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Abstract

In magnetically confined fusion devices, the energy and particle transport is signifi-
cantly larger than expected from purely collisional processes. This degraded confinement
mostly results from small-scale turbulence and prevents from reaching self-sustained burn-
ing plasma conditions in present day experiments. A better understanding of these nonlin-
ear phenomena is therefore of key importance on the way towards controlled fusion. The
small-scale microinstabilities and associated turbulence are investigated for Tokamak plas-
mas by means of numerical simulations in the frame of the gyrokinetic theory. This model
describes the evolution of the particle distribution functions in phase space together with
self-consistent electromagnetic fields, while neglecting the fast motion associated with the
Larmor orbit of particles around the magnetic field lines.

In the course of this thesis work, substantial modifications to the existing Eulerian
gyrokinetic code GENE have been carried out in collaboration with the Max-Planck-
Institute fiir Plasmaphysik in Garching, Germany. The code has been extended from a
local approximation, which only considers a reduced volume of a fusion plasma, to a global
version which fully includes radial temperature and density profiles as well as radial mag-
netic equilibrium variations. To this end, the gyrokinetic equations have been formulated
for general magnetic geometry, keeping radial variations of equilibrium quantities, and
considering field aligned coordinates, suitable for their numerical implementation. The
numerical treatment of the radial direction has been modified from a Fourier representa-
tion in the local approach to real space in the global code. This has in particular required
to adapt the radial derivatives, the field solver, and to implement a real space dealiasing
scheme for the treatment of the nonlinearity. A heat source was in addition introduced
to allow for steady state global nonlinear simulations.

An important part of this work also focused on the description of the magnetic equi-
librium. A circular concentric flux surface model as well as an interface with an MHD
equilibrium code were implemented. A detailed investigation concerning the s — a model,
previously used in local codes, was also carried out. It was shown that inconsistencies in
this model had resulted in misinterpreted agreement between local and global results at
large p* = ps/a values, with p, the Larmor radius and a the minor radius of the Tokamak.
True convergence between local and global simulations was finally obtained by correct
treatment of the geometry in both cases and considering the appropriate p* — 0 limit in

the latter case.



The new global code was furthermore successfully tested and benchmarked against var-
ious other codes in the adiabatic electron limit in both the linear and nonlinear regime.
A nonlinear p* scan was in addition carried out showing convergence to the local results
in the limit p* — 0 and also providing further insight on previous disagreements between
two other global gyrokinetic codes concerning p* convergence. Linear global simulations
with kinetic electrons have shown consistent behavior with respect to local results.

Using the interface with the MHD equilibrium code, the effects of plasma shaping on
Ion Temperature Gradient (ITG) instabilities were investigated by means of local simu-
lations. A favorable influence of elongation and negative triangularity was observed. It
was shown that these effects could be mostly accounted for by the modifications of the
effective flux-surface averaged temperature gradient. Most importantly, a unique effective
nonlinear critical temperature gradient could be determined for the different considered
elongations and triangularities.

The local code was finally used to investigate particle and energy transport in the
case of TCV discharges presenting an electron Internal Transport Barrier (eITB). It was
shown that at the transition between I'TG and Trapped Electron Mode (TEM) dominated
turbulent regimes, the particle flux goes to zero. Interestingly, this effect could be well
reproduced by a quasi-linear approach where all the different unstable wavenumbers are
considered. The nonlinear simulations also revealed that a minimum of the electron heat
diffusivity is observed at the transition between the TEM and ITG regimes. A strong
dependence of this quantity was also noticed with respect to the density gradient. Quan-
titative comparisons with experimental results have shown that a reasonable agreement
could only be reached in regions where the density gradient is small while the flux tube
simulations seem to overestimate the heat transport if one accounts for gradient values
in the center of the transport barrier. Some first nonlinear global simulations appear to
indicate that finite p* effects could potentially play an important role and thus reduce the

heat diffusivity to realistic values.

Keywords: plasma, tokamak, fusion, turbulence, gyrokinetic, global, shaping, transport
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Version abrégée

Le transport de particules et d’énergie observé dans les machines a confinement magnétique
pour la fusion est bien supérieur a celui attendu en considérant seulement les effets col-
lisionels. Cette dégradation du confinement est le résultat de la turbulence agissant a
petite échelle, qui empéche d’atteindre les conditions nécessaires a une réaction de fusion
auto-entretenue dans les machines expérimentales actuelles. Une meilleure compréhension
de ces phénomenes non-linéaires est par conséquent essentielle en vue d’une maitrise fu-
ture de la fusion comme source d’énergie. Ces microinstabilités, et la turbulence qui
leur est associée, sont étudiées dans les Tokamaks a l'aide de simulations numériques
dans le cadre de la théorie gyrocinétique. Dans ce modele, le plasma est décrit en ter-
mes des fonctions de distributions des particules dans l’espace de phase, ainsi que des
champs électromagnétiques qui leur sont associés, en négligeant le mouvement cyclotron-
ique rapide des particules autour des lignes de champ.

Au cours de cette these, des modifications importantes au code gyrocinétique Eulerien,
GENE, ont été apportées en collaboration avec un groupe du Max-Planck-Institute fiir
Plasmaphysik a Garching en Allemagne. Alors que le code était initialement limité a
une approche locale, ou seul un volume restreint du plasma est considéré, une version
globale a été développée dans laquelle les profils de densité et température, ainsi que
les variations radiales de 1’équilibre magnétique, sont pris en compte. Les équations gy-
rocinétiques ont été reformulées dans ce but, pour une géométrie magnétique générale, en
considérant les variations radiales des quantités d’équilibres, et en utilisant un systeme
de coordonnées alignées avec les lignes de champ. Le traitement de la direction radiale a
par conséquent du étre modifié d’une représentation dans ’espace de Fourier dans le cas
local, a une représentation dans I’espace réel dans le code global. Cette modification a
nécessité d’adapter, entre autres, les dérivées radiales et le calcul des champs, ainsi que
d’introduire une nouvelle méthode d’anti-aliasing dans I’espace réel pour le traitement de
la non-linéarité. Une source de chaleur a également été ajoutée afin de pouvoir effectuer
des simulations non-linéaires dans un état quasi-stationaire.

Une partie importante de ce travail a été également dédiée a la description de 1’équilibre
magnétique. Un modele considérant des surfaces de flux concentriques circulaires a été
introduit ainsi qu’un interface avec un code d’équilibre MHD. Une étude approfondie
d’un autre modele, le modele s — «, utilisé dans plusieurs codes locaux par le passé, a

également été conduite. Cette étude a permis de mettre en évidence des incohérences dans
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ce modele, qui avaient entrainé des conclusions erronnées concernant un accord entre des
codes locaux et globaux pour une valeur élevée de p* = ps/a, a étant le rayon mineur du
Tokamak et ps le rayon de Larmor. La convergence attendue entre simulations locales et
globales a finalement été obtenue en utilisant un traitement correct de la géométrie dans
les deux cas, et en considérant la limite p* — 0 pour les simulations globales.

Le nouveau code global a été testé et comparé avec succes a plusieurs autres codes dans
la limite des électrons adiabatiques, en régimes linéaire et non-linéaire. Une convergence
non-linéaire en p* a en outre été conduite, vérifiant la limite locale pour p* — 0 et perme-
ttant d’apporter un éclairage nouveau sur un précédent désaccord entre deux autres codes
globaux concernant une telle convergence en p*. Des simulations linéaires avec électrons
cinétiques ont finalement montré un bon accord qualitatif avec les résultats locaux.

En utilisant I'interface avec le code MHD, une étude des effets de la forme du plasma sur
les instabilités ITG a été effectuée avec le code local. Un effet favorable de 1’élongation
et de la triangularité négative a été mis en évidence. Il a été également montré que 'effet
principal de la géométrie peut étre interprété en terme d’un gradient effectif, moyenné sur
la surface de flux. Une observation remarquable de cette étude est l'existence d’un gradi-
ent effectif critique unique pour les différentes formes dans les simulations non-linéaires.

Le code local a finalement été utilisé pour modéliser le transport de particules et de chaleur
dans une décharge TCV présentant une barriere de transport électronique (eITB). Il a été
montré qu’au niveau de la transition entre les régimes dominés par les ITG et TEM, le
flux de particules s’annule. Il est intéressant de remarquer qu’un tel comportement peut
étre reproduit au moyen d’'une approche quasi-linéaire dans laquelle tous les différents
modes instables sont pris en compte. Les résultats non-linéaires ont également révélé
I'existence d’un minimum du flux de chaleur électronique a la transition entre les régimes
TEM et ITG. Une grande variabilité de la diffusion de chaleur électronique a également
été observée en fonction du gradient de densité. Des comparaisons avec des résultats
expérimentaux ont montré qu’'un accord entre théorie et expérience est seulement possible
dans les régions de faible gradient de densité alors que les simulations flux-tube semblent
surestimer le transport de chaleur si I'on considere les gradients au centre de la barriere.
Une étude préliminaire au moyen de simulations globales nonlinéaires semble indiquer
que les effets de p* fini pourraient jouer un roéle important et par conséquent permettre

d’obtenir des valeurs de diffusivité plus réalistes.

Mots clefs: plasma, Tokamak, fusion, turbulence, gyrocinétique, global, forme, barriere
de transport
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1 Introduction

Since the industrial revolution, which has seen a transition from traditional economies, es-
sentially based on muscle power, towards more complex systems based on external energy
sources, such as coal and steam power, the world energy consumption has been contin-
uously increasing: it has for instance doubled from 1970 to 2009 [1]. Nowadays most
of human activities heavily rely on fossil fuels, such as oil, gas or coal, which represent
82% of the world energy consumption, while the remaining is divided between renewables
(12%) and nuclear energy (6%). Fossil fuels are not renewable, at least not on a human
time scale, and estimates, based on the actual energy demand trend, show that the known
resources of fossil fuels will be depleted in a time scale ranging from 40 years for oil to
two hundred years for coal [2]. In addition to availability issues, these resources, espe-
cially oil, are not equally distributed geographically, often leading to strong geopolitical
tensions, which will inevitably increase as the resources diminish. Finally, the burning
of fossil fuels is also believed to have a strong impact on our environment through the
resulting C O,y emissions, which, in the scientific community, are widely considered to play
a significant role in the present global warming. These different economic, geopolitical,
and environmental aspects show how important it is for our societies to undertake strong
political commitments to reduce our dependence on oil, gas and coal. This will in par-
ticular require to increase the usage of existing alternative energy sources and envisage a
different way of using energy. In parallel to these efforts, research is being carried out to
investigate the feasibility of a potentially new energy source on earth, in fact the same

energy that fuels the sun, namely the nuclear fusion of light elements.

Among the different possible reactions, the fusion of two hydrogen isotopes, deuterium

(#H) and tritium (3H), has the highest nuclear cross section and is thus considered for
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a future fusion reactor. The products of this reaction are an alpha particle (3H.) and a

neutron:

1H+3H — n+3H, + 17.6MeV . (1.1)

Most of the excess energy (14.1 MeV) is carried as kinetic energy by the neutron and
the remaining (3.5 MeV) by the alpha particle. In a power plant, the fast neutrons will
loose their energy by interaction with a dedicated blanket surrounding the device, and the
resulting heat will then be transfered via a working fluid to a steam turbine to ultimately
produce electricity. The fusion reaction is extremely energetic compared to a chemical
reaction, and one kg of deuterium-tritium fuel could potentially cover the need of one
GW power plant for one day [3]. Deuterium is a stable isotope of hydrogen, with a
natural abundance in earths oceans of 0.015% and can be extracted by enrichment and
distillation processes. Tritium, on the other hand, is radioactive, with a half-life of about
12 years, and is thus not present naturally on earth. It can be produced by neutron
induced fission of lithium, which is a relatively abundant element of the lithosphere. In a
reactor, tritium could be therefore produced in situ, using the neutrons from the fusion
reactions, interacting with lithium integrated to the blanket surrounding the device. Based
on the world’s present total yearly energy consumption, the available deuterium would
allow for several billion years of electricity production, while the limiting factor would
be the availability of lithium in land resources, which could nonetheless still cover the
needs for a few thousand years [3]. Lithium could also be extracted from the oceans,
at a higher cost though, and the reserve would then be enough for several million years.
A major positive aspect of fusion energy is therefore the potential availability of its fuel
with respect to other non-renewable energy sources. Another advantage, compared to
nuclear fission power plants, is that a fusion reaction does not generate long-lived nuclear
by-products. A fusion reactor would not be completely free of nuclear waste, as the high
energy neutrons will activate the first wall of the device. However, an appropriate choice
of low activation materials could result in much more manageable waste on a human time
scale than those produced by existing nuclear fission reactors.

In order to obtain fusion reactions, the positively charged deuterium and tritium nuclei
need to be brought to sufficiently high energies to overcome their electrostatic repulsion,

typically of the order of 100 keV. At these high energies, electrons and their nuclei are



Chapter 1. Introduction

not bound anymore and constitute a gas of charged particles which is called a plasma.
In such a plasma, the fusion reaction rate is highly dependent on the temperature T,
density n, as well as the energy confinement time 75. In order to achieve a self-sustained
fusion reaction, referred to as ignition, where the heat resulting from the alpha particles
is sufficient to maintain the reaction, the triple product of these quantities needs to be

above a certain value, which reads for a deuterium-tritium plasma:
nT1g>5x 10" m > keV s . (1.2)

While in the sun the confinement results from the gravitational forces, two different ap-
proaches are envisioned to reproduce these conditions on earth: inertial and magnetic
confinement. In an inertial fusion device, the plasma is heated and compressed using high
energy beams, generally in the form of lasers. The magnetic confinement approach, on
the other hand, takes advantage of the fact that the charged particles which constitute
the plasma follow trajectories essentially constrained to magnetic field lines. The charged
particles are indeed free to move parallel to the magnetic field, but gyrate in a so-called
Larmor orbit in the direction perpendicular to the field as a result of the Lorentz force.

Among different considered devices for achieving magnetically confined fusion, the Toka-

Toreidal Transfarmer coil
field coil

Blanket Plasma Magnetic

field line

Figure 1.1: Schematic of a Tokamak fusion reactor. Source: Fusion for energy.

mak, on which we shall focus, is the most advanced and studied concept. In this toroidal
device, an axisymmetric magnetic field with both toroidal and poloidal components is
used to confine the charged particles. The toroidal magnetic field is obtained with ex-
ternal coils, while the poloidal component is generated by a toroidal current inside the

plasma, which is itself created by induction with a transformer as illustrated in Fig. 1.1.
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Modeling of microinstabilities

In order to heat the plasma to the required temperature for ignition, about 100 million
degrees Kelvin, several mechanisms may be used, such as ohmic heating from the toroidal

current, Neutral Beam Injection (NBI), and cyclotron resonance heating.

Since its invention in the late 1950s, rapid progress had been achieved in the temperature
and density that could be reached in a Tokamak. It however soon became apparent that
the energy confinement time, essential to reach ignition conditions, was much shorter
than predicted by purely collisional processes, even when so-called neoclassical theory,
which accounts for the toroidal curvature of the magnetic field lines, was considered.
This anomalous energy transport is believed to result primarily from small scale and
low frequency plasma instabilities, referred to as microinstabilities, which are driven by
temperature and density gradients. Among the technical and scientific progress that is
required in the way towards achieving controlled nuclear fusion, the understanding of
microinstabilities and the associated turbulence is a major element, as it directly impacts
the energy confinement time. The study of this so-called microturbulence is the subject

of the present thesis work.

1.1 Modeling of microinstabilities

The term microinstability refers to a large variety of destabilizing mechanisms which
arise from the different dynamics of electrons and ions in an inhomogeneous magnetized
plasma. For typical Tokamak plasma parameters, among the dominant unstable modes
are the toroidal-Ion Temperature Gradient (ITG) and Trapped Electron Modes (TEM).
The toroidal-ITG mode, first identified by Horton and Tang in 1981 [4], is an interchange-
type instability which results from the combined effect of an ion temperature gradient
and the unfavorable curvature of the magnetic field on the low field side (outer edge)
of the plasma. In a Tokamak, the helical structure of the magnetic field allows for the
existence of magnetic mirrors, where particles with a low parallel velocity compared to
the transverse one become trapped. The TEM instability [5] is driven unstable by the
combined effect of the toroidal precessional drift of the trapped electrons and the electron

pressure gradient. A detailed review of ITG modes and TEMs can be found in Ref. [6].
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Chapter 1. Introduction

In addition to these main instabilities, one should also mention the Electron Temperature
Gradient (ETG) modes, driven by an electron temperature gradient, which are the coun-
terpart of ITG instabilities at electron scales [7]. Finally, in the high § limit (§ measures
the ratio between plasma and magnetic pressure), electromagnetic modes, the so-called

kinetic ballooning modes (KBM) can be driven unstable [§].

Although some basic understanding of microinstabilities can be obtained with a fluid
approach, an accurate treatment of these modes requires a full kinetic model describ-
ing the evolution of each electron and ion particle species in phase space. In the last two
decades, these instabilities and associated turbulence have been actively studied by means
of numerical simulations in the frame of the so-called gyrokinetic theory, in which the tra-
jectories of particles are averaged over the fast cyclotron rotation around the magnetic
field, thus dropping the information on the gyro-phase and reducing the phase space from
six to five dimensions. A wide variety of codes have been developed to tackle this problem
and among the different physical limits that have been considered, we shall distinguish the
local and global approaches. In the local treatment, the so-called flux-tube approach [9],
only a reduced simulation domain corresponding to a narrow plasma volume aligned with
the magnetic field lines is considered and the radial variations of macroscopic quantities
such as the density and temperature as well as magnetic field are neglected. The main
advantage of this approach is that it can considerably reduce the computational power
required to carry out a simulation in comparison to a global code, which models the full
torus, and significant contributions to the understanding of microinstabilities have been
possible thanks to this approximation. In some cases however, when the characteristic
size of the turbulence is not negligible with respect to the machine size, such as in a
small device, or with respect to a characteristic profile gradient length, such as found in
so-called transport barriers, a global approach may be necessary.

Considering the numerical methods, three main different approaches have been used to
carry out gyrokinetic simulations. In the Eulerian scheme [10, 11, 12, 13, 14], which shall
be considered in this work, the gyrokinetic equation is first discretized on a fixed grid in
phase space and the so-obtained system of ordinary differential equations (ODEs) for the

time evolution of the discretized particle distribution function is then numerically inte-
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Contribution of this thesis

grated. The Particle In Cell (PIC) method [15, 16, 17, 18, 19, 20, 21], on the other hand,
is based on a Lagrangian description. In this case, the plasma is described by a statistical
sampling of "markers” in phase space and the method then consists in following their
trajectories. A third method, the so-called semi-Lagrangian scheme [22, 23, 24, 25, 26],
can be seen as a hybrid method between the Eulerian and PIC approaches. At each time
step, the particle distribution function is represented on a fixed grid in phase space, i.e.
an Fulerian description. The distribution is however updated to the next time step by
integrating the trajectories backward in time, starting from each phase space grid point,
and invoking the invariance of the distribution along these characteristics. All these dif-
ferent schemes have their particular advantages and drawbacks. The Eulerian approach,
for instance, is usually computationally more demanding than the PIC method, while
it does not suffer from statistical sampling noise problems faced by the Lagrangian-PIC
method. Since direct comparison with experiment is often not possible, the existence of
such a variety of codes and methods represents a great opportunity, as cross comparisons
and benchmarks enable to increase confidence in simulation results, and provide useful
information to further understand the importance of the different considered approxima-

tions.

1.2 Contribution of this thesis

One of the main goals of this thesis was the extension of the local Eulerian code GENE
[12, 27] to a global version, in collaboration with the group of Prof. F. Jenko at the Max-
Plank-Institut fiir Plasmaphysik (IPP) in Garching, Germany [28]. This has in particular
required to replace the original Fourier representation used in the radial direction with
a real space treatment, and therefore to modify substantial parts of the code. With re-
spect to the development of the GENE code, the present work has mostly focused on the
implementation of the nonlinear E x B term in the gyrokinetic equation, the extension
of the magnetic equilibrium models, and an alternative scheme for the treatment of the
gyro-averaging operator. A Krook-type heat source was also introduced in the global code
to allow for quasi-steady state nonlinear simulations. In addition to this implementation

effort, numerous benchmarks and tests were carried out to validate the newly developed
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Chapter 1. Introduction

code, representing a significant part of this thesis work.

The TCV Tokamak, which is located at the Centre de Recherches en Physique des Plas-
mas (CRPP), is a device with minor and major radius 0.24 m and 0.88 m respectively,
toroidal magnetic field on axis 1.4 T and plasma current 1.2 MA, which has the particu-
larity of being very flexible in obtaining various shapes for the plasma. Some experimental
results from this machine [29, 30, 31, 32, 33] and other devices [34, 35] have shown the
beneficial effect of elongation and triangularity on confinement. In order to investigate the
effects of shaping on microturbulence, an interface with the equilibrium code CHEASE
[36] was developed. By comparing gyrokinetic results obtained both with this interface
and the so-called s — a analytical equilibrium model [37], inconsistencies in the standard
implementation of the latter were at first pointed out. The implementation of a corrected
analytical model, referred to as the ”ad-hoc” model, has shown that these inconsistencies
can be removed. The MHD interface was then finally used to address the effect of elon-
gation and triangularity on ITG modes using the local code.

Another specificity of the TCV Tokamak are its powerful and flexible Electron Cyclotron
Heating (ECH) sources, which make it particularly suited for the investigation of experi-
mental electron Internal Transport Barriers (eITBs) scenarios [38, 39]. The local version
of the GENE code was used to address the issue of particle and heat transport for both
electrons and different ion species in the case of realistic el TBs parameters, and compar-
ison with experimental measurement were discussed. One other main goal was also to
compare these local results with global simulations. As a consequence of constraints in
computational power and of some remaining issues with nonlinear global simulations when
considering both kinetic electrons and ions, quantitative comparisons using the experimen-
tal parameters were however not possible during this work. A qualitative comparison was

nevertheless carried out for reduced parameters, still relevant for the TCV Tokamak.

1.3 Outline

The present work is structured as follows. In Chapter 2, the key elements of the deriva-
tion of the gyrokinetic equation and associated field equations are given. These equations
are then expressed in a field aligned coordinate system considering a general magnetic

geometry. In accordance with the global approach, all radial variations of equilibrium
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quantities are at first retained, the local limit being taken and discussed subsequently.
The numerical implementation of the GENE code is then presented in Chapter 3, and the
various modifications required when extending the code from a local to a global version
are addressed. In particular, the new gyro-averaging operator, as well as a real space
dealiasing scheme which is used when dealing with the Ex B nonlinearity are discussed.
Finally, a Krook-type heat source is presented.

Chapter 4 is dedicated to the description of different magnetic equilibrium models which
have been implemented in the code. These include an interface with the MHD equilibrium
code CHEASE and the "ad-hoc” circular concentric flux surface model. These two models
are valid for both the local and global versions of the code, and a comparison is finally
provided with results obtained using the local s — a equilibrium model.

In Chapter 5, various validations and benchmarks of the newly developed global version
of GENE are presented. A nonlinear p* scan is in addition carried out showing the im-
portance of global effects on ITG turbulence in small to middle size devices.

Using the interface with the MHD equilibrium code, the influence of plasma elongation
and triangularity on I'TG instabilities is investigated in Chapter 6 by means of local linear
and nonlinear simulations. In particular, these shaping effects are interpreted in terms of
effective flux-surface averaged ion temperature gradient.

In Chapter 7, linear and nonlinear local simulations are carried out with the aim of an-
alyzing a TCV discharge presenting an electron internal transport barrier. Inspired by a
previous quasi-linear study [40], ion temperature gradient values for which the electron
particle flux goes to zero are identified. For such particular gradient values, the electron
heat diffusivity is then compared with experimental results. Some quantitative compar-
isons with quasi-linear estimates of the particle flux are also provided. After investigating
the sensitivity of the nonlinear heat diffusivity with respect to some key parameters, an
estimate of global effects for a relevant p* value is finally given using reduced physical
parameters.

Conclusions are finally drawn in Chapter 8.

Two appendices are also present at the end of the thesis. In Appendix A, we provide some
informations concerning the CHEASE interface, while a description of a local dispersion

equation, used in Chap. 6, is given in Appendix B.



2 Physical model

2.1 Gyrokinetic theory

Particle and heat transport observed in magnetically confined fusion devices are usually
orders of magnitude larger than those predicted by neoclassical transport theory, which
considers purely collisional processes. This so-called anomalous transport is believed to
result primarily from small-scale fluctuations, referred to as microturbulence, which is
driven by temperature and density gradients. For typical fusion relevant plasmas, the
frequency of the microinstabilities underlying microturbulence is much larger than the
collision frequency and kinetic effects thus need to be retained. Although so-called gyro-
fluid models have been developed [41] in order to account for kinetic corrections in fluid-like
descriptions, providing useful results, the most straightforward and accurate approach
consists in a fully kinetic representation, which describes the evolution of the particle
distribution function in phase space. For each particle species, j, the time evolution of
the associated distribution function f;(¢, %, ¥) is described by the Vlasov equation:

%y O %%i:o (2.1)
where F’j(t, Z,0) =g [E(t, x) 47U X E(t, ©)] is the Lorentz force. The operator d/dt stands
for the total time derivative along particle trajectories. Equation (2.1) thus states that
the distributions f; remain invariant along particle orbits in phase space. The Vlasov
equation is coupled with Maxwell’s equations for computing the self-consistent electric
and magnetic fields E and B. This would in principle require to solve a nonlinear prob-
lem in the 6-dimensional phase space (Z, ¥), with different spatial and time scales varying
by several orders of magnitude: from the Debye length to the machine size (~ 5 orders

of magnitude) and from the cyclotron frequencies to transport time scales (~ 11 orders

9



Gyrokinetic theory

of magnitude). Such problem resolution would be out of the scope for today’s computers,
and it is therefore necessary to introduce a set of approximations to retain only spatial and

time scales relevant for the physical phenomena considered here, namely microturbulence.

In Tokamak plasmas, microinstabilities are drift-type waves, characterized by a highly
anisotropic wave vector spectrum. The wavelength parallel to the magnetic field is in-
deed much larger than the perpendicular wavelength (k, > k), leading to a quasi-two-
dimensional turbulence in configuration space. From experimental measurements, the per-
pendicular component of the wave vector in core plasmas is of order &k p; ~ 0.4 [42], where
pi = vpi/S% =~ 4 x 1073 m is the ion Larmor radius, vp; = \/m ~ 98 x 10° ms*
the thermal velocity, Q; = ¢; B/m; ~ 2.4 x 10%s~! the cyclotron frequency, and having
considered deuterium ions, a typical magnetic field B = 5 Tesla, and an ion temperature
T; = 10 keV. The characteristic frequency of these fluctuations is of the order of the
diamagnetic frequency w* = k| vp; ~ 2 x 10° 571, where the ion diamagnetic velocity is
vpi = (T;/q; B) |V 1 1In By|, with vp; ~ 2 x 10* m s~! for a characteristic inverse gradient
length L' = |[VInP;| = 1 m~". The microinstability frequencies are therefore much
smaller than the cyclotron frequency w*/€2; ~ 1073 < 1, and a time scale separation
between the fast gyromotion of the particles around a magnetic field line and the slower
characteristic time of microinstabilities can therefore be considered. Finally, the relative
fluctuation levels of the microturbulence in the core of the plasma are small compared to
the background equilibrium, typically dn/n ~ 1072, where dn stands for the amplitude of
the density perturbation.

The key idea of gyrokinetic theory is to "average out” the particle gyro-motion from the
Vlasov equation, thus leading to a reduced 5-dimensional problem and eliminating the
high frequency cyclotron time-scale. In this picture, only the information on the guiding
center motion of each particle is retained, together with its finite size Larmor radius,
whereas the phase of the particle on its gyro-orbit is not resolved. From the different

physical quantities described above, the following gyrokinetic ordering is considered:

T. = B L, Lg

£ & |68 : :
N%Neé N‘(S |NP1N/01N67 (22)

“
Q;
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Chapter 2. Physical model

and

kipi~1, kjpi~e, (2.3)

where € is a small dimensionless parameter, df, d®, |5§ | are respectively the fluctuating
component of the distribution function, electrostatic potential, and magnetic field, while
L, is the characteristic gradient length of equilibrium density and temperature profiles,
and Lp the characteristic gradient length of the magnetic field. The typical order of the
gradient lengths are L, ~ a and Lp ~ R, where a and R are respectively the minor
and major radii of the tokamak, with the inverse aspect ratio of order a/R ~ 0.2 — 0.4 in
most experiments. In the gyrokinetic ordering, the electromagnetic fluctuations (5@, |65))

thus represent small perturbations to the particle trajectories in the background magnetic

field B.

The nonlinear gyrokinetic equations were first derived in the 1980’s by Frieman and Chen
[43] using an ordering expansion in the small parameter €. A more systematic approach to
derive such equations based on the Lie transform method consists in introducing a series
of appropriate phase-space coordinate transforms such that the equations of motion for
the particle’s guiding center become independent of the gyro-angle at the desired order
in the small parameter e¢. The Lie perturbation method was first applied to guiding
center theory by Littlejohn [44] and applied to the derivation of the nonlinear gyrokinetic
equation considering electrostatic perturbations in Ref. [45] as well as electromagnetic
perturbations in Ref. [46]. A recent review of gyrokinetic theory can be found in the

paper by Brizard and Hahm [47].

2.2 The phase space Lagrangian in gyrocenter

coordinates

In this section, a brief description of the guiding center equation derivation based on
the Lie transform method is given.

We shall first review, following Refs. [44, 48], how one can obtain the equations of motion

11



The phase space Lagrangian in gyrocenter coordinates

for a Hamiltonian system in an arbitrary coordinate system using the variational principle:

6/£dt:0, (2.4)

where L(t,z, 2) is the so-called phase space Lagrangian. Note that the phase space La-
grangian is obtained from the Lagrangian L(q,p,t) = p- g—H (¢, p,t) expressed in canon-
ical variables (¢, p), H(q,p,t) being the system’s Hamiltonian, after an arbitrary change
of variables z = z(q, p). The advantage of the variational principle approach is its validity
for any given choice of phase space variables, in particular for non-canonical variables. By

introducing the so-called Poincaré-Cartan one-form ~ (sum over indices are implicit):
v =",d" = Ldt, (2.5)
where z# = (z,t), the variational principle (2.4) reads

5/ Yudzt =0, (2.6)

which leads to the generalized Euler-Lagrange equations of motion:

dz" ) oy, 0Oy
e 0, with wy, = Fie 825 .

(2.7)

The integrand can then be written in any new coordinate system Z* using the relation:

0z

dzr

Y d2t =y ——dZ" =T, dZ" . (2.8)

The equations of motion in the new coordinates are then again obtained by using the

generalized Euler-Lagrange equations (derived this time from ¢ [ ', dZ* = 0):

dzv or, ar,
W:O, where now wW:@_dZV .

(2.9)

Wy

In the following, we will also make use of the property that the variational principle and
thus the equations of motions remain invariant under a phase space gauge transformation
of the one-form ~:

v — 44dS, (2.10)

where dS is the exact differential of a scalar function S = S(z#), called phase space gauge

function.
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Chapter 2. Physical model

The goal of gyrokinetic theory is thus to correctly define the guiding center of the particle
through an appropriate coordinate transformation of the original particle variables (&, ¥/) in
the phase space Lagrangian frame work, such that the corresponding equations of motion
are independent of the fast varying generalized gyro-angle (the gyro-angle may itself get
modified by the transformation). In other words, the generalized gyro-angle becomes a
cyclic variable. Through this process, the fast varying gyro-rotation thus gets separated
from the so-defined slow varying guiding center motion. This is achieved systematically to
increasing orders in the small parameter ¢, introduced in section 2.1, thanks to successive
combination of phase space coordinate changes based on Lie transforms and phase space

gauge transformations.

We shall now start the description of the actual derivation by writing the one-form ~ of

a charged particle in an electromagnetic field:

1
v o= Edt:{ﬁ-ﬁ—[émv2+q®(f,t)]}dt

- [me— q/f(f,t)] i — Emzﬂ—l—q@(f,t)} dt, (2.11)

having used the relation p'= m ¢ + q/f(f, t) for the canonical momentum. Assuming no

equilibrium background electrostatic field, the electromagnetic potential fields (®, A) can

be written:

— —

A(Z 1) = Ag(Z,t) + A1 (Z,t) and  B(Z,t) = By(Z,1) ,

with the background magnetic field being given by By =V x Ay and (dq, ffl) represent-
ing the electromagnetic fluctuations. The one-form can be similarly separated into an

equilibrium and a perturbation part, v = v + 71, with:

- 1
Y = [m27+qA0(:E)]-df—§mvzdt, (2.12)

v = qA (T, ) dT — q Py (Z, 1) dt . (2.13)

In order to remove from the unperturbed one-form =, the fast gyromotion time scale
associated with the background magnetic field, a first transformation to guiding-center
coordinates Z, = (Xg, Vg1 Mgs @) is introduced, where Xg is the guiding center position,

Vg = U~ by the velocity along the magnetic field, fy = (mvig) /(2 By) the magnetic

13
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Particle
trajectory

q>0

Guiding
center
trajectory

Tl

Figure 2.1: Guiding center trajectory in a magnetized plasma (left), and projection of the
particle motion in the plane perpendicular to the magnetic field (right).

moment with v, ; = v — v 4 - 50, and EO = Eo /By the local unitary vector parallel to
the unperturbed magnetic field. Assuming that the background magnetic field varies
slowly over the Larmor radius (e ~ p;/Lp < 1), the motion of the particle in the plane
perpendicular to the magnetic field line is circular to lowest order in €. The coordinate

transformation from particle variables (Z, ¥) to guiding center variables Z, is defined by:

— 'y — . — UJ_,g — — T —
T=X,+7, with p=—=—d(ay), and U=wgby+v1,4C(ag), (2.14)
Q(X,
where d(a,) = cosaye; + sina, ey and (o) = —sino,e; + cos o, €y are unit vectors

in respectively the radial and tangential directions to the gyro-circle, expressed in the
right-handed local Cartesian coordinate system (€, €5, 50), as illustrated in Fig. 2.1, and
ay is the gyro-angle. Up to first order in €, the unperturbed one-form in guiding center

coordinates Z, reads:
Log = |muybo(X,) + qu(Xg)] -dX, + E g dog — 5 mvﬁ’g + g Bo(X,) | dt . (2.15)

after an appropriate gauge transformation I'g, — ', + dS. One notices that after this
process, all gyro-angle dependance has been removed from I'y 4, so that a, is indeed a
cyclic variable. The associated canonical momentum appears as the magnetic moment
ftg, and is thus an invariant of motion of the unperturbed trajectories. We furthermore

express here the phase space jacobian J; of the transformation from particle variables
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Chapter 2. Physical model

(%, 7) to guiding center variables Z,:
o(Z, 7) o(z,v)| |0(F,p) 1 . ol
= | = ’ | = — [det(w;)]V? = —4 2.1
Ja ‘ 0Z, ’a(f,ﬁ) 0Z, m3[ et(wo,i)] m; (2.16)

where the matrix elements wy;; are defined in Eq. (2.9), for (i,7) such that Z%, 77 €
()Z'g,vwg,ug,ag). In addition, one defines By, = ]§§ - by, with é(’; =V x A’g = By +
(m/q) v||7gﬁ x by, i.e. Ay = Ay+ (m/q) Vg bo.

Let us now carry on by considering the perturbed system. The perturbation contribution

I'y 4 to the one-form in guiding center coordinates Z, reads to order e:

5 o, - 1 . mvl()?) .
r = qA (X, +pt) [ dX, + ———=—d(oyg) dig + ——=2 ¢lay) da
Lg 1(Xy ) g qu (X)) (arg) dpug ¢ Bo(X () day
—q® (X, + 7 t)dt . (2.17)

In these coordinates, I'; , is clearly a function of the fast varying gyro-angle ay. Its
gyro-angle dependence cannot be removed by means of a gauge transformation alone and
a further change of coordinates, using Lie transformations, to the so-called gyrocenter
coordinates Z = ()Z V||, |4, @) is thus introduced. The Lie transforms are continuous, near

identity, coordinate transformations in phase space:

Zy— Z(Zye) =T Z

g

(2.18)

where € is a small ordering parameter and with Z(Z,,0) = Z,. In the following derivation,
the small parameter ¢ measures the relative fluctuation level, see Eq. (2.2). The Lie

transform can formally be expressed as
T = exp(—el) , (2.19)

where L is the Lie derivative operator, which acts respectively on a scalar F, as:

OF,
LF,=q" 2~ 2.2
and on a one-form I'y =T’y , dZ! as:
or or
LT, =¢" | =2 -2 . 2.21

where p and v run over all indices of the extended phase space (Z,,t) and sums over v are
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implicit. The Lie transformation is characterized by the so-called generators g/ defined

by:

0z"
v o__ g
¢ =222, (2.22)

A general expression for the transformation of the one-form I'; resulting from (2.17)

including a gauge transformation, is given by:
=Tr,+ds, (2.23)

where S denotes a gauge scalar field and the operator 7" stands for an overall transform,

composed of individual Lie Transforms
T:"'Tg'TQ'Tl, (224)

where the transform 7), enables to carry out the n'" order accurate derivation of the
gyrocenter coordinate transform in the small parameter €, and can be expressed as T}, =
exp —€"L,. Expanding I'y, I', S and T in terms of the small parameter €, the one-form

can be finally written I' = 'y + 'y 4 ..., with:

FQ == Fgg + dS() 5 (225)

Fl - Fgl - L1Fg0 + dSl . (226)

The key idea of this perturbative approach consists, at each order in €, to specify the
generators and phase-space gauge term so as to remove all gyro-angle dependences from
I'. A detailed derivation of the one-form in gyrocenter coordinates to first order in € can

be found in Ref. [49]. One obtains for the generators:

g =0, (2.27)
. 5 by B 18S, 1= b

gX = A x Bg‘” - ng avﬁ qul Bg‘” : (2.28)

gl = %%l - <q/:fl +ﬁsl> , (2.29)
g = q%ofﬁ e+ %%, (2.30)
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1
g o= -9 (_Al.@'_|_%) 7 (2.31)

—_—~—

1 « ~ — = _'* = —
Sy = —/ (q@l + ——(bo X A\) pVBy — quim- - Ay — qui Ay -(?) da’ . (2.32)
I

In the above relations, the notation F(X, u, o) = F(X + p) — F(X, j) is used, where F

denotes the gyro-averaging of a given quantity F, defined as:

_ 1 S S
FEa) = 5 §FE AT pa)da (2.33)
With this choice for the generators and scalar gauge, the perturbed one-form in gyro-center

coordinates Z =T"! Z, = ()2, v, b, ) finally reads to order e:

Ldt=T = T'y+1

= (mUH 50+qffo—|—qfll|| 50) -d)z—i-%,udoz

1 _ _
S vi 4+ q @1+ 1 (By+ Byy)| dt (2.34)

which is indeed such that the transformed gyro-angle « is cyclic, despite the presence of
fluctuating fields. Note that in the following, only transverse magnetic fluctuations related
to Ay shall be considered, while the parallel magnetic fluctuations By will be neglected.
The operator T}, called the pull-back operator, also enables to transform the particle
distribution expressed in gyrocenter variables f(Z) to the particle distribution in guiding

center variables f,(Z,)":

fo(Zg) = (T f)(Zy). (2.35)

Using Eqgs (2.20), (2.24) and (2.27)-(2.31), one obtains to first order in € for the fluctuating

contribution to the distribution function:

1 0 fo; AW = 0 fo;
Jor; = Jij + E) {(anT”j - ija—l;) Ay +q;Py a—l;] ) (2.36)

where a splitting of the distribution function into a background and perturbation contri-

!Concerning the notation, the character f stands for the distribution function in the original particle
variables (&,7), fy for the distribution function in guiding-center variables Z,, and f for the distri-
bution in gyrocenter variables Z. It should be emphasized that f, f; and f all represent the same
physical quantity: the particle distribution.
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bution, f; = fo; + f1;, have been considered. Relation (2.36) shall be used later on, when
evaluating quantities such as the density or current density at the particle position, as

described in section 2.7.

2.3 The gyrokinetic equations

Invoking the invariance of the distribution function along the phase space trajectories,
Eq. (2.1), it is straightforward to write the Vlasov equation in gyrocenter coordinates:

%_%—FX; afj_|_ fj+‘%+d%

= =0. 2.
dt ot 0X |8U|| u@u oo 0 (2:37)

The required equations of motion for the gyrocenter variables can be evaluated from
the one-form (2.34) using the generalized Euler-Lagrange equations (2.9). Noticing that
V x (A1||I;0) ~ ﬁAlH x by + O(€) one obtains to first order in e:

5 By
X = UG = UH bo + B (ﬁE + 17VB + 170) s (238)
ofl
. 1 o _,
vy o= - e - (q; Vér + q;bo Ay + uVBy) (2.39)
m; v
po= 0, (2.40)
. 0P, DAy
- Q 0 2.41
@ + = ( an o (2.41)

with ¥ the generalized E x B drift velocity

Vv x B
Ty = —% , (2.42)
0

where y; is the gyroaveraged modified potential:
X1 = (i)l — U”/_ll” . (243)
The grad-B drift velocity is given by
I e
VUVB = —(—— BO X VBQ s (244)
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and the curvature drift velocity by

vio, L vi oL B
UC:Q—<V><bO>L:'UO ” boxV(po—l——O), (2.45)

J
having made use of the MHD equilibrium force balance relation ﬁpo = j’o X EO and
Ampere’s law A% B% = g fo :

To obtain the desired gyrokinetic equation, one still needs to apply the gyro-averaging
operator (2.33) to Eq. (2.37). As « is a cyclic variable, all operators acting on the distri-
bution f; in Eq. (2.37) commute with the gyro-averaging operator (2.33), except for the
term & 0f/Oa which average out to zero (as f; is 2m-periodic with respect to «). One
thus obtains the so-called gyrokinetic equation:

af; af;

0J; + Xy

—0, 9.46
ot 0X l 81;” ( )

having made used of Eq. (2.40). Finally, inserting Eqs. (2.38) and (2.39), the gyrokinetic

equation becomes:

af; ~ By, .
_vJ b "
825 + U” 0+BS”(UE+UVB+U)
: [6fj ! <QJ V¢1 +qj Do A1|| + ,uVBo> fj} =0, (2.47)
m;o| v

having identified, notation-wise, the gyro-averaged distribution f] to f;.
As already stated, the full distribution function f; is separated into a static background

distribution fy;, representing the equilibrium state, and a fluctuating part fi;:

fi=foj + fij (2.48)

where the perturbed part is assumed to remain much smaller than the static part, f1;/fo; ~
e. The background distribution fy; # fo;(¢) is assumed to be a stationary solution to the

unperturbed gyrokinetic equation:

dfo;
it |,

By
UHbO + B*H
0

(ﬁVB + UC)

= 1 - afoj .
(Vf()] mu| ,UVB() aUH ) =0. (249)
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The collision operator

where d/dt|,,. stands for the total time derivative along the unperturbed trajectories.

The quantities:

O . . L Ofns
guzflj_q_],AlH Jo and Uj=Vhj- LV, o

, (2.50)
mj Oy m;v| v

are now introduced and should not be confused with the Lie generators and one-form

considered in the previous section. Keeping only the ¢ nonlinearity (x U - v fi1;), and

dropping the so-called parallel non-linearity (o v - Vo, 0 f1j/0v, which can be neglected
according to Ref. [50]), the gyrokinetic equation finally reads:

991 B(_(

—

= = Ofo; B
V foj — o VB, fOJ)*F 0(5E+17VB+77C)'F]'

—"_ * UE ' *
ot BOH m;o) 81)” BOH
TR [l N By = 0/
+ U”bo'r'—— b0—|— " Ve VBQ—:O (251)
Tomy v By v

2.4 The collision operator

As mentioned previously, the typical particle collision frequency in a hot, low density
plasma, as found in a magnetic fusion reactor, is much smaller than the characteristic fre-
quencies of microinstabilities. The gyrokinetic equation (2.51) was thus derived assuming
a collisionless plasma. In this description, the interaction between particles only occurs
through the macroscopic electromagnetic fields which result from collective processes. In
some cases however, direct binary interactions between particles may play a sub-dominant
but nonetheless significant role, and are introduced in the model through the so-called
Landau collision operator C; written in particle variables (Z,?) as:

0 0 ~
Ci(£;) = > Ciplf,5,)=>_ % <Djj/ i Rjj’) £, (2.52)
I

y/

J

where C} ; represents collisions of species j with distribution £, on species j’ with distri-
bution f;. The collision operator (2.52) appears as a correction term on the right hand
side of the Vlasov equation (2.1), leading to the so-called Fokker-Planck equation. Note
that in the variables (7, ¢) the Landau operator is an advection-diffusion operator local to

velocity space. The quantities D; ; and éj jin Eq. (2.52) respectively denote the diffusion
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tensor and friction force:

i Gy 5 27,5 OHy
D, — d R, — 213" Z775"
I grar M Y T g o

(2.53)

with 7, = ¢3 ¢3/(87€5) InA, In A being the Coulomb logarithm, and ¢ the vacuum
permittivity. The terms G and Hj are the so-called Rosenbluth potentials, function of
f

Gy :/ dv' £y u, and Hj :/ dv' £ % , (2.54)

with u = |t/ — ¥’|. Considering the decomposition f; = fy; + f1;, and noticing that C}; ; is

bilinear in its arguments f; and f;/, the collision operator can be linearized as follows:

Cii(fis fir) = Cipfogs fogr) + Cjy(fujs fojr) + Cjjo(fojs frjr) + Ci o (fug, frgr)
C i (f13 Jogr) + Cjie (fogs fre) - (2.55)

12

In the first line of relation (2.55), the term Cj j/( fo;, fo;7) describes the relaxation of the
background distribution functions which occurs at much larger (transport) time scales
than the characteristic time of microturbulence and is thus not considered. The neglected
nonlinear contribution C; j(f1;, fi;) represents the scattering between the two perturba-
tion components of the distribution functions and is therefore a term of order €? in the
gyrokinetic ordering. In the final considered model, the term C; j/( f1;, fo;:), which repre-
sents collisions of fi; on fy;» and is a second order differential operator on fi; [see Eq. (2.52],
is treated exactly, while the back-reaction term C; ;( fo;, f1j-), which is an integral opera-
tor on fy;/, is replaced by a reduced model for practical reasons of implementation. The
approximate form for C;/(fo;, f1j) nonetheless preserves the conservation properties of
the linearized collision operator, i.e. conservation of mass, momentum and energy.

In order to introduce consistently this linearized collision operator in the gyrokinetic equa-
tion (2.51), the gyro-angle dependence is finally removed by applying the gyroaveraging
operator (2.33). The resulting gyroaveraged operator

Cilfy) =D Ciz(figs for) + Y Ciyr(fugs forr) (2.56)

is then added to the right hand side of the gyrokinetic equation (2.51). Note that the

collision operator, which is a purely velocity space advection-diffusion operator in the
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particle variables (Z, ¥) becomes a mixed operator in configuration and velocity space in
gyrocenter variables.

The intent of this section was to give a brief overview of the collision operator that may be
considered in the model, and the reader is invited to consult Ref. [51] for a more detailed
description. In the following, the different equations will however be further derived in

the collisionless limit.

2.5 The gyrokinetic equations in field-aligned coordinates

2.5.1 The field aligned coordinates (z,y, z)

As already discussed, microturbulence tends to have much longer wavelengths parallel
than perpendicular to the equilibrium magnetic field (k; > k). One can therefore signif-
icantly decrease the computational cost by using a field-aligned coordinate system which
reflects this property. Although such a coordinate system can be defined for any type of
magnetic equilibrium, as described for example in [52], only axisymmetric equilibria, as
found in Tokamak devices (see Chap. 4), are considered in the present work.

In an axisymmetric system, one can define a straight field line coordinate system (W, x, ¢),
see Fig. 2.2, where W is the poloidal flux function, ¢ is the toroidal angle and  is a poloidal

like angle, defined as L
d¢| _ By-V¢ _
dX Bo g() . 6){

q(¥) , (2.57)

so that the field lines are straight in the (x, ¢) plane at constant W. The safety factor
q = q(V) represents the number of toroidal revolutions of a given field line to complete
one poloidal revolution. In this coordinate system, the magnetic field can be expressed as
[53]:

By=VU xV(gx —¢) . (2.58)

The field-aligned coordinate system (z,y, z) is then defined by the following transforma-
tion:

t=C,(V)—20, y=Cy(gx —¢) —yo and =z =y, (2.59)
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z=X

Figure 2.2: Left: Constant ¥ and y in the poloidal plane for a circular equilibrium, ¢ is
the toroidal angle; Right: Illustration of the field aligned coordinate system

(x,y, 2).
so that the background magnetic field (2.58) can be written:

By =C(z)Vz x Vy, (2.60)

having defined the radially dependant quantity C(z) = (%\I@ C,)~*. We note in addition
that the factor C,(¥) and normalization constant C, are chosen so that x and y take
units of length. The directions Vz and ﬁy are perpendicular to the magnetic field, with
x a radial like coordinate and y the binormal coordinate labeling the magnetic lines on
a given magnetic surface (see Fig. 2.2). The center of the simulation domain is defined
by (zo,y0), where in general z is taken as xy = C,(Vy) with ¥, the poloidal flux at the
center of the domain, yy can be chosen arbitrarily due to the axisymmetry of the magnetic
equilibrium. One finally defines z = , which, for given x and y coordinates determines
the position along the corresponding magnetic line. The coordinate z will thus be referred
to as the parallel coordinate.

A more detailed discussion on different Tokamak equilibrium models is provided in Chap-

ter 4.

2.5.2 The gyrokinetic equation in (z,y, z) coordinates
In order to evaluate Eq. (2.51) in the (x,y, z) coordinates, the quantities

ByxVF-V and By-V, (2.61)
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where F is any scalar field, need to be derived.

Using relation (2.60), one has (sums over indices are implicit):

ByxVF-V = C(ﬁxxﬁy)xﬁ]—"-@
= C [(ﬁ]—" Va)Vy — (VF- ﬁy)ﬁx] -V
= C [(@-.73 Vu' - Va)Vy — (8, F Vu' - ﬁy)ﬁx] -V
= C [g“ﬁy — ¢¥Vz| O, F - Vi,

= Clg"g” — g*g")aiF 0; ,

with ¢¥ = Vu' - Vu/ the metric tensor elements and v’ = (z,y, 2).

—

By-V = C(Vz x Vy)- Vi,

= C(Vax Vy)-Vz0.

- o
where J™* = [(ﬁx x Vy) - Vz B is the Jacobian of the (z,y, z) coordinate system.
Before writing in detail the different terms of the gyrokinetic equation in the (x,y, z) coor-
dinates, some further simplifications are introduced. Using the fact that microinstabilities
tend to align with the magnetic field, |k)| < |k1|, 0/0%z derivatives of perturbed quantities
are neglected with respect to 9/9z and 9/dy derivatives®. In addition, one notes that as
a result of the axisymmetry of the equilibrium, all background quantities are independent

of y, so that all y-derivatives of such quantities vanish.

With the above-mentioned approximations, the different terms of the gyrokinetic equation

read:
L e C _ _ _
Ug - Vify ~ ?(7262]6(” Ox X1 — Y1 03 fo; Oy X1 + 730 fo; Oy X1) ,
0
— — C — — —
UE'VBO ~ ﬁ(%&ng&B}(l—718$Boﬁyxl+738ZBoﬁyX1),
0
L = Cy _ _
vg-T; =~ B_gl(a:vxl Ly —0yxiTsy),

2Some further discussion concering this approximation is provided in section 2.11.
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S = Cu
vy -1 ~ m (7110:Bo L'y j — 720, By 'y j — 730, Bo I'y ),
R Cof f1oviC
Ve * Fj ~ Q]Bg (’ylax BO Fy,j — ")/282 BO Fx,] — ’ygaz BO Fy,j) + Q]Bg Y1 axp() Fy,ja
L c
o Ty = gy e o
Lo c
by- VB, = B Jm 0. By ,
0

ﬁc : 6BO = 0+ O(ﬁref pref/Lref> )
where Bief, pref, Lrer are defined in section 2.10.1, and

Foc,j = O flj - —qj aa‘ih aij

, for a = (z,y,2) .
m;v| A (@37)

In addition, the following notation was introduced for these particular combinations of

the metric coeflicients:

11 .22

no= g"g* — (¢

o glngB o 912913,

vy = 912923 - 922913.

The gyrokinetic equation (2.51) can thus finally be written :

1 B
—0rq1; = C_Bf Y2 0 foj Ox X1 —71 Oz foj Oy X1 + V3 02 fo; Oy X
N B —m—~—" —
_ m'i}” (72 02 Bo 0z X1 — 71 02 Bo Oy X1 + 73 02 Bo 0y X1) Do, fo
3 VIS -—
1 By - -
t ey O T — 0 L)
By 1 Bo+mjvj 1 By Hovf
+ Kelaj +KyTy5) + 5 Oupo 'y 4
BSH ijj ( 2J Yy yJ) CBE;” Qj By 0 +yJ
Cyj Cp
I..— —————0.By 0y, f1; , 2.62
+ By Jryz J m; By Jrv= 0 Yy fl] ( )
where
K. = —1283 By, (2.63)
Cm
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1 73
= —(0,By—20.B,) , 2.64
]Cy C ( 0 L 0) ( 6 )

and having used the relation B2 = C?~;.

2.6 Choice for the background distribution

One considers the background distribution fy; as being a local Maxwellian of the form

3 2
m; > m;vi/2 + pBo(z, 2)
; = —— ; — 2.65
f()j <I7 Z, U, M) <2’7TTOj (I)) LLOT; (SL’) exp ( T()j(CU) ) ( )
where the temperature and density profiles 7y, and ng; are function of z, so that:
dlnng; mjvﬁ uBy 3\ dinTpy; 1
Oy foi = J —— . 10,8 : 2.66
fO] dx + ( 2T()j + ng 2 dx T()j 0 fOJ ( )
A/—/
0. fo; = —Tié)z By fo; , (2.67)
0j
m;v
aUHij = - ] fO] ) (268)
TOj
B
Opfoj = —7Jos- (2.69)
0j

One notes that (2.65) is only solution of Eq. (2.49) if one neglects the vy and v drifts.
In the following, it will nevertheless be assumed that Eq. (2.49) is satisfied. This choice for
fo; leads to a more compact form of Eq. (2.62) since the underbraced terms in Egs. (2.62)
and (2.66) cancel out.

A true solution to Eq. (2.49), i.e. including the finite orbit width effects resulting from
the drifts vy and 9., would be given by a so-called canonical Maxwellian Fey, [21].
The distribution Fgj, is function of the three constants of motion of the unperturbed
axisymmetric system: the kinetic energy K, the magnetic moment pu, and the canonical
angular momentum P;. The local Maxwellian (2.65) can thus be seen as a canonical

Maxwellian in the limit of zero finite orbit width.
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2.7 Velocity moments of the distribution function

As will be seen in section 2.8, it is necessary to evaluate different velocity moments
of the distribution function in order to solve the field equations. In this section, we
discuss how these moments, which need to be evaluated at fixed particle positions, are
computed given the particle distribution function f, solution of the gyrokinetic equation,
in gyrocenter variables.

The m™ v and n™ v, moments of the fluctuating part of the particle distribution

£;(Z, V) are defined as:
Mj,mn(f) = /flj(f, 17) Uﬂn’l)z dv . (270)

Using a Dirac function §(Z/ — Z), the velocity integral is converted to a full phase-space
integral:

M],mn(f) = /flj(.f/, ’17) (S(f/ — .f) Uﬁn USL_ df/d'l_f, (271)

which facilitates a first change of variables to guiding center variables £1;(Z, V) — f,1; (Zg),

where Zg = (Xg, V) g, Hg, 0¢g) are defined in Eq. (2.14). One obtains:
M n (%) = /fgvlj(Xg, V) g» Hg» 0tg) (X g + 0 — T) vﬁ'fg vlg Jg dXgdvygdpgdoy, (2.72)

where the phase-space Jacobian J; is given by relation (2.16).
One then makes use of Eq. (2.36), which enables to derive the distribution fi, in guiding

center variables in terms of the distribution function f ()Z' , V||, ) in gyrocenter variables:

ngj(Zg) = T_lflj(Zg)
= )+ {0 (R, )
J g9 g g Bo(Xg) J g 8U\|,g g» gy g
Ofyi = L
=G Vg a—OJ(Xm Igs v,g)} Ay ( Xy, p1g)
Mg
- Ofo: =
+ g5 (I)l(Xw:ug) a_OJ(Xgaﬂgvvll»g)} . (2.73)
Hg
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Velocity moments of the distribution function

Note that in the following, the subscript g shall be dropped. By replacing this last

expression for f,; in the moment equation (2.72), one obtains:

Mjjmn(Z) = —/ (X + 57— 2) By (X, v)) v v {fu()f,mvn)
>\ OJoj
i BO<X) KQ )y Kot
—4; v 8(; (X, u,v)) (Aln()@rﬁ) —Alww()au))

afO]
o

+ g [@1(X+,5') —@1()?7#)] (X, WJH)]} dX dvy dpda . (2.74)

Integrating now over the X variable leads to:

) 1
M;n(Z) = m_j/Bol z,v)) " v {flj — Py 1, V)
1 afO] =
" E@ﬂ@”>0w(“ o)
D foj - N T (= =
—q; ) %ﬂ(ﬂ% w,vp) | (Ay (@) — Ay (Z = g, )

af

+ ¢ [P1(T) — Ou(T -, )] a—fj(fju,vn)”dvlduda, (2.75)

>l

where the variations over the Larmor radius have been neglected for all equilibrium quan-
tities, e.g. Bo(Z — p) ~ By(Z), as one only works to lowest order in €. By introducing
the gyro-average fi; of the fluctuating component of the distribution function, as well as
the double gyro-average electrostatic potential ®; and parallel component of the vector

potential /:11”, Eq. (2.75) can be written:

= 27T * (= m, n f =
M mn(Z) = —/ o (@, vy) o' v {flj(%mvn)

- (0 G
—q; ) a@ fCW}n) <A1|| — Ay (% )>
b [0 - 8] D | | ava, 210)
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where the double gyro-averaging of any scalar quantity F is given, according to (2.33),

by:
= 1 - - 1 S
S X -5 = "F(X—p—p). 9.
Fege §daF (=)= s f dadol F(X = p= ) 2.77)

Note that for a Maxwellian equilibrium distribution function fy, the Ay contributions
vanish as a result of Egs. (2.68) and (2.69). In addition, since the perturbed electrostatic

potential does not depend on vy, these integrals can be evaluated analytically, see [28],

leading to
2BO n/2+1 Bg” B
M (Z) = — L o M2 doyd
mn () ”(mj ) / B, o vl dvydp
_ UT Noj g By (2Bo)n/2 [_'Z'(m) + 210 Toj  Joj| I(m+ 1)}
T3, m; B§  gjvr;

T ) n/2+1 _ B
(ﬁ) (n/2)! @ —/ ¢, exp (—u> pdu| o, (2.78)
BO TOj

where jo = jo . 50 = (6 X éo/ﬂo) . 50 and the function Z(m) is

Z(m)=0, formodd ,
M=H)  (m—1)(m—3)..3-1
ﬁ - om/2 ’

with I'(m) the usual gamma function. One in particular has I(0) = 1.

for m even,

and Z(m) =

2.8 The field equations

In order to close the system, the perturbed electrostatic potential ®; and parallel compo-
nent Ay of the vector potential appearing in the gyrokinetic equations are self-consistently
obtained by solving respectively the quasi-neutrality equation and the parallel component

of Ampere’s law.

The quasi-neutrality equation

For typical Tokamak parameters, the Debye length is much smaller than the wavelengths

of the microinstabilities (typically of the order of the particle gyroradius) and one can thus
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assume quasi-neutrality?:

Z q; nl] - . (279)

The perturbed density n,; is given the zeroth order moment M,y of the distribution
function and is obtained using Eq. (2.78). The quasi-neutrality equation (Q.N.) thus

reads:

Z J/ 0||f13 d’UHdﬂ— To] {qh Toj @, eXp(—T—OJ)du =0. (2.80)

We note here that the moment equation (2.78) was obtained using the first order in €
pull-back operator T~!, so that Eq. (2.80) is a linear integral equation for ®;. The first
term in Eq. (2.80) is the so-called gyro-density, while the last two terms are referred to
as the polarization density, which results from the difference between guiding center and

gyrocenter coordinates, i.e. an effect related to finite amplitude field fluctuations.

Adiabatic electron case

The general equation (2.80) is used when considering the full kinetic dynamics of a
given species. One can in some cases simplify computations by assuming an adiabatic
electron response, that is considering the limit w/(kjvine) — 0. This limit is in particular
invoked when studying turbulence in the ITG regime. In this case, the electron density
is assumed to follow a Boltzmann distribution:

n(z) = N(z)exp (6;: 1(S>) = N(z) (1 + G;Ife 1(;5;)) +0O() (2.81)

where a linearization, justified by the gyrokinetic ordering e ®; /7T, ~ €, has been carried
out for obtaining the last equality. The coefficient N(z) is set by assuming that the

perturbed electron density cancels on average over a given flux surface:

(1e(Z)) = (n0e() +11e(T) ) = (n0e(2) ) + (N1e(T) ) = noe(2) , (2.82)

where the flux-surface average (.) is defined for any quantity F as:

1 }"d3 f}" ) J*(x, 2) dz dy
AV [T (z,z) dzdy

(F(@)) = (2.83)

3Finite Debye length effects can be, in fact, accounted for in GENE, thus replacing the quasi-neutrality
equation with the Poisson equation. They are however never considered in the present work and
Lpebye — 0 is assumed.
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where AV is an infinitesimally small volume between two neighboring flux surfaces ¥ and

U+ AV, |[AV/U| < 1. From Egs. (2.81) and (2.82), one obtains for N(z):

noe(x) = N(x) < 1+ 6;) ((1? > + O(€?) (2.84)
= N(x) ~ nge(x) (1 — %) +O(€) . (2.85)

By inserting Eq. (2.85) in (2.81), the perturbed electron density finally reads:

nie () = (@1 —(®1)). (2.86)

Introducing this last relation for the electron density fluctuation into the quasi-neutrality

equation, leads to:

62 Noe § : 27TQJ * 7
— Toe (CI>1 — q)l + { /BOH fl] dUH d/ub
JFe
4; noj { By 1By } }
o — =2 [ &y exp(—=2)4d =0. 2.87
T, 1 T, 1 exp( Toj) H ( )

Additional approximations are made to numerically solve Eq. (2.87). These will be dis-

cussed in section 3.3.5.

Ampere’s law

The potential Ay is obtained by solving the parallel component of Ampere’s law for

the fluctuation fields:
—V3 Ay = po ZleJ ) (2.88)

J
having neglected the displacement current, as well as made use of the gyrokinetic ordering

(2.2) and (2.3), which enable to write:
(V2A)) - by =~ V2 (A, - by) = V2 (Ay) . (2.89)

The perturbed parallel current jy| ; is given by the first order v moment of the perturbed

distribution function and is obtained using Eq. (2.78) for M; 9. One thus obtains:

27Tq * r —
~Vidy = Noz { 4/30“1; S (T, 0, ) doy dp

q; an Ho Joj| By = By
—— ], — — ) — d . (2.90
B3 ( LTy / 1(7) exp( To, ) M) } (2.90)
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One notes that given the electrostatic potential ®; solution of Eq. (2.80), Eq. (2.90) is a

linear differential equation for Ay.

2.9 Macroscopic quantities

In order to compare simulation results with experimental measurements and in partic-
ular to address the issue of anomalous particle and heat transport, relevant macroscopic
quantities, namely particle and heat fluxes need to be evaluated. An appropriate form for
these different fluxes can be derived by considering velocity moments of the gyrokinetic
equation, thus obtaining conservation laws for the density and energy of each species.
We note that as the gyrokinetic equation describes the evolution of the particle distri-
bution in gyrocenter variables, one obtains in this way conservation equations for the

gyrocenter density 7; and energy density p;:

1
n; = / fiJ dyjdp; and p; = 3 / m;v? f; J dvy dp (2.91)

where J is the phase-space Jacobian of the transformation from particle to gyrocenter

variables:

J = |By + V x (Ay bo) - bo| /m = By /m + O(e?) (2.92)

2.9.1 Velocity moments of the gyrokinetic equation

As a starting point, one first seeks to write the gyrokinetic equation in a conservative

form, which can be obtained by considering Liouville’s theorem:

8. o .
§+;azi(JZi)o, (2.93)

where J is the phase space Jacobian (2.92). The gyrokinetic equation (2.46) can thus be

written as:

0 0 N 0 )
E(ij)JFE'(Jij)+a—W(JUIIfj):0, (2.94)
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where X and vy are given by Eqgs. (2.38) and (2.39). Let us now consider the general
velocity moment s = s(X, vy, ) of Eq. (2.94):

0 0 > 0 )
/sa(ij) dv”d,u+/s£-(Jij) dv”du—i—/s&—(JU f;) dvydp=0. (2.95)

Y|

Considering that s may be a function of v and X , and that the distribution function

vanishes for v — £o00, Eq. (2.95) can be express after integration by pasts as:

0 9, > > Os Os
— J doydp——=- X fiJ dvydu— | X-—= f; J doyd = f;J dvydp =0
5 | 5fid dvidn 8X/S fi J doydp / o 7 M+/ U gy ST oy dp
(2.96)

Noticing that the total time derivative of s reads:

ds 5 Os 0s

— =X -— 40—, 2.97

i o% oy, (2.97)

and using the notation, vg = X , the moment equation can finally be written in the more

compact form:

0 0 . ds
a/sfdeU||du+§~/sv(;fjjdv”d,u—/afjjdvdu. (2.98)

By considering first the s = 1 moment, one obtains the continuity equation:

8ﬁj 0 =
— .. =0, 2.
BT +8X ;=0 (2.99)

where the gyrocenter density 7, ()? ) is defined in Eq. (2.91) and the notation

I = /17(; i J dvydp (2.100)
is used to denote the gyrocenter flux.

An equation describing the conservation of energy is obtained with s = m; v?/2 = m; Uﬁ +

By p:

3 aﬁj 0 = ~

2Ol L Y0 =P, 2.101
where the gyrocenter energy density has already been introduced in Eq. (2.91) and with

energy flux defined as:

=2 V2 .
Q; = / mj < Vo fi J dvydpe . (2.102)
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To obtain the power density, one starts by computing the total derivative of v?:

m; dv? m; 5 0 0 2 2 By )
mpevt
2 dt 2 ( 0X AL v Ut m;

= ,MX: : VB() + m; UHU.”

= ¢Ug-E (2.103)

where relation (2.39) has been used for ¢ and with the electric field E=—-Vd — b ;ll”,

considering only A; magnetic fluctuations. The power density finally reads:

P = /qjﬁG-Efdev dp . (2.104)

2.9.2 Radial conservation equations

The conservation equations (2.99) and (2.101) describe the evolution of density and
energy in the three spatial dimensions. However, as transport processes relevant to con-
finement take place in the radial direction, one is mostly interested in the radial evolution
of the flux-surface averaged density and energy.

By integrating Eq. (2.99) over the volume V enclosed by the flux surface x = const. and
using the divergence theorem, one obtains:

% v [ F Y a5 (2.105)
J
ov Vz|

where the elementary surface element is dS = |Va| J® dy dz, with J* the Jacobian to
the (z,y, z) field-aligned coordinates.

The volume integral over the density can be express as:

/ﬁj dV:/ dac/ﬁj J Y dydz:/ dx (nj) V', (2.106)
v 0 0

having introduced

V= (ZV /nyz dy dz . (2.107)
T

and where (.) is the flux-surface average operator, defined in Eq. (2.83). Finally, differen-
tiating Eq. (2.106) with respect to x, one obtains:

%Wlﬁ V] + L [(E ey v =0 (2.108)
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Similarly a radial energy conservation equation is derived from (2.101):

S SV 4 (G- TR VBV =0 (2109)

We note that if one would solve the gyrokinetic equation (2.47) without further approx-
imations, Eqs. (2.108)-(2.109) would represent exact conservation equations and could
thus be used for instance to monitor the accuracy of the numerical simulations. In the
following, we will however explicit only approximate conservation equations, which are

consistent with the various approximations considered to derive (2.62).

2.9.3 Flux definitions

One now considers the decomposition of the distribution function f; = fo; + fi, and

again assumes that fy; represents a stationary state, so that in particular

ﬁoﬁl’z/

Equation (2.108) thus becomes a continuity equation for the perturbed terms:

By

By

v bo + Va fo J dvydp =0. (2.110)

(17VB + 276)

Y B
where

ﬁlj:/fldev d[L, (2112)
and

flﬁmz/

The projection of the vg velocity (2.42) onto the radial direction reads:

BSH BSH

. - By B . o
0 Tg foj + [v) bo + —O(vE + Uyp + U.)] flj] -VaJdoydp. (2.113)

I 6Xl X go = 19x,

where C is defined in Eq. (2.60) and having again neglected the 9/0z terms with respect

to the 0/0x contributions. From the definition of the generalized potential, Eq. (2.42),

one furthermore separates the electrostatic and electromagnetic contributions, leading to:

- 109 0A
17E'V£E2——b e

2.11
Caoy C 0Oy (2.115)
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The two contribution from vy and v, are regrouped together as:

- ft Bo +m; v 9B,
— —»C . v — _ )
(Fp +T) - Vo m; S Bg 275,

(2.116)

Considering the definition of the field-aligned coordinates, one has l;o Vi (ﬁx X jy) .
Vi = 0 such that the of by term vanishes in Eq. (2.113). Noticing furthermore that all
equilibrium terms (B, BSH, fo;) are independent of y, the flux-surface average of the fy; U
term in Eq. (2.113) will cancel out, and this contribution is thus not retained. One finally

defines the turbulent radial gyrocenter flux as:
D) = ([ - V) = Dya(@) + Djom(@) + Tyn(a) 2.117)

with the electrostatic and electromagnetic contributions respectively defined as:

. 1 By 0%
Ljes(z) = _E</ B’? a—ylfu J dvj d,u> , (2.118)

off

N 1 B, 0A
Ljem(x) = 5</ B”? Ua—ylnfu J du d,u> . (2.119)

o

The contribution related to the gradient and curvature of the equilibrium magnetic field

By is given by

- C ft Bo +mjvi 9B
[p(r) = —— </ ] O fy T d d,u> : (2.120)

which averages out to zero, at least for non-axisymmetric fluctuation modes, and will thus

be neglected.

Considering now the energy conservation and assuming again that the unperturbed dis-
tribution fy is a stationary state, one obtains from Eq. (2.109) a conservation equation

for the perturbed energy density:

20 ) V) + (G- ) V] = BV (2.121)

As for the gyrocenter flux, one distinguishes the different contributions to the radial heat

flux:

-

Q) = (Q1 - V) = Qjes() + Qjem (@) + Q. p(x) - (2.122)
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The electrostatic and electromagnetic heat fluxes respectively read:

~ B 0P
Qj,es(lf) = _ﬁ < / B—f (mj ?)ﬁ + QBO p,) a—yl flj J dUH du > s (2.123)

of

- 1 B dA
Qjem(T) = oYe </ B—f (m; vﬁ +2Byp) v 8yl fij J dy du> . (2.124)

off

and the curvature term is:

~ C 1 By +mjvi 9B
Qjo(r) =—— </ (—mjvﬁ—i-BoM) o 0 fi; J dy d,u> , (2.125)

2
m; 2 Qj BO BO” 0z

Note that as for the gyrocenter flux, this last contribution is essentially zero for an up-
down symmetric plasma.

Finally, the perturbed power density reads:

B*

- - By, , . _,
P1 = 4 /[U” bo + . (UE + vvp + Uc)] . Eflj J d,u dU”
off

B L
O (iop + 0)] - VO fi; ] dudoy | (2.126)

having made use of the relations E=—-Vd, — l;o ;11\\7 75+ E =0 and (Vyp + V) - bo = 0.
Equations (2.111) and (2.121) can in particular be used to monitor the conservation
properties, up to order €, in a numerical simulation. We note however that the final
relations for the fluxes (2.100) and (2.102) which have been obtained here by taking
velocity moments of the gyrokinetic equation, i.e. at fixed gyrocenter position X , differ
from the relations that one would have obtained by taking velocity moments of the original

Vlasov equation, i.e. at fixed particle position 7"

fj:/ 7t 1, 0) (2.127)
and
2
g; = mf;’ 71,(t,7,7) di | (2.128)

which are strictly speaking the physical quantities of interest. The previous definitions
(2.100) and (2.102) will thus differ from (2.127) and (2.128) by diamagnetic and the
polarization drift terms. The diamagnetic drift corrections are however normal to the
radial direction and since we are mainly interested in radial fluxes, this contribution is

not relevant. Polarization drift terms can on the other hand have a radial component, nut
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their contribution is expected to be small for these macroscopic quantities. As a result,
many gyrokinetic codes, including e.g. the ORB5 [54] or GT5D [14], make use of the
gyrocenter fluxes Eqs. (2.118)-(2.119) and (2.123)-(2.124) as approximate diagnostics of
the exact physical fluxes (2.127) and (2.128). More details on the differences between
fluxes definitions can be found in [48].

In Ref. [55], approximate relations for the fluxes (2.127) and (2.128) are derived, which

which are consistent with the gyrokinetic ordering and read:

2
rjz/ o, £;(t,#,0)dv  and szfmfzv v, £;(t,%,0) dv, (2.129)
where ~ .
Vx1 X B
Uy = —% oowith X =@ — oy (2.130)
0

We remark that the drift velocity v, in relation (2.129) is essentially equal to v, apart
from the perturbed fields ®; and A, which are not gyroaveraged in (2.130). These
latter fluxes definitions are currently used in the GENE code and one again separates the
electrostatic and electromagnetic radial contributions, which can be expressed in terms of

the velocity moments M ., of the particle distribution, given in Eq. (2.78), as follows:

Liole) =~ { M) 50 ) (2.131)
Dienlt) = 4 <Mj,10<f) aAg?'J(f)> , (2.132)
and
Qjes(r) = —?—é <[Mj,20(f)+Mj702(f)] 8®aly(f)> , (2.133)
Quun(®) = 5 (M) + Myaa(a)] Z2L2 ) (2.134)

2.10 The normalized equations

2.10.1 Normalizations

In view of the numerical implementation, the different quantities appearing in the

gyrokinetic and field equations are normalized appropriately so that the resulting di-
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Chapter 2. Physical model

mensionless quantities are all of order ~ 1. The dimensional reference quantities are
Nref, Lvefy Bref, Mref and Lo for the density, temperature, magnetic field, mass, and length
respectively. The choice for these normalization quantities may depend on the physical
problem, in most cases however they are taken as n.et = n;, Trer = T, Bret = By, Myet = M;
and L. = R. From these quantities, one can further derive reference velocity cpef, Cy-
clotron frequency 2, and Larmor radius ppes:

2 Tref 0O o 6Bref - Cref
Cref = ’ ref — ) Pref = 0 .
Myef Myef ref

The hat notation * ~ 7 is used for normalized quantities. The normalization of time and
the coordinates (z,y, z) ar

Lyet ~ . . .
t = t T = Pref T , Y = Pref Y » z2=2.

Cref
Note that when considering equilibrium quantities, derivatives with respect to x shall be
normalized to the macroscopic length L, rather than p.¢. One therefore introduces a

second normalized radial variable Z.,:
T = Lyet Teq -

The velocity variables are normalized to:

. R £ .
vj = brj(w0) s Oy, o= "Tog(x0) 5= iy .
ref
where vp;(x) = \/2T0;(z)/m; = cret Upj(x) is the thermal velocity of each species and

T is the center of the simulation domain. A subscript j has been added to the velocity
variables (9);, fi;) since they are now species dependent. In addition, the notation T;(x) =
Trer Toj () and ng;(x) = nref 710;(2) is used for the normalized temperature and density of
each species.

The other equilibrium quantities are normalized as follows:

1 1

- y ) - y ) - y b ‘]xyz == Lre jxyz .
M= 2 Lref% V3 Lref’yg £

According to Eq. (2.60), the coefficient C has the same units as the magnetic field B%, and
is therefore normalized to Bl : C=¢C / Bret-

The distribution functions are normalized by:

Pref Mref nO]( )
Lyet Chg UTJ( 0)

Nref nO] (fﬂo)

C?ef UT] (o)

ij -

ij) flj—

flja
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and the electromagnetic fields by :

Pref Tref Pref A
P P Ay = Bietpret A1 -
1= Lot c 1, 1] Lot f Pref 11|

We also define

. _ dInTjo . B dInnjg . dIn pg
Wrjax = —Lief dx ) Whjae = —Liref dx ’ Wp = — ref? .

The plasma pressure is normalized to po(z) = Pret Po(T) = Tret Mot Do(), and one defines

ﬁref - 2#0 pl”ef/BrQGf .

2.10.2 The normalized gyrokinetic equation

Using the normalizations introduced above, the gyrokinetic equation (2.62) reads

E)glj 1 Eo N . f)ﬁj +ﬂjE0 3 2 2
= = —=—=— |wy twpj | ———— — = 0y
ot C B(”]‘” ! 1 Toj 2 foifxa
BO T()] (ZL‘[)) 2UH + lu]BO A A
. . ~ zt jx
By 4i Bo
Bo Ty (wo) | 20); + A3 Bo U||J Po .
= Ky 6ref ZWP Fj:y
BO 1 < A S ~ ~
(0,5, T, — 0, r-x>
BSH ’ X1 ljy gX1 1y,
¢ ~ orj(z) C . o o Ofy
— —0y; ', J - —/1;0: By =2, 2.135
UTJ(%)nyzB v Lz + 2 ey BOF‘J 0 b ( )

having defined 7;(x) = Ty;(z)/To;(xo), /\/'oj(x) = ng;(z)/noj(x0) , Z; = q;/e. The other

normalized quantities read:

R A Z@T<J]0) “ 2 -
J— 4 2 I b A .
91 fij 7o) 15 Ay fos

. . Z. A
Fa,j = 8& f1j -+ A—J 8@<I>1 foj fOI‘ &= (i’, Y, Z) y

Toj(x)
: ./\/b](x) « _@ﬁj+ﬂjéo($,z)
fo = <>13/2ep< 705(2) |
Xio= &1~ ory(wo) Oy Ay

40



Chapter 2. Physical model

A A m‘TO'(IO) 30|| N
) BO 1 + ﬁref i A v”j )
2 ZBg

o

A Jo||
Jo| = )
€ Nyef Cref

2.10.3 The normalized field equations
The field equations derived in section 2.8 can now as well be written in normalized

units.
The normalized quasi-neutrality equation reads:

7200 | - B 2
5 105 [(bl __0/(131 exp(—
TOj

i Bo
TOj

)dﬂj] b —@130)

> {Wﬁw(iﬂo)zj / By S doydit; — =2
j 07
and for the adiabatic electrons case:

{W Z; ﬁoj'(l’())/ By f1j diy df;

——E (D — (D) + Y
Toe j#e
Z2No; | » B 2 1, B
LY H — 20 [y exp(—H220) }:o. (2.137)
To; 705 0j

Finally, the normalized Ampere’s law is given by:
ﬁref ~ ~ N N N
jf0j (o) Orj(wo) ™ | By fiy doy diiy

-Vidy = 2{7
j
ﬂQfﬁOjjOH 2 By [ . ﬂjéo .
=7 | —— [ D — dfu; . (2.138
P e [ @ e | (2139

2.11 Local and global approach

2.11.1 The flux-tube approach

With the hypothesis that turbulent transport is essentially a local process and in view

of reducing the computational effort, several gyrokinetic codes have been developed in
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Local and global approach

the so-called flux tube or local approximation [9, 18, 11, 12]. In this approach, the
limit p* = p;/a — 0, where p; is the ion Larmor radius and a the minor radius, is
considered, and the variation of equilibrium quantities over the typical spatial turbulence
correlation length, which is of order a p* (Gyro-Bohm) or a+/p* (Bohm), are neglected.
Considering this approximation, the simulation domain can be reduced to a narrow tube,
elongated along a given field line, and spanning only a small fraction of the minor radius
in the radial direction. The flux tube width typically represents a few correlation lengths.
Although temperature and density profiles are assumed constant over this width, their
derivatives are kept in the equation so as to retain the essential driving terms. The local
equations are simply recovered by removing radial dependencies of equilibrium quantities

in Eqs. (2.135)-(2.138):

~

é(x)> BO(xa 2)7 BSH(ZE,Z,’U”), Km,y(x7z)7 jxyz(x’ 2) B é7 BO(Z)a BSH(Z?UH)) Kx,y(z)7 jxyz(Z%

@nj(x)a Cf’Tj(x)v T0j<$>7 7A"LOj(ﬂU)a po(r) — Wnj, W15, T()ju Noj 5 Do -

2.11.2 The global approach

In the frame of this thesis, the gyrokinetic code GENE [12, 27, 12] has been extended
from a local to a nonlocal or global version where the p* effects associated with radial
variations of equilibrium quantities are retained. In particular the essential global effect
related with gradient profiles variations [56] are accounted for. Remaining p* effects
are however still neglected and these different terms shall be compared and classified
among each other by introducing some further sub-ordering. Assuming the typical size of
turbulent eddies to be A ~ \/pi_Lg (gyro-Bohm scaling), we can estimate, as reference, the
corrections introduced in the present global equations by retaining variations of gradient

profiles to be of order

(Awry,) fwrn ~ \/piLlg/Lg ~ \/p* . (2.139)

The remaining neglected terms are given in the following list, with corresponding scaling:

e The v nonlinearity: Nonlinear term oc 7 - Vo, 0 f1j/0v, dropped when deriving

Eq. (2.51); of order p*.
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Chapter 2. Physical model

e Derivatives 0/0z of fluctuating quantities have been neglected with respect to 9/0x
and 0/0y terms. These terms are of order p*a/r, where r is the local radius. A
scaling may be derived by considering the gradient of any fluctuating field, such as
d:

o> - 00

. . 0d -
¢ = — — —_—. 2.14
\Y Vz I + Vy 3y + Vy ay (2.140)

So that e.g |(Vz09/0z)/(Vad®/0z)| ~ |Vx/ki| ~ pi/r ~ p*a/r. Note that
similar terms scaling has 1/r are also neglected in the gyroaveraging and are further

discussed in section 3.3.

e The equilibrium distribution f; is assumed to be a local Maxwellian, instead of a

canonical Maxwellian. The differences between these two distribution is of order p*.

e Neglected equilibrium gradient terms in the computations of moments (2.78), e.g.

Bo(Z + p) ~ Bo(Z), which enter the field equations and are terms order p*.

This sub-ordering thus justifies the approximations made in the derivation of the gyroki-
netic equation, as the currently retained terms related to radial variations of equilibrium
have a dominant scaling over the neglected ones in most of the plasma volume. We note,
however, that the terms related to derivatives in the z direction, which are of order p* a/r,
might become important if one considers regions close to the magnetic axis, and they may
have to be corrected in the future. Since these approximations have been introduced at
different steps in the derivation, it might be somewhat tedious at this point to identify
all the terms dropped in the final gyrokinetic equation (2.135). An illustrative way to
identify and summarize the missing terms in the currently considered gyrokinetic equa-
tion is to derive the underlying gyrocenter equations of motion in field-aligned coordinate
(x,y,z). This has been done in Ref. [57] keeping all terms of order € = pyes/Lyer ~ p* and
we reproduce here the resulting equations. In normalized units, see section 2.10.1, and

considering only a perturbed electrostatic potential, one has:

dz _ 1 I N To(o) QUﬁ-I—,MBoEaBO +€ﬁﬁ;¢_ﬁl (2.141)
dt C| oy Z; By Y1 0z v 0z
dy 1(0¢ Ty (2v0]+nuBo (9B, ~30B, 5 Do 3 01
— =5 |5t - T 9. _ﬁrerH_pr —€——F
dt C|0x Z By oxr vy 0z Bg v 0z
(2.142)
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d C O 06, T 20% 4 By v, OB
£ vr (o) R R e b1 + 2 b1 + o{xo) | Sk e Dret Uﬁp_ozﬁwp
dt BO J C Y1 ox Y1 8y Zj BO Y1 ox BO Y1
(2.143)
dU” UT(I‘O) C 830 1 8@31
| R — 2.144
dt 9 BoJ" 92  “aByJ 92’ (2.144)

where the hat symbol over the normalized variables, and the species index have been
dropped so has to lighten notations, and B(’)‘” ~ By was considered. This normalized form
of the gyrocenter equations of motion clearly reveals the terms which are not retained
in our model, corresponding to all the contributions ~ ¢ in Eqs (2.141)-(2.144). We in
particular identify in Eqs. (2.141)-(2.143) the € order terms related to 0/0, derivatives.
Keeping the e order term in (2.144) would lead, on the other hand, to the so-called parallel

nonlinearity.

2.12 Summary

In this Chapter, the gyrokinetic and associated field equations have been expressed
in field aligned coordinates in an appropriate form for their numerical implementation.
These equations in particular retains radial variations of equilibrium quantities suitable
with a global approach. A discussion of the local limit was then provided, as well as
a summary of the different remaining approximations. In the next chapter, a detailed

description of the numerical aspects of the GENE code is given.
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3 Numerical implementation

3.1 General description

The GENE (Gyrokinetic Electromagnetic Numerical Experiment) code is an Eulerian
gyrokinetic code which solves the time evolution of the particle distribution functions on a
fixed grid in phase space. Its development was initiated by F. Jenko [12] and continued by
T. Dannert [27] at the IPP Garching, Germany. The original version of the code consid-
ered the flux tube approximation, see section 2.11, and the time evolution of both purely
electrostatic and electromagnetic fluctuations. The code was then further improved by F.
Merz [51], who introduced in particular a collision operator and the possibility to use the
code as an eigensolver.

The present code has now been extended to a global version where most of the flux tube
assumptions have been relaxed, see discussion in section 2.11. This code development was
carried out in a close collaboration between the IPP Garching, and the CRPP Lausanne,
and was in particular part of T. Gorler’s PhD [28] and the present thesis work.

The GENE code follows the method of line approach, where the right-hand side of
Eq. (2.135) is discretized on the (z,y, z, v, ) grid, thus leading to large set of coupled
ordinary differential equations in ¢, which can then be solved as an initial value problem
or as an eigenvalue problem. A general overview of the different numerical aspects of
the code for both local and global versions is given in this section. It is then followed in
later sections by more detailed explanations concerning various parts of the global code
which are more specific to the present thesis work. This concerns the implementation of
the parallel boundary conditions, the gyro-averaging operator and fields solver, as well as
the real space dealiasing which is used when dealing with the nonlinear term. Finally, an
additional chapter, see Chap. 4, is dedicated to the description and discussion of differ-

ent magnetic equilibria which are considered to obtain the magnetic field and associated
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General description

metric coefficients appearing in Eq. (2.47).

3.1.1 Treatment of the phase space directions

The radial direction z

The treatment of the radial direction x represents one of the main differences between
the local and global versions of the code. In the flux-tube version of the code one neglects
the radial variation of all equilibrium profiles and their gradients, and periodic boundary
conditions are considered. The radial direction can thus be treated in Fourier space and

radial derivatives in Eq. (2.135), are thus simply transformed as follows:

0 271y
9 1k, , where k,= ZLJ and 7 is an integer .
Xz T

One notes that in order to justify the radial periodic boundary conditions, the radial box
length [, needs to be larger than the radial correlation length of the turbulence.

On the other hand, in the global version of the code, radial variations of equilibrium
quantities are retained which makes it inconsistent to consider the periodic boundaries in
this direction. Dirichlet boundary conditions are used instead, and the radial direction
is treated in real space. The radial derivatives are discretized with centered fourth order
finite differences, see [28]:

of

Jica =8 fii1 + 8 fix1 — fire
= +
Ox

12 Az

O(Ax?) (3.1)

r=x;
with notation f; = f(z;). We also explicit here the second order x-derivative which are
required in the field solver:

02 f

da?

- —fice +16 fii1 — 30 fi + 16 fir1 — firo

4
A +O(AzY) | (3.2)

a=x;
The length [, is in this case defined as a fraction of the minor radius, so that the simulation
volume represents a toroidal annulus excluding a finite volume around the magnetic axis.
We note that it is in fact required for practical reasons to exclude the magnetic axis as
the considered field aligned coordinate system, which is polar-like, becomes singular on
the axis.

As a result of the fourth order centered finite difference scheme, see Eq. (3.1), the grid
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points are strongly coupled to their second next neighbors while only weakly to their direct
neighbors, which can lead to a divergence of the odd and even subsets of grid points. In
order to couple these two subsets a hyperdiffusion term is added to the right-hand side of
Eq. (2.135):

. o' f —fico+ 4 fici—6fi +4 fix1 — firo
hyp, = —ve = ~ hy

ort 16

+ (0)(Az?) . (3.3)

where h, = v,/Ax? is a damping coefficient, normalized to ¢,/ R, which is typically of the
order of the linear growth rate. In most cases however, this term is not required for linear

simulations, and h, is set to zero.

The binormal direction y

The binormal direction y is treated in both versions of the code in Fourier space with

periodic boundary conditions, and the y derivatives are transformed as follows:

0 21 ]
~— — iky,, where k,= mJ
dy

and j is an integer .

ly

1/q

Ad

Figure 3.1: Part of a given flux surface covered by the simulation domain (in gray) in the
(¢, x) plane.

On a given flux surface, the simulation domain does not necessarily cover the whole
surface, as illustrated in Fig. 3.1. Using the definition of y = Cy (gx — ¢) — vo, the
l, length can be related to the fraction of toroidal angle A¢ = 27/ny occupied by the
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simulation domain on a constant x surface by
l,=C,—. (3.4)

For ng = 1 the full annulus is covered, and the periodicity condition in y reflects the
natural periodicity in the toroidal direction. When ny > 1 only part of the flux surface is
covered and the periodic boundary conditions are only justified if the correlation length
of the turbulence in the y direction is smaller than the [, length. In order to allow for the
reconstruction of physical quantities on the whole flux surface using the y periodicity and
without overlapping, ng is imposed to be an integer, which in turn quantizes the allowed
l, values.

Another point to notice relative to the y direction is that the k, wave number is uniquely
related to the toroidal mode number n. Indeed for a given quantity A(V,y,¢), with

toroidal mode number n, one has:
AV, x,0) = A, x) exp(in¢)
(¥, x) exp(—in[(y +y0)/Cy + ax])

Il I
D

(x,2) exp(—iny/Cy)
= A(z,2) explikyy) ,
so that k, = —n/C,. The allowed wavenumbers in the y-direction are however given by
k,=j2m/l, = jny/C, according to (3.4), with j integer. In case the flux tube only covers

a fraction of the magnetic surface, i.e. ny > 1, only the toroidal mode numbers n = j ng

can be thus represented.

The E x B nonlinearity

As a result of the Fourier representation in x and y in the local code, and in y in the
global code, the nonlinear multiplication in the E x B term would require to evaluate
a convolution. Such an evaluation is computationally very costly and it is much more
efficient to first transform the perturbed quantities to real space using the fast Fourier
transform algorithm, then to evaluate the multiplication in real space and finally transform
back to Fourier space. In order to avoid pollution of the spectrum by unresolved modes,

resulting from the nonlinear multiplication, an anti-aliasing technique is applied.
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In the local code, the so-called 3/2 rule is employed in both z and y directions, which
consist in extending the numerical grid in these directions by adding small scale modes
with zero amplitude before the transformation to real space. The two extended quantities
are then multiplied in real space, and finally the product function is back-transformed to
Fourier space and the extended mode spectrum is removed.

In the global version of the code, the same procedure is applied to the y direction, whereas
aliasing effects are partially removed in the x direction by using a real space anti-aliasing
scheme, which consits in an interpolation before the nonlinear multiplication followed by
a smoothing operation acting on the product function. This procedure is described in
detail in section (3.4). The real space anti-aliasing scheme alone is not enough to ensure
numerical stability of global nonlinear simulations, and the hyper-diffusion coefficient h,,

see Eq.(3.3), needs also to be adapted.

The parallel direction =

The spatial parallel direction z is treated in real space with centered fourth order finite
differences for both versions of the code, see 3.1. The boundary conditions are defined
so as to be consistent with the physical periodicity of each magnetic surface in variables

(X, 9)-
f(x,y,z—i—27r):f(x,y—quZW,z). (35)

These boundary conditions are further discussed in section 3.2.1.
As for the x direction an hyper-diffusion term is is added to the right-hand side of
Eq. (2.135) in order to couple odd and even points:

o' f

the 4th order derivative is discretize as in Eq. (3.3), and one introduces the hyperdiffusion

coefficient h, = v,/ Az

The velocity space

The advection in the parallel velocity direction is also computed with fourth order

finite differences in both the local and global code, and Dirichlet boundary conditions are
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considered at the edges. As for the x and z directions an hyper-diffusion term is used:
otf
hyp’U” = _I/UH a_'Uﬁl ) (37)
and one again introduces h, = vy / Avﬁ. Derivatives in the p direction are only needed
when considering collisions. In this case, the collision operator is treated separately using

a finite volume scheme for the velocity derivatives, see [51].

3.1.2 The eigensolver

When considering linear calculations, the code can be run as an eigensolver thanks to
an interface with the SLEPc/PETSc library [58]. The computation is carried out with a
matrix-free iterative solver which solves for the (eigenvalue,eigenvector) pairs (A, {g1,}) of
the discretized right hand side operator of Eq. (2.135):

%95 _pipi vy e

o =~ LUaut), de LHgiy}) = Mo} (3.8)
The real and imaginary parts of the eigenvalues A are then identified respectively to the
growth rates and frequencies of the eigenvectors {g;;}. An iterative solver is particularly
efficient compared to a direct solver when only a small subset of the eigenvalues are
needed. In particular, one can search for the eigenvalue with the largest imaginary part,
that is corresponding to the largest frequency, so as to determine the maximal time step
(CFL condition) for ensuring numerically stable initial value calculations, see section
3.1.3. For the physical study of micro-instabilities, one can also solve for a given number
of eigenvalues with the largest real part, corresponding to the most unstable modes. A

detailed description of the eigensolver capability of GENE is presented in [51].

3.1.3 The time evolution scheme

Explicit time scheme

Although any part of the spectrum is accessible with the eigensolver, for cases where
only the most unstable mode is of interest or for nonlinear computations, the code can
be run as an initial value solver. In such case, the time derivative of Eq. (2.135) is
discretized, and an explicit time scheme is used for solving the time evolution of the

distribution function. Explicit time schemes are relatively straightforward to implement
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compared to implicit schemes, which in general require a matrix inversion, but are however
only conditionally stable, i.e. the time step needs to be below a certain limit, the so-called
Courant-Friedrich-Levy (CFL) limit. Several Runge-Kutta schemes of different orders are
implemented in the code, and an optimum needs to be found between the maximal stable
time step achievable , the computational cost, which both increase with the order of the
scheme, and accuracy. A complete discussion on the different implemented schemes is
provided in [51], and in most simulations, a so-called modified fourth order Runge-Kutta

scheme proposed in [59] is used.

Time step adaption

When considering only the linear part of the gyrokinetic equation, the maximal time
step Aty can be obtained using the eigensolver capability of GENE, solving for the mode
with the highest real frequency wymax and applying wy max At < 1. When considering
nonlinear simulations, an additional constraint on the time step arises from the £ x B
advection term. The E x B advection velocity field evolves in time and the corresponding

time step constraint needs therefore to be adapted at each time step:
At = Se min(Atlin, Atnl) > (39)

where Aty, is the maximal time step of the linear gyrokinetic equation, and At,; is the

maximal time step associated with the E x B velocity.

3.1.4 Code performance and parallelization

For typical TEM nonlinear turbulence studies, the grid resolution requirement in the
(z, ky, z,v), 1) directions and considering two active species, is about 128 x 32 x 24 x 48 x
8 x 2 for local runs and up to 300 x 32 x 24 x 64 x 16 x 2 for global runs. Considering the
different stages of the 4th order Runge-Kutta scheme, and the different pre-factors entering
the equations, one can evaluated that the equivalent of 5 high dimensional double complex
arrays for the distributions need to be stored at each time step, the memory requirement
is respectively 6 GB and 35 GB for local and global simulations. In addition to the high
memory requirement, the computational power, measured in CPU hours, needed for these

simulations is very high. Indeed, considering a single core (2.93 GHz), the typical time per
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time step to advance one grid point in a nonlinear simulation is around 1.2 x 107% s for the

local code and 2.3 x 1079 s for the global code. Considering a realistic mass ratio between
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Figure 3.2: CPU time per time step as a function of the number of processors for a local
and global computations with respective resolution ng X ngy X n, X ny X ny, X

Nspec = 128 X 32 X 24 x 48 x 8 x 2 and 300 x 32 x 24 x 64 x 16 x 2. This strong
scaling test was carried out on the Jilich HPCFF linux cluster.

electrons and ions, the typical number of time steps required to reach a saturated turbulent
state with enough statistics is about 1000 000. The overall computational power required
is thus of the order of 25 000 CPU hours for a local nonlinear simulation and 300 000
CPU hours for a global computation. Gyrokinetic simulations would thus be out of reach
without massive parallelization. The code is parallelized with mixed OpenMP and MPI
parallelization along all the (z,y, z,v), ) directions and over species, and shows a very
good scaling with increasing number of processors [60]. Note that the z-parallelization is
only used for the global version of the code. A strong scaling, i.e. increasing the number
of cores while keeping the system size constant, computed on the Jiillich HPC-FF linux
cluster machine for the local and global parameters described above is shown in Fig. (3.2).
In addition, a scaling performed by T. Dannert on the Jiilich BlueGene/P supercomputer
for a much larger local case, where both electron and ion scales are considered, is shown

in Fig. (3.3), for a resolution 1024 x 512 x 24 x 48 x 8 x 2.
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Figure 3.3: Strong scaling of the GENE code on the Jiilich BlueGene/P supercomputer for
a local multi-scale simulation with resolution n, X ng, X n, x Ty X My X Nogpee =
1024 x 512 x 24 x 48 x 8 x 2.

3.2 Periodicity and parallel boundary conditions

3.2.1 The parallel boundary conditions

When dealing with field-aligned coordinates in a toroidal system, the boundary condi-
tions in the parallel direction are of great importance and need to be consistent with the
natural periodicity of each magnetic surface. This periodicity can easily be expressed in

variables (U, x, ¢), indeed for any quantity F (¥, x, ¢) one has:

FW,x+2m¢) = F(¥,x,¢) (3.10)
F¥,x,0+2m) = F(¥,x,9), (3.11)

In the field aligned coordinate system (z = Cy(¥) — o , y = Cy (V) (¢xX — @) — Yo, 2 = X),

see Eq. 2.59, these conditions respectively read:

Fle,y,z+27m) = Flr,y—Cyq2m, z), (3.12)

Flz,y+Cy2mz2) = F(z,y,2). (3.13)

As stated earlier, see section 3.1.1, the simulation domain may not always cover the whole

flux surface, and in this case a statistical periodicity is assumed in the ¢ direction:

F(U,x,¢+A¢) =F(¥,x,0), with A¢ = 271/ny. (3.14)
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We note that Eq. (3.14) naturally reduces to (3.11) for ny = 1. These boundary conditions
are illustrated in Fig. 3.4. Note that when ng > 0, as in Fig. 3.4, F(z,y — Cy q2, z) may
be outside of the simulation domain and the periodicity in y is then invoked. In general,

conditions (3.12) and (3.13) in (x,y, z) variables becomes:

Flr,y+1,2z) = F(z,y,2), (3.15)

F(x,y,2+27) = F(z,mod;, (y — Cyq2my),z), (3.16)
having made used of the definition (3.4) for [,.

X A F(x,y,z+2 1)
. X -

WL

LA, M

0 F(xy-2n qCy,z) 2T (1)'

Fx,y-2rn qCy-ly,2)

Figure 3.4: Illustration of the parallel boundary conditions for ny = 2.

In GENE’s representation, the y coordinate is treated in Fourier space:
f('ray?z) :Z fk('r?Z) exp(27rzk(y—y0)/ly) : (317)
k

and the periodic boundary condition in y, Eq. (3.15), is naturally contained in this rep-

resentation. Boundary condition Eq. (3.16) however reads:

Zﬁk(x,z+27r) exp(2mik (y —vo)/ly) = Zﬁk(x, z)exp2mik(y—Cyq2m —yo)/l,].

(3.18)
One thus identifies for each y-mode k:
Filx,z427) = Fi(x, 2) exp(—ik2nCyq27/l,) . (3.19)
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Making use of the relation I, = C,2m/ng the parallel boundary condition in z finally
reads:

Filx,z+271) = Fe(x, z) exp(—ikngq27) . (3.20)

To summarize, when ng = 1, the full magnetic surface is covered by the flux tube and in
this case, the physical periodicities in the y and ¢ angles are exactly recovered. For ng > 1
only a fraction 1/ng of the annulus is covered, x periodicity is ensured and a statistical

periodicity in the ¢ direction is assumed.

3.2.2 Contour plot in the poloidal plane

To illustrate that the choice of parallel boundary conditions in z satisfy the natural
periodicity condition in y, we shall now describe how one can reconstruct contours of any
field quantity in the poloidal plane, knowing its values in GENE coordinates (x, k,, 2).
Considering a field quantity F in the coordinates x = z(V), y —yo = Cy(gx — ¢), 2 = x:

Flx,y,z) = Zﬁk(x, z)exp(2mik(y —yo)/ly) (3.21)
k
one can write

f(\II7X7¢) = F(:c:x(\lf),y:Cy(qX—@,z:X)
= > Fla, ) explikno (gx — ¢)] - (3.22)

The periodicity condition in y is well satisfied:

F(U,x +2m,¢) = Zﬁk(aj,x +2m)exp(ikng (g (x +27) — @)

— Z]:"k(x, x)exp(—ngikqg2m)explikno(q(x +27) — ¢)]
k
_ Fwxe). 3:2)

having made use of Eq. (3.19). The periodicity in ¢ is clearly also verified:
FU,x,¢+2r) = > Fil(x,x)explikng(qx — ¢ —27)]
k

— F(U,y.0). (3.24)
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Figure 3.5: Contour plot of the electric potential reconstructed in the poloidal plane. Note
the absence of any discontinuity.

Using this transformation, the electric potential computed with the global version of

GENE for a linear Ion Temperature Gradient instability with toroidal mode number

n = 19 is shown in Fig. 3.5. The periodicity condition in x is clearly satisfied. For this

example, we consider a plasma with circular concentric flux surfaces of the form:

Ro + rcost

rsin @

(3.25)
(3.26)

where 6 is the geometrical poloidal angle. The relations 6 = 6(r, x) and r = f(V) are

given in Chap. 4.

Note that for representing F (W, x,¢) a more dense mesh in y is required than the z

mesh for representing F(x,y, z). Indeed, in the latter case the fast phase dependence of

the mode is entirely contained in the y dependence, while in the former the fast phase

variation is in both y and ¢.

3.2.3 The local limit

In the local code, the safety factor profile, ¢(x) is linearized

Q

q(z)

26

d
%Q+@ﬁ£>
qo dx g

L
4o <1+8_) )
To

(3.27)
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where § = (r9/qo)dq/dzx is defined as the magnetic shear. The parallel boundary condition
(3.20) thus becomes

. n 2
Filr,z+2m) = Filz,z)exp[—ikngqo2m|exp {—QWikJCZy—W@,éx}
y To

k2
= Fr(x,z)exp[—ikmngqo2m]|exp {—2%1 Wéx} )

(3.28)

Y

having used the particular definition C, = 79/qo used in the flux tube code.
Considering now the local code representation where z is treated in Fourier space, (3.28)

becomes:

Z]f—lk(z +2m)exp(2milz/l,) =

2T

!
2 k
Z Fir(2) exp [—2ming qo k] exp {—2 i ]
]

§:c] exp 27ilz/l,] . (3.29)

By imposing the following condition on the length [,:
Ly
lp =n.——, (3.30)
where n. is an integer, one can write:
Z Fulz+2m)exp(2milz/l,) =
I
Z Fue(2) exp [-2ming qo k] exp [27wi(l — n k) /1] . (3.31)
]
One can therefore identify for a given (k, =27l/l,,k, = 27 k/l,) mode:
Fi(z427) = Fronwn(z)exp(=2minggok). (3.32)

A given (k,, k;) mode is thus coupled to different (k,, k., = k, + pdk,) modes as a result
of the parallel boundary conditions, where 6k, = 27w n.k/l, .

For convenience, it is assumed in addition that ng ¢ is an integer, so that the corresponding
phase factor in (3.32) is unity. We note that depending on the choice for qo, ng is thus

not necessarily an integer when using the local version of the code.
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3.3 Gyro-averaging

The gyro-averaging scheme for the global code was first implemented by T. Dannert
[61], using a linearization of the metric to evaluate the particle position around the gyro-
orbit. In this section, this procedure is described in detail and some of its limitations
are discussed. Finally, an alternative scheme is proposed where the particle position is
evaluated through a transformation to a quasi-Cartesian coordinate system.

The gyro-average of several quantities is required in the fields and Vlasov equations, and

is defined for a given field F as:

_ 1 L
F(X.p) = %ff(Xer(u,a))da
1 — — —
_ %ff(x(X—l—ﬁ),y(X—l—ﬁ),z(X—irﬁ))da, (3.33)
where the Larmor vector p lies in the plane perpendicular to the magnetic field at position

X. Defining (€1, €3) such that (€, €, l;) provides a local, unitary, orthogonal system with

b= B(z)/B(x), one can write:

/2
R L _ vy 1 (2myp\!
p=p(cosae; +sinaey) , with p:—:—< . 3.34
(cosa & ) o s (3:31)

As discussed in section 2.11, the z—variations of fluctuating quantities (terms ~ 0/0z)

are neglected with respect to (x,y) variations:
F@(X +p),y(X + ), 2(X + ) = Fa(X + 7),y(X +7), 2(X)) . (3.35)

Thus, in order to compute the gyro-average of a quantity JF, which is known on the fixed
grid (z,y), one needs to evaluate it around the gyro-circle at positions [:E()Z' +7), y()? +0)].
These positions do not coincide in general with the (x,y) grid, and interpolations are thus
required. In the global version of the code, as described below, the evaluation of F in the
x direction is carried out with finite elements, whereas the Fourier representation used
in the y direction already provides a continuous description and no further treatment is
required for interpolation. In the local version of the code, the x direction is also treated

in Fourier space, in this case gyro-averaging can simply be described as an analytical,

algebraic operator, as will be presented at the end of this section.
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3.3.1 The mixed finite element and Fourier representation

In the global code, the quantity F which needs to be gyro-averaged is represented in

terms of its k, Fourier components and finite elements in the = direction:
Fla,y,z Z.ﬁy z,z) ey = an b, (2) An(z) €9 (3.36)

where A, (z) are the radial basis functions, and ﬁn,ky are the corresponding finite element
coefficients for each k, mode. In the present version of the code, a 5th order Hermite

representation is used [28]:

Fi (z, 2) an by (2) Hon(@) + Flyo (2) Hin(z) + il (2) Ha(2) (3.37)

Y

where fnky = ﬁky (x,), and the 5th order piecewise polynomials H,, ,(x) are the Hermite

elements defined on [z, Z,.1] through the relations:

_Hm,n = 5jn 5um (338)

with w = 0,1,2 and zero outside [z,_; ,41]. The z-derivatives ]}rﬁky(z) and A,{’ky(z)
are evaluated with 4th order centered finite differences, see Eq. (2.83), such that one can

write:
with

An(fE) _ HOJ.L(l') i HLTL*Q(x) -8 Hl,n*1<x) + 8 Hl,n+1 (.T) — H17n+2(1‘)

12 Az
 Hypo(2) =16 Hyp1(2) + 30 Hyp — 16 Hy i1 () + Hapia(2) (3.40)
12 Ax? '
The gyro-average of F can now be expressed as:
FE) = 3 Fan(2) B0 A0 ) o000 0D
= Y Fn,(2) €M T(wn by z ) (3.41)

n,ky
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having defined
1
j(m,n, kya Z?lu) = 2_ %A ( (X + ﬁ)) iy ((X+7)—( ))da ) (342)
7

where z = 2(X), y = y(X), z = 2(X) are the field aligned coordinates of the guiding
center position X. We note that J is independent of y as a result of the assumed
axisymmetry of the magnetic geometry.

For a given k, component one can thus write:
fky J]”Z/L Z\Zn kyvzﬂ nky( )7 \V/ZEZ (343>

with the notation J;,(ky, z, ) = J(xi,n, ky, 2, 1t). Relation (3.43) can be expressed in
matrix-vector notation:

‘/%ky<z7:u) = j(kw Z, ,u) -,’E:ky(z) ) (344)

where J is a two dimensional matrix composed of the elements 7 ,,, and F= {F(z;)}.

3.3.2 Double gyro-averaging

In addition to the simple gyro-averaging, the double gyro-averaging F is needed when

computing the quasi-neutrality equation (2.136). This operation on F is defined as:

F(X,p) = % ]{]{ F(X + 75— p)dadd

- ]{Z]—-’”ﬁu +ﬁ))j($()z+ﬁ),n,ky,z()f+ﬁj7u) eikyy()@rp‘) dov

n,ky

12

. 1 N . o
Z anky (Z) elkyy2_ f j(I(X + p_ja n, ky7 Z, M) GZky(y(X-i_ﬁ)_y) da (345)
T

n,ky

where again z(X + ) ~ z(X) = z and y(X) =

Using the finite element representation

T@(X + ) nkp ) = 3 Tinlhy 2 ) MK+ 7)) (3.46)
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one can write

ky,m,l

= Y Fun, ()OO Ty, 2 1) T (w1 Ky, 2, 1)

ky,m,l

For a given k, mode one thus has:
ﬁky ('T’h Z, ,U/) = Z Z k7il(ky7 Z, ,LL) t-TZn(kya Z, ,LL) ﬁn,ky<z) ) \V/.T,L
n l

which in matrix vector notation can be written as:

—
~

Fio, (2, 1) = T?(ky, 2, 1) Fi,(2)

having defined [J? as the matrix with elements J;,, = > TiTm.

3.3.3 Gyro-averaging by linearizing the metric in field-aligned

coordinates

a - ) ' 1 — . =
‘/T(Xa M) - Z fn,ky(z) elkyy(X)\%,n(k:ya 2 M) 2_ / Al(l’(X + ﬁ)) GZky(y(X_Fﬁ)_y) do
' T

(3.47)

(3.48)

(3.49)

In the previous sections we have described how one can compute gyro-averaged and

double gyro-averaged quantities using a finite element approach. In order to complete the

procedure and to calculate the « integrals, one still needs to evaluate the field-aligned

coordinates 2/ = (X + p), ¥ = y(X + p) of the particle along the gyroring. As a

first approach, the field-aligned coordinates 2’ and ¢y’ are estimated approximately by

linearizing the metric around the guiding center position:

>

+Va-j+0(p)

v =yX+7p) = yX)+Vy-5+0(?) .

o =x(X+p) = x(

By choosing (€}, €3) as follows:

L Ve W
L WV Vo
. - (ﬁx X ﬁy) xVr  ¢"Vy— ¢®Vaz
€y = b x €1 = = - — =
|(Vz x Vy) x Vz| Vg

(3.50)
(3.51)

(3.52)

(3.53)
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with g2 = ¢g**g%¥ — (¢*¥)?, one obtains:

p° = Vz-g=g%pcosa , (3.54)
= o Ty g .
pY = Vy-p= pCcos o + psina , 3.55
Vi S g (399
which leads to:
T (z,n, ky, 2, 1) = j{An(x + p") e*P da (3.56)

The approximation used in Egs. (3.50)-(3.51) are problematic near a singularity of the
coordinate system, as is the case close to the center of a polar-like coordinate system.
Indeed, near such a singularity, the metric can vary significantly over the Larmor radius

and lead to unwanted approximations in metric effects.

lllustration in a cylindrical system

In order to illustrate which effects are neglected when the particle position is estimated

by expanding the field-aligned coordinates metric around the guiding center position, we

Figure 3.6: Larmor radius in a cylindrical system.

consider the simpler problem of computing the gyro-average F of a cylindrical symmetric
field . Considering cylindrical coordinates (7,6, z), one thus has F = F(r) and F is

evaluated as follows:

F = %/]—"(T(X'Jrﬁ))da. (3.57)
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The particle position ' = r()z + p), see Fig. 3.6, is given by:

r = \/(r—l—p cosa)? + p? sin® «

= /12427 p cosa + p?
1 /2p cosa 2 1 /2pcosa\?
L L(20cosa P\ 1 (2pcosa
2 r 72 8 r

1
= r+pcosa+ 2—p2 sin® a +0(p?) , (3.58)
&

~ T

—

having defined r = r(X), and chosen (€}, €3) as (€., €p). In Eq. (3.58) the underbrace term
is a higher order term, not accounted for in Eqgs.(3.50)-(3.51), and kept here to highlight
the differences.

Using a long wavelength approximation, one expands JF, further tracking the additional

term in Eq. (3.58):

_ 1, , OF
F = 5 [f(r)—i—(pcosoz—i-%p sin” ) By
—
2 02 92
p° cos®a O°F 3
— _87"2} da+ O(p°)
2 2
_ rLor o F
= Fl+ 4 (7‘ or i 87”2) (3.59)
——
2
_ pr1o(oF
= Fi)+ 4 ror (T 87’) ' (3.60)

From Eq. (3.59) one observes that when evaluating the particle position by simply lin-
earizing the metric as in Egs.(3.50)-(3.51), the 122 term would be missing. This term

clearly becomes significant when approaching the axis r = 0.

3.3.4 Gyro-averaging in quasi-Cartesian coordinates

In order to avoid the issues described above with linearizing the metric, one could
compute the field-aligned coordinates (2',y’,2") of the particles exactly. To this end,
one could map the guiding center position X from the field-aligned coordinates (x,y, z)
to the cylindrical coordinate system (R, Z,¢) in which the position 7 = X + p of the
particle can be conveniently computed. The cylindrical coordinates of the particle than
need to be mapped back to the field aligned coordinates (2,7, 2'). Although exact, the

implementation of this procedure presents itself as quite cumbersome due to the required
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mapping steps, and a more practical alternative is thus suggested here instead.
As discussed in section 3.3.3 the main issue results from the fact that one is linearizing the
(x,y, z) metric which is singular on axis. A pragmatic approach to overcome this problem

is thus to evaluate the particle position ¥ = X + p in the quasi-Cartesian coordinates

(& m):
& = xcosz
(3.61)
n = xsinz
which is not singular at the axis, as illustrated in Fig 3.7. Note that here x is assumed to
go like r at the axis, which is the case when using the circular model since x = r, as well
as with the interface with the MHD equilibrium code by choosing  ~ v/¥, see Chapter

4. In the limit  — 0 the (§,n) coordinate system clearly tends towards a local Cartesian

coordinate system instead of the singular (z, z) polar-like system.

Z/a
o

Figure 3.7: (2, 2) and (§,n) grids in the poloidal plane for a circular equilibrium plasma.

The particle position can now be evaluated by first linearizing the metric in the (§,7) co-
ordinate system and then analytically mapped back to the field-aligned coordinate system
(x,y, z) using the transformation:

N L

(3.62)
tanz = n/¢
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One thus obtains:

2% = 24X + p)

= EX+)+n(X+p)

N = 2 = = 2
€(X) + 7 V| + [n(X) + 7 )
= 22 +2¢5-VE+205-Vn+(7-V

12

—

&+ (7- V)
= 224227 -Vo+ (7- Vo) +2%(7-V2)?, (3.63)

having used the relations 65 = coszVz — z sinz Vz and 677 = sinzVz + z cos z Vz.

From the definition of p'in Eq. (3.34), and of the local basis vectors €} and é; in Eqgs. (3.52)-

(3.53), one obtains:

<

p-Vz

<L

p-Vz

= Vg p cosa, (3.64)

gxz g:m:gyz _ gzyg:pz '
= ——pcosa+ psina . (3.65)
IvVI"

N

In the same way, the z coordinate is estimated as follows:

2= 2(X +7)

= arctan

MY+@>
§X +7)

n—l—sinzﬁ-ﬁx—l—mcoszﬁ-ﬁz
~ arctan = =
E+coszp-Vr—xsinzp-Vz
(x+ §-Vaz)sinz+z cosz j-Vz
= arctan = =
(x4 p-Vz)cosz —xsinz p-Vz
xﬁﬁz
= z+4arctan | ——— | , 3.66
(:L’—l—p-Vx) ( )

where the trigonometric relation tan(z; + z9) = (tan z; + tan z;)/(1 — tan z; tan z3) has

been used. One finally still needs to evaluate 3’ — y, appearing in Eq. (3.42) , with:

V—y=yX+p) -y =

Cy [a(X + §) X(X +9) — 6(X + §)] — Cy [a(X) x(X) — ¢(X)]
Cyla(a’) ' — qlz) 2(z) — §- V)], (3.67)

where ¢(X 4 5) was linearized, and:

- zz ()
ﬁ-V¢—-——%—E%p$na. (3.68)
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In Cylinder

Considering again the previous example in a cylinder, we verify that the missing %%
term is recovered. Starting from Rel.(3.63), the position 2’ is expanded to second order

in p:

7~ \/x2+2xﬁ-ﬁx+(ﬁ~§:c)2+x2(ﬁ-ﬁz)2
~ x+ﬁ-%+§(ﬁvz)2+0(p3). (3.69)

In the cylindrical limit, the metric coefficients read (see Sec. 4.3):

gr =1, g =352 ,g" =1+ (52) (3.70)
1 1

) g = g = 3.71

g 9= g = (3.71)

which, using (3.64) and (3.65), leads to:
1

g-Ve=pcosa , p-Vz=—psina. (3.72)
r
One thus finally obtains for ’:
2
¥ =x+pcosa+ g—sin2a+(9(p3) , (3.73)
r

where we indeed recover the higher order correction term of Eq. (3.58).

3.3.5 The field equations

With the finite element representation in x described above for the gyro-averaging and
double gyro-averaging, the different field equations can be written as matrix equations for

the discrete fields.

The quasi-neutrality equation

Using Eqgs. (3.43) and (3.48), the quasi-neutrality equation (2.136) reads for all spatial

positions:

> {W%j(l’o) Z; / Bo1i Gt Y Tinlky 2. p1) frjm do dis

J

T .. T ..
07,2 " ] 07,2

Zzﬁ ii | 2 B % B : 0 q
0y 2) = 2SS [ alhy) iy o) exp(=200) dj )| |

(3.74)
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which can be expressed for each k, and 2z = 2, in matrix vector notation as a linear system

for & = {®;(ky, z)}, i = [1,n,), (the hat is dropped here):

M® =S, , (3.75)
with
VAR TIE B . 1By
Min — ]A—N |i57,n _ 0,7 / ;Z jn eXp . 0,7 dA ’ 376
Z Toji T0j,i ; e ( T0j,i ) dit ( )
and

S1i = Zﬂﬁ()j(%) Z; / Af)k”,i Z Tim f1j,n doy dfu . (3.77)
i n

The equation for ® defined by (3.76) can then be solved using standard numerical methods
for linear algebraic systems of equations. In GENE, Eq. (3.76) is solved with a direct
method for each (k,, z;) using an LU decomposition. Note that as M depends only on
the magnetic equilibrium and background distribution fy, this LU decomposition needs

only to be done once for each (k,, z;) during the initialization phase of the simulation.

The adiabatic electron case

Similarly, when considering adiabatic electrons, Eq. (2.137) can be written:

(M’ + 0) d=23 + %@ , (3.78)
Oe Oc

where M’ and S/ are the same matrix and vector as in Egs. (3.76) and (3.77) except
that the sums ) ; are running over j # e. In order to solve Eq. (3.78) one first needs
to evaluate the unknown flux-surface average (CI;) of the electric potential. Taking the
flux-surface average of Eq. (3.78), one obtains:

<<M’+ °> cf>> = (F) + e (D), (3.79)

TOe

Using Egs (3.78) and (3.79) would in principle require to solve an integral equation for

®. However, a further simplification is introduced here in order to evaluate (tf), which
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consists in neglecting the poloidal variation of equilibrium quantities such that:

(M’ 7}06) - <M’ + "f’e> ~0), (3.80)
T()e TOe
<(M/+7306)(I_)’>2<M/ 7?/\06> <$>:|:<MI>+7ZOE:| <
TOe TOe TOe

With this approximation Eq. (3.79) becomes:

leading to:

B) . (3.81)

—

(M) (@) = (51) (3.82)
which can now be solved as a linear system for the flux-surface averaged electric poten-

tial (P).

Ampere’s law

From Eq. (2.138), the discrete equation for Ay ;(ky, 2zx) = Aqj(2s, ky, 2) can be written

in matrix-vector form:
DA =5, (3.83)

where D is the matrix associated with the discretized V2 = g”% +1i2 gxyk:ya% — gyykg
operator, where the derivatives are evaluated with centered 4th order finite differences,

see Egs. (3.1) and (3.2), and Sy = SAi=1, n, With:
5ref ~ ~ A Py ~ gA
SA,i = Z {T j noj(xo) UTj(.T()) W/B()l,i Z u7i,n flj,n dUH d/l, (384)
J n

_@ N0ji Jo| i 7 $ Bo,i ZZ T T, e~ ABo/T0; g5 & (3.85)
4+ g\ =) ) e

T0j,i

note that the sum over [ is pre-computed in the initialization phase.

3.3.6 The local limit

In the local limit, thanks to the considered Fourier representation in both the z and

y directions, the gyro-averaging operator (3.33) with the approximation (3.35) can be
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simply expressed as:

Flz,y) = %]{f(x()?-i‘ﬁ%y()?‘i‘ﬁ)) do

. 1 o .
=Y A = j{ gilke 2(X 42 kg u(R 47 g,

ke ky
= Y Fay, eiherthn S 7{ itk Vaithy ) g, (3.86)
wty 2m
ka,ky

where the particle position has been evaluated by linearizing the metric, see Eqgs. (3.50)

and (3.51). Using now relations (3.54) and (3.55), one has:

- - Yy
k;NVe-p+k,Vy-g = p {(kw Vg + k, jﬁ) cosa + k, \/% sina| (3.87)
= pky cos(a+¢), (3.88)
with
g ? 2 g’
= ¢k + g™k 4+ 2ky ky ", (3.90)
and

tang = — (k;y \/%) / (l% VI + k, \5’%) (3.91)

The gyro-averaging operator finally reads for a given (k,, k,) mode:

Flky,ky) = Jo(Nj) Flks, ky) (3.92)

where Jy = m! [T e*” “**du is the zeroth order Bessel function of the first kind, A; =
/(2 By pt/m;) k1 /€. In this representation, the field equations become algebraic expres-
sions and thus are trivially solved. The electrostatic potential, solution to the quasi-

neutrality equation, reads:

Zj flojﬂ'Zj f BSHJO()‘]) flj dUAHd'a

$ = T
225057 [1 = To(by)]

(3.93)

where I'g(b) = exp(—b) Iy(b) is the zeroth order scaled modified Bessel function and b; =

(vF; k1)/(2€). When considering adiabatic electrons, the solution to the quasi-neutrality
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equation equation becomes:

> jze 1037 Zy [ By Jo(Ng) fuy dojdn + %z<@
A . Z3 7
e+ D e noj 7, [1—To(by)]

P =

(3.94)

where the flux-surface average of ® is computed using the same approximation as in the

global case:

<Zj;£e fLoj 7TZ]' f BSH‘]O()\J) flj dUA”d[L>

(D) = = (3.95)
(S, i [1 = To(by)])
Finally Ampere’s law reads:
1 1 ﬁre ~ ~ . r ~ N
Ay = —k—gz {—Qf j Mg UTj(fL’O)W/Bo” Jo(Aj) frj vy dfu (3.96)
L .
J
B ool Z; 2
TR [1—To(b;)] &} (3.97)

More details to the derivation of the local gyro-averaging and field equations can be found

in [51].

3.4 Real space dealiasing

3.4.1 Aliasing issue

The numerical discretization of the physically continuous space defines a smallest re-
solved scale (i.e. highest Fourier mode) which results from the finite number of grid points
in the simulation domain. In a nonlinear simulation, even when the linear drive region is
well contained inside the resolved region of the spectrum, the quadratic nonlinear ExB
term will generate smaller and smaller structures. In the absence of physical damping,
these small scales will eventually reach the grid size and will therefore result in unresolved
scales leading to so-called aliasing effects. In order to get a better insight concerning this
issue we shall first consider a discrete Fourier representation of the discretized fields and
discuss how aliasing effects can be suppressed in a graceful way in this representation,
which shall then lead us to an equivalent real space procedure.

To understand the basic aliasing effect, let us first consider two real periodic one-dimensional

functions f; and f5 discretized on N grid points, each containing a single Fourier mode
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with non zero amplitude. Their respective mode numbers k; and ko are assumed to be
such that the sum k; + ky is greater than the Nyquist limit, k; + ko > N/2. When multi-
plying the two functions together, fi5 = fi X f5, the spectrum will contain both a Fourier
mode at k; — k2 and an unresolved mode with mode number k15 = k1 + k5. This unresolved
mode will effectively reappear at position k15 — N in the spectrum of the product function
fi2 as a result of the N periodicity of the Fourier components. The generation of this
unphysical mode at ki — N is what is called aliasing.

In order to further clarify this effect, let us now consider a one dimensional example with

the two real functions discretized over N = 32 points:

filz) = 2sin(27ky/L,) (3.98)
fa(z) = 2sin(2mky/L,) (3.99)

and assuming k; = 10, and ky = 8. In this case, the product fio = fi X fo should contain
a mode ky — ko = 2 and a mode k; + ks = 18. The mode number 18 is above the Nyquist
limit of N/2 = 16 and thus reappears in the spectrum at position 18 — N = —14 due to
the N periodicity of the Fourier components which is illustrated in Fig. 3.8. Note that
as all considered fields are real, their complex Fourier spectra always contains pairs of

coefficients (fy, f_x) verifying the reality condition f_j = f}.

| | ' (mmf
1.5} i

Aliased mode -f2

it

-10

10

0
n
X

Figure 3.8: Fourier spectra of fi, fo and fio = f1 X fo
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3.4.2 Standard dealiasing technique

When working in Fourier space, the standard method to avoid aliased modes generated
by non-linear terms to pollute the spectrum consists of two steps. Each spectrum of
the two functions to be multiplied is (1) first extended and padded with zeros before
the nonlinear multiplication. In practice both theses extended spectra are temporarily
transformed to real space where the product is straightforward to carry out. Back to
Fourier space the resulting product function is thus still given on the extended spectrum,
and (2) the eventual modes now appearing in the extended spectrum region are then
removed to obtain a function defined on the original spectrum. Note that this so-called
anti-aliasing procedure clearly does not treat exactly the non-linear spectrum evolution
but simply enables to gracefully remove from the numerical simulation any unresolved
Fourier modes that may be generated.

Going back to our previous example functions Eqs. (3.98)-(3.99), the real space and Fourier
representations of the product function fi» with and without anti-aliasing procedure is
shown on Fig. 3.9.

This Fourier space anti-aliasing technique is used in the local version of GENE for both
x and y directions and for the y direction in the global code. In practice a so-called 3/2

rule is considered, that is the extended spectrum contains 3 N/2 modes.

-f12
-f12a.a.

-10 -5 0 5 10

Figure 3.9: Real space (left) and Fourier (right) representation of the product function
f12, with and without anti-aliasing procedure
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3.4.3 Treatment in real space

In the global version of the code, the x direction is no longer treated in Fourier space,
which requires an alternative approach. The two steps described above correspond in
real space to (1) an interpolation, since the same functions are now defined on a finer
grid, followed by (2) a smoothing operation, or filtering on the product function. When
carrying out these two steps in real space, one can only approximately reproduce the
Fourier space treatment and will introduce damping and/or apparition of spurious modes
in the resolved spectrum which should be controlled.

In view of quantifying the effects of this real space treatment and to compare different
interpolation and smoothing schemes, the procedure is applied to periodic functions such
that a Fourier analysis can be easily carried out.
Let f be a periodic function represented on the initial equidistant N-point grid and f
the corresponding interpolated function on the refined 2 N-point grid, obtained from the
original grid by adding mid-point mesh nodes. One notes that although for the Fourier
space dealiasing the refined mesh contains only 3 N/2 points, we use for the real space
scheme a 2 N mesh, such that the grid point values of f can be used for f. In order
to analyse how the interpolation affects the spectrum, one can write the corresponding
linear operator in Fourier space in the form f,; = H(l%)f,;, k = [-N,N], where H(k)
will be referred to as the spectral extension function, and relates the Fourier components
of the interpolated function f,; to the Fourier components of the initial function f,; A
practical example of the derivation of H (k) for the Lagrange interpolation is provided in
Eq. (3.108). Noticing that f; is periodic with period N, fi = frin, a given mode fj, will
therefore in general give rise to two modes in the f spectrum:

f E—

V) fe = H(k) ]y 5,100
k

in = H(k+N)f

The spectral extension function H verifies H(k) + H(k + N) = 1, see for example
Eq. (3.108), reflecting the fact that the information on the initial grid is kept, and that
one recovers the original function f when removing mid-point values from the interpo-

lated function f. The splitting of mode fk into two modes fk and fk+ ~ also show how the

spectrum may get deformed by the interpolation step. Different interpolation schemes
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have been tested, and their corresponding spectral extension functions are plotted on
Fig. 3.10. Only the box-shaped extension function of the Fourier anti-aliasing scheme
avoids deformation of the spectrum according to (3.100). All real space interpolation
schemes considered have corresponding extension functions which are only approxima-

tions of this box-shape. Since z—parallelization is considered in the implementation of

0.8f
.06
% —=—Lagrange, n=6
—©—Lagrange, n=8
0.4f
— Lagrange, n=1(Q
- &~ Cubic Spline
0.2} | - B- Cubic Hermite
Fourier
0O 0.2 0.4

Figure 3.10: Spectral extension function for different interpolation schemes: Lagrange in-
terpolation of various orders p = n — 1, Cubic Spline, Cubic Hermite. For
comparison, the box-shaped extension function of the standard Fourier anti-
aliasing scheme is also shown.

the global GENE code, a local interpolation scheme is more favorable, and because of its
simplicity, high order Lagrange interpolation was finally implemented. The default value
is the n = 10 points stencil (9th order polynomial) interpolation.

There exist various ways to construct a smoothing operator. In the present work, con-
sidering that the H(k) functions for the different interpolation schemes approach well
the ideal box-shaped function, it was decided to design the smoothing operator so that
its transfer function S(k) in Fourier space would be identical to H (k). The smoothed

function on the extended grid reads in Fourier space:

A

(F ok = S(R) i (3.101)
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2nd

Restricting to the coarse N-point grid by dropping every point reads in Fourier space:

A A

(Foe = (P + (Drew = Sk fie + Sk + N) froan (3.102)
where we note the contribution of the ( fk+ ~) to the spectrum of (f) as a result of aliasing.
In particular this contribution vanishes, ( fk+ ~) = 0, in the case of the box-shaped filtering
used in the standard Fourier anti-aliasing scheme.

Relation (3.102) is then used to derive the corresponding real space operator which can

be implemented in the code.

3.4.4 Lagrange interpolation

In order to better illustrate the real space anti-aliasing procedure, the derivation of the
spectral extension function H (k) for the Lagrange interpolation is now described together
with the corresponding smoothing operator.

First of all, the discrete periodic function f; = f(x;), defined on the equidistant grid z;,

is represented using an n point Lagrange interpolation by

jmaz
fle)= > Lijx—x) fisj, Vawelri,zin), (3.103)
J=Jmin
where jpin = —[(n—1)/2] and j,ax = [n/2], with [2] the nearest integer to z towards minus

infinity. The L,(z) are the p = (n — 1)th order polynomials defined by L;(j’ Ax) = §;
Vi, 7 = Jmin---Jmaz- In the following we restrain ourselves to midpoint interpolation,
and to even stencils, i.e. odd order polynomials, so that the interpolated value at ;1o
is computed using the same number of f; values on the left and on the right.

The interpolated function f; is represented on the dense mesh z; for [ € [0,2N — 1] with,

Tog = X and jQi—i—l = fL’H_l/g s (3104)
fao = fi and  fo = Z Lj(Az/2) fisj , (3.105)
Jj=—s+1

where s = n/2. The stencil for such a Lagrange interpolation is shown in Fig. 3.11.

Using these definitions, the Fourier coefficients of f can then be expressed in terms of the
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Lagrange interpolation stencil for n=4

O (P @ : (P (P O coarse grid x;

0000000000 fine grid x;

Figure 3.11: Schematic of the Lagrange interpolation stencil for n = 4.

Fourier coefficients of f:

=1 r —imlk/N
e = IN 12(; 1€
1 N-1 N-1
_ ﬁ le 6—127le/N + Zle—‘,—l 6—127T(l+1/2)k/N
=0 =0
1 . —iwk/N 1 S
= _fk“‘e _Z Z Ax/2 f e —i2nlk/N
=0 j=-—s+1
1 . e—imk/N s 1 —1+j
= ht— > ~ Li(Az/2) Z fr e P2mU=DRN T (3106)
J=—s+1 l=j

using the periodicity of f, the last sum reads:
—1+j

s Z f 6—127r i) k/N _ _Z f —i2w (l—j)k/N

= fa elmk/N : (3.107)

The spectral extension function H(k) is thus finally given by:

fo = H(k) fu :% 1+ Z (A, )2) e i UZ2RNT £ (3.108)

j=—s+1

The H (k) function is shown in Fig. 3.10 for various stencil sizes n. The fact that L;(Ax/2)
are real, naturally leads to the reality condition H*(k) = H(—k). But for n even, the
additional symmetry L;(Az/2) = L_;+;(Ax/2) results in H(k) being real valued, as can
be easily shown from Eq. (3.108).

As discussed in the previous section, the smoothing operator S(k) is chosen to be identical

to H(k) so that:
(Fye = H(k) fu+ H(k+ N) frrn - (3.109)
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From this relation, the point values of the smoothed function (f) can be expressed in

terms of the values of f:

N-1
<f>l — <f>k€l27rkl/N
k=0
N—1 ) .
— (H(k) fo+ H(k + N) fk+N> pi2mkI/N
k=0
N-1  N-1 R
= H(k)€i27rkl/N fk + ZH(k+N) fk+N) ei2mkl/N 127k N/N
k=0 k=0
N—-1 2N—1

(]

H(k)eiQWkl/N fl+ Z H(k) fk’ GA2TR N
k'=N

N o
Z
=)

1
= H(k)et2mk21/2N g (3.110)

Bl
[e=]

Using Eq. (3.108) one finally obtains the relation

(fh =

N |

2N—-1 s 2N-1
[Z fk eiTR2YN Z Lj(Ax/2) Z ]Fk e—i2m(1-2j-21)k/2N
k=0

j=—s+1 k=0

= %(fzﬁ > Lj(Aw/z)f2(l+j)—1> (3.111)

j=—s+1

which is used to compute the smoothed function f on the the N points grid. The stencil

for such a ”Lagrange smoothing” is shown in Fig. 3.12.

oD o O O O coarse grid x;

f
coobo6006000 fine grid x;

Stencil for n=4
Lagrange smoothing

Figure 3.12: Schematic of the Lagrange smoothing stencil for n = 4.

3.4.5 Validation with nonlinear simulations

The anti-aliasing procedure was first tested in a version of the GENE code which still
uses Fourier treatment of the x derivatives and field solver, but with a real space anti-

aliasing scheme. Results in Fig. 3.13 are obtained with 9th order Lagrange interpolation
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(i.e. n = 10) and the corresponding smoothing operator, and are compared with nonlinear
simulations using the standard Fourier space dealiasing or no dealiasing. For the simula-
tions with real space dealiasing or without dealiasing a hyperdiffusion term, see Section
3.1.1, is required and the results are shown in each case for the minimal hyperdiffusion

coefficient, h,, ensuring a stable simulation.
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Figure 3.13: (a) Electrostatic heat flux time trace, (b) k, density spectrum in logarithmic
and (c) linear scale. The different curves are obtained using (1) the stan-
dard Fourier anti-aliasing and h, = 0, (2) the real space anti-aliasing with
Lagrange interpolation of order 9 and h, = 0.6, and (3) no anti-aliasing and
h, = 4.

The real space anti-aliasing enables one to use a lower value of the hyperdiffusion
coefficient h, required to obtain a stable simulation compared to the case where no anti-
aliasing was used. In addition, the resulting k, density spectrum is much closer to the
simulations with Fourier space anti-aliasing. The efficiency of the real space anti-aliasing

technique was thus clearly validated.
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3.5 Sources and sinks

In the absence of any additional source, the profiles in a global nonlinear simulation
tend to relax towards sub-critical gradients. They eventually becomes close to the critical
gradient values, the turbulence drive is strongly decreased and a state close to marginality
is reached.

In the version of the global code used in this work, Dirichlet boundary conditions are

considered in the radial direction. The temperature and density at both ends of the

Buffer
regions

X/l
X

Figure 3.14: Coefficient profile 7y (x) of the damping Krook operator applied within edge
buffer regions in nonlinear simulations.

simulation domain are thus constraints to their initial values, while a profile relaxation
may occur in the center of the domain. This was observed to potentially lead to strong,
unphysical profiles variations close to the boundaries, which in turn generated strong
turbulence in the edge regions. In order to avoid such behavior an artificial Krook damping
operator is applied in buffer regions. This operator is added to the right hand side of the
gyrokinetic equation (2.135):

hic = =0k () §u; - (3.112)
Where the function v () is zero outside of the buffer regions, and is determined by fourth
order polynomial ramp inside, as illustrated in Fig. 3.14. The maximal amplitude of v
is set to be comparable to the linear growth rates, while the width of the buffer regions
typically represent 5 — 10% of the simulation domain on each sides.
In order to facilitate achieving quasi-steady state nonlinear simulations, an artificial
Krook-type heat source was in addition implemented. This source, similar to the one

in Ref. [62], is applied over the whole system and is designed to control the temperature
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profile, while conserving the flux-surface averaged density and parallel momentum. The

following term is thus added to the right hand side of the gyrokinetic equation (2.135):

(J a5 (fiy(X, oyl ) )
<f dv <f0j()?,v”,u)>>

Sk(@, [yl 1) = =4 | (X, ol ) = (fos (X, oyl )

b

(3.113)

where (.) refers to the flux-surface average and

£ Ya f1j X’ ) + fLj Xa_ )
Fii (X oyl ) = MG 2f”( 1) (3.114)

The conservation of density is ensured through the correction term ([ ---)/([---), while
the conservation of parallel momentum is verified since Sk is even in v as result of the
symmetrization of the distribution with respect to this variable. The zeroth and first v
moments of Sk indeed cancel. In Ref. [62], the heating operator in fact only depends on
the radial position r and kinetic energy €. The approximate version (3.113), which is a
function of (z, |vy|, 1), was considered here for practical reasons, as a reconstruction of
f1j(x, €) would have required costly numerical interpolations.

This artificial heat source is particularly appropriate for code comparisons, see section 5.5.2,
as it enables to rapidly reach a steady state, or to investigate transport features for a pre-
scribed gradient profile. However, an alternative and more physically relevant approach
for a global code is to perform flux driven simulations. In this case, a local heat source is
applied to model realistic plasma heating, and the temperature profiles are free to evolve.
Such a realistic heat source has recently been implemented in global-GENE by T. Gérler,
together with alternative von Neumann boundary conditions at the inner radial boundary

to allow for free temperature and potential field evolution at this point.

3.6 Summary

In this chapter, the different numerical algorithms used in the GENE code were pre-
sented. While the initial version of the code could only be run in the local approximation,
it has now been extended to a global version which fully includes radial variation of equilib-
rium quantities. In this global version, the radial boundary conditions have been changed

from periodic to Dirichlet and the original Fourier representation for the radial direction

80



Chapter 3. Numerical implementation

has been replaced by a real space treatment, where the radial derivatives are now computed
using 4th order centered finite differences. In addition, the Fourier space gyro-averaging
operator has been replaced in the x-direction by a real space gyro-averaging integral, for
which a Hermite interpolation is applied. With this formulation, the field equations can
be expressed as linear systems of equations for the discretized fields which are then solved
using with a direct method based on LU decomposition.A real space dealiasing operator,
inspired from the equivalent Fourier space treatment and using Lagrange interpolation
was, in addition, introduced when dealing with the nonlinear term. Finally a Krook-type
heat source was implemented to allow for quasi-steady state nonlinear simulations.

Various tests and benchmarks have been carried out in order to validate the global version

of the code and will be discussed in Chapter 5.
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4 Equilibrium models

4.1 The toroidal MHD equilibrium

In Chap. 2 the field-aligned coordinate system (x,y, z) was defined through the relation
B% = CVz X ﬁy, having assumed a prescribed axisymmetric magnetic field. In this
Chapter, various equilibrium models are presented to describe the equilibrium magnetic
field configuration and corresponding metric coefficients used in GENE.

Following [63], we shall first give an overview of the different properties of an axisymmetric
stationary magnetically confined system. The equilibrium state in a magnetized plasma

can be described by the time independent ideal magnetohydrodynamic (MHD) equations:

_()) X éo = ﬁpo (41)
6 X éo = ,qu_(; (42)
V-By = 0, (4.3)

where g{) denotes the equilibrium magnetic field, jo is the current density, py the total
plasma pressure, and having assumed no equilibrium flows.

A Tokamak plasma can, to a good approximation, be assumed axisymmetric. In this
case, considering the cylindrical coordinate system (R, Z, ¢) all equilibrium quantities are
independent of the toroidal angle ¢ and the general solution of Eq. (4.3) for the magnetic
field is of the form:

By=V¢xVU+IVp with ¥=—rA,, (4.4)

where Ay is the potential vector, B% =V x Ay. The magnetic field is thus decomposed in
its toroidal §0¢ = ]6¢ and poloidal Eop = 6@25 x VU components, with ¥ the poloidal

magnetic flux function, defined as the magnetic flux through a toroidal ribbon between
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the magnetic axis and a toroidal line, see Fig. 4.1:

1 [ =
U(R,Z) = 2—/230-d5 (4.5)

(e

Y= cst

\l

~

Figure 4.1: Cylindrical coordinates (R, Z, ¢) in toroidal geometry.

Similarly the general solution of Eq. (4.2) for the current density in an axisymmetric

system is:
— — - . RBd)
Jo=VoxVf+RJyVo with f=-— o (4.6)
0

In such axisymmetric configuration, Eq. (4.4) implies that By VU = 0, and ¥ = cst is
thus a magnetic surface. From Eq. (4.6) one also has Jo -V f, and f = cst is therefore a
current surface. The relation (4.1) shows, finally, that magnetic and current surfaces are
both identical and given by p = p(¥) = cst. We also note that f = f(V) implies that
RBy =1 = I(V). Substituting now Eq. (4.1) in (4.4) leads to:

1

—pio RJy = =AW = —R*V -

VU = g R?p/ (V) + 1 I'(D) (4.7)

where the prime notation stands for the derivative with respect to W. This elliptic non-
linear equation for ¥ is referred to as the Grad-Shafranov equation [63] and relates the
equilibrium W to the pair of independent profiles p = p(¥) and I = I(¥).

The relative strength between the poloidal and the toroidal magnetic field is a key element

of the Tokamak configuration and results in a twisting of the magnetic field lines around
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the magnetic surfaces. The number of toroidal revolutions of such a line to complete one

poloidal revolution is given by the safety factor :

1 21 d¢
(J(‘I’):%/O ¥

where 6 is the geometrical poloidal angle.

1 ZWE‘
O—de

_ = i (4.8)
along By 2m 0 BO -V

In this chapter three different equilibrium models are described: 1) an interface with
the MHD equilibrium code CHEASE, which actually solves numerically Eq. (4.7), 2) a
circular ad-hoc concentric flux surface model, and finally 3) the so-called s — a model.
This last model, which provides a simple, comprehensive, analytic magnetic equilibrium,
consists of circular shifted flux surfaces, with s the shear and « the Shafranov shift be-
tween centers of consecutive magnetic surfaces resulting from the pressure gradient. It
has been widely used in past local gyrokinetic simulations.

In the standard application of the s —a model some terms of order € = a/R are neglected,
such that the resulting metric coefficients are essentially those of a cylindrical system.
This can lead to significant differences with respect to the other equilibrium models. Dif-
ferences between simulations with s — « and true MHD equilibrium were first pointed out
in [64]. They were however assigned to the remaining Shafranov shift present in the low
pressure MHD equilibrium plasma, which had been neglected in the s — a model. It was
also noted in Ref. [65] that results with an s — a model significantly differ from those
obtained with a Miller [66] geometry in the limit of circular parameters and no Shafranov
shift, but no actual explanation was provided.

Following results published in [67], it will be shown in the following that the above men-
tioned differences in fact mainly result from the approximation made in the standard
flux-tube implementation of the s — a model, in which the straight field line poloidal an-
gle (essential for the definition of field-aligned coordinates) is identified to the geometrical
poloidal angle, which leads to inconsistencies of order €. Discrepancies in simulations be-
tween the s —a and the other equilibrium models will be illustrated in the following for the
Cyclone base case [68] since it is considered as a reference Benchmark in the gyrokinetic
community.

Finally, some local and global simulations are compared, and it is shown that the ge-
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ometry issues can lead to a coincidental agreement between the flux tube results with
s — « equilibrium and global results with a correct treatment of the equilibrium at fi-
nite p* = ps/a = 1/180. A true agreement is in fact achieved when the flux tube and
global simulations both correctly treat the equilibrium, and when the global computa-
tion is carried out for conditions approaching the p* — 0 limit, intrinsic to the flux tube

implementation.

4.2 The CHEASE interface

The equilibrium code CHEASE solves the nonlinear Grad-Shafranov equation (4.7) for
U using an iterative method with finite element representation [36]. The code maps the
computed equilibrium on a flux coordinate system (W, x, ¢), where ¥ is the poloidal flux
function, x the generalized poloidal angle and ¢ the toroidal angle. The CHEASE code
has been modified to output all quantities required for gyrokinetic computation such as
the q profile, the metric coefficients, the Jacobian, the magnetic field and its derivatives,
as well as several other quantities, all given on a (W, x) grid (all equilibrium quantities are
independent of ¢), where in this case x is chosen as the straight field line poloidal angle.
Note that in order to remain more general, CHEASE provides the equilibrium on a (¥, )
grid and not directly on the (x,y, z) grid used in GENE, so that this output can easily
be used by other gyrokinetic codes as well, such as the ORB5 code [54] also developed
at the CRPP, Lausanne. Some further details on the CHEASE output are provided in
Appendix A.

To compute an equilibrium, one needs to provide a pressure and a current profile (i.e.
p/ and I1') as well as the shape of the last closed flux surface. These quantities can
be either specified by reading experimental data from an EXPEQ file or from the more
standard EQDSK equilibrium file [69], or can be set using analytical profiles. The latter
option is in particular useful when investigating the influence of flux surfaces shaping on
microturbulence, as presented in Chapter 6, since it allows us to compute equilibria with

arbitrary triangularity and elongation.
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Chapter 4. FEquilibrium models

4.2.1 Equilibrium quantities in (z,y, 2)

The equilibrium quantities provided by CHEASE on the (W, x) grid are transformed to

the field-aligned coordinate system (x,y, z), see Fig. 2.2, according to the relations

t=0C,(V)—20, y=Cygx —¢) —yo and 2z =y, (4.9)

which were already defined in (2.59). Note that in (z, vy, 2) coordinates, the axisymmetry
of the system results in all equilibrium quantities being independent of y. Following this

coordinate transform one obtains:

= VU
Vz 70 VA28

Vy = C, [q'xﬁqf gV — %] ,

Vz = Vy, (4.10)

so that the metric tensor in (z,y, z) coordinates is expressed in terms of the metric tensor

in (W, x, ¢) coordinates:

T dCx ’ vy Ty dCﬂU / AV Uy
g —<dqj)g . g —d—q,Cy(qxg +qg"),

9" = C7 [(d)X°9™" +2ad'x 9" + g + g™]

xrz dCl" z
g* = d—q,g%‘, 9 =Cy (d'x 9™ +q9%),
g7 = g*x, (4.11)

with g% = Va - ﬁﬁ and ¢’ = dq/dV. The other required quantities are

0B _ (dC,\"' 9B 9B 0B
dv

D e _ Y= Tyz _
Ox d¥ ov’ 9z  0Ix’ and ./ (

-1
4C. ) JUxe (4.12)

where J%¢ = [(Va x Vb) - V¢| ™' is the Jacobian related to the coordinates (a,b,¢). In
principle C,(¥) and C, can be chosen arbitrarily and in the current version of the code

three possible definitions of ', have been implemented:

\Ij (I)t V do
Ce=ay/ , szaﬂ , C:z:(lﬂ or C,= v, 4.13
\I[edge (Dt,edge ‘/edge TOBref ( )

where &, is the toroidal flux, V is a volume inside a ¥ = cst surface, a is the minor

radius of the edge flux surface, measured at the equatorial midplane, , rq and ¢y are
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Circular ad-hoc model

respectively the minor radius and the safety factor of the flux surface located at = = 0,
and B, is a reference magnetic field, usually chosen as the magnetic field on the axis.
Finally, the constant Cy is set to C, = ry/qo, so that y takes a units of length. Any C,
definition could be used with the local code. When considering the global code however,
it is necessary to have an equidistant grid {x; = C,(¥;) —x¢}, and although the CHEASE
code could potentially adapt the mesh for any definitions, only the C, = a \/Wedge or
Cr=a \/V/Tedge are at the present implemented, see Appendix A.

When using the local version of the code, one neglects the z-dependence of all equilibrium
quantities across the simulation domain. All geometrical coefficients therefore only need
to be known on the magnetic surface of interest (z = 0), and are thus only functions of
z in the axisymmetric system considered here. The axisymmetry of the equilibria indeed
translates into the independence with respect to y of the coefficients. In the global version
of the code, equilibrium quantities are however (z, z) dependent.

Note that the metric coefficients can also be obtained from MHD equilibria using the
interface with the Tracer code [52], which can also compute local geometrical parameters

along a given field line in 3-dimensional system, i.e. for Stellarator geometry.

4.3 Circular ad-hoc model

For many applications, it can be useful to consider a simpler analytical model for the
magnetic equilibrium configuration. By considering I = cst and p o« ¥ in Eq. (4.7), one
obtains a so-called Solovev type solution:

U dge 1
U= ﬁ (RZ)?+ T (R*— R2)?| . (4.14)

In the large aspect ratio limit Ry/a >> 1, where again a is the minor radius, this equation
reduces to W = Weqqe(r/a)?, where r is the radius local to a given flux surface as illustrated
in Fig. 4.3. In this limit, the magnetic surfaces thus have a circular cross section, and
according to Eq. 4.4, the magnetic field reads in the toroidal coordinates, (7,0, ), (see
Fig. 4.2):

= Bre —
_ R f{ r ] | (4.15)

B €y + —— €
0 Ia ) Rod 0
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Figure 4.2: Circular flux surface in toroidal coordinates (r, 6, ®).

where B, is again the magnetic field at the magnetic axis, and § is a pseudo safety factor

which can be related to the real safety factor using Eq. (4.8):

1 [* B,- V(b q(r) 2m do q(r)
1 _ _ 41
a(r) 27 /0 By - V0 40 = 27 /0 1+¢ecosf /1—g2’ (4.16)

having defined the inverse aspect ratio e = r/Ry. Note that for ¥ = Woqa(r/a)?, ¢ would

be constant, § = (Brer @*)/(2 Weqge). In Eq. (4.16) one considered the possibility of a
profile ¢ = q(r), corresponding to the ad-hoc relation d¥/dr = Bie7/q(r). In turn the
straight field line angle y is defined such that (B, - V¢)/(By - V) = ¢, which leads to the

relation dy/d0 = By - V¢/(q By - V). Integrating over 6 yields:
1—¢ 0
Tz tan (§>] . (4.17)

1 (7B 7 [° de’
NPT PV
0 0
From these definitions of ¥ and x, the metric in (¥, x, ¢) coordinates can be obtained

q Bo Vo q 1+ ¢ cos®

from the known metric in the (7,0, ¢) coordinates through the relations:

B ref T & B ref T

VU = Vr SRy (4.18)
q q
= Ox e ox = ox ., 1 0x .
Vxo = or Vrt g V0 = 5ot G (4.19)
= . 1 .,
with
dx = —siny Ox qRy

T Ri-2) 90 4R (4.21)

This leads to the metric tensor:

g\I!\II — Bref ’f’ gxx _ i R(% q2 52 Sin2 X
q2 ’ r2 R2 (1 _ 82>2 ’
¢ - TR
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9" = g =0. (4.22)

In addition, the Jacobian reads:

aft _ g

JUX¢ — .
By BietRo

(4.23)

When using the circular model, the x variable is chosen as © = r — xg, i.e dC,/d¥ =
q/(r Bret), and Cy, = 19/qo. The metric tensor in the (z,y, z) coordinate system is then
obtained using relations (4.11) and (4.22), and is valid for both the local and the global
versions of the code.

In order to compare with the s — @ model described later on, we explicit here the cor-
responding metric coefficients to first order in € and consider only the local case, i.e. at

z=0:

g* =1, g =35y—esiny,
g = 1+ (5¢)> —2ecosyx —25yesiny,
ez Esiny ye 1 —2ecosx — sxesin x
g - o ) g - o )
- 1—2ecosx
9 = —. (4.24)
7o

where the magnetic shear is § = (r/q)dq/dr. Finally, note that to the same order in € one

has from Eq. (4.17): x =6 — esinf + O(e?).

4.4 The s — a model

The last model that has been considered is the so-called s — a model for a = 0, which
is described here considering only the local approximation, i.e. the x dependencies are
not retained. One again assumes circular, concentric, magnetic surfaces as in the previous
model. The (z,y,2) coordinates are defined as in Eq. (4.9), with = = r, except for
the straight field line angle x which is approximated to the geometrical angle 6 so that
y = (r0/q0)(q0 — @) —yo and z = 6. Despite this approximation, (z,y, z) is still considered

here as a field-aligned coordinate system. The metric coefficients to first order in ¢ are:

g =1, g =30, ¢ =1+(30), ¢" =0,
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g = 1/ry, ¢ = 1/7”(2). (4.25)

A comparison with Eq. (4.24) exhibits differences of order ¢ between the two models,
which points out that the approximation concerning the straight field line angle is only
valid in the limit of an infinite aspect ratio Tokamak (¢ — 0). According to Eq. (4.17),
one indeed has xy = 6 for ¢ = 0. In order to retain trapping effects, the magnetic field
amplitude is, nevertheless, defined for this model as

By B, Ry 1
Bt Bt R 14ecosf’

(4.26)

thus keeping finite aspect ratio terms. On the other hand, from the definition of the field-
aligned coordinate system, one has By = B,V x Vy, which, from the metric coefficients

(4.25) implies
(Bo/ But)? = (Va x Vy)? = (V) (Vy)? — (Vo - V) = g77g" — (¢ = 1. (4.27)

Comparing Eq. (4.26) with Eq. (4.27) underlines an inconsistency of order ¢ in the
s — a model, namely the metric is computed as if € = 0 but the magnetic field amplitude
still retains an € dependence. As will be shown in the next section, this inconsistency
leads, for finite € cases, to significant differences between microturbulence simulations
considering the s — a model and simulations using either an MHD equilibrium or the

previous concentric, circular model.

4.5 Influence of the equilibrium model and code

comparisons

In this section the different equilibrium models are compared using Cyclone-like pa-
rameters [68], namely n; = n., T./T; = 1, ¢ = 14, § = (p/q)dq/dp = 0.8, and
g0 = ro/Ro = 0.18. Here, the normalized radial variable is defined for the MHD equilib-
rium as p = \/Wt,edgm ®, is the toroidal flux, and ® cqge is the value of the toroidal
flux at the edge. For the ad-hoc circular and s — o models, one identifies p = r/a.
The gradient values are defined at p = py = 0.5 as Ro/Ly; = Ro(|VInT;|) = 6.96,
Ry/L, = Ro{|VInn|) = 2.23, where (.) stands for the flux-surface average, defined in
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Influence of the equilibrium model and code comparisons

Eq. (2.83).

Discrepancies observed with the different equilibrium model are first discussed consider-
ing local simulations. In a second step we analyse how previous comparisons between
local and global gyrokinetic codes may have been mis-interpreted due to such equilibrium

model issues.

4.5.1 Linear flux-tube results

Let us start by considering linear flux tube simulations, and in order to gain confidence
in the results, outputs from different codes are compared. In Fig. 4.3 the linear growth
rates and real frequencies of toroidal-Ion Temperature Gradient (toroidal-ITG) modes are
shown as a function of the poloidal wave number £, in units of ps, where p,; has been

evaluated with T,(pp) and the magnetic field By on axis. The results have been obtained

0.2

0.15¢

0.05¢

Figure 4.3: Growth rate (left) and real frequency (right) as a function of the poloidal wave
number £, of linear ITG modes for the Cyclone test case. Three equilibrium
models are considered: MHD (circles: GENE; crosses: GS2; triangles: GKW),
s—a (diamonds: GENE; squares: GS2), and ad-hoc circular concentric (stars:
GENE).

from the flux-tube codes GENE, GS2 [11] and GKW (formerly known as LINART [70])
using an MHD equilibrium or the usual s — a model, as well as from a GENE simulation
using the ad-hoc circular model. The MHD equilibrium used here is computed with the
CHEASE code such that the last closed flux surface is circular and the Cyclone local
parameters are matched at py = 0.5. The pressure profile is chosen such that the value

of 8 = (p)2up/B? is small (~ 107°), where (p) is the volume-averaged pressure, and the
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current density profile is set in order to obtain the required values of the safety factor
q and of the shear s at py. The growth rates and frequencies are of the order of the
ion diamagnetic frequency which itself is of order ¢;/L,.s, where L,.s is a characteristic
gradient length of the system. Choosing L,.r = L, frequencies and growth rates are thus
normalized to ¢s/L,. This is the same normalization as considered in Ref. [68], which

facilitates comparisons.

8,
AN
CD>4
2
. 0
08775 0o 2
X

Figure 4.4: Geometrical coefficients for different equilibrium models : MHD (solid line),
s — a (dashed line), and ad-hoc circular concentric (dash-dotted line).

As clearly appears in Fig. 4.3, significant differences are observed, in agreement with
[64], when comparing results using the reduced s — a model or the MHD equilibrium.
In particular the maximum linear growth rates differ by almost a factor of two for the
here considered Cyclone parameters. However, when using the analytical circular model,
agreement with the MHD equilibrium case is reached within 10%. This latter point
clearly shows that the differences observed in this finite aspect ratio circular cross section
geometry between simulations considering either the s — a or a realistic MHD equilibrium
mainly result from the inconsistencies of order € in the s — a model pointed out in section
4.4. By exchanging one geometrical term at a time in GENE’s equations between the
s — a model and the circular analytic model, it can be shown that the differences result
primarily from the discrepancies in the g¥¥ and K, terms. In Fig. 4.4, the most relevant

geometrical coefficients are plotted as a function of x for the different equilibrium models.
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0.25

Figure 4.5: Growth rate of the most unstable ITG mode as a function of the ion temperature
gradient for MHD (circles), ad-hoc circular concentric (stars), and s — a (crosses)
equilibrium models. All other parameters as in the Cyclone test case.

The ¢g¥¥ and K, terms present the largest relative differences in the vicinity of x = 0
where I'TG modes balloon. We note also that differences in the ¢g** coefficient do not in
fact influence these linear results since the growth rate is essentially determined by the
dominant k, = 0 mode, corresponding to the perpendicular wave number k% = gk

After this first linear comparison with the nominal Cyclone parameters, GENE simulations
using the three different equilibria have also been carried out for various values of the
temperature gradient while keeping all other parameters. In Fig. 4.5, the maximum
linear growth rate over all k, for I'TG modes is given with respect to the normalized, flux-
surface averaged temperature gradient Ry/Lp;. The linear critical temperature gradient
obtained when using the s — a model is found around Ry/Ly; = 4, which is in agreement
with Ref. [68], and is decreased to Ry/Ly; = 3 for realistic MHD equilibrium models as
observed in [64]. The MHD results are well recovered using the circular ad-hoc equilibrium.
This observation is of particular importance when using critical gradient values in semi-

empirical transport models [71].

4.5.2 Nonlinear flux-tube results

As in the linear case, nonlinear simulations considering Cyclone test case parameters

show strong discrepancies between results using s — o and MHD equilibria, while com-
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putations using the corrected circular model recover well those obtained with the MHD

equilibrium.

8 T T
___ MHD, <« >=4.09
- S0, <Y > = 2.12
6r _ _ ad-hoc, <x, >=3.74

} mr/\l\" ; h NJ\

0 50 100 150 200 250 300
tcS/R

Figure 4.6: Ion heat diffusivity y; obtained by nonlinear GENE simulations for the Cy-
clone test case using MHD (solid line), s — a (dashed line) and ad-hoc circular
(dash-dotted) equilibrium models.

Nonlinear simulations with the three different equilibria have been compared for Cyclone
base parameters, with a numerical resolution n, Xn, Xn, xn, xn, = 128 x 48 x 16 x 32 x 8
and a perpendicular flux-tube box of dimensions L, x L, = 118 p, x 96 p,. Figure 4.6 shows
the ion heat diffusivity time trace. When using the MHD equilibrium, the time-integrated
ion heat diffusivity y; is estimated at x; L, /(p%cs) = 4.1 (corresponding to x;/xap = 3.3,
using the standard Gyro-Bohm normalization xgp = p?cs/a), which differs by almost a
factor of two from the value obtained using the s — o model, for which x;L,/(p?cs) = 2.1
(xi/xcB = 1.7). We note that the value y; for the s — a case agrees with the LLNL GK
fit

XiLn/(pcs) = 15.4[1.0 — 6.0 (Ly/R)] , (4.28)

presented in Ref. [68], which also provides x;L,/(pcs) = 2.1 for R/Ly = 6.96. The
simulation using the ad-hoc circular model gives x; L, /(p?cs) = 3.7 (xi/xcs = 3.0) and
thus agrees within 10% with the result using the MHD equilibrium. Strong discrepancies,
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for slightly different physical parameters, between nonlinear simulations using either the
s —a model or a corrected circular equilibrium obtained from the Miller model [66] were

also stated in Ref. [65], but no detailed explanation of the actual cause was provided.

(k,) L,/(ic)

<= 0.2}

Figure 4.7: k, spectra of time-averaged ion heat diffusivity y;(k,) obtained via nonlin-
ear GENE simulations for the Cyclone test case using MHD (circles), s — «
(crosses), and ad-hoc circular (stars) equilibrium models.

In Fig. 4.7, the time-averaged ion heat diffusivity spectrum x;(k,), defined such that

Xi = 2y, Xi(ky) (where the sum is over all k, = n 27 /l,, n=0---,n,/2 modes considered
in the simulation), is presented as a function of the normalized poloidal wave number k, p;.
The spectrum obtained using the s —a model strongly differs from the one using either the
ad-hoc circular model or the MHD model, especially for k,ps above 0.2 which corresponds
to its maximum amplitude.
Figure 4.8 shows the time-averaged ion heat diffusivity using both the s — a and MHD
models for different values of the temperature gradient. The nonlinear critical gradients
R/ Ly it are shifted upward with respect to the corresponding linear critical gradients
according to the well known Dimits-shift [68] effect. For the s — a model, the resulting
R/ Lt et is around 6, identical to results in Ref. [68], and contained in the fit given by
Eq. (4.28), while its value is around 5 using the MHD equilibrium.
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w
Linear F~’./LTcrit

MHD

Figure 4.8: Ton heat diffusivity x; for the Cyclone test case as a function of the ion temperature
gradient. Results are given for simulations using either the MHD (circles) or the
s — a (crosses) equilibrium model.

4.5.3 Linear comparison between local and global simulations

In view of the significant effects on the linear growth rates and nonlinear diffusivities
resulting from the approximations in the s — a model local simulations, the agreements
between these same flux-tube results and global simulations reported in Ref.[68] appear
surprising. Indeed, no similar approximations in implementing the equilibrium in the

global simulations had been made. In order to address this apparent paradox, such local-

0.2
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Figure 4.9: Growth rate spectra of linear ITG modes for the Cyclone test case. Local
GENE simulations with either the s — a (crosses) or the ad-hoc circular an-
alytical model (circles) are compared with results from the global version of

GENE (diamonds) and from the global code GYGLES (squares) both for
p* = 1/180 and using the circular ad-hoc model.
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global comparisons are repeated for linear simulations, using both the local flux-tube and
global versions of the GENE code, as well as the global, linear PIC code GYGLES [72].
The global GENE and GYGLES codes are run using the analytical equilibrium with
concentric, circular flux surfaces, described in Section 4.3, with no further approximations
on the geometry. For the corresponding simulations, the safety factor profile is chosen to
be ¢ = 0.85 + 2.2 (r/a)?, corresponding to q(rg) = 1.4 and 5(r¢) = (ro/q)dq(ro)/dr = 0.8
at ro/a = 0.5. The temperature and density gradient profiles are defined as

RO dl o (T —To RO dn o[ T —To
, KT COS ( N ) 5 n dr Ky COS ( N ) ) ( )

with peak gradients Ky = 6.96, k, = 2.23 matching those considered in the local GENE
simulations and the radial width of the global profiles is chosen as Ar = 0.3 a.

In Fig. 4.9, growth rates of ITG modes from local GENE simulations using the ad-hoc
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Figure 4.10: p* scaling of ITG growth rate at kyp, = 0.3 for the global code GYGLES.
GENE results are obtained with the s — a or the circular analytical equilib-
rium model.

circular and the s — o models are compared with global GENE and GYGLES simu-
lations using the ad-hoc circular model. The global simulations were carried out for
p* = ps/a = 1/180 which corresponds to the experimental value from which the Cy-
clone base case was derived. The growth rate spectrum of the global simulations for
p* = ps/a = 1/180 basically matches with the local s — a results. This agreement is

however purely coincidental. This is indeed illustrated by the p* scan in Fig. 4.10, where
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global GYGLES results truly converge toward the local GENE results with ad-hoc circu-
lar equilibrium (correct treatment of the geometry), in the limit p* — 0.

In Fig. 4.10 a small offset seems nonetheless to remain in the limit p* — 0. This difference
may arise from the fact that the mode k, = 0 is considered in the flux tube simulation
whereas the radial mode number remains finite in the global simulations. Such deviations
are investigated in [28] where it is shown that an even better agreement between local and

global results can be reached when choosing a finite k, value in the local simulations.

4.6 Summary

In this Chapter we have presented three different magnetic equilibrium models which
can be used in the GENE code. First, an interface with the equilibrium code CHEASE
was described, for which the CHEASE code was adapted to provide the required quanti-
ties on the straight field line (¥, y) grid. This approach through a representation on this
(¥, x) grid is kept general, i.e. it does not depend on the coordinate choice in GENE,
and the equilibrium output can also be used for the gyrokinetic code ORB5. In GENE,
a further transformation to the field aligned coordinates (z,y, z) is carried out via the
interface which is valid for both the global and local version of the code. For comparison
purpose, and when an exact magnetic equilibrium is not necessary, an ad-hoc circular
concentric flux surface model was also implemented, and is applicable to both local and
global simulations. Finally, the so-called s —a model, which has been widely used in past
flux tube simulations, was discussed.

Comparisons between these equilibrium models have been carried out for Cyclone base
case parameters, and significant differences were observed in linear and nonlinear simula-
tions obtained with the s — a model or a circular MHD equilibrium. It was shown that
these discrepancies result from approximating the poloidal angle to the straight field line
angle in the standard implementation of the s — o model, which leads to inconsistencies
of the order of the inverse aspect ratio . These differences reach a factor of almost two
in the predicted turbulence induced heat-flux for the standard Cyclone parameters. It is
also found that using the s — a model the linear and nonlinear critical gradients R/ Lz it

are overestimated by at least 20%. As a consequence, one should not only be aware of
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this issue when comparing flux tube codes among each other, but also when applying
flux-tube results, and in particular the so-obtained critical gradients, to semi-empirical
transport models. When considering the ad-hoc circular concentric flux surfaces model
which correctly treats the straight field line angle, one obtains, on the other hand, a very
good agreement with the circular MHD equilibrium simulations.

The importance of using a correct geometrical model is of further interest when comparing
results from flux-tube and global codes. In particular, we have shown that the previously
reported apparent agreement between flux tube and global simulations [68] had resulted
from the unfortunate combination of two different effects, namely the inconsistencies of
order ¢ in the equilibrium model of the flux tube codes and the physical finite size p*
effects in the global simulations. True convergence between linear flux tube results with
a correct treatment of the geometry and global simulations in the appropriate limit of

p* — 0 was demonstrated.
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5 Code validation and global effects

As discussed in the previous chapter, the implementation of the global version of GENE
has required to modify large parts of the code and enables to investigate physical effects
associated with finite p* = ps/a. In order to validate this new version, detailed tests and
comparisons with other codes were carried out in various physical limits. This chapter
is dedicated to the current state of this validation procedure. At first linear tests are
presented. In particular the cylindrical limit is addressed, followed by linear benchmarks
with the global PIC codes ORB5 [54] and GYGLES [72] for Cyclone base case parameters
[68]. Simulations with kinetic electrons are also shown, as well as the so-called Rosenbluth-
Hinton test [73]. Finally, some nonlinear benchmarks with the global PIC code ORB5
are presented, including a p* scan. We would like to stress the fact that the extensive
code comparisons which are shown in this chapter were made possible thanks to users and
developers of GYGLES and ORB5 at the CRPP Lausanne, in particular B. McMillan who
has dedicated great effort in providing simulation results from the ORB5 code, enabling

us to get better confidence in the global version of GENE.

5.1 The cylindrical limit

In this section, we aim at investigating the cylindrical limit of the global-GENE code,
and in particular whether the slab Ion Temperature Gradient (ITG) instability can be
accurately described.

For this study, our reference case is a toroidal plasma with concentric circular flux surfaces,

having an inverse aspect ratio and safety factor profile respectively:

a/R=0.18 q(z) =1.25+ 3 (x/a)?, (5.1)
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Figure 5.1: Ion temperature and logarithmic temperature gradient profiles, for k;, = 7.4.

where a is the minor radius, R the major radius and x = r. The p* = ps/a parameter is

set to 1/p* = 65 and the ion temperature and density profiles are given by:

T SV (12| R

where A stands for T; or n. Such a function form leads to a peaked gradient profiles

centered at zo and with width AA (in units of A), see Fig. 5.1:

dln A o (z—x0)/a
L = — h=2 [ ——2 ) . .
ref — K A COS ( A (5.3)
The temperature and density profile parameters are set here to kp, = 7.4, k,, = 0,

AT, = An =0.3, zo = 0.5a and L, = R. Furthermore the electron response is assumed
adiabatic and the temperature ratio 7 = T, /T; is equal to 7 = 1. Finally, one considers

the toroidal mode number n = 4, which corresponds to

kyps = @ps —0.25 (5.4)

0

with g9 = ¢(r/a = 0.5) = 2 and ry = zo = 0.5a. For these physical parameters and wave

number, ITG modes are unstable.

In the following, the toroidal limit is taken by increasing the radius R while holding
Rq, n/R, and a constant, so that the considered mode number k,p; = 0.25 remains

constant. We note that the length L, entering the gradient definition, as well as in the
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Figure 5.2: Growth rate (left) and real frequency (right) of the ITG mode as a function of
the inverse aspect ratio a/R obtained with the GENE, GYGLES and GLO-
GYSTO codes.

normalizations of the growth rates and real frequencies in Fig. 5.2, is also kept at a constant
value equal to the reference major radius. The numerical box used for these simulations
i by X 1y X by X 1y =45 p; X 27 X 3.2 04,5 x 10.2 T;/ Brer with grid size n, X n, x My X Ny =
120 x 16 x 48 x 16. The resulting growth rates and real frequencies are shown in Fig. 5.2
and are compared with results in Ref. [74] obtained with the spectral code GLOGYSTO,
as well as with results in [72] obtained with the PIC code GYGLES. Although some
differences exist in the physical model considered in the different codes, we remark a
similar dependence with respect to the aspect ratio and a very good agreement on both
the growth rates and real frequencies in the limit a/R — 0. One can notice that the
growth rate and real frequency of the mode become essentially independent of a/R for
a/R < 0.3, illustrating the transition from the toroidal to the slab-ITG instability.

In Fig. 5.3, the contour plots obtained with GENE and GLOGYSTO are compared for
different inverse aspect ratios. The transition from the toroidal to the slab ITG can be
clearly observed as the radial coupling becomes weaker when going from a/R = 0.18 to
a/R — 0. In the toroidal limit a/R ~ 0, a very good agreement is reached between
the two codes concerning the mode structure, which clearly exhibits a slab-like character.
The most unstable mode is in both cases localized around r/a ~ 0.4 which corresponds
to the mode rational surface with poloidal mode number m = ng = 7. For the toroidal
case, a/R = 0.18, the overall mode structure obtained with the two codes are also in

good agreement, one notes however that the radial coupling seems stronger in the GENE
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Figure 5.3: Contour plots of the electrostatic potential ® obtained with GENE (left) and
GLOGYSTO (right) for different inverse aspect ratios. Note that the plot
identified as a/R ~ 0 corresponds to a/R = 1.8 -107% for GENE and a/R = 0
for GLOGYSTO.
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simulation. This difference on the mode structure, together with the different growth rate
obtained for a/R = 0.18 in Fig. 5.2 can be explained in part by approximations made in
GLOGYSTO, where the drifts of passing particles, at the origin of the radial coupling,
are evaluated using an iterative scheme. From these results, one may conclude that the
global version of GENE correctly describes the cylindrical limit and the corresponding
slab-ITG regime.

5.2 Linear Cyclone benchmark

In this section, linear comparisons of global-GENE with other codes in the case of the
Cyclone Base Case (CBC) parameters [68] are presented. This study is thus similar to the
one carried out with the local-GENE code in section 4.5. For all the following simulations,
the ad-hoc circular equilibrium model is considered with inverse aspect ratio a/R = 0.36
and safety factor profile:

q(z) = 0.85+2.2(x/a)*. (5.5)

The parameter p* = p,/a is taken as p* = 1/180 and an adiabatic electron response is

assumed. The ion temperature and density profiles, are again defined using Eq. (5.2),

: : ‘ = 0.8
0.15¢ -©- GYGLES|]
——GENE
0.6f
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E 04
> 3
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0 ' ! ; 0 . . .
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
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Figure 5.4: Linear growth rates (left) and real frequencies (right) of ITG modes as a function of
kyps obtained with the global version of GENE and with the PIC code GYGLES,
for CBC parameters.

with kpr; = 6.96, k, = 2.23, AT;,n = 0.3 and o = 0.5a corresponding to peaked
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Linear Cyclone benchmark

gradient profiles, and the temperature ratio 7 = T,/T; is 7 = 1. For these parameters,
the growth rates and real frequencies computed with GENE are compared in Fig. 5.4
with GYGLES [72] results for different toroidal mode numbers k, = nqo/ro. A detailed
discussion of the required resolution for the linear Cyclone base case is given in [28].
In particular, we note that for the higher £, p, values larger v and p resolutions are
required. This higher velocity resolution is necessary for correctly resolving the gyro-
averaging operations, leading to the finite k, p, effects. In the following the simulation
domain considered for each fixed linear run with fixed k, is [, x [, X l”u X 1, = 140 ps x
27 X 3.Tvy,; x 13T;/Byes with resolution n, x n, x Ny, X My, = 200 x 16 x 32 x 16 for

ky ps < 0.5. For the larger k, ps an increased n, X n, = 64 x 32 for the larger kyps.

GENE ORB5
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Figure 5.5: Contour plots of the electrostatic potential ® for toroidal mode number n = 19 for
CBC parameters, obtained with GENE and ORB5.

As observed, a very good agreement is reached between the two codes. We note however
some small deviations, especially in the growth rates, for k, p; > 0.4. This could result
from differences in the field solver as the GY GLES code considers a second order expansion
in k), ps of the polarization density contribution to the quasi-neutrality equation, while
GENE keeps all orders in k; ps of this term.

In addition to these quantitative investigations of linear growth rates and real frequencies
a detailed comparison of the mode structures was carried out with the global PIC code
ORBS5 [54], in view of later nonlinear comparisons. In Fig. 5.5, the contour plots of the

electrostatic potential are shown for the toroidal mode number n = 19 (k,p, = 0.3) and
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remarkable agreement is observed. In order to further quantify differences between the
mode structures obtained from the two codes comparison of the electrostatic potentials
as a function of the straight field line poloidal angle x is carried out on the fixed magnetic

surface r = ry = 0.5 a. The fields ®(r, x) are obtained in GENE and ORB5 at the end of
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Figure 5.6: Electrostatic potential at r = ry = 0.5a as a function of the straight field
line poloidal angle x (left). Difference between GENE and ORB5 results,
Papne(r0, X) — Porss(To, X) (right).

the simulations, i.e. when the linear growth rates are converged. As a consequence, the
overall phases and amplitudes are in general different. In order to be able to compare the
two potentials, amplitudes and phases of the fields ®(r = r¢, x) are renormalized so as to

match. This is achieved by making use of a poloidal Fourier transform of ®(rg, x):

M/2
1 .
Or=ro,x)=5 Y, (Bn+d,)em, (5.6)

m=—M/2

having invoked the reality condition. The renormalized field ®(ry, ) is then given by:

M2
D(rg, x) = Z (B "B 4 B* TR0 gimX (5.7)

m=—M/2

o]

where the real amplitude A and phase Af are adapted so that the dominant poloidal
Fourier mode ®,,, obtained from the two codes match. Following this procedure the two
electrostatic potentials are shown in Fig. 5.5. As can be seen, the relative difference is at

most of the order of 15%, which represents a very good agreement.
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5.3 Kinetic electrons and electromagnetic effects

After having studied the standard Cyclone base case using adiabatic electrons, we
shall now discuss simulations carried out considering a full kinetic electron response.
Note that the results presented in this section have been obtained thanks to the work
of J. Chowdhury, who has participated to the global-GENE validation effort during a
visit at the CRPP in fall 2009. The electron and ion temperature profiles, as well
as the density profile are defined using Eq. (5.2) with kp; = ke = 6.96, K, = 2.23,
A(T;,T.,n) = 0.3 and xy = 0.5. The same safety factor profile as in section 5.2 is consid-
ered and 3 = 2o T, n./Bg is set to § = 1073. In addition, the ion to electron mass ratio
has been reduced for practical reasons to m;/m. = 400.

When considering the full kinetic dynamic of electrons, their response becomes non-
adiabatic around mode rational surfaces. Fine radial structures are generated in these
non-adiabatic response regions [75, 76], which could lead to badly-converged results or
even to numerical instabilities when not properly resolved. Let us recall that for a mode
with frequency w and parallel wave number £ the electrons respond adiabatically in the
limit |w/(k|veme)| — 0. Considering a Fourier component with poloidal and toroidal mode
numbers (m,n) respectively, the corresponding parallel wave number £ is given for a

straight field line coordinate system by

By 1 1

q(nq—m):—(nq—m). (5.8)

l{:”:(mﬁx%—nﬁ@)-g: Rq

Clearly, k| goes to zero at the associated mode rational surface r = 7, ,, where the safety
factor ¢ = q(rm.n) = m/n. The condition for adiabatic electron response to such a Fourier
component is thus not met in the vicinity of 7,,,. By estimating the transition from

adiabatic to non-adiabatic electron response with the condition:

Lk T (5.9)
Ky

the radial width of the non-adiabatic region around r,, , can be evaluated as follows. The

safety factor is first linearized around 7, , leading to:

1 1 dq
k= R_q (N q(Tmn + A1) —m| =~ R_q {nq—i—nAr%

A
. —m} - ar 5, (5.10)
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with the shear § = (r/q)(dq/dr)|m,. Considering vy, = /T./m;, the condition (5.9) is
then expressed as a relation for the normalized radial width Ar/p, of the non-adiabatic

region centered on the mode rational surface 7, ,:

Ar R /m. ¢
=l &y e L
Ps Cs mi Ry pPs S

(5.11)

having used k, = nq/rm,. Note that for microinstabilities, wR/cs ~ 1. For the present
parameters, where ¢ = 1.4 and § ~ 0.8, the typical radial width of the non-adiabatic re-
sponse region can thus be estimated as Ar/p; ~ 0.8 for kyps, = 0.1 and Ar/ps = 0.08 for
kyps = 1. A very high radial resolution is therefore required for the high £, modes in order
to properly handle the small radial structures that develop in these regions. According to
Eq. 5.11 the radial resolution should be at least small as Ax/ps ~ (k, ps) ™"

Keeping in mind this constraint on the z-resolution, we show in Fig. 5.7 the growth
rates and real frequencies obtained for different k, modes. Note that the growth rates
and frequencies are normalized here to L, /cs for easier comparison with [68]. For these
computations, we consider a simulation domain in the z, v, and p-directions of size
[, X lv” X1, =21 x 4dwvy,; x 16 T; / Byer with grid resolutions n, x Ny X 1y, = 16 x 48 x 16.
In the radial direction, the resolution was adapted for each k, by decreasing the box size
l; as the radial width of modes shrank, from [, = 80p, at kyps = 0.1 to 20 at k,p, = 0.9
while increasing the number of x points from 160 to 560. This corresponds to a radial
resolution of Ax/p, = 0.5 and Az/p, = 0.03 respectively. These simulations obtained
with the global version of GENE are compared with the local version of GENE, as well as
with the ORB5 code. Based on the sign of the real frequencies, one observes for both local
and global GENE simulations, as well as for ORBb5, a transition from Ion Temperature
Gradient (ITG, w > 0) to Trapped Electron Mode (TEM, w < 0) around k, p; = 0.7.
Quantitatively, although a good agreement is reached between ORB5 and the global ver-
sion of GENE concerning the real frequency, important differences are observed in the
growth rates. These discrepancies are still being investigated. It should be in particular
pointed out that the ORB5 simulations were carried out here considering only trapped
kinetic electrons, while passing electrons are still assumed adiabatic. In GENE however,
full kinetic electrons are retained, which could be a possible explanation for the differ-

ences. In addition, we also remark a different behavior at large k,p;, as the growth rates
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Figure 5.7: Linear growth rates (left) and real frequencies (right) as a function of k,ps obtained
with GENE and with the PIC code ORB5, for CBC parameters. The local and
global GENE simulations both include full kinetic electrons while only trapped

electrons are considered in the ORB5 results.
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coordinate x for the two modes kyps = 0.345 and kyps = 0.776. Note that the
amplitudes have been normalized so that the maximum value is 1.

110



Chapter 5. Code validation and global effects

obtained with ORB5 do not increase in the TEM region. This in turn may be related to
the differences in the field solver between the two codes (already noted in section 5.2 for
GYGLES) which is only second order accurate in k,p, in ORB5 while all orders are kept
in GENE. Finally, we observe that p* effects seem less pronounced when using kinetic
electrons compared to the adiabatic electron case, see for instance Fig. 4.9, since the local

and global growth rate curves are here much closer to each other.
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Figure 5.9: Contour plots of the electrostatic potential ® in the poloidal plane for toroidal mode
number kyps = 0.345 and kyp, = 0.776.

In order to further investigate issues related to the non-adiabatic electron response region,
the k, Fourier components of ® are represented in Fig. 5.8 at z = 0 as a function of x
for the two modes k,p; = 0.345 (n = 22) and k,p; = 0.776 (n = 50). For each mode,
one observes peaks localized at mode rational surfaces 7, ,, where ¢(r,,) = m/n. By
estimating the width of the non-adiabatic response region as the width of the largest peak
(measured at mid amplitude), one obtains Az = 0.51p, for k,p, = 0.345 and Az = 0.11p;
for kyps = 0.776. These values are in good agreement with the estimate (5.11) from which
one obtains respectively Az = 2 Ar = 0.43 p;, and Az = 2 Ar = 0.20 p, for k,p, = 0.345
and k, ps = 0.776. In Fig. 5.9, the contour plots in the poloidal plane of the electro-
static potential are also shown for modes k,p; = 0.345 and k,p, = 0.776. One clearly
observes the slab-like structure of the mode at mode rational surfaces and the small radial

structures resulting from the non-adiabatic electron response, which are here well resolved.
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Figure 5.10: Linear growth rates (left) and real frequencies (right) for the mode k,ps = 0.345 as
a function of  obtained with the local and global versions of GENE. A transition
from ITG to KBM is observed around = 2-1072.

Using the same CBC parameters as before, a scan in 8 = 2 yy T, n./ B2 was also carried
out to test the global code when electromagnetic effects become important. The growth
rates and real frequencies obtained with the local and global versions of GENE are shown
in Fig. 5.10. The global code reproduces well the § dependence with respect to local
results, in particular the jump in the real frequency, observed at 3 ~ 2 - 1072, which is
attributed to a transition from ITG to the so-called Kinetic Ballooning Mode (KBM).
The contour plots of the perturbed electrostatic potential ®; and parallel component
Ay of the vector potential are shown in Fig. 5.11 for § = 2107 and § = 2- 1072
One observes an anti-ballooned structure of Ay, in agreement with results from local
simulations. When comparing the two fields, the relative amplitude of A, with respect
to @y is increased by almost an order of magnitude when going from § = 2-107% to
B=2-10"2.

These first electromagnetic results obtained with the global version of GENE are thus
very encouraging, and benchmarks with other codes are planed to further validate the

code in the high [ regime.
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Figure 5.11: Contour plots of the perturbed electrostatic potential ®; and parallel com-
ponent of the vector potential Ay for § = 2-107? (top) and f = 2- 1072
(bottom) obtained with the global version of GENE.
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5.4 Field solver analysis and Rosenbluth-Hinton test

The Rosenbluth-Hinton test consists of computing the linear evolution of the zonal
flow component (n = 0,m = 0) for an initial electrostatic perturbation ®. From the
analytical resolution of the gyrokinetic equation for n = 0 [73], and local to a given
magnetic surface, one expects to observe a damped oscillation of the Geodesic Acoustic
Modes (GAM) relaxing towards the so-called zonal flow residual. The time evolution of

the the zonal flow component can thus be written:

= (1 — Ag) e """ cos(w, t) + Ag , (5.12)

where E, = —0(®)/0x is the radial perturbed electric field, , (®) being the flux-surface

averaged potential. The residual is

1
Ap = , 5.13
f 14+ 1.64¢%/\/T/R (5:13)

with r the local minor radius of the considered magnetic surface, R the major radius,
and wg and g respectively the GAM frequency and damping rate. A correct predic-
tion of this residual level is an important test for gyrokinetic codes, as zonal flows are
identified to be a key saturation mechanism in turbulent regimes, in particular for ITG
turbulence. In Ref. [28], a detail comparison between GENE’s predicted residual level and
analytical values was carried out showing an excellent agreement. In order to obtain such
good quantitative comparison with the analytical results it is however necessary to use a
constant or linear safety factor to be consistent with the local assumptions considered to
derive Eq. (5.13). In this section, we shall carry out the Rosenbluth-Hinton test assuming
a more realistic quadratic safety factor profile and using the ORB5 code as a benchmark

instead of the analytical relations. The physical parameters used in the following are:
a/R=0.1, q(z) = 0.96 + 0.75 (z/a)? , (5.14)
p* = ps/a = 1/160, flat temperature and density profiles k; = K,; = 0, and an adiabatic

electron response is assumed.

Before considering the actual Rosenbluth-Hinton test, we shall first carry out a com-
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parison of the field solver in ORB5 and GENE. As discussed in section 3.3, in the original
implementation of the gyro-averaging, the particle position is evaluated by linearizing the
metric in the field aligned coordinates (z,y, z). This approach neglects some 1/r terms,
and an alternative scheme was thus proposed which consist in computing the particle
position in a pseudo-Cartesian coordinate system (£,7). Note that in the ORB5 code the
treatment of the field solver retains the above mentioned 1/r terms.

Considering an initial axisymmetric perturbation of the distribution function fi(x,y, z,t =
0) ~ cos(mz/l,), the electrostatic potential ® computed at time ¢ = 0 with GENE using
both the original and the alternative [i.e. (£,7n) coordinates| gyro-averaging schemes are

compared to the ORB5 results in Fig. 5.12. One clearly observes a better agreement

2000

15007

© 1000}
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Figure 5.12: Electrostatic potential computed at ¢ = 0 with GENE using the original and
(n,x) gyro-averaging, and with ORB5. The initial perturbation is fi(t =
0) ~ cos(mz/l,)

between GENE and ORB5 when using the gyro-averaging operator in (£,7) coordinates.
Although this new treatment provides a better model for the gyro-averaging and thus the
field solver, it has led to an unphysical growing amplitude of the zonal flow when carrying
out the Rosenbluth-Hinton time evolution problem. Quite extensive tests have already
been carried out to investigate this issue, but unfortunately it has not yet been solved.

The current hypothesis is that, when introducing the 1/r terms related to the singularity
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of the coordinate system, in the gyro-averaging this leads to inconsistencies between the
field solver and the gyrokinetic equation, where some similar 1/r terms are neglected, see
section 2.11. It may well be that one needs to correct all these terms together to obtain
a fully consistent improved model. In the present version of the code, the original gyro-

averaging, i.e. with the linearization of the metric in (z, y, z) coordinates, is therefore used.

Going back to the Rosenbluth Hinton test, the time evolution of the zonal flow component
of the electric field, using the gyro-averaging in (z,y, z) coordinates, is shown in Fig. 5.13.
For this simulation, a domain I, X [, x I, X I, = 120 ps X 27 X 3w, X 97T;/Byes with
grid size n, X n, X Ny X 1y = 160 x 16 x 128 x 64 is considered. One observes similar
GAM damping rate and frequencies obtained with GENE and ORB5, and a reasonable

agreement, within 10%, on the residual level is finally reached.

r/a=0.3
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Figure 5.13: Time evolution of the normalized electric field at r/a = 0.3, obtained with
GENE and ORBS.

Considering this benchmark and other comparisons with analytical results in [28], one
concludes that, despite the inaccuracies of the currently used gyro-averaging operator

near the magnetic axis, the code successfully satisfies the Rosenbluth-Hinton test.
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5.5 Nonlinear benchmarks

After having validated the global GENE code in the linear limit, in particular with
respect to the Rosenbluth-Hinton test, we shall now focus on nonlinear results. Note that

only adiabatic electron simulations are considered in this section.

5.5.1 Nonlinear run without sources

The first simulations are carried out using essentially the same Cyclone parameters, as
in section 5.2, with a/R = 0.36, p* = ps/a = 1/180, as well as peaked ion temperature
and density logarithmic gradient profiles, defined through Eq. (5.2), with xp; = 6.96,

kn = 2.23. The safety factor profile considered here is however given by
q(z) = 0.85—0.01z/a + 2.28 (z/a)* — 0.09 (z/a)® + 0.22 (z/a)* (5.15)

which was chosen to match simulation parameters considered previously for running the
ORB5 code. This ¢ profile is thus slightly different from the one given by Eq. 5.5 in
section 5.2 but still is such that ¢(x = 0.5) = 1.4 and §(x = 0.5) = 0.8. The temperature
ratio is 7 = T, /T; = 1 throughout the plasma. The radial size of the simulation domain is
I, = 120 p, including buffer regions at the edge of the system which represent 5% of the
simulation box on each side and in which a damping Krook operator is applied. The time
evolutions of the nonlinear ion heat diffusivity x; obtained with ORB5 and GENE are
shown in Fig. 5.14, and are given in gyro-Bohm units ygp = p? ¢;/a. In order to enable a
detailed comparison of the initial linear phase, as well as of the nonlinear saturation, the
two codes considered exactly the same initial conditions. As result a very good agreement
is observed. In particular, we note that the first bursts are identical in both simulations.
As no sources are considered here, the ion temperature profile rapidly relaxes towards a
flat profile, which leads to a decrease of the heat diffusivity. It is therefore difficult to
evaluate precisely in Fig. 5.14 the differences between the two time traces after the first

burst as no steady state is reached.

5.5.2 Nonlinear run with sources

In order to carry out quantitative comparisons, the Krook-type heat source (3.113) is

now switched on for the ions, with ~, R/c; = 0.035. This value is chosen about ten
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200

Figure 5.14: Time evolutions of the nonlinear heat diffusivity x/xcs ( xap = pics/a)
obtained with ORB5 and GENE for CBC parameters. Note the decrease of
the heat diffusivity as no source are included.

times smaller than the typical linear growth rate, so that the time scale on which the
heat source affects the temperature profile is smaller than the characteristic time of the
turbulence. For these simulations, the same background state is considered as for the
previous case without sources, except for the logarithmic gradient profiles of the density
and temperature which are chosen to be flatter, according to the following relation:

dIn(T;,n) o fx—x0— Az/2 o f(x—x0+ Az/2
— = K(T, 1 — cosh — cosh 1
R I K(T, ) { cos ( T AT cos S AT (b.16)

taken for x € [xg— Ax/2, 2o+ Az /2] and zero outside. The different constant parameters
are set to kp; = 7.1, kK, = 2.2, A, = 0.8a and AT; = An = 0.04. The corresponding
temperature and density profiles are shown in Fig. 5.15.

The considered numerical box is I, x [, X [, x lvu X1, =144 ps X 132 ps X 2 X 4wy, ; X
16 T}/ Byes with grid resolution n, X n, x n, x My, X n, =150 X 64 x 16 x 64 x 16. Note

that the box size in the y-direction is chosen so that:
ly=——, with ny=3. (5.17)

The simulation domain thus covers only one third of each flux surface, which in Fourier

space translates to one out of every three modes kept in the k,-spectrum, with the smallest
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Figure 5.15: Temperature and density profiles together with their normalized logarithmic gra-
dients, for kp; = 7.1, Ky, = 2.2, Az = 0.8a and AT; = An = 0.04 [see Eq. (5.16)].

mode number in the system being:
ky min ps = 277 ps/l, = 0.0476 . (5.18)

In addition, by setting the numerical parameters h, = 2, h, = 2, and h, = 0.5, one re-
lies on hyperdiffusion in the x—, z— and vj—directions, respectively, to ensure numerical
stability.

Using these numerical parameters, the time evolution of the heat diffusivity and normal-
ized logarithmic gradient of the total temperature 7} o = Tjo + 7} are shown in Fig. 5.16,
together with their running time-average starting at ¢y = 150R/c;, defined for a quantity
A as:

A (t) ! / t A(t) dt . (5.19)

it /s,
Note that 200 000 time steps were computed for this simulation, which has required about
10000 CPU hrs. As opposed to the case with no sources, a quasi-steady state is reached
here, thus validating the use of the Krook-type heat source for this code comparison.
These results are compared with an ORB5 simulation obtained for the same physical
parameters and a similar form of the heat source (see Ref. [62]). The averaged heat
diffusivity is x;/xep = 1.95 for GENE and x;/x¢p = 1.76 for ORB5, i.e. a relative
difference of about 10%. A first element that could account for this small discrepancy are

the remaining p* terms that are still neglected in the gyrokinetic equation considered by

GENE, see Sections 2.11 and 5.4, while they are retained in ORB5. The differences in
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Figure 5.16: Time evolution of (a) the ion heat diffusivity x; in units of xgg = cs ps/a® and
of (b) the normalized logarithmic gradient Rp,, ., of the total ion temperature
T; = Ty; + T4; for CBC like parameters. These two quantities have been obtained
by radial averaging in the range z/a = [0.4,0.6]. The bold lines represent the
running time-average starting from to = 150R/c.
the field solver which is only second order accurate in k,p, in ORB5 while all orders are
kept in GENE may also account for the differences. Indeed the mode numbers k,p, > 0.6
contributes to 15% of the total heat diffusivity in GENE, while these contributions may
be underestimated in ORB5 as a result of the k,p; approximation in ORB5. From a
numerical point of view we notice also that somewhat high hyperdiffusion coefficients
h, = 2, h, = 2 were necessary for stability reasons, which may lead to small variations
in the heat diffusivity. The ORB5 simulations is in addition using a noise control system
which is known to decrease the computed heat diffusivity, also leading to an uncertainty
of about 5% according to convergence tests in the number of markers. Finally, some
earlier studies carried out with ORB5 have shown that the heat diffusivity computed with
different initial conditions could vary within 10%. This variability is due to the chaotic
nature of the turbulence, see e.g. Ref. [62]. This is also the reason of the differences
observed in the detailed burst sequence between two simulations, such as those in Fig. 5.14
and 5.16. Considering these different numerical and physical aspects, the present results
were judged satisfactory to validate the nonlinear behavior of the global version of GENE.
When considering the time evolution of the total ion temperature logarithmic gradient in
Fig. 5.16, one observes that its quasisteady state value is smaller than its initial value. This
can be explained by value of 7, used for the heat source, which is chosen about 10 time

lower than the typical growth rate, so that the time scale on which the heat source modifies
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Chapter 5. Code validation and global effects

the temperature profile remains smaller than the characteristic time of the turbulence. The
quasisteady state value of the total temperature gradient reflects therefore an equilibrium
between the turbulent transport which tends to flatten the temperature profile, and the
Krook-type heat source which tends to restore the temperature profile towards the initial

background profile.
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Figure 5.17: Normalized flux-surface averaged electric field E, obtained with GENE and ORB5
as a function of the radial coordinate z and time t¢.

As discussed in the previous section, the zonal flow component k, = 0 (or n = 0) is the
main saturation mechanism for the ITG saturation, and an accurate description of its
structure is therefore of particular importance. In Fig. 5.17, we show a two-dimensional
representation of the normalized flux-surface averaged radial electric field E,(t, z), defined

as:
pie [ —0/0x|D(t,x,y,2)] J*V(x,2) dz dy

Eu(t,z) =
(t.2) = 3T, [ J(x, 2) dz dy

(5.20)

with ®(t, z,y, z) the electrostatic potential and J*¥* the Jacobian of the field aligned coor-
dinate system (x,y, z). Note that by taking the flux-surface average of ®, only the k, =0
contribution remains. When comparing GENE and ORB5 results in the inner part of
the simulation domain (x/a = [0.3,0.7]), one observes similar small-scale avalanche-like
structures in both cases [77]. The envelope shape of the radial electric fields E, at the end
of the simulation (¢ ~ 400R/cs) are in addition comparable, showing in both cases a local

maximum around z/a = 0.5—0.6. One notes, however that the absolute amplitudes of the
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field are different, which can in fact be explained by the different boundary conditions used
in the two codes. In GENE, Dirichlet boundary conditions are considered for the electro-
static potential in the radial direction, on both ends of the simulation domain, while a

free boundary condition is used in ORB5 at the inner edge, and Dirichlet only on the outer

edge.
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Figure 5.18: Radial profile of the normalized flux-surface averaged electric field E, (a) and its
radial derivative dE,/dr (b), obtained with GENE and ORB5, and averaged over
the time interval ¢t ¢/ R = [380420].

In order to compare quantitatively the radial structure of the flux-surface averaged elec-
tric fields, the time-average of E,(t,x) over the interval tc,/R = [380,420] is shown in
Fig. 5.18.a. Although the amplitudes differ as a consequence of the different radial bound-
ary conditions for ¢, the radial structures are indeed observed to be very similar. The
influence of zonal flow on microturbulence results from its capability to shear the radial
coherent turbulent structures, see Ref. [78]. This effect in fact depends on the shearing
rate wpxp, which is proportional to the first radial derivative of the electric field (i.e.
second derivative of the electrostatic potential):

dFE,
de

WExB X (521)

By comparing in Fig. 5.18.b the radial profiles of dE, /dz, one observes very good agree-
ment between the two codes. This further explains the similar values obtained for the

heat diffusivity and shows that the choice of boundary conditions in the radial direction
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Chapter 5. Code validation and global effects

for ¢ has essentially no effect on the physical simulation results.

5.6 Nonlinear p* scan

In order to evaluate how global effects influence the nonlinear turbulence in the case
of these Cyclone-type parameters, a p* = p,/a scan is carried out and the results are
compared to a local GENE simulation. As already discussed, when using the Krook-type
heat source, the steady state temperature gradient, R/ Lr; 7ot, will nonetheless differ from

the initial temperature gradient. This deviation may in fact vary when changing p*. In
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Figure 5.19: Time-averaged heat diffusivity x;/xas ( Xa = ¢sp>/a) as a function of
the time-averaged normalized logarithmic gradient of the total temperature
obtained with GENE for p* = 1/180. The two points corresponding to the
effective gradients k7; = 6.7 and kp; = 7.2 have been obtained starting from
equilibrium temperature gradient profiles with parameters xp; = 7.1 and
kri = 7.5 respectively. The value x(R/Lr;ro = 7) is then obtained from
these two points by linear interpolation.

order to compute in a meaningful way the heat diffusivity over this p* scan, i.e. for fixed
profiles, two simulations were carried out for each p* value, with respectively kr; = 7.1
and kp; = 7.5 for the background ion temperature profiles. The time-averaged ion heat
diffusivity x; corresponding to the target gradient R/Ly; 1 = 7 is then obtained from
these two points by linear interpolation. An illustration of this procedure is provided in

Fig. 5.19 for p* = 1/180. In Fig. 5.20, the resulting heat diffusivities x(R/Lrirot = 7)
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obtained with both global-GENE and ORB5 are shown in Gyro-Bohm units ( xgp =
cs p?/a) as a function of p*, and the results are compared to a local GENE simulation.
For this scan, the ratio l,/a is kept constant and the number n, of grid points in z is
accordingly increased to keep a constant resolution Az/p; = [,/ n, p;. Thus n, must
scale as 1/p*. In addition, a hyperdiffusion h, = 4 is used for stability reasons for
the GENE simulation at p* = 1/560, while h, = 2 and h, = 0.5 are kept for all p*
values. We note, that the computational requirement for one simulation at p* = 1/560
was 60000 CPU hrs on the HPC-FF linux cluster at Jiilich, Germany, and the total
computational resources used for the whole p* scan was of the order of 220000 CPU hrs.
Focussing first on GENE’s results, one observes, as expected, that the heat diffusivity
obtained with the global code converges towards the local value in the limit p* — 0,

thus providing a further validation of the nonlinear behavior of the global code. The
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Figure 5.20: Ton heat diffusivity x;/xcs ( xaB = p’cs/a) obtained with global-GENE and
ORB?5 as function of 1/p*. The results are compared with the correspond-
ing local GENE simulation. The errorbar associated with the ORB5 data
for 1/p* = 180 has been estimated by carrying out three simulations with
different initial conditions.

relative difference between the local and global heat diffusivity is below 10% for 1/p* 2
280, such that global effects can be assumed negligible beyond this value for the present

parameters. Comparing now the ORB5 and global-GENE results, we observe a similar p*
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dependence, as well as an excellent overall agreement, within 10%, between the two codes.
An estimate of the error on y; has been obtained for the 1/p* = 180 case by carrying out
three independent ORB5 simulations with different initial conditions, showing that the
diffusivities predicted by the two codes are essentially within the error bars. The present
GENE and ORB5 results can be compared with two previous p* scans obtained with
the global codes GTC and GYRO in Refs. [79] and [80] respectively, for similar Cyclone
base case parameters. In Ref. [79], the GTC results converge towards y;/xgp =~ 3.4
in the limit 1/p* — 0, which is in relatively good agreement with the present results
Xi/Xe =~ 2.8 —2.9. On the other hand, global GYRO results in Ref. [80] converge
towards a smaller value of x;/xgp =~ 1.9 in the limit 1/p* — 0. We note that this
Xi/Xap value obtained with GYRO is in fact very close to the flux tube results obtained
when using the approximate s-a model instead of the correct circular concentric model
as shown in section 4.5 and in Ref. [67]. Although not clearly stated in Refs. [79] and
[80], we thus assume that the GYRO simulations had indeed been carried out with the
reduced s — a model, while the GTC runs considered an equilibrium similar to GENE’s

”ad-hoc” analytical model (see Sec. 4.3).

5.7 Summary

In this chapter, extensive validation tests and benchmarks of the newly developed
global-GENE version were presented. When considering linear ITG simulations with
adiabatic electron response, the code has shown a correct description of the cylindrical
limit, as well as excellent agreement with the GYGLES PIC code concerning the growth
rate and real frequencies for the Cyclone base case parameters. The mode structures
obtained with the global codes ORB5 and GENE for these parameters have also shown
remarkable similarities. Using full kinetic electrons, the global code reproduces well the
ITG/TEM transition with respect to local results and to the ORB5 code. Significant
differences with the ORB5 results were however observed in the growth rates. This may
be explained both by the electron model used in ORB5, which only treats the trapped
particles kinetically, as well as by the quasi-neutrality equation in ORB5, which is only

second order accurate in k; p;. Further investigations of these regimes need to be carried
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out in the future. Electromagnetic effects were also addressed through a [ scan, and a
similar dependence of the real frequency and growth rate as compared to the local-GENE
code results was observed, in particular the transition from ITG to KBM occurs at the
same (3 value. These first electromagnetic results are very encouraging, and benchmarks
with other global codes shall be carried out to further validate the code in the high /3
regime.

In view of the so-called Rosenbluth Hinton test, solution to the quasi-neutrality equation
for the n = 0 component of the electrostatic potential have been compared between global-
GENE and ORB5. Differences observed between the two codes have been identified to
result from the approximations made in GENE on the gyro-averaging operator where the
metric is linearized in the polar like (z,y, z) curvilinear coordinate system. By using the
corrections proposed in section 3.3, which considers quasi-Cartesian coordinates, a very
good agreement between the two codes could be reached concerning the initial, n = 0
component of the electrostatic potential. Unphysical growth in the time evolution of the
n = 0 component are however observed when using this corrected gyro-averaging opera-
tor, which are not yet fully understood, and the current version of the code is therefore not
using this alternative gyro-averaging scheme. The Rosenbluth-Hinton test has nonetheless
shown satisfying agreement between GENE and ORB5 concerning the residual level.
Detailed comparisons of nonlinear I'TG simulations with adiabatic electrons were also
carried out between the two global codes. When including a Krook-type source term, a
steady state is reached and agreement within 20% was obtained in the ion heat diffusivity.
Analysis of the zonal flow component of the electric field has shown the presence of small
avalanche like structures in both codes, as well as very similar radial profiles of the shear-
ing rates. Finally, a p* scan was carried showing again an excellent agreement between
the two global code, as well as an appropriate convergence towards the flux tube results
in the limit p* — 0. This scan also showed that global effects are essentially negligible
for machines with 1/p* > 280 for Cyclone base case like parameters and considering flat
gradient profiles. These results can finally shed light on previous disagreements between
the global gyrokinetic codes GTC and GYRO concerning a similar p* scan.

Although some further tests may be required, in particular when using kinetic electrons,

these different benchmarks and validations have shown that the global version of GENE
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behaves as expected in both linear and nonlinear regimes and is now ready for inves-
tigating physical effects beyond the usual parameters. In particular, the global code is
appropriate to investigate microturbulence in small to moderate machines (1/p* < 280),
such as the TCV or DIII-D Tokamaks, or for transport barriers, where gradient profiles

may vary over a few Larmor radii only.
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6 Shaping effects on ITG turbulence

The influence of flux surface shaping on plasma stability and confinement has been inves-
tigated in many experimental Tokamaks, such as TCV, DIII-D or JET, and is recognized
as a key element in fusion research. A well known and documented favorable effect is the
stabilizing influence of elongation on MHD modes, allowing to operate at higher plasma
current (at fixed safety factor) which in turn increases the maximum achievable (3 accord-
ing to the Troyon scaling. Concerning the influence of triangularity, some experiments
in the Tokamak a Configuration Variable (TCV), which was specially designed for inves-
tigating such shaping effects, have shown an increased electron confinement time when
going from positive to negative triangularity [33].

In order to fully understand how shaping could lead to better confinement, it is of partic-
ular interest to investigate its influence on microturbulence, and several studies have so
far addressed this issue by means of gyrokinetic simulations. Results in [81, 82, 65, 83, 84]
suggested a stabilizing effect of elongation on I'TG modes and Trapped Electron Modes
and a smaller effect of triangularity. In [85], a specific study was carried out concerning
the effect of triangularity on TEM in the TCV experiment.

In the present chapter, the effects of elongation and triangularity on ITG modes are in-
terpreted in terms of their influence on the effective temperature gradient, in line with
results published in [84] which were however only considering the effect of elongation. In
a first section, the methodology of the geometry scan is described and, in particular, the
question of which physical quantities shall remain constant while modifying the plasma
shape is addressed. In a second section, linear simulation results are presented for different
plasma shapes, which are then compared in a third section with results obtained using
a local dispersion relation. Finally, the influence of shaping is investigated by means of

nonlinear simulations.
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Methodology and parameter choice

6.1 Methodology and parameter choice

In order to investigate the influence of shaping on microturbulence, a series of equilibria
are computed with the MHD equilibrium code CHEASE [36] by prescribing different

analytical geometry for the last closed flux surface, defined by the functional form:

= Rp+acos(f+ 6 cosh) (6.1)

= ak sin(6) (6.2)

where 0 is the geometrical poloidal angle, a the minor radius, Ry the major radius, s the
elongation and § the triangularity. As a starting point, one considers the same plasma
equilibrium as in section 4.5, i.e. with a circular cross section (k = 1,0 = 0) and with
pressure and current profiles such that the safety factor and shear are respectively gy = 1.4
and § = (p/q)dq/dp; = 0.8 at position p; = 0.5. The flux surface label is here p; =
m, where @, is the toroidal flux, and the inverse aspect ratio is a/Ry = 0.36.
From this initial equilibrium, which essentially matches the Cyclone test case parameters
[68], a set of equilibria are computed by increasing the elongation  of the last closed
flux surface up to k = 1.75 while keeping the minor radius on the equatorial mid-plane
constant. A scan in the triangularity J, at constant k = 1.75 is then considered covering
both positive and negative values of §, see Fig. 6.1. We note that the DIII-D shot from
which the Cyclone test case was derived has an elongation x = 1.75 and a triangularity
0 = 0.3. For each of these equilibria the pressure and current profiles are adjusted so
as to keep the safety factor gy and shear § constant at the position p;, = 0.5 where the
flux tube simulations are carried out. The elongations and triangularities have been
specified for the last closed flux surface (LCFS), the corresponding values at p; = 0.5
are reported in tables 6.1 and 6.2 and will be used in the following to characterize the
different equilibria. In addition, when considering the triangularity scan, the Shafranov
shift of the considered flux surface changes for the different equilibria, the resulting local
aspect ratio € = (Rpaz — Rmin)/(Rmaz + Rmin) at pp = 0.5 is thus not exactly constant
and varies from ¢ = 0.188 for 6 = —0.6 to ¢ = 0.202 for 6 = 0.6, i.e. a relative variation

of 7%.

The present study focuses on the effect of shaping on Ion Temperature Gradient (ITG)
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Figure 6.1: Elongations and triangularities of the last flux surface considered for the scan,
as well as poloidal cross section of the MHD equilibria at limiting values of
this scan. The actual parameters of the DIII-D shot from which the Cyclone
test case was inspired is pointed out with a red cross.

Table 6.1: Elongation scan, at constant triangularity drcps = 0

RLCFS

1.0

1.25

1.5

1.75

Kk, at p=0.5

1.01,0.0

1.19,0.0

1.35,0.0

1.52,0.0

Table 6.2: Triangularity scan, at constant elongation kpcps=1.75

dLcFs

—0.6

-0.3

0.0

0.3

0.6

Kk, 0 at p=0.5

1.45,—0.16

1.51,—-0.091 | 1.

1.4

52,0.00

8,0.086

1.41,0.16
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instabilities, and a flat density profile is considered together with adiabatic electrons so
as to restrain the number of physical parameters which may vary. Concerning the ion
temperature profile, the question may be raised as to what should be kept constant when
going from a circular equilibrium to a shaped equilibrium. Indeed for an equilibrium with
circular concentric flux surfaces, the temperature gradient |§T| is a flux function, i.e. it
only depends on the radial position, ¥, whereas in a non-circular equilibrium it becomes
a functions of both the poloidal flux ¥ and the straight field line poloidal angle x. When
changing the geometry of the flux surfaces, one could thus either keep |6T | constant at
a given x position, e.g. y = 0, or some flux-surface averaged gradient ( |§T| ). In order
to allow for different interpretations, simulations are carried out for different temperature

gradient values for each considered equilibrium.

6.2 Influence of elongation and triangularity in terms of

the effective gradient

The results presented in this section are obtained with the flux tube version of the
GENE code considering the above mentioned physical parameters. For each equilibrium
a scan in the temperature gradient parameter wp; = Lot dInT;/dz, see Eq. (2.135), is
carried out. It is then interpreted in terms of the temperature gradient on the low field
side of the equatorial midplane (i.e. x =0, noted R/L;(0)):

R
LTZ

—

Va(y = 0)‘ . (6.3)

~

= Wwry

(0) ‘v In T3)(x ‘—R‘Vx

’ ‘ dInT;

or in terms of the flux-surface averaged gradient, noted (R/Ly;):

()= { ot miwl) = on

which can be viewed as an effective spatial gradient. Note that the reference length is

- dInT;
Va:(x)‘> ‘ dx

Ve [) (6.4

chosen here as L., = R where R = R, is the major radius. In the above relations the

flux-surface average is defined as:

(A) = Jay Ad'x , (6.5)

fAV d*x
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where AV is the volume between two magnetic surfaces.

In order to study the effect of shaping on the stability properties of I'TG modes, linear
spectra are computed for k, p, values in the range k,p; = [0.1 — 0.8] so as to determine
the most unstable mode for each considered MHD equilibrium and ion temperature gra-

dient. In Fig. 6.2 the maximum linear growth rates ymax = maxy, [y(ky)] for the different
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Figure 6.2: Elongation scan: Linear growth rate of the most unstable mode as a function
of (a) the temperature gradient at x = 0, R/L7;(0), and (b) the flux-surface
averaged gradient (R/Lr;), for different elongations at constant triangularity.

equilibria corresponding to the elongation scan of Table 6.1 are shown as a function of
the temperature gradient at y = 0 and as a function of the flux-surface average gradi-
ent for the elongation scan. In addition, the particular gradient R/Lp;(0) = 7 on the
equatorial midplane, as well as the flux-surface averaged gradient (R/Lz;) = 7 have been
pointed out, and the corresponding growth rates as a function of elongation are plotted
in Fig. 6.3.a.

When first considering the growth rates as a function of the temperature gradient at y = 0,
R/L1;(0), an effect of the elongation on the ITG modes is observed, namely the growth
rate decreases with increasing elongation at fixed R/Lr;(0), see Figs. 6.2.a and 6.3.a. We
note that since the different equilibria have been computed with fixed minor radius on
the equatorial midplane, changing the shape of the flux surfaces at constant R/Lz;(0) can
thus be interpreted as keeping a constant temperature difference between the center and
the edge of the plasma. Assuming that the linear growth rates may provide an estimate

of nonlinear turbulent fluxes (through mixing length estimate), results in Figs. 6.2, thus
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show a favorable effect of elongation for fusion plasmas, in line with [86, 83], since a similar
inner and outer temperature difference would lead to a lower level of turbulent fluxes in a
more elongated plasma. This last affirmation will be further discussed in a later section
by carrying out nonlinear simulations.

Coming back to the comparison of linear growth rates, it is clearly shown in Fig. 6.2.b that
the vmax curves corresponding to the different elongation values essentially align on each
other when represented as a function of the flux-surface average gradient (R/Ly;). The
same result can be seen in Fig. 6.3.a where 7y, becomes independent of « at constant
(R/Lr;). For a given temperature profile T;(V), the ITG mode therefore seems to ”feel”
an effective temperature gradient which results from the relative stretching and compres-
sion of neighboring magnetic surfaces when deforming the magnetic geometry, see Fig.6.1.
This interpretation in terms of an effective gradient is supported by the observation that
the I'TG mode has non-zero extension in the parallel direction to the magnetic field z = ¥,
and is in agreement with similar results in [84] obtained with the global code ORB5. From
Fig. 6.2.b one notes that a unique effective linear critical gradient can be obtained with
(R/L7i); opiy = 3.1, valid for all elongations.

In a similar way as for the elongation scan, a comparison of the maximum linear growth
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Figure 6.3: Maximum linear growth rate as a function of (a) the elongation, or (b) the
triangularity, at constant temperature gradient R/L;(0) = 7 on the equatorial
midplane (squares) or constant flux surface averaged gradient (R/Lp;) = 7
(circles).

rates for the triangularity scan of Table 6.2 are shown in Fig. 6.4. One observes that
the maximum growth rate is reduced when going from positive to negative triangularity

at constant R/L7;(0), see Figs. 6.4.a and 6.3.b. This can be interpreted as a favorable
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effect of negative triangularity, as in [85]. When representing 7,4, as a function of the
flux surface average temperature gradient the different curves get closer to each other, see
Fig. 6.4.b, showing that the modification of the effective gradient can partially account
for the effect of triangularity. This can be further confirmed by noticing in Fig. 6.3.b that
the dependence of 7,,.,, with respect to triangularity is much reduced when considered
at constant (R/Ly;) instead of constant R/L7;(0). Although the alignment of the differ-
ent V. 18 not as good as for the elongation scan, one can still extract from Fig. 6.4.b

an approximate linear critical gradient, which is approximately (R/Lz;) =3.1+0.3.

l,erit
Note that contrary to the elongation scan the local aspect ratio at p; = 0.5 varies for the
different triangularities, see discussion in section 6.1, which may partly explain why the

superposition of the curves in Fig. 6.4.b is not as good as in Fig. 6.2.

0.8 ‘ ; — 0.8 : b
-+- k=145 8=-0.16 3 . e
—— =151, 5=-0.09 e :
0.6/ | -ox=1.52, 8= 0.00 5 % 0.6 ;
o -#-x=1.48,5= 0.09 , /’," P : <R/LT' > 7z
2 -0 k=141,8= 0.16 = ! 4
x 0.4r “, x 0.4 1 3
@ .- «© 1
E & >£ ' o
Sar; . © <RIL.>=7
0.2 Tk 0.2 [ i
o : A : /
RL_(0)=7 _+ > : ?
Ti ; (a) 0 ' : (b)
% 2 4 6 8 10 12 0 2 4 6 8 10 12
R, (0) <R, >

Figure 6.4: Triangularity scan: Linear growth rate of the most unstable mode as a function
of (a) the temperature gradient R/Ly;(0) on the equatorial midplane and
(b) the flux surface averaged gradient (R/Ly;) for different triangularities at
essentially constant elongation.

6.3 Comparison with a local dispersion relation

In the previous section it was shown that the variations of the effective flux- surface
averaged gradient appears as a good parameter to account for the effects of elongation
and, to a lesser extent, of triangularity on linear ITG modes. However, considering that
the I'TG mode in toroidal geometry is in fact an interchange-type instability, resulting

from the combination of the temperature and, magnetic field curvature and gradient, the
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interpretation in terms of a unique parameter is not straightforward. One would rather
expect a combined effect of (1) the temperature gradient and (2) the curvature driving

terms in (Eq. 2.135):

>
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where the terms have been expressed in the electrostatic limit and assuming w,; = 0. In
addition, only the K » contribution from the curvature term is shown since the £, = 0 mode
is the most unstable mode and is thus the only one considered here. We note that in the
two terms described above the coefficients K v/ By and wrj are modified when changing the
elongation or the temperature gradient. In addition, the coefficient ¢ = qo/(Bo o) dV /d,

with £ = a p; in general varies when changing the equilibrium at the considered p; position.

6.3.1 A local dispersion relation for toroidal-ITG modes

In order to obtain a better insight into how both the temperature and curvature gradient
terms influence the I'TG instability, we shall consider a simple local dispersion relation.
This kinetic model, which is derived in Appendix B, is similar to the one described in
Chap. 8 of Ref. [87] and considers a slab geometry where the the effect of curvature and
gradient of the magnetic field is introduced through an external force (assuming a low

pressure plasma):

F=-m (% + vﬁ) VinB. (6.6)
For the local dispersion relation obtained from this model to ultimately account for geo-
metrical effects, the terms related to the curvature and gradient will be replaced by some
effective values taking into account the parameters C , Ky / éo and wr; which were intro-
duced previously.

Let (€, €y, €,) be a orthonormal local Cartesian coordinate system with &||B. A tem-
perature gradient is assumed in the x-direction, opposite to the force F , while the density
n is assumed to be flat, see Fig. 6.5.

Considering only electrostatic perturbation, a solution of the linearized Vlasov equation is

obtained for the amplitude of the perturbed distribution function §f by integrating along
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>
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Figure 6.5: Particle trajectories in the local (€, €, €) orthogonal Cartesian coordinate
system.
the particle trajectories, see Appendix B for more details. The resulting relation between
) f and the electrostatic potential fluctuation amplitude §® is then used together with the
quasi-neutrality equation leading to the following dispersion relation:
k
foi 7o)

07 T

1
ZZ'T

where w and k, are respectively the frequency and y-mode number of the perturbation,
T =T,/T; and Z; = ¢;/e. Note that an adiabatic electron response is assumed to derive
Eq. 6.7 and the approximations w << €2 and k, — 0 are in addition considered. The
drift frequencies related to the ion temperature gradient and magnetic field gradient are

respectively given by:

wrg = By K=t e F, (6.8)
2
. - —»_ mz ’UL 2 — — —
Wp; = UFi'k’——qu2 (7—|—U”)VIHBXB/{7, (69)

having defined &£(v) = K(v)/T — 3/2.

6.3.2 Introducing geometrical coefficients in the local dispersion
relation

In order to introduce the effects of shaping in the dispersion relation (6.7) the term wr;

is now replaced by the corresponding expression computed in the toroidal geometry and
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Comparison with a local dispersion relation

considering the field aligned coordinate system (z,y, z), as defined in Chapter 2:

T (~VInT,) x B

wr; = % . 32 (c:
B Tik:yﬁy-C(ﬁa:xﬁy)xﬁmdlnTig
@ C2 (Vi x Vy)? dx
T, dInT;

having used k ~ ky ﬁy (i.e. neglecting the radial component k, Vz of the wave vector)
and B =C (ﬁx X 6y) Similarly the term wp; related to the curvature and gradient of
the magnetic field reads:

2
o mi (vl 5\ g 5 7

2
_ mi vl 2 Vi Vi Vi Vi MR,
= ﬁ <7+U>C(V:c><Vy) X (—xVx—l——Vz) k;yVy

2

= :1—3 (% + U2|> K, k, | (6.11)
where the curvature coefficient K, is defined according to equation (2.63). We first note
that the x variations of the different equilibrium quantities are not retained here since we
are only interested in perturbations local to the x = 0 surface. Furthermore, in order to
introduce in a consistent manner these expressions for wr; and wg; in the local dispersion
equation (6.7) they both need to be independent of z. The temperature gradient drift
frequency in Eq. (6.10) is already z independent, while the curvature drift frequency as
defined in Eq. (6.11) is a function of z, through the geometrical coefficient K, and the
magnetic field B. The drift frequency wg; needs therefore to be replace by some effective
coefficient < wg; > which does not depend on z. Recalling again that the toroidal ITG
mode is an interchange-type mode which is unstable when the temperature and magnetic
field gradients are in the same direction, we propose to use as effective coeflicient < wp; >

the ponderate flux-surface averaged of wg;:

< Wp; >=

fo Twpi(2) f)z(z) J(2) dz (6.12)

f02 mh(z) J(z)dz

where J is the Jacobian where h(z) is chosen as box shaped function which is equal to one

when wg; < 0 (i.e. VT, and VB in the same direction), and zero otherwise. The choice of
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Chapter 6. Shaping effects on ITG turbulence

the effective coefficient is of course not unique, and one could have used for instance the
local value at z = 0 (low field side) instead, < wp; >= wg;(0). The approach retained here
however tries to captured part of the effects related with the variations of the geometrical
coefficients along the filed line.

Using these relations for wy; and < wg; >, the dispersion relation reads:

k’lu_
1 T, dinT, fos JG(25-)
1— —w) 2 i —0.(61
7t /dv (qu —Eky w) 0. (6.13)

~ ~ ~

Introducing now the normalized quantities Ky = Lye Ky, C = C/Bier, ky = ky p; and the

two normalized driving parameters:

R Lot dIn'T; R K
Dp= -2 : d D,={ -2 14
T C dl’ an < B>, (6 )

where the minus sign are used so that Dy and D, are positive coefficients, one can write:

) R R ) J2 ky'l}i
+1—/ i (LC’ DTEkerw) Joi 0(75) =0. (6.15)

2 ~ ~
ref Ng; 1 (1 2 ¢
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By multiplying the numerator and denominator in the integral by (¢;/ Lyes ZA)C)_1 one finally

obtains:

Z%T+1—/ di ¢ (pgl%y+@> 7{—2 @i‘]g(iyﬁ}) —=0. (6.16)
¢ Z<7+v||>ky+w
where & = w Lot/ (¢:D,), © = v/¢; and having defined the effective parameter p = Dy /D...
One note that in the circular concentric flux surfaces geometry case, and if one replaces
the effective drift frequency < wp; > by its local value wg;(z = 0) the parameter p simply
reduces to p = —RdInT/dr = —R/Ly, where R is the major radius.

Assuming Z; = 1 and 7 = 1, one can solve equation (6.16) for d)(l%y) and for different
values of the parameter p. A Matlab code is used to numerically integrate and solve
Eq. (6.16) for the complex solution @ = @, + ¢4. A scan in the parameter p is carried
out and for each value of p the dispersion relation is solved for different values of l%y. The

resulting growth rate of the most unstable l%y mode is shown as a function of p in Fig. 6.6.

Using a second order polynomial fit, the normalized maximal growth rate 4 can then be
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Figure 6.6: Growth rate of the most unstable ITG mode 4 = 7 Lyt/(¢;D.) as function

of the parameter p = Dy / D., computed using the local dispersion relation
(6.16).

expressed as a function of the parameter p:
4 = —0.0037p* +0.17p — 0.49 . (6.17)

One then finally obtains a relation for v L.t /c; as a function of Dy and D, by multiplying
(6.17) by D, :

ref

D32 - -
= —0.0037 =L +0.17Dy — 0.49 D, . (6.18)
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Figure 6.7: Elongation scan: Geometrical coefficients C|Vz| and —K,/B as a function of
the straight field line poloidal angle y (a-b), and effective coefficients (C|Vz|),
C|Vz|(0) and — (K, /B) as a function of elongation k.

In order to interpret the influence of shaping in terms of the effective driving terms,
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Chapter 6. Shaping effects on ITG turbulence

the coefficients Dy and D¢ can be replaced in equation (6.18) by their numerical values
obtained for the different equilibrium scans and considering either a constant temperature
gradient on the equatorial midplane, at x = O:

5o R 1
" L (0) €|Va(0)]

(6.19)

or a constant flux-surface averaged gradient:
- R 1
' <L> C(|Val) o
where one sets L, = R, and having used relations (6.3) and (6.4) for expressing d1InT;/dx
in terms of R/Lz;(0) and (R/Ly;) respectively.

Considering first the elongation scan, the geometrical coefficients C |§x| and Iéy / B are

0.6:}‘\

S

R/c

0.3 -
RIL,(0) =7

Ymax

0.2f

0.1

Figure 6.8: Linear growth rates obtained by replacing Dy and D, in the local disper-
sion relation (6.18) as a function of k, considering a constant R/Lp;(0) = 7
(squares) or (R/Ly;) =7 (circles).

shown as a function of the straight field line poloidal angle x in Figs. 6.7.a and b. The
effective coefficients (C|Vz|), C|Vz|(0) and (K,/B) as a function of the elongation & are
shown in Fig. 6.7.c. The linear growth rates obtained by replacing Dy and D, in rela-
tion (6.18) for the different elongations are shown in Fig. 6.8. The results obtained with
this simplified model are in relatively good qualitative and semi-quantitative agreement
with GENE’s computations shown in Fig. 6.3.a. Indeed, when considering a constant
R/L7;(0), a reduction of the growth rate with increasing elongation is observed, whereas
this dependence is reduced when considering a constant (R/Lr;). The growth rate for

(R/Lr;) = 7 is in addition found around yR/cs = 0.5 for the reduced model, while a

141



Comparison with a local dispersion relation

comparable value YR/cs = 0.4 is obtained with GENE.

These results can therefore provide useful information toward shedding light on the obser-
vations from the previous section, where it was shown that the dependence of the linear
ITG growth rate with respect to elongation can be removed when keeping a constant
flux-surface average temperature gradient. The present study indeed suggests that when
changing the elongation at constant (R/Ly;), the value chosen for LsdInT;/dx is such
that the contributions from the effective temperature and curvature drives, Dy and D,,
tend to compensate each other.

A similar analysis is also carried out for the triangularity scan. The corresponding geo-

1 1
-1
05 0.8 (©<Ivxi>
D m
o ~ Cvx(0)"
> |
-0.5 0.4
-<K /B>
y
-1 .
5 -5 0 5 0—6.2 0 0.2
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Figure 6.9: Triangularity scan: Geometrical coefficients C|V| and K,/B as a function of
the straight field line poloidal angle y (a-b), and effective coefficients (C|Vz|),
C|Vz|(0) and (KC,/B) as a function of the triangularity ¢.

metrical coefficients and effective coefficients are shown in Fig. 6.9, and the linear growth
rates obtained by replacing the effective drives DT, D, in the local dispersion relation
(6.18) are shown in Fig. 6.10. When considering a constant R/Lz;(0) the growth rate of
the ITG mode is shown to decrease when going from positive to negative triangularity, in
good agreement with GENE’s linear simulations in Fig 6.3. The present results also con-
firm that for a constant (R/Ly;) the driving coefficients, Dy and D,, tend to compensate
each other, although the difference between the two curves in Fig. 6.10 is not as clear as
for the elongation case.

When comparing the different driving coefficients —ICy /B related to the magnetic field
gradient, one notices that in the case of the elongation scan they have a similar y de-

pendence, see Fig. 6.7, and only vary in amplitude, whereas a different y dependence is
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observed when changing the triangularity, Fig. 6.9. Indeed, for all x values at constant
0 = 0, the coeflicients —Iéy /B present a local minimum at y = 0 and two maxima around
7/2 and —7/2. On the other hand, considering the triangularity scan, a similar y depen-
dence with one local minimum and two maxima is observed for § < 0 whereas the § > 0
cases present a global maximum at xy = 0. When introducing the effective coefficient
< wp >, the information on these different xy dependencies is lost, which could explain
why an interpretation in terms off effective drives is less accurate for the triangularity
scan, and could also account for the differences in Fig. 6.3.b where the linear growth rates

do not perfectly align when considering a constant (R/Lr;).

0.6
0.5¢ <R/LTi>=7
0.4
o
. 03
£ RIL,(0) =7
0.2r
0.1
—8 2 -0.1 0 0.1 0.2

Figure 6.10: Linear growth rates obtained by replacing Dy and D, in the local dispersion
relation (6.18) as a function of the triangularity § considering a constant
R/Lri(0) =7 (squares) or (R/Ly;) =7 (circles).

6.4 Nonlinear results

Considering first the circular equilibrium (x = 1.01, = 0) as well as the most elongated
equilibrium (x = 1.52,0 = 0), nonlinear simulations are carried out and the resulting
electrostatic heat fluxes are shown in Fig. 6.11 as a function of R/Ly;(0) or (R/Ly;). For
these nonlinear simulations, which have physical parameters close to the standard Cyclone
base case, the simulation domain is {, x{, X[, x ZUH X1, = 110 psx 90 ps X2 X3 4, i X9 T} / Byet

and the grid resolution n, x n, x n, X Ty X My = 128 x 48 x 32 x 32 x 8.

As expected from the linear simulations, we first notice that for a constant R/Ly;(0)

the turbulent heat flux is significantly decreased when increasing the elongation. This
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Figure 6.11: Elongation scan : Nonlinear electrostatic heat flux as a function of (a) the
temperature gradient at x = 0, R/Lp;(0), and (b) flux-surface averaged
gradient, (R/Lr;) for the two equilibria with elongations £ = 1 and x = 1.52
at constant triangularity ¢ = 0.

can be interpreted, as already discussed in section 6.2, as a favorable effect of elongation
for fusion plasmas since a similar inner and outer temperature difference would lead to a
lower level of turbulent fluxes in a more elongated plasma. The effect of elongation can
here again be essentially accounted for by considering a constant (R/Lz;). In particular,
by comparing results shown in Figs. 6.2 and 6.11 for the two equilibria with x = 1.01
and k = 1.52, one observes the same nonlinear 'Dimits’ up-shift for the effective critical
inverse temperature gradient length from the linear value R/Leg erit =< R/Lp; >eit™ 3
to the non-linear value R/Leg crit =< R/L71; >cie~ 6. The observation that there exists
a unique effective critical temperature gradient for different elongations are in agreement
with nonlinear global simulations presented in [84]. We note that the present simulations
were carried out with essentially the same physical parameters as in [84] apart from
the density gradient, which is here taken as R/L, = 0, so as to limit the number of
parameters that would have to be interpreted in terms of effective gradient or gradient
on the equatorial mid-plane, while a finite R/L,, was used in [84]. We finally notice that,
since for a constant (R/Lr;) the linear growth rates are similar, the remaining differences
observed in Fig. 6.11 can be interpreted as additional geometrical effect on the nonlinear

fluxes.

Considering now the triangularity scan, the electrostatic heat flux is shown in Fig. 6.11
for 6 = —0.16,0.0,0.16 at essentially constant elongation. Although the differences be-

tween the three curves are not as significant as for the non-linear elongation scan and
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Figure 6.12: Triangularity scan : Nonlinear electrostatic heat flux as a function of (a)
the temperature gradient at x = 0, R/L7;(0), and (b) flux-surface averaged
gradient, (R/Ly;) for different triangularities and constant elongation.

also less marked than in the linear triangularity scan, one can still conclude that the

turbulent transport is decreased when going from positive to negative triangularity at

constant R/L7;(0). Similar to the linear study, the dominant effect of triangularity can
be accounted for in terms of the effective spatial gradient, as the heat flux dependence
over the triangularity parameter ¢ is essentially reduced at constant < R/Lp; >. One
can furthermore extract an effective nonlinear critical inverse temperature gradient length

R/Leff,crit =< R/LTz > erit™ [57 + 05]

6.5 Summary

In this chapter the effect of flux surface shaping on ITG modes was investigated with
flux-tube simulations considering different elongations x and triangularities . Assuming
a flat density profile, a decrease of the linear growth rate was observed when increasing the
elongation at constant ion temperature gradient on the equatorial midplane, R/Ly;(0), as
well as when going from positive to negative triangularity. It was shown that these shaping
dependencies could be essentially reduced by keeping the flux surface averaged gradient
(R/L;) constant. In order to further understand how the modifications of the flux surface
average gradient could account for these shaping effects, a study with a local dispersion re-
lation was carried out, which suggested that at constant (R/Lz;) the linear drive resulting

from the temperature gradient and magnetic field curvature essentially compensate each
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other. Finally, a series of nonlinear simulations were considered, showing, in line with the
linear results, a decrease of the electrostatic heat flux with increasing elongation and when
going from positive to negative triangularity at constant R/Lz;(0). We note that since the
minor radius on the equatorial plane was kept constant for the different plasma shapes,
the observed decrease of the electrostatic heat flux can be interpreted as a favorable effect
of elongation and negative triangularity for fusion plasmas. As for the linear case, the
main dependence on elongation and triangularity could be reduced by keeping a constant
(R/Lr;). Finally, in agreement with [84], an important observation is the existence of a
unique effective critical inverse temperature gradient length which could be determined
accurately for the elongation scan, R/Lesserie =< R/Lp; >ery~ 6, and within a given

interval for the triangularity scan, R/Lcff it =< R/Lp; >crie> [5.7 £0.5].
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7 Modeling of electron internal
transport barriers in the TCV
Tokamak

Internal Transport Barriers (ITB) are regions of reduced radial particle and energy trans-
port within the core plasma. The presence of an ITB is usually identified when, for a
constant heating power, the temperature or density gradients exceed those of standard
discharges. Depending on the heating method, internal transport barriers on ions, elec-
trons, or both can be generated. Although the exact mechanism underlying the transport
barrier creation is not yet fully understood, several experiments on different machines have
shown that ITB formation is most of the time associated with plasmas rotation and/or the
presence of a reversed magnetic shear profile [88]. Because of their enhanced confinement
properties, transport barriers are viewed as a promising way to achieve high performance
regime in future fusion reactor and are thus actively studied from the theoretical and
experimental point of view [89, 90, 91, 92, 93].

In this chapter, turbulent heat and particle transport are investigated with the local ver-
sion of the GENE code considering a TCV discharge where an electron Internal Transport
Barrier (eITB) was obtained in the presence of a reversed shear profile [94]. We note that
no measurement of the background plasma rotation was available for this experiment.
However, other experimental rotation measurements in TCV suggest that typical shear
flow velocities are not significant in the core of the machine, and background £ x B and
parallel rotation effects are thus not considered in the present work. A previous study
[40], based on similar TCV discharges and using quasi-linear estimates computed with the

local code GS2 [11], has shown that for a given electron temperature gradient, one can
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find pairs of density and ion temperature gradients values (R/L,, R/Lz;) for which ion
temperature gradient (ITG) and Trapped Electron Mode (TEM) contributions to electron
particle transport are equal and of opposite sign, thus leading to a net cancellation of the
total particle transport. This finding is of particular importance, since in the absence of
any particle source and neglecting the neoclassical contributions one indeed expects that
in the steady state the turbulent particle flux should be zero. The present work is thus
motivated by these quasi-linear results and intends to investigate whether such particle
flux cancellation can also be observed for realistic el TB parameters in nonlinear simula-
tions. To this end, scans in the ion temperature gradient shall be carried out while keeping
the other reference physical parameters constant until reaching a regime where both TEM
and ITG instabilities are present and their respective contributions to the electron flux
cancel each other. In addition one is interested in comparing the obtained nonlinear elec-
tron heat diffusivity with experimental values and thus to determine whether the obtained
regime, for which the particle transport would cancel, is realistic from this point of view
as well. Some further simulations are then presented to investigate the sensitivity of the
heat diffusivity with respect to the density gradient, the electron temperature gradient
and the radial position at which simulations are carried out. Finally some first global
nonlinear simulations are carried out for reduced parameters, in order to provide some

first estimate concerning the importance of relevant p* effects.

7.1 Physical parameters

The physical parameters considered here are derived from the TCV discharge #29866,
which corresponds to a typical elTB scenario in a deuterium plasma. The experimental
temperature and density profiles of electrons are plotted in Fig. 7.1, showing a steep
gradient in the transport barrier region which is ranging from p, ~ 0.28 — 0.46, where
pr = m, ¢¢ being the toroidal flux. The inverse temperature gradient length in
this region varies between R/Lp. = 10 and 30, and the inverse density gradient length
R/L,. between 3 and 10. Note that all temperature and density gradients are here
defined as R/L, = R < |VIng| >= (R/a) < |Vp| > dlnd/dp;, with ¢ = T,n and

< . > stands for the flux-surface average. The ion temperature was not measured in
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Chapter 7. Modeling of eITBs in the TCV Tokamak

this experiment, and can only be estimated from the electron profile by considering a
fixed ion to electron temperature ratio. The safety factor profile ¢, computed with the
equilibrium code CHEASE is shown in Fig. 7.2, where one observes that the shear § =
(pt/q) (dq/dp:) cancels around p; = 0.4, i.e. close to the transport barrier localization.
A detailed description of the procedure used for the reconstruction, with CHEASE, of
a magnetic equilibrium from experimental and calculated quantities, is given in [95].

Using the interface with the CHEASE code, see Chap.4, local GENE simulations are
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Figure 7.1: Experimental temperature (left) and density (right) profiles of electrons for
TCV discharge #29866, obtained from Thomson scattering diagnostic. The
vertical solid lines indicate the Internal Transport Barrier region p; ~ 0.28 —
0.46.

carried out at radial position p; = 0.3, which corresponds to a local safety factor ¢ =
3.2, shear § = —1.17, and inverse aspect ratio r/R = 0.09. Note that this particular
radial position is chosen as a first test case, as the corresponding electron temperature
and density gradient are not too strong and numerical requirement are thus reduced. A
variability investigation, questionning this particular choice will be presented in a latter
section. Although using a realistic equilibrium, the present study will only focus on
electrostatic modes and an independent small 3 = 10~* value is set, i.e. a (3 value
inconsistent with the actual density and temperature profile considered. Note that one
could have used 3 = 0, however in this limit some electrostatic modes with very high real
frequencies are present in the system, which strongly restrict the time step, and a finite
3 is thus required for practical reasons. The temperature ratio 7 = T./T; and effective

charge Z.pp = >, ni Z2/ > .;niZ; are set, consistent with experimental measurements,
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Figure 7.2: Safety factor profile ¢ (left) and shear § (right) reconstructed with the equi-
librium code CHEASE, for TCV discharge (#29866).

respectively to 7 = 3.5 and Z.sy = 2. Although more demanding from the computational
point of view as it requires to add a third species, it is essential to account for this Z.p > 1
value, since together with the retained T./T; ratio it has a stabilizing effect on electron
temperature gradient (ETG) instabilities thus allowing to consider only ion scales for
the nonlinear simulations. The reader is invited to consult Refs. [96] and [97] for issues
related to multiscale simulations. Carbon was chosen for the additional ion species as
it is the dominant impurity observed in the experimental discharge. The three kinetic
species, electrons, deuterium and carbon, are thus considered with normalized densities
Ne/Mwet = 1, np/Nyer = 0.8, and ne/ner = 0.03 so as to verify Z.;; = 2, and real mass
ratios are taken into account. The choice of retaining a real mass ratio is motivated
in particular by a Trapped Electron Mode study in Ref. [27], where some quantitative
differences of up to a factor two were observed in the particle flux between a reduced
(m;/m. = 400) and real mass ratio simulations. The electron temperature and density
gradients are taken as R/Lyp. = 12 and R/L,. = 3. The ion temperature gradients
for the two species are assumed to be equal, R/Lrp = R/Lrc = R/Ly;, and will be
varied between 2 and 10 in the following study. As it is not measured in this particular
experiment, the inverse normalized gradient length of carbon is arbitrarily taken as half
the electron value, R/L,c = 0.5R/L,.. Note that this choice is based on results in
[40] for which a cancellation of both the electron and carbon particle fluxes was observed

at a given R/Lp; when R/L, c ~ 0.5R/L, ., and should not have a strong impact on
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the following study since a low carbon density is considered here. For consistency, the
deuterium density gradient is then obtained by taking the radial derivative of the quasi-

neutrality equation:
dnp dne  dn,

T/ S d
dx + o dz dr '’ (7.1)
leading to:
R 1 R R
=—n.——Zgn. . 2
Ln,D np <n Lne on Ln,C) (7 )

Finally, a realistic collision frequency is considered, and the normalized collision coefficient
v, = 2.3107° In A R[m] n. [10Y m™3]/(T;[keV])?, see Ref. [51], is therefore set to v, =
5107*, where In A is the Coulomb logarithm, and considering R = 0.88m, T; = 1keV,
ne = 1.2 x 10 m~2 and In A = 20.

To summarize, the considered physical parameters at p, = 0.3 are:

e realistic magnetic geometry with: ¢ = 3.2, § = —1.17, r/R = 0.09.

e three kinetic species, electron, deuterium, carbon with: 7 = T./Tc = T./Tp =
T./T; = 3.5, np/n. = 0.8, n¢/n. = 0.03, R/Ly. = 12, R/L,. = 3, R/Lrp =
R/Lrc=R/Ly;=2—-10 R/L,p =3.4, R/L, ¢ = 1.5.

e normalized collision frequency 7, = 5-107* and 3 = 1074

7.2 Linear results

With the above considered parameters, linear computations are first carried out with
the eigensolver version of GENE for two different values of the ion temperature gradient
R/Lr; =5 and R/Lp; = 6. This linear investigation focuses on the growth rate and real
frequency of the two most unstable modes for each toroidal mode number &, p; between
0 and 2.2. The corresponding results are shown in Fig. 7.3. Considering first the case
R/Ly; = 5, one observes two distinct local maxima in the growth rate spectra. The largest
one is found around k, p; >~ 0.5 and corresponds to a mode with negative real frequency,
i.e. propagating in the electron diamagnetic direction, which can thus be identified as
a Trapped Electron Mode. The second maximum, at k, p; >~ 1, is linked to a positive
frequency and can be identified as an Ion Temperature Gradient mode. When increasing

the ion temperature gradient from R/Lp; = 5 to R/Ly; = 6 the local maximum around
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Figure 7.3: Linear spectra for the two most unstable modes for R/Ly; = 5 and R/ Ly; = 6.
The TEM (squares) and ITG (crosses) are identified considering the sign of

their real frequency.

kypi ~ 0.5 remains essentially constant while the local maximum around k, p; ~ 1 is

strongly increased and becomes the largest, thus further confirming the respective nature
of the corresponding modes. From these linear results, one expects that the coresponding
turbulence will evolve from a TEM dominated regime to an ITG dominated regime, when

increasing the ion temperature gradient from R/Ly; = 5 to R/Ly; = 6. Such behavior

will be further investigated in the following by means of nonlinear simulations.

The GENE results shown here have been carried out with a high resolution, considering a
velocity box [, x [, = 3 v, X9 T;/ Byer and a grid size n, Xn, X My XMy, = 24X 24X 64 % 16,
for which the growth rate of each individual &, mode is converged within approximatively

In view of the nonlinear simulations, where a somewhat lower resolution might

1%.

be used to decrease the computational cost, we shall now discuss how a reduced grid
would affect these linear results. As explained in section 3.2.3, each individual (k, =
= k, + pdk,) modes as a result

2w k/l,, k, = 2ln /l;) mode is coupled to different (k,, &,
of the parallel boundary condition, where 0k, = 27mn.k/l,. The radial grid resolution
is therefore determined by the number of required connections to correctly describe the

parallel structure of the mode. The length [, which can only have quantized values [see
(7.3)

(3.30)]:
z
la:: c . )
e 07|
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Figure 7.4: Absolute value of the electrostatic potential of several k, Fourier modes as
a function of the parallel coordinate z. This plot is obtained by connecting
each individual (k,, k,) mode, defined over z = [—m, 7|, to an other (k.,k,)
according to the parallel boundary condition (3.32). The grid resolution is
n, = 24, such that 11 positive and negative connections are considered, and
the first 6 connections are shown here.

is adapted in a linear simulation for each individual %k, mode so that n. = 1. In this
case, all k, modes are connected and the number of p,., connections is therefore py.c =
[(ny —1)/2], where | ] stands for integer part. The parallel structure of several k, Fourrier
components of the electrostatic modes are shown in Fig. 7.4 for n, = 24. One observes
that modes k, > 0.2 have a strongly ballooned structure, which suggests that only a few
connections are required for correct numerical resolution. In fact, simulations with no
connections, i.e. n, = 1 have already shown a good agreement with the higher resolved
results. Considering now the other phase-space directions, convergence tests have shown
that a reasonably good agreement with the reference high resolution results, in the order
of 10%, is reached by using a parallel resolution n, = 16, as well as velocity resolutions
ny, = 48 and n, = 8. To summarize this convergence study, the growth rate and real
frequency of the most unstable mode for each individual mode number £, are plotted in
Fig. 7.5 for both resolutions n, x n, x Ny X 10y, = 24 X 24 x 64 x 16 and 1 x 16 x 48 x 8,

indeed showing maximum differences on the linear growth rates of the order of 10%.
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Figure 7.5: Linear spectra for the most unstable modes considering two different resolu-
tions: Mg X My X Ny X1y, = 24 x24x64x16 and 1 x 16 x48 x 8, for R/Ly; =5

(left) and R/Ly; = 6 (right).

7.3 Nonlinear simulations

7.3.1 Choice of numerical parameters
As we are here considering physical parameters which are far away from the usual

Cyclone base case, we shall start by further discussing the choice of the different numerical

parameters used in these nonlinear simulations. The linear results in Fig. 7.3 show that

Figure 7.6: Contour plot of the electrostatic potential in the perpendicular (x,y) plane at

tR/c; = 160.

the linear modes are typically unstable in the region k, p; € [0.2, 2] for the considered
Based on this observation, the box size in the y-direction is set

physical parameters.
such that ky i pi = 27 p;/l, = 0.08 and the number of considered modes is ny, = 32,
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leading to a maximal resolved mode kymaw pi = 27 nyy pi/l, = 2.6. Considering now
the system size in the x direction, the length [, should be large enough to contain the
turbulent eddies, whose dimensions are characteristic of the radial decorrelation length,
so that the periodic boundary condition in the radial direction can be well justified. For
the considered physical parameters, where TEMs are present, elongated structures, often
referred to as streamers, develop. The radial length of some of these streamers can be
near 100 p; long as illustrated in Fig. 7.6. A radial box length of approximately [, = 120 p;
should thus be appropriate. As already discussed in the previous section, the radial box
length [, needs to take on one of the quantized values I, = n.l,/|27§|, where n. is an
integer. For the present shear value § = —1.17, one obtains for n, = 11 a box length of
l, = 117.5p;, which will be used in the following. The required radial resolution is then
determined by the size of the smallest turbulent eddies, which are typically of the order of
a few p;, as well as by the number of connexions that are required in the parallel direction,
as already discussed in section 7.2. In order to connect each (k,, k, = 0) mode to at least
one other (k,, k,) mode, the number of points in the radial z-direction would need to be

Ny =2-n¢ ng, +1=2-11-32+1 = 705. The linear convergence studies have shown,

7nx=128
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Figure 7.7: Time evolution of the electron heat and particle fluxes, for R/Ly; = 5, and
resolutions ng, xn, xn, XNy XNy, = 128 x64x16x48x 8 and 256 x64x 16 x 48 X 8.
The running average, see Eq. (7.4), is represented by the thicker lines.

however, that modes k,p; > 0.2 have a strongly ballooned structure, so that even when
taking no connection, the main physics is still correctly described. In order to further
determine whether a lower z-resolution could be envisaged, two nonlinear simulations

with resolution n, = 128 and n, = 256 are compared. Note that for these two resolutions,
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the last modes with at least one connexion are respectively k,p; = 0.40 and k,p; = 0.88.
In real space, these two resolutions would thus correspond to a radial grid spacing of
Ax = l;/n, = 0.92p; and Az = 0.46 p; respectively. For the z-direction the resolution
n, = 16 and for the velocity space resolution the parameters lvu X 1, = 3v; X 9T,/ Byet
and n,, X n, = 48 x 8, which had proven appropriate for the linear runs, were kept for the
nonlinear simulations. The time trace of the electron heat and particle fluxes and their
respective k, spectra obtained from the nonlinear GENE runs are shown in Figs. 7.7 and
7.8 for the case R/Lp; = 5. As can be observed, the running average heat fluxes for the
two radial resolutions, defined as:

1
t—

@) == /ttQ(t)dt, for >0, (7.4)

having chosen ty = 50¢;/R, differ by less then 10% at t = 190R/c;. The corresponding
running average of the particle fluxes vary only by a few percent as well. In Fig. 7.8,
one remarks in addition that the &, spectra of the turbulent fluxes are not significantly
changed. From these results we conclude that a radial resolution of n, = 128 is sufficient
for the present study. This grid resolution enables to reduce the computational effort thus
allowing us to investigate the influence of several physical parameters on the nonlinear

simulations.

Figure 7.8: Electron particle flux spectra for R/Ly; = 5 and considering different radial
resolutions n, = 128 and n, = 256.

To summarize, a resolution of n, x n, x n, x Ny X Ny = 128 x 64 x 16 x 48 x 8 shall
be used in the following, for which we estimate that the nonlinear simulation results are

converged within about 10% to 20%.
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7.3.2 Nonlinear results

Using the physical and numerical parameters described previously, a series of nonlinear
simulations are carried out for various values of the ion temperature gradient. Considering
first the case R/Ly; = 5, the time evolution of electrostatic heat and particle fluxes for the
different kinetic species are shown in Fig. 7.9. One observes, as could be expected from
the linear physics where TEMs were the most unstable modes, that the electron heat flux
is dominant. In addition, as carbon is only a trace species, n./n. = 0.03, we also notice
that its contribution to the heat flux is negligible. Concerning the particle fluxes, the
electron and deuterium particle fluxes are very close, while the remaining small carbon

particle flux is such that the ambipolarity relation is satisfied:
I‘es,D + ZC Fes,C = Fes,e s (75)

as can also be observed in Fig. 7.10.
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Figure 7.9: Time evolution of the electrostatic heat and particle fluxes of electrons, deu-
terium and carbon for R/Lp; = 5.

In the following, we will concentrate on electron transport and try to compare simulation
results with some experimental measurements.

Considering now the actual scan in the ion temperature gradient, the time-averaged elec-
tron particle fluxes are shown in Fig. 7.11 as a function of R/Ly;. One observes that the
particle flux is continuously changed from a positive to a negative value when increasing
R/Ly; and crosses the zero axis around R/Lp; ~ 6. One notices, in particular, that this

ion temperature gradient value for which the electron particle flux drops to zero corre-
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Figure 7.10: Comparison between the electrostatic particle fluxes. The cancellation of
time traces I'cs p — I'esc and ZclI'es ¢ show that the ambipolarity relation is
verified.

sponds to the transition from TEM to ITG dominated linear drive, as pointed out in
Fig 7.3. A more detailed analysis of the particle flux spectra, shown in Fig. 7.12, reveals
that the flux cancellation results from positive contributions at low k, p; (where TEMs
are the most unstable linear modes) which are compensated by negative contributions at
higher k, p; (where ITG modes are most unstable). This observation is in agreement with
similar results in Ref. [51] which have been obtained for different physical parameters, as
well as with a quasi-linear study in Ref. [40]. This latter comparison with quasi-linear

results will be further investigated in the following section.
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Figure 7.11: Electron particle flux as a Figure 7.12: Electron particle flux spectra
function of R/Lry;. for different R/ L.
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Since the observed particle spectra for different &, modes seems to reflect features of the
linear physics, one may obtain some useful information by investigating whether some
characteristic frequencies are present in the turbulence. To this end, a time-windowed
Fourier transform of the electrostatic potential is employed, see Ref. [28], which provides
for each k, value a frequency spectra. The time interval and window width considered
here are respectively t¢;/R = [100, 250] and Aty ¢;/R = 37.5. The resulting normalized
frequency spectra obtained for different ion temperature gradient values are shown in
Fig. 7.13. Most of the linear physics characteristics are still observed in the nonlinear
simulations. Indeed for the R/Ly; = 5 case, the dominant frequencies are negative for
k,pi € [0.2, 0.7] and positive for k, p; € [0.8, 1] in good agreement with result in
Fig. 7.3. Note that no dominant frequency can be determine for &, p; > 1. Considering
now R/Lp; = 6, a clear transition from negative to positive frequency is observed at
k, ps = 0.5, as for the linear simulation results of Fig. 7.3. Finally, for R/Ly; = 7.5, the
regime is, as expected, ITG dominated with essentially positive frequencies.

These results show that the negative and positive contributions observed at different &, p;
in the particle flux spectra in Fig. 7.12 can be clearly associated respectively to dominant

TEM and ITG modes which still persist in the nonlinear regime.

R/ LTi=6 R/LTi=7.5

o R/c.

Figure 7.13: Frequency and k, spectra of the electrostatic potential ®. For each k, mode
the frequency spectra has been normalized to its maximal value. The fre-

quency of the most unstable linear mode of Fig. 7.3 are reported here in
dashed line.
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As already discussed, the point in parameter space for which the particle flux goes to
zero, I' ~ 0, is remarkable as it corresponds, in the absence of particle sources, to a
stationary state situation. In particular, when considering experimental temperature and
density profiles for carrying out gyrokinetic simulations, one could investigate whether
the condition for such a stationary state are met within the experimental uncertainties.
Assuming that the physical parameters are indeed such that the constraint I' ~ 0 on
the particle fluxes is fulfilled, i.e. R/Ly; = R/Lx; stat, we shall now focus our attention
on the heat transport, and in particular compare the corresponding electrostatic electron
heat diffusivity Xes. with the observed experimental value. The electron heat diffusivity
obtained from the nonlinear simulations, defined as:

Qes,e

—_— (7.6)
ne < |VT,| >

Xes,e =

is shown in Fig. 7.14 for the different ion temperature gradient values. In view of com-
paring with the experiment, the different results obtained in normalized units have been
here converted to SI units (m?s™!) using TCV parameters: T, = 4keV, By = 1.44T
and Ry = 0.88m. A remarkable feature observed in Fig. 7.14 is that the ion temperature
gradient value for which the particle flux cancels R/Lp; ~ 6 corresponds to a minimum of
the heat diffusivity, for which it is equal to Xe st =~ 2m? s~!. This observation is in agree-
ment with results in [51]. From the Fourier decomposition of the heat flux in Fig. 7.14,
one observes that the peak related to TEM modes at k, p; ~ 0.5 is removed when going
from R/Lp; =5 to R/Ly; = 6. The heat flux spectra peaks then in the ITG part of the
spectrum around k, p; ~ 0.7, and this new peak increases with increasing temperature
gradient from R/Lp; = 6 to R/Lp; = 7.5. The local minimum of the electron heat flux
around R/Lp; = 6 can therefore be interpreted as a nonlinear interaction between ITG
and TEM modes in the k, p; >~ 0.5 region. The value obtained from these nonlinear sim-
ulations for x. sar can be compared with the experimental electron heat diffusivity, which
is computed from the measured temperature and density profiles, as well as the magnetic

equilibrium and the absorbed power defined as follows:

1 Pt
e = — P.dV, 7.7
Xeap, V'Tgne<1w>2/o (77)

where the prime superscript denotes the partial derivative with respect to the flux label p;,
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Figure 7.14: Electron heat diffusivity x.s. as a function of R/Ly; (left). Note the local
reduction of Xes. for R/Ly; = R/Lr;star. On the right, the electron heat
diffusivity spectra is shown for different R/Ly; values.

and P, is the power absorbed by electrons, calculated as the sum of the ohmic power, the
absorbed ECH power and the equipartition power loss (collisional equilibration between
electrons and ions):

P. = Pgcu + Pon — Pro - (7.8)

For the present case, the experimental electron heat diffusivity is estimated to be about
1m? s~1 in the region p; = 0.3 — 0.4. The simulation results are thus within a factor two
of these experimental values. Let us point out however, that the flux tube computations
were not carried out for the radial position with the steepest electron temperature and
density gradient. A discussion concerning the sensitivity of the obtained heat diffusivity
with respect to some of the physical parameters will be thus provided in section 7.5 to

address this particular issue.

7.4 Comparison with quasi-linear estimates

Concerning particle flux cancellation the nonlinear results discussed in the previous sec-
tion show a good qualitative agreement with the quasi-linear results in Ref. [40]. In order
to further validate the quasi-linear approach, we have carried out some direct quantitative
comparisons, for our physical parameters, with quasi-linear particle fluxes obtained from

GENE simulations.
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Figure 7.15: Quasi-linear estimate of the Figure 7.16: Quasi-linear estimate of the
electron particle flux as a func- electron particle flux spectra

tion of R/LTZ for R/LTZ =5 and R/LTl = 0.

For the eITB study in Ref. [40] the quasi-linear rule was only retaining the mode k,p; cor-
responding to the highest value of v/ < k% >. Considering however that the particle flux
cancellation observed for the nonlinear simulations in Fig. 7.12 had resulted from positive
and negative contributions at different k, values, it appears essential to keep all k, modes
in the quasi-linear approach. We therefore adopt here the more suited rule proposed in

Ref. [98], for which the quasi-linear flux is given by:
Frt =" B Ak, (7.9)
ky

where F’ stands for the heat @) or particle fluxes I'. The single k, mode contribution is

defined as:

T
Frt— A ( Ty ) L (7.10)
BTN (@, (0

The quantities Fky and qu)Ong(O) are obtained from the linear simulations and the flux-

surface averaged perpendicular wave number is computed as:

k,2 Yy k2 Tx k.xk, Ty é Qd
g2y - S S 0597 + K0 +hakyg™) 1842 de -

Note that the k, sum is running over all connected k, for a given k, (n, = 24 here).

The value of the constant Ay needs only to be determined if one needs to obtain absolute
quantities. We are however only interested here in finding physical parameters for which

the particle flux goes to zero which can be determined by looking at the ratio I'/Q) between
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the particle and heat fluxes since the heat flux is always positive. Finally, the parameter
¢ is first set to & = 2, as suggested in [98].

The quasi-linear flux ratio I'./Q;, where @Q; is the deuterium heat flux, is shown in
Fig. 7.15. As for the nonlinear simulations (see Fig. 7.12), the particle flux changes from
a positive to a negative value when increasing the ion temperature gradient while keeping
all the other physical parameters constant. We furthermore notice that the temperature
gradient R/Lr; stqr for which I'. = 0 is in good agreement with the nonlinear results.
Considering now each individual k, contribution, which are shown in Fig. 7.16, it is clear
that the observed flux cancellations results from positive and negative contributions at
different k, values. This is also in very good agreement with the observed spectra in the
nonlinear simulations, see Fig. 7.12, and stresses the importance of keeping several k,

modes in the quasi-linear approach.

7.5

5.5/ \
\ nl R/LTi stat

1 15 2 25 3
12

Figure 7.17: Stationary R/Ly; obtained from quasi-linear estimates for different values of
the ad-hoc parameter . Also shown is the stationary gradient obtained from
the nonlinear simulations.

When computing the quasi-linear flux, the relative importance of the different &, con-
tributions will in principle be influenced by the choice of the ¢ exponent in Eq. (7.10).
For instance, a higher value of £ will increase the relative weight in Eq. (7.9) of the low
k, modes (where v/ < k? > peaks) with respect to the higher k, modes. In order to
investigate this effect, a scan in ¢ is carried out in the range £ € [1 4] and the stationary

ion temperature gradient R/Ly; qq¢ is reported in Fig. 7.17 as a function of the parameter
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§. The dependence with respect to £ is relatively weak and an agreement within 20%
with the non-linear results is reached for £ between 2 and 3. The choice of £ = 2 seems

therefore appropriate.

7.5 Sensitivity of the computed heat diffusivity

The nonlinear flux-tube computations of the electron heat diffusivity presented in sec-
tion 7.3 have shown that a reasonable agreement can be reached with the experimental
results. The simulations discussed previously were however carried out considering rel-
atively low density and electron temperature gradients compared to the maximal values
that can be reached in typical TCV elTBs. In this section, we shall address the issue of
the sensitivity of the computed heat diffusivity with respect to some of the key physical
parameters. For this study, we consider a slightly different equilibrium profile, for which
the safety factor profile q is shown in Fig. 7.18. Although this equilibrium does not exactly
correspond to the TCV discharge #29866, it is still representative of some other TCV
experimental eITB scenarios, see [95]. For this safety factor profile, the cancellation of
the shear § is shifted to higher p; values, thus allowing to compare simulations at p; = 0.3
and p; = 0.4. Note that with the previously considered equilibrium the § = 0 was located
around p; = 0.4, which prevented us from running flux tube simulations at this position.
The flux tube model is indeed inappropriate for handling zero shear regions. We remark
in particular that the radial simulation length [, — 400 for § — 0, see Eq. 7.3, which
reflects this problem.

In the following, the dependence of the electron heat diffusivity with respect to the den-
sity gradient, the electron temperature gradient and the flux-tube position is investigated
by varying these parameters one by one while holding all the other ones constant. The
considered ranges for varied parameters and fixed values for the constant parameters are

as follows:

e realistic magnetic geometry with local values:
-at pp=03q¢=9, 5§=—-0.55 ¢ =0.09.
~at pp=04q=75=—-122 e =0.12.

e three kinetic species, electron, deuterium, carbon with: 7 = T,/T¢c = T./Tp =

164



Chapter 7. Modeling of eITBs in the TCV Tokamak

7)) 17

Figure 7.18: Safety factor profile ¢ (solid line) for alternative equilibrium to the one of
TCV discharge #29866. Safety factor for shot # 29866 is shown for reference
with dotted line. The corresponding shear profiles are shown on the left plot.

T./T; = 3.5, np/n. = 0.8, ng/n. = 0.03, R/Ly. = 12, R/L,. = 2,3, R/Lrp =
R/Lrc=R/Ly;=2—-10 R/L,p =2.3,34, R/L,c = 1.

e normalized collision frequency v, = 5-107* and 3 = 10~%.

The values R/Ly. = 12, R/ L, = 3 and p; = 0.4 define the reference point from which
these parameters are varied. The same numerical parameters as in section 7.3 are used.

In Fig. 7.19, the electron particle fluxes and heat diffusivities are shown for the different
cases, as a function of the ion temperature gradient. The heat diffusivity at R/Lp; =
R/ L stat, 1.€. corresponding to I'. = 0, is also summarized in Fig. 7.20 as a function of

the flux tube position, density gradient and electron temperature gradient.

We first notice in 7.19 that for the reference case R/Ly. = 12, R/L,. = 3, p; = 0.4 the
heat diffusivity presents a local minimum in the vicinity of R/Lr; star as in Fig. 7.14. For
the case R/Ly. =12, R/L,. = 3, ps = 0.4, a first scan in R/Ly; did not reveal any clear
minimum. By carrying out two additional nonlinear simulations, around the expected
R/ Lt stat, it appears however that the heat diffusivity for R/Ly; = R/ Ly star is slightly
smaller (about 7%) than the two neighboring points. These differences are however not
important, and the same exercise which consists in carrying out further nonlinear simula-
tions in the vicinity of R/Ly; star Was thus not carried out for the two other physical cases
for which no clear minimum are observed.

Focusing now on the sensitivity of the stationary heat diffusivity with respect to phys-
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Figure 7.19: Electron particle flux I'c; . and heat diffusivity x.s. for different radial posi-
tions, density gradients, and electron temperature gradients as a function of
R/Ly;. The ion temperature gradient value R/Ly; g4t for which the electron
particle flux goes to zero is represented by a filled symbol for each case.
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Figure 7.20: Electron heat diffusivity corresponding to I'c = 0 as a function of the flux
tube position, electron density gradient and electron temperature gradient.
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ical parameters in Fig. 7.20, one observes that when changing the flux tube position
from p; = 0.4 to p = 0.3 the heat diffusivity is decreased from Yesu = 8.8 m?s™! to
Xe,stat = 4.8 m?s~!. This dependence is not going in the expected direction as the shear
is increased from § = —1.22 at p = 04 to § = —0.55 at p;, = 0.3 and a more negative
shear is usually attributed to have a stabilizing effect on TEM instabilities [7]. One notes
however that the local aspect ratio varied from ¢ = 0.12 at p = 0.4 to ¢ = 0.09 at p; = 0.3
which could account for the difference as the trapped particle fraction directly depends on

this parameter. Considering the relative variations of the shear and local aspect ratio we

Reducing
R/L

ne

Figure 7.21: Schematic view of the L shaped electron diffusivity dependence with respect
to the ion temperature gradient.

conclude however that the dependence of the heat flux over the position is still moderate.
When changing the electron temperature gradient from R/Ly. = 12 to R/ Ly, = 16, only
a small change of approximately 10% is observed on the stationary heat diffusivity xe stat-
The choice of the electron temperature gradient is thus not a critical parameter.
Considering finally the influence of the density gradient, a very strong dependence is ob-
served. The heat diffusivity varies from x.sa = 8.8 m?s™! for R/L, = 3 t0 Xestat =
0.5 m?s™! for R/L, = 2 to , i.e. by one order of magnitude. From Fig. 7.19, one also
notices that the ion temperature gradient R/Lyy; sq¢ for which I'. = 0 is lower in the
low density gradient case (R/Lrjstar >~ 2 for R/L,. = 2 instead of R/Ly; stat >~ 6 for
R/L,. = 3.

As already discussed in the previous section, the temperature gradient R/Ly; star S Ob-

tained close to the transition between TEM and ITG dominated turbulent regime. A
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schematic view of the general L-shaped R/Ly; dependence of the electron heat diffusivity
is shown in Fig. 7.21. For small values of R/Lp; where turbulence is TEM dominated,
Xes,e only weakly depends on R/Ly;. A strong increase is then observed in ITG dominated
regime. If one neglects local minimum of x. around R/Ly; stat, the Xestar is then close to
the value obtained in the pure TEM regime. The modification of the density gradient has
a strong influence on the TEM instabilities, such that when reducing the R/L,. the heat

flux in pure TEM regime is reduced, thus explaining the overall reduction of Xe siat-

7.6 Global effects

As shown in the previous section and as a result of the strong dependence of the sta-

tionnary heat diffusivity with respect to the density gradient, nonlinear local simulations
with R/L,. = 6 — 10, which are typical values in the center of the barrier, result in over-
estimating the electron heat flux. The p* = pg/a value in TCV being typically of the
order of 1/p* = 80, one possible explanation for the discrepancy between the simulation
and experimental results is that global effects play here an important role which need to
be accounted for. This hypothesis is in particular supported by the p* scan in Fig. 5.20,
which shows that a strong decrease, i.e. by one order of magnitude, of the heat diffusivity
is observed for this p* value with respect to local simulations. One notes however that
these results were obtained for the ion heat diffusivity considering adiabatic electrons, and
one may wonder whether a similar decrease would be observed with full kinetic electrons
for the electron heat diffusivity.
So as to address this issue, one would ideally have carried out nonlinear global simulations
with full kinetic electron dynamics considering the realistic TCV parameters. Because of
the increased computational cost of global simulations, it was however not feasible to use
the parameters considered previously for the local simulations, i.e. in particular three
kinetic species and high gradients. Furthermore, issues related with the radial resolution
of the non-adiabatic electron response regions near mode rational surfaces, as discussed
for linear results in section 5.3, still need to be addressed in nonlinear global simulations
using kinetic electrons.

In order to nonetheless provide some first estimates of non-local effects, a reduced pa-
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Figure 7.22: Initial temperature and density profiles and the corresponding gradients con-
sidered for the global TCV-relevant GENE simulations.

rameter case is investigated and compared with local results. Note that by reduced one
understand here that the gradients are low enough so that only a small k, p; region is un-
stable, thus diminishing the computational requirements. Furthermore, carbon impurities
are neglected so that only the distributions of deuterium ions and electrons are evolved.
So as to reduce the time scale separation between ion and electron dynamics, the mass
ratio is reduced from the realistic value m;/m, = 3672 to m;/m. = 800. According to
Eq. (5.11), this reduced mass ratio also increases the radial scale of the non-adiabatic elec-
tron response regions around mode rational surfaces and thus relaxes the requirements on
radial resolution.

The TCV-relevant value for p* is chosen as p* = 1/80. In addition, one considers the ad-
hoc circular model, with similar parameters as in the Cyclone base case. The considered

aspect ratio is thus a/R = 0.36 and the safety factor profile is given by:
q(z) = 0.95 +2.22 (z/a)* . (7.12)

and p* = 1/80. Note that this ¢ profile slightly differs from the one used in the standard
Cyclone base case as considered in Sec. 5.2. These values were indeed adapted as a
numerical instability was observed when a mode rational surface is located in the vicinity
of the radial boundaries. This issue, only observed when carrying out global simulations
with kinetic electron dynamics, is not yet fully understood and is still under investigation.
As a result of this problem, we have not been able to obtain stable nonlinear simulations
with full kinetic electrons in the case of a reversed magnetic shear, although this would

have been more suited in view of studying a transport barrier.
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Figure 7.23: Global TCV-relevant GENE simulations. Time evolution of the heat diffu-
sivities (units xgp = ¢s ps/a®) and of the normalized logarithmic gradients
of the total temperatures T' = Tj + T7. These quantities have been obtained
by radial averaging in the range z/a = 0.45 — 0.55. The bold lines represent
the running time average starting from ¢ cs/R = 80.

Two kinetic species are considered, electrons and ions, with flat gradient profiles as
defined in Eq. (5.16) and parameter values kp; = 8, Kkpe = 4, Kpi = Kpe = kn = 4,
Ax = 0.4a and AT = An = 0.06. The different ion and electron profiles are illustrated
in Fig. 7.22. We note that a narrow flat gradient region, of about 0.2 a radial width, is
considered here, consistently with the size of the eI TB barrier previously discussed. For
such parameters, ITG instabilities are the most unstable modes.

For these preliminary results, the simulation and grid domain are [, x I, X [, X lv” x 1, =

30 ps X 84 ps X 27 X 3.5 vy, X 12.3T;/ Byer with grid resolution n, X ng, X n, x Ny X My =

40 X 16 x 48 x 48 x 12. The box size in the y-direction is chosen so that the smallest mode

number in the system is:

Kymin ps = 27 ps/l, = 0.075 . (7.13)

This corresponds to ng = 2 in Eq. (3.4), i.e. the simulation domain only covers one half
of each flux surface. An hyperdiffusion h, = 4, h, = 4, and h, = 0.5 is used to ensure
numerical stability and buffer regions at the edge of the system which represent 5% of
the simulation box on each side are considered. The Krook-type heat source described in
section 3.5 is used, with 7, = 0.03. It should still be mentioned that for these parameters
the radial resolution is insufficient for resolving all the non-adiabatic electron response
regions, and that convergence in x should be carried out. This was yet not possible as a

numerical instability was again observed when attempting to further increase the radial
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resolution and is still under investigation.
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Figure 7.24: Comparison between heat diffusivities using either the global or local version
of the GENE code for both ions (left) and electrons (right).

Using these parameters, the time evolution of the heat diffusivity and normalized loga-
rithmic gradients of the total temperature and density are shown in Fig. 5.16 for both
ions and electrons, together with their running average starting at tocs/R = 80. The
time-averaged diffusivities y; = 0.9 and x. = 0.2 for the effective gradients R/Lp; = 5.5,
R/Lyr. = 3.6, R/L, = 2.6 were obtained in this way. These different quantities have
been obtained by radial averaging over the interval z/a = 0.45 — 0.55. Note that despite
the reduced parameter set, the simulation still required about 40 000 CPU hours on the
HPC-FF linux cluster at Jilich, Germany.

The global results, showing x;/xep = 0.9 and x./xgs = 0.2, are then compared with a
local simulation carried out for R/Ly; = 5.5, R/ Ly, = 3.6 and R/L,, = 2.6. The different
heat diffusivities are shown in Fig. 7.24. One observes, in agreement with the p* scan
with adiabatic electrons shown in Fig. 5.20, that for this particular p* value, the heat
diffusivities obtained with the local code, x;/xap = 11.3 and x./xgp = 4.6, differ from
the global results by an order of magnitude.

These preliminary results thus strongly suggest that a global description would be re-
quired for quantitative comparison with experimental results in a small device such as
TCV. They however need to be further confirmed. In particular the issue of the radial

resolution needs to be addressed. The influence of the size of the prescribed flat gradient
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region, clearly a finite p* effect, needs also to be investigated.

7.7 Summary and discussion

In this chapter, we have investigated nonlinear turbulent heat and particle transport
using realistic parameters derived from a TCV discharge presenting an electron internal
transport barrier. It was shown, in agreement with quasi-linear results presented in [40],
that a cancellation of the electron particle flux can be observed by choosing an appropriate
value of the ion temperature gradient, R/Lr; = R/Lx; star. Such cancellation corresponds
to a realistic stationnary state situation, and a spectral decomposition of the particle
flux reveals that it results from positive and negative contributions at different toroidal
wave numbers k,. In fact, positive contributions from low £, modes correspond to TEM
instabilities and negative contributions from higher k, modes correspond to ITG instabil-
ities which still persist in the nonlinear regime. A quantitative comparison between the
stationary ion temperature gradient obtained with the quasi-linear estimates as proposed
in [98] and the nonlinear simulations have shown a remarkable agreement, confirming the
interest of this approach to predict critical R/ Ly stor gradient value. Concerning the non-
linear electron heat diffusivity x., the value obtained for R/Ly; = R/ Ly star corresponds
to a local minimum, which seems to result from nonlinear interaction between TEM and
ITG modes.

A sensitivy study on various parameters has shown that the stationary electron heat dif-
fusivity is very stiff with respect to the density gradient R/L,.. A strong dependence of
Xe on R/ Ly; was also shown when ITG modes are destabilized, as illustrated in Fig. 7.14.
One should therefore handle the two parameters R/L,. and R/Ly; with great care when
computing nonlinear gyrokinetic simulations for elTB relevant parameters if one intends
to obtain realistic heat diffusivities. In particular, small uncertainties in the experimental
data could lead to strong variations in the resulting heat fluxes. For further efficient elTB
investigations, we therefore propose the following scheme, based on the particle and heat

diffusivity constraints:

1) Determine maximal and minimal density gradients within experimental uncertain-

ties.
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2) For these two limiting R/L,,. values, evaluate the corresponding R/ Lr; stqr using the

quasi-linear approach.

3) Compute the resulting electron heat diffusivity in both cases by means of nonlinear

simulations, which can then be compared with experimental values.

However, for the present TCV study a reasonable electron heat diffusivity was only ob-
tained for a density gradient R/L,. which is below the experimental values, even when
taking experimental errors into account. The turbulence level resulting from the TEM in-
stabilities seems therefore overestimated in these local flux tube simulations. One possible
explanation could be related to the large p* = p;/a ~ 1/80 value, characteristic of TCV
elTB experiments, so that global effects could well play a significant role here. In partic-
ular, we note that the required box size for the flux tube simulations was here [, = 118 p;
which is in fact larger then the machine size, suggesting that the local approximation is
not appropriate in this case for quantitative comparisons. This is indeed strongly sup-
ported by some preliminary global nonlinear results obtained with kinetic electrons and
considering reduced parameters, showing much lower heat diffusivities (approximately one
order of magnitude) for an appropriate p* = 1/80 value than obtained from local flux-tube

simulations. Further investigations using the global code are thus required in the future.
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8 Conclusions

During the course of this thesis project the local gyrokinetic code GENE has been extended
to a global version, thus allowing for the investigation of nonlocal effects. This has required
to make important modifications to the code, which have been described in this work, and
some first investigations of non-local effects have been presented. In addition to the global
code development, the local version of the code has been used to study the effect of shaping
on I'TG turbulence as well as particle and heat transport in a TCV discharge presenting an
electron Internal Transport Barrier. In the following, a brief review of the most important

results is provided and an outlook on possible future research topics is given.

8.1 Summary

In view of their implementation in the new version of the GENE code, the gyrokinetic
and field equations have been expressed in the field aligned coordinate system considering
a general Tokamak geometry and keeping radial variations of equilibrium quantities. Al-
though some remaining p* terms are still neglected, these equations in particular capture
the dominant non-local effects associated with the radial variations of the temperature
and density gradient profiles.

In order to account for radial variations of equilibrium quantities, the treatment of the
radial direction has been modified from Fourier space to a real space representation. In
particular, radial boundary conditions were modified from periodic to Dirichlet, both for
the distributions and potential fields. Among the different modifications of the code that
were thus required, the present work has focused on the implementation of a real space
anti-aliasing treatment for the nonlinearity and a Krook-type heat source enabling to carry

out steady state global simulations. A detailed analysis of the gyro-averaging operator
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was also carried out and corrections to the previous scheme were proposed.

Particular effort was devoted on the magnetic equilibrium description and two different
models have been implemented for both the local and global versions of the code: an in-
terface with the MHD equilibrium code CHEASE and an analytic circular concentric flux
surface model. A detailed study of the different geometrical terms has furthermore under-
lined inconsistencies in a previously considered model, the so-called s — @ model. It was
in particular shown that these inconsistencies had resulted in misinterpreted agreement
between local and global results at large p* = ps/a values. True convergence between
local and global simulations was finally obtained by correct treatment of the geometry in
both cases, and considering the appropriate p* — 0 limit in the latter case.

In order to validate the newly developed global-GENE code, extensive tests and bench-
marks were carried out. Considering first adiabatic electrons, very good agreements with
various codes were obtained in both the cylindrical limit and for Cyclone base case param-
eters. Linear simulations with kinetic electrons have shown some first promising results,
in particular concerning the ITG/TEM transition. Some discrepancies with other code re-
sults on the growth rates are however still to be further investigated. After having shown
correct predictions of the zonal flow residual by means of the Rosenbluth Hinton test,
nonlinear comparisons with the ORB5 code have shown good agreement in quasi-steady
state conditions. Finally, a p* scan was carried out considering Cyclone parameters, show-
ing the expected convergence towards the flux tube results in the limit p* — 0 as well
as an excellent agreement with ORB5 code results. This scan also showed that for these
parameters global effects become important for 1/p* < 280. Finally, these results may
provide interesting insight concerning a long lasting disagreement between the GYRO and
GTC codes considering a similar p* scan.

Using the interface with the MHD equilibrium code, the effects of plasma shaping on
ITG microinstabilities and associated microturbulence were investigated. A favorable
effect of elongation and negative triangularity was observed in both linear and non-
linear simulations when considering a constant ion temperature gradient on the equa-
torial mid-plane. It was shown that most of the shaping effects could be accounted for
by the modification of the flux-surface averaged ion temperature gradient. More impor-

tantly, a unique effective nonlinear critical ion temperature gradient was observed around
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R/Ler it =< R/L7; >~ 6 for different elongations and triangularities, considering
Cyclone base case-type parameters with flat density profile.

A study of turbulent particle and heat transport for TCV discharges presenting an electron
internal transport barrier was finally presented. Confirming some previous quasi-linear
estimates, local nonlinear simulations have shown that the electron particle flux goes to
zero for a gradient value R/Lp; = R/Lrigat corresponding to the transition between
TEM and ITG dominated regimes. This cancellation results from positive and negative
contributions associated respectively with the TEM and ITG modes of the linear spec-
trum which still persist in the nonlinear evolution. By choosing the quasi-linear rule
proposed in Ref. [98], which accounts for all unstable linear modes, a good quantitative
agreement with the nonlinear results was achieved concerning the particle flux cancella-
tion. Beyond the electron particle flux, this nonlinear study also focused on the electron
heat diffusivity. A remarkable minimum of this quantity was observed in the vicinity of
R/Ly; = R/Lr; stat, which results from nonlinear destructive interactions between ITG
and TEM modes [51]. Some parameter sensitivity study has furthermore shown that the
predicted stationary heat diffusivity was very stiff with respect to the electron density gra-
dient. Comparisons with experimental results revealed that a reasonable agreement could
only be reached in regions where the density gradient is relatively small, i.e. R/L,, ~ 3,
whereas the flux tube simulations seem to overestimate the heat transport if one accounts
for density gradient values of order R/L,. ~ 6 — 10 found in the center of the transport
barrier. Some preliminary nonlinear global results, including kinetic electrons, finally sug-
gest that non-local effects may play an essential role for these TCV eITB cases. A global
approach therefore seems required if one intends to obtain quantitative predictions of the

heat diffusivity in these conditions.

8.2 QOutlook

Global simulations with adiabatic electrons have been thoroughly validated in both the
linear and nonlinear regimes, and the new version of the GENE code thus opens wide
possibilities for investigating the influence of nonlocal effects. Some further efforts are

however still required concerning kinetic electron dynamics in global simulations, in par-
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ticular, further benchmarks of linear runs should be carried out both in the TEM and
KBM regimes. A better understanding of some numerical instabilities observed when
trying to run nonlinear simulations with kinetic electrons is also necessary, and further
modifications may be introduced in order to obtain a more robust code in this limit. We
note that some recent investigations of an alternative treatment of the ExB nonlinearity
using the so-called Arakawa scheme [99, 13] by D. Told have already provided interesting
perspectives, although numerical instabilities are still observed in some cases. Concerning
the model, one could also envisage to introduce in the implemented gyrokinetic equation
some of the remaining missing finite p* terms, in particular those scaling as 1/r, in view of
extending the domain of validity of the code. Finally, to facilitate the investigation of the
TEM regime, one should enable the option of considering only trapped kinetic electrons
while passing electrons are still assumed adiabatic (similar to the kinetic electron model in
the ORB5 code for instance). This would indeed avoid the necessity of resolving the fine
radial structures generated by the non-adiabatic response of passing electrons on mode ra-
tional surfaces, which lead to computationally heavy simulations. In fact, validating such a
reduced kinetic electron model for the TEM regime is in itself an issue of physical interest,
i.e. determining whether the fine radial structures in linear modes due to non-adiabatic

passing electrons have a significant effect on the associated non-linear turbulent transport.

The global GENE code should be used to further address the general issue of transport
barriers, in particular once the functionality of running global simulations in the TEM
regime using either full or only trapped kinetic electrons has been implemented. This
would enable to pursue the investigation of TCV elTBs presented in this work. One
could then verify whether a cancellation of the electron particle flux still occurs in global
simulations for relevant physical parameters at the transition between ITG and TEM
dominated regime. As a first attempt in this direction, the quasi-linear approach described
in [98] could be used and extended to the global case by introducing some radial averaging.
Considering nonlinear simulations, a first investigation could be carried out with the
gradient driven approach, .e. using the Krook-type heat source, and comparison with
experimental heat diffusivity could thus be envisaged for realistic temperature gradient

values. In addition, one could verify whether destructive interaction between TEM and
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ITG modes still leads to a reduction of the heat diffusivity in the vicinity of R/Lzp; stat-
Such gradient driven simulations are however not completely satisfactory as an artificial
heat source is used to pin the temperature profile to a prescribe value. In this case,
the transport barrier formation is thus not addressed. A more physical approach consist
in considering flux driven simulations using a realistic heat source. Simulations using
such a heat source, and considering realistic experimental input power, could be carried
out and one could investigate whether the steep electron temperature gradient could be
maintained. In this respect, the interface with the MHD equilibrium should be used, to
account for the combined effects related to the magnetic geometry such as the reversed
shear and the Shafranov shift.

Global simulations with kinetic electrons could also be carried out to further study the
beneficial effect of negative triangularity observed in the TCV experiment and in particular
to extend the flux-tube study by A. Marinoni published in Ref. [85].

Finally, the problem of global nonlinear simulations in the high ( regime has not yet
been extensively addressed, and the new version of the GENE code could thus be used to

provide a better understanding of microturbulence in this regime.
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A CHEASE output for gyrokinetic

codes

The CHEASE code for computing axisymmetric MHD plasma equilibria [36] has been
adapted to provide a specific output file, containing appropriate magnetic equilibrium
data for the gyrokinetic codes GENE and ORBb5. This output is calculated when the
input parameter NIDEAL is set to 9 (see [36] for more information on the CHEASE input
parameters). In this case, a file in HDF5 format [100] named ogyropsi.h5 is written.
The input parameters NEGP and NER, used to defined the Jacobian in CHEASE :

J — C(\I/>RNER|V\I,|NEGP

should be set to NER=2 and NEGP=0. In this case the (U, x, ®) coordinates, where ¥
is the poloidal magnetic flux function, y the generalized poloidal angle and ® the toroidal
angle, define a strait field line coordinate system.

The ogyropsi.hb HDF5 file is structured as follows:

e The hierarchy of the file is organized into one main group /data itself subdivided
into groups /data/grids, /data/varld, and /data/var2d. The input file is in addition
stored in the group /inputs.

e As attributes of /data are the scalars:

NPSI number of points in the ¥ direction
NCHI number of points in the x direction
ROEXP major radius

BOEXP magnetic field on magnetic axis

e In /data/grids, the radial and poloidal grids:
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PSI(NPSI)

PST grid

CHI(NCHI)

CHI grid, going from 0 to 27 — Ay

e In /data/varld, the 1-dimensional fields:

Rgeom (NPST) major radius, Reeom = (Rmax + Rmin)/2
ageom(NPSI) minor radius, dgeom = (Rmax — Rmin)/2
q(NPSI) safety factor

dqdpsi(NPSI) dq/dV

d2qdpsi2(NPSI) d*q/d¥?

shear(NPSI) §=(V/q)dq/d¥

dshdpsi(NPSI) ds/dV

p(NPSI) pressure

dpdpsi(NPSI) dp/dV

£(NPSI) F = RB,

fdfdpsi(NPSI) F dF/d¥

p:(NPSI) /@1 /Pt cdge, Where @, is the toroidal flux
kappa(NPSI) elongation

delta(NPSI) triangularity

V(NPSI) volume inside ¥ = cst /27
dVdpsi(NPSI) dV/d¥

drho_tdpsi(NPSI) dpe/d¥

GDPSI_av(NPSI)

(IVU]) where () is the flux-surface average

rad_av(NPSI)

flux-surface averaged minor radius

R_av(NPSI)

flux-surface averaged major radius

e In /data/var2d, the 2-dimensional fields:

g11(NPSLNCHI) gl = |V [?
g12(NPSI,NCHI) g2 =V Vy
¢22(NPSI,NCHI) g2 = |Vx]?
g33(NPSLNCHI) g2 = |[Vo[
B(NPSI,NCHI) norm of the magnetic field
dBdpsi(NPSLNCHI) | 0B/0¥
dBdchi(NPSLNCHI) | 8B/dx

J(NPSI,NCHI)

Jacobian J = [(6\11 X 6)() : 6(1)]71

R(NPSI,NCHI)

cylindrical coordinates (R, Z, ®)
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Z(NPSI,NCHI) cylindrical coordinates (R, Z, ®)
dChidr(NPSLNCHI) | dx/0R
dChidz(NPSLNCHI) | 9x/0Z
dPsidr(NPSILNCHI) | 0% /R
dPsidz(NPSLNCHI) | 0¥/9Z

The CHEASE code can be run in many different ways, as described in Ref. [36], using
analytical or experimental pressure and current profiles. The most straighforward way
however to obtain a suitable ogyropsi.h5 file for gyrokinetic investigation is to start from
an exisiting EQDSK equilibrium file [69]. To this end, an EQDSK file renamed EX-
PEQ needs to be copied in the folder where the CHEASE code is run, and the following

chease_namelist input file can be used:

*x* Standard input to run with EQDSK file

*x* Create hb output for gyrokinetic codes

* %%k

&EQDATA

NIDEAL=9,

NEGP=0, NER=2,

NS=60, NT=60, NPSI=180, NCHI=16, NIS0=180, NDIFPS=1,
NEQDSK=1, NSURF=6, NPPFUN=4, NFUNC=4,
EPSLON=1.0E-11, GAMMA=1.6666666667,

/

Note that, the variable NDIFPS=1 in this example ensures that the ¥ grid is such that
po(¥) = /V/Veage is equidistant which is appropriate for the global version of GENE.
Detailed information describing how to run the GENE code using such a geometrical file

are provided in the user manual [101].
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B A local dispersion relation for

toroidal-ITG modes

In the following a derivation of the local dispersion relation (6.7) based on Refs. [87] and
considering a slab geometry is presented. Although one could have used the gyrokinetic
equation (2.51) to obtained this dispersion relation, it is in fact possible in the present
simple local geometry to integrate directly the particle trajectories, without going through
the Lie transform formalism. The gyrokinetic limit is then simply recovered in the final
expression by assuming w < ).

In this local approach, the effect of curvature and gradient of the magnetic field is intro-

duced through an external force (assuming a low pressure plasma):
., v? 5\ =
F=-m 7—#1}” VInB. (B.1)

An (é,, €y, €,) orthogonal cartesian coordinate system is considered, with a uniform mag-
netic field B = Bé,. A temperature gradient is assumed in the x-direction, opposite to
the magnetic field gradient, while the density n is assumed to be flat.

Considering electrostatic perturbations, the Vlasov equation for the particle distribution

f(7,U,t) reads :

R R I )

where m and ¢ are the mass and charge of the particle, and @ is the electrostatic potential
of the perturbation. In order to linearize the Vlasov equation, the particle distribution
is split into an equilibrium and perturbed part f = fo + 0f. The particle distribution

fo # fo(t) is a stationary solution of the unperturbed Vlasov Equation and is a function
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of the constants of motion,

= x4+ — =cst, (B.3)

Yy

Q
Lo 9

= Fmv = cst (B.4)

where Q) = ¢B/m is the gyro-frequency, X is the guiding center position along z, and K

is the kinetic energy. Assuming a near thermodynamic equilibrium, one considers:

Fol X, K) = (%(X))ZW" exp (-%) , (B.5)

where T'(z) is the local temperature, and n the density. Assuming that the Larmor radius
pr = ¢ /w, with ¢y, = /T /m, is small compared to the equilibrium characteristic length

L, fo is expanded in the small parameter € = p;/L:

Uor )+ O (B.6)

S

Having defined the equilibrium state, one notices that the unperturbed system is homoge-

folX.K) = folw > ﬁy
n’T

_y
Q

neous in the y and z directions, as well as in time. One can thus consider an electrostatic

perturbation of the form:
® = d(x)expi(k -7 — wt) = d(z) expi(kyy+k, 2z —wt), (B.8)

where £, and k. are wave numbers in the y- and z-directions respectively, and w is the
frequency of the linear perturbation. The z-dependence of & is furthermore neglected,
and only local perturbations to x = 0 surface are considered. The perturbed particle

distribution function has a similar dependence:
5f =0f expi(kyy + k.2 — wt) (B.9)

and is solution of the linearized Vlasov equation:

d

dt

0 o 1, ., = 4
5f = {at - a_,+ (qUx B+ F) - —

w.t.
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where u.t. stands for the total time derivative along the unperturbed trajectories.

By integrating Eq. (B.10) along the unperturbed trajectories one obtains:

0
5f (7,0t / at' v 20 (B.11)
m dU FE), T ()t
assuming o0 f (7, ¥, —00) = 0, which is consistent with the condition of causality.
The unperturbed particle trajectories [7/(t"), v”(t’)] are defined by:
dr’ .
W == Ul s (B12)
dv’ 1, ., = =
with initial conditions:
it =t) = 7, (B.14)
7'(t'=t) = 7. (B.15)
These trajectories can be straightforwardly integrated as follows:
=1 () — 1 / - o —
T(t) = T Mt = 1) (7= U) + U, (B.16)
7'(t") = My(t' —t)(0— Up) + Ur (B.17)
where L
FxB
and the matrices My and My are defined in the (€,, €, €,) coordinate system by:
sin(Q2) 1 —cos(2t) 0
Mi(t) = | cos()—1 sin(Q) 0 |, (B.19)
0 0 Qt
cos(Qt)  sin(Qt) 0
My(t) = —sin(Qt) cos(Qt) 0 | . (B.20)
0 0 1

187



After having made explicit the unperturbed particle trajectories, we now expand the

integrand of Eq. (B.11):

V@'%:%[WT—]C'U]]EO(I), (B21)
where
T dinT (K 3
_ A9 B.22
T qB iy dx (T 2) ( )
. (=VT)x B
= B.2

having defined £(v) = K(v)/T — 3/2. We note that wy has been expressed in Eq. (B.23)
as a vector relation in order to be replaced later on by the corresponding effective value
in the toroidal system.

Since fy is a stationary state, i.e. dfy/dt’ =0, one can write:
d d A 7 / T 3 S = /
@[f()@] = %[foq) expi(k -7 —wt] =i(k-U—w)fo® expi(k -7 —wt'). (B.24)

Using this last relation, the integrand (B.21) of Eq. (B.11) can be express as:

- 0 1 d
dv P, T (L) Cin, dt

Using this last form, and integrating Eq. (B.11) by parts, 6f becomes:

A —

O0f = 6f exp—i(k-7—wt)

q®

- Rl [ el -0 -wt -0} he B2

The time integral is now evaluated using Eq.(B.16) for 7/, and after some algebra can be

written as:

o _a®
of = T

L () () el
1-— — X X B.27
(wr —w) Z R R a— fo s ( )

n,n'=—oo

where wp = k- Up, Jn(z) are Bessel functions of the first kind, and v, and « are defined
by:

v, = V) Sina U, —Up = V] COSC . B.28
T 1 ) Y
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Appendix B. A local dispersion relation for toroidal-ITG modes

Equation (B.27) provides a relation between o f and ®. In order to close the system and

to obtain a dispersion relation for (k,, k.,w), one invokes quasi-neutrality of the plasma:
D gion;=0 = ) ¢on;=0. (B.29)
J J

Where 6n; is the amplitude of the perturbed density of species j. In the following we
consider only one kinetic ion species and assume adiabatic electrons. The amplitude of

the linear electron density perturbation is thus given by:

) )
OMe = n()?e : (B.30)

and the amplitude of the ion density perturbation is obtained using Eq. (B.27):

§h; = /dﬁdfi

A 00 kyvi 1 (kyviy Ji(n—n')a
¢;® . foi Jn( ?z )‘]n( o) )e
= —ngy 1— d P — W) — . - B.31
"o nnzoo/ ¥ (wri =) noi ko +nQ 4 wp —w (B:31)

In the limit w << €2, only the n = 0 contribution needs to be considered in the sum over
n. The velocity element is express as dv = dv| v, dv, da, and carrying out the integral
over «, only the n’ = 0 contribution of the exp(—in’«) term is non zero, leading to the

following dispersion relation for w:

1
ZiT

fo D)

No; k’Z’U” + Wwp; —w

+1-— / dv (wp; — w) =0, (B.32)

where 7 =T, /T;, Z; = q;/e, and with the notation dv' = 2 wdvj v, dv,.
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