Cy [q( ~X + ~ρ)χ( ~X + ~ρ)− φ( ~X + ~ρ)]− Cy [q( ~X)χ( ~X)− φ( ~X)]

' Cy [q(x′) z′ − q(x) z(x)− ~ρ · ~∇φ)] , (3.67)

where φ( ~X + ~ρ) was linearized, and:

~ρ · ~∇φ = −
√
gxx

g

Cy

R2
ρ sinα . (3.68)

The safety factor is linearized around x: q(x′) = q(x) + (x′ − x)dq/dx.

65



Gyro-averaging

In Cylinder

Considering again the previous example in a cylinder, we verify that the missing 1
r

∂
∂r

term is recovered. Starting from Rel.(3.63), the position x′ is expanded to second order

in ρ:

x′ '
√
x2 + 2x ~ρ · ~∇x+ (~ρ · ~∇x)2 + x2(~ρ · ~∇z)2

' x+ ~ρ · ~∇x+
x

2
(~ρ · ~∇z)2 +O(ρ3) . (3.69)

In the cylindrical limit, the metric coefficients read (see Sec. 4.3):

gxx = 1 , gxy = ŝz , gyy = 1 + (ŝz)2 (3.70)

gxz = 0 , gyz =
1

r
, gzz =

1

r2
, (3.71)

which, using (3.64) and (3.65), leads to:

~ρ · ~∇x = ρ cosα , ~ρ · ~∇z =
1

r
ρ sinα . (3.72)

One thus finally obtains for x′:

x′ = x+ ρ cosα+
ρ2

2r
sin2 α+O(ρ3) , (3.73)

where we indeed recover the higher order correction term of Eq. (3.58).

3.3.5 The field equations

With the finite element representation in x described above for the gyro-averaging and

double gyro-averaging, the different field equations can be written as matrix equations for

the discrete fields.

The quasi-neutrality equation

Using Eqs. (3.43) and (3.48), the quasi-neutrality equation (2.136) reads for all spatial

positions:

∑
j

{
π n̂0j(x0)Zj

∫
B̂∗

0‖,i(ẑ, v̂‖)
∑

n

Ji,n(ky, z, µ)
~̂
f1j,n dv̂‖ dµ̂

−
Z2

j n̂0j,i

T̂0j,i

[
Φ̂i(ky, z)−

B̂0,i

τ0j,i

∑
n

∑
l

∫
Jil(ky, z, µ) Jln(ky, z, µ) exp(−µB̂0,i

τ0j,i

) dµ̂ Φ̂n(ky, z)

]}
= 0 ∀xi (3.74)
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which can be expressed for each ky and z = zk in matrix vector notation as a linear system

for ~Φ = {Φ̂i(ky, zk)}, i = [1, nx], (the hat is dropped here):

M~Φ = ~S1 , (3.75)

with

Min =
∑

j

Z2
j n̂0j,i

T̂0j,i

[
δin −

B̂0,i

τ0j,i

∑
l

∫
Jil Jln exp(−µB̂0,i

τ0j,i

) dµ̂

]
, (3.76)

and

S1i =
∑

j

π n̂0j(x0)Zj

∫
B̂∗

0‖,i

∑
n

Ji,n f̂1j,n dv̂‖ dµ̂ . (3.77)

The equation for ~Φ defined by (3.76) can then be solved using standard numerical methods

for linear algebraic systems of equations. In GENE, Eq. (3.76) is solved with a direct

method for each (ky, zk) using an LU decomposition. Note that as M depends only on

the magnetic equilibrium and background distribution f0, this LU decomposition needs

only to be done once for each (ky, zk) during the initialization phase of the simulation.

The adiabatic electron case

Similarly, when considering adiabatic electrons, Eq. (2.137) can be written:(
M ′ +

n̂0e

T̂0e

)
~Φ = ~S ′1 +

n̂0e

T̂0e

〈~Φ〉 , (3.78)

where M ′ and ~S ′1 are the same matrix and vector as in Eqs. (3.76) and (3.77) except

that the sums
∑

j are running over j 6= e. In order to solve Eq. (3.78) one first needs

to evaluate the unknown flux-surface average ~〈Φ〉 of the electric potential. Taking the

flux-surface average of Eq. (3.78), one obtains:〈(
M ′ +

n̂0e

T̂0e

)
~Φ

〉
= 〈~S ′1〉+

n̂0e

T̂0e

~〈Φ〉 , (3.79)

Using Eqs (3.78) and (3.79) would in principle require to solve an integral equation for

Φ. However, a further simplification is introduced here in order to evaluate 〈~Φ〉, which
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consists in neglecting the poloidal variation of equilibrium quantities such that:〈(
M ′ +

n̂0e

T̂0e

)
−
〈
M ′ +

n̂0e

T̂0e

〉〉
' 0 , (3.80)

leading to: 〈(
M ′ +

n̂0e

T̂0e

)
~Φ

〉
'
〈
M ′ +

n̂0e

T̂0e

〉
〈~Φ〉 =

[
〈M ′ 〉+

n̂0e

T̂0e

]
〈~Φ〉 . (3.81)

With this approximation Eq. (3.79) becomes:

〈M ′〉 〈~Φ〉 = 〈~S ′1〉 , (3.82)

which can now be solved as a linear system for the flux-surface averaged electric poten-

tial 〈~Φ〉.

Ampère’s law

From Eq. (2.138), the discrete equation for A1‖,i(ky, zk) = A1‖(xi, ky, zk) can be written

in matrix-vector form:

D ~A = ~SA (3.83)

where D is the matrix associated with the discretized ∇2
⊥ = gxx ∂2

∂x2 + i 2 gxyky
∂
∂x
− gyyk2

y

operator, where the derivatives are evaluated with centered 4th order finite differences,

see Eqs. (3.1) and (3.2), and ~SA = SAi=1,..nx
with:

SA,i =
∑

j

{
βref

2
Zj n̂0j(x0) v̂Tj(x0)π

∫
B̂∗

0‖,i

∑
n

Ji,n
~̂
f1j,n dv̂‖ dµ̂ (3.84)

−β
2
ref

4

n̂0j,i ĵ0‖,i

B̂2
0,i

(
Zj Φ̂1,i −

B̂0,i

τ0j,i

∑
n

∑
l

∫
Jil Jln e

−µ̂B̂0/τ0j dµ̂ Φ1,n

) }
.(3.85)

note that the sum over l is pre-computed in the initialization phase.

3.3.6 The local limit

In the local limit, thanks to the considered Fourier representation in both the x and

y directions, the gyro-averaging operator (3.33) with the approximation (3.35) can be
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simply expressed as:

F̄(x, y) =
1

2π

∮
F(x( ~X + ~ρ), y( ~X + ~ρ)) dα

=
∑
kx,ky

F̂kx,ky

1

2π

∮
ei [kx x( ~X+~ρ)+ky y( ~X+~ρ)] dα

=
∑
kx,ky

F̂kx,ky e
i( kx x+ky y) 1

2π

∮
ei(kx

~∇x·~ρ+ky
~∇y·~ρ) dα (3.86)

where the particle position has been evaluated by linearizing the metric, see Eqs. (3.50)

and (3.51). Using now relations (3.54) and (3.55), one has:

kx
~∇x · ~ρ+ ky

~∇y · ~ρ = ρ

[(
kx

√
gxx + ky

gxy

√
gxx

)
cosα+ ky

g√
gxx

sinα

]
(3.87)

= ρ k⊥ cos(α+ φ) , (3.88)

with

k2
⊥ =

(
kx

√
gxx + ky

gxy

√
gxx

)2

+ k2
y

g2

gxx
(3.89)

= gxx k2
x + gyy k2

y + 2 kx ky g
xy , (3.90)

and

tanφ = −
(
ky

g√
gxx

) / (
kx

√
gxx + ky

gxy

√
gxx

)
(3.91)

The gyro-averaging operator finally reads for a given (kx, ky) mode:

F̄(kx, ky) = J0(λj)F(kx, ky) , (3.92)

where J0 = π−1
∫ π

0
eix cos α dα is the zeroth order Bessel function of the first kind, λj =√

(2B0 µ/mj) k⊥/Ωj. In this representation, the field equations become algebraic expres-

sions and thus are trivially solved. The electrostatic potential, solution to the quasi-

neutrality equation, reads:

Φ̂ =

∑
j n̂0j π Zj

∫
B̂∗

0‖J0(λj) f̂1j dv̂‖dµ̂∑
j n̂0j

Z2
j

T̂0j
[1− Γ0(bj)]

(3.93)

where Γ0(b) = exp(−b) I0(b) is the zeroth order scaled modified Bessel function and bj =

(v2
Tj k

2
⊥)/(2 Ω2

j). When considering adiabatic electrons, the solution to the quasi-neutrality
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equation equation becomes:

Φ̂ =

∑
j 6=e n̂0j π Zj

∫
B̂∗

0‖J0(λj) f̂1j dv̂‖dµ̂+ n̂0e

T̂0e
〈Φ̂〉

n̂0e

T̂0e
+
∑

j 6=e n̂0j
Z2

j

T̂0j
[1− Γ0(bj)]

, (3.94)

where the flux-surface average of Φ is computed using the same approximation as in the

global case:

〈Φ̂〉 =

〈∑
j 6=e n̂0j π Zj

∫
B̂∗

0‖J0(λj) f̂1j dv̂‖dµ̂
〉

〈∑
j n̂0j

Z2
j

T̂0j
[1− Γ0(bj)]

〉 . (3.95)

Finally Ampère’s law reads:

Â1‖ = − 1

k2
⊥

∑
j

{
βref

2
Zj n̂0j v̂Tj(x0)π

∫
B̂∗

0‖ J0(λj) f̂1j dv̂‖ dµ̂ (3.96)

−β
2
ref

4

n̂0j ĵ0‖Zj

B̂2
0

[1− Γ0(bj)] Φ̂

}
. (3.97)

More details to the derivation of the local gyro-averaging and field equations can be found

in [51].

3.4 Real space dealiasing

3.4.1 Aliasing issue

The numerical discretization of the physically continuous space defines a smallest re-

solved scale (i.e. highest Fourier mode) which results from the finite number of grid points

in the simulation domain. In a nonlinear simulation, even when the linear drive region is

well contained inside the resolved region of the spectrum, the quadratic nonlinear ~E × ~B

term will generate smaller and smaller structures. In the absence of physical damping,

these small scales will eventually reach the grid size and will therefore result in unresolved

scales leading to so-called aliasing effects. In order to get a better insight concerning this

issue we shall first consider a discrete Fourier representation of the discretized fields and

discuss how aliasing effects can be suppressed in a graceful way in this representation,

which shall then lead us to an equivalent real space procedure.

To understand the basic aliasing effect, let us first consider two real periodic one-dimensional

functions f1 and f2 discretized on N grid points, each containing a single Fourier mode
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with non zero amplitude. Their respective mode numbers k1 and k2 are assumed to be

such that the sum k1 + k2 is greater than the Nyquist limit, k1 + k2 > N/2. When multi-

plying the two functions together, f12 = f1× f2, the spectrum will contain both a Fourier

mode at k1−k2 and an unresolved mode with mode number k12 = k1+k2. This unresolved

mode will effectively reappear at position k12−N in the spectrum of the product function

f12 as a result of the N periodicity of the Fourier components. The generation of this

unphysical mode at k12 −N is what is called aliasing.

In order to further clarify this effect, let us now consider a one dimensional example with

the two real functions discretized over N = 32 points:

f1(x) = 2 sin(2πk1/Lx) (3.98)

f2(x) = 2 sin(2πk2/Lx) (3.99)

and assuming k1 = 10, and k2 = 8. In this case, the product f12 = f1 × f2 should contain

a mode k1 − k2 = 2 and a mode k1 + k2 = 18. The mode number 18 is above the Nyquist

limit of N/2 = 16 and thus reappears in the spectrum at position 18 −N = −14 due to

the N periodicity of the Fourier components which is illustrated in Fig. 3.8. Note that

as all considered fields are real, their complex Fourier spectra always contains pairs of

coefficients (fk, f−k) verifying the reality condition f−k = f ∗k .
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Figure 3.8: Fourier spectra of f1, f2 and f12 = f1 × f2
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3.4.2 Standard dealiasing technique

When working in Fourier space, the standard method to avoid aliased modes generated

by non-linear terms to pollute the spectrum consists of two steps. Each spectrum of

the two functions to be multiplied is (1) first extended and padded with zeros before

the nonlinear multiplication. In practice both theses extended spectra are temporarily

transformed to real space where the product is straightforward to carry out. Back to

Fourier space the resulting product function is thus still given on the extended spectrum,

and (2) the eventual modes now appearing in the extended spectrum region are then

removed to obtain a function defined on the original spectrum. Note that this so-called

anti-aliasing procedure clearly does not treat exactly the non-linear spectrum evolution

but simply enables to gracefully remove from the numerical simulation any unresolved

Fourier modes that may be generated.

Going back to our previous example functions Eqs. (3.98)-(3.99), the real space and Fourier

representations of the product function f12 with and without anti-aliasing procedure is

shown on Fig. 3.9.

This Fourier space anti-aliasing technique is used in the local version of GENE for both

x and y directions and for the y direction in the global code. In practice a so-called 3/2

rule is considered, that is the extended spectrum contains 3N/2 modes.
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Figure 3.9: Real space (left) and Fourier (right) representation of the product function
f12, with and without anti-aliasing procedure
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3.4.3 Treatment in real space

In the global version of the code, the x direction is no longer treated in Fourier space,

which requires an alternative approach. The two steps described above correspond in

real space to (1) an interpolation, since the same functions are now defined on a finer

grid, followed by (2) a smoothing operation, or filtering on the product function. When

carrying out these two steps in real space, one can only approximately reproduce the

Fourier space treatment and will introduce damping and/or apparition of spurious modes

in the resolved spectrum which should be controlled.

In view of quantifying the effects of this real space treatment and to compare different

interpolation and smoothing schemes, the procedure is applied to periodic functions such

that a Fourier analysis can be easily carried out.

Let f be a periodic function represented on the initial equidistant N -point grid and f̄

the corresponding interpolated function on the refined 2N -point grid, obtained from the

original grid by adding mid-point mesh nodes. One notes that although for the Fourier

space dealiasing the refined mesh contains only 3N/2 points, we use for the real space

scheme a 2N mesh, such that the grid point values of f can be used for f̄ . In order

to analyse how the interpolation affects the spectrum, one can write the corresponding

linear operator in Fourier space in the form ˆ̄fk̄ = H(k̄)f̂k̄, k̄ = [−N,N ], where H(k̄)

will be referred to as the spectral extension function, and relates the Fourier components

of the interpolated function ˆ̄fk̄ to the Fourier components of the initial function f̂k̄. A

practical example of the derivation of H(k) for the Lagrange interpolation is provided in

Eq. (3.108). Noticing that f̂k is periodic with period N , f̂k = f̂k+N , a given mode f̂k will

therefore in general give rise to two modes in the ˆ̄f spectrum:

f̂k →

 1) ˆ̄fk = H(k) f̂k

2) ˆ̄fk+N = H(k +N) f̂k

. (3.100)

The spectral extension function H verifies H(k) + H(k + N) = 1, see for example

Eq. (3.108), reflecting the fact that the information on the initial grid is kept, and that

one recovers the original function f when removing mid-point values from the interpo-

lated function f̄ . The splitting of mode f̂k into two modes ˆ̄fk and ˆ̄fk+N also show how the

spectrum may get deformed by the interpolation step. Different interpolation schemes
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have been tested, and their corresponding spectral extension functions are plotted on

Fig. 3.10. Only the box-shaped extension function of the Fourier anti-aliasing scheme

avoids deformation of the spectrum according to (3.100). All real space interpolation

schemes considered have corresponding extension functions which are only approxima-

tions of this box-shape. Since x−parallelization is considered in the implementation of
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Figure 3.10: Spectral extension function for different interpolation schemes: Lagrange in-
terpolation of various orders p = n − 1, Cubic Spline, Cubic Hermite. For
comparison, the box-shaped extension function of the standard Fourier anti-
aliasing scheme is also shown.

the global GENE code, a local interpolation scheme is more favorable, and because of its

simplicity, high order Lagrange interpolation was finally implemented. The default value

is the n = 10 points stencil (9th order polynomial) interpolation.

There exist various ways to construct a smoothing operator. In the present work, con-

sidering that the H(k) functions for the different interpolation schemes approach well

the ideal box-shaped function, it was decided to design the smoothing operator so that

its transfer function S(k) in Fourier space would be identical to H(k). The smoothed

function on the extended grid reads in Fourier space:

〈 ˆ̄f 〉k̄ = S(k̄) ˆ̄fk̄ (3.101)
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Restricting to the coarse N-point grid by dropping every 2nd point reads in Fourier space:

〈f̂〉k = 〈 ˆ̄f〉k + 〈 ˆ̄f〉k+N = S(k) ˆ̄fk + S(k +N) ˆ̄fk+N , (3.102)

where we note the contribution of the 〈 ˆ̄fk+N〉 to the spectrum of 〈f〉 as a result of aliasing.

In particular this contribution vanishes, 〈 ˆ̄fk+N〉 = 0, in the case of the box-shaped filtering

used in the standard Fourier anti-aliasing scheme.

Relation (3.102) is then used to derive the corresponding real space operator which can

be implemented in the code.

3.4.4 Lagrange interpolation

In order to better illustrate the real space anti-aliasing procedure, the derivation of the

spectral extension function H(k) for the Lagrange interpolation is now described together

with the corresponding smoothing operator.

First of all, the discrete periodic function fi = f(xi), defined on the equidistant grid xi,

is represented using an n point Lagrange interpolation by

f(x) =

jmax∑
j=jmin

Lj(x− xi) fi+j , ∀ x ε [xi, xi+1] , (3.103)

where jmin = −[(n−1)/2] and jmax = [n/2], with [z] the nearest integer to z towards minus

infinity. The Lj(x) are the p = (n − 1)th order polynomials defined by Lj(j
′ ∆x) = δj j′

∀j, j′ = jmin . . . jmax. In the following we restrain ourselves to midpoint interpolation,

and to even stencils, i.e. odd order polynomials, so that the interpolated value at xi+1/2

is computed using the same number of fi values on the left and on the right.

The interpolated function f̄l is represented on the dense mesh x̄l for l ε [0, 2N − 1] with,

x̄2i = xi and x̄2i+1 = xi+1/2 , (3.104)

f̄2i = fi and f̄2i+1 =
s∑

j=−s+1

Lj(∆x/2) fi+j , (3.105)

where s = n/2. The stencil for such a Lagrange interpolation is shown in Fig. 3.11.

Using these definitions, the Fourier coefficients of f̄ can then be expressed in terms of the
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fine grid x j

jcoarse grid x

Lagrange interpolation stencil for n=4

Figure 3.11: Schematic of the Lagrange interpolation stencil for n = 4.

Fourier coefficients of f :

ˆ̄fk =
1

2N

2N−1∑
l=0

f̄le
−iπ l k/N

=
1

2N

[
N−1∑
l=0

f̄2l e
−i 2 π l k/N +

N−1∑
l=0

f̄2l+1 e
−i 2 π (l+1/2) k/N

]

=
1

2
f̂k +

e−iπ k/N

2

1

N

N−1∑
l=0

s∑
j=−s+1

Lj(∆x/2) fl+j e
−i 2 π l k/N

=
1

2
f̂k +

e−iπ k/N

2

s∑
j=−s+1

1

N
Lj(∆x/2)

N−1+j∑
l=j

fl e
−i 2 π (l−j) k/N (3.106)

using the periodicity of f , the last sum reads:

1

N

N−1+j∑
l=j

fl e
−i 2 π (l−j) k/N =

1

N

N−1∑
l=0

fl e
−i 2 π (l−j) k/N

= f̂k e
i 2 π j k/N . (3.107)

The spectral extension function H(k) is thus finally given by:

ˆ̄fk = H(k) fk =
1

2

[
1 +

s∑
j=−s+1

Lj(∆x/2) e−iπ (1−2j) k/N

]
fk . (3.108)

The H(k) function is shown in Fig. 3.10 for various stencil sizes n. The fact that Lj(∆x/2)

are real, naturally leads to the reality condition H∗(k) = H(−k). But for n even, the

additional symmetry Lj(∆x/2) = L−j+1(∆x/2) results in H(k) being real valued, as can

be easily shown from Eq. (3.108).

As discussed in the previous section, the smoothing operator S(k) is chosen to be identical

to H(k) so that:

〈f̂〉k = H(k) ˆ̄fk +H(k +N) ˆ̄fk+N . (3.109)
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From this relation, the point values of the smoothed function 〈f〉 can be expressed in

terms of the values of f̄ :

〈f〉l =
N−1∑
k=0

〈f̂〉k ei 2 π k l/N

=
N−1∑
k=0

(
H(k) ˆ̄fk +H(k +N) ˆ̄fk+N

)
ei 2 π k l/N

=
N−1∑
k=0

H(k)ei 2 π k l/N ˆ̄fk +
N−1∑
k=0

H(k +N) ˆ̄fk+N) ei 2 π k l/N ei 2 π k N/N

=
N−1∑
k=0

H(k)ei 2 π k l/N ˆ̄fk +
2N−1∑
k′=N

H(k) ˆ̄fk′ e
i 2 π k′ l/N

=
2N−1∑
k=0

H(k)ei 2 π k 2 l/2 N ˆ̄fk (3.110)

Using Eq. (3.108) one finally obtains the relation

〈f〉l =
1

2

[
2N−1∑
k=0

ˆ̄fk e
iπ k 2 l/N +

s∑
j=−s+1

Lj(∆x/2)
2N−1∑
k=0

ˆ̄fk e
−i 2 π (1−2j−2l) k/2 N

]

=
1

2

(
f̄2l +

s∑
j=−s+1

Lj(∆x/2)f̄2(l+j)−1

)
(3.111)

which is used to compute the smoothed function f on the the N points grid. The stencil

for such a ”Lagrange smoothing” is shown in Fig. 3.12.

fine grid x j

jcoarse grid x

Stencil for n=4

Lagrange smoothing

Figure 3.12: Schematic of the Lagrange smoothing stencil for n = 4.

3.4.5 Validation with nonlinear simulations

The anti-aliasing procedure was first tested in a version of the GENE code which still

uses Fourier treatment of the x derivatives and field solver, but with a real space anti-

aliasing scheme. Results in Fig. 3.13 are obtained with 9th order Lagrange interpolation
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Real space dealiasing

(i.e. n = 10) and the corresponding smoothing operator, and are compared with nonlinear

simulations using the standard Fourier space dealiasing or no dealiasing. For the simula-

tions with real space dealiasing or without dealiasing a hyperdiffusion term, see Section

3.1.1, is required and the results are shown in each case for the minimal hyperdiffusion

coefficient, hx, ensuring a stable simulation.
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Figure 3.13: (a) Electrostatic heat flux time trace, (b) kx density spectrum in logarithmic
and (c) linear scale. The different curves are obtained using (1) the stan-
dard Fourier anti-aliasing and hx = 0, (2) the real space anti-aliasing with
Lagrange interpolation of order 9 and hx = 0.6, and (3) no anti-aliasing and
hx = 4.

The real space anti-aliasing enables one to use a lower value of the hyperdiffusion

coefficient hx required to obtain a stable simulation compared to the case where no anti-

aliasing was used. In addition, the resulting kx density spectrum is much closer to the

simulations with Fourier space anti-aliasing. The efficiency of the real space anti-aliasing

technique was thus clearly validated.
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3.5 Sources and sinks

In the absence of any additional source, the profiles in a global nonlinear simulation

tend to relax towards sub-critical gradients. They eventually becomes close to the critical

gradient values, the turbulence drive is strongly decreased and a state close to marginality

is reached.

In the version of the global code used in this work, Dirichlet boundary conditions are

considered in the radial direction. The temperature and density at both ends of the

−0.5 0 0.5

x/l
x

ν
K
 (

x
)

Buffer
regions

Figure 3.14: Coefficient profile ν̂k(x) of the damping Krook operator applied within edge
buffer regions in nonlinear simulations.

simulation domain are thus constraints to their initial values, while a profile relaxation

may occur in the center of the domain. This was observed to potentially lead to strong,

unphysical profiles variations close to the boundaries, which in turn generated strong

turbulence in the edge regions. In order to avoid such behavior an artificial Krook damping

operator is applied in buffer regions. This operator is added to the right hand side of the

gyrokinetic equation (2.135):

ĥK = −ν̂K(x) ĝ1j . (3.112)

Where the function ν̂K(x) is zero outside of the buffer regions, and is determined by fourth

order polynomial ramp inside, as illustrated in Fig. 3.14. The maximal amplitude of νk

is set to be comparable to the linear growth rates, while the width of the buffer regions

typically represent 5− 10% of the simulation domain on each sides.

In order to facilitate achieving quasi-steady state nonlinear simulations, an artificial

Krook-type heat source was in addition implemented. This source, similar to the one

in Ref. [62], is applied over the whole system and is designed to control the temperature
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profile, while conserving the flux-surface averaged density and parallel momentum. The

following term is thus added to the right hand side of the gyrokinetic equation (2.135):

ŜK(x, |v‖|, µ) = −γ̂h

 〈f̂1j( ~X, |v‖|, µ)〉 − 〈f̂0j( ~X, |v‖|, µ)〉

〈∫
d~v 〈f̂1j( ~X, |v‖|, µ)〉

〉
〈∫

d~v 〈f̂0j( ~X, v‖, µ)〉
〉
 ,

(3.113)

where 〈.〉 refers to the flux-surface average and

f̂1j( ~X, |v‖|, µ) =
f̂1j( ~X, v‖, µ) + f̂1j( ~X,−v‖, µ)

2
. (3.114)

The conservation of density is ensured through the correction term 〈
∫
· · · 〉/〈

∫
· · · 〉, while

the conservation of parallel momentum is verified since SK is even in v‖ as result of the

symmetrization of the distribution with respect to this variable. The zeroth and first v‖

moments of SK indeed cancel. In Ref. [62], the heating operator in fact only depends on

the radial position r and kinetic energy ε. The approximate version (3.113), which is a

function of (x, |v‖|, µ), was considered here for practical reasons, as a reconstruction of

f1j(x, ε) would have required costly numerical interpolations.

This artificial heat source is particularly appropriate for code comparisons, see section 5.5.2,

as it enables to rapidly reach a steady state, or to investigate transport features for a pre-

scribed gradient profile. However, an alternative and more physically relevant approach

for a global code is to perform flux driven simulations. In this case, a local heat source is

applied to model realistic plasma heating, and the temperature profiles are free to evolve.

Such a realistic heat source has recently been implemented in global-GENE by T. Görler,

together with alternative von Neumann boundary conditions at the inner radial boundary

to allow for free temperature and potential field evolution at this point.

3.6 Summary

In this chapter, the different numerical algorithms used in the GENE code were pre-

sented. While the initial version of the code could only be run in the local approximation,

it has now been extended to a global version which fully includes radial variation of equilib-

rium quantities. In this global version, the radial boundary conditions have been changed

from periodic to Dirichlet and the original Fourier representation for the radial direction
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has been replaced by a real space treatment, where the radial derivatives are now computed

using 4th order centered finite differences. In addition, the Fourier space gyro-averaging

operator has been replaced in the x-direction by a real space gyro-averaging integral, for

which a Hermite interpolation is applied. With this formulation, the field equations can

be expressed as linear systems of equations for the discretized fields which are then solved

using with a direct method based on LU decomposition.A real space dealiasing operator,

inspired from the equivalent Fourier space treatment and using Lagrange interpolation

was, in addition, introduced when dealing with the nonlinear term. Finally a Krook-type

heat source was implemented to allow for quasi-steady state nonlinear simulations.

Various tests and benchmarks have been carried out in order to validate the global version

of the code and will be discussed in Chapter 5.
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4 Equilibrium models

4.1 The toroidal MHD equilibrium

In Chap. 2 the field-aligned coordinate system (x, y, z) was defined through the relation

~B0 = C ~∇x × ~∇y, having assumed a prescribed axisymmetric magnetic field. In this

Chapter, various equilibrium models are presented to describe the equilibrium magnetic

field configuration and corresponding metric coefficients used in GENE.

Following [63], we shall first give an overview of the different properties of an axisymmetric

stationary magnetically confined system. The equilibrium state in a magnetized plasma

can be described by the time independent ideal magnetohydrodynamic (MHD) equations:

~J0 × ~B0 = ~∇p0 (4.1)

~∇× ~B0 = µ0
~J0 (4.2)

~∇ · ~B0 = 0 , (4.3)

where ~B0 denotes the equilibrium magnetic field, ~J0 is the current density, p0 the total

plasma pressure, and having assumed no equilibrium flows.

A Tokamak plasma can, to a good approximation, be assumed axisymmetric. In this

case, considering the cylindrical coordinate system (R,Z, φ) all equilibrium quantities are

independent of the toroidal angle φ and the general solution of Eq. (4.3) for the magnetic

field is of the form:

~B0 = ~∇φ× ~∇Ψ + I ~∇φ with Ψ = −r Aφ , (4.4)

where A0 is the potential vector, ~B0 = ~∇× ~A0. The magnetic field is thus decomposed in

its toroidal ~B0φ = I ~∇φ and poloidal ~B0p = ~∇φ × ~∇Ψ components, with Ψ the poloidal

magnetic flux function, defined as the magnetic flux through a toroidal ribbon between
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the magnetic axis and a toroidal line, see Fig. 4.1:

Ψ(R,Z) =
1

2π

∫
Σ

~B0 · d~σ (4.5)

= cstΨ

Z

R

Σ

φ

Figure 4.1: Cylindrical coordinates (R,Z, φ) in toroidal geometry.

Similarly the general solution of Eq. (4.2) for the current density in an axisymmetric

system is:

~J0 = ~∇φ×∇f +RJφ
~∇φ with f = −RBφ

µ0

. (4.6)

In such axisymmetric configuration, Eq. (4.4) implies that ~B0 · ~∇Ψ = 0, and Ψ = cst is

thus a magnetic surface. From Eq. (4.6) one also has ~J0 · ~∇f , and f = cst is therefore a

current surface. The relation (4.1) shows, finally, that magnetic and current surfaces are

both identical and given by p = p(Ψ) = cst. We also note that f = f(Ψ) implies that

RBφ = I = I(Ψ). Substituting now Eq. (4.1) in (4.4) leads to:

−µ0RJφ = −4∗Ψ = −R2 ~∇ · 1

R2
~∇Ψ = µ0R

2 p′(Ψ) + I I ′(Ψ) , (4.7)

where the prime notation stands for the derivative with respect to Ψ. This elliptic non-

linear equation for Ψ is referred to as the Grad-Shafranov equation [63] and relates the

equilibrium Ψ to the pair of independent profiles p = p(Ψ) and I = I(Ψ).

The relative strength between the poloidal and the toroidal magnetic field is a key element

of the Tokamak configuration and results in a twisting of the magnetic field lines around
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the magnetic surfaces. The number of toroidal revolutions of such a line to complete one

poloidal revolution is given by the safety factor :

q(Ψ) =
1

2π

∫ 2π

0

dφ

dθ

∣∣∣∣
along ~B0

dθ =
1

2π

∫ 2π

0

~B0 · ∇φ
~B0 · ∇θ

dθ (4.8)

where θ is the geometrical poloidal angle.

In this chapter three different equilibrium models are described: 1) an interface with

the MHD equilibrium code CHEASE, which actually solves numerically Eq. (4.7), 2) a

circular ad-hoc concentric flux surface model, and finally 3) the so-called s − α model.

This last model, which provides a simple, comprehensive, analytic magnetic equilibrium,

consists of circular shifted flux surfaces, with s the shear and α the Shafranov shift be-

tween centers of consecutive magnetic surfaces resulting from the pressure gradient. It

has been widely used in past local gyrokinetic simulations.

In the standard application of the s−α model some terms of order ε = a/R are neglected,

such that the resulting metric coefficients are essentially those of a cylindrical system.

This can lead to significant differences with respect to the other equilibrium models. Dif-

ferences between simulations with s−α and true MHD equilibrium were first pointed out

in [64]. They were however assigned to the remaining Shafranov shift present in the low

pressure MHD equilibrium plasma, which had been neglected in the s− α model. It was

also noted in Ref. [65] that results with an s − α model significantly differ from those

obtained with a Miller [66] geometry in the limit of circular parameters and no Shafranov

shift, but no actual explanation was provided.

Following results published in [67], it will be shown in the following that the above men-

tioned differences in fact mainly result from the approximation made in the standard

flux-tube implementation of the s− α model, in which the straight field line poloidal an-

gle (essential for the definition of field-aligned coordinates) is identified to the geometrical

poloidal angle, which leads to inconsistencies of order ε. Discrepancies in simulations be-

tween the s−α and the other equilibrium models will be illustrated in the following for the

Cyclone base case [68] since it is considered as a reference Benchmark in the gyrokinetic

community.

Finally, some local and global simulations are compared, and it is shown that the ge-
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ometry issues can lead to a coincidental agreement between the flux tube results with

s − α equilibrium and global results with a correct treatment of the equilibrium at fi-

nite ρ∗ = ρs/a = 1/180. A true agreement is in fact achieved when the flux tube and

global simulations both correctly treat the equilibrium, and when the global computa-

tion is carried out for conditions approaching the ρ∗ → 0 limit, intrinsic to the flux tube

implementation.

4.2 The CHEASE interface

The equilibrium code CHEASE solves the nonlinear Grad-Shafranov equation (4.7) for

Ψ using an iterative method with finite element representation [36]. The code maps the

computed equilibrium on a flux coordinate system (Ψ, χ, φ), where Ψ is the poloidal flux

function, χ the generalized poloidal angle and φ the toroidal angle. The CHEASE code

has been modified to output all quantities required for gyrokinetic computation such as

the q profile, the metric coefficients, the Jacobian, the magnetic field and its derivatives,

as well as several other quantities, all given on a (Ψ, χ) grid (all equilibrium quantities are

independent of φ), where in this case χ is chosen as the straight field line poloidal angle.

Note that in order to remain more general, CHEASE provides the equilibrium on a (Ψ, χ)

grid and not directly on the (x, y, z) grid used in GENE, so that this output can easily

be used by other gyrokinetic codes as well, such as the ORB5 code [54] also developed

at the CRPP, Lausanne. Some further details on the CHEASE output are provided in

Appendix A.

To compute an equilibrium, one needs to provide a pressure and a current profile (i.e.

p′ and I I ′) as well as the shape of the last closed flux surface. These quantities can

be either specified by reading experimental data from an EXPEQ file or from the more

standard EQDSK equilibrium file [69], or can be set using analytical profiles. The latter

option is in particular useful when investigating the influence of flux surfaces shaping on

microturbulence, as presented in Chapter 6, since it allows us to compute equilibria with

arbitrary triangularity and elongation.
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4.2.1 Equilibrium quantities in (x, y, z)

The equilibrium quantities provided by CHEASE on the (Ψ, χ) grid are transformed to

the field-aligned coordinate system (x, y, z), see Fig. 2.2, according to the relations

x = Cx(Ψ)− x0 , y = Cy (qχ− φ)− y0 and z = χ , (4.9)

which were already defined in (2.59). Note that in (x, y, z) coordinates, the axisymmetry

of the system results in all equilibrium quantities being independent of y. Following this

coordinate transform one obtains:

~∇x =
dCx

dΨ
~∇Ψ ,

~∇y = Cy

[
q′χ~∇Ψ + q~∇χ− ~∇φ

]
,

~∇z = ~∇χ , (4.10)

so that the metric tensor in (x, y, z) coordinates is expressed in terms of the metric tensor

in (Ψ, χ, φ) coordinates:

gxx =

(
dCx

dΨ

)2

gΨΨ , gxy =
dCx

dΨ
Cy

(
q′χ gΨΨ + q gΨχ

)
,

gyy = C 2
y

[
(q′)2χ2gΨΨ + 2 qq′χ gΨχ + q2gχχ + gφφ

]
,

gxz =
dCx

dΨ
gΨχ , gyz = Cy

(
q′χ gΨχ + q gχχ

)
,

gzz = gχχ, (4.11)

with gαβ = ~∇α · ~∇β and q′ = dq/dΨ. The other required quantities are

∂B

∂x
=

(
dCx

dΨ

)−1
∂B

∂Ψ
,

∂B

∂z
=
∂B

∂χ
, and Jxyz =

(
dCx

dΨ
Cy

)−1

JΨχΦ , (4.12)

where Jabc = [(∇a×∇b) · ∇c]−1 is the Jacobian related to the coordinates (a, b, c). In

principle Cx(Ψ) and Cy can be chosen arbitrarily and in the current version of the code

three possible definitions of Cx have been implemented:

Cx = a

√
Ψ

Ψedge

, Cx = a

√
Φt

Φt,edge

, Cx = a

√
V

Vedge

or Cx =
q0

r0Bref

Ψ , (4.13)

where Φt is the toroidal flux, V is a volume inside a Ψ = cst surface, a is the minor

radius of the edge flux surface, measured at the equatorial midplane, , r0 and q0 are
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respectively the minor radius and the safety factor of the flux surface located at x = 0,

and Bref is a reference magnetic field, usually chosen as the magnetic field on the axis.

Finally, the constant Cy is set to Cy = r0/q0, so that y takes a units of length. Any Cx

definition could be used with the local code. When considering the global code however,

it is necessary to have an equidistant grid {xi = Cx(Ψi)−x0}, and although the CHEASE

code could potentially adapt the mesh for any definitions, only the Cx = a
√

Ψ/Ψedge or

Cx = a
√
V/Vedge are at the present implemented, see Appendix A.

When using the local version of the code, one neglects the x-dependence of all equilibrium

quantities across the simulation domain. All geometrical coefficients therefore only need

to be known on the magnetic surface of interest (x = 0), and are thus only functions of

z in the axisymmetric system considered here. The axisymmetry of the equilibria indeed

translates into the independence with respect to y of the coefficients. In the global version

of the code, equilibrium quantities are however (x, z) dependent.

Note that the metric coefficients can also be obtained from MHD equilibria using the

interface with the Tracer code [52], which can also compute local geometrical parameters

along a given field line in 3-dimensional system, i.e. for Stellarator geometry.

4.3 Circular ad-hoc model

For many applications, it can be useful to consider a simpler analytical model for the

magnetic equilibrium configuration. By considering I = cst and p ∝ Ψ in Eq. (4.7), one

obtains a so-called Solovev type solution:

Ψ =
Ψedge

(R0 a)2

[
(RZ)2 +

1

4
(R2 −R2

0)
2

]
. (4.14)

In the large aspect ratio limit R0/a >> 1, where again a is the minor radius, this equation

reduces to Ψ = Ψedge(r/a)
2, where r is the radius local to a given flux surface as illustrated

in Fig. 4.3. In this limit, the magnetic surfaces thus have a circular cross section, and

according to Eq. 4.4, the magnetic field reads in the toroidal coordinates, (r, θ, φ), (see

Fig. 4.2):

~B0 =
R0Bref

R

[
~eφ +

r

R0 q̄
~eθ

]
, (4.15)
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Figure 4.2: Circular flux surface in toroidal coordinates (r, θ,Φ).

where Bref is again the magnetic field at the magnetic axis, and q̄ is a pseudo safety factor

which can be related to the real safety factor using Eq. (4.8):

q(r) =
1

2π

∫ 2π

0

~B0 · ~∇φ
~B0 · ~∇θ

dθ =
q̄(r)

2π

∫ 2π

0

dθ

1 + ε cos θ
=

q̄(r)√
1− ε2

, (4.16)

having defined the inverse aspect ratio ε = r/R0. Note that for Ψ = Ψedge(r/a)
2, q̄ would

be constant, q̄ = (Bref a
2)/(2 Ψedge). In Eq. (4.16) one considered the possibility of a

profile q̄ = q̄(r), corresponding to the ad-hoc relation dΨ/dr = Bref r/q̄(r). In turn the

straight field line angle χ is defined such that ( ~B0 · ~∇φ)/( ~B0 · ~∇χ) = q, which leads to the

relation dχ/dθ = ~B0 · ~∇φ/(q ~B0 · ∇θ). Integrating over θ yields:

χ(r, θ) =
1

q

∫ θ

0

~B0 · ~∇φ
~B0 · ∇θ′

dθ′ =
q̄

q

∫ θ

0

dθ′

1 + ε cos θ′
= 2 arctan

[√
1− ε

1 + ε
tan

(
θ

2

)]
. (4.17)

From these definitions of Ψ and χ, the metric in (Ψ, χ, φ) coordinates can be obtained

from the known metric in the (r, θ, φ) coordinates through the relations:

~∇Ψ =
Bref r

q̄
~∇r =

Bref r

q̄
~er , (4.18)

~∇χ =
∂χ

∂r
~∇r +

∂χ

∂θ
~∇θ =

∂χ

∂r
~er +

1

r

∂χ

∂θ
~eθ , (4.19)

~∇φ =
1

R
~eφ =

1

R0 + r cos(θ)
~eφ , (4.20)

with
∂χ

∂r
=

− sinχ

R0(1− ε2)
,

∂χ

∂θ
=
q̄

q

R0

R
. (4.21)

This leads to the metric tensor:

gΨΨ =
B2

ref r
2

q̄2
, gχχ =

1

r2

[
R2

0 q̄
2

R2 q2
+
ε2 sin2 χ

(1− ε2)2

]
,

gΨχ = −Bref ε

q̄

sinχ

(1− ε2)
, gφφ =

1

R2
,
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gΨφ = gχφ = 0 . (4.22)

In addition, the Jacobian reads:

JΨχφ =
qR

Bφ

=
qR2

BrefR0

. (4.23)

When using the circular model, the x variable is chosen as x = r − x0, i.e dCx/dΨ =

q̄/(r Bref), and Cy = r0/q0. The metric tensor in the (x, y, z) coordinate system is then

obtained using relations (4.11) and (4.22), and is valid for both the local and the global

versions of the code.

In order to compare with the s − α model described later on, we explicit here the cor-

responding metric coefficients to first order in ε and consider only the local case, i.e. at

x = 0:

gxx = 1 , gxy = ŝχ− ε sinχ ,

gyy = 1 + (ŝχ)2 − 2 ε cosχ− 2 ŝχ ε sinχ ,

gxz = −ε sinχ

r0
, gyz =

1− 2 ε cosχ− ŝχε sin χ

r0
,

gzz =
1− 2 ε cosχ

r2
0

. (4.24)

where the magnetic shear is ŝ = (r/q)dq/dr. Finally, note that to the same order in ε one

has from Eq. (4.17): χ = θ − ε sin θ +O(ε2).

4.4 The s− α model

The last model that has been considered is the so-called s− α model for α = 0, which

is described here considering only the local approximation, i.e. the x dependencies are

not retained. One again assumes circular, concentric, magnetic surfaces as in the previous

model. The (x, y, z) coordinates are defined as in Eq. (4.9), with x = r, except for

the straight field line angle χ which is approximated to the geometrical angle θ so that

y = (r0/q0)(qθ−φ)−y0 and z = θ. Despite this approximation, (x, y, z) is still considered

here as a field-aligned coordinate system. The metric coefficients to first order in ε are:

gxx = 1 , gxy = ŝθ , gyy = 1 + (ŝθ)2 , gxz = 0 ,
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gyz = 1/r0 , gzz = 1/r2
0 . (4.25)

A comparison with Eq. (4.24) exhibits differences of order ε between the two models,

which points out that the approximation concerning the straight field line angle is only

valid in the limit of an infinite aspect ratio Tokamak (ε → 0). According to Eq. (4.17),

one indeed has χ = θ for ε = 0. In order to retain trapping effects, the magnetic field

amplitude is, nevertheless, defined for this model as

B0

Bref

' Bφ

Bref

=
R0

R
=

1

1 + ε cos θ
, (4.26)

thus keeping finite aspect ratio terms. On the other hand, from the definition of the field-

aligned coordinate system, one has B0 = Bref∇x×∇y, which, from the metric coefficients

(4.25) implies

(B0/Bref)
2 = (∇x×∇y)2 = (∇x)2(∇y)2 − (∇x · ∇y)2 = gxxgyy − (gxy)2 = 1 . (4.27)

Comparing Eq. (4.26) with Eq. (4.27) underlines an inconsistency of order ε in the

s− α model, namely the metric is computed as if ε = 0 but the magnetic field amplitude

still retains an ε dependence. As will be shown in the next section, this inconsistency

leads, for finite ε cases, to significant differences between microturbulence simulations

considering the s − α model and simulations using either an MHD equilibrium or the

previous concentric, circular model.

4.5 Influence of the equilibrium model and code

comparisons

In this section the different equilibrium models are compared using Cyclone-like pa-

rameters [68], namely ni ≡ ne, Te/Ti ≡ 1, q = 1.4, ŝ = (ρ/q)dq/dρ = 0.8, and

ε0 = r0/R0 = 0.18. Here, the normalized radial variable is defined for the MHD equilib-

rium as ρ =
√

Φt/Φt,edge, Φt is the toroidal flux, and Φt,edge is the value of the toroidal

flux at the edge. For the ad-hoc circular and s − α models, one identifies ρ = r/a.

The gradient values are defined at ρ = ρ0 = 0.5 as R0/LTi = R0〈|∇ lnTi|〉 = 6.96,

R0/Ln = R0〈|∇ lnn|〉 = 2.23, where 〈 . 〉 stands for the flux-surface average, defined in
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Influence of the equilibrium model and code comparisons

Eq. (2.83).

Discrepancies observed with the different equilibrium model are first discussed consider-

ing local simulations. In a second step we analyse how previous comparisons between

local and global gyrokinetic codes may have been mis-interpreted due to such equilibrium

model issues.

4.5.1 Linear flux-tube results

Let us start by considering linear flux tube simulations, and in order to gain confidence

in the results, outputs from different codes are compared. In Fig. 4.3 the linear growth

rates and real frequencies of toroidal-Ion Temperature Gradient (toroidal-ITG) modes are

shown as a function of the poloidal wave number ky in units of ρs, where ρs has been

evaluated with Te(ρ0) and the magnetic field Bref on axis. The results have been obtained
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Figure 4.3: Growth rate (left) and real frequency (right) as a function of the poloidal wave
number ky of linear ITG modes for the Cyclone test case. Three equilibrium
models are considered: MHD (circles: GENE; crosses: GS2; triangles: GKW),
s−α (diamonds: GENE; squares: GS2), and ad-hoc circular concentric (stars:
GENE).

from the flux-tube codes GENE, GS2 [11] and GKW (formerly known as LINART [70])

using an MHD equilibrium or the usual s− α model, as well as from a GENE simulation

using the ad-hoc circular model. The MHD equilibrium used here is computed with the

CHEASE code such that the last closed flux surface is circular and the Cyclone local

parameters are matched at ρ0 = 0.5. The pressure profile is chosen such that the value

of β = 〈p〉2µ0/B
2 is small (∼ 10−5), where 〈p〉 is the volume-averaged pressure, and the
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Chapter 4. Equilibrium models

current density profile is set in order to obtain the required values of the safety factor

q and of the shear ŝ at ρ0. The growth rates and frequencies are of the order of the

ion diamagnetic frequency which itself is of order cs/Lref , where Lref is a characteristic

gradient length of the system. Choosing Lref = Ln, frequencies and growth rates are thus

normalized to cs/Ln. This is the same normalization as considered in Ref. [68], which

facilitates comparisons.
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Figure 4.4: Geometrical coefficients for different equilibrium models : MHD (solid line),
s− α (dashed line), and ad-hoc circular concentric (dash-dotted line).

As clearly appears in Fig. 4.3, significant differences are observed, in agreement with

[64], when comparing results using the reduced s − α model or the MHD equilibrium.

In particular the maximum linear growth rates differ by almost a factor of two for the

here considered Cyclone parameters. However, when using the analytical circular model,

agreement with the MHD equilibrium case is reached within 10%. This latter point

clearly shows that the differences observed in this finite aspect ratio circular cross section

geometry between simulations considering either the s−α or a realistic MHD equilibrium

mainly result from the inconsistencies of order ε in the s−α model pointed out in section

4.4. By exchanging one geometrical term at a time in GENE’s equations between the

s − α model and the circular analytic model, it can be shown that the differences result

primarily from the discrepancies in the gyy and Ky terms. In Fig. 4.4, the most relevant

geometrical coefficients are plotted as a function of χ for the different equilibrium models.
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Figure 4.5: Growth rate of the most unstable ITG mode as a function of the ion temperature
gradient for MHD (circles), ad-hoc circular concentric (stars), and s − α (crosses)
equilibrium models. All other parameters as in the Cyclone test case.

The gyy and Ky terms present the largest relative differences in the vicinity of χ = 0

where ITG modes balloon. We note also that differences in the gxx coefficient do not in

fact influence these linear results since the growth rate is essentially determined by the

dominant kx = 0 mode, corresponding to the perpendicular wave number k2
⊥ = gyyk2

y.

After this first linear comparison with the nominal Cyclone parameters, GENE simulations

using the three different equilibria have also been carried out for various values of the

temperature gradient while keeping all other parameters. In Fig. 4.5, the maximum

linear growth rate over all ky for ITG modes is given with respect to the normalized, flux-

surface averaged temperature gradient R0/LTi. The linear critical temperature gradient

obtained when using the s− α model is found around R0/LTi = 4, which is in agreement

with Ref. [68], and is decreased to R0/LTi = 3 for realistic MHD equilibrium models as

observed in [64]. The MHD results are well recovered using the circular ad-hoc equilibrium.

This observation is of particular importance when using critical gradient values in semi-

empirical transport models [71].

4.5.2 Nonlinear flux-tube results

As in the linear case, nonlinear simulations considering Cyclone test case parameters

show strong discrepancies between results using s − α and MHD equilibria, while com-
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putations using the corrected circular model recover well those obtained with the MHD

equilibrium.
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Figure 4.6: Ion heat diffusivity χi obtained by nonlinear GENE simulations for the Cy-
clone test case using MHD (solid line), s−α (dashed line) and ad-hoc circular
(dash-dotted) equilibrium models.

Nonlinear simulations with the three different equilibria have been compared for Cyclone

base parameters, with a numerical resolution nx×ny×nz×nv‖×nµ = 128×48×16×32×8

and a perpendicular flux-tube box of dimensions Lx×Ly = 118 ρs×96 ρs. Figure 4.6 shows

the ion heat diffusivity time trace. When using the MHD equilibrium, the time-integrated

ion heat diffusivity χi is estimated at χi Ln/(ρ
2
scs) = 4.1 (corresponding to χi/χGB = 3.3,

using the standard Gyro-Bohm normalization χGB = ρ2
scs/a), which differs by almost a

factor of two from the value obtained using the s− α model, for which χiLn/(ρ
2
scs) = 2.1

(χi/χGB = 1.7). We note that the value χi for the s− α case agrees with the LLNL GK

fit

χiLn/(ρ
2
scs) = 15.4 [ 1.0− 6.0 (LT/R)] , (4.28)

presented in Ref. [68], which also provides χiLn/(ρ
2
scs) = 2.1 for R/LT = 6.96. The

simulation using the ad-hoc circular model gives χi Ln/(ρ
2
scs) = 3.7 (χi/χGB = 3.0) and

thus agrees within 10% with the result using the MHD equilibrium. Strong discrepancies,
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for slightly different physical parameters, between nonlinear simulations using either the

s− α model or a corrected circular equilibrium obtained from the Miller model [66] were

also stated in Ref. [65], but no detailed explanation of the actual cause was provided.

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

k
y
 ρ

s

χ^
 i (

k
y
 )

  
 L

n
 /

 (
ρ

s2
 c

s
)

 

 

Figure 4.7: ky spectra of time-averaged ion heat diffusivity χ̂i(ky) obtained via nonlin-
ear GENE simulations for the Cyclone test case using MHD (circles), s − α
(crosses), and ad-hoc circular (stars) equilibrium models.

In Fig. 4.7, the time-averaged ion heat diffusivity spectrum χ̂i(ky), defined such that

χi =
∑

ky
χ̂i(ky) (where the sum is over all ky = n 2π/ly, n = 0 · · · , ny/2 modes considered

in the simulation), is presented as a function of the normalized poloidal wave number kyρs.

The spectrum obtained using the s−α model strongly differs from the one using either the

ad-hoc circular model or the MHD model, especially for kyρs above 0.2 which corresponds

to its maximum amplitude.

Figure 4.8 shows the time-averaged ion heat diffusivity using both the s − α and MHD

models for different values of the temperature gradient. The nonlinear critical gradients

R/LT,crit are shifted upward with respect to the corresponding linear critical gradients

according to the well known Dimits-shift [68] effect. For the s − α model, the resulting

R/LT,crit is around 6, identical to results in Ref. [68], and contained in the fit given by

Eq. (4.28), while its value is around 5 using the MHD equilibrium.
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Figure 4.8: Ion heat diffusivity χi for the Cyclone test case as a function of the ion temperature
gradient. Results are given for simulations using either the MHD (circles) or the
s− α (crosses) equilibrium model.

4.5.3 Linear comparison between local and global simulations

In view of the significant effects on the linear growth rates and nonlinear diffusivities

resulting from the approximations in the s − α model local simulations, the agreements

between these same flux-tube results and global simulations reported in Ref.[68] appear

surprising. Indeed, no similar approximations in implementing the equilibrium in the

global simulations had been made. In order to address this apparent paradox, such local-
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Figure 4.9: Growth rate spectra of linear ITG modes for the Cyclone test case. Local
GENE simulations with either the s − α (crosses) or the ad-hoc circular an-
alytical model (circles) are compared with results from the global version of
GENE (diamonds) and from the global code GYGLES (squares) both for
ρ∗ = 1/180 and using the circular ad-hoc model.
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global comparisons are repeated for linear simulations, using both the local flux-tube and

global versions of the GENE code, as well as the global, linear PIC code GYGLES [72].

The global GENE and GYGLES codes are run using the analytical equilibrium with

concentric, circular flux surfaces, described in Section 4.3, with no further approximations

on the geometry. For the corresponding simulations, the safety factor profile is chosen to

be q = 0.85 + 2.2 (r/a)2, corresponding to q(r0) = 1.4 and ŝ(r0) = (r0/q)dq(r0)/dr = 0.8

at r0/a = 0.5. The temperature and density gradient profiles are defined as

R0

T

dT

dr
= −κT cosh−2

(
r − r0
∆r

)
,

R0

n

dn

dr
= −κn cosh−2

(
r − r0
∆r

)
, (4.29)

with peak gradients κT = 6.96, κn = 2.23 matching those considered in the local GENE

simulations and the radial width of the global profiles is chosen as ∆r = 0.3 a.

In Fig. 4.9, growth rates of ITG modes from local GENE simulations using the ad-hoc
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Figure 4.10: ρ∗ scaling of ITG growth rate at kyρs = 0.3 for the global code GYGLES.
GENE results are obtained with the s− α or the circular analytical equilib-
rium model.

circular and the s − α models are compared with global GENE and GYGLES simu-

lations using the ad-hoc circular model. The global simulations were carried out for

ρ∗ = ρs/a = 1/180 which corresponds to the experimental value from which the Cy-

clone base case was derived. The growth rate spectrum of the global simulations for

ρ∗ = ρs/a = 1/180 basically matches with the local s − α results. This agreement is

however purely coincidental. This is indeed illustrated by the ρ∗ scan in Fig. 4.10, where

98



Chapter 4. Equilibrium models

global GYGLES results truly converge toward the local GENE results with ad-hoc circu-

lar equilibrium (correct treatment of the geometry), in the limit ρ∗ → 0.

In Fig. 4.10 a small offset seems nonetheless to remain in the limit ρ∗ → 0. This difference

may arise from the fact that the mode kx = 0 is considered in the flux tube simulation

whereas the radial mode number remains finite in the global simulations. Such deviations

are investigated in [28] where it is shown that an even better agreement between local and

global results can be reached when choosing a finite kx value in the local simulations.

4.6 Summary

In this Chapter we have presented three different magnetic equilibrium models which

can be used in the GENE code. First, an interface with the equilibrium code CHEASE

was described, for which the CHEASE code was adapted to provide the required quanti-

ties on the straight field line (Ψ, χ) grid. This approach through a representation on this

(Ψ, χ) grid is kept general, i.e. it does not depend on the coordinate choice in GENE,

and the equilibrium output can also be used for the gyrokinetic code ORB5. In GENE,

a further transformation to the field aligned coordinates (x, y, z) is carried out via the

interface which is valid for both the global and local version of the code. For comparison

purpose, and when an exact magnetic equilibrium is not necessary, an ad-hoc circular

concentric flux surface model was also implemented, and is applicable to both local and

global simulations. Finally, the so-called s−α model, which has been widely used in past

flux tube simulations, was discussed.

Comparisons between these equilibrium models have been carried out for Cyclone base

case parameters, and significant differences were observed in linear and nonlinear simula-

tions obtained with the s − α model or a circular MHD equilibrium. It was shown that

these discrepancies result from approximating the poloidal angle to the straight field line

angle in the standard implementation of the s − α model, which leads to inconsistencies

of the order of the inverse aspect ratio ε. These differences reach a factor of almost two

in the predicted turbulence induced heat-flux for the standard Cyclone parameters. It is

also found that using the s−α model the linear and nonlinear critical gradients R/LT,crit

are overestimated by at least 20%. As a consequence, one should not only be aware of
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this issue when comparing flux tube codes among each other, but also when applying

flux-tube results, and in particular the so-obtained critical gradients, to semi-empirical

transport models. When considering the ad-hoc circular concentric flux surfaces model

which correctly treats the straight field line angle, one obtains, on the other hand, a very

good agreement with the circular MHD equilibrium simulations.

The importance of using a correct geometrical model is of further interest when comparing

results from flux-tube and global codes. In particular, we have shown that the previously

reported apparent agreement between flux tube and global simulations [68] had resulted

from the unfortunate combination of two different effects, namely the inconsistencies of

order ε in the equilibrium model of the flux tube codes and the physical finite size ρ∗

effects in the global simulations. True convergence between linear flux tube results with

a correct treatment of the geometry and global simulations in the appropriate limit of

ρ∗ → 0 was demonstrated.
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5 Code validation and global effects

As discussed in the previous chapter, the implementation of the global version of GENE

has required to modify large parts of the code and enables to investigate physical effects

associated with finite ρ∗ = ρs/a. In order to validate this new version, detailed tests and

comparisons with other codes were carried out in various physical limits. This chapter

is dedicated to the current state of this validation procedure. At first linear tests are

presented. In particular the cylindrical limit is addressed, followed by linear benchmarks

with the global PIC codes ORB5 [54] and GYGLES [72] for Cyclone base case parameters

[68]. Simulations with kinetic electrons are also shown, as well as the so-called Rosenbluth-

Hinton test [73]. Finally, some nonlinear benchmarks with the global PIC code ORB5

are presented, including a ρ∗ scan. We would like to stress the fact that the extensive

code comparisons which are shown in this chapter were made possible thanks to users and

developers of GYGLES and ORB5 at the CRPP Lausanne, in particular B. McMillan who

has dedicated great effort in providing simulation results from the ORB5 code, enabling

us to get better confidence in the global version of GENE.

5.1 The cylindrical limit

In this section, we aim at investigating the cylindrical limit of the global-GENE code,

and in particular whether the slab Ion Temperature Gradient (ITG) instability can be

accurately described.

For this study, our reference case is a toroidal plasma with concentric circular flux surfaces,

having an inverse aspect ratio and safety factor profile respectively:

a/R = 0.18 q(x) = 1.25 + 3 (x/a)2 , (5.1)
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Figure 5.1: Ion temperature and logarithmic temperature gradient profiles, for κTi
= 7.4.

where a is the minor radius, R the major radius and x = r. The ρ∗ = ρs/a parameter is

set to 1/ρ∗ = 65 and the ion temperature and density profiles are given by:

Â(x) =
A(x)

A(x0)
= exp

[
−κA

a

Lref

∆A tanh

(
(x− x0)/a

∆A

)]
, (5.2)

where A stands for Ti or n. Such a function form leads to a peaked gradient profiles

centered at x0 and with width ∆A (in units of A), see Fig. 5.1:

Lref
d lnA

dx
= −κA cosh−2

(
(x− x0)/a

∆A

)
. (5.3)

The temperature and density profile parameters are set here to κTi
= 7.4, κni

= 0,

∆Ti = ∆n = 0.3, x0 = 0.5 a and Lref = R. Furthermore the electron response is assumed

adiabatic and the temperature ratio τ = Te/Ti is equal to τ = 1. Finally, one considers

the toroidal mode number n = 4, which corresponds to

kyρs =
n q0
r0

ρs = 0.25 , (5.4)

with q0 = q(r/a = 0.5) = 2 and r0 = x0 = 0.5 a. For these physical parameters and wave

number, ITG modes are unstable.

In the following, the toroidal limit is taken by increasing the radius R while holding

Rq, n/R, and a constant, so that the considered mode number kyρs = 0.25 remains

constant. We note that the length Lref entering the gradient definition, as well as in the

102



Chapter 5. Code validation and global effects

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

0.25

a/R

γ
  
L

re
f /

 c
s

 

 

GENE

GYGLES

GLOGYSTO

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

a/R

ω
  
L

re
f /

 c
s

 

 

GENE

GYGLES

GLOGYSTO

Figure 5.2: Growth rate (left) and real frequency (right) of the ITG mode as a function of
the inverse aspect ratio a/R obtained with the GENE, GYGLES and GLO-
GYSTO codes.

normalizations of the growth rates and real frequencies in Fig. 5.2, is also kept at a constant

value equal to the reference major radius. The numerical box used for these simulations

is lx× lz× lv‖× lµ = 45 ρi× 2π× 3.2 vth,i× 10.2Ti/Bref with grid size nx×nz×nv‖×nµ =

120× 16× 48× 16. The resulting growth rates and real frequencies are shown in Fig. 5.2

and are compared with results in Ref. [74] obtained with the spectral code GLOGYSTO,

as well as with results in [72] obtained with the PIC code GYGLES. Although some

differences exist in the physical model considered in the different codes, we remark a

similar dependence with respect to the aspect ratio and a very good agreement on both

the growth rates and real frequencies in the limit a/R → 0. One can notice that the

growth rate and real frequency of the mode become essentially independent of a/R for

a/R < 0.3, illustrating the transition from the toroidal to the slab-ITG instability.

In Fig. 5.3, the contour plots obtained with GENE and GLOGYSTO are compared for

different inverse aspect ratios. The transition from the toroidal to the slab ITG can be

clearly observed as the radial coupling becomes weaker when going from a/R = 0.18 to

a/R → 0. In the toroidal limit a/R ' 0, a very good agreement is reached between

the two codes concerning the mode structure, which clearly exhibits a slab-like character.

The most unstable mode is in both cases localized around r/a ' 0.4 which corresponds

to the mode rational surface with poloidal mode number m = n q = 7. For the toroidal

case, a/R = 0.18, the overall mode structure obtained with the two codes are also in

good agreement, one notes however that the radial coupling seems stronger in the GENE
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a/R = 0.18
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Figure 5.3: Contour plots of the electrostatic potential Φ obtained with GENE (left) and
GLOGYSTO (right) for different inverse aspect ratios. Note that the plot
identified as a/R ' 0 corresponds to a/R = 1.8 · 10−6 for GENE and a/R = 0
for GLOGYSTO.
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simulation. This difference on the mode structure, together with the different growth rate

obtained for a/R = 0.18 in Fig. 5.2 can be explained in part by approximations made in

GLOGYSTO, where the drifts of passing particles, at the origin of the radial coupling,

are evaluated using an iterative scheme. From these results, one may conclude that the

global version of GENE correctly describes the cylindrical limit and the corresponding

slab-ITG regime.

5.2 Linear Cyclone benchmark

In this section, linear comparisons of global-GENE with other codes in the case of the

Cyclone Base Case (CBC) parameters [68] are presented. This study is thus similar to the

one carried out with the local-GENE code in section 4.5. For all the following simulations,

the ad-hoc circular equilibrium model is considered with inverse aspect ratio a/R = 0.36

and safety factor profile:

q(x) = 0.85 + 2.2 (x/a)2 . (5.5)

The parameter ρ∗ = ρs/a is taken as ρ∗ = 1/180 and an adiabatic electron response is

assumed. The ion temperature and density profiles, are again defined using Eq. (5.2),
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Figure 5.4: Linear growth rates (left) and real frequencies (right) of ITG modes as a function of
kyρs obtained with the global version of GENE and with the PIC code GYGLES,
for CBC parameters.

with κTi = 6.96, κn = 2.23, ∆Ti, n = 0.3 and x0 = 0.5 a corresponding to peaked
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gradient profiles, and the temperature ratio τ = Te/Ti is τ = 1. For these parameters,

the growth rates and real frequencies computed with GENE are compared in Fig. 5.4

with GYGLES [72] results for different toroidal mode numbers ky = n q0/r0. A detailed

discussion of the required resolution for the linear Cyclone base case is given in [28].

In particular, we note that for the higher ky ρs values larger v‖ and µ resolutions are

required. This higher velocity resolution is necessary for correctly resolving the gyro-

averaging operations, leading to the finite k⊥ ρs effects. In the following the simulation

domain considered for each fixed linear run with fixed ky is lx × lz × lv‖ × lµ = 140 ρs ×

2π × 3.7 vth,i × 13Ti/Bref with resolution nx × nz × nv‖ × nµ = 200 × 16 × 32 × 16 for

ky ρs < 0.5. For the larger ky ρs an increased nv‖ × nµ = 64× 32 for the larger kyρs.
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Figure 5.5: Contour plots of the electrostatic potential Φ for toroidal mode number n = 19 for
CBC parameters, obtained with GENE and ORB5.

As observed, a very good agreement is reached between the two codes. We note however

some small deviations, especially in the growth rates, for ky ρs ≥ 0.4. This could result

from differences in the field solver as the GYGLES code considers a second order expansion

in k⊥ ρs of the polarization density contribution to the quasi-neutrality equation, while

GENE keeps all orders in k⊥ ρs of this term.

In addition to these quantitative investigations of linear growth rates and real frequencies

a detailed comparison of the mode structures was carried out with the global PIC code

ORB5 [54], in view of later nonlinear comparisons. In Fig. 5.5, the contour plots of the

electrostatic potential are shown for the toroidal mode number n = 19 (kyρs = 0.3) and
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remarkable agreement is observed. In order to further quantify differences between the

mode structures obtained from the two codes comparison of the electrostatic potentials

as a function of the straight field line poloidal angle χ is carried out on the fixed magnetic

surface r = r0 = 0.5 a. The fields Φ(r, χ) are obtained in GENE and ORB5 at the end of
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Figure 5.6: Electrostatic potential at r = r0 = 0.5 a as a function of the straight field
line poloidal angle χ (left). Difference between GENE and ORB5 results,
Φ̃GENE(r0, χ)− Φ̃ORB5(r0, χ) (right).

the simulations, i.e. when the linear growth rates are converged. As a consequence, the

overall phases and amplitudes are in general different. In order to be able to compare the

two potentials, amplitudes and phases of the fields Φ(r = r0, χ) are renormalized so as to

match. This is achieved by making use of a poloidal Fourier transform of Φ(r0, χ):

Φ(r = r0, χ) =
1

2

M/2∑
m=−M/2

(Φm + Φ∗
−m) ei m χ , (5.6)

having invoked the reality condition. The renormalized field Φ̃(r0, χ) is then given by:

Φ̃(r0, χ) =
A

2

M/2∑
m=−M/2

(Φm e
i ∆θ + Φ∗

−m e
−i ∆θ) ei m χ , (5.7)

where the real amplitude A and phase ∆θ are adapted so that the dominant poloidal

Fourier mode Φm obtained from the two codes match. Following this procedure the two

electrostatic potentials are shown in Fig. 5.5. As can be seen, the relative difference is at

most of the order of 15%, which represents a very good agreement.
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5.3 Kinetic electrons and electromagnetic effects

After having studied the standard Cyclone base case using adiabatic electrons, we

shall now discuss simulations carried out considering a full kinetic electron response.

Note that the results presented in this section have been obtained thanks to the work

of J. Chowdhury, who has participated to the global-GENE validation effort during a

visit at the CRPP in fall 2009. The electron and ion temperature profiles, as well

as the density profile are defined using Eq. (5.2) with κTi = κTe = 6.96, κn = 2.23,

∆(Ti, Te, n) = 0.3 and x0 = 0.5. The same safety factor profile as in section 5.2 is consid-

ered and β = 2µ0 Te ne/B
2
0 is set to β = 10−3. In addition, the ion to electron mass ratio

has been reduced for practical reasons to mi/me = 400.

When considering the full kinetic dynamic of electrons, their response becomes non-

adiabatic around mode rational surfaces. Fine radial structures are generated in these

non-adiabatic response regions [75, 76], which could lead to badly-converged results or

even to numerical instabilities when not properly resolved. Let us recall that for a mode

with frequency ω and parallel wave number k‖ the electrons respond adiabatically in the

limit |ω/(k‖vthe)| → 0. Considering a Fourier component with poloidal and toroidal mode

numbers (m,n) respectively, the corresponding parallel wave number k‖ is given for a

straight field line coordinate system by

k‖ = (m ~∇χ+ n ~∇Φ) ·~b =
Bφ

B

1

Rq
(n q −m) ' 1

Rq
(n q −m) . (5.8)

Clearly, k‖ goes to zero at the associated mode rational surface r = rm,n, where the safety

factor q = q(rm,n) = m/n. The condition for adiabatic electron response to such a Fourier

component is thus not met in the vicinity of rm,n. By estimating the transition from

adiabatic to non-adiabatic electron response with the condition:

|ω|
k‖

' vthe , (5.9)

the radial width of the non-adiabatic region around rm,n can be evaluated as follows. The

safety factor is first linearized around rm,n leading to:

k‖ =
1

Rq
[n q(rm,n + ∆r)−m] ' 1

Rq

[
n q + n∆r

dq

dr

∣∣∣
rm,n

−m

]
=

∆r

rm,nR
n ŝ , (5.10)
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with the shear ŝ = (r/q)(dq/dr)|m,n. Considering vthe =
√
Te/mi, the condition (5.9) is

then expressed as a relation for the normalized radial width ∆r/ρs of the non-adiabatic

region centered on the mode rational surface rm,n:

∆r

ρs

= |ω| R
cs

√
me

mi

q

ky ρs ŝ
, (5.11)

having used ky = n q/rm,n. Note that for microinstabilities, ωR/cs ∼ 1. For the present

parameters, where q = 1.4 and ŝ ' 0.8, the typical radial width of the non-adiabatic re-

sponse region can thus be estimated as ∆r/ρs ∼ 0.8 for kyρs = 0.1 and ∆r/ρs = 0.08 for

kyρs = 1. A very high radial resolution is therefore required for the high ky modes in order

to properly handle the small radial structures that develop in these regions. According to

Eq. 5.11 the radial resolution should be at least small as ∆x/ρs ∼ (ky ρs)
−1.

Keeping in mind this constraint on the x-resolution, we show in Fig. 5.7 the growth

rates and real frequencies obtained for different ky modes. Note that the growth rates

and frequencies are normalized here to Ln/cs for easier comparison with [68]. For these

computations, we consider a simulation domain in the z, v‖, and µ-directions of size

lz × lv‖ × lµ = 2 π× 4 vth,i × 16Ti/Bref with grid resolutions nz × nv‖ × nµ = 16× 48× 16.

In the radial direction, the resolution was adapted for each ky by decreasing the box size

lx as the radial width of modes shrank, from lx = 80ρs at kyρs = 0.1 to 20 at kyρs = 0.9

while increasing the number of x points from 160 to 560. This corresponds to a radial

resolution of ∆x/ρs = 0.5 and ∆x/ρs = 0.03 respectively. These simulations obtained

with the global version of GENE are compared with the local version of GENE, as well as

with the ORB5 code. Based on the sign of the real frequencies, one observes for both local

and global GENE simulations, as well as for ORB5, a transition from Ion Temperature

Gradient (ITG, ω > 0) to Trapped Electron Mode (TEM, ω < 0) around ky ρs = 0.7.

Quantitatively, although a good agreement is reached between ORB5 and the global ver-

sion of GENE concerning the real frequency, important differences are observed in the

growth rates. These discrepancies are still being investigated. It should be in particular

pointed out that the ORB5 simulations were carried out here considering only trapped

kinetic electrons, while passing electrons are still assumed adiabatic. In GENE however,

full kinetic electrons are retained, which could be a possible explanation for the differ-

ences. In addition, we also remark a different behavior at large kyρi, as the growth rates
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Figure 5.7: Linear growth rates (left) and real frequencies (right) as a function of kyρs obtained
with GENE and with the PIC code ORB5, for CBC parameters. The local and
global GENE simulations both include full kinetic electrons while only trapped
electrons are considered in the ORB5 results.
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amplitudes have been normalized so that the maximum value is 1.
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obtained with ORB5 do not increase in the TEM region. This in turn may be related to

the differences in the field solver between the two codes (already noted in section 5.2 for

GYGLES) which is only second order accurate in kyρs in ORB5 while all orders are kept

in GENE. Finally, we observe that ρ∗ effects seem less pronounced when using kinetic

electrons compared to the adiabatic electron case, see for instance Fig. 4.9, since the local

and global growth rate curves are here much closer to each other.

Figure 5.9: Contour plots of the electrostatic potential Φ in the poloidal plane for toroidal mode
number kyρs = 0.345 and kyρs = 0.776.

In order to further investigate issues related to the non-adiabatic electron response region,

the ky Fourier components of Φ are represented in Fig. 5.8 at z = 0 as a function of x

for the two modes kyρs = 0.345 (n = 22) and kyρs = 0.776 (n = 50). For each mode,

one observes peaks localized at mode rational surfaces rm,n, where q(rmn) = m/n. By

estimating the width of the non-adiabatic response region as the width of the largest peak

(measured at mid amplitude), one obtains ∆x = 0.51ρs for kyρs = 0.345 and ∆x = 0.11ρs

for kyρs = 0.776. These values are in good agreement with the estimate (5.11) from which

one obtains respectively ∆x = 2 ∆r = 0.43 ρs and ∆x = 2 ∆r = 0.20 ρs for kyρs = 0.345

and ky ρs = 0.776. In Fig. 5.9, the contour plots in the poloidal plane of the electro-

static potential are also shown for modes kyρs = 0.345 and kyρs = 0.776. One clearly

observes the slab-like structure of the mode at mode rational surfaces and the small radial

structures resulting from the non-adiabatic electron response, which are here well resolved.
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Figure 5.10: Linear growth rates (left) and real frequencies (right) for the mode kyρs = 0.345 as
a function of β obtained with the local and global versions of GENE. A transition
from ITG to KBM is observed around β = 2 · 10−2.

Using the same CBC parameters as before, a scan in β = 2µ0 Te ne/B
2
0 was also carried

out to test the global code when electromagnetic effects become important. The growth

rates and real frequencies obtained with the local and global versions of GENE are shown

in Fig. 5.10. The global code reproduces well the β dependence with respect to local

results, in particular the jump in the real frequency, observed at β ' 2 · 10−2, which is

attributed to a transition from ITG to the so-called Kinetic Ballooning Mode (KBM).

The contour plots of the perturbed electrostatic potential Φ1 and parallel component

A1‖ of the vector potential are shown in Fig. 5.11 for β = 2 · 10−3 and β = 2 · 10−2.

One observes an anti-ballooned structure of A1‖, in agreement with results from local

simulations. When comparing the two fields, the relative amplitude of A1‖ with respect

to Φ1‖ is increased by almost an order of magnitude when going from β = 2 · 10−3 to

β = 2 · 10−2.

These first electromagnetic results obtained with the global version of GENE are thus

very encouraging, and benchmarks with other codes are planed to further validate the

code in the high β regime.

112



Chapter 5. Code validation and global effects

β = 2 · 10−3

R/a0

Z
/a

0

e Φ
1
 / T

e

 

 

−1 0 1
−1

−0.5

0

0.5

1

R/a0

 

c
s
 e A

1 ||
 /T

e
 

 

 

−1 0 1
−1

−0.5

0

0.5

1

−10

−5

0

5

10

−1000

−500

0

500

1000

β = 2 · 10−2

R/a0

Z
/a

0

e Φ
1
 / T

e

 

 

−1 0 1
−1

−0.5

0

0.5

1

−100

0

100

R/a0

 

c
s
 e A

1 ||
 /T

e
 

 

 

−1 0 1
−1

−0.5

0

0.5

1

−10

0

10

Figure 5.11: Contour plots of the perturbed electrostatic potential Φ1 and parallel com-
ponent of the vector potential A1‖ for β = 2 · 10−3 (top) and β = 2 · 10−2

(bottom) obtained with the global version of GENE.
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5.4 Field solver analysis and Rosenbluth-Hinton test

The Rosenbluth-Hinton test consists of computing the linear evolution of the zonal

flow component (n = 0,m = 0) for an initial electrostatic perturbation Φ. From the

analytical resolution of the gyrokinetic equation for n = 0 [73], and local to a given

magnetic surface, one expects to observe a damped oscillation of the Geodesic Acoustic

Modes (GAM) relaxing towards the so-called zonal flow residual. The time evolution of

the the zonal flow component can thus be written:

Ex(t)

Ex(0)
= (1− AR) e−γRt cos(wg t) + AR , (5.12)

where Ex = − ∂〈Φ〉/∂x is the radial perturbed electric field, , 〈Φ〉 being the flux-surface

averaged potential. The residual is

AR =
1

1 + 1.6 q2/
√
r/R

, (5.13)

with r the local minor radius of the considered magnetic surface, R the major radius,

and ωG and γG respectively the GAM frequency and damping rate. A correct predic-

tion of this residual level is an important test for gyrokinetic codes, as zonal flows are

identified to be a key saturation mechanism in turbulent regimes, in particular for ITG

turbulence. In Ref. [28], a detail comparison between GENE’s predicted residual level and

analytical values was carried out showing an excellent agreement. In order to obtain such

good quantitative comparison with the analytical results it is however necessary to use a

constant or linear safety factor to be consistent with the local assumptions considered to

derive Eq. (5.13). In this section, we shall carry out the Rosenbluth-Hinton test assuming

a more realistic quadratic safety factor profile and using the ORB5 code as a benchmark

instead of the analytical relations. The physical parameters used in the following are:

a/R = 0.1 , q(x) = 0.96 + 0.75 (x/a)2 , (5.14)

ρ∗ = ρs/a = 1/160, flat temperature and density profiles κTi = κni = 0, and an adiabatic

electron response is assumed.

Before considering the actual Rosenbluth-Hinton test, we shall first carry out a com-
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parison of the field solver in ORB5 and GENE. As discussed in section 3.3, in the original

implementation of the gyro-averaging, the particle position is evaluated by linearizing the

metric in the field aligned coordinates (x, y, z). This approach neglects some 1/r terms,

and an alternative scheme was thus proposed which consist in computing the particle

position in a pseudo-Cartesian coordinate system (ξ, η). Note that in the ORB5 code the

treatment of the field solver retains the above mentioned 1/r terms.

Considering an initial axisymmetric perturbation of the distribution function f1(x, y, z, t =

0) ∼ cos(πx/lx), the electrostatic potential Φ computed at time t = 0 with GENE using

both the original and the alternative [i.e. (ξ, η) coordinates] gyro-averaging schemes are

compared to the ORB5 results in Fig. 5.12. One clearly observes a better agreement
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Figure 5.12: Electrostatic potential computed at t = 0 with GENE using the original and
(η, χ) gyro-averaging, and with ORB5. The initial perturbation is f1(t =
0) ∼ cos(πx/lx)

between GENE and ORB5 when using the gyro-averaging operator in (ξ, η) coordinates.

Although this new treatment provides a better model for the gyro-averaging and thus the

field solver, it has led to an unphysical growing amplitude of the zonal flow when carrying

out the Rosenbluth-Hinton time evolution problem. Quite extensive tests have already

been carried out to investigate this issue, but unfortunately it has not yet been solved.

The current hypothesis is that, when introducing the 1/r terms related to the singularity
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of the coordinate system, in the gyro-averaging this leads to inconsistencies between the

field solver and the gyrokinetic equation, where some similar 1/r terms are neglected, see

section 2.11. It may well be that one needs to correct all these terms together to obtain

a fully consistent improved model. In the present version of the code, the original gyro-

averaging, i.e. with the linearization of the metric in (x, y, z) coordinates, is therefore used.

Going back to the Rosenbluth Hinton test, the time evolution of the zonal flow component

of the electric field, using the gyro-averaging in (x, y, z) coordinates, is shown in Fig. 5.13.

For this simulation, a domain lx × lz × lv‖ × lµ = 120 ρs × 2π × 3 vth,i × 9Ti/Bref with

grid size nx × nz × nv‖ × nµ = 160 × 16 × 128 × 64 is considered. One observes similar

GAM damping rate and frequencies obtained with GENE and ORB5, and a reasonable

agreement, within 10%, on the residual level is finally reached.
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Figure 5.13: Time evolution of the normalized electric field at r/a = 0.3, obtained with
GENE and ORB5.

Considering this benchmark and other comparisons with analytical results in [28], one

concludes that, despite the inaccuracies of the currently used gyro-averaging operator

near the magnetic axis, the code successfully satisfies the Rosenbluth-Hinton test.

116



Chapter 5. Code validation and global effects

5.5 Nonlinear benchmarks

After having validated the global GENE code in the linear limit, in particular with

respect to the Rosenbluth-Hinton test, we shall now focus on nonlinear results. Note that

only adiabatic electron simulations are considered in this section.

5.5.1 Nonlinear run without sources

The first simulations are carried out using essentially the same Cyclone parameters, as

in section 5.2, with a/R = 0.36, ρ∗ = ρs/a = 1/180, as well as peaked ion temperature

and density logarithmic gradient profiles, defined through Eq. (5.2), with κTi = 6.96,

κn = 2.23. The safety factor profile considered here is however given by

q(x) = 0.85− 0.01x/a+ 2.28 (x/a)2 − 0.09 (x/a)3 + 0.22 (x/a)4 , (5.15)

which was chosen to match simulation parameters considered previously for running the

ORB5 code. This q profile is thus slightly different from the one given by Eq. 5.5 in

section 5.2 but still is such that q(x = 0.5) = 1.4 and ŝ(x = 0.5) = 0.8. The temperature

ratio is τ = Te/Ti = 1 throughout the plasma. The radial size of the simulation domain is

lx = 120 ρs including buffer regions at the edge of the system which represent 5% of the

simulation box on each side and in which a damping Krook operator is applied. The time

evolutions of the nonlinear ion heat diffusivity χi obtained with ORB5 and GENE are

shown in Fig. 5.14, and are given in gyro-Bohm units χGB = ρ2
s cs/a. In order to enable a

detailed comparison of the initial linear phase, as well as of the nonlinear saturation, the

two codes considered exactly the same initial conditions. As result a very good agreement

is observed. In particular, we note that the first bursts are identical in both simulations.

As no sources are considered here, the ion temperature profile rapidly relaxes towards a

flat profile, which leads to a decrease of the heat diffusivity. It is therefore difficult to

evaluate precisely in Fig. 5.14 the differences between the two time traces after the first

burst as no steady state is reached.

5.5.2 Nonlinear run with sources

In order to carry out quantitative comparisons, the Krook-type heat source (3.113) is

now switched on for the ions, with γhR/cs = 0.035. This value is chosen about ten
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Figure 5.14: Time evolutions of the nonlinear heat diffusivity χ/χGB ( χGB = ρ2
scs/a)

obtained with ORB5 and GENE for CBC parameters. Note the decrease of
the heat diffusivity as no source are included.

times smaller than the typical linear growth rate, so that the time scale on which the

heat source affects the temperature profile is smaller than the characteristic time of the

turbulence. For these simulations, the same background state is considered as for the

previous case without sources, except for the logarithmic gradient profiles of the density

and temperature which are chosen to be flatter, according to the following relation:

R
d ln(Ti, n)

dx
= κ(Ti,n)

[
1− cosh−2

(
x− x0 −∆x/2

a∆(Ti, n)

)
− cosh−2

(
x− x0 + ∆x/2

a∆(Ti, n)

)]
,(5.16)

taken for x ∈ [x0−∆x/2, x0 +∆x/2] and zero outside. The different constant parameters

are set to κTi = 7.1, κn = 2.2, ∆x = 0.8 a and ∆Ti = ∆n = 0.04. The corresponding

temperature and density profiles are shown in Fig. 5.15.

The considered numerical box is lx × ly × lz × lv‖ × lµ = 144 ρs × 132 ρs × 2π × 4 vth,i ×

16Ti/Bref with grid resolution nx × ny × nz × nv‖ × nµ = 150× 64× 16× 64× 16. Note

that the box size in the y-direction is chosen so that:

ly =
2π

n0

r0
q0
, with n0 = 3 . (5.17)

The simulation domain thus covers only one third of each flux surface, which in Fourier

space translates to one out of every three modes kept in the ky-spectrum, with the smallest
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Figure 5.15: Temperature and density profiles together with their normalized logarithmic gra-
dients, for κTi = 7.1, κn = 2.2, ∆x = 0.8 a and ∆Ti = ∆n = 0.04 [see Eq. (5.16)].

mode number in the system being:

ky,min ρs = 2 π ρs/ly = 0.0476 . (5.18)

In addition, by setting the numerical parameters hx = 2, hz = 2, and hv‖ = 0.5, one re-

lies on hyperdiffusion in the x−, z− and v‖−directions, respectively, to ensure numerical

stability.

Using these numerical parameters, the time evolution of the heat diffusivity and normal-

ized logarithmic gradient of the total temperature Ti,tot = Ti0 +Ti1 are shown in Fig. 5.16,

together with their running time-average starting at t0 = 150R/cs, defined for a quantity

A as:

Aav(t) =
1

t− t0

∫ t

t0

A(t) dt . (5.19)

Note that 200 000 time steps were computed for this simulation, which has required about

10 000 CPU hrs. As opposed to the case with no sources, a quasi-steady state is reached

here, thus validating the use of the Krook-type heat source for this code comparison.

These results are compared with an ORB5 simulation obtained for the same physical

parameters and a similar form of the heat source (see Ref. [62]). The averaged heat

diffusivity is χi/χGB = 1.95 for GENE and χi/χGB = 1.76 for ORB5, i.e. a relative

difference of about 10%. A first element that could account for this small discrepancy are

the remaining ρ∗ terms that are still neglected in the gyrokinetic equation considered by

GENE, see Sections 2.11 and 5.4, while they are retained in ORB5. The differences in
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Figure 5.16: Time evolution of (a) the ion heat diffusivity χi in units of χGB = cs ρs/a2 and
of (b) the normalized logarithmic gradient RLTi,Tot

of the total ion temperature
Ti = T0i + T1i for CBC like parameters. These two quantities have been obtained
by radial averaging in the range x/a = [0.4, 0.6]. The bold lines represent the
running time-average starting from t0 = 150R/cs.

the field solver which is only second order accurate in kyρs in ORB5 while all orders are

kept in GENE may also account for the differences. Indeed the mode numbers kyρs > 0.6

contributes to 15% of the total heat diffusivity in GENE, while these contributions may

be underestimated in ORB5 as a result of the kyρs approximation in ORB5. From a

numerical point of view we notice also that somewhat high hyperdiffusion coefficients

hx = 2, hz = 2 were necessary for stability reasons, which may lead to small variations

in the heat diffusivity. The ORB5 simulations is in addition using a noise control system

which is known to decrease the computed heat diffusivity, also leading to an uncertainty

of about 5% according to convergence tests in the number of markers. Finally, some

earlier studies carried out with ORB5 have shown that the heat diffusivity computed with

different initial conditions could vary within 10%. This variability is due to the chaotic

nature of the turbulence, see e.g. Ref. [62]. This is also the reason of the differences

observed in the detailed burst sequence between two simulations, such as those in Fig. 5.14

and 5.16. Considering these different numerical and physical aspects, the present results

were judged satisfactory to validate the nonlinear behavior of the global version of GENE.

When considering the time evolution of the total ion temperature logarithmic gradient in

Fig. 5.16, one observes that its quasisteady state value is smaller than its initial value. This

can be explained by value of γh used for the heat source, which is chosen about 10 time

lower than the typical growth rate, so that the time scale on which the heat source modifies
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the temperature profile remains smaller than the characteristic time of the turbulence. The

quasisteady state value of the total temperature gradient reflects therefore an equilibrium

between the turbulent transport which tends to flatten the temperature profile, and the

Krook-type heat source which tends to restore the temperature profile towards the initial

background profile.

Figure 5.17: Normalized flux-surface averaged electric field Ex obtained with GENE and ORB5
as a function of the radial coordinate x and time t.

As discussed in the previous section, the zonal flow component ky = 0 (or n = 0) is the

main saturation mechanism for the ITG saturation, and an accurate description of its

structure is therefore of particular importance. In Fig. 5.17, we show a two-dimensional

representation of the normalized flux-surface averaged radial electric field Ex(t, x), defined

as:

Ex(t, x) =
ρ2

s e

RTe

∫
−∂/∂x [Φ(t, x, y, z)] Jxyz(x, z) dz dy∫

J(x, z) dz dy
, (5.20)

with Φ(t, x, y, z) the electrostatic potential and Jxyz the Jacobian of the field aligned coor-

dinate system (x, y, z). Note that by taking the flux-surface average of Φ, only the ky = 0

contribution remains. When comparing GENE and ORB5 results in the inner part of

the simulation domain (x/a = [0.3, 0.7]), one observes similar small-scale avalanche-like

structures in both cases [77]. The envelope shape of the radial electric fields Ex at the end

of the simulation (t ' 400R/cs) are in addition comparable, showing in both cases a local

maximum around x/a = 0.5−0.6. One notes, however that the absolute amplitudes of the
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field are different, which can in fact be explained by the different boundary conditions used

in the two codes. In GENE, Dirichlet boundary conditions are considered for the electro-

static potential in the radial direction, on both ends of the simulation domain, while a

free boundary condition is used in ORB5 at the inner edge, and Dirichlet only on the outer

edge.
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Figure 5.18: Radial profile of the normalized flux-surface averaged electric field Ex (a) and its
radial derivative dEx/dr (b), obtained with GENE and ORB5, and averaged over
the time interval t cs/R = [380 420].

In order to compare quantitatively the radial structure of the flux-surface averaged elec-

tric fields, the time-average of Ex(t, x) over the interval t cs/R = [380, 420] is shown in

Fig. 5.18.a. Although the amplitudes differ as a consequence of the different radial bound-

ary conditions for φ, the radial structures are indeed observed to be very similar. The

influence of zonal flow on microturbulence results from its capability to shear the radial

coherent turbulent structures, see Ref. [78]. This effect in fact depends on the shearing

rate ωE×B, which is proportional to the first radial derivative of the electric field (i.e.

second derivative of the electrostatic potential):

ωE×B ∝
dEx

dx
. (5.21)

By comparing in Fig. 5.18.b the radial profiles of dEx/dx, one observes very good agree-

ment between the two codes. This further explains the similar values obtained for the

heat diffusivity and shows that the choice of boundary conditions in the radial direction
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for φ has essentially no effect on the physical simulation results.

5.6 Nonlinear ρ∗ scan

In order to evaluate how global effects influence the nonlinear turbulence in the case

of these Cyclone-type parameters, a ρ∗ = ρs/a scan is carried out and the results are

compared to a local GENE simulation. As already discussed, when using the Krook-type

heat source, the steady state temperature gradient, R/LTi,Tot, will nonetheless differ from

the initial temperature gradient. This deviation may in fact vary when changing ρ∗. In
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Figure 5.19: Time-averaged heat diffusivity χi/χGB ( χGB = cs ρ
2
s/a) as a function of

the time-averaged normalized logarithmic gradient of the total temperature
obtained with GENE for ρ∗ = 1/180. The two points corresponding to the
effective gradients κTi = 6.7 and κTi = 7.2 have been obtained starting from
equilibrium temperature gradient profiles with parameters κTi = 7.1 and
κTi = 7.5 respectively. The value χ(R/LTi,Tot = 7) is then obtained from
these two points by linear interpolation.

order to compute in a meaningful way the heat diffusivity over this ρ∗ scan, i.e. for fixed

profiles, two simulations were carried out for each ρ∗ value, with respectively κTi = 7.1

and κTi = 7.5 for the background ion temperature profiles. The time-averaged ion heat

diffusivity χi corresponding to the target gradient R/LTi,Tot = 7 is then obtained from

these two points by linear interpolation. An illustration of this procedure is provided in

Fig. 5.19 for ρ∗ = 1/180. In Fig. 5.20, the resulting heat diffusivities χ(R/LTi,Tot = 7)
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obtained with both global-GENE and ORB5 are shown in Gyro-Bohm units ( χGB =

cs ρ
2
s/a) as a function of ρ∗, and the results are compared to a local GENE simulation.

For this scan, the ratio lx/a is kept constant and the number nx of grid points in x is

accordingly increased to keep a constant resolution ∆x/ρi = lx/ nx ρi. Thus nx must

scale as 1/ρ∗. In addition, a hyperdiffusion hx = 4 is used for stability reasons for

the GENE simulation at ρ∗ = 1/560, while hz = 2 and hv‖ = 0.5 are kept for all ρ∗

values. We note, that the computational requirement for one simulation at ρ∗ = 1/560

was 60 000 CPU hrs on the HPC-FF linux cluster at Jülich, Germany, and the total

computational resources used for the whole ρ∗ scan was of the order of 220 000 CPU hrs.

Focussing first on GENE’s results, one observes, as expected, that the heat diffusivity

obtained with the global code converges towards the local value in the limit ρ∗ → 0,

thus providing a further validation of the nonlinear behavior of the global code. The
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Figure 5.20: Ion heat diffusivity χi/χGB ( χGB = ρ2
scs/a) obtained with global-GENE and

ORB5 as function of 1/ρ∗. The results are compared with the correspond-
ing local GENE simulation. The errorbar associated with the ORB5 data
for 1/ρ∗ = 180 has been estimated by carrying out three simulations with
different initial conditions.

relative difference between the local and global heat diffusivity is below 10% for 1/ρ∗ &

280, such that global effects can be assumed negligible beyond this value for the present

parameters. Comparing now the ORB5 and global-GENE results, we observe a similar ρ∗
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dependence, as well as an excellent overall agreement, within 10%, between the two codes.

An estimate of the error on χi has been obtained for the 1/ρ∗ = 180 case by carrying out

three independent ORB5 simulations with different initial conditions, showing that the

diffusivities predicted by the two codes are essentially within the error bars. The present

GENE and ORB5 results can be compared with two previous ρ∗ scans obtained with

the global codes GTC and GYRO in Refs. [79] and [80] respectively, for similar Cyclone

base case parameters. In Ref. [79], the GTC results converge towards χi/χGB ' 3.4

in the limit 1/ρ∗ → 0, which is in relatively good agreement with the present results

χi/χGB ' 2.8 − 2.9. On the other hand, global GYRO results in Ref. [80] converge

towards a smaller value of χi/χGB ' 1.9 in the limit 1/ρ∗ → 0. We note that this

χi/χGB value obtained with GYRO is in fact very close to the flux tube results obtained

when using the approximate s-α model instead of the correct circular concentric model

as shown in section 4.5 and in Ref. [67]. Although not clearly stated in Refs. [79] and

[80], we thus assume that the GYRO simulations had indeed been carried out with the

reduced s − α model, while the GTC runs considered an equilibrium similar to GENE’s

”ad-hoc” analytical model (see Sec. 4.3).

5.7 Summary

In this chapter, extensive validation tests and benchmarks of the newly developed

global-GENE version were presented. When considering linear ITG simulations with

adiabatic electron response, the code has shown a correct description of the cylindrical

limit, as well as excellent agreement with the GYGLES PIC code concerning the growth

rate and real frequencies for the Cyclone base case parameters. The mode structures

obtained with the global codes ORB5 and GENE for these parameters have also shown

remarkable similarities. Using full kinetic electrons, the global code reproduces well the

ITG/TEM transition with respect to local results and to the ORB5 code. Significant

differences with the ORB5 results were however observed in the growth rates. This may

be explained both by the electron model used in ORB5, which only treats the trapped

particles kinetically, as well as by the quasi-neutrality equation in ORB5, which is only

second order accurate in k⊥ ρi. Further investigations of these regimes need to be carried
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out in the future. Electromagnetic effects were also addressed through a β scan, and a

similar dependence of the real frequency and growth rate as compared to the local-GENE

code results was observed, in particular the transition from ITG to KBM occurs at the

same β value. These first electromagnetic results are very encouraging, and benchmarks

with other global codes shall be carried out to further validate the code in the high β

regime.

In view of the so-called Rosenbluth Hinton test, solution to the quasi-neutrality equation

for the n = 0 component of the electrostatic potential have been compared between global-

GENE and ORB5. Differences observed between the two codes have been identified to

result from the approximations made in GENE on the gyro-averaging operator where the

metric is linearized in the polar like (x, y, z) curvilinear coordinate system. By using the

corrections proposed in section 3.3, which considers quasi-Cartesian coordinates, a very

good agreement between the two codes could be reached concerning the initial, n = 0

component of the electrostatic potential. Unphysical growth in the time evolution of the

n = 0 component are however observed when using this corrected gyro-averaging opera-

tor, which are not yet fully understood, and the current version of the code is therefore not

using this alternative gyro-averaging scheme. The Rosenbluth-Hinton test has nonetheless

shown satisfying agreement between GENE and ORB5 concerning the residual level.

Detailed comparisons of nonlinear ITG simulations with adiabatic electrons were also

carried out between the two global codes. When including a Krook-type source term, a

steady state is reached and agreement within 20% was obtained in the ion heat diffusivity.

Analysis of the zonal flow component of the electric field has shown the presence of small

avalanche like structures in both codes, as well as very similar radial profiles of the shear-

ing rates. Finally, a ρ∗ scan was carried showing again an excellent agreement between

the two global code, as well as an appropriate convergence towards the flux tube results

in the limit ρ∗ → 0. This scan also showed that global effects are essentially negligible

for machines with 1/ρ∗ > 280 for Cyclone base case like parameters and considering flat

gradient profiles. These results can finally shed light on previous disagreements between

the global gyrokinetic codes GTC and GYRO concerning a similar ρ∗ scan.

Although some further tests may be required, in particular when using kinetic electrons,

these different benchmarks and validations have shown that the global version of GENE
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behaves as expected in both linear and nonlinear regimes and is now ready for inves-

tigating physical effects beyond the usual parameters. In particular, the global code is

appropriate to investigate microturbulence in small to moderate machines (1/ρ∗ . 280),

such as the TCV or DIII-D Tokamaks, or for transport barriers, where gradient profiles

may vary over a few Larmor radii only.
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6 Shaping effects on ITG turbulence

The influence of flux surface shaping on plasma stability and confinement has been inves-

tigated in many experimental Tokamaks, such as TCV, DIII-D or JET, and is recognized

as a key element in fusion research. A well known and documented favorable effect is the

stabilizing influence of elongation on MHD modes, allowing to operate at higher plasma

current (at fixed safety factor) which in turn increases the maximum achievable β accord-

ing to the Troyon scaling. Concerning the influence of triangularity, some experiments

in the Tokamak à Configuration Variable (TCV), which was specially designed for inves-

tigating such shaping effects, have shown an increased electron confinement time when

going from positive to negative triangularity [33].

In order to fully understand how shaping could lead to better confinement, it is of partic-

ular interest to investigate its influence on microturbulence, and several studies have so

far addressed this issue by means of gyrokinetic simulations. Results in [81, 82, 65, 83, 84]

suggested a stabilizing effect of elongation on ITG modes and Trapped Electron Modes

and a smaller effect of triangularity. In [85], a specific study was carried out concerning

the effect of triangularity on TEM in the TCV experiment.

In the present chapter, the effects of elongation and triangularity on ITG modes are in-

terpreted in terms of their influence on the effective temperature gradient, in line with

results published in [84] which were however only considering the effect of elongation. In

a first section, the methodology of the geometry scan is described and, in particular, the

question of which physical quantities shall remain constant while modifying the plasma

shape is addressed. In a second section, linear simulation results are presented for different

plasma shapes, which are then compared in a third section with results obtained using

a local dispersion relation. Finally, the influence of shaping is investigated by means of

nonlinear simulations.
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6.1 Methodology and parameter choice

In order to investigate the influence of shaping on microturbulence, a series of equilibria

are computed with the MHD equilibrium code CHEASE [36] by prescribing different

analytical geometry for the last closed flux surface, defined by the functional form:

R = R0 + a cos(θ + δ cos θ) (6.1)

Z = a κ sin(θ) (6.2)

where θ is the geometrical poloidal angle, a the minor radius, R0 the major radius, κ the

elongation and δ the triangularity. As a starting point, one considers the same plasma

equilibrium as in section 4.5, i.e. with a circular cross section (κ = 1, δ = 0) and with

pressure and current profiles such that the safety factor and shear are respectively q0 = 1.4

and ŝ = (ρt/q)dq/dρt = 0.8 at position ρt = 0.5. The flux surface label is here ρt =√
Φt/Φt,edge, where Φt is the toroidal flux, and the inverse aspect ratio is a/R0 = 0.36.

From this initial equilibrium, which essentially matches the Cyclone test case parameters

[68], a set of equilibria are computed by increasing the elongation κ of the last closed

flux surface up to κ = 1.75 while keeping the minor radius on the equatorial mid-plane

constant. A scan in the triangularity δ, at constant κ = 1.75 is then considered covering

both positive and negative values of δ, see Fig. 6.1. We note that the DIII-D shot from

which the Cyclone test case was derived has an elongation κ = 1.75 and a triangularity

δ = 0.3. For each of these equilibria the pressure and current profiles are adjusted so

as to keep the safety factor q0 and shear ŝ constant at the position ρt = 0.5 where the

flux tube simulations are carried out. The elongations and triangularities have been

specified for the last closed flux surface (LCFS), the corresponding values at ρt = 0.5

are reported in tables 6.1 and 6.2 and will be used in the following to characterize the

different equilibria. In addition, when considering the triangularity scan, the Shafranov

shift of the considered flux surface changes for the different equilibria, the resulting local

aspect ratio ε = (Rmax − Rmin)/(Rmax + Rmin) at ρt = 0.5 is thus not exactly constant

and varies from ε = 0.188 for δ = −0.6 to ε = 0.202 for δ = 0.6, i.e. a relative variation

of 7%.

The present study focuses on the effect of shaping on Ion Temperature Gradient (ITG)
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Figure 6.1: Elongations and triangularities of the last flux surface considered for the scan,
as well as poloidal cross section of the MHD equilibria at limiting values of
this scan. The actual parameters of the DIII-D shot from which the Cyclone
test case was inspired is pointed out with a red cross.

Table 6.1: Elongation scan, at constant triangularity δLCFS = 0

κLCFS 1.0 1.25 1.5 1.75
κ, δ at ρ = 0.5 1.01, 0.0 1.19, 0.0 1.35, 0.0 1.52, 0.0

Table 6.2: Triangularity scan, at constant elongation κLCFS=1.75

δLCFS −0.6 −0.3 0.0 0.3 0.6
κ, δ at ρ = 0.5 1.45,−0.16 1.51,−0.091 1.52, 0.00 1.48, 0.086 1.41, 0.16
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instabilities, and a flat density profile is considered together with adiabatic electrons so

as to restrain the number of physical parameters which may vary. Concerning the ion

temperature profile, the question may be raised as to what should be kept constant when

going from a circular equilibrium to a shaped equilibrium. Indeed for an equilibrium with

circular concentric flux surfaces, the temperature gradient |~∇T | is a flux function, i.e. it

only depends on the radial position, Ψ, whereas in a non-circular equilibrium it becomes

a functions of both the poloidal flux Ψ and the straight field line poloidal angle χ. When

changing the geometry of the flux surfaces, one could thus either keep |~∇T | constant at

a given χ position, e.g. χ = 0, or some flux-surface averaged gradient 〈 |~∇T | 〉. In order

to allow for different interpretations, simulations are carried out for different temperature

gradient values for each considered equilibrium.

6.2 Influence of elongation and triangularity in terms of

the effective gradient

The results presented in this section are obtained with the flux tube version of the

GENE code considering the above mentioned physical parameters. For each equilibrium

a scan in the temperature gradient parameter ω̂Ti = Lref d lnTi/dx, see Eq. (2.135), is

carried out. It is then interpreted in terms of the temperature gradient on the low field

side of the equatorial midplane (i.e. χ = 0, noted R/LTi(0)):

R

LTi

(0) ≡ R
∣∣∣~∇[ ln Ti](χ = 0)

∣∣∣ = R
∣∣∣~∇x(χ = 0)

∣∣∣ ∣∣∣∣ d lnTi

dx

∣∣∣∣ = ω̂Ti

∣∣∣~∇x(χ = 0)
∣∣∣ , (6.3)

or in terms of the flux-surface averaged gradient, noted 〈R/LTi〉:〈
R

LTi

〉
≡ R

〈 ∣∣∣~∇[ ln Ti](χ)
∣∣∣〉 = R

〈∣∣∣~∇x(χ)
∣∣∣〉 ∣∣∣∣d lnTi

dx

∣∣∣∣ = ω̂Ti

〈∣∣∣~∇x(χ)
∣∣∣〉 (6.4)

which can be viewed as an effective spatial gradient. Note that the reference length is

chosen here as Lref = R where R = R0 is the major radius. In the above relations the

flux-surface average is defined as:

〈A〉 =

∫
∆V

A d3x∫
∆V

d3x
, (6.5)
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where ∆V is the volume between two magnetic surfaces.

In order to study the effect of shaping on the stability properties of ITG modes, linear

spectra are computed for ky ρs values in the range kyρs = [0.1 − 0.8] so as to determine

the most unstable mode for each considered MHD equilibrium and ion temperature gra-

dient. In Fig. 6.2 the maximum linear growth rates γmax = maxky [γ(ky)] for the different
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Figure 6.2: Elongation scan: Linear growth rate of the most unstable mode as a function
of (a) the temperature gradient at χ = 0, R/LTi(0), and (b) the flux-surface
averaged gradient 〈R/LTi〉, for different elongations at constant triangularity.

equilibria corresponding to the elongation scan of Table 6.1 are shown as a function of

the temperature gradient at χ = 0 and as a function of the flux-surface average gradi-

ent for the elongation scan. In addition, the particular gradient R/LTi(0) = 7 on the

equatorial midplane, as well as the flux-surface averaged gradient 〈R/LTi〉 = 7 have been

pointed out, and the corresponding growth rates as a function of elongation are plotted

in Fig. 6.3.a.

When first considering the growth rates as a function of the temperature gradient at χ = 0,

R/LTi(0), an effect of the elongation on the ITG modes is observed, namely the growth

rate decreases with increasing elongation at fixed R/LTi(0), see Figs. 6.2.a and 6.3.a. We

note that since the different equilibria have been computed with fixed minor radius on

the equatorial midplane, changing the shape of the flux surfaces at constant R/LTi(0) can

thus be interpreted as keeping a constant temperature difference between the center and

the edge of the plasma. Assuming that the linear growth rates may provide an estimate

of nonlinear turbulent fluxes (through mixing length estimate), results in Figs. 6.2, thus
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show a favorable effect of elongation for fusion plasmas, in line with [86, 83], since a similar

inner and outer temperature difference would lead to a lower level of turbulent fluxes in a

more elongated plasma. This last affirmation will be further discussed in a later section

by carrying out nonlinear simulations.

Coming back to the comparison of linear growth rates, it is clearly shown in Fig. 6.2.b that

the γmax curves corresponding to the different elongation values essentially align on each

other when represented as a function of the flux-surface average gradient 〈R/LTi〉. The

same result can be seen in Fig. 6.3.a where γmax becomes independent of κ at constant

〈R/LTi〉. For a given temperature profile Ti(Ψ), the ITG mode therefore seems to ”feel”

an effective temperature gradient which results from the relative stretching and compres-

sion of neighboring magnetic surfaces when deforming the magnetic geometry, see Fig.6.1.

This interpretation in terms of an effective gradient is supported by the observation that

the ITG mode has non-zero extension in the parallel direction to the magnetic field z = χ,

and is in agreement with similar results in [84] obtained with the global code ORB5. From

Fig. 6.2.b one notes that a unique effective linear critical gradient can be obtained with

〈R/LTi〉l,crit = 3.1, valid for all elongations.

In a similar way as for the elongation scan, a comparison of the maximum linear growth
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Figure 6.3: Maximum linear growth rate as a function of (a) the elongation, or (b) the
triangularity, at constant temperature gradientR/LTi(0) = 7 on the equatorial
midplane (squares) or constant flux surface averaged gradient 〈R/LTi〉 = 7
(circles).

rates for the triangularity scan of Table 6.2 are shown in Fig. 6.4. One observes that

the maximum growth rate is reduced when going from positive to negative triangularity

at constant R/LTi(0), see Figs. 6.4.a and 6.3.b. This can be interpreted as a favorable

134



Chapter 6. Shaping effects on ITG turbulence

effect of negative triangularity, as in [85]. When representing γmax as a function of the

flux surface average temperature gradient the different curves get closer to each other, see

Fig. 6.4.b, showing that the modification of the effective gradient can partially account

for the effect of triangularity. This can be further confirmed by noticing in Fig. 6.3.b that

the dependence of γmax with respect to triangularity is much reduced when considered

at constant 〈R/LTi〉 instead of constant R/LTi(0). Although the alignment of the differ-

ent γmax is not as good as for the elongation scan, one can still extract from Fig. 6.4.b

an approximate linear critical gradient, which is approximately 〈R/LTi〉l,crit = 3.1 ± 0.3.

Note that contrary to the elongation scan the local aspect ratio at ρt = 0.5 varies for the

different triangularities, see discussion in section 6.1, which may partly explain why the

superposition of the curves in Fig. 6.4.b is not as good as in Fig. 6.2.
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Figure 6.4: Triangularity scan: Linear growth rate of the most unstable mode as a function
of (a) the temperature gradient R/LTi(0) on the equatorial midplane and
(b) the flux surface averaged gradient 〈R/LTi〉 for different triangularities at
essentially constant elongation.

6.3 Comparison with a local dispersion relation

In the previous section it was shown that the variations of the effective flux- surface

averaged gradient appears as a good parameter to account for the effects of elongation

and, to a lesser extent, of triangularity on linear ITG modes. However, considering that

the ITG mode in toroidal geometry is in fact an interchange-type instability, resulting

from the combination of the temperature and, magnetic field curvature and gradient, the
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interpretation in terms of a unique parameter is not straightforward. One would rather

expect a combined effect of (1) the temperature gradient and (2) the curvature driving

terms in (Eq. 2.135):

(1) → 1

Ĉ

[
ω̂Tj

(
v̂2
‖j + µ̂jB̂0

τ0j

− 3

2

)]
f̂0j∂ŷ

ˆ̄φ1 ,

(2) →

[
T̂0j(x0)

Zj

2 v̂2
‖j + µ̂jB̂0

B̂0

K̂y

]
Γ̂j,y ,

where the terms have been expressed in the electrostatic limit and assuming ω̂nj = 0. In

addition, only the K̂y contribution from the curvature term is shown since the kx = 0 mode

is the most unstable mode and is thus the only one considered here. We note that in the

two terms described above the coefficients K̂y/B̂0 and ω̂Tj are modified when changing the

elongation or the temperature gradient. In addition, the coefficient Ĉ = q0/(B0 r0) dΨ/dx,

with x = a ρt in general varies when changing the equilibrium at the considered ρt position.

6.3.1 A local dispersion relation for toroidal-ITG modes

In order to obtain a better insight into how both the temperature and curvature gradient

terms influence the ITG instability, we shall consider a simple local dispersion relation.

This kinetic model, which is derived in Appendix B, is similar to the one described in

Chap. 8 of Ref. [87] and considers a slab geometry where the the effect of curvature and

gradient of the magnetic field is introduced through an external force (assuming a low

pressure plasma):

~F = −m
(
v2
⊥
2

+ v2
‖

)
~∇ lnB . (6.6)

For the local dispersion relation obtained from this model to ultimately account for geo-

metrical effects, the terms related to the curvature and gradient will be replaced by some

effective values taking into account the parameters Ĉ , K̂y/B̂0 and ω̂Tj which were intro-

duced previously.

Let (~ex, ~ey, ~ez) be a orthonormal local Cartesian coordinate system with ~ez‖ ~B. A tem-

perature gradient is assumed in the x-direction, opposite to the force ~F , while the density

n is assumed to be flat, see Fig. 6.5.

Considering only electrostatic perturbation, a solution of the linearized Vlasov equation is

obtained for the amplitude of the perturbed distribution function δf̂ by integrating along

136



Chapter 6. Shaping effects on ITG turbulence

q > 0
B

v
F
  

z

y

x

F

r'(t'), v'(t'), t'

r (t), v (t), t

 T∇

Figure 6.5: Particle trajectories in the local (~ex, ~ey, ~ez) orthogonal Cartesian coordinate
system.

the particle trajectories, see Appendix B for more details. The resulting relation between

δf̂ and the electrostatic potential fluctuation amplitude δΦ̂ is then used together with the

quasi-neutrality equation leading to the following dispersion relation:

1

Zi τ
+ 1−

∫
d~v (ωTi − ω)

f0i

n0i

J2
0 (kyv⊥

Ωi
)

ωFi − ω
= 0 , (6.7)

where ω and ky are respectively the frequency and y-mode number of the perturbation,

τ = Te/Ti and Zi = qi/e. Note that an adiabatic electron response is assumed to derive

Eq. 6.7 and the approximations ω << Ω and kz → 0 are in addition considered. The

drift frequencies related to the ion temperature gradient and magnetic field gradient are

respectively given by:

ωTi = ~v∇p · ~k =
(−~∇Ti)× ~B

qi B2
E · ~k , (6.8)

ωFi = ~vFi · ~k = − mi

qiB2

(
v2
⊥
2

+ v2
‖

)
~∇ lnB × ~B · ~k , (6.9)

having defined E(v) = K(v)/T − 3/2.

6.3.2 Introducing geometrical coefficients in the local dispersion

relation

In order to introduce the effects of shaping in the dispersion relation (6.7) the term ωTi

is now replaced by the corresponding expression computed in the toroidal geometry and
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considering the field aligned coordinate system (x, y, z), as defined in Chapter 2:

ωTi =
Ti

qi
~k · (−~∇ lnTi)× ~B

B2
E

=
Ti

qi

ky
~∇y · C (~∇x× ~∇y)× ~∇x
C2 (~∇x× ~∇y)2

d lnTi

dx
E

=
Ti

q C
d lnTi

dx
E ky , (6.10)

having used ~k ' ky
~∇y (i.e. neglecting the radial component kx

~∇x of the wave vector)

and ~B = C (~∇x × ~∇y). Similarly the term ωFi related to the curvature and gradient of

the magnetic field reads:

ωFi = − mi

qiB2

(
v2
⊥
2

+ v2
‖

)
~∇ lnB × ~B · ~k

=
mi

qiB3

(
v2
⊥
2

+ v2
‖

)
C (~∇x× ~∇y)×

(
∂B

∂x
~∇x+

∂B

∂z
~∇z
)
· ~ky

~∇y

=
mi

qiB

(
v2
⊥
2

+ v2
‖

)
Ky ky , (6.11)

where the curvature coefficient Ky is defined according to equation (2.63). We first note

that the x variations of the different equilibrium quantities are not retained here since we

are only interested in perturbations local to the x = 0 surface. Furthermore, in order to

introduce in a consistent manner these expressions for ωTi and ωFi in the local dispersion

equation (6.7) they both need to be independent of z. The temperature gradient drift

frequency in Eq. (6.10) is already z independent, while the curvature drift frequency as

defined in Eq. (6.11) is a function of z, through the geometrical coefficient Ky and the

magnetic field B. The drift frequency ωFi needs therefore to be replace by some effective

coefficient < ωFi > which does not depend on z. Recalling again that the toroidal ITG

mode is an interchange-type mode which is unstable when the temperature and magnetic

field gradients are in the same direction, we propose to use as effective coefficient < ωFi >

the ponderate flux-surface averaged of ωFi:

< ωFi >=

∫ 2

0
πωFi(z)h(z) J(z) dz∫ 2

0
π h(z) J(z) dz

(6.12)

where J is the Jacobian where h(z) is chosen as box shaped function which is equal to one

when ωFi < 0 (i.e. ~∇Ti and ~∇B in the same direction), and zero otherwise. The choice of
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the effective coefficient is of course not unique, and one could have used for instance the

local value at z = 0 (low field side) instead, < ωFi >= ωFi(0). The approach retained here

however tries to captured part of the effects related with the variations of the geometrical

coefficients along the filed line.

Using these relations for ωTi and < ωFi >, the dispersion relation reads:

1

Zi τ
+ 1−

∫
d v

(
Ti

qi C
d lnTi

dx
E ky − ω

)
f0i

n0i

J2
0 (kyv⊥

Ωi
)

mi

qi

(
v2
⊥
2

+ v2
‖

)〈
Ky

B

〉
ky − ω

= 0 . (6.13)

Introducing now the normalized quantities K̂y = Lref Ky, Ĉ = C/Bref , k̂y = ky ρi and the

two normalized driving parameters:

D̂T = −Lref

Ĉ
d lnTi

dx
and D̂c =

〈
−K̂y

B̂

〉
, (6.14)

where the minus sign are used so that D̂T and D̂c are positive coefficients, one can write:

1

Zi τ
+ 1−

∫
d~v

(
ci
Lref

D̂T E k̂y + ω

)
f0i

n0i

J2
0 (kyv⊥

Ω
)

1
c2i

(
v2
⊥
2

+ v2
‖

)
ci

Lref
D̂c k̂y + ω

= 0 . (6.15)

By multiplying the numerator and denominator in the integral by (ci/Lref D̂c)
−1 one finally

obtains:
1

Zi τ
+ 1−

∫
d~̂v c3i

(
p E k̂y + ω̂

) f0i

n0i

J2
0 (k̂y v̂⊥)(

v̂2
⊥
2

+ v̂2
‖

)
k̂y + ω̂

= 0 . (6.16)

where ω̂ = ω Lref/(ciD̂c), v̂ = v/ci and having defined the effective parameter p = D̂T/D̂c.

One note that in the circular concentric flux surfaces geometry case, and if one replaces

the effective drift frequency < ωFi > by its local value ωFi(z = 0) the parameter p simply

reduces to p = −Rd lnT/dr = −R/LT , where R is the major radius.

Assuming Zi = 1 and τ = 1, one can solve equation (6.16) for ω̂(k̂y) and for different

values of the parameter p. A Matlab code is used to numerically integrate and solve

Eq. (6.16) for the complex solution ω̂ = ω̂r + i γ̂. A scan in the parameter p is carried

out and for each value of p the dispersion relation is solved for different values of k̂y. The

resulting growth rate of the most unstable k̂y mode is shown as a function of p in Fig. 6.6.

Using a second order polynomial fit, the normalized maximal growth rate γ̂ can then be
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Figure 6.6: Growth rate of the most unstable ITG mode γ̂ = γ Lref/(ciD̂c) as function
of the parameter p = D̂T/D̂c, computed using the local dispersion relation
(6.16).

expressed as a function of the parameter p:

γ̂ = −0.0037 p2 + 0.17 p− 0.49 . (6.17)

One then finally obtains a relation for γ Lref/ci as a function of D̂T and D̂c, by multiplying

(6.17) by D̂c :

γ
Lref

ci
= −0.0037

D̂2
T

D̂c

+ 0.17 D̂T − 0.49 D̂c . (6.18)
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Figure 6.7: Elongation scan: Geometrical coefficients Ĉ|~∇x| and −K̂y/B̂ as a function of

the straight field line poloidal angle χ (a-b), and effective coefficients 〈Ĉ|~∇x|〉,
Ĉ|~∇x|(0) and −〈K̂y/B̂〉 as a function of elongation κ.

In order to interpret the influence of shaping in terms of the effective driving terms,
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Chapter 6. Shaping effects on ITG turbulence

the coefficients D̂T and D̂C can be replaced in equation (6.18) by their numerical values

obtained for the different equilibrium scans and considering either a constant temperature

gradient on the equatorial midplane, at χ = 0:

D̂T =
R

LTi
(0)

1

Ĉ |~∇x(0)|
, (6.19)

or a constant flux-surface averaged gradient:

D̂T =

〈
R

LTi

〉
1

Ĉ 〈|~∇x|〉
, (6.20)

where one sets Lref = R, and having used relations (6.3) and (6.4) for expressing d lnTi/dx

in terms of R/LTi(0) and 〈R/LTi〉 respectively.

Considering first the elongation scan, the geometrical coefficients Ĉ|~∇x| and K̂y/B̂ are
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Figure 6.8: Linear growth rates obtained by replacing D̂T and D̂c in the local disper-
sion relation (6.18) as a function of κ, considering a constant R/LTi(0) = 7
(squares) or 〈R/LTi〉 = 7 (circles).

shown as a function of the straight field line poloidal angle χ in Figs. 6.7.a and b. The

effective coefficients 〈Ĉ|~∇x|〉, Ĉ|~∇x|(0) and 〈K̂y/B̂〉 as a function of the elongation κ are

shown in Fig. 6.7.c. The linear growth rates obtained by replacing D̂T and D̂c in rela-

tion (6.18) for the different elongations are shown in Fig. 6.8. The results obtained with

this simplified model are in relatively good qualitative and semi-quantitative agreement

with GENE’s computations shown in Fig. 6.3.a. Indeed, when considering a constant

R/LTi(0), a reduction of the growth rate with increasing elongation is observed, whereas

this dependence is reduced when considering a constant 〈R/LTi〉. The growth rate for

〈R/LTi〉 = 7 is in addition found around γR/cs = 0.5 for the reduced model, while a
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comparable value γR/cs = 0.4 is obtained with GENE.

These results can therefore provide useful information toward shedding light on the obser-

vations from the previous section, where it was shown that the dependence of the linear

ITG growth rate with respect to elongation can be removed when keeping a constant

flux-surface average temperature gradient. The present study indeed suggests that when

changing the elongation at constant 〈R/LTi〉, the value chosen for Lrefd lnTi/dx is such

that the contributions from the effective temperature and curvature drives, D̂T and D̂c,

tend to compensate each other.

A similar analysis is also carried out for the triangularity scan. The corresponding geo-
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Figure 6.9: Triangularity scan: Geometrical coefficients Ĉ|~∇x| and K̂y/B̂ as a function of

the straight field line poloidal angle χ (a-b), and effective coefficients 〈Ĉ|~∇x|〉,
Ĉ|~∇x|(0) and 〈K̂y/B̂〉 as a function of the triangularity δ.

metrical coefficients and effective coefficients are shown in Fig. 6.9, and the linear growth

rates obtained by replacing the effective drives D̂T , D̂c in the local dispersion relation

(6.18) are shown in Fig. 6.10. When considering a constant R/LTi(0) the growth rate of

the ITG mode is shown to decrease when going from positive to negative triangularity, in

good agreement with GENE’s linear simulations in Fig 6.3. The present results also con-

firm that for a constant 〈R/LTi〉 the driving coefficients, D̂T and D̂c, tend to compensate

each other, although the difference between the two curves in Fig. 6.10 is not as clear as

for the elongation case.

When comparing the different driving coefficients −K̂y/B related to the magnetic field

gradient, one notices that in the case of the elongation scan they have a similar χ de-

pendence, see Fig. 6.7, and only vary in amplitude, whereas a different χ dependence is
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observed when changing the triangularity, Fig. 6.9. Indeed, for all κ values at constant

δ = 0, the coefficients −K̂y/B present a local minimum at χ = 0 and two maxima around

π/2 and −π/2. On the other hand, considering the triangularity scan, a similar χ depen-

dence with one local minimum and two maxima is observed for δ ≤ 0 whereas the δ > 0

cases present a global maximum at χ = 0. When introducing the effective coefficient

< ωF >, the information on these different χ dependencies is lost, which could explain

why an interpretation in terms off effective drives is less accurate for the triangularity

scan, and could also account for the differences in Fig. 6.3.b where the linear growth rates

do not perfectly align when considering a constant 〈R/LTi〉.
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Figure 6.10: Linear growth rates obtained by replacing D̂T and D̂c in the local dispersion
relation (6.18) as a function of the triangularity δ considering a constant
R/LTi(0) = 7 (squares) or 〈R/LTi〉 = 7 (circles).

6.4 Nonlinear results

Considering first the circular equilibrium (κ = 1.01, δ = 0) as well as the most elongated

equilibrium (κ = 1.52, δ = 0), nonlinear simulations are carried out and the resulting

electrostatic heat fluxes are shown in Fig. 6.11 as a function of R/LTi(0) or 〈R/LTi〉. For

these nonlinear simulations, which have physical parameters close to the standard Cyclone

base case, the simulation domain is lx×ly×lz×lv‖×lµ = 110 ρs×90 ρs×2π×3 vth,i×9Ti/Bref

and the grid resolution nx × ny × nz × nv‖ × nµ = 128× 48× 32× 32× 8.

As expected from the linear simulations, we first notice that for a constant R/LTi(0)

the turbulent heat flux is significantly decreased when increasing the elongation. This
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Figure 6.11: Elongation scan : Nonlinear electrostatic heat flux as a function of (a) the
temperature gradient at χ = 0, R/LTi(0), and (b) flux-surface averaged
gradient, 〈R/LTi〉 for the two equilibria with elongations κ = 1 and κ = 1.52
at constant triangularity δ = 0.

can be interpreted, as already discussed in section 6.2, as a favorable effect of elongation

for fusion plasmas since a similar inner and outer temperature difference would lead to a

lower level of turbulent fluxes in a more elongated plasma. The effect of elongation can

here again be essentially accounted for by considering a constant 〈R/LTi〉. In particular,

by comparing results shown in Figs. 6.2 and 6.11 for the two equilibria with κ = 1.01

and κ = 1.52, one observes the same nonlinear ’Dimits’ up-shift for the effective critical

inverse temperature gradient length from the linear value R/Leff,crit =< R/LTi >crit' 3

to the non-linear value R/Leff,crit =< R/LTi >crit∼ 6. The observation that there exists

a unique effective critical temperature gradient for different elongations are in agreement

with nonlinear global simulations presented in [84]. We note that the present simulations

were carried out with essentially the same physical parameters as in [84] apart from

the density gradient, which is here taken as R/Ln = 0, so as to limit the number of

parameters that would have to be interpreted in terms of effective gradient or gradient

on the equatorial mid-plane, while a finite R/Ln was used in [84]. We finally notice that,

since for a constant 〈R/LTi〉 the linear growth rates are similar, the remaining differences

observed in Fig. 6.11 can be interpreted as additional geometrical effect on the nonlinear

fluxes.

Considering now the triangularity scan, the electrostatic heat flux is shown in Fig. 6.11

for δ = −0.16, 0.0, 0.16 at essentially constant elongation. Although the differences be-

tween the three curves are not as significant as for the non-linear elongation scan and
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Figure 6.12: Triangularity scan : Nonlinear electrostatic heat flux as a function of (a)
the temperature gradient at χ = 0, R/LTi(0), and (b) flux-surface averaged
gradient, 〈R/LTi〉 for different triangularities and constant elongation.

also less marked than in the linear triangularity scan, one can still conclude that the

turbulent transport is decreased when going from positive to negative triangularity at

constant R/LTi(0). Similar to the linear study, the dominant effect of triangularity can

be accounted for in terms of the effective spatial gradient, as the heat flux dependence

over the triangularity parameter δ is essentially reduced at constant < R/LTi >. One

can furthermore extract an effective nonlinear critical inverse temperature gradient length

R/Leff,crit =< R/LTi >crit' [5.7± 0.5].

6.5 Summary

In this chapter the effect of flux surface shaping on ITG modes was investigated with

flux-tube simulations considering different elongations κ and triangularities δ. Assuming

a flat density profile, a decrease of the linear growth rate was observed when increasing the

elongation at constant ion temperature gradient on the equatorial midplane, R/LTi(0), as

well as when going from positive to negative triangularity. It was shown that these shaping

dependencies could be essentially reduced by keeping the flux surface averaged gradient

〈R/LTi〉 constant. In order to further understand how the modifications of the flux surface

average gradient could account for these shaping effects, a study with a local dispersion re-

lation was carried out, which suggested that at constant 〈R/LTi〉 the linear drive resulting

from the temperature gradient and magnetic field curvature essentially compensate each
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other. Finally, a series of nonlinear simulations were considered, showing, in line with the

linear results, a decrease of the electrostatic heat flux with increasing elongation and when

going from positive to negative triangularity at constant R/LTi(0). We note that since the

minor radius on the equatorial plane was kept constant for the different plasma shapes,

the observed decrease of the electrostatic heat flux can be interpreted as a favorable effect

of elongation and negative triangularity for fusion plasmas. As for the linear case, the

main dependence on elongation and triangularity could be reduced by keeping a constant

〈R/LTi〉. Finally, in agreement with [84], an important observation is the existence of a

unique effective critical inverse temperature gradient length which could be determined

accurately for the elongation scan, R/Leff,crit =< R/LTi >crit' 6, and within a given

interval for the triangularity scan, R/Leff,crit =< R/LTi >crit' [5.7± 0.5].
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7 Modeling of electron internal

transport barriers in the TCV

Tokamak

Internal Transport Barriers (ITB) are regions of reduced radial particle and energy trans-

port within the core plasma. The presence of an ITB is usually identified when, for a

constant heating power, the temperature or density gradients exceed those of standard

discharges. Depending on the heating method, internal transport barriers on ions, elec-

trons, or both can be generated. Although the exact mechanism underlying the transport

barrier creation is not yet fully understood, several experiments on different machines have

shown that ITB formation is most of the time associated with plasmas rotation and/or the

presence of a reversed magnetic shear profile [88]. Because of their enhanced confinement

properties, transport barriers are viewed as a promising way to achieve high performance

regime in future fusion reactor and are thus actively studied from the theoretical and

experimental point of view [89, 90, 91, 92, 93].

In this chapter, turbulent heat and particle transport are investigated with the local ver-

sion of the GENE code considering a TCV discharge where an electron Internal Transport

Barrier (eITB) was obtained in the presence of a reversed shear profile [94]. We note that

no measurement of the background plasma rotation was available for this experiment.

However, other experimental rotation measurements in TCV suggest that typical shear

flow velocities are not significant in the core of the machine, and background E ×B and

parallel rotation effects are thus not considered in the present work. A previous study

[40], based on similar TCV discharges and using quasi-linear estimates computed with the

local code GS2 [11], has shown that for a given electron temperature gradient, one can
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find pairs of density and ion temperature gradients values (R/Ln, R/LTi) for which ion

temperature gradient (ITG) and Trapped Electron Mode (TEM) contributions to electron

particle transport are equal and of opposite sign, thus leading to a net cancellation of the

total particle transport. This finding is of particular importance, since in the absence of

any particle source and neglecting the neoclassical contributions one indeed expects that

in the steady state the turbulent particle flux should be zero. The present work is thus

motivated by these quasi-linear results and intends to investigate whether such particle

flux cancellation can also be observed for realistic eITB parameters in nonlinear simula-

tions. To this end, scans in the ion temperature gradient shall be carried out while keeping

the other reference physical parameters constant until reaching a regime where both TEM

and ITG instabilities are present and their respective contributions to the electron flux

cancel each other. In addition one is interested in comparing the obtained nonlinear elec-

tron heat diffusivity with experimental values and thus to determine whether the obtained

regime, for which the particle transport would cancel, is realistic from this point of view

as well. Some further simulations are then presented to investigate the sensitivity of the

heat diffusivity with respect to the density gradient, the electron temperature gradient

and the radial position at which simulations are carried out. Finally some first global

nonlinear simulations are carried out for reduced parameters, in order to provide some

first estimate concerning the importance of relevant ρ∗ effects.

7.1 Physical parameters

The physical parameters considered here are derived from the TCV discharge #29866,

which corresponds to a typical eITB scenario in a deuterium plasma. The experimental

temperature and density profiles of electrons are plotted in Fig. 7.1, showing a steep

gradient in the transport barrier region which is ranging from ρt ' 0.28 − 0.46, where

ρt =
√
φt/φt,edge, φt being the toroidal flux. The inverse temperature gradient length in

this region varies between R/LTe = 10 and 30, and the inverse density gradient length

R/Lne between 3 and 10. Note that all temperature and density gradients are here

defined as R/Lg = R < |∇ ln g| >= (R/a) < |∇ρt| > d ln d/dρt, with g = T, n and

< . > stands for the flux-surface average. The ion temperature was not measured in
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this experiment, and can only be estimated from the electron profile by considering a

fixed ion to electron temperature ratio. The safety factor profile q, computed with the

equilibrium code CHEASE is shown in Fig. 7.2, where one observes that the shear ŝ =

(ρt/q) (dq/dρt) cancels around ρt = 0.4, i.e. close to the transport barrier localization.

A detailed description of the procedure used for the reconstruction, with CHEASE, of

a magnetic equilibrium from experimental and calculated quantities, is given in [95].

Using the interface with the CHEASE code, see Chap.4, local GENE simulations are
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Figure 7.1: Experimental temperature (left) and density (right) profiles of electrons for
TCV discharge #29866, obtained from Thomson scattering diagnostic. The
vertical solid lines indicate the Internal Transport Barrier region ρt ' 0.28−
0.46.

carried out at radial position ρt = 0.3, which corresponds to a local safety factor q =

3.2, shear ŝ = −1.17, and inverse aspect ratio r/R = 0.09. Note that this particular

radial position is chosen as a first test case, as the corresponding electron temperature

and density gradient are not too strong and numerical requirement are thus reduced. A

variability investigation, questionning this particular choice will be presented in a latter

section. Although using a realistic equilibrium, the present study will only focus on

electrostatic modes and an independent small β = 10−4 value is set, i.e. a β value

inconsistent with the actual density and temperature profile considered. Note that one

could have used β = 0, however in this limit some electrostatic modes with very high real

frequencies are present in the system, which strongly restrict the time step, and a finite

β is thus required for practical reasons. The temperature ratio τ = Te/Ti and effective

charge Zeff =
∑

i niZ
2
i /
∑

i niZi are set, consistent with experimental measurements,
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Figure 7.2: Safety factor profile q (left) and shear ŝ (right) reconstructed with the equi-
librium code CHEASE, for TCV discharge (#29866).

respectively to τ = 3.5 and Zeff = 2. Although more demanding from the computational

point of view as it requires to add a third species, it is essential to account for this Zeff > 1

value, since together with the retained Te/Ti ratio it has a stabilizing effect on electron

temperature gradient (ETG) instabilities thus allowing to consider only ion scales for

the nonlinear simulations. The reader is invited to consult Refs. [96] and [97] for issues

related to multiscale simulations. Carbon was chosen for the additional ion species as

it is the dominant impurity observed in the experimental discharge. The three kinetic

species, electrons, deuterium and carbon, are thus considered with normalized densities

ne/nref = 1, nD/nref = 0.8, and nC/nref = 0.03 so as to verify Zeff = 2, and real mass

ratios are taken into account. The choice of retaining a real mass ratio is motivated

in particular by a Trapped Electron Mode study in Ref. [27], where some quantitative

differences of up to a factor two were observed in the particle flux between a reduced

(mi/me = 400) and real mass ratio simulations. The electron temperature and density

gradients are taken as R/LTe = 12 and R/Lne = 3. The ion temperature gradients

for the two species are assumed to be equal, R/LT,D = R/LT,C = R/LTi, and will be

varied between 2 and 10 in the following study. As it is not measured in this particular

experiment, the inverse normalized gradient length of carbon is arbitrarily taken as half

the electron value, R/Ln,C = 0.5R/Ln,e. Note that this choice is based on results in

[40] for which a cancellation of both the electron and carbon particle fluxes was observed

at a given R/LTi when R/Ln,C ' 0.5R/Ln,e, and should not have a strong impact on
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the following study since a low carbon density is considered here. For consistency, the

deuterium density gradient is then obtained by taking the radial derivative of the quasi-

neutrality equation:
dnD

dx
+ ZC

dnC

dx
=
dne

dx
, (7.1)

leading to:
R

Ln,D

=
1

nD

(
ne

R

Lne

− ZC nc
R

Ln,C

)
. (7.2)

Finally, a realistic collision frequency is considered, and the normalized collision coefficient

νc = 2.3 10−5 ln ΛR[m]ne [1019m−3]/(Ti[keV ])2, see Ref. [51], is therefore set to νc =

5 10−4, where ln Λ is the Coulomb logarithm, and considering R = 0.88m, Ti = 1 keV ,

ne = 1.2× 1019m−3 and ln Λ = 20.

To summarize, the considered physical parameters at ρt = 0.3 are:

• realistic magnetic geometry with: q = 3.2, ŝ = −1.17, r/R = 0.09.

• three kinetic species, electron, deuterium, carbon with: τ = Te/TC = Te/TD =

Te/Ti = 3.5, nD/ne = 0.8, nC/ne = 0.03, R/LTe = 12, R/Lne = 3, R/LT,D =

R/LT,C = R/LTi = 2− 10 R/Ln,D = 3.4, R/Ln,C = 1.5.

• normalized collision frequency ν̂c = 5 · 10−4 and β = 10−4.

7.2 Linear results

With the above considered parameters, linear computations are first carried out with

the eigensolver version of GENE for two different values of the ion temperature gradient

R/LTi = 5 and R/LTi = 6. This linear investigation focuses on the growth rate and real

frequency of the two most unstable modes for each toroidal mode number ky ρi between

0 and 2.2. The corresponding results are shown in Fig. 7.3. Considering first the case

R/LTi = 5, one observes two distinct local maxima in the growth rate spectra. The largest

one is found around ky ρi ' 0.5 and corresponds to a mode with negative real frequency,

i.e. propagating in the electron diamagnetic direction, which can thus be identified as

a Trapped Electron Mode. The second maximum, at ky ρi ' 1, is linked to a positive

frequency and can be identified as an Ion Temperature Gradient mode. When increasing

the ion temperature gradient from R/LTi = 5 to R/LTi = 6 the local maximum around

151



Linear results

0 0.5 1 1.5 2 2.5
0

0.5

γ
 R

/c
i

k
y
 ρ

i

 

 

0 0.5 1 1.5 2 2.5
−2

0

2

ω
 R

/c
i

k
y
 ρ

i

ITG

TEM

R/L
Ti

=5

0 0.5 1 1.5 2 2.5
0

0.5

γ
 R

/c
i

k
y
 ρ

i

 

 

0 0.5 1 1.5 2 2.5
−2

0

2

ω
 R

/c
i

k
y
 ρ

i

R/L
Ti

=6

Figure 7.3: Linear spectra for the two most unstable modes for R/LTi = 5 and R/LTi = 6.
The TEM (squares) and ITG (crosses) are identified considering the sign of
their real frequency.

ky ρi ' 0.5 remains essentially constant while the local maximum around ky ρi ' 1 is

strongly increased and becomes the largest, thus further confirming the respective nature

of the corresponding modes. From these linear results, one expects that the coresponding

turbulence will evolve from a TEM dominated regime to an ITG dominated regime, when

increasing the ion temperature gradient from R/LTi = 5 to R/LTi = 6. Such behavior

will be further investigated in the following by means of nonlinear simulations.

The GENE results shown here have been carried out with a high resolution, considering a

velocity box lv‖×lµ = 3 vth,i×9Ti/Bref and a grid size nx×nz×nv‖×nµ = 24×24×64×16,

for which the growth rate of each individual ky mode is converged within approximatively

1%. In view of the nonlinear simulations, where a somewhat lower resolution might

be used to decrease the computational cost, we shall now discuss how a reduced grid

would affect these linear results. As explained in section 3.2.3, each individual (ky =

2π k/ly, kx = 2 lπ /lx) mode is coupled to different (ky, k
′
x = kx + p δkx) modes as a result

of the parallel boundary condition, where δkx = 2 πnc k/lx. The radial grid resolution

is therefore determined by the number of required connections to correctly describe the

parallel structure of the mode. The length lx, which can only have quantized values [see

(3.30)]:

lx = nc
ly

|2πŝ|
, (7.3)
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Figure 7.4: Absolute value of the electrostatic potential of several ky Fourier modes as
a function of the parallel coordinate z. This plot is obtained by connecting
each individual (kx, ky) mode, defined over z = [−π, π], to an other (k′x, ky)
according to the parallel boundary condition (3.32). The grid resolution is
nx = 24, such that 11 positive and negative connections are considered, and
the first 6 connections are shown here.

is adapted in a linear simulation for each individual ky mode so that nc = 1. In this

case, all kx modes are connected and the number of pmax connections is therefore pmax =

[(nx−1)/2], where [ ] stands for integer part. The parallel structure of several ky Fourrier

components of the electrostatic modes are shown in Fig. 7.4 for nx = 24. One observes

that modes ky > 0.2 have a strongly ballooned structure, which suggests that only a few

connections are required for correct numerical resolution. In fact, simulations with no

connections, i.e. nx = 1 have already shown a good agreement with the higher resolved

results. Considering now the other phase-space directions, convergence tests have shown

that a reasonably good agreement with the reference high resolution results, in the order

of 10%, is reached by using a parallel resolution nz = 16, as well as velocity resolutions

nv‖ = 48 and nµ = 8. To summarize this convergence study, the growth rate and real

frequency of the most unstable mode for each individual mode number ky are plotted in

Fig. 7.5 for both resolutions nx × nz × nv‖ × nµ = 24× 24× 64× 16 and 1× 16× 48× 8,

indeed showing maximum differences on the linear growth rates of the order of 10%.
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7.3 Nonlinear simulations

7.3.1 Choice of numerical parameters

As we are here considering physical parameters which are far away from the usual

Cyclone base case, we shall start by further discussing the choice of the different numerical

parameters used in these nonlinear simulations. The linear results in Fig. 7.3 show that
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Figure 7.6: Contour plot of the electrostatic potential in the perpendicular (x,y) plane at
tR/ci = 160.

the linear modes are typically unstable in the region ky ρi ∈ [0.2 , 2] for the considered

physical parameters. Based on this observation, the box size in the y-direction is set

such that ky,min ρi = 2π ρi/ly = 0.08 and the number of considered modes is nky = 32,

154



Chapter 7. Modeling of eITBs in the TCV Tokamak

leading to a maximal resolved mode ky,max ρi = 2π nky ρi/ly = 2.6. Considering now

the system size in the x direction, the length lx should be large enough to contain the

turbulent eddies, whose dimensions are characteristic of the radial decorrelation length,

so that the periodic boundary condition in the radial direction can be well justified. For

the considered physical parameters, where TEMs are present, elongated structures, often

referred to as streamers, develop. The radial length of some of these streamers can be

near 100 ρi long as illustrated in Fig. 7.6. A radial box length of approximately lx = 120 ρi

should thus be appropriate. As already discussed in the previous section, the radial box

length lx needs to take on one of the quantized values lx = nc ly/|2πŝ|, where nc is an

integer. For the present shear value ŝ = −1.17, one obtains for nc = 11 a box length of

lx = 117.5ρi, which will be used in the following. The required radial resolution is then

determined by the size of the smallest turbulent eddies, which are typically of the order of

a few ρi, as well as by the number of connexions that are required in the parallel direction,

as already discussed in section 7.2. In order to connect each (ky, kx = 0) mode to at least

one other (ky, k
′
x) mode, the number of points in the radial x-direction would need to be

nx = 2 · nc · nky + 1 = 2 · 11 · 32 + 1 = 705. The linear convergence studies have shown,
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Figure 7.7: Time evolution of the electron heat and particle fluxes, for R/LTi = 5, and
resolutions nx×ny×nz×nv‖×nµ = 128×64×16×48×8 and 256×64×16×48×8.
The running average, see Eq. (7.4), is represented by the thicker lines.

however, that modes kyρi > 0.2 have a strongly ballooned structure, so that even when

taking no connection, the main physics is still correctly described. In order to further

determine whether a lower x-resolution could be envisaged, two nonlinear simulations

with resolution nx = 128 and nx = 256 are compared. Note that for these two resolutions,
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the last modes with at least one connexion are respectively kyρi = 0.40 and kyρi = 0.88.

In real space, these two resolutions would thus correspond to a radial grid spacing of

∆x = lx/nx = 0.92 ρi and ∆x = 0.46 ρi respectively. For the z-direction the resolution

nz = 16 and for the velocity space resolution the parameters lv‖ × lµ = 3 vth,i × 9Ti/Bref

and nv‖×nµ = 48×8, which had proven appropriate for the linear runs, were kept for the

nonlinear simulations. The time trace of the electron heat and particle fluxes and their

respective ky spectra obtained from the nonlinear GENE runs are shown in Figs. 7.7 and

7.8 for the case R/LTi = 5. As can be observed, the running average heat fluxes for the

two radial resolutions, defined as:

〈Q〉(t) =
1

t− t0

∫ t

t0

Q(t) dt , for t > 0 , (7.4)

having chosen t0 = 50ci/R, differ by less then 10% at t = 190R/ci. The corresponding

running average of the particle fluxes vary only by a few percent as well. In Fig. 7.8,

one remarks in addition that the ky spectra of the turbulent fluxes are not significantly

changed. From these results we conclude that a radial resolution of nx = 128 is sufficient

for the present study. This grid resolution enables to reduce the computational effort thus

allowing us to investigate the influence of several physical parameters on the nonlinear

simulations.
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Figure 7.8: Electron particle flux spectra for R/LTi = 5 and considering different radial
resolutions nx = 128 and nx = 256.

To summarize, a resolution of nx × ny × nz × nv‖ × nµ = 128 × 64 × 16 × 48 × 8 shall

be used in the following, for which we estimate that the nonlinear simulation results are

converged within about 10% to 20%.
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7.3.2 Nonlinear results

Using the physical and numerical parameters described previously, a series of nonlinear

simulations are carried out for various values of the ion temperature gradient. Considering

first the case R/LTi = 5, the time evolution of electrostatic heat and particle fluxes for the

different kinetic species are shown in Fig. 7.9. One observes, as could be expected from

the linear physics where TEMs were the most unstable modes, that the electron heat flux

is dominant. In addition, as carbon is only a trace species, nc/ne = 0.03, we also notice

that its contribution to the heat flux is negligible. Concerning the particle fluxes, the

electron and deuterium particle fluxes are very close, while the remaining small carbon

particle flux is such that the ambipolarity relation is satisfied:

Γes,D + ZC Γes,C = Γes,e , (7.5)

as can also be observed in Fig. 7.10.
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Figure 7.9: Time evolution of the electrostatic heat and particle fluxes of electrons, deu-
terium and carbon for R/LTi = 5.

In the following, we will concentrate on electron transport and try to compare simulation

results with some experimental measurements.

Considering now the actual scan in the ion temperature gradient, the time-averaged elec-

tron particle fluxes are shown in Fig. 7.11 as a function of R/LTi. One observes that the

particle flux is continuously changed from a positive to a negative value when increasing

R/LTi and crosses the zero axis around R/LTi ' 6. One notices, in particular, that this

ion temperature gradient value for which the electron particle flux drops to zero corre-
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sponds to the transition from TEM to ITG dominated linear drive, as pointed out in

Fig 7.3. A more detailed analysis of the particle flux spectra, shown in Fig. 7.12, reveals

that the flux cancellation results from positive contributions at low ky ρi (where TEMs

are the most unstable linear modes) which are compensated by negative contributions at

higher ky ρi (where ITG modes are most unstable). This observation is in agreement with

similar results in Ref. [51] which have been obtained for different physical parameters, as

well as with a quasi-linear study in Ref. [40]. This latter comparison with quasi-linear

results will be further investigated in the following section.
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Since the observed particle spectra for different ky modes seems to reflect features of the

linear physics, one may obtain some useful information by investigating whether some

characteristic frequencies are present in the turbulence. To this end, a time-windowed

Fourier transform of the electrostatic potential is employed, see Ref. [28], which provides

for each ky value a frequency spectra. The time interval and window width considered

here are respectively t ci/R = [100 , 250] and ∆tw ci/R = 37.5. The resulting normalized

frequency spectra obtained for different ion temperature gradient values are shown in

Fig. 7.13. Most of the linear physics characteristics are still observed in the nonlinear

simulations. Indeed for the R/LTi = 5 case, the dominant frequencies are negative for

ky ρi ∈ [0.2 , 0.7] and positive for ky ρi ∈ [0.8 , 1] in good agreement with result in

Fig. 7.3. Note that no dominant frequency can be determine for ky ρi > 1. Considering

now R/LTi = 6, a clear transition from negative to positive frequency is observed at

ky ρs = 0.5, as for the linear simulation results of Fig. 7.3. Finally, for R/LTi = 7.5, the

regime is, as expected, ITG dominated with essentially positive frequencies.

These results show that the negative and positive contributions observed at different ky ρi

in the particle flux spectra in Fig. 7.12 can be clearly associated respectively to dominant

TEM and ITG modes which still persist in the nonlinear regime.

Figure 7.13: Frequency and ky spectra of the electrostatic potential Φ. For each ky mode
the frequency spectra has been normalized to its maximal value. The fre-
quency of the most unstable linear mode of Fig. 7.3 are reported here in
dashed line.
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As already discussed, the point in parameter space for which the particle flux goes to

zero, Γ ' 0, is remarkable as it corresponds, in the absence of particle sources, to a

stationary state situation. In particular, when considering experimental temperature and

density profiles for carrying out gyrokinetic simulations, one could investigate whether

the condition for such a stationary state are met within the experimental uncertainties.

Assuming that the physical parameters are indeed such that the constraint Γ ' 0 on

the particle fluxes is fulfilled, i.e. R/LTi = R/LTi,stat, we shall now focus our attention

on the heat transport, and in particular compare the corresponding electrostatic electron

heat diffusivity χes,e with the observed experimental value. The electron heat diffusivity

obtained from the nonlinear simulations, defined as:

χes,e =
Qes,e

ne < |~∇Te| >
, (7.6)

is shown in Fig. 7.14 for the different ion temperature gradient values. In view of com-

paring with the experiment, the different results obtained in normalized units have been

here converted to SI units (m2 s−1) using TCV parameters: Te = 4 keV , Bref = 1.44T

and R0 = 0.88m. A remarkable feature observed in Fig. 7.14 is that the ion temperature

gradient value for which the particle flux cancels R/LTi ' 6 corresponds to a minimum of

the heat diffusivity, for which it is equal to χe,stat ' 2m2 s−1. This observation is in agree-

ment with results in [51]. From the Fourier decomposition of the heat flux in Fig. 7.14,

one observes that the peak related to TEM modes at ky ρi ' 0.5 is removed when going

from R/LTi = 5 to R/LTi = 6. The heat flux spectra peaks then in the ITG part of the

spectrum around ky ρi ∼ 0.7, and this new peak increases with increasing temperature

gradient from R/LTi = 6 to R/LTi = 7.5. The local minimum of the electron heat flux

around R/LTi = 6 can therefore be interpreted as a nonlinear interaction between ITG

and TEM modes in the ky ρi ' 0.5 region. The value obtained from these nonlinear sim-

ulations for χe,stat can be compared with the experimental electron heat diffusivity, which

is computed from the measured temperature and density profiles, as well as the magnetic

equilibrium and the absorbed power defined as follows:

χexp,e = − 1

V ′ T ′e ne 〈|∇ρt|〉2

∫ ρt

0

Pe dV , (7.7)

where the prime superscript denotes the partial derivative with respect to the flux label ρt,
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Figure 7.14: Electron heat diffusivity χes,e as a function of R/LTi (left). Note the local
reduction of χes,e for R/LTi = R/LTi,stat. On the right, the electron heat
diffusivity spectra is shown for different R/LTi values.

and Pe is the power absorbed by electrons, calculated as the sum of the ohmic power, the

absorbed ECH power and the equipartition power loss (collisional equilibration between

electrons and ions):

Pe = PECH + POH − PEQ . (7.8)

For the present case, the experimental electron heat diffusivity is estimated to be about

1m2 s−1 in the region ρt = 0.3− 0.4. The simulation results are thus within a factor two

of these experimental values. Let us point out however, that the flux tube computations

were not carried out for the radial position with the steepest electron temperature and

density gradient. A discussion concerning the sensitivity of the obtained heat diffusivity

with respect to some of the physical parameters will be thus provided in section 7.5 to

address this particular issue.

7.4 Comparison with quasi-linear estimates

Concerning particle flux cancellation the nonlinear results discussed in the previous sec-

tion show a good qualitative agreement with the quasi-linear results in Ref. [40]. In order

to further validate the quasi-linear approach, we have carried out some direct quantitative

comparisons, for our physical parameters, with quasi-linear particle fluxes obtained from

GENE simulations.
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Figure 7.16: Quasi-linear estimate of the
electron particle flux spectra
for R/LTi = 5 and R/LTi = 6.

For the eITB study in Ref. [40] the quasi-linear rule was only retaining the mode kyρi cor-

responding to the highest value of γ/ < k2
⊥ >. Considering however that the particle flux

cancellation observed for the nonlinear simulations in Fig. 7.12 had resulted from positive

and negative contributions at different ky values, it appears essential to keep all ky modes

in the quasi-linear approach. We therefore adopt here the more suited rule proposed in

Ref. [98], for which the quasi-linear flux is given by:

F q.l. =
∑
ky

F̂ q.l.
ky

∆ky , (7.9)

where F stands for the heat Q or particle fluxes Γ. The single ky mode contribution is

defined as:

F q.l.
ky

= A0

(
γky

〈k2
⊥〉

)ξ F̂ky

|Φ̂0,ky(0)|2
. (7.10)

The quantities F̂ky and Φ̂0,ky(0) are obtained from the linear simulations and the flux-

surface averaged perpendicular wave number is computed as:

〈k2
⊥〉 =

∑
kx

∫
(k2

y g
yy + k2

x g
xx + kx kyg

xy) |Φ̂kx,k(z)|2 dz∑
kx

∫
|Φ̂kx,k(z)|2 dz

. (7.11)

Note that the kx sum is running over all connected kx for a given ky (nx = 24 here).

The value of the constant A0 needs only to be determined if one needs to obtain absolute

quantities. We are however only interested here in finding physical parameters for which

the particle flux goes to zero which can be determined by looking at the ratio Γ/Q between
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the particle and heat fluxes since the heat flux is always positive. Finally, the parameter

ξ is first set to ξ = 2, as suggested in [98].

The quasi-linear flux ratio Γe/Qi, where Qi is the deuterium heat flux, is shown in

Fig. 7.15. As for the nonlinear simulations (see Fig. 7.12), the particle flux changes from

a positive to a negative value when increasing the ion temperature gradient while keeping

all the other physical parameters constant. We furthermore notice that the temperature

gradient R/LTi,stat for which Γe = 0 is in good agreement with the nonlinear results.

Considering now each individual ky contribution, which are shown in Fig. 7.16, it is clear

that the observed flux cancellations results from positive and negative contributions at

different ky values. This is also in very good agreement with the observed spectra in the

nonlinear simulations, see Fig. 7.12, and stresses the importance of keeping several ky

modes in the quasi-linear approach.
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Figure 7.17: Stationary R/LTi obtained from quasi-linear estimates for different values of
the ad-hoc parameter ξ. Also shown is the stationary gradient obtained from
the nonlinear simulations.

When computing the quasi-linear flux, the relative importance of the different ky con-

tributions will in principle be influenced by the choice of the ξ exponent in Eq. (7.10).

For instance, a higher value of ξ will increase the relative weight in Eq. (7.9) of the low

ky modes (where γ/ < k2
⊥ > peaks) with respect to the higher ky modes. In order to

investigate this effect, a scan in ξ is carried out in the range ξ ∈ [1 4] and the stationary

ion temperature gradient R/LTi,stat is reported in Fig. 7.17 as a function of the parameter
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ξ. The dependence with respect to ξ is relatively weak and an agreement within 20%

with the non-linear results is reached for ξ between 2 and 3. The choice of ξ = 2 seems

therefore appropriate.

7.5 Sensitivity of the computed heat diffusivity

The nonlinear flux-tube computations of the electron heat diffusivity presented in sec-

tion 7.3 have shown that a reasonable agreement can be reached with the experimental

results. The simulations discussed previously were however carried out considering rel-

atively low density and electron temperature gradients compared to the maximal values

that can be reached in typical TCV eITBs. In this section, we shall address the issue of

the sensitivity of the computed heat diffusivity with respect to some of the key physical

parameters. For this study, we consider a slightly different equilibrium profile, for which

the safety factor profile q is shown in Fig. 7.18. Although this equilibrium does not exactly

correspond to the TCV discharge #29866, it is still representative of some other TCV

experimental eITB scenarios, see [95]. For this safety factor profile, the cancellation of

the shear ŝ is shifted to higher ρt values, thus allowing to compare simulations at ρt = 0.3

and ρt = 0.4. Note that with the previously considered equilibrium the ŝ = 0 was located

around ρt = 0.4, which prevented us from running flux tube simulations at this position.

The flux tube model is indeed inappropriate for handling zero shear regions. We remark

in particular that the radial simulation length lx → +∞ for ŝ → 0, see Eq. 7.3, which

reflects this problem.

In the following, the dependence of the electron heat diffusivity with respect to the den-

sity gradient, the electron temperature gradient and the flux-tube position is investigated

by varying these parameters one by one while holding all the other ones constant. The

considered ranges for varied parameters and fixed values for the constant parameters are

as follows:

• realistic magnetic geometry with local values:

- at ρt = 0.3 q = 9, ŝ = −0.55, ε = 0.09.

- at ρt = 0.4 q = 7, ŝ = −1.22, ε = 0.12.

• three kinetic species, electron, deuterium, carbon with: τ = Te/TC = Te/TD =
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Figure 7.18: Safety factor profile q (solid line) for alternative equilibrium to the one of
TCV discharge #29866. Safety factor for shot # 29866 is shown for reference
with dotted line. The corresponding shear profiles are shown on the left plot.

Te/Ti = 3.5, nD/ne = 0.8, nC/ne = 0.03, R/LTe = 12, R/Lne = 2, 3, R/LT,D =

R/LT,C = R/LTi = 2− 10 R/Ln,D = 2.3, 3.4, R/Ln,C = 1.

• normalized collision frequency νc = 5 · 10−4 and β = 10−4.

The values R/LTe = 12, R/Lne = 3 and ρt = 0.4 define the reference point from which

these parameters are varied. The same numerical parameters as in section 7.3 are used.

In Fig. 7.19, the electron particle fluxes and heat diffusivities are shown for the different

cases, as a function of the ion temperature gradient. The heat diffusivity at R/LTi =

R/LTi,stat, i.e. corresponding to Γe = 0, is also summarized in Fig. 7.20 as a function of

the flux tube position, density gradient and electron temperature gradient.

We first notice in 7.19 that for the reference case R/LTe = 12, R/Lne = 3, ρt = 0.4 the

heat diffusivity presents a local minimum in the vicinity of R/LTi,stat as in Fig. 7.14. For

the case R/LTe = 12, R/Lne = 3, ρt = 0.4, a first scan in R/LTi did not reveal any clear

minimum. By carrying out two additional nonlinear simulations, around the expected

R/LTi,stat, it appears however that the heat diffusivity for R/LTi = R/LTi,stat is slightly

smaller (about 7%) than the two neighboring points. These differences are however not

important, and the same exercise which consists in carrying out further nonlinear simula-

tions in the vicinity of R/LTi,stat was thus not carried out for the two other physical cases

for which no clear minimum are observed.

Focusing now on the sensitivity of the stationary heat diffusivity with respect to phys-
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ical parameters in Fig. 7.20, one observes that when changing the flux tube position

from ρt = 0.4 to ρ = 0.3 the heat diffusivity is decreased from χe,stat = 8.8 m2 s−1 to

χe,stat = 4.8 m2 s−1. This dependence is not going in the expected direction as the shear

is increased from ŝ = −1.22 at ρ = 0.4 to ŝ = −0.55 at ρt = 0.3 and a more negative

shear is usually attributed to have a stabilizing effect on TEM instabilities [7]. One notes

however that the local aspect ratio varied from ε = 0.12 at ρ = 0.4 to ε = 0.09 at ρt = 0.3

which could account for the difference as the trapped particle fraction directly depends on

this parameter. Considering the relative variations of the shear and local aspect ratio we

χ
e,stat

χ

TEM ITG

R/LTi

Reducing 
R/Lne

e

Figure 7.21: Schematic view of the L shaped electron diffusivity dependence with respect
to the ion temperature gradient.

conclude however that the dependence of the heat flux over the position is still moderate.

When changing the electron temperature gradient from R/LTe = 12 to R/LTe = 16, only

a small change of approximately 10% is observed on the stationary heat diffusivity χe,stat.

The choice of the electron temperature gradient is thus not a critical parameter.

Considering finally the influence of the density gradient, a very strong dependence is ob-

served. The heat diffusivity varies from χe,stat = 8.8 m2 s−1 for R/Ln = 3 to χe,stat =

0.5 m2 s−1 for R/Ln = 2 to , i.e. by one order of magnitude. From Fig. 7.19, one also

notices that the ion temperature gradient R/LTi,stat for which Γe = 0 is lower in the

low density gradient case (R/LTi,stat ' 2 for R/Lne = 2 instead of R/LTi,stat ' 6 for

R/Lne = 3.

As already discussed in the previous section, the temperature gradient R/LTi,stat is ob-

tained close to the transition between TEM and ITG dominated turbulent regime. A
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schematic view of the general L-shaped R/LTi dependence of the electron heat diffusivity

is shown in Fig. 7.21. For small values of R/LTi where turbulence is TEM dominated,

χes,e only weakly depends on R/LTi. A strong increase is then observed in ITG dominated

regime. If one neglects local minimum of χe around R/LTi,stat, the χe,stat is then close to

the value obtained in the pure TEM regime. The modification of the density gradient has

a strong influence on the TEM instabilities, such that when reducing the R/Lne the heat

flux in pure TEM regime is reduced, thus explaining the overall reduction of χe,stat.

7.6 Global effects

As shown in the previous section and as a result of the strong dependence of the sta-

tionnary heat diffusivity with respect to the density gradient, nonlinear local simulations

with R/Lne = 6− 10, which are typical values in the center of the barrier, result in over-

estimating the electron heat flux. The ρ∗ = ρs/a value in TCV being typically of the

order of 1/ρ∗ = 80, one possible explanation for the discrepancy between the simulation

and experimental results is that global effects play here an important role which need to

be accounted for. This hypothesis is in particular supported by the ρ∗ scan in Fig. 5.20,

which shows that a strong decrease, i.e. by one order of magnitude, of the heat diffusivity

is observed for this ρ∗ value with respect to local simulations. One notes however that

these results were obtained for the ion heat diffusivity considering adiabatic electrons, and

one may wonder whether a similar decrease would be observed with full kinetic electrons

for the electron heat diffusivity.

So as to address this issue, one would ideally have carried out nonlinear global simulations

with full kinetic electron dynamics considering the realistic TCV parameters. Because of

the increased computational cost of global simulations, it was however not feasible to use

the parameters considered previously for the local simulations, i.e. in particular three

kinetic species and high gradients. Furthermore, issues related with the radial resolution

of the non-adiabatic electron response regions near mode rational surfaces, as discussed

for linear results in section 5.3, still need to be addressed in nonlinear global simulations

using kinetic electrons.

In order to nonetheless provide some first estimates of non-local effects, a reduced pa-
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Figure 7.22: Initial temperature and density profiles and the corresponding gradients con-
sidered for the global TCV-relevant GENE simulations.

rameter case is investigated and compared with local results. Note that by reduced one

understand here that the gradients are low enough so that only a small ky ρi region is un-

stable, thus diminishing the computational requirements. Furthermore, carbon impurities

are neglected so that only the distributions of deuterium ions and electrons are evolved.

So as to reduce the time scale separation between ion and electron dynamics, the mass

ratio is reduced from the realistic value mi/me = 3672 to mi/me = 800. According to

Eq. (5.11), this reduced mass ratio also increases the radial scale of the non-adiabatic elec-

tron response regions around mode rational surfaces and thus relaxes the requirements on

radial resolution.

The TCV-relevant value for ρ∗ is chosen as ρ∗ = 1/80. In addition, one considers the ad-

hoc circular model, with similar parameters as in the Cyclone base case. The considered

aspect ratio is thus a/R = 0.36 and the safety factor profile is given by:

q(x) = 0.95 + 2.22 (x/a)2 . (7.12)

and ρ∗ = 1/80. Note that this q profile slightly differs from the one used in the standard

Cyclone base case as considered in Sec. 5.2. These values were indeed adapted as a

numerical instability was observed when a mode rational surface is located in the vicinity

of the radial boundaries. This issue, only observed when carrying out global simulations

with kinetic electron dynamics, is not yet fully understood and is still under investigation.

As a result of this problem, we have not been able to obtain stable nonlinear simulations

with full kinetic electrons in the case of a reversed magnetic shear, although this would

have been more suited in view of studying a transport barrier.
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Figure 7.23: Global TCV-relevant GENE simulations. Time evolution of the heat diffu-
sivities (units χGB = cs ρs/a

2) and of the normalized logarithmic gradients
of the total temperatures T = T0 + T1. These quantities have been obtained
by radial averaging in the range x/a = 0.45− 0.55. The bold lines represent
the running time average starting from t0 cs/R = 80.

Two kinetic species are considered, electrons and ions, with flat gradient profiles as

defined in Eq. (5.16) and parameter values κTi = 8, κTe = 4, κni = κne = κn = 4,

∆x = 0.4 a and ∆T = ∆n = 0.06. The different ion and electron profiles are illustrated

in Fig. 7.22. We note that a narrow flat gradient region, of about 0.2 a radial width, is

considered here, consistently with the size of the eITB barrier previously discussed. For

such parameters, ITG instabilities are the most unstable modes.

For these preliminary results, the simulation and grid domain are lx × ly × lz × lv‖ × lµ =

30 ρs× 84 ρs× 2π× 3.5 vth,i× 12.3Ti/Bref with grid resolution nx×nky ×nz ×nv‖ ×nµ =

40×16×48×48×12. The box size in the y-direction is chosen so that the smallest mode

number in the system is:

ky,min ρs = 2 π ρs/ly = 0.075 . (7.13)

This corresponds to n0 = 2 in Eq. (3.4), i.e. the simulation domain only covers one half

of each flux surface. An hyperdiffusion hx = 4, hz = 4, and hv = 0.5 is used to ensure

numerical stability and buffer regions at the edge of the system which represent 5% of

the simulation box on each side are considered. The Krook-type heat source described in

section 3.5 is used, with γh = 0.03. It should still be mentioned that for these parameters

the radial resolution is insufficient for resolving all the non-adiabatic electron response

regions, and that convergence in x should be carried out. This was yet not possible as a

numerical instability was again observed when attempting to further increase the radial
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resolution and is still under investigation.
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Figure 7.24: Comparison between heat diffusivities using either the global or local version
of the GENE code for both ions (left) and electrons (right).

Using these parameters, the time evolution of the heat diffusivity and normalized loga-

rithmic gradients of the total temperature and density are shown in Fig. 5.16 for both

ions and electrons, together with their running average starting at t0 cs/R = 80. The

time-averaged diffusivities χi = 0.9 and χe = 0.2 for the effective gradients R/LTi = 5.5,

R/LTe = 3.6, R/Ln = 2.6 were obtained in this way. These different quantities have

been obtained by radial averaging over the interval x/a = 0.45− 0.55. Note that despite

the reduced parameter set, the simulation still required about 40 000 CPU hours on the

HPC-FF linux cluster at Jülich, Germany.

The global results, showing χi/χGB = 0.9 and χe/χGB = 0.2, are then compared with a

local simulation carried out for R/LTi = 5.5, R/LTe = 3.6 and R/Ln = 2.6. The different

heat diffusivities are shown in Fig. 7.24. One observes, in agreement with the ρ∗ scan

with adiabatic electrons shown in Fig. 5.20, that for this particular ρ∗ value, the heat

diffusivities obtained with the local code, χi/χGB = 11.3 and χe/χGB = 4.6, differ from

the global results by an order of magnitude.

These preliminary results thus strongly suggest that a global description would be re-

quired for quantitative comparison with experimental results in a small device such as

TCV. They however need to be further confirmed. In particular the issue of the radial

resolution needs to be addressed. The influence of the size of the prescribed flat gradient
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region, clearly a finite ρ∗ effect, needs also to be investigated.

7.7 Summary and discussion

In this chapter, we have investigated nonlinear turbulent heat and particle transport

using realistic parameters derived from a TCV discharge presenting an electron internal

transport barrier. It was shown, in agreement with quasi-linear results presented in [40],

that a cancellation of the electron particle flux can be observed by choosing an appropriate

value of the ion temperature gradient, R/LTi = R/LTi,stat. Such cancellation corresponds

to a realistic stationnary state situation, and a spectral decomposition of the particle

flux reveals that it results from positive and negative contributions at different toroidal

wave numbers ky. In fact, positive contributions from low ky modes correspond to TEM

instabilities and negative contributions from higher ky modes correspond to ITG instabil-

ities which still persist in the nonlinear regime. A quantitative comparison between the

stationary ion temperature gradient obtained with the quasi-linear estimates as proposed

in [98] and the nonlinear simulations have shown a remarkable agreement, confirming the

interest of this approach to predict critical R/LTi,stat gradient value. Concerning the non-

linear electron heat diffusivity χe, the value obtained for R/LTi = R/LTi,stat corresponds

to a local minimum, which seems to result from nonlinear interaction between TEM and

ITG modes.

A sensitivy study on various parameters has shown that the stationary electron heat dif-

fusivity is very stiff with respect to the density gradient R/Lne. A strong dependence of

χe on R/LTi was also shown when ITG modes are destabilized, as illustrated in Fig. 7.14.

One should therefore handle the two parameters R/Lne and R/LTi with great care when

computing nonlinear gyrokinetic simulations for eITB relevant parameters if one intends

to obtain realistic heat diffusivities. In particular, small uncertainties in the experimental

data could lead to strong variations in the resulting heat fluxes. For further efficient eITB

investigations, we therefore propose the following scheme, based on the particle and heat

diffusivity constraints:

1) Determine maximal and minimal density gradients within experimental uncertain-

ties.
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2) For these two limiting R/Lne values, evaluate the corresponding R/LTi,stat using the

quasi-linear approach.

3) Compute the resulting electron heat diffusivity in both cases by means of nonlinear

simulations, which can then be compared with experimental values.

However, for the present TCV study a reasonable electron heat diffusivity was only ob-

tained for a density gradient R/Lne which is below the experimental values, even when

taking experimental errors into account. The turbulence level resulting from the TEM in-

stabilities seems therefore overestimated in these local flux tube simulations. One possible

explanation could be related to the large ρ∗ = ρi/a ' 1/80 value, characteristic of TCV

eITB experiments, so that global effects could well play a significant role here. In partic-

ular, we note that the required box size for the flux tube simulations was here lx = 118 ρi

which is in fact larger then the machine size, suggesting that the local approximation is

not appropriate in this case for quantitative comparisons. This is indeed strongly sup-

ported by some preliminary global nonlinear results obtained with kinetic electrons and

considering reduced parameters, showing much lower heat diffusivities (approximately one

order of magnitude) for an appropriate ρ∗ = 1/80 value than obtained from local flux-tube

simulations. Further investigations using the global code are thus required in the future.
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8 Conclusions

During the course of this thesis project the local gyrokinetic code GENE has been extended

to a global version, thus allowing for the investigation of nonlocal effects. This has required

to make important modifications to the code, which have been described in this work, and

some first investigations of non-local effects have been presented. In addition to the global

code development, the local version of the code has been used to study the effect of shaping

on ITG turbulence as well as particle and heat transport in a TCV discharge presenting an

electron Internal Transport Barrier. In the following, a brief review of the most important

results is provided and an outlook on possible future research topics is given.

8.1 Summary

In view of their implementation in the new version of the GENE code, the gyrokinetic

and field equations have been expressed in the field aligned coordinate system considering

a general Tokamak geometry and keeping radial variations of equilibrium quantities. Al-

though some remaining ρ∗ terms are still neglected, these equations in particular capture

the dominant non-local effects associated with the radial variations of the temperature

and density gradient profiles.

In order to account for radial variations of equilibrium quantities, the treatment of the

radial direction has been modified from Fourier space to a real space representation. In

particular, radial boundary conditions were modified from periodic to Dirichlet, both for

the distributions and potential fields. Among the different modifications of the code that

were thus required, the present work has focused on the implementation of a real space

anti-aliasing treatment for the nonlinearity and a Krook-type heat source enabling to carry

out steady state global simulations. A detailed analysis of the gyro-averaging operator
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was also carried out and corrections to the previous scheme were proposed.

Particular effort was devoted on the magnetic equilibrium description and two different

models have been implemented for both the local and global versions of the code: an in-

terface with the MHD equilibrium code CHEASE and an analytic circular concentric flux

surface model. A detailed study of the different geometrical terms has furthermore under-

lined inconsistencies in a previously considered model, the so-called s− α model. It was

in particular shown that these inconsistencies had resulted in misinterpreted agreement

between local and global results at large ρ∗ = ρs/a values. True convergence between

local and global simulations was finally obtained by correct treatment of the geometry in

both cases, and considering the appropriate ρ∗ → 0 limit in the latter case.

In order to validate the newly developed global-GENE code, extensive tests and bench-

marks were carried out. Considering first adiabatic electrons, very good agreements with

various codes were obtained in both the cylindrical limit and for Cyclone base case param-

eters. Linear simulations with kinetic electrons have shown some first promising results,

in particular concerning the ITG/TEM transition. Some discrepancies with other code re-

sults on the growth rates are however still to be further investigated. After having shown

correct predictions of the zonal flow residual by means of the Rosenbluth Hinton test,

nonlinear comparisons with the ORB5 code have shown good agreement in quasi-steady

state conditions. Finally, a ρ∗ scan was carried out considering Cyclone parameters, show-

ing the expected convergence towards the flux tube results in the limit ρ∗ → 0 as well

as an excellent agreement with ORB5 code results. This scan also showed that for these

parameters global effects become important for 1/ρ∗ . 280. Finally, these results may

provide interesting insight concerning a long lasting disagreement between the GYRO and

GTC codes considering a similar ρ∗ scan.

Using the interface with the MHD equilibrium code, the effects of plasma shaping on

ITG microinstabilities and associated microturbulence were investigated. A favorable

effect of elongation and negative triangularity was observed in both linear and non-

linear simulations when considering a constant ion temperature gradient on the equa-

torial mid-plane. It was shown that most of the shaping effects could be accounted for

by the modification of the flux-surface averaged ion temperature gradient. More impor-

tantly, a unique effective nonlinear critical ion temperature gradient was observed around
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R/Leff,crit =< R/LTi >crit' 6 for different elongations and triangularities, considering

Cyclone base case-type parameters with flat density profile.

A study of turbulent particle and heat transport for TCV discharges presenting an electron

internal transport barrier was finally presented. Confirming some previous quasi-linear

estimates, local nonlinear simulations have shown that the electron particle flux goes to

zero for a gradient value R/LTi = R/LTi,stat corresponding to the transition between

TEM and ITG dominated regimes. This cancellation results from positive and negative

contributions associated respectively with the TEM and ITG modes of the linear spec-

trum which still persist in the nonlinear evolution. By choosing the quasi-linear rule

proposed in Ref. [98], which accounts for all unstable linear modes, a good quantitative

agreement with the nonlinear results was achieved concerning the particle flux cancella-

tion. Beyond the electron particle flux, this nonlinear study also focused on the electron

heat diffusivity. A remarkable minimum of this quantity was observed in the vicinity of

R/LTi = R/LTi,stat, which results from nonlinear destructive interactions between ITG

and TEM modes [51]. Some parameter sensitivity study has furthermore shown that the

predicted stationary heat diffusivity was very stiff with respect to the electron density gra-

dient. Comparisons with experimental results revealed that a reasonable agreement could

only be reached in regions where the density gradient is relatively small, i.e. R/Lne ' 3,

whereas the flux tube simulations seem to overestimate the heat transport if one accounts

for density gradient values of order R/Lne ∼ 6 − 10 found in the center of the transport

barrier. Some preliminary nonlinear global results, including kinetic electrons, finally sug-

gest that non-local effects may play an essential role for these TCV eITB cases. A global

approach therefore seems required if one intends to obtain quantitative predictions of the

heat diffusivity in these conditions.

8.2 Outlook

Global simulations with adiabatic electrons have been thoroughly validated in both the

linear and nonlinear regimes, and the new version of the GENE code thus opens wide

possibilities for investigating the influence of nonlocal effects. Some further efforts are

however still required concerning kinetic electron dynamics in global simulations, in par-
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ticular, further benchmarks of linear runs should be carried out both in the TEM and

KBM regimes. A better understanding of some numerical instabilities observed when

trying to run nonlinear simulations with kinetic electrons is also necessary, and further

modifications may be introduced in order to obtain a more robust code in this limit. We

note that some recent investigations of an alternative treatment of the ~E× ~B nonlinearity

using the so-called Arakawa scheme [99, 13] by D. Told have already provided interesting

perspectives, although numerical instabilities are still observed in some cases. Concerning

the model, one could also envisage to introduce in the implemented gyrokinetic equation

some of the remaining missing finite ρ∗ terms, in particular those scaling as 1/r, in view of

extending the domain of validity of the code. Finally, to facilitate the investigation of the

TEM regime, one should enable the option of considering only trapped kinetic electrons

while passing electrons are still assumed adiabatic (similar to the kinetic electron model in

the ORB5 code for instance). This would indeed avoid the necessity of resolving the fine

radial structures generated by the non-adiabatic response of passing electrons on mode ra-

tional surfaces, which lead to computationally heavy simulations. In fact, validating such a

reduced kinetic electron model for the TEM regime is in itself an issue of physical interest,

i.e. determining whether the fine radial structures in linear modes due to non-adiabatic

passing electrons have a significant effect on the associated non-linear turbulent transport.

The global GENE code should be used to further address the general issue of transport

barriers, in particular once the functionality of running global simulations in the TEM

regime using either full or only trapped kinetic electrons has been implemented. This

would enable to pursue the investigation of TCV eITBs presented in this work. One

could then verify whether a cancellation of the electron particle flux still occurs in global

simulations for relevant physical parameters at the transition between ITG and TEM

dominated regime. As a first attempt in this direction, the quasi-linear approach described

in [98] could be used and extended to the global case by introducing some radial averaging.

Considering nonlinear simulations, a first investigation could be carried out with the

gradient driven approach, i.e. using the Krook-type heat source, and comparison with

experimental heat diffusivity could thus be envisaged for realistic temperature gradient

values. In addition, one could verify whether destructive interaction between TEM and
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ITG modes still leads to a reduction of the heat diffusivity in the vicinity of R/LTi,stat.

Such gradient driven simulations are however not completely satisfactory as an artificial

heat source is used to pin the temperature profile to a prescribe value. In this case,

the transport barrier formation is thus not addressed. A more physical approach consist

in considering flux driven simulations using a realistic heat source. Simulations using

such a heat source, and considering realistic experimental input power, could be carried

out and one could investigate whether the steep electron temperature gradient could be

maintained. In this respect, the interface with the MHD equilibrium should be used, to

account for the combined effects related to the magnetic geometry such as the reversed

shear and the Shafranov shift.

Global simulations with kinetic electrons could also be carried out to further study the

beneficial effect of negative triangularity observed in the TCV experiment and in particular

to extend the flux-tube study by A. Marinoni published in Ref. [85].

Finally, the problem of global nonlinear simulations in the high β regime has not yet

been extensively addressed, and the new version of the GENE code could thus be used to

provide a better understanding of microturbulence in this regime.
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A CHEASE output for gyrokinetic

codes

The CHEASE code for computing axisymmetric MHD plasma equilibria [36] has been

adapted to provide a specific output file, containing appropriate magnetic equilibrium

data for the gyrokinetic codes GENE and ORB5. This output is calculated when the

input parameter NIDEAL is set to 9 (see [36] for more information on the CHEASE input

parameters). In this case, a file in HDF5 format [100] named ogyropsi.h5 is written.

The input parameters NEGP and NER, used to defined the Jacobian in CHEASE :

J = C(Ψ)RNER|∇Ψ|NEGP

should be set to NER=2 and NEGP=0. In this case the (Ψ, χ,Φ) coordinates, where Ψ

is the poloidal magnetic flux function, χ the generalized poloidal angle and Φ the toroidal

angle, define a strait field line coordinate system.

The ogyropsi.h5 HDF5 file is structured as follows:

• The hierarchy of the file is organized into one main group /data itself subdivided

into groups /data/grids, /data/var1d, and /data/var2d. The input file is in addition

stored in the group /inputs.

• As attributes of /data are the scalars:

NPSI number of points in the Ψ direction

NCHI number of points in the χ direction

R0EXP major radius

B0EXP magnetic field on magnetic axis

• In /data/grids, the radial and poloidal grids:
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PSI(NPSI) PSI grid

CHI(NCHI) CHI grid, going from 0 to 2π −∆χ

• In /data/var1d, the 1-dimensional fields:

Rgeom(NPSI) major radius, Rgeom = (Rmax +Rmin)/2

ageom(NPSI) minor radius, ageom = (Rmax −Rmin)/2

q(NPSI) safety factor

dqdpsi(NPSI) dq/dΨ

d2qdpsi2(NPSI) d2q/dΨ2

shear(NPSI) ŝ = (Ψ/q) dq/dΨ

dshdpsi(NPSI) dŝ/dΨ

p(NPSI) pressure

dpdpsi(NPSI) dp/dΨ

f(NPSI) F = RBφ

fdfdpsi(NPSI) F dF/dΨ

ρt(NPSI)
√

Φt/Φt,edge, where Φt is the toroidal flux

kappa(NPSI) elongation

delta(NPSI) triangularity

V(NPSI) volume inside Ψ = cst /2π

dVdpsi(NPSI) dV/dΨ

drho tdpsi(NPSI) dρt/dΨ

GDPSI av(NPSI) 〈|∇Ψ|〉 where 〈 〉 is the flux-surface average

rad av(NPSI) flux-surface averaged minor radius

R av(NPSI) flux-surface averaged major radius

• In /data/var2d, the 2-dimensional fields:

g11(NPSI,NCHI) g11 = |~∇Ψ|2

g12(NPSI,NCHI) g12 = ~∇Ψ · ~∇χ
g22(NPSI,NCHI) g22 = |~∇χ|2

g33(NPSI,NCHI) g22 = |~∇Φ|2

B(NPSI,NCHI) norm of the magnetic field

dBdpsi(NPSI,NCHI) ∂B/∂Ψ

dBdchi(NPSI,NCHI) ∂B/∂χ

J(NPSI,NCHI) Jacobian J = [(~∇Ψ× ~∇χ) · ~∇Φ]−1

R(NPSI,NCHI) cylindrical coordinates (R,Z,Φ)

182



Appendix A. CHEASE output for gyrokinetic codes

Z(NPSI,NCHI) cylindrical coordinates (R,Z,Φ)

dChidr(NPSI,NCHI) ∂χ/∂R

dChidz(NPSI,NCHI) ∂χ/∂Z

dPsidr(NPSI,NCHI) ∂Ψ/∂R

dPsidz(NPSI,NCHI) ∂Ψ/∂Z

The CHEASE code can be run in many different ways, as described in Ref. [36], using

analytical or experimental pressure and current profiles. The most straighforward way

however to obtain a suitable ogyropsi.h5 file for gyrokinetic investigation is to start from

an exisiting EQDSK equilibrium file [69]. To this end, an EQDSK file renamed EX-

PEQ needs to be copied in the folder where the CHEASE code is run, and the following

chease namelist input file can be used:

*** Standard input to run with EQDSK file

*** Create h5 output for gyrokinetic codes

***

&EQDATA

NIDEAL=9,

NEGP=0, NER=2,

NS=60, NT=60, NPSI=180, NCHI=16, NISO=180, NDIFPS=1,

NEQDSK=1, NSURF=6, NPPFUN=4, NFUNC=4,

EPSLON=1.0E-11, GAMMA=1.6666666667,

/

Note that, the variable NDIFPS=1 in this example ensures that the Ψ grid is such that

ρv(Ψ) =
√
V/Vedge is equidistant which is appropriate for the global version of GENE.

Detailed information describing how to run the GENE code using such a geometrical file

are provided in the user manual [101].
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B A local dispersion relation for

toroidal-ITG modes

In the following a derivation of the local dispersion relation (6.7) based on Refs. [87] and

considering a slab geometry is presented. Although one could have used the gyrokinetic

equation (2.51) to obtained this dispersion relation, it is in fact possible in the present

simple local geometry to integrate directly the particle trajectories, without going through

the Lie transform formalism. The gyrokinetic limit is then simply recovered in the final

expression by assuming ω � Ω.

In this local approach, the effect of curvature and gradient of the magnetic field is intro-

duced through an external force (assuming a low pressure plasma):

~F = −m
(
v2
⊥
2

+ v2
‖

)
~∇ lnB . (B.1)

An (~ex, ~ey, ~ez) orthogonal cartesian coordinate system is considered, with a uniform mag-

netic field ~B = B~ez. A temperature gradient is assumed in the x-direction, opposite to

the magnetic field gradient, while the density n is assumed to be flat.

Considering electrostatic perturbations, the Vlasov equation for the particle distribution

f(~r,~v, t) reads :

df

dt
=

[
∂

∂t
+ ~v · ∂

∂~r
+

1

m
(q ~v × ~B + ~F − q~∇Φ) · ∂

∂v

]
f = 0 (B.2)

where m and q are the mass and charge of the particle, and Φ is the electrostatic potential

of the perturbation. In order to linearize the Vlasov equation, the particle distribution

is split into an equilibrium and perturbed part f = f0 + δf . The particle distribution

f0 6= f0(t) is a stationary solution of the unperturbed Vlasov Equation and is a function
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of the constants of motion,

X = x+
vy

Ω
= cst , (B.3)

K =
1

2
mv2 = cst , (B.4)

where Ω = qB/m is the gyro-frequency, X is the guiding center position along x, and K

is the kinetic energy. Assuming a near thermodynamic equilibrium, one considers:

f0(X,K) =

(
m

2π T (X)

)3/2

n exp

(
− K

T (X)

)
, (B.5)

where T (x) is the local temperature, and n the density. Assuming that the Larmor radius

ρL = cth/ω, with cth =
√
T/m, is small compared to the equilibrium characteristic length

L, f0 is expanded in the small parameter ε = ρL/L:

f0(X,K) = f0(x,K) +
vy

Ω

∂f0

∂x
(x,K) +O(ε2) (B.6)

= f0 +
vy

Ω

d lnT

dx

(
K

T
− 3

2

)
f0 . (B.7)

Having defined the equilibrium state, one notices that the unperturbed system is homoge-

neous in the y and z directions, as well as in time. One can thus consider an electrostatic

perturbation of the form:

Φ = Φ̂(x) exp i(~k · ~r − ωt) = Φ̂(x) exp i(ky y + kz z − ωt) , (B.8)

where ky and kz are wave numbers in the y- and z-directions respectively, and ω is the

frequency of the linear perturbation. The x-dependence of Φ̂ is furthermore neglected,

and only local perturbations to x = 0 surface are considered. The perturbed particle

distribution function has a similar dependence:

δf = δf̂ exp i(ky y + kz z − ωt) , (B.9)

and is solution of the linearized Vlasov equation:

d

dt

∣∣∣∣
u.t.

δf̂ =

[
∂

∂t
+ ~v · ∂

∂~r
+

1

m
(q ~v × ~B + ~F ) · ∂

∂v

]
δf̂ =

q

m
~∇Φ · ∂f0

d~v
, (B.10)
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where u.t. stands for the total time derivative along the unperturbed trajectories.

By integrating Eq. (B.10) along the unperturbed trajectories one obtains:

δf̂(~r,~v, t) =
q

m

∫ t

−∞
dt ′ ~∇Φ · ∂f0

d~v

∣∣∣∣
~r ′(t ′),~v ′(t ′),t ′

(B.11)

assuming δf̂(~r,~v,−∞) = 0, which is consistent with the condition of causality.

The unperturbed particle trajectories [~r ′(t ′), ~v ′(t ′)] are defined by:

d~r ′

dt ′
= ~v ′ , (B.12)

d~v ′

dt ′
=

1

m
(q ~v ′ × ~B + ~F ) , (B.13)

with initial conditions:

~r ′(t ′ = t) = ~r , (B.14)

~v ′(t ′ = t) = ~v . (B.15)

These trajectories can be straightforwardly integrated as follows:

~r ′(t ′) = ~r +
1

Ω
M1(t

′ − t) (~v − ~vF ) + ~vF , (B.16)

~v ′(t ′) = M2(t
′ − t)(~v − ~vF ) + ~vF , (B.17)

where

~vF =
~F × ~B

q B2
(B.18)

and the matrices M1 and M2 are defined in the (~ex, ~ey, ~ez) coordinate system by:

M1(t) =


sin(Ωt) 1− cos(Ωt) 0

cos(Ωt)− 1 sin(Ωt) 0

0 0 Ωt

 , (B.19)

M2(t) =


cos(Ωt) sin(Ωt) 0

− sin(Ωt) cos(Ωt) 0

0 0 1

 . (B.20)
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After having made explicit the unperturbed particle trajectories, we now expand the

integrand of Eq. (B.11):

~∇Φ · ∂f0

∂~v
=

i

c2th
[ωT − ~k · ~v] f0 Φ , (B.21)

where

ωT =
T

q B
ky
d lnT

dx

(
K

T
− 3

2

)
(B.22)

= ~k · (−~∇T )× ~B

q B2
E , (B.23)

having defined E(v) = K(v)/T − 3/2. We note that ωT has been expressed in Eq. (B.23)

as a vector relation in order to be replaced later on by the corresponding effective value

in the toroidal system.

Since f0 is a stationary state, i.e. df0/dt
′ = 0, one can write:

d

dt ′
[f0 Φ] =

d

dt ′
[f0 Φ̂ exp i(~k · ~r ′ − ωt ′)] = i(~k · ~v − ω)f0 Φ̂ exp i(~k · ~r ′ − ωt ′) . (B.24)

Using this last relation, the integrand (B.21) of Eq. (B.11) can be express as:

~∇Φ · ∂f0

d~v

∣∣∣∣
~r ′(t ′),~v ′(t ′),t ′

=
1

c2th

[
i(ωT − ω)− d

dt ′

]
f0 Φ . (B.25)

Using this last form, and integrating Eq. (B.11) by parts, δf̂ becomes:

δf̂ = δf exp−i(~k · ~r − ωt)

= −qΦ̂
T

{
1− i(ωT − ω)

∫ t

−∞
dt ′ exp i[~k · (~r ′ − ~r)− ω(t ′ − t)]

}
f0 . (B.26)

The time integral is now evaluated using Eq.(B.16) for ~r ′, and after some algebra can be

written as:

δf̂ = −qΦ̂
T

[
1− (ωT − ω)

∞∑
n,n′=−∞

Jn(kyv⊥
Ω

) Jn′(
kyv⊥

Ω
) ei(n−n′)α

kzv‖ + nΩ + ωF − ω

]
f0 , (B.27)

where ωF = ~k · ~vF , Jn(z) are Bessel functions of the first kind, and v⊥ and α are defined

by:

vx = v⊥ sinα , vy − vF = v⊥ cosα . (B.28)
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Equation (B.27) provides a relation between δf̂ and Φ̂. In order to close the system and

to obtain a dispersion relation for (ky, kz, ω), one invokes quasi-neutrality of the plasma:

∑
j

qj δnj = 0 ⇒
∑

j

qj δn̂j = 0 . (B.29)

Where δn̂j is the amplitude of the perturbed density of species j. In the following we

consider only one kinetic ion species and assume adiabatic electrons. The amplitude of

the linear electron density perturbation is thus given by:

δn̂e = n0
eΦ̂

Te

, (B.30)

and the amplitude of the ion density perturbation is obtained using Eq. (B.27):

δn̂i =

∫
d~v δf̂i

= −n0i
qiΦ̂

Ti

[
1−

∞∑
n,n′=−∞

∫
d~v (ωTi − ω)

f0i

n0i

Jn(kyv⊥
Ωi

) J ′n(kyv⊥
Ωi

) ei(n−n′)α

kzv‖ + nΩi + ωFi − ω

]
.(B.31)

In the limit ω << Ω, only the n = 0 contribution needs to be considered in the sum over

n. The velocity element is express as d~v = dv‖ v⊥ dv⊥ dα, and carrying out the integral

over α, only the n′ = 0 contribution of the exp(−i n′ α) term is non zero, leading to the

following dispersion relation for ω:

1

Zi τ
+ 1−

∫
d~v (ωTi − ω)

f0i

n0i

J2
0 (kyv⊥

Ωi
)

kzv‖ + ωFi − ω
= 0 , (B.32)

where τ = Te/Ti, Zi = qi/e, and with the notation d~v = 2 πdv‖ v⊥ dv⊥.
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