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Abstract— Formation building and keeping among vehicles Il. BACKGROUND
has been studied for many years, since 1987 with Reynolds’
rules [1]. This paper presents a control algorithm, based orre-
cent work in graph theory, able to reconfigure static formations The consensus problefd 3] is a well-known and widely

of non-holonomic vehicles endowed solely with local posthing  studied problem in the field of decentralized control. If we

capabilities. The convergence of our approach is mathematally  .qngider agents with a single integrator kinematic model
proven and applied to a realistic robotic platform.
i‘i = U; (1)

A. The Consensus Problem

I. INTRODUCTION . )
where z; is the state of thei-th robot, the consensus

The problem of bringing a multi-agent system to a preproblem forN agents can be solved with the Laplacian based
defined configuration has been studied extensively. Marfgedback method, that is based on the algebraic description
methods can be used to drive a swarm of robots into &f the system. The feedback control is in the form
formation: from a simple Braitenberg controller [2] to the .
use of potential fields [3], [4], [5]. i = ui = —L; @

The problem of driving a multi-agent system to a finalwhere £ is the Laplacian matrix of the underlying graph
common state is known as ttensensus problerand is  representing the swarm of agents. The corresponding closed
based on the idea of using some information from thiop control is reported in Figure 1, whegér) = —£ and
communication network to drive the system to a final stateg;qs = 0. In particular, theBias value can be changed in
As explained in [6], consensus algorithms can be used &der to obtain predefined steady states.

achieve formations, i.e. drive all the agents to a predefined
configuration characterized by a specific steady state. Many  Bias

problems related to theonsensusarise when a limited —>O—> J;HMO
communication range is considered: in these situations the + ? n ystem

link between robots can be unstable and drive the system to a
different final steady state. A possible solution, introedin

[7], takes into account the possibility of combining poteht

fields with graph theory.

This work presents a solution to theonsensus problem
taking into account not only kinematic constraints but also
those related to local inter-robot positioning informatio .

First, we will introduce the basic concepts in graph the- h ut fth blemn brief lined i
ory and the classical solution of the consensus problem e solution of the consensus problem briefly outlined in

in Section Il. The classical solution enables us to driv§eCtiOn lI-A is based on the_ assumptiqn tha_t the agents are
a group of holonomic vehicles having global positionin odelled as holonomic vehicles. Dealing with real robots,

information to a predefined configuration. In Section I, we e cannot make this assumption because, in reality, robots

explain how to solve the consensus problem extended to nd?‘fs-‘ve some kinematic constraihtsA typical example of a

holonomic vehicles using local positioning informatione W real robot model is the differential wheel robot depicted in

also give the proof of the stability of our control algorithm Figure 2, where the_ red cirple ident?fies the front side of the
Finally, in Section IV, we test our approach in Webot§0b°t' The kinematic equations of tlxh robot are reported

[11], a realistic mobile robotic simulator carefully catibed in (3).

g(z)

Fig. 1. Closed loop control for theonsensus algorithm
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using real robotic data. Section V concludes this paper and i i i Cf)s(qsi)
_ : Ui = u;sin(¢;) (3)
introduces possible future work. b = B
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Fig. 2. Kinematic model of a non-holonomic wheeled robote Téd circle
identifies the front side.

using for thei-th robot a range and bearing module to detect
the position of the other robots within a given range. This
introduces another limitation: a robot cannot have the gjlobFig- 4. The range and bearing board developed at EPFL on aehel
position and orientation of all its neighbors. Furthermorerobot
occlusions between robots can happen and the positioning

network can become unstable. The MIMO system in Figure 1

for a group of non-holonomic vehicles becomes: that are not accessible to our rObOtS, i.e. the gIObaI rﬂIDSItI
. and orientation of each robot. In this section a new control
=W C9S(¢1) algorithm based only on local sensing is introduced, and a
g1 = uisin(¢s) proof of convergence and stability is given using a Lyapunov
o = w1 function. With reference to th&®; robot in Figure 5, we

(4) define the following:

in = uycos(on) Definition 1: For a robotR; with A; # 0 (4; ?s the
gv = un sin(dn ) number of robots connected to the rolif), we define:
oN = wN
Since the new system is nonlinear, we have to modify the Coi = =&, +1 ZJ 1 [=Lig - €y - cos(a )] (5)
control loop: €yi = X171 +1 ZJ 1 [=Li 'ez‘,j -sin(a ;)]
wheree; ; is the Euclidean distance betweB3 andR;,
[ui wili=1..v _ [i yi dili=1..v and o ; is the azimuthR; with respect toR;. The global
Nonlinear L . . _ 4T
relative erroris defined as; = [e;, a;], where:
MIMO
& = \Je,+é, (6)
Bias Controller [.ei ai Pos[z'/toif)(:zling a; = atanZéy,i, ém,i) (7)
— g(-) Information

Fig. 3. Control loop for the non-holonomic vehicles. . \\ @
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If we fix the Bias value, our goal is to find a control func-

g~ [
. . AN _ €
tion g(-) to make the system converge towards a predefined 'V xCi i )
configuration. N 041;;2‘ )a/m—,’

A. Range and Bearing

zh ~ \\

A hardware extension board for the Khepera Il robot @
[14] has been developed in [15] to enable robots to find
the position of the other robots. The robot has a diameter of
12 cm, making it appropriate for multi-robot indoor exper- _
iments. Figure 4 shows the sixteen evenly-spaced mfrar%’acﬁ' Stagevm'f'?gsggé?teortedgt%ebgos't'on of the centroid tfe group
Light Emitting Diodes (LEDS) that this platform uses. This
range and bearing board has also the ability to broadcast low

bit rate communication packets using the IR emitter. The global relative error ¢; identifies, with respect to
_ reference frame of the robd;, a point in the plane that
B. Control Algorithm corresponds to the centroid of the group. The demonstration

The stability of a swarm of non-holonomic vehicles haghat proves that all robots point to the same centroid is
been already considered in [16]. However, in these papeosnitted due to space limitations. Our goal is now to define
the convergence is proved taking into account some daga control VeCtor[ul,wl,...uN,wN]T that stabilizes the



system. The control law for theth robot is given by:

{ u; = K& -cos(d) ®
w; = Ki- sin(di) . COS(@i) + Ko -y L
Theorem 1:Assume that the communication graghof |, T Ronat]
a given group of robot is connected. Then the decentralize —&— Robot 3
control law (8) will stabilize the system to a final common’| /| _____{Ges| sl | L. fobors
value. ; > o ; i ;
Proof : Consider the candidate Lyapunov function: (a) Evolution of theX coordinates. (b) Evolution of theY coordinates.

Fig. 6. Four non-holonomic agents solving the consensuklgm

N
V(@) = Viler) + Valea) + ...+ Valen) = D Viles)
=1

where:

1
V;(Cl) = —éz +

N | =

ande = [cy,. ..cN]T. As the candidate Lyapunov function
is quadratic in the relative range and bearing with respect t
a calculated mean point, it is

‘/z(cz) > O,VQ#O
‘/z(cz) = O,VCiZO

We will consider the stabilization of the generith robot.
Deriving (9) we obtain,

Vz(Cz) =6 + vy (10)

. . . . -2 -1 0 1 2
As explained in [17], we obtain for theth robot:
(a) 2D trajectories of the four robots converging to a square

é’i - —Uj Cos(ai) 35 45
= o w; sin(@;) (11) —<— Robot 1 —<&— Error 1-2
a; = —w;+ & 3 —FE— Robot 2 ! —&— Error 4-1
. —S— Robot 3 35 —6— Error 2-3
and we can rewrit&’; as: Robot4 |, - Error3-4
. _ _ _ (7 sin(&i)
Vi = —u,e; COS(OLi) + o | —w; + 76 (12) :
i s
. . 880000000 00000009 1
Now, if we apply the control law in (8),
) B o, . 0 o5 ; 5 > % % o5 ; 5 2 %
Vi=-K; (ei COS(%‘)) - K> (ai) (13) (b) Evolution of the distances to thg) Evolution of the distances be-
center. tween the robots.

as K, Ko > 0, follows that:
Fig. 7. Four non-holonomic robots converge to a square fooma

‘/z(cz) < O,VCi # 0
{ Vi(e;) = 0,Y¢; =0

whereb; ; is the desired distance between thtéh and the
j-th robot. As our control law is based on local positioning,

B it is easy to modify (5) to:

which prove that the system converges.

In Figure 6 the behavior of a group of four robots is depicted.

. - : A LS [ (65 — big) - cos(v )]
Note that the mean value (dotted line) is not static but ~* Aubl &gl L g Ted Tl
changes dynamically due to the nonlinearities of the contro €v.i = 77 22jm1 [~Lij - (€ij = bij) 'Sm(aw‘)(]m)
law.

In [6] it is clearly explained how to use theaplacian thaf[ drives our system to the equilibrium state when :_:1"
approachto achieve a formation control: setting tigias the distances between the robots match the ones specified
input in Figure 1 to a value other than zero, we ca) the Bias matrix (assuming a feasibiBias matrix). The
drive the system to a predefined final state. Because of tR§mmetry of B follows from the definition of thecdge set

nonlinearities of our system, thBias input is defined as a of an undirected graph. As an example, we consider 4 robots
matrix stabilized in a square configuration with side equablg)and

Bli. 1) — bij, VrjeN; a diagonal equal to 1. As long as the graph is connected, we
(i,7) = 0, otherwise assume that it is complete and the corresponding Laplacian



matrix is:

-1 3 -1 -1
L= -1 -1 3 -1 (15)

-1 -1 -1 3

and the matrixB is:

(16)

~ 5 Stk

iy

Il
S =g o
S ok =
st~k

The behavior of the group is depicted in Figure 7.
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Fig. 8. Example of a blocked line-of-sight where broadcagsts important.

0 (Sender ID) 1 (Sender ID)

C. Additional Optimizations 1 0

In the previous section, we proved, that assuming perfect Qo1 @10
sensors and environment, robots will converge into theispec co1 €10
fied formation. Unfortunately, the transition to the realrido 0 (= ho1) 0 (= f10)
is not as straight forward and we need additional recipes 2 2
to achieve good performances. The idea presented in the Qo2 12
following subsection represent a local optimization tegha €02 €12
that we used in the experiments presented in Section IV. 1 (= ho2) 0 (= hi2)

(a) Data packet sent bR . (b) Data packet sent bR .

1) Data BroadcastingWhen navigating through a terrain,
robots often encounter obstacles that can prevent point-to
point communication. To make the system more robust and
redundant we added the ability for the robots to broadcast
their relative positioning information. It has the additad
advantage that the underlying graph, representing thenswar
does not need to be complete, but only connected. BroaHl—
casting virtually recreates the missing connections. frei
depicts a typical situation where broadcasting is useful. |

Fig. 9. Broadcasted data packet format.

IV. EXPERIMENTS

Experiments were conducted using simulated Khepera
robots [14]. All sensors and actuators of the simulated
robotic platform, including the range and bearing module,

e . . were calibrated to match reality. In particular, the range
this figure, the line-of-sight between robll and robotR; and bearing module suffers from a 10% noise ratio in the

is blocked by a wall. Fortunatgly, rObﬁ.l can be used S  astimation of the distance and a 0.1 radians noise in the
relay to compute the missing information about the position

of R, with respect tdRo. The idea is to hav®; broadcasts relative angle.

its relative positioning information (in our casgo, e19, @12 A. Experimental Setup
ande;2, wheree;; is the distance sensed R to R;). This
information enable® to compute an estimation of,, and
ep2 With the following equations:

At the beginning of each simulation run, four robots and
either zero or ten obstacles are randomly placed in a 3 x 3
m area in the middle of a 4 x 4 m arena. Figure 10 shows an
example of initial and final positions for the robotic nodes.
Obstacles are represented by cylinders with a 10 cm radius.

The goal of the four robots is to converge to a square
formation where the diagonal of the square is one meter.
Thus, they use théias matrix B (16). The controller of
the robot has; = 25000 and K5 = 50000. It is important
to note that if at any time\; = 0, the robotR; will start to

The data broadcasted by the range and bearing boardnigve randomly to acquire the positioning information again
grouped into a data packet. Figure 9 shows how the packet

sent byRo andR.; in our previous example looks like. This B- Results

data packet not only contains the measurementsgnde;;, The position of each robot is monitored during a run. After
for all j such thaiR; is sensingR;), but also contains hop 1000 runs, distances to the center of mass of the robots are
count h;; that is incremented each time a robot broadcastomputed to assess the convergence of the algorithm. Since
positioning data that it is not directly measuring. In Fig@; the robots need to converge to a square configuration with a
the hop counthgs will be one, meaning thaRy used one diagonal of one meter, their distances to the center of mass
relay to computevye andegs. The data broadcasted can beshould converge to half a meter. Two main scenarios are
ignored if thehop countis too high ¢;; > hmay)- tested, one without obstacles and one with ten obstacles.

Bo2 T+ Qo1 — Q1o + Q12
er02 = eo1cos(aor) + e12 cos(Boz)
€y,02 eo1 sin(ap1) + e12 sin(Foz2)

/2 2
€02 = €02 1€ 02

ap2 = atanZe, 02,€x.02)
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Fig. 10. Example of an experiment with ten obstacles and fobots. & 4 £
Obstacles are in red, robots are whikgandF'; denote the initial and final
position of robotR; respectively. i i i
0 10 20 30 40 50 60

time [s]

Each scenario is subdivided into two test cases: perfecs Iin&agpg‘xg{r?geor?’:i?nstsv?t‘:}%ﬁ Sg‘s’gﬂf’enss a‘r’]f dtngindgisgaggffictt";nhﬁ of mass
between robots (no packet loss) and intermittent conngctiv '

During the intermittent connectivity, or unstable coningtt, e No broadcast
positioning and communication links are unstable and can go _ , | -6 = =2
up or down with constant probability at a rate corresponding ~O~ Full broadcast

to a Poisson distribution. We chose a mean time constant [t
for the Poisson process of 10 s. Furthermore we analyze the n
usefulness of the broadcasting algorithm by varyingy, 09} . T
the maximal hop count. E i
Figure 11(a) shows the evolution of the distance to theu 08 f
center of mass with perfect connectivity and no obstacleg
present. We can see that, even though there are no obstacles?’ |-
point-to-point communication can still break when another i
robot passes in between two other robots. Hence, a two hop °°
broadcasting enables a faster convergence of the algorithm
This figure also shows that the approach used converges.
Figure 11(b) shows that, even though the communication
links can easily go down, the system remains stable. Since ~ © 10 20 30
a robot starts to move randomly when it loses all its com- o fime _
munication links, the figure shows a mean of the distand) Merage and sandard devations of e dances (o s of mss
to the center of mass a little higher than half a meter and
large standard deviations. Again it is worth noting that a twFig. 11. Average and standard deviations of the distancésetaenter of
hops broadcasting achieves similar performances to the f{J12SS depending on time without obstacles.
broadcasting and we can safely have the robots not send data
with two hops or more, thus saving energy.
Figure 12(a) and Figure 12(b) really demonstrate the impopredefined square formation. Broadcasting implicitly adds
tance of broadcasting in real - not trivial - environmentscommunication links and makes the communication network
The figures show that the control law used enables convenore stable; it proved to be particularly efficient when the
gence even in more challenging scenarios. Again two hog®nnectivity was unstable or when obstacles could occlude
broadcasting is achieving identical performances to tile fuines-of-sight.
broadcasting. During some experiments, we observed that the robot team
could stabilize to a wrong configuration due to the presence

of local minima. To overcome this issue, each robot is able

The results obtained during the experiments show twg, change the order of the rows and columns of B&s
interesting properties: matrix.
« the convergence and stability of our approach and  Since our approach is fully decentralized, the system i-fau
« the usefulness of ad-hoc optimizations in difficult envitolerant and the number of robots can easily be increased.
ronments. On the other hand, if there are more robots, occlusions
Using a minimum of two hops for broadcasting enabled &appen more frequently. To maintain the group connected,
fast convergence of the distributed robotic system to the&e need to increase the maximal number of hops and thus the

60

C. Discussion



—=&— No broadcast
T - @ - hmax =2
—O— Full broadcast

distance [m]
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(a) Average and standard deviations of the distances to eheerc of mass
depending on time with obstacles and using a perfect comigct
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(b) Average and standard deviations of the distances to ¢néec of mass[14]
depending on time with obstacles and using an unstable ctvibe

Fig. 12. Average and standard deviations of the distancéisetaenter of

mass depending on time with obstacles. [15]

propagated positioning information becomes less accurate
[16]

V. CONCLUSIONS
[17]

In this paper, we demonstrated that we could drive non-
holonomic robots to a specific formation using only local18]
positioning information. We proved mathematically that ou
approach converges. In particular, before dealing with theg
formation problem, we solved theonsensus problerfor
kinematically constrained vehicles. We also tested the ro-
bustness of our control under challenging conditions ssch g
obstacle field arenas and unstable communication links.
The next step of this work will include systematic validatio
between simulated and real robots. In particular, we will
focus on real-world sensor and actuator limitations.

A video
robots
http://www5.epfl.ch/swis/page34198.html.
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