

PERFORMANCE EVALUATION
OF COMPUTER AND

COMMUNICATION SYSTEMS

E P F L P r e s s
A Swiss academic publisher distributed by CRC Press

Computer and Communication Sciences

PERFORMANCE EVALUATION
OF COMPUTER AND

COMMUNICATION SYSTEMS

Jean-Yves Le Boudec

is an imprint owned by Presses polytechniques et universitaires romandes, a Swiss
academic publishing company whose main purpose is to publish the teaching and
research works of the Ecole polytechnique fédérale de Lausanne (EPFL) and other
universities and institutions of higher learning.

Presses polytechniques et universitaires romandes
EPFL – Rolex Learning Center
Post office box 119
CH-1015 Lausanne, Switzerland
E-mail : ppur@epfl.ch
Phone : 021 /693 21 30
Fax : 021 /693 40 27

www.epflpress.org

© 2010, First edition, EPFL Press, Lausanne (Switzerland)
ISBN 978-2-940222-40-7 (EPFL Press)
ISBN 978-1-4398-4992-7 (CRC Press)

Printed in Italy

All right reserved (including those of translation into other languages). No part of
this book may be reproduced in any form – by photoprint, microfilm, or any other
means – nor transmitted or translated into a machine language without written
permission from the publisher.

Taylor and Francis Group, LLC
6000 Broken Sound Parkway, NW, Suite 300,
Boca Raton, FL 33487

Distribution and Customer Service
orders@crcpress.com

www.crcpress.com

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress.

This book is published under the editorial direction of
Professor Serge Vaudenay (EPFL).

The authors and publisher express their thanks to the Ecole polytechnique fédérale
de Lausanne (EPFL) for its generous support towards the publication of this book.

Cover artwork: Elias Le Boudec

E P F L P r e s s

Preface

Performance evaluation is often the critical
part of evaluating the results of a research
project. Many of us are familiar with simu-
lations, but it is frequently difficult to address
questions like: Should I eliminate the begin-
ning of the simulation in order for the sys-
tem to become stabilized? I simulate a ran-
dom way-point model but the average speed
in my simulation is not as expected. What
happened? The reviewers of my study com-
plained that I did not provide confidence in-
tervals. How do I go about this? I would
like to characterize the fairness of my proto-
col. Should I use Jain’s Fairness Index or the
Lorenz Curve Gap? I would like to fit a distri-
bution to the flow sizes that I measured, but all
my measurements are truncated to a maximum
value; how do I account for the truncation?

This book groups a set of lecture notes for a course given at EPFL. It
contains all the material needed by an engineer who wishes to evaluate the
performance of a computer or communication system. More precisely, with this
book and some accompanying practicals, you will be able to answer the above
and other questions, evaluate the performance of computer and communication
systems and master the theoretical foundations of performance evaluation and
of the corresponding software packages.

In the past, many textbooks on performance evaluation have given the im-
pression that this is a complex field, with large amounts of baroque queuing
theory excursions, which can be exercised only by performance evaluation ex-
perts. This is not necessarily the case. In contrast, performance evaluation can
and should be performed by any computer engineering specialist who designs
a system. When a plumber installs pipes in our house, one expects her to
properly size their diameters; the same holds for computer engineers.

This book is not intended for the performance evaluation specialist. It is
adressed to any computer engineer or scientist who is active in the development
or operation of software or hardware systems. The required background is an
elementary course in probability and one in calculus.

The objective of this book is therefore to make performance evaluation us-
able by all computer engineers and scientists. The foundations of performance

vi Preface

evaluation reside in statistics and queuing theory. Therefore, some mathemat-
ics are involved and the text cannot be overly simplified. However, it turns out
that much of the complications are not in the general theories, but in the exact
solution of specific models. For example, certain textbooks on statistics (but
none of the ones cited in the reference list) develop various solution techniques
for specific models, the vast majority of which are encapsulated in commercially
or freely available software packages like Matlab, S-PLUS, Excel, Scilab or R.

To avoid this pitfall, we focus first on the what before the how. Indeed, the
most difficult question in a performance analysis is often “what to do”; once you
know what to do, it is less difficult to find a way with your usual software tools or
by shopping the web. For example, what do we do when we fit a model to data
using least square fitting (Chapter 3)? What is a confidence interval? What
is a prediction interval (Chapter 2)? What is the congestion collapse pattern
(Chapter 1)? What is the null hypothesis in a test and what does the result of
a test really mean (Chapter 4)? What is an information criterion (Chapter 5)?
If no failure appears out of n experiments, what confidence interval can I give
for the failure probability (Chapter 2)?

Second, regarding the how, we looked for solution methods that are as
universal as possible, i.e. that apply to many situations, whether simple or
complex. There are several reasons for this. Firstly, one should use only meth-
ods and tools that one understands, and a good engineer should first invest
some time in learning tools and methods that he/she will use more often. Sec-
ondly, brute force and a computer can do a lot more than one often seems to
believe. This philosophy is in sharp contrast to some publications on perfor-
mance evaluation. For example, computing confidence or prediction intervals
can be made simple and systematic if we use the median and not the mean; if
we have to employ the mean, the use of the likelihood ratio statistic is quite
universal and requires little intellectual sophistication regarding the model.
Thus, we focus on generic methods such as: the use of filters for forecasting
(Chapter 5), bootstrap and Monte-Carlo simulations for evaluating averages or
prediction intervals (Chapter 6), the likelihood ratio statistic for tests (Chap-
ter 2, Chapter 4), importance sampling (Chapter 6), least-square and �1-norm
minimization methods (Chapter 3).

When presenting solutions, we try not to hide their limitations and the
cases where they do not work. Indeed, some frustrations experienced by young
researchers can sometimes be attributed to false expectations about the power
of various methods.

We give a coverage of queuing theory that attempts to strike a balance
between depth and relevance. During a performance analysis, one is often con-
fronted with the dilemma: should we use an approximate model for which exact
solutions exist, or approximate solutions for a more exact model? We propose
four topics (deterministic analysis, operational laws, single queues, queuing
networks) which provide a good balance. We illustrate in a case study how the
four topics can be utilized to provide different insights on a queuing question.
For queuing networks, we give a unified treatment, which is perhaps the first
of its kind at this level of synthesis. We show that complex topics such as

Preface vii

queues with concurrency (MSCCC queues) or networks with bandwidth shar-
ing (Whittle networks) all fit in the same framework of product form queuing
networks. Results of this kind have been traditionally presented as separate;
unifying them simplifies the student’s job and provides new insights.

We develop the topic of Palm calculus, also called “the importance of the
viewpoint”, which is so central to queuing theory, as a topic of its own. Indeed,
this topic has so many applications to simulation and to system analysis in
general, that it is a very good time investment. Here too, we focus on general
purpose methods and results, in particular the large-time heuristic for mapping
various viewpoints (Chapter 7).

Chapter 1 gives a methodology and serves as an introduction to the rest of
the book. Performance patterns are also described, i.e. facts that repeatedly
appear in various situations, and the knowledge of which considerably helps
the performance evaluation.

Chapter 2 demonstrates how to summarize experimental or simulation re-
sults, as well as how to quantify their accuracy. It also serves as an introduction
to a scientific use of the statistical method, i.e. pose a model and verify its as-
sumptions. In Chapter 3, we present general methods for fitting an explanatory
model to data and the concept of heavy tail. Chapter 4 describes the techniques
of tests, and Chapter 5 those of forecasting. These four chapters give a coverage
of modern statistics useful to our field.

Chapter 6 discusses discrete event simulation and several important, though
simple issues such as the need for transient removal, for confidence intervals,
and classical simulation techniques. We also discuss importance sampling,
which is very useful for computing estimates of rare events; we give a sim-
ple, though quite general and broadly applicable method.

Chapter 7 describes Palm calculus, which relates the varying viewpoints
resulting from measurements done by different operators. Here, we discuss
freezing simulations, a phenomenon which can be a problem for even simple
simulations if one is not aware of it. We also present how to perform a perfect
simulation of stochastic recurrences. Chapter 8 discusses patterns specific to
queuing, classical solution methods for queuing networks, and, perhaps more
important, operational analysis for rapid evaluation.

The appendix gives background information that cannot yet be easily found
elsewhere, such as a Fourier-free quick crash course on digital filters (used in
Chapter 5) and confidence intervals for quantiles.

Performance evaluation is primarily an art, and involves using sophisticated
tools such as mathematical packages, measurement tools and simulation tools.
See the web site of the EPFL lecture on Performance Evaluation for some
examples of practicals , implemented in Matlab and designed around this book.

The text is intended for self-study. Proofs are not given when there are
easily accessible references (these are indicated in the text); otherwise they can
be found in appendixes at the end of the chapters.

The Index collects all terms and expressions that are highlighted in the
text like this and also serves as a notation list.

viii Preface

Acknowledgements

I would like to thank Anthony Davison for allowing me to access a beta version
of his book “Statistical Models” as well as Richard Weber, who made his lecture
notes freely available on the web and allowed me to use them as constituent
material in an early version of this course. I am grateful to François Baccelli
and Pierre Brémaud who helped me obtain some understanding of their fields.
Many thanks go to Mourad Kara for discussions and input, to Irina Baltcheva,
Manuel Flury, Olivier Gallay, Assane Gueye, Paul Hurley, Ruben Merz, Boži-
dar Radunović, Gianluca Rizzo, Slaviša Sarafijanović, Milan Vojnović, Utkarsh
Upadhyay and Jonas Wagner for various input and comments. I thank Scouac,
Pilou and their friends for visiting our pages here and there. Last but not least,
I thank Elias for the artwork.

Jean-Yves Le Boudec, EPFL

Contents

Preface v

Chapter 1 Methodology 1

1.1 What is Performance Evaluation? . 1
1.1.1 Load . 2
1.1.2 Metric . 2
1.1.3 The Different Goals of Performance Evaluation . . . 4

1.2 Factors . 5
1.2.1 The Hidden Factor Paradox . 6
1.2.2 Simpson’s Paradox . 7

1.3 Evaluation Methods . 9
1.4 The Scientific Method. 9
1.5 Performance Patterns . 12

1.5.1 Bottlenecks . 12
1.5.2 Congestion Collapse. .13
1.5.3 Competition Side Effect . 15
1.5.4 Latent Congestion Collapse . 17

1.6 Review . 19
1.6.1 Check-List . 19
1.6.2 Review Questions . 20

Chapter 2 Summarizing Performance Data and Confidence Intervals 23

2.1 Summarized Performance Data . 24
2.1.1 Histograms and Empirical CDF 24
2.1.2 Means, Medians and Quantiles 25
2.1.3 Coefficient of Variation and Lorenz Curve Gap . . 27
2.1.4 Fairness Indices . 28

2.2 Confidence Intervals . 34
2.2.1 What is a Confidence Interval? 34
2.2.2 Confidence Interval for the Median

and Other Quantiles . 35
2.2.3 Confidence Interval for the Mean 37
2.2.4 Confidence Intervals for Fairness Indices

and the Bootstrap Method . 40
2.2.5 Confidence Interval for Success Probability 42

x Contents

2.3 The Independence Assumption . 44
2.3.1 What does iid mean? . 44
2.3.2 How do I know in Practice

if the iid Assumption is Valid? 45
2.3.3 What Happens if the iid Assumption

does not hold? . 47
2.4 Prediction Interval . 50

2.4.1 Prediction for an iid Sample
based on Order Statistic . 51

2.4.2 Prediction for a Normal iid Sample52
2.4.3 The Normal Assumption . 54

2.5 Which Summarization to use?. .56
2.5.1 Robustness . 57
2.5.2 Compactness .61

2.6 Other Aspects of Confidence Prediction Intervals 61
2.6.1 Intersection of Confidence, Prediction Intervals . . 61
2.6.2 The Meaning of Confidence . 62

2.7 Proofs . 62
2.8 Review . 64

2.8.1 Summary . 64
2.8.2 Review Questions . 65

Chapter 3 Model Fitting 67
3.1 Model Fitting Criteria . 68

3.1.1 What is Model Fitting? . 68
3.1.2 Least Squares Correspond to Gaussian,

Equal Variance. .71
3.1.3 �1 Norm Minimization Corresponds to

Laplace Noise . 72
3.2 Linear Regression . 75
3.3 Linear Regression with �1 Norm Minimization 79
3.4 Choosing a Distribution .82

3.4.1 Shape. .83
3.4.2 Skewness and Kurtosis . 86
3.4.3 Power Laws,

Pareto Distribution and Zipf’s Law 87
3.4.4 Hazard Rate . 89
3.4.5 Fitting a Distribution . 91
3.4.6 Censored Data . 91
3.4.7 Combinations of Distributions.94

3.5 Heavy Tail . 96
3.5.1 Definition . 96
3.5.2 Heavy Tail and Stable Distributions 97
3.5.3 Heavy Tail in Practice . 99
3.5.4 Testing for a Heavy Tail . 101
3.5.5 Application Example:

The Workload Generator SURGE 103

Contents xi

3.6 Proofs . 105
3.7 Review . 106

3.7.1 Review Questions . 106
3.7.2 Useful Matlab Commands. .106

Chapter 4 Tests 107
4.1 The Neyman Pearson Framework . 108

4.1.1 The Null Hypothesis and the Alternative108
4.1.2 Critical Region, Size and Power 110
4.1.3 p-value of a Test . 113
4.1.4 Tests are just Tests . 113

4.2 Likelihood Ratio Tests . 114
4.2.1 Definition of Likelihood Ratio Tests 114
4.2.2 Student Test for Single Sample

(or Paired Data) . 116
4.2.3 The Simple Goodness of Fit Test.117

4.3 ANOVA . 119
4.3.1 Analysis of Variance (ANOVA) and F -tests 119
4.3.2 Testing for a Common Variance 124

4.4 Asymptotic Results . 126
4.4.1 Likelihood Ratio Statistic . 126
4.4.2 Pearson Chi-squared Statistic

and Goodness of Fit . 126
4.4.3 Test of Independence . 130

4.5 Other Tests . 131
4.5.1 Goodness of Fit Tests based on Ad-Hoc Pivots . 131
4.5.2 Robust Tests . 134

4.6 Proofs . 137
4.7 Review . 139

4.7.1 Tests are just Tests . 139
4.7.2 Review Questions . 139

Chapter 5 Forecasting 141
5.1 What is Forecasting? . 142
5.2 Linear Regression . 142
5.3 The Overfitting Problem . 145

5.3.1 Use of Test Data . 147
5.3.2 Information Criterion . 148

5.4 Differencing the Data . 149
5.4.1 Differencing and De-seasonalizing Filters 149
5.4.2 Computing Point Prediction 152
5.4.3 Computing Prediction Intervals 153

5.5 Fitting Differenced Data to an ARMA Model 155
5.5.1 Stationary but non iid Differenced Data 155
5.5.2 ARMA and ARIMA Processes 156
5.5.3 Fitting an ARMA Model. .160
5.5.4 Forecasting . 162

xii Contents

5.6 Sparse ARMA and ARIMA Models 167
5.6.1 Constrained ARMA Models . 167
5.6.2 Holt-Winters Models . 168

5.7 Proofs . 173

Chapter 6 Discrete Event Simulation 175
6.1 What is a Simulation? . 176

6.1.1 Simulated Time and Real Time 176
6.1.2 Simulation Types . 176

6.2 Simulation Techniques . 179
6.2.1 Discrete Event Simulation . 179
6.2.2 Stochastic Recurrence. .183

6.3 Computing the Accuracy of Stochastic Simulations 186
6.3.1 Independent Replications . 186
6.3.2 Computing Confidence Intervals 186
6.3.3 Non-Terminating Simulations 188

6.4 Monte Carlo Simulation. .188
6.5 Random Number Generators .191
6.6 How to Sample from a Distribution 194

6.6.1 CDF Inversion . 194
6.6.2 Rejection Sampling . 196
6.6.3 Ad-Hoc Methods. .200

6.7 Importance Sampling . 201
6.7.1 Motivation. .201
6.7.2 The Importance Sampling Framework 202
6.7.3 Selecting An Importance Sampling

Distribution . 205
6.8 Proofs . 209
6.9 Review . 211

Chapter 7 Palm Calculus, or the Importance of the Viewpoint 213
7.1 An Informal Introduction . 214

7.1.1 Event-versus-Time Averages.214
7.1.2 The Large Time Heuristic .216
7.1.3 Two Event Clocks. .218
7.1.4 Arbitrary Sampling Methods 220

7.2 Palm Calculus . 223
7.2.1 Hypotheses . 223
7.2.2 Definitions . 223
7.2.3 Interpretation as Time and Event Averages 226
7.2.4 The Inversion and Intensity Formulas 227

7.3 Other Useful Palm Calculus Results.230
7.3.1 Residual Time and Feller’s Paradox 230
7.3.2 The Rate Conservation Law

and Little’s Formula . 233
7.3.3 Two Event Clocks. .240

Contents xiii

7.4 Simulation Defined as Stochastic Recurrence 242
7.4.1 Stochastic Recurrence, Modulated Process 242
7.4.2 Freezing Simulations . 243
7.4.3 Perfect Simulation of Stochastic Recurrence 245

7.5 Application to Markov Chain Models
and the PASTA Property . 250
7.5.1 Embedded Sub-Chain . 250
7.5.2 PASTA . 252

7.6 Appendix: Quick Review of Markov Chains 254
7.6.1 Markov Chain in Discrete Time 254
7.6.2 Markov Chain in Continuous Time. 256
7.6.3 Poisson and Bernoulli . 257

7.7 Proofs . 258
7.8 Review Questions . 262

Chapter 8 Queuing Theory for Those who cannot Wait 263

8.1 Deterministic Analysis . 264
8.1.1 Description of a Queuing System

with Cumulative Functions . 264
8.1.2 Reich’s Formula. .266

8.2 Operational Laws for Queuing Systems 268
8.2.1 Departures and Arrivals See Same Averages

(DASSA) . 268
8.2.2 Little’s Law and Applications 269
8.2.3 Networks and Forced Flows . 270
8.2.4 Bottleneck Analysis . 271

8.3 Classical Results for a Single Queue 273
8.3.1 Kendall’s Notation . 273
8.3.2 The Single Server Queue . 274
8.3.3 The Processor Sharing Queue, M/GI/1/PS.279
8.3.4 Single Queue with B Servers 281

8.4 Definitions for Queuing Networks . 283
8.4.1 Classes, Chains and Markov Routing 283
8.4.2 Catalog of Service Stations. .285
8.4.3 The Station Function . 293

8.5 The Product-Form Theorem . 299
8.5.1 Product Form . 299
8.5.2 Stability Conditions. .300

8.6 Computational Aspects . 302
8.6.1 Convolution . 303
8.6.2 Throughput . 303
8.6.3 Equivalent Service Rate . 306
8.6.4 Suppression of Open Chains 309
8.6.5 Arrival Theorem and MVA Version 1.311
8.6.6 Network Decomposition . 314
8.6.7 MVA Version 2 . 319

xiv Contents

8.7 What This Tells Us . 321
8.7.1 Insensitivity . 321
8.7.2 The Importance of Modeling

Closed Populations . 323
8.8 Mathematical Details about Product-Form

Queuing Networks . 325
8.8.1 Phase-Type Distributions . 325
8.8.2 Micro and Macro States . 326
8.8.3 Micro to Macro: Aggregation Condition328
8.8.4 Local Balance in Isolation. .328
8.8.5 The Product Form Theorem 329
8.8.6 Networks with Blocking . 330

8.9 Case Study . 331
8.9.1 Deterministic Analysis . 332
8.9.2 Single Queue Analysis . 333
8.9.3 Operational Analysis .334
8.9.4 Queuing Network Analysis . 335
8.9.5 Conclusions . 338

8.10 Proofs . 338
8.11 Review . 342

8.11.1 Review Questions . 342
8.11.2 Summary of Notation . 343

Annex A Tables 345

Annex B Parametric Estimation, Large Sample Theory 351

B.1 Parametric Estimation Theory . 351
B.1.1 The Parametric Estimation Framework 351
B.1.2 Maximum Likelihood Estimator (MLE) 352
B.1.3 Efficiency and Fisher Information 353

B.2 Asymptotic Confidence Intervals . 354
B.3 Confidence Interval in Presence

of Nuisance Parameters . 358

Annex C Gaussian Random Vectors in R
n 363

C.1 Notation and a Few Results of Linear Algebra 363
C.1.1 Notation . 363
C.1.2 Linear Algebra .364

C.2 Covariance Matrix of a Random Vector in R
n 364

C.2.1 Definitions . 364
C.2.2 Properties of Covariance Matrix 365
C.2.3 Choleski’s Factorization . 366
C.2.4 Degrees of Freedom . 366

C.3 Gaussian Random Vector . 367
C.3.1 Definition and Main Properties 367
C.3.2 Diagonal Form. 368

Contents xv

C.4 Foundations of ANOVA. 369
C.4.1 Homoscedastic Gaussian Vector 369
C.4.2 Maximum Likelihood Estimation

for Homoscedastic Gaussian Vectors.370
C.5 Conditional Gaussian Distribution . 371

C.5.1 Schur Complement. .371
C.5.2 Distribution of �X1 given �X2 .371
C.5.3 Partial Correlation . 372

C.6 Proofs . 373

Annex D Digital Filters 377
D.1 Calculus of Digital Filters . 377

D.1.1 Backshift Operator . 377
D.1.2 Filters . 378
D.1.3 Impulse response and Dirac Sequence 379
D.1.4 Composition of Filters, Commutativity379
D.1.5 Inverse of Filter . 380
D.1.6 AR(∞) Representation of Invertible Filter 381
D.1.7 Calculus of Filters . 381
D.1.8 z Transform . 382

D.2 Stability . 383
D.3 Filters with Rational Transfer Function 383

D.3.1 Definition . 383
D.3.2 Poles and Zeroes . 385

D.4 Predictions . 387
D.4.1 Conditional Distribution Lemma 387
D.4.2 Predictions . 387

D.5 Log Likelihood of Innovation . 389
D.6 Matlab Commands . 389
D.7 Proofs . 391

Annex E Bibliography 393

Annex F Index 401

Chapter 1

Methodology

Perhaps the most difficult part when carrying out a performance evaluation is
knowing where to start. In this chapter, we propose a methodology, i.e. a set
of recommendations, that is valid for any performance evaluation study. We
stress the importance of factors, in particular hidden ones, and the need to use
the scientific method. We also discuss a few frequent performance patterns, as
a means of quickly focusing on important issues.

1.1 What is Performance Evaluation?

In the context of this book, performance evaluation involves quantifying the
service delivered by a computer or a communication system. For example, we
might be interested in: comparing the power consumption of several server farm
configurations; knowing the response time experienced by a customer perform-
ing a reservation over the Internet; comparing compilers for a multiprocessor
machine.

In all cases it is important to carefully define the load and the metric, and
to be aware of the performance evaluation goals .

2 Methodology

1.1.1 Load

An important feature of computer or communication systems is that their per-
formance depends dramatically on the workload (or simply load) that they
are subjected to. The load characterizes the quantity and the nature of requests
submitted to the system. Consider for instance the problem of quantifying the
performance of a web server. We could characterize the load by a simple con-
cept such as the number of requests per second. This is called the intensity
of the workload . In general, the performance deteriorates when the intensity
increases, but this deterioration is often sudden. The reason for this is the
non-linearity of queuing systems – a performance pattern example that is
discussed in Section 1.5 and Chapter 8.

The performance of a system depends not only on the intensity of the
workload, but also on its nature. On a web server, for example, all requests are
not equivalent: some web server softwares might perform well with get requests
for frequently used objects, and less well with requests that require database
access. For other web servers, things might be different. This issue is addressed
by using standardized mixes of web server requests. These are generated by
a benchmark , defined as a load generation process that intends to mimic a
typical user behavior. Chapter 3 presents a study of how such a benchmark
can be constructed.

1.1.2 Metric

A performance metric is a measurable quantity that precisely captures what
we want to measure – it can take on many forms. There is no general definition
of a performance metric: it is system dependent, and its definition requires
a good understanding of the system and its users. We will often mention
examples where the metric corresponds to throughput (the number of tasks
completed per unit of time), power consumption (the integral of the electrical
energy consumed by the system, per time unit), or response time (i.e. the time
elapsed between a start and an end event). For each performance metric, we
may be interested in the average, 95-percentile, worst-case, etc., as explained
in Chapter 2.

Example 1.1 Windows versus Linux
Chen and co-authors compare Windows to Linux in [25]. As metric,
they use the number of CPU cycles, the number of instructions, the
number of data read/write operations required by a typical job. The
load was generated by various benchmarks: “syscall” generates elemen-
tary operations (system calls); “memory read” generates references to
an array; an application benchmark runs a popular application.

It is also important to be aware of the experimental conditions under which
the metric is measured, as illustrated by the following example.

What is Performance Evaluation? 3

Example 1.2 Power Consumption
The electrical power consumed by a computer or telecom equipment
depends on how efficiently the equipment can take advantage of low
activity periods to save energy. One operator proposes the following
metric as a measure of power consumption [29]:

Ptotal = 0.35Pmax + 0.4P50 + 0.25Psleep

where Ptotal is the power consumption when the equipment is running
at full load, P50 is when it is submitted to a load equal to 50% of its
capacity and Psleep is when it is idle. The example uses weights (0.35,
0.4 and 0.25) that reflect our assumption of the proportion of time
during which a given load condition typically occurs (for example, the
full load condition is assumed to occur during 35% of the time).

In this example, utilization is a parameter of the operating conditions.
The utilization of a resource is defined as the proportion of time during which
the resource is busy. The example also illustrates that it may be important to
define which sampling method is used, i.e. when the measurements are taken.
This is an integral part of the definition of the metric and we discuss this point
in more detail in Chapter 7.

A metric may be simple, i.e. expressed by a single number (e.g. the power
consumption), or multi-dimensional , i.e. represented by a vector of several
numbers (e.g. power consumption, response time and throughput). When
comparing two vectors of multi-dimensional metric values, one should compare
the corresponding components (e.g. the power consumption of A versus the
power consumption of B, the response time of A versus the response time of B,
etc.). As a result, it is possible that neither of the two vectors is better than the
other. We say that the comparison of vectors is a partial order , as opposed
to the comparison of numbers, which is a complete order . It is however
useful to determine whether a vector is non-dominated , i.e. that no other
vector (in the set of available results) is better. In a finite set of performance
results expressed with a multi-dimensional metric, there is usually more than
one non-dominated result. When comparing several configurations, only the
non-dominated ones are of interest.

Example 1.3 Multi-dimensional Metric and Kiviat Diagram
We measure the performance of a web server submitted to the load of
a standard workbench. We compare 5 configurations, and obtain the
results below.

Config Pover [W] Response [ms] Throughput [tps]

A 23.5 3.78 42.2

B 40.8 5.30 29.1

C 92.7 4.03 22.6

D 53.1 2.19 73.1

E 54.7 5.92 24.3

4 Methodology

We see, for example, that configuration A is better than B but that
it is not better than D. There are two non-dominated configurations:
A and D. A is better with regard to power consumption, whereas D is
better when it comes to throughput and response time.

The numerical values can be visualized on a Kiviat Diagram (also
called Radar graph or Spider Plot) as in Figure 1.1.

−100 .. −23.5

−10 ... −2.19

0 .. 73.1

D

A

− Response Time (ms)

Throughput (tps)

− Power
Consumption

(W)

Figure 1.1 A visualization of the data in Example 1.3 by means of a Kiviat
Diagram. Configurations A and D are non-dominated.

1.1.3 The Different Goals of Performance Evaluation

The goal of a performance evaluation may either be a comparison of design
alternatives, i.e. quantifying the improvement due to some design option, or
system dimensioning , i.e. determining the size of all system components
for a given planned utilization. A comparison of designs requires a well-defined
load model; however, the exact value of its intensity does not have to be iden-
tified. In contrast, system dimensioning requires a detailed estimation of the
load intensity. As for all prediction exercises, this is very hazardous. For any
performance evaluation, it is important to know whether the results depend on
a workload prediction or not. Simple forecasting techniques are discussed in
Chapter 5.

Factors 5

Example 1.4 Different Goals
Question 1.1 Determine the nature of the goal for each of the fol-
lowing performance evaluations statements:(1)

(1) PC configuration 1 is 25% faster than PC configuration 2 when
running Photoshop.

(2) For your video on demand application, the number of required
servers is 35, and the number of disk units is 68.

(3) Using the new version of sendfile() increases the server through-
put by 51%.

The benefit of a performance evaluation study has to be weighted against its
cost as well as that of the system. In practice, detailed performance evaluations
are carried out by product development units (system design). During system
operation, it is not economical (except for huge systems such as public com-
munication networks) to do so. Instead, manufacturers provide engineering
rules, which capture the relation between the load intensity and performance.
Example (2) of above Question 1.1 is probably best replaced by an engineering
rule such as:

Example 1.5 Engineering Rule
For your video-on-demand application, the number of required servers
is given by N1 = � R

59.3 + B
3.6� and the number of disk units by N2 =

� R
19.0 + B

2.4�, where R (resp. B) is the number of residential (resp. busi-
ness) customers (�x� is the floor of x, i.e. the smallest integer ≥ x).

This book deals with the techniques of performance evaluation that apply
to all such cases. However, how to implement a high performance system
(e.g. how to efficiently code a real time application in Linux) or how to design
bug-free systems are beyond its scope.

1.2 Factors

After defining the goal, load and metric, one needs to establish a list of factors.
These are the system elements or the load affecting the performance. One is
tempted to focus only on the factor of interest, however, it is important to
know all factors that may impact the performance measure, whether they are
desired or not.

Example 1.6 Windows versus Linux, Continued
In [25], Chen and co-authors consider the following external factors:
background activity; multiple users; network activity. These were re-
duced to a minimum by shutting the network down and allowing only

(1)(1), (3) are comparisons of design options; (2) involves dimensioning.

6 Methodology

one user. They also consider: the various ways of handling idle peri-
ods in Windows and Linux, since they affect the interpretation of the
measurements.

1.2.1 The Hidden Factor Paradox

Ignoring various hidden factors may invalidate the result of the performance
evaluation, as demonstrated in the next example.

Example 1.7 TCP Throughput
Figure 1.2(a), plots the throughput achieved by a mobile node during
a file transfer as a function of its velocity (speed). It suggests that the
throughput increases with the mobility. (b) The plot shows the same
data, but now the mobiles are separated in two groups: one group (‘s’)
uses a small socket buffer (4 K Bytes), whereas the second (‘L’) em-

speed

th
ro

ug
hp

ut

0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

(a)

s

s

s

s

s
s

s

ss s

s

s

L

L

LL

L

L

L

L

L

L

L

speed

th
ro

ug
hp

ut

0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

(b)

Figure 1.2 (a) A plot of the throughput (in Mb/s) versus speed (in m/s)
for a mobile node. (b) The same plot, but showing the socket buffer size;
s = small buffer, L = large buffer.

Factors 7

ploys a larger socket buffer (16 K Bytes). The conclusion thus becomes
inverted: the throughput decreases with the mobility. The hidden fac-
tor influences the final result: all experiments with low speed are for
small socket buffer sizes. The socket buffer size is a hidden factor.

Hidden factors may be avoided by a proper randomization of the exper-
iments. In the example above, a proper design would have distributed the
socket buffer sizes randomly with respect to the speed. However, this may not
always be possible as certain experimental conditions may be imposed upon us;
in such cases, all factors have to be incorporated in the analysis. In Figure 1.2,
we fitted a linear regression to the two figures, using the method explained in
Chapter 3. The slope of the linear regression is negative when we explicit the
hidden factor, demonstrating that the mobility decreases the throughput.

The importance of hidden factors may be interpreted as our tendency to
mix cause and correlation [77]. In Figure 1.2(a) the throughput is positively
correlated with the speed, but this should not be interpreted as a causal rela-
tionship.

In conclusion at this point, knowing all factors is a tedious, but necessary
task. In particular, all factors should be incorporated, whether they interest
you or not (factors that you have no interest in are called nuisance factors).
This implies that you have to know your system well, or be assisted by people
who do.

1.2.2 Simpson’s Paradox

Simpson’s reversal , also denoted Simpson’s paradox , is a well known case
of the problem of hidden factors, when the performance metric is a success
probability.

Example 1.8 TCP Throughput, continued
We revisit the previous example, but now limit our interest to deter-
mining whether a mobile can reach a throughput of at least 1.5 Mb/s,
i.e. a mobile is said to be successful if its throughput is ≥ 1.5 Mb/s.
We classify the mobiles as slow (speed ≤ 2 m/s) or fast (speed > 2
m/s), and obtain the following result:

failure success total P(success)

slow 11 3 14 0.214

fast 5 4 9 0.444

total 16 7 23

From this, we conclude that fast mobiles have a higher success prob-
ability than their slow counterparts. We now introduce the nuisance
parameter “socket buffer size”, i.e. we qualify the mobiles as ‘s’ (small
buffer size) or ‘L’ (large buffer size):

8 Methodology

‘s’ mobiles failure success total P(success)

slow 10 1 11 0.091

fast 1 0 1 0.00

total 11 1 12

‘L’ mobiles failure success total P(success)

slow 1 2 3 0.667

fast 4 4 8 0.500

total 5 6 11

For both cases, slow mobiles have a higher success probability than fast
ones, which is the correct answer. The former answer was wrong as it
ignored a hidden factor. This is known as Simpsons’s reversal.

Simpsons’ paradox can be formulated in a general manner as follows [65].
Let S denote the fact that the outcome of an experiment is a success, and
let C be the factor of interest (in the above example: mobile speed). Let Ni,
i = 1, . . . , k, be binary hidden factors (nuisance factors; in the example, there
is only one, i.e. the socket buffer size). Assume that the factor of interest has
a positive influence on the success rate, i.e.

P(S|C) > P(S|C̄) (1.1)

This may occur while, at the same time, the combination of the factor of interest
with the hidden factors Ni has the opposite effect:

P(S|C and Ni) < P (S|C̄ and Ni) (1.2)

for all i = 1, . . . , k. As illustrated in Examples 1.8 and 1.2, the reversal takes
place when the effect of hidden factors is large.

The fact that Simpson’s reversal is a paradox is assumed to originate in our
(false) intuition that an average of factors leads to an average of outcomes. In
other words, we may (wrongly) assume that Equation (1.1) is a weighted sum
of (1.2).

Comment: We do have weighted sums, but the weights are P(Ni|C) for the left-hand
side in (1.1) versus P(Ni|C̄) for the right-hand side:

P(S|C) =
X

i

P(S|C and Ni)P(Ni|C)

P(S|C̄) =
X

i

P(S|C̄ and Ni)P(Ni|C̄) �

Evaluation Methods 9

1.3 Evaluation Methods

Once goal, load, metric and factors are well defined, the performance evaluation
can then proceed with a solution method, which usually falls within one of the
three cases below. Which method to use depends on the nature of the problem
and the skills or taste of the evaluation team.

• Measurement of the real system. As in physics, it is hard to carry out
a measurement without disturbing the system. Some special hardware
devices (e.g. optical splitters in network links) sometimes prevent any dis-
turbances. If, in contrast, measurements are taken by the system itself,
the impact has to be analyzed with caution. Measurements are not always
possible (for instance, if the system does not yet exist).

• Discrete Event Simulation: a simplified model of the system and its load
are implemented in software. Time is simulated and often flows several
orders of magnitude slower than real time. The performance of interest is
measured as on a real system, but measurement side-effects are usually not
present. It is often easier than a measurement study, but not always. It is
the most widespread method and is the subject of Chapter 6.

• Analytical method: a mathematical model of the system is analyzed nu-
merically. This is viewed by some as a special form of simulation. It is
often much faster than a simulation, but sometimes requires wild assump-
tions to be made in order for the numerical procedures to be applicable.
Analytical methods are frequently used to gain insight during a develop-
ment phase, or also to learn fundamental facts about a system, which we
call “patterns”. We demonstrate in Chapter 8 how certain performance
analyses can be solved approximately in a very simple way, by means of
bottleneck analysis.

1.4 The Scientific Method

The scientific method can be applied to any technical work, not only to per-
formance evaluation. However, in the author’s experience, the lack of scientific
methods is a prominent cause for failed performance studies. In short, the sci-
entific method requires one not to believe in a conclusion unless it is thoroughly
tested.

Example 1.9 Joe’s kiosk
Joe’s e-kiosk sells videos online to customers equipped with smart-
phones. The system comprises one server and one 802.11 base station.
Before deployment, performance evaluation tests are carried out, as
shown in Figure 1.3(a). We see that the throughput reaches a maxi-
mum at around 8 transactions per second.
Joe concludes that the bottleneck is the wireless LAN and decides to
buy and install 2 more base stations. The results obtained after instal-

10 Methodology

lation are presented in Figure 1.3(b). Surprisingly, there is no improve-
ment. The conclusion that the wireless LAN was the bottleneck was
thus wrong.
Joe scratches his head and decides to be more careful when drawing
conclusions. Measurements are taken on the wireless LAN; the number
of collisions is less than 0.1%, and the utilization is below 5%. This
confirms that the wireless LAN is not a bottleneck. Joe makes the hy-
pothesis that the bottleneck may be on the server side. After doubling
the amount of real memory allocated to the server process, the results
correspond to what is shown in Figure 1.3(c). This identifies the real
memory as the limiting factor.

0 2 4 6 8 10 12 14
0

5

10

15

20

25

(a) Initially

0 2 4 6 8 10 12 14
0

5

10

15

20

25

(b) With 2 additional base stations

0 2 4 6 8 10 12 14
0

5

10

15

20

25

(c) With additional server memory

Figure 1.3 Performance results for Joe’s server. X-axis: offered load; Y-
axis: achieved throughput, both in transactions per second.

A common pitfall is to draw conclusions from an experiment that has not
been explicitly designed to validate such conclusions. The risk is that hidden
factors might interfere, as illustrated by the previous example. Indeed, Joe
concluded from the first experiment that the LAN performance would be im-
proved by adding a base station. This may have been suggested by the result
of Figure 1.3(a), but these results are inconclusive. It is necessary to perform
other experiments, designed to validate a potential conclusion, before making

The Scientific Method 11

a final statement. Following Popper’s philosophy of science [82], we claim that
it is necessary for the performance analyst to take on two roles:

(1) to make tentative statements, and

(2) to design experiments attempting to invalidate them.

Example 1.10 ATM UBR better than ATM ABR
In [66], the authors evaluate whether the ATM-UBR protocol is better
than ATM-ABR (both are alternative methods for managing switches
used in communication networks). They employ a typical scientific
method, by posing each potential conclusion as a hypothesis and de-
signing experiments with the aim of invalidating them.

“Abstract. We compare the performance of ABR and UBR for pro-
viding high-speed network interconnection services for TCP traffic. We
test the hypothesis that UBR with adequate buffering in the ATM
switches results in better overall goodput for TCP traffic than explicit
rate ABR for LAN interconnection. This is shown to be true in a wide
selection of scenarios. Four phenomena that may lead to bad ABR
performance are identified and we test whether each of these has a
significant impact on TCP goodput. This reveals that the extra delay
incurred in the ABR end-systems and the overhead of RM cells account
for the difference in performance. We test whether it is better to use
ABR to push congestion to the end-systems in a parking-lot scenario or
whether we can allow congestion to occur in the network. Finally, we
test whether the presence of a “multiplexing loop” causes performance
degradation for ABR and UBR. We find our original hypothesis to be
true in all cases. We observe, however, that ABR is able to improve
performance when the buffering inside the ABR part of the network is
small compared to that available at the ABR end-systems. We also see
that ABR allows the network to control fairness between end-systems.”

Other aspects of the scientific method are to:

• Give an evaluation of the accuracy of your quantitative results. Consider
the measured data in Example 1.11. There is much variability in them, and
merely claiming that the average response time is better with B than A is
not sufficient. It is necessary to give uncertainty margins, or confidence
intervals. Techniques for this are discussed in Chapter 2.

• Make the results of your performance evaluation easily reproducible. This
implies that all assumptions should be made explicit and documented.

• Remove what can be removed. Often, at the end of a performance evalua-
tion study, many results are found uninteresting. The correct thing to do
would be to remove such results, but this seems difficult in practice !

12 Methodology

1.5 Performance Patterns

Performance evaluation is simpler if the evaluator is aware of performance
patterns, i.e. traits that are common to numerous settings.

1.5.1 Bottlenecks

A prominent pattern is constituted by bottlenecks. In many systems, the
overall performance is dictated by the behavior of the weakest components,
called the bottlenecks.

Example 1.11 Bottlenecks
You are asked to evaluate the performance of an information system.
An application server can be compiled with two options, A and B. An
experiment is done: ten test users (remote or local) measure the time
it takes to complete a complex transaction on four days. On day 1,
option A is used; on day 2, option B is. The results are listed in the
table below.

remote local

A 123 43

189 38

99 49

167 37

177 44

remote local

B 107 62

179 69

199 56

103 47

178 71

The expert concludes that the performance for remote users is inde-
pendent of the choice of the information system. We can criticize this
finding and instead carry out a bottleneck analysis. For remote users,
the bottleneck is the network access; the compiler option has little im-
pact. When the bottleneck is removed, i.e. for local users, option A is
slightly better.

Bottlenecks are friends to the performance analyst, in the sense that they
may considerably simplify the performance evaluation, as illustrated next.

Example 1.12 CPU model
A detailed screening of a transaction system shows that the average cost
of one transaction is 1, 238, 400 CPU instructions; 102.3 disk accesses
and 4 packets sent on the network. The processor can handle 109

instructions per second; the disk can support 104 accesses per second;
the network can support 104 packets per second. We would like to
know how many transactions per second the system can support.
The resource utilization per transaction per second is: CPU: 0.12% –
disk: 1.02% – network: 0.04%; therefore, the disk is the bottleneck.
The capacity of the system is determined by how many transactions

Performance Patterns 13

per second the disk can support and a gross estimate is 100
1.02 ≈ 99

transactions per second.
If we would like a higher accuracy, we need to model queuing at the
disk, thereby determing at which number of transactions per second
delays start to become large. A global queuing model of CPU, disk
access and network is probably unnecessary.
In Section 8.2.4, we study bottleneck analysis for queuing systems in a
systematic way.

However, one should not be fooled by the apparent simplicity of the previ-
ous example, as bottlenecks are moving targets. They depend on all parameters
of the system as well as on the load: a component may be a bottleneck in cer-
tain conditions, but not in others. In particular, removing one bottleneck may
cause some other bottleneck to appear.

Example 1.13 High Performance Web Sites
In [99], the author discusses how to design high-performance web sites.
He takes the user’s response time as the performance metric. He ob-
serves that modern web sites have highly optimized backends, for which
reason their bottleneck is at the frontend. A common bottleneck is the
DNS lookup. Entirely avoiding DNS lookups in web pages improves
performances, but reveals another bottleneck, namely, script parsing.
This, in turn, can be avoided by making scripts external to the web page
parsing scripts, but doing so will reveal yet another bottleneck, etc. The
author describes 14 possible components, any of which, if present, is a
candidate for being the bottleneck, and suggests to remove them all.
Subsequently, the system is left with the network access and the server
CPU speed as bottlenecks, which is desirable.

1.5.2 Congestion Collapse

Congestion occurs when the intensity of the load exceeds the system capacity
(as determined by the bottleneck). Any system, when subject to a high enough
load, will become congested. The only way to prevent this is to limit the load,
which is often difficult or impossible. Therefore, it is no easy task to avoid
congestion entirely.

In contrast, it is possible, and desirable, to avoid congestion collapse,
which is defined as a reduction in system utility, or revenue when the load
increases.

Example 1.14 Congestion Collapse
Consider a ring network as in Figure 1.4 (such a topology is common,
as it is a simple way to provide resilience to single link or node failure).
There are I nodes and links, and the sources are numbered 0, 1, . . .,
I − 1. At every node, there is one source, whose traffic uses the two
next downstream links (i.e. source i uses links

[
(i + 1) mod I

]
and[

(i+ 2) mod I
]
). All links and sources are identicals.

14 Methodology

link inode i
node
i+1

link (i+1)link (i–1)

source i

0 20 40 60 80 100
0

2

4

6

8

10

12

(a) (b)

Figure 1.4 (a) A network exhibiting congestion collapse if sources are
greedy. (b) The throughput per source λ′′ versus the offered load per
source λ, in Mb/s (plain line). Numbers are in Mb/s; the link capacity is
c = 20 Mb/s for all links. Dotted line: The ideal throughput with congestion
but without congestion collapse.

Every source sends at a rate λ and c corresponds to the useful capacity
of a link (c and λ are in Mb/s). Let λ′ be the rate achieved by one
source on its first hop, and λ′′ the rate on its second hop (λ′′ is the
throughput per source). Since a source uses two links, we can assume
(in a simplified analysis) that, as long as λ < c

2 , all traffic is carried by
the network without loss, i.e.

if λ <
c

2
then λ′ = λ′′ = λ

Assume now that the sources are greedy and send as much as they
can, with a rate λ > c

2 . The network capacity is exceeded, and there
will thus be losses. We assume that packet dropping is fair, i.e. the
proportion of dropped packets is the same for all flows at any given
link. The proportion of packets lost by one source on its first hop is
λ−λ′

λ , and on its second hop it is λ′−λ′′
λ′ . By the fair packet dropping

assumption, these proportions are equal, which gives

λ′

λ
=
λ′′

λ′
(1.3)

Furthermore, we assume that links are fully utilized when the capacity
is reached, i.e.

if λ >
c

2
then λ′ + λ′′ = c

We can solve for λ′ (a polynomial equation of the 2nd degree) and
substitute λ′ in (1.3) to finally obtain the throughput per source:

λ′′ = c− λ

2

(√
1 + 4

c

λ
− 1
)

(1.4)

Performance Patterns 15

Figure 1.4 plots λ′′ versus λ, suggesting that λ′′ → 0 as λ → ∞. We
can verify this by using a Taylor expansion of

√
1 + u, for u → 0 in

(1.4). We obtain

λ′′ =
c2

λ
(1 + ε(λ))

with limλ→∞ ε(λ) = 0. This shows that the limit of the achieved
throughput, when the offered load goes to +∞, is 0, and we thus have
a clear case of congestion collapse.
Figure 1.4 also illustrates the difference between congestion and con-
gestion collapse. The dotted line represents the ideal throughput per
source assuming that there is congestion without congestion collapse.
This could be achieved by employing a feedback mechanism to prevent
sources from sending more than c

2 (for example by using TCP).

Two common causes for congestion collapse are:

(1) The system dedicates significant amounts of resources to jobs that can-
not be completed. This is demonstrated in Figure 1.4, where packets are
accepted on the first hop, and eventually become dropped on the second
hop. This is also known to occur on busy web sites or call centers due to
customer impatience: when the response time becomes long, impatient
customers drop requests before they are satisfied.

(2) The service time per job increases as the load increases. An example of this
is when memory is paged to the disk when the number of active processes
increases.

Congestion collapse is very common in complex systems. It is a nuisance
since it reduces the total system utility to below its capacity. Avoiding con-
gestion collapse is part of a good system design. A common solution to the
problem is admission control , which consists in rejecting jobs when there is
a risk of exceeding the system capacity [50].

1.5.3 Competition Side Effect

In many systems, the performance of one user influences other users. This
may cause an apparent paradox, where putting in more resources worsens the
performance for some users. The root cause is as follows: increasing certain re-
sources may allow some users to increase their load, which in turn can decrease
the performance of competing users. From the point of view of the user for
which the performance is decreased, there is an apparent paradox: the addition
of resources to the system gives rise to an adverse effect.

Example 1.15 Competing Users with Ideal Congestion Control
Figure 1.5 shows a simple network with 2 users, 1 and 2, sending traffic
to destinations D1 and D2, respectively. Both users share a common
link X − Y .

16 Methodology

1

2

X Y

D1

D2

link 1
c1 = 100 kb/s

link 2
c2 = 1000 kb/s

link 3
c3 = 110 kb/s

link 4
c4 = 100 kb/s

link 5
c5 = 10 kb/s

Source 1

Source 2

Figure 1.5 A simple 2-user network showing the pattern of the competition
side effect. Increasing the capacity of link 5 worsens the performance of user 1.

Assume that the sources employ some form of congestion control, for
example as a result of their using the TCP protocol. The goal of con-
gestion control is to limit the source rates to the system capacity while
maintaining a certain fairness objective. We do not discuss fairness
in detail in this book, but refer to example [50] for a quick tutorial.
For the sake of simplicity, we may here assume that congestion control
has the effect of maximizing the logarithms of the rates of the sources,
subject to the constraints that all link capacities are not exceeded (this
is called proportional fairness and is approximately what TCP im-
plements). Let x1 and x2 be the rates achieved by sources 1 and 2
respectively. With the numbers shown in the figure, the constraints are
x1 ≤ 100 kb/s and x2 ≤ 10 kb/s (other constraints are redundant),
which gives us x1 = 100 kb/s and x2 = 10 kb/s.
Assume now that we add resources to the system, by increasing the
capacity of link 5 (the weakest link) from c5 = 10 kb/s to c5 = 100 kb/s.
The constraints are now

x1 ≤ 100 kb/s
x2 ≤ 100 kb/s

x1 + x2 ≤ 110 kb/s

By symmetry, the rates allocated under proportional fairness are thus
x1 = x2 = 55 kb/s. We see that increasing the capacity results in a
decrease for source 1.

The pattern of the competition side effect in the previous example is a
“good” case, in the sense that the decrease in performance for some users is
compensated by an increase for others. But this is not always true; combined
with the ingredients of congestion collapse, the competition side effect may
result in a performance decrease without any benefit for any other user (“give
more, get less”), as shown in the next example.

Example 1.16 Competing Users without Congestion Control
Consider Figure 1.5 again, but assume that there is no congestion con-
trol (for instance due to sources using UDP instead of TCP). Assume

Performance Patterns 17

that the sources send as much as their access link allows, i.e. source 1
sends at the rate of link 1 and source 2 at the rate of link 2.
Assume that we keep all rates as shown in the figure, except for the rate
of link 2, which we vary from c2 = 0 to c2 = 1000 kb/s. Now define the
rates x1 and x2 as the amounts of traffic that reach the destinations.
If c2 ≤ 10 kb/s, there is no loss and x1 = 100 kb/s, x2 = c2. If c2 > 10
kb/s, there are losses at X. Assume that the losses are in proportion
to the offered traffic. Using the same analysis as in Example 1.14, we
obtain, for c2 > 10:

x1 = 110 × 100
c2 + 100

x2 = min
(

110 × c2
c2 + 100

, 10
)

Figure 1.6 plots the rates versus c2. We see that increasing c2 beyond
10 kb/s renders things worse for source 1, with no benefit for source 2.

0 50 100 150
0

20

40

60

80

100

120

Total

User 1

User 2

Figure 1.6 Achieved throughputs for the sources in Figure 1.5 versus c2.

1.5.4 Latent Congestion Collapse

Many complex systems have several potential bottlenecks, and may be suscep-
tible to congestion collapse. Removing a bottleneck (by adding more resources)
may reveal a congestion collapse, resulting in a deteriorated performance. Be-
fore the addition of more resources, the system was protected from congestion

18 Methodology

collapse by the bottleneck, which acted as an implicit admission control. This
results in the “give more, get less” paradox.

Example 1.17 Museum audio guides
A museum offers free audio guides to be downloaded on MP3 players.
Visitors plug their MP3 players into the docking devices, and the latter
connect via a wireless LAN to the museum server. Data transfer from
the docking device to the MP3 player goes through a USB connector.
The system was tested with different numbers of docking devices, and
Figure 1.7(a) shows the download time versus the number of docking
devices in use.
The museum later decides to buy better docking devices, with a faster
USB connection between the device and MP3 player (enabling the
transfer rate to be doubled). As can be expected, the download time is
smaller when the number n of docking devices is low, but, surprisingly,
it is larger when n ≥ 7 (Figure 1.7(a)). What can have happened? It is
known that the wireless LAN access method is susceptible to congestion
collapse: when the offered load increases, packet collisions become fre-
quent and the time to successfully transfer one packet becomes larger,
causing the throughput to be lowered. We may conjecture that im-
proving the transfer speed between the docking device and the MP3
player increases the load on the wireless LAN. The congestion collapse
was not possible before due to the low speed docking devices acting as
an (involuntary) access control method.
We can verify this conjecture by plotting the throughput in the place
of the download time, and extending the first experiment to large val-
ues of n. We see in Figure 1.7(b) that there is indeed a reduction in
throughput, at a point that depends on the speed of the USB connec-
tion.

Review 19

0 2 4 6 8 10 12
6

8

10

12

14

16

18

20

22

24

(a)

0 5 10 15 20
0

100

200

300

400

500

600

700

800

(b)

Figure 1.7 An illustration of latent congestion collapse. The download
time (in sec.) and System throughput (in Mb/s) as functions of the number
of docking devices, with lower speed USB connections (◦) and with higher
speed USB connections (+).

1.6 Review

1.6.1 Check-List

Performance Evaluation Checklist

PE1 Define your goal. For example: dimension the system, find the overload
behavior; evaluate alternatives. Do you need a performance evaluation
study? Are the results not obvious? Are they too dependent on the input
factors, which are arbitrary?

PE2 Identify the factors. What are all the factors? Are there external factors
which need to be controlled?

PE3 Define your metrics. For example: response time, server occupancy, num-
ber of transactions per hour, Joule per Megabyte. Define not only what
is measured but also under which condition or sampling method. If the
metric is multi-dimensional, different metric values are not always compa-
rable and there may not be a best metric value. However, we might have
non-dominated metric values.

PE4 Define the offered load. How is it expressed: transactions per second,
number of users, number of visits per hour? Is it measured on a real system?
Artificial load generated by a simulator, by a synthetic load generator?
Load model in a theoretical model?

PE5 Know your bottlenecks. The performance often depends only on a small
number of factors, frequently those with a high utilization (= load/capacity).
Make sure that you are indeed evaluating one of them.

20 Methodology

PE6 Know your system well. Know the system you are evaluating and list all
factors. Use evaluation tools that you are familiar with. Know common
performance patterns for your system.

Scientific Method Checklist

S1 Scientific Method
do { Define hypothesis; design experiments; validate } until validation
is OK.

S2 Quantify the accuracy of your results.
S3 Make your findings reproducible; define your assumptions.
S4 Remove what can be removed.

1.6.2 Review Questions

1.1 For each of the following examples:

(1) Design a Web server code that is efficient and fast.
(2) Compare TCP-SACK versus TCP-new Reno for hand-held mobile devices.
(3) Compare Windows 2000 Professional to Linux.
(4) Design a rate control for an internet audio application.
(5) Compare various wireless MAC protocols.
(6) Determine how many servers a video-on-demand company needs to install.
(7) Compare various compilers.
(8) How many control processor blades should this Cisco router have?
(9) Compare various consensus algorithms.

(10) Design bug-free code.
(11) Design a server farm that will not crash when the load is high.
(12) Design call center software that generates guaranteed revenue.
(13) Size a hospital’s information system.
(14) What capacity is needed for an international data link?
(15) How many new servers, if any, should I install next quarter for my business

application?

State whether a detailed identification of the intensity of the workload is re-
quired.(2)

1.2 Consider the following scenarios.

(1) The web server used for online booking at the “Fête des Vignerons” was so
popular that it collapsed under the load, and was unavailable for several
hours.

(2) Buffers were added to an operating system task, but the overall performance
was degraded (instead of improved, as expected).

(2)Examples (6), (8), (13), (14), (15) are dimensioning exercises and require identification
of the predicted workload intensity. Examples (1) and (10) are beyond the scope of
the book. Examples (11) and (12) concern about avoiding congestion collapse.

Review 21

(3) The response time on a complex web server is determined primarily by the
performance of the frontend.

(4) When too many users employ the international link, the response time is
poor.

(5) When too many users are present on the wireless LAN, no one gets useful
work done

(6) A traffic volume increase of 20% causes traffic jams.
(7) New parking facilities were created in the city center but the availability of

free parking availability did not increase.

and the following patterns:

(a) non-linearity of response time with respect to load;
(b) congestion collapse (useful work decreases as load increases);
(c) performance is determined by bottleneck;

Determine which pattern is present in which scenario.(3)

1.3 Read [63] written by one of Akamai’s founders. Which of the present
chapter’s topics does it illustrate?(4)

(3)(1b); (2) : perhaps a combination of (b) and (c); (3c); (4a); (5b); (6b); (7c).
(4)(1) The performance bottleneck in internet response time is the middle mile, i.e. the

intermediate providers between web site provider and end-user ISP. (2) Performance
metrics of interest are not only the response time but also the reliability.

Chapter 2

Summarizing Performance Data
and Confidence Intervals

In most measurements or simulations, we obtain large amounts of data. Dis-
playing the data correctly is important, and implies utilizing various graphical
packages, or math packages with graphical capabilities. (Different tools have
varying capabilities, and produce graphics of different aesthetic value; but the
most important is to use a tool that you are familiar with). Tools do not do ev-
erything and you need to know what to represent. Here, we discuss important
and frequent summarizations that can be employed to display and compare
data: the complete distribution; summarized quantities such as means, stan-
dard deviations, medians and tail quantiles; as well as fairness indices.

We discuss certain properties of these summarizations and indices; they are
not all equivalent, and some, though less frequently used, are preferable if one
has a choice.

24 Summarizing Performance Data and Confidence Intervals

2.1 Summarized Performance Data

2.1.1 Histograms and Empirical CDF

Assume that you have obtained a large set of results for the value of a per-
formance metric. This can be fully described by the distribution of the data,
and illustrated by a histogram . A histogram uses bins for the data values and
plots on the y axis the proportion of data samples that fall in the bin on the x
axis, see Figure 2.1.

0 20 40 60 80 100
0

50

100

150

200

(a) Raw data, old

0 20 40 60 80 100
0

50

100

150

200

(b) Raw data, new

0 50 100 150 200
0

5

10

15

20

25

(c) Histogram, old

0 50 100 150 200
0

5

10

15

20

25

30

35

(d) Histogram, old

Figure 2.1 Data for Example 2.1. Measured execution times (in ms) for 100 trans-
actions with the old and new code, with histograms.

The empirical cumulative distribution function (ECDF) is an alter-
native to histograms, and sometimes facilitates comparisons. The ECDF of a
data set x1, . . . , xn is the function F defined by

F (x) =
1
n

n∑
i=1

1{xi≤x} (2.1)

so that F (x) is the proportion of data samples that do not exceed x.

Summarized Performance Data 25

Data sets may be compared by collecting their ECDFs. If one is consistently
above the other, it may be considered to as superior, even though some data
points in the first set may be less good. This is called stochastic majoriza-
tion . Figure 2.2 demonstrates that the new data set (left) clearly outperforms
the old one. Note that the stochastic majorization is a partial order, as is the
comparison of multi-dimensional metrics (Section 1.1.2).

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1

0.9

Figure 2.2 Data of Example 2.1. Empirical distribution functions for the old (right
curve) and the new (left curve) code. The new outperforms the old; the improvement
is significant at the tail of the distribution.

Assume that the data samples come from a well defined probability distri-
bution; the histogram can then be viewed as an estimate of the PDF of the
distribution, and the ECDF as an estimate of the CDF.(1)

2.1.2 Means, Medians and Quantiles

Instead of considering entire histograms or ECDFs, one would often like to
summarize, i.e. compress, the histogram into one or several numbers repre-
senting both average and variability. This is commonly done by either of the
following methods:

Median and Quantile

A median is a value that falls in the middle of the distribution, i.e. 50% of
the data is below and 50% above. A p%-quantile leaves p% of the observation
below and (100 − p)% above. The median gives some information about the
average, while extreme quantiles provide information about the dispersion. A
commonly used plot is the box plot . It shows the median, the 25% and 75%
quantiles (called “quartiles”) and the “outliers”, defined as data points that are
a fixed fraction away from the quartiles (Figure 2.3).

(1)The CDF of the random variable X is a function defined by F (x) = P(X ≤ x).

26 Summarizing Performance Data and Confidence Intervals

Old New
0

50

100

150

200

Old New
0

50

100

150

200

median

CI for median
CI for mean

mean

dispersion

prediction interval

(a) (b)

Figure 2.3 Box plots for the data of Example 2.1. (a) A standard box plot com-
monly used by statisticians showing the median (notch) and quartiles (top and bottom
of boxes); “dispersion” is an ad-hoc measure, defined here as 1.5 times the inter-
quartile distance; the notch width shows the confidence interval for the median.
(b) The same, overlaid with quantities commonly used in signal processing: mean,
confidence interval for the mean (= mean ± 1.96 σ/

√
n, where σ is the standard

deviation and n is the number of samples) and prediction interval (= mean±1.96σ).

Comment: The sample median of a data set is defined as follows. Assume there
are n data points x1, . . . , xn. Sort the points in increasing order and obtain x(1) ≤
. . . ≤ x(n). If n is odd, the median is x

(n+1
2)

, otherwise 1
2
(x(n

2) + x(n
2 +1)). More

generally, the sample q-quantile is defined as
x(k′) + x(k′′)

2
with k′ =

¨
qn + (1 − q)

˝
and k′ =

˚
qn + (1 − q)

ˇ

�x� is the largest integer ≤ x and �x� is the smallest integer ≥ x. �

Mean and Standard Deviation

The mean m of a data set x1, . . . , xn is m = 1
n

∑n
i=1 xi, and gives information

about the average. The standard deviation s of a data set is defined by
s2 = 1

n

∑n
i=1(xi−m)2 or s2 = 1

n−1

∑n
i=1(xi−m)2 (either of the two conventions

is used – see Section 2.2 for an explanation), and provides information about the
variability. The utilization of standard deviation is rooted in the belief that data
roughly follows a normal distribution , also called Gaussian distribution .
It is characterized by a Bell-shaped histogram (see Wikipedia and Table 3.1);
the CDF of the general normal distribution is denoted Nμ,σ2 , where μ is the
mean and σ2 is the variance. It is very frequently encountered because of
the central limit theorem stating that an average of many things tends to be
normal (but there are some exceptions, called heavy tail in Chapter 3). If such a
hypothesis is true, and if we have m ≈ μ and σ ≈ s, then with 95% probability,
the data sample would lie in the interval m±1.96 s (see the normal distribution
table in the appendix). This justifies the use of mean-variance plots, as in

Summarized Performance Data 27

Figure 2.3, which employ the interval m ± 1.96 s (distance 3 in Figure 2.3) as
a measure of variabillty. This is also called a prediction interval since it
predicts a likely range for a future sample (Section 2.4).

Example 2.1 Comparison of two Options
An operating system vendor claims that the new version of the database
management code significantly improves the performance. We mea-
sured the execution times of a series of commonly used programs with
both options. The data are displayed in Figure 2.3. The raw displays
and histograms demonstrate that both options have the same range,
but it seems (graphically) that the new system more often provides a
smaller execution time. The box plots are more suggestive; they show
that the average and the range are about half for the new system.

In Section 2.5, we discuss the differences between these two modes of sum-
marization.

2.1.3 Coefficient of Variation and Lorenz Curve Gap

The coefficient of variation and the Lorenz curve gap are frequently used mea-
sures of variation, rescaled to be invariant by change of scale. They apply to a
positive data set x1, . . . , xn.

Coefficient of Variation

It is defined by
CoV =

s

m
(2.2)

where m is the mean and s the standard deviation, i.e. it represents the stand-
ard deviation rescaled by the mean. It is also sometimes called the signal to
noise ratio . For a data set with n values one always has(2)

0 ≤ CoV ≤ √
n− 1 (2.3)

where the upper bound is obtained when all xi have the same value except for
one of them.

Lorenz Curve Gap

This is an alternative measure of dispersion, obtained when we replace the
standard deviation by the Mean Absolute Deviation (MAD). The MAD
is defined as

MAD =
1
n

n∑
i=1

|xi −m|

i.e. we compute the mean distance to the mean, instead of the square root of
the mean square distance. Compared to the standard deviation, the MAD is

(2)Consider the maximization problem: maximize
P

i(xi − m)2 subject to xi ≥ 0 andP
xi = mn. Since x �→ P

i(xi − m)2 is convex, the maximum is at an extreme point
xi0 = mn, xi = 0, i �= i0.

28 Summarizing Performance Data and Confidence Intervals

less sensitive to a few very large values. It follows from the Cauchy-Schwarz
inequality that it is always less than the standard deviation, i.e.

0 ≤ MAD ≤ s (2.4)

with equality only if xi is constant, i.e. xi = m for all i.
If n is large and xi is independent and identically distribued (iid) from a

Gaussian distribution, then

MAD ≈
√

2
π
s ≈ 0.8 s (2.5)

In contrast, if xi comes from a heavy-tailed distribution with a finite mean m,
then s→ ∞ as n becomes large, whereas MAD converges to a finite limit.

The Lorenz curve gap is a rescaled version of MAD, defined as

gap =
MAD
2m

(2.6)

The factor 2 is explained in the next section. We always have

0 ≤ gap ≤ 1 − 1
n

(2.7)

thus, contrary to CoV, gap is between 0 and 1. If n is large and xi is iid from
a Gaussian distribution, then gap ≈ 0.4 CoV. If on the other hand it comes
from an exponential distribution, gap ≈ 0.74 and CoV ≈ 1.

Comment: If xi is iid and comes from a distribution with PDF f(·), then, for large
n, CoV and MAD converge to their theoretical counterparts:

CoV → CoVth =

sZ ∞

0

(x − μ)2f(x) dx

μ

MAD → gapth =

Z ∞

0

|x − μ| f(x) dx

2μ

with μ =
R∞
0

xf(x) dx.

If the distribution is Gaussian Nμ,σ2 then CoVth = σ
μ

and gapth =
q

2
π

σ
μ
; if it is

exponential then CoVth = 1 and gapth = 1
e
. �

2.1.4 Fairness Indices

Often one interprets variability as fairness, and several fairness indices have
been proposed. We review here the two most prominent ones. We also show
that they are in fact reformulations of variability measures, i.e. they are equiv-
alent to CoV and gap, after proper mapping (and the use of these indices may
thus appear superfluous). As in the previous section, the data set xi is here
assumed to be positive.

Summarized Performance Data 29

Jain’s Fairness Index

It is defined as the square of the cosine of the angle between the data set xi

and the hypothetical equal allocation (Figure 2.4). It is given by

JFI =

(
n∑

i=1

xi

)2

n
n∑

i=1

x2
i

(2.8)

A straightforward computation shows that the fairness measure JFI is a de-
creasing function of the variability measure CoV:

JFI =
1

1 + CoV2 (2.9)

so that, through (2.3), we conclude that JFI ranges from 1
n (maximum unfair-

ness) to 1 (all xi are equal).

x1

x2

(x1, x2)

(m,m)

Figure 2.4 Jain’s fairness index is cos2 θ. x1, . . . , xn is the data set and m is the
sample mean. The figure corresponds to n = 2.

Lorenz Curve

The Lorenz curve is defined as follows. A point (p, �) on the curve, with p,
� ∈ [0, 1], signifies that the bottom fraction p of the distribution contributes to
a fraction � of the total

∑n
i=1 xi.

More precisely, we are given a data set xi > 0, i = 1, . . . , n. We plot for all
i = 1, . . . , n the points (pi, �i) with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

pi =
i

n

�i =

n∑
j=1

xj1{xj≤xi}

n∑
j=1

xj

(2.10)

See Figure 2.5 for examples. The Lorenz curve can be made into a continu-
ous mapping � = L(p) by linear interpolation and by setting L(0) = 0. The

30 Summarizing Performance Data and Confidence Intervals

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Execution times in Figure 2.3, old code

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Execution times in Figure 2.3, new code

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Ethernet Byte Counts (xn is the byte length
of the nth packet of an Ethernet trace [64])

CoV JFI gap Gini Gini-approx

Figure 2.3, old code 0.779 0.622 0.321 0.434 0.430

Figure 2.3, new code 0.720 0.658 0.275 0.386 0.375

Ethernet Byte Counts 1.84 0.228 0.594 0.730 0.715

Figure 2.5 Lorenz curves for three sets of data. The diagonal line corresponds
to perfect equality. The maximum distance (plain line) is equal to

√
2 times the

maximum vertical deviation (dashed line), which is called the Lorenz curve gap. The
Gini coefficient is the area between the diagonal and the Lorenz curve, rescaled by its
maximum value 1

2
. The table gives the values of coefficient of variation, Jain’s fairness

index, Lorenz curve gap, the Gini coefficient and the Gini coefficient approximation
in (2.17).

Summarized Performance Data 31

resulting L(·) is a continuous mapping from [0, 1] onto [0, 1], monotone non-
decreasing, convex, with L(0) = 0 and L(1) = 1.

The Lorenz curve � = L(p) can be interpreted as a global measure of
fairness (or variability). If all xis are equal (maximum fairness), then L(p) = p
and L(·) is the diagonal of the square [0, 1] × [0, 1] (called the “line of perfect
equality”). In the worst case, the Lorenz curve follows the bottom and right
edges of the square (called the “line of perfect inequality”) (Figure 2.6). In
practice the Lorenz curve is computed by sorting xi in increasing order (x(1) ≤
x(2) ≤ . . . ≤ x(n)) and letting

li =
x(1) + · · · + x(i)

nm
(2.11)

where m is the sample mean. It follows that 0 ≤ li ≤ i
n , i.e.

0 ≤ L(p) ≤ p

In other words, the Lorenz curve is always between the lines of perfect equality
and perfect inequality.

Lorenz Curve Gap, again

A measure of fairness is the largest euclidian distance (the gap) from the Lorenz
curve to the diagonal, rescaled by its maximum value (

√
2). It is also equal

to the largest vertical distance, supu∈[0,1]

(
u−L(u)

)
(Figure 2.5). The gap can

easily be computed by observing that it is reached at index i0 = max{i : x(i) ≤
m}, i.e. at a value p0 = i0

n such that the bottom fraction p0 of the data has a
value below the average. Thus

gap =
i0
n

− x(1) + · · · + x(i0)

mn
(2.12)

We have already introduced the gap in (2.6), and we now need to demonstrate
that the two definitions are equivalent. This follows from

MAD =
1
n

n∑
i=1

|xi −m| =
1
n

n∑
i=1

∣∣x(i) −m
∣∣

=
1
n

(
i0∑

i=1

(m− x(i)) +
n∑

i0+1

(x(i) −m)

)

=
1
n

(
i0m−

i0∑
i=1

x(i) + nm−
i0∑

i=1

x(i) − (n− i0)m

)
= 2m gap

which is the same as (2.6).

32 Summarizing Performance Data and Confidence Intervals

Comment: The theoretical Lorenz curve is defined for a probability distribution with
a cumulative distribution function CDF F (·) and finite mean μ by

L(p) =
1

μ

Z p

0

F−1(q) dq (2.13)

where F−1 is the pseudo-inverse [51, Theorem 3.1.2]

F−1(q) = sup
˘
x : F (x) < p

¯
= inf

˘
x : F (x) ≥ q

¯

If the CDF F (·) is continuous and increasing, then F−1 is the usual function inverse.
In this case, the theoretical Lorenz curve gap is then equal to

gapth = p0 − L(p0)

with p0 = F (μ).

The theoretical Lorenz curve is the limit of the Lorenz curve for an iid data
sample coming from F (·), when n is large. �

The Gini Coefficient

The Gini coefficient is yet another fairness index, very widespread in econ-
omy, and, by imitation, in computer and communication systems. Its definition
is similar to that of the Lorenz curve gap, with the mean average deviation re-
placed by the Mean Difference:

MD =
1

n(n− 1)

∑
i,j

|xi − xj | (2.14)

The Gini coefficient is then defined as

Gini =
MD
2m

(2.15)

where m is the empirical mean of the data set. It can be shown that it is
equal to 2× the area between the line of perfect equality and the Lorenz curve
(the rescaling factor 2 causes it to lie between 0 and 1). In practice, the Gini
coefficient can be computed with (2.11), which gives

Gini =
2

mn2

n∑
i=1

ix(i) − 1 − 1
n

(2.16)

Comment: The theoretical Gini coefficient for a probability distribution with CDF
F (·) is defined by

Ginith = 2

Z ∞

0

`
q − L(q)

´
dq = 1 − 2

Z ∞

0

L(q) dq

where L(·) is the theoretical Lorenz curve defined in (2.13). �

Summarized Performance Data 33

1

1

0

p

A B

D
L(p)

C

M0

gap/√2

Figure 2.6 Lorenz curve (plain line). The line of perfect equality is OD, and that
of perfect inequality is OBD. The Lorenz curve gap is the maximum distance to the
line of perfect equality, re-scaled by

√
2. The Gini coefficient is the area between the

line of perfect equality and the Lorenz curve, re-scaled by 2.

Since the Lorenz curve is convex, it is straightforward to bound the Gini
coefficient by means of the Lorenz curve gap. In Figure 2.6, we see that the area
between the Lorenz curve and the diagonal is lower bounded by the triangle
OM0D and upper bounded by the trapeze OACD. It follows from this and
(2.16) that

0 ≤ gap ≤ Gini ≤ 1 − 1
n

Gini ≤ gap (2 − gap)

where the lower bound 0 is reached at maximum fairness.
Consequently, one can also approximate Gini by the arithmetic mean of

the lower and upper bounds:

Gini ≈ gap (1.5 − 0.5 gap) (2.17)

Summary

Since there are so many variability and fairness indices, we here give a summary
with some recommendations.

First, since the Gini coefficient can be essentially predicted from the Lorenz
curve gap, we do not use it further in this book. However, it may be useful to
know the relationship between the two since you will find that it is employed
in some performance evaluation results.

Second, Jain’s fairness index and the Lorenz curve gap are fundamentally
different and cannot be mapped to each other. The former is essentially the
same as the coefficient of variation. If the data comes from a heavy-tailed
distribution, the theoretical coefficient of variation is infinite, and CoV → ∞

34 Summarizing Performance Data and Confidence Intervals

as the number of data points becomes large. Comparing different CoVs in such
a case does not provide much information. In contrast, the Lorenz curve gap
continues to be defined, as long as the distribution has a finite mean.

We recall the main inequalities and bounds in Table 2.1. See also Figure 2.5
for some examples.

Table 2.1 Relationships between different fairness indices of a data set with n sam-
ples and empirical mean m (MF = value when fairness is maximum, i.e. all data
points are equal).

Jain’s Fairness Index Lorenz Curve Gap Gini Coefficient
(JFI) (gap) (Gini)

Definition
1

1 + CoV2

MAD
2m

MD
2m

Eqs (2.2), (2.8) Eq. (2.6) Eq. (2.15)

Bounds
1

n
≤ JFI ≤ 1 (MF) (MF) 0 ≤ gap ≤ 1 − 1

n
(MF) 0 ≤ Gini ≤ 1 − 1

n

Relations
1

1 + 4 gap2
≤ JFI gap ≤ Gini ≤ gap (2 − gap)

Equality only at MF Gini ≈ gap (1.5 − 0.5 gap)

Exp(λ), λ > 0 0.5
1

e
≈ 0.368 0.5

Unif(a, b)

0 ≤ a < b

1

1 +
(b − a)2

3(b + a)2

b − a

4(a + b)

b − a

3(a + b)

Pareto (p, x0)

x0 > 0, p > 1

p(p − 2)

(p − 1)2
for p > 2

1

p

„
1 − 1

p

«p−1 1

2p − 1

2.2 Confidence Intervals

2.2.1 What is a Confidence Interval?

When we display numbers such as the median or the mean of a series of per-
formance results, it is important to quantify their accuracy (as part of the
scientific method, Chapter 1). Confidence intervals quantify the uncer-
tainty regarding a summarized data set, which is due to the randomness of the
measurements.

Example 2.2 Comparison of two Options, continued
We wish to quantify the improvement as obtained by the new system.
To this end, we measure the reduction in run time for the same se-
quence of tasks as in Figure 2.3 (both data sets in Figure 2.3 come
from the same transaction sequences – statisticians call this a paired
experiment). The differences are displayed in Figure 2.7.
The last panel shows confidence intervals for the mean (horizontal lines)
and for the median (notches in Box plot). For example, the mean of

Confidence Intervals 35

0 50 100
−100

−50

0

50

100

150

200

−100 0 100 200
0

5

10

15

20

25

30

1

−100

−50

0

50

100

150

V
al

ue
s

Column Number

Figure 2.7 Data for Example 2.2: reduction in run time (in ms). Right:
Box plot with mean and confidence interval for mean.

the reduction in run time is 26.1 ± 10.2. The uncertainty margin is
designated the confidence interval for the mean. It is obtained by the
method presented in this section. Here, the mean reduction is not
negligible, but its uncertainty is large.

There exists a confidence interval for every summarized quantity: median,
mean, quartile, standard deviation, fairness index, etc. In the remainder of this
section, we explain how confidence intervals are computed.

2.2.2 Confidence Interval for the Median and Other Quantiles

We start with the median and other quantiles, as this is both the simplest
and the most robust. This present section also serves as an illustration of the
general method for computing confidence intervals.

The main idea (which underlies all classical statistics formulae) is to imag-
ine that the data we have measured was in fact generated by a simulator, whose
program is unknown to us. More precisely, we are given some data x1, . . . , xn,
and we imagine that there is a well defined probability distribution with CDF
F (·) from which the data is sampled. In other words, we have received one
sample from a sequence of independent and identically distributed (iid) ran-
dom variables X1, . . . , Xn, each with a common CDF F (·). The assumption
that the random variables are iid is capital; if it does not hold, the confidence
intervals are wrong. We defer to Section 2.3 a discussion of when we may or
may not make this assumption. For now we assume that it holds.

The distribution F (·) is non-random, but is unknown to us. It has a well-
defined median m, defined by: for every i, P(Xi ≤ m) = 0.5. We can never

36 Summarizing Performance Data and Confidence Intervals

know m exactly, but we estimate it by m̂(x1, . . . , xn), equal to the sample
median defined in Section 2.8.1. Note that the value of the estimated median
depends on the data, and it is thus random: for different measurements, we
obtain different estimated medians. The goal of a confidence interval is to
bound this uncertainty. It is defined relative to a confidence level γ; typically
γ = 0.95 or 0.99:

Definition 2.1
A confidence interval at level γ for the fixed but unknown parameter m is
an interval

(
u(X1, . . . , Xn), v(X1, . . . , Xn)

)
such that

P
(
u(X1, . . . , Xn) < m < v(X1, . . . , Xn)

) ≥ γ (2.18)

In other words, the interval is constructed from the data, such that with
at least 95% probability (for γ = 0.95), the true value of m falls within it.
Note that it is the confidence interval that is random, and not the unknown
parameter m.

A confidence interval for the median or any other quantile is very simple
to compute, as demonstrated by the next theorem.

Theorem 2.1 (Confidence Interval for the Median and other Quantiles)
Let X1, . . . , Xn be n iid random variables, with a common CDF F (·). As-
sume that F (·) has a density, and let mp be a p-quantile of F (·), i.e.
F (mp) = p, for 0 < p < 1.
Let X(1) ≤ X(2) ≤ . . . ≤ X(n) be the order statistic, i.e. the set of values
of Xi sorted in increasing order. Let Bn,p be the CDF of the binomial
distribution with n repetitions and probability of success p. A confidence
interval for mp at level γ is

[
X(j), X(k)

]
where j and k satisfy

Bn,p(k − 1) −Bn,p(j − 1) ≥ γ

See the tables in Section A for practical values. For large n, we can use the
approximation

j ≈
⌊
np− η

√
np(1 − p)

⌋

k ≈
⌈
np+ η

√
np(1 − p)

⌉
+ 1

where η is defined by N0,1(η) = 1+γ
2 (e.g. η = 1.96 for γ = 0.95).

Confidence Intervals 37

The Binomial distribution Bn,p, with n repetitions and a probability of
success p, is the distribution of Z =

∑n
i=1 Zi where Zi are iid random variables

such that Zi = 0 or 1 and P(Zi = 1) = p. It is in other words the distribution
of the number of successes in an experiment with n trials and the individual
success probability p. (The random variables Zi are called Bernoulli random
variables. N0,1 is the CDF of the Gaussian distribution with the mean 0 and
variance 1.)

For n = 10, the theorem and the table in Section A state that a 95%-
confidence interval for the median (estimated as X(5)+X(6)

2) is
[
X(2), X(9)

]
. In

other words, we obtain a confidence interval for the median of 10 results by
removing the smallest and the largest values. Could it be simpler?

Note that, for small values of n, no confidence interval is possible at the
levels 0.95% or 0.99%. This is due to the probability that the true quantile is
outside any of the observed data still being large.

For large n, the binomial distribution can be approximated by a Gaussian
distribution, which explains the approximation in the theorem.

Comment: The assumption that the distribution has a density (also called PDF,
probability density function) is for the simplicity of exposition. If F (·) does not have
a density (e.g. due to the numbers Xi being integers) the theorem holds with the
modification that the confidence interval is [X(j), X(k)) (instead of [X(j), X(k)]). �

2.2.3 Confidence Interval for the Mean

Also in this case there is a widely used result, given in the next theorem. The
proof is standard and can by found in probability textbooks ([38], [76]).

Theorem 2.2
Let X1, . . . , Xn be n iid random variables, the common distribution which
is assumed to have a well-defined mean μ and a variance σ2. Let μ̂n and
s2n be

μ̂n =
1
n

n∑
i=1

Xi (2.19)

s2n =
1
n

n∑
i=1

(Xi − μ̂n)2 (2.20)

The distribution of
√
n μ̂n−μ

sn
converges to the normal distribution N0,1 when

n→ +∞. An approximate confidence interval for the mean at level γ is

μ̂n ± η
sn√
n

(2.21)

where η is the 1+γ
2 quantile of the normal distribution N0,1, i.e. N0,1(η) =

1+γ
2 . For example, η = 1.96 for γ = 0.95 and η = 2.58 for γ = 0.99.

38 Summarizing Performance Data and Confidence Intervals

Note that the amplitudes of the confidence interval decreases according
to 1√

n
.

However, caution may be required when using the theorem, as it makes
three assumptions:

(1) the data comes from an iid sequence,

(2) the common distribution has a finite variance,

(3) the number of samples is large.

It is worthwhile to screen each of these assumptions, as there are realistic
cases where they do not hold. Assumption (1) is the same as for all confidence
intervals in this chapter, and is discussed in Section 2.3. Assumption (2) is true
provided that the distribution is not heavy-tailed, see Section 3.5. Assumption
(3) generally holds even for small values of n, and can be verified using the
method in Section 2.5.1.

Normal iid Case

The following theorem is a slight variant of Theorem 2.2. It applies only to
cases where we know a priori that the distribution of the measured data follows
a common Gaussian distribution Nμ,σ2 , with fixed but unknown μ and σ. It
gives practically the same result as Theorem 2.2 for the confidence interval of
the mean; in addition it gives a confidence interval of the standard deviation.
This result is often used in practice, perhaps not rightfully, as the Gaussian
assumptions are not frequently satisfied.

Theorem 2.3
Let X1, . . . , Xn be a sequence of iid random variables with common distri-
bution Nμ,σ2 . We have

μ̂n =
1
n

n∑
i=1

Xi (2.22)

σ̂2
n =

1
n− 1

n∑
i=1

(Xi − μ̂n)2 (2.23)

Then
• The distribution of

√
n μ̂n−μ

σ̂n
is Student’s tn−1; a confidence interval

for the mean at level γ is

μ̂n ± η
σ̂n√
n

(2.24)

where η is the (1+γ
2) quantile of the student distribution tn−1.

Confidence Intervals 39

• The distribution of (n − 1) σ̂2
n

σ2 is χ2
n−1. A confidence interval at level

γ for the standard deviation is
[
σ̂n

√
ζ

n− 1
, σ̂n

√
ξ

n− 1

]
(2.25)

where ζ and ξ are quantiles of χ2
n−1: χ2

n−1(ζ) = 1−γ
2 and χ2

n−1(ξ) =
1+γ

2 .

The distributions χ2 and tn (Student) are defined as follows. Chi-square
(χ2

n) is the distribution of the sum of the squares of n independent random vari-
ables with distribution N0,1 (its expectation is n and its variance 2n). Student
(tn) is the distribution of

Z =
X√
Y/n

where X ∼ N0,1, Y ∼ χ2
n and X and Y are independent.

Unlike in Theorem 2.2, the magic numbers η, ζ, ξ depend on the confidence
level γ but also on the sample size n. For instance, with n = 100 and the
confidence level 0.95, we have η = 1.98, ζ = 73.4, and ξ = 128.4. This gives
the confidence intervals for the mean and the standard deviation as

[
μ̂n − 0.198 σ̂n , μ̂n + 0.198 σ̂n

]
and

[
0.86 σ̂n , 1.14 σ̂n

]

Question 2.1 Does the confidence interval for the mean in Theorem 2.3
depend on the estimator of the variance? Conversely?(3)

We can compare the confidence interval for the mean given by this theorem
in (2.24) and by Theorem 2.2 in (2.21). The latter is only approximately true,
so we may expect some small difference, vanishing with n. Indeed, the two
formulas differ by two terms.

(1) The estimators of the variance

σ̂2
n =

1
n− 1

n∑
i=1

(Xi − μ̂n)2 and s2n =
1
n

n∑
i=1

(Xi − μ̂n)2

differ by the factor 1
n versus 1

n−1 . The factor 1
n−1 may seem unnatural, but

it is required for Theorem 2.3 to hold. The factor 1
n appears naturally from

the theory of maximum likelihood estimation (Section B.1). In practice, it
is not a requisite to have an extreme accuracy for the estimator of σ2 (since
it is a second order parameter); thus using 1

n−1 or 1
n makes little difference.

Both σ̂n and sn are called sample standard deviation .

(3)Yes. No.

40 Summarizing Performance Data and Confidence Intervals

(2) η in (2.24) is defined by the student distribution, and by the normal distri-
bution in (2.21). For large n, the student distribution is close to normal;
for example, with γ = 0.95 and n = 100, we have η = 1.98 in (2.24) and
η = 1.96 in (2.21).

See Figure 2.8 for an illustration.

1 2
25

30

35

40

45

50

55

60

65

70

Data Set

M
ea

n
E

xe
cu

tio
n

T
im

e

Normal Asymptotic and Bootstrap Percentile Confidence Intervals

Figure 2.8 Confidence intervals for both compiler options of Example 2.1 computed
with three different methods: assuming data would be normal (Theorem 2.3) (left);
the general method in and with the bootstrap method (right).

2.2.4 Confidence Intervals for Fairness Indices and the Bootstrap Method

There is no analytical general method, even when n is large (but see [102] for
some special cases, if the data is iid normal or log-normal). Instead, we use a
generic, computational procedure, called the bootstrap method. It is general
and can be used for any estimator, not just for fairness indices. It applies to
all cases where data is iid.

The Bootstrap Method

Consider a sample
x = (x1, . . . , xn), which we assume to be a realization of
an iid sequence X1, . . . , Xn. We know nothing about the common distribution
F (·) of the Xis. We are interested in a certain quantity t(
x) derived from the
data, for which we want to find a confidence interval (in this context t(
x) is
called a statistic). For example, if the statistic of interest is the Lorenz curve
gap, then according to Section 2.1.3:

t(
x) =
1

2
n∑

i=1

xi

n∑
j=1

∣∣∣∣∣xj − 1
n

n∑
i=1

xi

∣∣∣∣∣

The bootstrap method uses the sample
x = (x1, . . . , xn) as an approxima-
tion of the true, unknown distribution. It is justified by the Glivenko-Cantelli

Confidence Intervals 41

theorem which claims that the ECDF converges with probability 1 to the true
CDF F (·) when n becomes large.

The method is described formally in Algorithm 2.1.

Algorithm 2.1 The Bootstrap method, for computation of the confidence
interval at level γ for the statistic t(
x). The data set
x = (x1, . . . , xn) is
assumed to be a sample from an iid sequence, with unknown distribution. r0
is the algorithm’s accuracy parameter.
1: R =
2 r0/(1 − γ)� − 1 � For example r0 = 25, γ = 0.95, R = 999
2: for r = 1 : R do
3: draw n numbers with replacement from the list (x1, . . . , xn)
4: and call them Xr

1 , . . . , X
r
n

5: let T r = t(
Xr)
6: end for
7:
(
T(1), . . . , T(R)

)
= sort

(
T 1, . . . , TR

)
8: Prediction interval is

[
T(r0);T(R+1−r0)

]

The loop creates R bootstrap replicates
Xr, r = 1, . . . , R. Each boot-
strap replicate
Xr = (Xr

1 , . . . , X
r
n) is a random vector of size n, like the original

data. All Xr
i are independent copies of the same random variable, obtained by

drawing from the list (x1, . . . , xn) with replacement . For example, if all xk are
distinct, we have P(Xr

i = xk) = 1
n , k = 1, . . . , n.

For each r, line 5 computes the value of the statistic obtained with the
rth “replayed” experiment. The confidence interval in line 8 is the percentile
bootstrap estimate at level γ. It is based on the order statistic (T(r))r=1,...,R

of (T r)r=1,...,R.
The value of R in line 1 needs to be chosen such that there are a sufficient

number of points outside the interval, and depends on the confidence level. A
good value is R = 50

1−γ − 1. For example, with γ = 0.95, take R = 999 and the
confidence interval in line 8 is

[
T(25);T(975)

]
.

Example 2.3 Confidence Intervals for Fairness Indices
The confidence intervals for the left two cases on Figure 2.5 were ob-
tained with the Bootstrap method, with a confidence level of 0.99,
i.e. with R = 4999, bootstrap replicates (left and right: confidence
interval; center: value of index computed in Figure 2.5).

Jain’s Fairness Index Lorenz Curve Gap

Old Code 0.5385 0.6223 0.7057 0.2631 0.3209 0.3809

New Code 0.5673 0.6584 0.7530 0.2222 0.2754 0.3311

42 Summarizing Performance Data and Confidence Intervals

For the third example, the bootstrap method cannot be applied directly.
That is due to the data set not being iid and the bootstrap requiring
iid data. Subsampling does not work as the data set is long-range
dependent. A possible method would be is to fit a long-range dependent
model, such as fractional arima, and then apply the bootstrap to the
residuals.

The bootstrap method may be used for any metric, not just for fairness
indices. Figure 2.8 gives a comparison of confidence intervals for the mean
obtained with the bootstrap and with the classical methods (here t(
x) =
1
n

∑n
i=1 xi).

In general, the percentile estimate is an approximation that tends to be
slightly on the small side. For a theoretical analysis of the bootstrap method,
and other applications, see [33].

2.2.5 Confidence Interval for Success Probability

This is the frequent case where we carry out n independent experiments and
are interested in a binary outcome (success or failure). Assume that we observe
z successes (with 0 ≤ z ≤ n). We would like to find a confidence interval for
the probability p of success.

Mathematically, we can describe the situation as follows. We have a se-
quenceX1, . . . , Xn of independent Bernoulli random variables such that P(Xk =
0) = 1 − p and P(Xk = 1) = p, and we observe Z =

∑n
i=1Xi. The number n

of experiments is known, but not the success probability p, which we want to
estimate. A natural estimator of p is 1

n

∑n
k=1Xi, which correspond to the mean

of the outcomes (this is the maximum likelihood estimator, see Section B.1).
We can therefore apply the method for confidence intervals for the mean in
Theorem 2.2. However, this method is valid only asymptotically, and does not
work when z is very small as compared to n. A frequent case of interest is
when we observe no success (z = 0) in any of the n experiments. In this case,
Theorem 2.2 gives [0, 0] as the confidence interval for p, which is incorrect. We
can instead use the following result.

Theorem 2.4
See [43, p. 110]. Assume that we observe z successes out of n independent
experiments. A confidence interval at level γ for the success probability p is
[L(z);U(z)] with

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

L(0) = 0

L(z) = φN,z−1

(
1 + γ

2

)
, z = 1, . . . , n

U(z) = 1 − L(n− z)

(2.26)

Confidence Intervals 43

where φn,z(α) is defined for n = 2, 3, . . ., z ∈ {0, 1, . . . , n} and α ∈ (0; 1) by
⎧⎨
⎩

φn,z(α) =
n1f

n2 + n1f

n1 = 2(z + 1), n2 = 2(n− z), 1 − α = Fn1,n2(f)
(2.27)

(Fn1,n2(·) is the CDF of the Fisher distribution with n1, n2 degrees of free-
dom). In particular, the confidence interval for p when we observe z = 0
successes is

[
0; p0(n)

]
with

p0(n) = 1 −
(

1 − γ

2

)1
n

=
1
n

log
(

2
1 − γ

)
+ o

(
1
n

)
for large n (2.28)

Whenever z ≥ 6 and n− z ≥ 6, the normal approximation
⎧⎪⎪⎨
⎪⎪⎩

L(z) ≈ z

n
− η

n

√
z
(
1 − z

n

)

U(z) ≈ z

n
+
η

n

√
z
(
1 − z

n

) (2.29)

can be used instead, with N0,1(η) = 1+γ
2 .

The confidence interval in the theorem is not the best, but it is perhaps
the simplest. It is based on a symmetric coverage interval, i.e. the probability
of being above (or below) is < 1−γ

2 and it is the smallest interval with this
property. Other non-symmetric intervals can be derived and are slightly smaller
[12].

Note that the function φN,z(·) is the reverse mapping of p �→ Bn,p(z) where
Bn,p(·) is the CDF of the binomial distribution (which explains (2.28)). Equa-
tion (2.27) is used in numerical implementations [43].

For γ = 0.95, Equation (2.28) gives p0(n) ≈ 3.689
n and this is accurate

already with less than 10% relative error for n ≥ 20. The confidence interval in
(2.29) is obtained by applying the asymptotic confidence interval for the mean;
indeed, a direct application of Theorem 2.2 gives μ̂n = z

n and s2n = z(n−z)
n .

Example 2.4 Sensor Loss Ratio
We measure environmental data with a sensor network. There is reli-
able error detection, i.e. there is a coding system that declares whether
a measurement is correct or not. In a calibration experiment with 10
independent replications, the system claims that all measurements are
correct. What can we say about the probability p of finding an incorrect
measurement?
Apply (2.28): we can state, with 95% confidence, that p ≤ 30.8%.

44 Summarizing Performance Data and Confidence Intervals

Later, in field experiments, we find that 32 out of 145 readings are
declared incorrect. Assuming the measurements are independent, what
can we say about p?
Apply (2.29) with z = 32, n = 145: with 95% confidence we can state
that L ≤ p ≤ U with

⎧⎪⎪⎨
⎪⎪⎩

L ≈ z

n
− 1.96

n

√
z
(
1 − z

n

)
= 15.3%

U ≈ z

n
+

1.96
n

√
z
(
1 − z

n

)
= 28.8%

Instead of the normal approximation in (2.29), we could have used the
exact formula in (2.26), which would give L = 15.6%, U = 29.7%.

Theorem 2.4 is frequently used in conjunction with Monte Carlo estimations
of the p-value of a test, see Example 6.8 in Chapter 6.

2.3 The Independence Assumption

All results in the previous as well as the next section assume the data to be a
sample of a sequence of independent and identically distributed random vari-
ables. We here present a detailed discussion of the meaning of this assumption
(in Section 2.4.3 we also discuss the Gaussian assumption, required by Theo-
rems 2.2 and 2.3).

2.3.1 What does iid mean?

Independent and identically distributed-ness is a property of a stochastic model,
not of the data. When we say, by an abuse of language, that the collected data
set is iid, we mean that we can do as if the collected data x1, . . . , xn is a sam-
ple (i.e. a simulation output) for a sequence of random variables X1, . . . , Xn,
where X1, . . . , Xn are independent and all have the same (usually unknown)
distribution with CDF F (·).

To generate such an sample, we draw a random number from the distribu-
tion F (·), using a random number generator (see Section 6.6). Independence
means that the random numbers generated at every step i are discarded and
not re-used in the future steps i+ 1, . . . Another way to think of independence
is with conditional probabilities: for any set of real numbers A

P(Xi ∈ A | X1 = x1, . . . , Xi−1 = xi−1) = P(Xi ∈ A) (2.30)

In other words, if we know the distribution F (x), observing X1, . . . , Xi−1 does
not give more information about Xi.

The Independence Assumption 45

Note the importance of the “if” statement in the last sentence: remove it and
the sentence is no longer true. To understand why, consider a sample x1, . . . , xn

for which we assume to know that it is generated from a sequence of iid random
variables X1, . . . , Xn with normal distribution but with unknown parameters
(μ, σ2). If we observe, for example, that the average of x1, . . . , xn−1 is 100 and
all values are between 0 and 200, then we can imagine that it is very likely that
xn is also in the interval [0, 200] and that it is unlikely that xn exceeds 1000.
Despite that the sequence is iid, we were able to gain information about the
next element of the sequence by observing the past. There is no contradiction:
if we know that the parameters of the random generator are μ = 100 and
σ2 = 10, then observing x1, . . . , xn−1 gives us no information about xn.

2.3.2 How do I know in Practice if the iid Assumption is Valid?

If your performance data comes from a designed experiment , i.e. a set of
simulation or tests that is entirely under your control, then it is up to you to
design things in such a way that the collected data are iid. This is done as
follows.

Every experiment has a number of factors, i.e. parameters that are likely
to influence the outcome. Most of the factors are not really interesting, but you
have to account for them in order to avoid hidden factor errors (see Section 1.2
for details). The experiment generates iid data if the values of the factors are
chosen in an iid way, i.e. according to a random procedure that is the same
for every measured point, and is memoriless. Consider Example 2.1, where the
run time for a number of transactions is measured. One factor is the choice of
the transaction. The data is made iid if, for every measurement, we choose one
transactions randomly with replacement in a list of transactions.

A special case of designed experiments is simulation. Here, the method
is to generate replications without resetting the random number generator, as
explained in Section 6.3. Otherwise (i.e. if your data does not come from a
designed experiment but from measurements on a running system), there is
little chance that the complete sequence of measured data is iid. A simple fix
is to randomize the measurements in such a way that there is little dependence
from one measurement point to the other. For example, assume that you are
measuring the response time of an operational web server by data mining the
log file. The response time to consecutive requests is highly correlated at the
time scale of the minute (due to protocols like TCP); one common solution is
to choose requests at random, for instance by selecting one request every two
minutes in average.

When there is doubt, the following methods can be used to verify iid-ness:

(1) (Autocorrelation Plot): If the data appears to be stationary (no trend, no
seasonal component), we can plot the sample autocorrelation coefficients,
which are estimates of the true autocorrelation coefficients ρk (defined on
Page 158). If the data is iid, then ρk = 0 for k ≥ 1, and the sample
autocorrelation coefficients fall within the values ±1.96/

√
n (where n is the

sample size) with 95% probability. An autocorrelation plot also displays

46 Summarizing Performance Data and Confidence Intervals

these bounds. A visual inspection can determine if this assumption is
valid. For example, in Figure 2.9, we see that there is some autocorrelation
in the first six diagrams but not in the last two. If visual inspection is not
possible, a formal test can be used (the Ljung-Box test, Section 5.5.1). If
the data is iid, any point transformation of the data (such as the Box Cox
transformation for any exponent s, cf. Section 2.4.3) should also appear to
be non-correlated.

0 5000
0

20

40

60

80

100

120

140

1/p = 1

0 50 100
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 2000
0

20

40

60

80

100

120

2

0 50 100
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 1000
20

40

60

80

100

120

4

0 50
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 500
20

40

60

80

100

120

8

0 20 40
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400
20

40

60

80

100

120

16

0 10 20
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200
20

40

60

80

100

120

32

0 10 20
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100
20

40

60

80

100

120

64

0 5 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 50
20

40

60

80

100

120

128

0 5 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 2.9 Execution times for n = 7632 requests (top left) and the autocorrelation
function (bottom left), as well as for the data sub-sampled with probability p =
1
2

to 1
27 = 1

128
. The data appears stationary and roughly normal, and the auto-

correlation function can thus be used to test the independence. The original data is
positively correlated, but the sub-sampled data loses correlation when the sampling
probability is p = 1

64
. The turning point test for the sub-sampled data with p = 1

64

has a p-value of 0.52648. Consequently, at confidence level 0.95, we accept the null
hypothesis: the data is iid. The sub-sampled data has 116 points, and the confidence
interval obtained from this for the median of the sub-sampled data is [66.7, 75.2]
(using Theorem 2.1). Compare with the confidence interval that would be obtained
if we were to (wrongly) assume the data to be iid: [69.0, 69.8]. The iid assumption
underestimates the confidence interval due to the data being positively correlated.

(2) (Lag-Plot): We can also plot the value of the data at time t versus at time
t+h, for several values of h (lag plots). If the data is iid, the lag plots will
not show any trend. Figure 2.10 diplays a negative trend at lag 1.

The Independence Assumption 47

(3) (Turning Point Test): A test provides an automated answer, but is some-
times less sure than a visual inspection. A test usually has a null hypothesis
and returns a so called “p-value” (see Chapter 4 for an explanation). If the
p-value is smaller than α = 1 − γ, then the test rejects the null hypothesis
at the confidence level γ. We refer to Section 4.5.2 for details.

2.3.3 What Happens if the iid Assumption does not hold?

If we compute a confidence interval (using a method that assumes iid data)
when in fact the iid assumption does not hold, we introduce bias. Data arising
from high resolution measurements are frequently positively correlated. In such
cases, the confidence interval is too small: there is not as much information in
the data as if it would have been iid. This is due to the data having a tendency
to repeat itself; see Figure 2.9 for an example.

Nevertheless, it may still be possible to obtain confidence intervals when
the data does not appear to be iid. Two possible methods are:

Sub-sampling. This involves selecting a fraction p of the measured data, and
verifying that the iid assumption can be made for this selection data. The hope
is that correlation disappears between data samples that are far apart.

A simple way would be to keep every pn data sample, where n is the
total number of points, but this is not recommended as such a strict periodic
sampling may introduce unwanted anomalies (called aliasing). A better method
is to decide independently for each data point, with probability p, whether it
is sub-sampled or not.

For example, in Figure 2.9, sub-sampling works for p ≤ 1
64 ; the confidence

interval for the median is much larger than if we were to (wrongly) assume the
original data to be iid.

Although sub-sampling is very simple and efficient, it does not always work.
For instance, it does not work if the data set is small, or for some large data
sets, which remain correlated after repeated sub-sampling (such data sets are
called long-range dependent).

Modeling. This is more complex but applies when sub sampling does not. It
consists in fitting a parametric model appropriate to the type of data, and com-
puting confidence intervals for the model parameters (for example according to
Section B.1). We illustrate this method on the next example.

Example 2.5 Joe’s Balance Data
Joe’s shop sells online access to visitors who download electronic con-
tent on their smartphones. At the end of day t − 1, Joe’s employee
counts the amount of cash ct−1 present in the cash register and puts
it into the safe. In the morning of day t, the cash amount ct−1 is
returned to the cash register. The total amount of service sold (ac-
cording to bookkeeping data) during day t is st. During the day, some
amount of money bt is sent to the bank. At the end of day t, we should

48 Summarizing Performance Data and Confidence Intervals

have ct = ct−1 + st − bt. However, there always occur small errors
when counting the coins, in bookkeeping and in returning change. Joe
computes the balance Yt = ct − ct−1 − st + bt and would like to know
whether there is a systematic source of errors (i.e. Joe’s employee is
losing money, maybe as a result of being dishonest, or because certain
customers are not paying for what they are taking). The data for Yt

is shown in Figure 2.10. The sample mean is −13.95, which is nega-
tive. However, we need a confidence interval for μ before risking any
conclusion.
If we were to assume that the errors Yt are iid, then a confidence inter-
val would be given by Theorem 2.2 and we would find approximately
[−43, 15]. Thus, with the iid model, we cannot conclude that there is
a fraud.

0 10 20 30 40 50 60 70 80 90 100
−400

−300

−200

−100

0

100

200

300

400

(a) Data

−3 −2 −1 0 1 2 3

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

−400

−300

−200

−100

0

100

200

300

400

(b) Data

Figure 2.10 The daily balance at Joe’s wireless access shop during 93 days.
The lag plots show y(t) versus y(t + h) where y(t) is the time series in (a).
The data appears to have some correlation at lag 1 and is thus clearly not
iid.

The Independence Assumption 49

0 10 20 30 40 50 60 70 80 90 100
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c) Autocorrelation

−500 0 500
−400

−200

0

200

400
h = 1

−500 0 500
−400

−200

0

200

400
h = 2

−500 0 500
−400

−200

0

200

400
h = 3

−500 0 500
−400

−200

0

200

400
h = 4

−500 0 500
−400

−200

0

200

400
h = 5

−500 0 500
−400

−200

0

200

400
h = 6

−500 0 500
−400

−200

0

200

400
h = 7

−500 0 500
−400

−200

0

200

400
h = 8

−500 0 500
−400

−200

0

200

400
h = 9

(d) Lag Plots

Figure 2.10 (Continuation.)

However, the iid assumption is not valid, as Figure 2.10 shows (there
is a strong correlation at lag 1, which is confirmed by the lag plot). We
use a modeling approach. Yt appears to be reasonably Gaussian (see
also Section 2.4.3), and has correlation only at lag 1. (We study such
processes in Chapter 5.) A Gaussian process that has correlation only
at lag 1 is the moving average process, which satisfies

Yt − μ = εt + αεt−1

where εt is iid N0,σ2 . This is a parametric model, with parameters
(μ, α, σ). We can fit it using a numerical package or the methods pre-
sented in Chapter 5. A confidence interval for μ can be obtained using
Theorem B.2 and Theorem D.3. Here, it is plausible that the sample
size is large enough. For any fixed μ, we compute the profile log-
likelihood. It is obtained by fitting an MA(1) process to Wt := Yt − μ.

50 Summarizing Performance Data and Confidence Intervals

Good statistical packages give not only the MLE fit, but also the
log-likelihood of the fitted model, which is exactly the profile log-
likelihood pl(μ). The MLE μ̂ is the value of μ that maximizes pl(μ),
and −2(pl(μ̂)− pl(μ)) is approximately χ2

1. Figure 2.11 shows a plot of
pl(μ).
It follows that μ̂ = −13.2 and an approximate 95%-confidence interval
is [−14.1,−12.2]. Contrary to the iid model, this suggests that there is
a loss of money, on average 13 =C per day.

−14.5 −14 −13.5 −13 −12.5 −12
−562

−561.5

−561

−560.5

−560

−559.5

−559

−558.5

Figure 2.11 A Profile Log Likelihood for the Moving Average model of Joe’s
balance data. The horizontal line is at a value η

2
= 1.92 below the maximum,

with χ2
1(η) = 0.95 : This gives an approximate confidence interval for the

mean of the data on the x axis.

Question 2.2 Give an example of identically distributed but dependent ran-
dom variables.(4)

2.4 Prediction Interval

The previously studied confidence intervals quantify the accuracy of a mean
or median. This is useful for diagnostic purposes: We can for example assert
from the confidence intervals in Figure 2.7 that the new option reduces the run
time, because the confidence intervals for the mean (or the median) are in the
positive numbers.

(4)Here is a simple one: assume X1, X3, X5, . . . are iid with CDF F (·) and let X2 = X1,
X4 = X3, etc. The distribution of Xi is F (·) but the distribution of X2 conditional
to X1 = x1 is a dirac at x1, thus depends on x1. The random choices taken for X1

influence (here deterministically) the value of X2.

Prediction Interval 51

Sometimes we are interested in a different viewpoint and would like to
characterize the variability of the data. We might for example like to summa-
rize what can be expected for an arbitrary future (non-observed) transaction.
Clearly, this run time is random. A prediction interval at level γ is an in-
terval that we can compute by observing a realization of X1, . . . , Xn and such
that, with probability γ, a future transaction will have a run time in this inter-
val. Intuitively, if the common CDF of all Xis would be known, a prediction
interval would simply be an inter-quantile interval, e.g. [mα/2,m1−α/2], with
α = 1 − γ. For instance, if the distribution is normal with known parameters,
a prediction interval at level 0.95 would be μ± 1.96 σ. However, there is some
additional uncertainty, due to the fact that we do not know the distribution, or
its parameters a priori, and thus need to estimate it. The prediction interval
captures both uncertainties. Formally, the definition is as follows.

Definition 2.2
Let X1, . . . , Xn, Xn+1 be a sequence of random variables. A prediction
interval at level γ is an interval of the form

[
u(X1, . . . , Xn), v(X1, . . . , Xn)

]
such that

P
(
u(X1, . . . , Xn) ≤ Xn+1 ≤ v(X1, . . . , Xn)

) ≥ γ (2.31)

Note that the definition does not assume that Xi is iid, however we focus
in this chapter on the iid case (but see Section 2.4.1 for a discussion of the
more general case). The trick is now to find functions u and v that are pivots,
i.e. their distribution is known even if the common distribution of the Xis is
not (or is not entirely known).

There is one general result, which in practice applies to sample sizes that
are not too small (n ≥ 39). It is given next.

2.4.1 Prediction for an iid Sample based on Order Statistic

Theorem 2.5 (General Independent and Identically Distributed Case)
Let X1, . . . , Xn, Xn+1 be an iid sequence and assume that the common
distribution has a density. Let Xn

(1), . . . , X
n
(n) be the order statistic of

X1, . . . , Xn. For 1 ≤ j ≤ k ≤ n:

P
(
Xn

(j) ≤ Xn+1 ≤ Xn
(k)

)
=
k − j

n+ 1
(2.32)

thus for α ≥ 2
n+1 ,

[
Xn

(�(n+1) α
2 �), X

n
(�(n+1)(1−α

2)�)
]

is a prediction interval at

a level of at least γ = 1 − α.

For example, with n = 999, a prediction interval at the level 0.95 (α = 0.05)
is [X(25), X(975)]. This theorem is similar to the bootstrap result in Sec-
tion 2.2.4, but is exact and much simpler.

52 Summarizing Performance Data and Confidence Intervals

Question 2.3 We have obtained n simulation results and use the prediction
interval [m,M] where m is the smallest result and M the largest. For which
values of n is this a prediction interval at level at least 95%?(5)

For very small n, this result gives poor prediction intervals with values of
γ that may be far from 100%. For example, with n = 10, the best prediction
we can make is [xmin, xmax], at the level γ = 81%. If we can assume that the
data is normal, we have a stronger result, as shown next.

2.4.2 Prediction for a Normal iid Sample

Theorem 2.6 (Normal Independent and Identically Distributed Case)
Let X1, . . . , Xn, Xn+1 be an iid sequence with common distribution Nμ,σ2 .
Let μ̂n and σ̂2

n be as in Theorem 2.3. The distribution of
√

n
n+1

Xn+1−μ̂n

σ̂n
is

Student’s tn−1; a prediction interval at level 1 − α is

μ̂n ± η′
√

1 +
1
n
σ̂n (2.33)

where η′ is the (1 − α
2) quantile of the student distribution tn−1.

For large n, an approximate prediction interval is

μ̂n ± ησ̂n (2.34)

where η is the (1 − α
2) quantile of the normal distribution N0,1.

For example, for n = 100 and α = 0.05 we obtain the following prediction
interval (we drop the index n):

[
μ̂ − 1.99 σ̂, μ̂ + 1.99 σ̂

]
. Compare this to the

confidence interval for the mean given by Theorem 2.3 where the width of the
interval is ≈ 10 =

√
n times smaller. For a large n, the prediction interval

is approximately equal to μ̂n ± ησ̂n, which is the interval we would have if
we ignore the uncertainty due to the fact that the parameters μ and σ are
estimated from the data. For n as small as 26, the difference between the two
is 7% and can be neglected in most cases.

The normal case is also convenient in that it requires the knowledge of only
two statistics, the mean μ̂n and the mean of squares (from which σ̂n is derived).

Comment

Compare the prediction interval in (2.34) to the confidence interval for the
mean in (2.24): there is a difference of 1√

n
. Confusion between the two is fre-

quent: when comparing confidence intervals, verify that the standard deviation
is indeed divided by

√
n!

(5)The interval is [X(1), X(n)], thus the level is n−1
n+1

. It is ≥ 0.95 for n ≥ 39. In other
words, we need at least 39 samples to provide a 95% prediction interval.

Prediction Interval 53

Example 2.6 File Transfer Times
Figure 2.12 shows the file transfer times obtained in 100 independent
simulation runs, displayed in natural and log scales. The last panel
shows 95%-prediction intervals. The left interval is obtained with the
method of order statistic (Theorem 2.5); the middle one by (wrongly)
assuming that the distribution is normal and applying Theorem 2.5 –
it differs largely.

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400

1600

1800

(a) (data)

0 10 20 30 40 50 60 70 80 90 100
−4

−2

0

2

4

6

8

(b) (log of data)

1 2 3
−300

−200

−100

0

100

200

300

400

Method

P
re

di
ct

io
n

In
te

rv
al

(c) (Prediction Intervals)

Figure 2.12 File transfer times for 100 independent simulation runs, with
prediction intervals computed with the order statistic (1), assuming the data
is normal (2), and assuming the log of data is normal (3).

The right interval is obtained with a log transformation. First, a pre-
diction interval

[
u(Y1, . . . , Yn), v(Y1, . . . , Yn)

]
is computed for the trans-

formed data Yi = ln(Xi); the prediction interval is mapped back to the
original scale to obtain the prediction interval

[
exp
(
u
(
ln(X1, . . . , ln(Xn)

))
, exp

(
v
(
ln(X1, . . . , ln(Xn)

))]

54 Summarizing Performance Data and Confidence Intervals

We leave it to the alert reader to verify that this reverse mapping is
indeed valid. The left and right intervals are in good agreement, but
the middle one is obviously wrong.
The prediction intervals also show the central values (with small cir-
cles). For the first one, it is the median. For the second one, the mean.
For the last one, it is exp

(Pn
i=1 Yi

n

)
, i.e. the back transform of the mean

of the transformed data.

Question 2.4 The prediction intervals in Figure 2.12 are not all symmetric
around the central values. Explain why.(6)

There is no “large n” result for a prediction interval, as there is in Theo-
rem 2.2: a prediction interval depends on the original distribution of the Xis,
unlike confidence intervals for the mean, which depend only on first and sec-
ond moments thanks to the central limit theorem. Theorem 2.6 justifies the
common practice of using the standard deviation as a measure of dispersion;
however it provides useful prediction intervals only if the data appears to be
iid and normal. In the next section, we discuss how to verify normality.

2.4.3 The Normal Assumption

qq-plots

This is a simple method for verifying the normal assumption, based on visual
inspection. A probability plot , also called qq-plot , compares two samples Xi,
Yi, i = 1, . . . , n in order to determine whether they come from the same dis-
tribution. Call X(i) the order statistic, obtained by sorting Xi in increasing
order. Thus X(1) ≤ X(2) ≤ . . . The qq-plot displays the points (X(i), Y(i)). If
the points are approximately along a straight line, then the distributions of Xi

and Yi can be assumed to be the same, modulo a change of scale and location.
Most often, we use qq-plots to verify the distribution of Yi against a prob-

ability distribution F . To do so, we plot (xi, Y(i)), where xi is an estimation
of the expected value of E(Y(i)), assuming that the marginal of Yi is F . The
exact value of E(Y(i)) is hard to obtain, but a simple approximation (provided
that F is strictly increasing) is [32]:

xi := F−1

(
i

n+ 1

)

A normal qq-plot is a qq-plot such that F = N0,1, and is often used to visually
test for normality (Figure 2.13). More formal tests are the Jarque Bera test
(Section 4.5.1) and the goodness of fit tests in Section 4.4.

(6)First interval: the distribution of the data is obviously not symmetric. Consequently,
the median has no reason to be in the middle of the extreme quantiles. Second interval:
By nature, it is strictly symmetric. Third interval: It is the exponential of a symmetric
interval. The exponential is not an affine transformation, so we should not expect the
transformed interval to be symmetric.

Prediction Interval 55

−3 −2 −1 0 1 2 3
−200

0

200

400

600

800

1000

1200

1400

1600

1800

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

(a) (qq-plot)

−3 −2 −1 0 1 2 3
−6

−4

−2

0

2

4

6

8

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

(b) (qq-plot of log of data)

−3 −2 −1 0 1 2 3
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

(c) (normal sample)

Figure 2.13 Normal qq-plots of file transfer times in Figure 2.12 and of an artificially
generated sample from the normal distribution with the same number of points. The
first plot shows large deviation from normality, whereas the second does not.

Rescaling, Harmonic, Geometric and other Means

Figure 2.12 illustrates that the use of the standard deviation as a basis for a
prediction interval may be better if we re-scale the data, using a point tranfor-
mation. For this the Box-Cox transformation is commonly employed. It
has one shape parameter s and is given, for positive x, by

bs(x) =

⎧⎨
⎩
xs − 1
s

s = 0

lnx s = 0
(2.35)

Frequently utilized parameters include s = 0 (log transformation), s = −1
(inverse), s = 0.5 and s = 2. It presents this specific form in order to be
continuous in s.

It is easy to see (as in Example 2.6) that a prediction interval for the original
data can be obtained by reverse-transforming a prediction interval for the trans-
formed data. In contrast, this does not hold for confidence intervals . Indeed,

56 Summarizing Performance Data and Confidence Intervals

by reverse-transforming a confidence interval for the mean of the transformed
data, we obtain a confidence interval for another type of mean (harmonic, etc.).
More precisely, assume that we transform a data set x1, . . . , xn by an invert-
ible (thus strictly monotonic) mapping b(·) into y1, . . . , yn, i.e. yi = b(xi)
and xi = b−1(yi) for i = 1, . . . , n. We designated transformed sample
mean the quantity b−1(1

n

∑n
i=1 yi), i.e. the back-transform of the mean of

the transformed data. Similarly, the transformed distribution mean of the
distribution of a random variable X is b−1

(
E(b(X)

)
. When b(·) is a Box-Cox

transformation with index s = −1, 0 or 2, we obtain the classical following
definitions, valid for a positive data set xi, i = 1 . . . , n or a positive random
variable X :

Transformation Transformed
Sample Mean

Transformed
Distribution Mean

Harmonic b(x) =
1

x

1

1

n

nX

i=1

1

xi

1

E

„
1

X

«

Geometric b(x) = ln(x)

nY

i=1

xi

!1
n

eE(ln X)

Quadratic b(x) = x2

vuut 1

n

nX

i=1

x2
i

p
E(X2)

Theorem 2.7
A confidence interval for a transformed mean is obtained by the inverse
transformation of a confidence interval for the mean of the transformed
data.

For example, a confidence interval for the geometric mean is the exponential
of a confidence interval for the mean of the logarithms of the data.

2.5 Which Summarization to use?

The previous sections have presented various summarization methods. In this
section, we discuss the use of these different methods. The methods differ in
their objectives: confidence intervals for central value versus prediction inter-
vals . The former quantify the accuracy of the estimated central value, the
latter reflect how variable the data is. Both aspects are related (the more vari-
able the data is, the less accurate is the estimated central value) but they are
not the same.

Which Summarization to use? 57

The methods also differ in the techniques used, and overlap to a large
extent. They fall into two methods: approches based on the order statistic
(confidence interval for median or other quantiles, Theorem 2.1; prediction
interval computed with the order statistic, Theorem 2.5) or based on means
and standard deviations (Theorems 2.3, 2.2, 2.6). The two types of methods
differ in their robustness versus compactness.

2.5.1 Robustness

Erroneous Distributional Hypotheses

The confidence interval for the mean given by Theorem 2.2 requires that the
central limit theorem applies, i.e.

(1) that the common distribution has a finite variance, and
(2) that the sample size n is large enough.

While these two assumptions very often hold, it is important to detect cases
where they do not.

Ideally, we would like to test whether the distribution of T =
∑n

i=1Xi is
normal or not, but we cannot do this directly, since we have only one value of
T . The bootstrap method can be used to solve this problem, as explained in
the following example.

Example 2.7 Pareto Distribution
This is a toy example where we generate artificial data, iid, from a
Pareto distribution on [1,+∞). It is defined by its CDF equal to
F (c) := P(X > c) = 1

cp with p = 1.25; its mean is = 5, its variance is
infinite (i.e. it is heavy-tailed) and its median is 1.74.
Assume that we do not know that it comes from a heavy-tailed dis-
tribution and would like to use the asymptotic result in Theorem 2.2
to compute a confidence interval for the mean. We use the bootstrap
method to verify convergence to the normal distribution, as follows. We
are given a data sample x1, . . . , xn from the Pareto distribution. We
generate R replay experiments: for each r between 1 and R, we draw
n samples Xr

i i = 1, . . . , n with replacement from the list (x1, . . . , xn)
and let T r = i=1

n Xr
i . T r is the rth bootstrap replicate of T ; we obtain

a qq-plot of the T r, r = 1, . . . , R.
If the distribution of T is normal, the qq-plot should look normal as
well. However, we see that this is not the case, which is an indication
that the central limit theorem might not hold. Indeed, the confidence
interval for the mean is not very good.

The previous example shows a case where the confidence interval for the
mean is not good. This is due to a distributional assumption being made,
which is incorrect. In contrast, the confidence interval for the median is correct
(Figure 2.14), as it does not require any distributional assumption (other than
the iid hypothesis).

58 Summarizing Performance Data and Confidence Intervals

0 50 100
0

5

10

15

20

25

30

35
100 samples

1
1

1.5

2

2.5

3

3.5

4

4.5
Confidence Intervals

−5 0 5
1.5

2

2.5

3

3.5

4

4.5

5

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

Bootstrap Estimates

(a)

0 5000 10000
0

1000

2000

3000

4000

5000

6000
10000 samples

1
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5
Confidence Intervals

−5 0 5
2

3

4

5

6

7

8

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

Bootstrap Estimates

(b)

Figure 2.14 (a) Left: An artificially generated sample of 100 values from the Pareto
distribution with exponent p = 1.25. Center: Confidence intervals for the mean
computed from Theorem 2.2 (left) and the bootstrap percentile estimate (center),
as well as the confidence interval for the median (right). Right: A qq-plot of 999
bootstrap replicates of the mean. The qq-plot deviates from normality, thus the
confidence interval given by Theorem 2.2 is incorrect. Note that, in this case, the
bootstrap percentile interval is not very good either, since it fails to capture the true
value of the mean (= 5). In contrast, the confidence interval for the median captures
the true value (= 1.74). (b) Same with 10, 000 samples. The true mean is now within
the confidence interval, but there is still no convergence to normality.

Which Summarization to use? 59

Outliers

Methods based on the order statistic are more robust to outliers. An outlier
is a value that significantly differs from the average. The median and the
prediction interval based on order statistic are not affected by a few outliers,
contrary to the mean and the prediction interval based on a mean and the
standard deviation, as illustrated by the following example.

Example 2.8 File Transfer with one Outlier
In the data of Example 2.8, there is in fact one very large value, 5 times
larger than the next largest value. One might be tempted to remove
it, on the basis that such a large value might be due to measurement

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

(a) (Data without outlier)

−3 −2 −1 0 1 2 3
−50

0

50

100

150

200

250

300

350

Standard Normal Quantile

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

(b) (qq-plot of (a))

0 10 20 30 40 50 60 70 80 90 100
−4

−3

−2

−1

0

1

2

3

4

5

6

(c) (Log of data without outlier)

−3 −2 −1 0 1 2 3
−6

−4

−2

0

2

4

6

8

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

(d) (qq-plot of (c))

Figure 2.15 File transfer times for 100 independent simulation runs with
the outlier removed. Confidence intervals without (left) and with (right)
the outlier, and with (1) median (2) mean and (3) geometric mean methods.
Prediction intervals without (left) and with (right) the outlier, computed with
the three alternative methods discussed in Example 2.8: (1) order statistics
(2) based on mean and standard deviation (3) based on mean and standard
deviation after re-scaling.

60 Summarizing Performance Data and Confidence Intervals

1 2 3

10

20

30

40

50

60

70

Method

C
on

fid
en

ce
 In

te
rv

al

(e) (Confidence Intervals)

1 2 3

−200

−100

0

100

200

300

Method

P
re

di
ct

io
n

In
te

rv
al

(f) (Prediction Intervals)

Figure 2.15 (Continuation.)

error. A qq-plot of the data without this “outlier” is shown in Fig-
ure 2.15, and can be compared to the corresponding qq-plot with the
outlier in Figure 2.13(a). The prediction intervals based on order statis-
tics are not affected, but the one based on mean and standard deviation
is completely different.
Table 2.2 shows that the values of Jain’s fairness index and the Lorenz
curve gap are very sensitive to the presence of a single outlier, which is
consistent with the previous observation. This is due to Jain’s fairness
index being defined by the coefficient of variation. The Lorenz curve
gap is less sensitive.

Table 2.2 Fairness indices with and without the outlier.

Index Lower Bound, CI Index Upper Bound, CI

Without Outlier JFI 0.1012 0.1477 0.3079

gap 0.4681 0.5930 0.6903

With Outlier JFI 0.0293 0.0462 0.3419

gap 0.4691 0.6858 0.8116

The outlier is less so on the re-scaled data (with the log transformation).
The qq-plot of the rescaled data is not affected very much, neither is
the prediction interval based on the mean and standard deviation of
the rescaled data. Similarly, the confidence intervals for a median and
geometric mean are unaffected, as opposed to that for the mean. We do
not show fairness indices for the re-scaled data since re-scaling changes
their meaning.

Care should be taken to screen the data collection procedure for true out-
liers , namely values that are faulty because of measurement errors or problems.
In the previous example, the outlier should not be removed. In practice, it may

Other Aspects of Confidence Prediction Intervals 61

be difficult to differentiate between true and spurious outliers. The example
illustrates the following facts:

• Outliers may affect the prediction and confidence intervals based on mean
and standard deviation, as well as the values of fairness indices. Jain’s
fairness index is more sensitive to outliers than the Lorenz curve gap.

• This may go away if the data is properly rescaled. An outlier at a certain
scale may not be an outlier at another scale.

• In contrast, confidence intervals for the median and prediction intervals
based on order statistics are more robust to outliers. They are not affected
by re-scaling.

2.5.2 Compactness

Assume that we wish to obtain both a central value with confidence interval
and a prediction interval for a given data set. If we use methods based on
order statistics, we will obtain a confidence interval for the median, and, say,
a prediction interval at the level 95%. Variability and accuracy are given by
different sample quantiles, and cannot be deduced from one another. Further-
more, if later we are interested in 99% prediction intervals rather than 95%, we
need to recompute new estimates of the quantiles. The same argument speaks
in favor of quantifying the variability by means of the Lorenz curve gap.

In contrast, if we employ methods based on mean and standard deviation,
we obtain both confidence intervals and prediction intervals at any level with
just 2 parameters (the sample mean and the sample standard deviation). In
particular, the sample standard deviation gives an indication of both the ac-
curacy of the estimator and the variability of the data. However, as we saw
earlier, these estimators are meaningful only at a scale where the data is roughly
normal.

Also, the mean and the standard deviation are less complex to compute
than estimators based on order statistics, which require sorting of the data. In
particular, the mean and the standard deviation can be computed incrementally
online, by keeping only 2 counters (sum of values and sum of squares). This
reason is less valid today as opposed to some years ago, since there are sorting
algorithms with complexity n ln(n).

2.6 Other Aspects of Confidence
Prediction Intervals

2.6.1 Intersection of Confidence, Prediction Intervals

In some cases, we have several confidence or prediction intervals for the same
quantity of interest. For instance, we can have a prediction interval I based
on a mean and standard deviation or I ′ based on order statistics. A natural
deduction would be to consider that the intersection I∩I ′ is a better confidence
interval. This is almost true:

62 Summarizing Performance Data and Confidence Intervals

Theorem 2.8
If the random intervals I, I ′ are confidence intervals at the levels γ = 1−α,
γ′ = 1 − α′ then the intersection I ∩ I ′ is a confidence interval at the level
of at least 1 − α− α′. The same holds for prediction intervals.

Example 2.9 File Transfer Times
(Continuation of Example 2.8.) We can compute two prediction inter-
vals at the level 0.975, using the order statistic method as well as the
mean and standard deviation after rescaling (the prediction obtained
without rescaling is not valid since the data is not normal). We get
[0.0394, 336.9] and [0.0464, 392.7]. We thus conclude that the predic-
tion interval at the level 0.95 is [0.0464, 336.9], which is better than the
other.
Compare this interval to the prediction intervals at the level 95% for
each of the two methods; these are [0.0624, 205.6] and [0.0828, 219.9].
Both are thus better.

Thus, if we for example combine two confidence intervals at the level 97.5%,
we obtain a confidence interval at the level 95%. As the example shows, this
may give poorer results than an original confidence interval at the level 95%.

2.6.2 The Meaning of Confidence

When we claim that an interval I is a confidence interval at the level 0.95 for a
certain parameter θ, we mean the following. Repeating the experiment many
times would lead to, in about 95% of the cases, the interval I indeed containing
the true value θ.
Question 2.5 Assume that 1000 students independently perform a simulation
of an M/M/1 queue with a load factor ρ = 0.9 and find a 95% confidence inter-
val for the result. The true result, unknown to these (unsophisticated) students
is 9. Although the students are unsophisticated, they are conscientious, and
all of them performed the correct simulations. How many of the 1000 students
would you expect to find a wrong confidence interval, i.e. one that does not
contain the true value?(7)

2.7 Proofs

Theorem 2.1

Let Z =
∑n

k=1 1{Xk≤mp} be the number of samples that lie below or at mp.
The CDF of Z is Bn,p since the events {Xk ≤ mp} are independent and

(7)Approximately 50 students should find a wrong interval.

Proofs 63

P (Xk ≤ mp) = p by definition of the quantile mp. Further:

j ≤ Z ⇐⇒ X(j) ≤ mp

k ≥ Z + 1 ⇐⇒ X(k) > mp

thus we have the event equalities
{
X(j) ≤ mp < X(k)

}
=
{
j ≤ Z ≤ k − 1

}
=
{
j − 1 < Z ≤ k − 1

}
and

P
(
X(j) ≤ mp < X(k)

)
= Bn,p(k − 1) −Bn,p(j − 1)

It follows that [X(j), X(k)) is a confidence interval for mp at the level γ as soon
as Bn,p(k − 1) −Bn,p(j − 1) ≥ γ.

The distribution of the Xis has a density, thus so does (X(j), X(k)). More-
over, P

(
X(j) < mp ≤ X(k)

)
= P

(
X(j) < mp < X(k)

)
, thus [X(j), X(k)] is also a

confidence interval at the same level.
For large n, we approximate the binomial CDF by Nμ,σ2 with μ = np and

σ2 = np(1 − p), as follows:

P
(
j − 1 < Z ≤ k − 1

)
= P

(
j ≤ Z ≤ k − 1

) ≈ Nμ,σ2(k − 1) −Nμ,σ2(j)

and we pick j and k such that

Nμ,σ2(k − 1) ≥ 0.5 +
γ

2
Nμ,σ2(j) ≤ 0.5 − γ

2

which guarantees that Nμ,σ2(k − 1)−Nμ,σ2(j) ≥ γ. It follows that we need to
have

k − 1 ≥ ησ + μ

j ≤ −ησ + μ

We take the smallest k and the largest j which satisfy these constraints, which
gives the formulas in the theorem.

Theorem 2.5

Transform Xi into Ui = F (Xi) which is iid uniform. For uniform RVs, use the
fact that E(U(j)) = j

n+1 . Then

P
(
Un

(j) ≤ Un+1 ≤ Un
(k) | Un

(1) = u(1), . . . , U
n
(n) = u(n)

)
= P

(
u(j) ≤ Un+1 ≤ u(k)

)
= u(k) − u(j)

Since Un+1, the former is independent of (U1, . . . , Un) and the latter shas a
uniform distribution on [0, 1]. Thus

P
(
Un

(j) ≤ Un+1 ≤ Un
(k)

)
= E

(
Un

(k) − Un
(j)

)
=
k − j

n+ 1

64 Summarizing Performance Data and Confidence Intervals

Theorem 2.6

First note that Xn+1 is independent of μ̂n, σ̂n. Thus Xn+1 − μ̂n is normal with
the mean 0 and the variance

var(Xn+1) + var(μ̂n) = σ2 +
1
n
σ2

Further, σ̂n/σ
2 has a χ2

n−1 distribution and is independent of Xn+1 − μ̂n. By
definition of Student’s t, the theorem follows.

Theorem 2.7

Let m′ be the distribution mean of b(X). By definition of a confidence interval,
we have P

(
u(Y1, . . . , Yn) < m′ < v(Y1, . . . , Yn)

) ≥ γ where the confidence
interval is [u, v]. If b(·) is increasing (like the Box-Cox transformation with
s ≥ 0) then so is b−1(·) and this is equivalent to

P
(
b−1
(
u(Y1, . . . , Yn)

)
< b−1(m′) < b−1

(
v(Y1, . . . , Yn)

)) ≥ γ

Now b−1(m′) is the transformed mean, which shows the statement in this case.
If b(·) is decreasing (like the Box-Cox transformation with s < 0), the result is
similar to an inversion of u and v.

Theorem 2.8

We carry out the proof for a confidence interval for a certain quantity θ. The
proof is the same for a prediction interval. By definition, P(θ /∈ I) ≤ α and
P(θ /∈ I ′) ≤ α′. Thus

P(θ /∈ I ∩ I ′) = P
(
(θ /∈ I) or (θ /∈ I ′)

) ≤ P(θ /∈ I) + P(θ /∈ I ′) ≤ α+ α′

2.8 Review

2.8.1 Summary

(1) A confidence interval is used to quantify the accuracy of a parameter esti-
mated from the data.

(2) For computing the central value of a data set, you can use either the mean
or the median. Unless you have special reasons (see below) for not doing
so, the median is the preferred choice as it is more robust. You should
compute not only the median but also a confidence interval for it, using
Table A.1.

(3) A prediction interval reflects the variability of the data. For small data sets
(n < 38), it is not meaningful. For larger data sets, it can be obtained by
Theorem 2.5. The Lorenz curve gap also gives a scale free representation
of the variability of the data.

Review 65

(4) A confidence interval for the mean characterizes both the variability of the
data and the accuracy of the measured average. In contrast, a confidence
interval for the median does not give a good reflection of the variability of
the data. Therefore, if we use the median, we need both a confidence inter-
val for the median and a certain measure of the variability (the quantiles,
as in a Box Plot). Mean and standard deviation give an accurate idea of
the variability of the data, but only if the data is roughly normal. Other-
wise, it should be re-scaled through for example a Box-Cox transformation.
Normality can be verified with a qq-plot.

(5) The standard deviation gives an accurate idea of the accuracy of the mean
if the data is normal, but also if the data set is large. The latter can be
verified with a bootstrap method.

(6) The geometric (resp. harmonic) mean is meaningful if the data is roughly
normal in log (resp. 1

x) scale. A confidence interval for the geometric (resp.
harmonic) mean is obtained as the exponential (resp. inverse) of the mean
in log (resp. 1

x) scale.

(7) All estimators in this chapter are valid only if the data points are indepen-
dent (non-correlated). This assumption must be verified, either by design-
ing the experiments in a randomized way, (as is the case with independent
simulation runs), or by formal correlation analysis.

(8) If you have a choice, use median and quantiles rather than mean and stan-
dard deviation, as the former are more robust to distributional hypotheses
and to outliers. Use prediction intervals based on order statistic rather
than the classical mean and standard deviation. Use the Lorenz curve gap
rather than Jain’s fairness index.

2.8.2 Review Questions

2.1 Compare

(1) the confidence interval for the median of a sample of n data values, at the
level 95% and

(2) a prediction interval at a level of at least of 95%, for n = 9, 39, 99.(8)

2.2 Denote L = min{X1, X2} and U = max{X1, X2}. We perform an exper-
iment and find L = 7.4, U = 8.0. Which of the following two statements is
correct (θ is the median of the distribution):

(8)From the tables in Chapter A and Theorem 2.5 we obtain (confidence interval for
median, prediction interval):
n = 9: [x(2), x(9)], impossible;
n = 39: [x(13), x(27)], [x(1), x(39)];
n = 99: [x(39), x(61)], [x(2), x(97)].
The confidence interval is always smaller than the prediction interval.

66 Summarizing Performance Data and Confidence Intervals

(a) the probability of the event {L ≤ θ ≤ U} is 0.5,
(b) the probability of the event {7.4 ≤ θ ≤ 8.0} is 0.5.(9)

2.3 How do we expect a 90% confidence interval to compare to a 95% one?
Verify this on the tables in Section A(10)

2.4 A data set has 70 points. Give the formulae for confidence intervals at the
level 0.95 for the median and the mean.(11)

2.5 A data set has 70 points. Give formulae for a prediction intervals at the
level 95%.(12)

2.6 A data set x1, . . . , xn is such that yi = lnxi looks normal. We obtain a
confidence interval [�, u] for the mean of yi. Can we obtain a confidence interval
for the mean of xi by a transformation of [�, u]?(13)

2.7 Assume that a set of measurements is corrupted by an error term that is
normal, but positively correlated. If we were to compute a confidence interval
for the mean using the iid hypothesis, would the confidence interval be too
small or too large?(14)

2.8 We estimate the mean of an iid data set by two different methods and
obtain two confidence intervals at the level 95%: I1 = [2.01, 3.87], and I2 =
[2.45, 2.47]. Since the second interval is smaller, we discard the first and keep
only the second. Is this a correct 95% confidence interval?(15)

(9)In the classical (non-Bayesian) framework, (1) is correct and (2) is wrong. There is
nothing random in the event {7.4 ≤ θ ≤ 8.0}, since θ is a fixed (though unknown)
parameter. The probability of this event is either 0 or 1, here it happens to be 1. Be
careful with the ambiguity of a statement such as “the probability that θ lies between
L and U is 0.5”. In case of doubt, come back to a probability space. The probability of
an event can be interpreted as the ideal proportion of simulations that would produce
the event.

(10)It should be smaller. If we take more risk, we can accept a smaller interval. We can
check that the values of j (resp. k) in the tables of confidence intervals at level γ = 0.95
are larger (resp. smaller) than at the confidence level γ = 0.99.

(11)Median: from the table in Section A [x(27), x(44)]. Mean: from Theorem 2.2: μ̂ ±
0.2343S where μ̂ is the sample mean and S the sample standard deviation. The latter
assumes the normal approximation to hold, and should be verified by either a qq-plot
or the bootstrap method.

(12)From Theorem 2.5: [mini xi, maxi xi].
(13)No, we know that [e�, eu] is a confidence interval for the geometric mean, not the mean

of xi. In fact xi comes from a log-normal distribution, for which the mean is eμ+σ2/2.
There μ is the mean of the distribution of yi, and σ2 its variance.

(14)Too small: we underestimate the error. This phenomenon is known in physics under
the term personal equation : if the errors are linked to the experimenter, they are
positively correlated.

(15)No, by doing so we keep the interval I = I1 ∩ I2, which is a 90% confidence interval,
not a 95% confidence interval.

Chapter 3

Model Fitting

In this chapter, we study how to derive a model from data, e.g. fitting a
curve to a series of measurements. The method of least squares is widely used,
and gives simple, often linear algorithms. However, it should be employed
with care, as it leads to the hidden assumption that error terms are Gaussian
with equal variance. We also discuss a less known alternative called �1 norm
minimization, which implicitly assumes that error terms have a Laplace instead
of Gaussian distribution. The resulting algorithms may be less simple, but are
often tractable, as they correspond to convex (rather than linear) optimizations,
and the method is more robust to outliers or wrong distributional assumptions.

We deal in detail with the so-called “linear models”; here it is the depen-
dence on the hidden parameters that is linear, not the model itself. This is
a very rich family of models with a wide applicability. We discuss both least
square and �1 norm minimization in this context.

Subsequently, we bring up the issue of fitting a distribution to a data set; we
describe commonly used features that are helpful when selection an appropriate
distribution: distribution shape, power laws, fat tail and heavy tail. The latter
property is often encountered in practice and provides interesting (or annoying)
properties. We illustrate the use of such features in a load generation tool.

68 Model Fitting

3.1 Model Fitting Criteria

3.1.1 What is Model Fitting?

We start with a simple example.

Example 3.1 Virus Spread Data
The number of hosts infected by a virus is plotted versus the time in
hours.

0 5 10 15 20
0

500

1000

1500

2000

2500

3000

Figure 3.1

The plot suggests an exponential growth, and we are therefore we are
inclined to fit these data to a model of the form

Y (t) = a eαt (3.1)

where Y (t) is the number of infected hosts at time t. We are particulary
interested in the parameter α, which can be interpreted as the growth
rate; the doubling time (time for the number of infected hosts to
double) is ln 2

α . On the plot, the dashed line is the curve fitted by the
method of least squares explained later. We find α = 0.4837 per hour
and the doubling time is 1.43 hours. We can use the model to predict
that, 6 hours after the end of the measurement period, the number of
infected hosts would be ca. 82, 000.

In general, model fitting can be defined as the problem of finding an
explanatory model for the data, i.e. a mathematical relation of the form

yi = fi(�β) (3.2)

that “explains the data well”, in some sense. Here, yi is the collection of mea-
sured data, i is the index of a measurement, fi is an array of functions, and
�β is the parameter that we would like to obtain. In the previous example, the
parameter is �β = (a, α) and fi(�β) = fi(a, α) = a eαti where ti is the time of
the ith measurement, assumed here to be known.

What does it mean to “explain the data well”? It is generally not possible
to require that (3.2) holds exactly for all data points. Therefore, a common

Model Fitting Criteria 69

answer is to require that the model minimizes some metric of the discrepancy
between the explanatory model and the data. A very common metric is the
mean square distance

∑
i

(
yi − fi(�β)

)2. The value of the growth rate α in the
previous example was obtained in this way, namely, by computing a and α to
minimize

∑
i

(
yi − a eαti

)2.
But this raises another question. What metric should one use? What is

so magical about least squares? Why not use other measures of discrepancy,
for example

∑
i

∣∣yi − fi(�β)
∣∣ or

∑
i

(
ln(yi)− ln

(
fi(�β)

))2? The following example
shows the importance of the issue.

Example 3.2 Virus Spread Data, Ambiguity in the Optimization
Preceding example continued. We also plotted the number of infected
hosts in log scale:

0 5 10 15 20
10

0

10
1

10
2

10
3

10
4

Figure 3.2

and then computed the least square fit of (3.2) in log scale (plain line).
In other words, we calculted the a and α that minimize

∑
i

(
ln(yi) −

ln(a) − αti
)2. We found for α the value 0.39 per hour, which gives a

doubling time of 1.77 hours and a prediction at time +6 hours equal to
ca. 39, 000 infected hosts (instead of the previously 82, 000).
The two models are compared below (in linear and log scales).

0 5 10 15 20
0

500

1000

1500

2000

2500

3000

0 5 10 15 20
10

−1

10
0

10
1

10
2

10
3

10
4

Figure 3.3

70 Model Fitting

Both figures show that what visually appears to be a good fit in one
scale is not so good in the other. Which one should we use?

An answer to the question can be obtained from statistics. The idea is to
add to the explanatory model a description of the “noise” (informally defined as
the deviation between the explanatory model and the data), which gives us a
statistical model . We can also think of the statistical model as a description
of a simulator that was used to produce the data we have. Its parameters are
well defined, but not known to us.

The statistical model usually has a few more parameters than the explana-
tory model. The parameters of the statistical model are estimated using the
classical approach of maximum likelihood. If we believe in the statistical model,
this answers the previous question by stating that the criterion to be optimized
is the likelihood. The belief in the model can be verified by examining residuals.

Example 3.3 Virus Spread Data, a Statistical Model
Preceding exemple continued. One statistical model for the virus

spread data is

Yi = a eαti + εi with εi iid ∼ N0,σ2 (3.3)

In other words, we assume that the measured data yi is equal to the
ideal value given by the explanatory model, plus a noise term εi. Fur-
ther, we assume that all noises are independent, Gaussian, and with
equal variance. The parameter is θ = (a, α, σ).
In (3.3), we write Yi instead of yi to express that Yi is a random variable.
We think of our data yi as being one sample produced by a simulator
that implements (3.3).
We will see in Section 3.1.2 that the maximum likelihood estimator for
this model is the one that minimizes the mean square distance. Thus,
with this model, we obtain for α the value in Example 3.1.
A second statistical model could be:

ln(Yi) = ln
(
a eαti

)
+ εi with εi iid ∼ N0,σ2 (3.4)

In this case, we assume that the noise terms in log-scale have the same
variance, i.e. that the noise is proportional to the measured value. Here
too, the maximum likelihood estimator is obtained by minimizing the
least square distance, and we thus obtain for α the value in Example 3.2.
We can validate either model by plotting the residuals (Figure 3.4).
We clearly see that the residuals for the former model do not appear
to be normally distributed, and the inverse is true for the latter model,
which is the one we should adopt. Therefore, an acceptable fitting is
obtained by minimizing least squares in log-scale.

Model Fitting Criteria 71

0 5 10 15 20
−350

−300

−250

−200

−150

−100

−50

0

50

100

0 5 10 15 20
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Figure 3.4

We summarize what we have learned so far as follows.

Fitting a Model to Data

(1) Define a statistical model that contains both the deterministic part (the
one we are interested in) and a model of the noise.

(2) Estimate the parameters of the statistical model using maximum likelihood.
If the number of data points is small, use a brute force approach (e.g
fminsearch). If the number of data points is large, you may need to search
the literature for efficient, possibly heuristic, optimization methods.

(3) Validate the model fit by screening the residuals, either visually, or through
tests (Chapter 4). In practice, you will seldom obtain a perfect fit; however,
large deviations indicate that the model might not be appropriate.

3.1.2 Least Squares Correspond to Gaussian, Equal Variance

A very frequent case is when the statistical model has the form

Yi = fi(�β) + εi for i = 1, . . . , I with εi iid ∼ N0,σ2 (3.5)

as in the previous examples (Models in Equations (3.3) and (3.4)). The discrep-
ancy between the explanatory model and the data is assumed to be Gaussian
with equal variance. In some examples in the literature, the “equal variance”
assumption is called homoscedasticity .

The next theorem explains how to fit the explanatory model yi = fi(�β) to
our data using least squares: we implicitly assume that the error terms in our
data are independent, Gaussian, and of equal amplitude. We have seen in the
examples above that care must be taken when validating this assumption. In
particular, some rescaling may be needed for an improved validation.

72 Model Fitting

Theorem 3.1 (Least Squares)
For the model in (3.5) :

(1) The maximum likelihood estimator of the parameter (�β, σ) is given by:
(a) β̂ = argmin

�β

∑
i

(
yi − fi(�β)

)2;
(b) σ̂2 =

1
I

∑
i

(
yi − fi(β̂)

)2.
(2) Let K be the square matrix of second derivatives (assumed to exist),

defined by

Kj,k =
1
σ2

∑
i

∂fi

∂βj

∂fi

∂βk

If K is invertible and if the number I of data points is large, β̂ − �β is
approximately Gaussian with 0 mean and covariance matrix K−1.
Alternatively, for large I, an approximate confidence set at level γ for
the jth component βj of �β is implicitly defined by

−2I ln (σ̂) + 2I ln
(
σ̂(β̂1, . . . , β̂j−1, βj , β̂j+1, . . . , β̂p)

) ≥ ξ1

where σ̂
(
�β
)2 = 1

I

∑
i

(
yi − fi(�β)

)2 and ξ1 is the γ quantile of the χ2

distribution with one degree of freedom (e.g. for γ = 0.95, ξ1 = 3.92).

The set of points in R
I that have coordinates of the form fi(�β) constitutes a

“manifold” (for p = 2, it is a surface). Item (1a) claims that �β is the parameter
of the point ŷ on this manifold that is the nearest to the data point �y, in
euclidian distance. The point ŷ is called the predicted response; it is an
estimate of the value that �y would take if there was no noise. It is equal to the
orthogonal projection of the data �y onto the manifold.

The rest of the theorem can be used to obtain accuracy bounds for the
estimation. A slight variant of the theorem can be used to make predictions
with accuracy bounds, see Theorem 5.1.

3.1.3 �1 Norm Minimization Corresponds to Laplace Noise

Although less traditional than least square, one can also utilize minimization of
the absolute deviation of the error. The absolute deviation is the �1 norm of the
error,(1) and this method is consequently also called �1 norm minimization .
Since it gives less weight to outliers, it is expected to be more robust. As we
see now, it corresponds to assuming that errors follow a Laplace distribution
(i.e. a bilateral exponential).

The Laplace distribution with 0 mean and rate λ is a two-sided ex-
ponential distribution, or, in other words, X ∼ Laplace(λ) if and only if

(1)The �1 norm of a sequence z = (z1, . . . , zn) is ‖z‖1 =
Pn

i=1 |zi|.

Model Fitting Criteria 73

|X | ∼ Exp(λ). It can be used to model error terms that have a heavier tail
than the normal distribution. Its PDF is defined for x ∈ R by

f(x) =
λ

2
e−λ|x| (3.6)

The next theorem explains what we do when we fit the explanatory model
yi = fi(�β) to our data by minimizing the �1 norm of the error: we implicitly
assume that the error terms in our data are independent, Laplace with the
same parameter, i.e., the data yi is a sample generated by the model

Yi = fi(�β) + εi with εi iid ∼ Laplace(λ) (3.7)

Theorem 3.2 (Least Deviation)
For the model in (3.7), the maximum likelihood estimator of the parameter
(�β, λ) is given by:

(1) β̂ = argmin
�β

∑
i

∣∣yi − fi(�β)
∣∣;

(2)
1

λ̂
=

1
I

∑
i

∣∣yi − fi(β̂)
∣∣.

Example 3.4 Virus Propagation with one Outlier
Assume that the data in the virus propagation example (Example 3.1)
is modified by changing the value of the second data point. Further as-
sume that we fit the data in log scale. The modified data is an outlier,

0 5 10 15 20
10

0

10
1

10
2

10
3

10
4

(a)

0 5 10 15 20
10

0

10
1

10
2

10
3

10
4

(b)

Figure 3.5 The fitting of an exponential growth model to the data in Ex-
ample 3.1, demonstrating the fits obtained with least square (plain) and with
�1 norm minimization (dashed). First panel: original data; both fits are the
same; second panel: data corrupted by one outlier; the fit with �1 norm
minimization is not affected, whereas the least square fit is.

74 Model Fitting

and one could be tempted to remove it. An alternative is to fit the
log of the data to Laplace noise instead of Gaussian noise (i.e. carry
out �1 norm minimization instead of least squares), as this is known to
be more robust. Figure 3.5, and the table below show the results (the
prediction in the table is a 6-hour ahead point prediction).

Least Square �1 Norm Minimization
rate prediction rate prediction

no outlier 0.3914 30, 300 0.3938 32, 300

with one outlier 0.3325 14, 500 0.3868 30, 500

We see that one single outlier completely modifies the result of least
square fitting, whereas �1 norm minimization fitting is not impacted
much.

The following example is important for understanding the difference be-
tween least square and �1 norm minimization.

Example 3.5 Mean versus Median
Assume that we want to fit a data set yi, i = 1, . . . , I against a con-
stant μ.
With least square fitting, we are looking for μ that minimizes

∑I
i=1

(
yi−

μ
)2. The solution is easily found to be μ = 1

I

∑I
i=1 yi, i.e. μ is the

sample mean.
With �1 norm minimization, we are looking for μ that minimizes∑I

i=1 |yi − μ|. The solution is the median of yi.
To see why, consider the mapping f : μ �→ ∑I

i=1 |yi − μ|. To simplify,
consider the case where all values yi are distinct and written in increas-
ing order (yi < yi+1). The derivative f ′ of f is defined everywhere
except at points yi, and for yi < μ < yi+1, f ′(μ) = i− (I − i) = 2 − I.
By continuity, if I is odd, f decreases on (−∞, y(2I+1)/2] and increases
on [y(2I+1)/2,+∞). It thus has a minimum for μ = y(2I+1)/2, which
is the sample median. If I is even, f is at a minimum for values in
the interval [yI/2, yI/2+1] and thus reaches the minimum at the sample
median yI/2+yI/2+1

2 .

In terms of computation, �1 norm minimization is more complex than least
squares, though both are usually tractable. For instance, if the dependency on
the parameter is linear, least square fitting consists in solving a linear system
of equations whereas �1 norm minimization uses linear programming (as shown
in the next section).

Linear Regression 75

3.2 Linear Regression

Linear regression is a special case of least square fitting, where the explanatory
model depends linearly on its parameter �β. This is called the linear regres-
sion model. The main fact here is that everything can be computed easily,
using linear algebra. Be careful that the term “linear regression” implicitly as-
sumes least square fitting. The popular fitting method called “ANOVA” is a
special case of linear regression.

Assume that the statistical model of our experiment has the form:

Definition 3.1 (Linear Regression Model)

Yi = (X�β)i + εi for i = 1, . . . , I with εi iid ∼ N0,σ2 (3.8)

where the unknown parameter �β is in R
p and X is an I × p matrix. The

matrix X is supposed to be exactly known in advance. We also assume that

X has rank p (H)

Assumption (H) signifies that different values of �β give varying values of
the explanatory model X�β, i.e. the explanatory model is identifiable.

The elements of the known matrix X are sometimes called explanatory
variables, and then the yis are denoted the response variables.

Example 3.6 Joe’s Shop again
See figure 1.3(b). We assume that there is a threshold ξ beyond which
the throughput collapses (we take ξ = 70). The statistical model is

Yi = (a+ bxi)1xi≤ξ + (c+ dxi)1{xi>ξ} + εi (3.9)

where we impose
a+ bξ = c+ dξ (3.10)

In other words, we assume the throughput response curve to be piece-
wise linear. Equation (3.10) expresses that the curve is continuous.
Recall that xi is the offered load and Yi is the actual throughput.
Here, we take �β = (a, b, d) (we can derive c = a+ (b− d)ξ from (3.10)).
The dependency of Yi on �β is indeed linear. Note that we assume ξ
to be known (how to handle the case where ξ is to be identified is
presented in Exemple 3.8).
Assume that we sort the xis in increasing order and let i∗ be the largest
index i such that xi ≤ ξ. Re-write (3.9) as

Yi = a+ bxi + εi for i = 1, . . . , i∗

Yi = a+ bξ + d(xi − ξ) + εi for i = i∗ + 1, . . . , I

76 Model Fitting

thus the matrix X is given by
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 x1 0

1 x2 0
...

. . .
...

1 xi∗ 0

1 ξ xi∗+1 − ξ
...

. . .
...

1 ξ xI − ξ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

It is simple to see that a sufficient condition for (H) is that there are
at least two distinct values of xi ≤ ξ and at least one value > ξ.
Question 3.1 Show this.(2)

A model as in this example is sometimes called intervention analy-
sis.

With the linear regression model, the manifold mentioned in the discussion
after Theorem 3.1 is a linear manifold (for p = 2, a plane). It is equal to
the linear sub-space spanned by the columns of matrix X . The nearest point
is given by an orthogonal projection, which can be exactly computed. The
details are given in the following theorem, the proof of which is contained in
[32, Section 2.3].

Theorem 3.3 (Linear Regression)
Consider the model in Definition 3.1; let �y be the I × 1 column vector of
the data.
(1) The p× p matrix (XTX) is invertible.

(2) (Estimation) The maximum likelihood estimator of �β is β̂ = K�y with

K =
(
XTX

)−1
XT

(3) (Standardized Residuals) Define the ith residual as ei =
(
�y−Xβ̂)

i
. The

residuals are zero-mean Gaussian but are correlated, with covariance

(2)We need to show, if the condition is true, that the matrix X has the rank p = 3. This
is equivalent to saying that the equation

X

0
BB@

a

b

d

1
CCA = 0

has only the solution a = b = d = 0. Consider first a and b. If there are two distinct
values of xi, i ≤ i∗, say x1 and x2, then a + bx1 = a + bx2 = 0 thus a = b = 0. Since
there is a value xi > ξ, it follows that i∗ + 1 ≤ I and d(xI − ξ) = 0 thus d = 0.

Linear Regression 77

matrix σ2(IdI −H), where H = X
(
XTX

)−1
XT . Let

s2 =
1

I − p
‖e‖2 =

1
I − p

∑
i

e2i (rescaled sum of squared residuals)

s2 is an unbiased estimator of σ2. The standardized residuals defined by
ri := ei

s
√

1−Hi,i

have unit variance and ri ∼ tI−p−1. This can be used to

test the model by verifying that ri are approximately normal with unit
variance.

(4) (Confidence Intervals) Let γ =
∑p

j=1 ujβj be a (non-random) linear
combination of the parameter �β; γ̂ =

∑
j ujβ̂j is our estimator of γ.

Let

G =
(
XTX

)−1 and g =
∑
j,k

ujGj,ku
2
k =

∑
k

⎛
⎝∑

j

ujKj,k

⎞
⎠

2

(g is called the variance bias). Then γ̂−γ√
gs ∼ tI−p. This can be used

to obtain a confidence interval for γ.

Comments

Item (3) states that the residuals are (slightly) biased, and it is thus better to
use standardized residuals.

The matrix H is the projection onto the subspace spanned by the columns
of X .

The predicted response is ŷ = Xβ̂. It is equal to the orthogonal projection
of �y, and is given by

ŷ = H�y (3.11)

The scaled sum of squared residuals s2 is also equal to 1
I−p

(‖�y‖2 − ‖ŷ‖2
)
.

Its distribution is 1
I−pχ

2
I−p. This can be used to compute a confidence interval

for σ.
The proof of the theorem shows a slightly stronger result than item (4): the

joint distribution of β̂ is Gaussian with the mean �β and the covariance matrix
σ2KKT . Moreover β̂ is independent of e.

Example 3.7 Joe’s Shop again. Continuation of Example 3.6
We can thus apply matrix computations given in Theorem 3.3; item (2)
gives an estimate of (a, b, d) and thus of c. Item (4) gives confidence
intervals. The values and the fitted linear regression model are shown
in the table and figure below.
We also compute the residuals ei (crosses) and standardized residuals
ri (circles). There is little difference between these two types. They
appear reasonably normal, but one might criticize the model in that

78 Model Fitting

a 0.978 ± 0.609

b 0.0915 ± 0.0137

c 15.8 ± 2.99

d −0.121 ± 0.037
0 10 20 30 40 50 60 70 80 90 100

0

1

2

3

4

5

6

7

8

9

10

Offered Load (tps)

A
ch

ie
ve

d
T

hr
ou

gh
pu

t (
tp

s)

Figure 3.6

the variance appears smaller for smaller values of x. The normal qq-
plot of the residuals also shows approximate normality (the qq-plot of
standardized residuals is similar and is not shown).

10 20 30 40
−4

−3

−2

−1

0

1

2

3

tps

R
es

id
ua

ls

−3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

3

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

Residuals

Figure 3.7

Question 3.2 Can we conclude that there is congestion collapse?(3)

Where is Linearity?

In the previous example, we see that that yi is a linear function of �β, but
not of xi. This is quite general, and we should avoid a widespread confusion:
linear regression is not restricted to models where the data yi is linear with the
explanatory variables xi.

(3)Yes, since the confidence interval for d is entirely positive (resp. negative).

Linear Regression with �1 Norm Minimization 79

Beyond the Linear Case

Example 3.8 Joe’s Shop. Estimation of ξ
In Example 3.6, we assumed that the value ξ after which congestion

collapse occurs is known in advance. Now, we relax this assumption.
Our model is now the same as (3.9), except that ξ is also a parameter
to be estimated.
To do this, we apply the maximum likelihood estimation. We have to
maximize the log-likelihood l�y(a, b, d, ξ, σ), where �y, the data, is fixed.
For a fixed ξ, we know the value of (a, b, d, σ) that achieves the maxi-
mum, as we have a linear regression model. We plot the value of this
maximum versus ξ (Figure 3.8) and numerically find the maximum: it
occurs for ξ = 77.
To find a confidence interval, we use the asymptotic result in Theo-
rem B.2. It states that a 95% confidence interval is obtained by solving
l(ξ̂) − l(ξ) ≤ 1.9207, which gives ξ ∈ [73, 80].

10 20 30 40 50 60 70 80 90
−250

−240

−230

−220

−210

−200

−190

Figure 3.8 Log likelihood for Joes’ shop as a function of ξ.

3.3 Linear Regression with �1 Norm Minimization

This is a variant of the linear regression model, but with Laplace instead of
Gaussian noise. The theory is less simple, as we do not have explicit linear
expressions. Nonetheless, it employs linear programming and is thus often
tractable, with the benefit of an increased robustness to outliers.

80 Model Fitting

The statistical model of our experiment has the form:

Definition 3.2 (Linear Regression Model with Laplace Noise)

Yi =
(
X�β
)
i
+ εi for i = 1, . . . , I with εi iid ∼ Laplace (λ) (3.12)

where the unknown parameter �β is in R
p and X is a I × p matrix. The

matrix X is supposedly exactly known in advance. As in Section 3.2, we
assume that X has the rank p, otherwise the model is non-identifiable.

The following is an almost immediate consequence of Theorem 3.2.

Theorem 3.4
Consider the model in Definition 3.1; let �y be the I × 1 column vector of
the data. The maximum likelihood estimator of �β is obtained by solving the
linear program:

minimize
I∑

i=1

ui

over �β ∈ R
p, u ∈ R

I

subject to the constraints ui ≥ yi −
(
X�β
)
i

ui ≥ −yi +
(
X�β
)
i

The maximum likelihood estimator of the noise parameter λ is

(
1
I

I∑
i=1

∣∣∣yi −
(
X�β
)
i

∣∣∣
)−1

In view of Example 3.5, there is little hope of obtaining nice closed form
formulas for confidence intervals. This is contrary to what happens with the
least square method in Theorem 3.3, and indeed the theorem does not give
any. To compute confidence intervals, we can use the bootstrap method, with
re-sampling from residuals, as described in Algorithm 3.1.

Algorithm 3.1 The Bootstrap method with Re-Sampling From Residuals.
The goal is to compute a confidence interval for some function ϕ(�β) of the
parameter of the model in Definition 3.1. r0 is the algorithm’s accuracy pa-
rameter.
1: R =

⌈
2 r0/(1 − γ)

⌉− 1 	 For example r0 = 25, γ = 0.95, R = 999

2: estimate �β using Theorem 3.4; obtain β̂
3: compute the residuals ei = yi −

(
Xβ̂
)
i

Linear Regression with �1 Norm Minimization 81

Algorithm 3.1 (Continued.)
5: for r = 1 : R do � Re-sample from residuals
6: draw I numbers with replacement from the list (e1, . . . , eI)
7: and call them Er

1 , . . . , E
r
I

8: generate the bootstrap replicate Y r
1 , . . . , Y

r
I from the estimated model:

9: Y r
i =

(
Xβ̂
)

i
+ Er

i for i = 1, . . . , I

10: re-estimate �β, using Y r
i as data, using Theorem 3.4; obtain �βr

11: end for
12:

(
ϕ(1), . . . , ϕ(R)

)
= sort

(
ϕ(�β1), . . . , ϕ(�βR)

)
13: confidence interval for ϕ(�β) is [ϕ(r0) ; ϕ(R+1−r0)]

Note that the algorithm applies to any model fitting method, not only to
models fitted with Theorem 3.4. As always with the bootstrap approach, it
provides approximate confidence intervals, with a tendency to underestimate.

Example 3.9 Joe’s shop with �1 norm minimization
We revisit Example 3.6 and estimate a piecewise linear throughput
response (as in (3.9)) with �1 norm minimization, i.e. assuming the
error terms εi come from a Laplace distribution.
The problem is linear and has full rank if we, as parameter, take for ex-
ample (a, b, c). However, it is not linear with respect to ξ. To overcome
this issue, we first estimate the model, considering ξ as fixed, using
linear programming. We then vary ξ and look for the value of ξ that
maximizes the likelihood.
In Figure 3.9(b), we plot ξ versus the score (�1 norm of the error).
According to Theorem 3.2, maximizing the likelihood is the same as
minimizing the score. The optimal is obtained for ξ = 69 (but no-
tice that the score curve is very flat, so any value around 70 would
be just as good). For this value of ξ, the estimated parameters are:
â = 1.35, b̂ = 0.0841, ĉ = 13.1, d̂ = −0.0858. We compute the residu-
als (Figure 3.9(c)) and perform a Laplace qq-plot to verify the model
assumption.
As explained in Section 2.4.3, a Laplace qq-plot of the residuals ri,
i = 1, . . . , I, is obtained by plotting F−1(i

I+1) versus the residuals
r(i) sorted in increasing order. Here, F is the CDF of the Laplace
distribution with rate λ = 1. A direct computation gives

F−1(q) = ln(2q) if 0 ≤ q ≤ 0.5

= − ln
(
2(1 − q)

)
if 0.5 ≤ q ≤ 1

Figure 3.9(d) shows the Laplace qq-plot of the residuals; we obtain a
better fit than with least squares (Example 3.2).

82 Model Fitting

We compute 95% confidence intervals for the parameters using the
bootstrap approach (Algorithm 3.1) and obtain:

a 1.32 ± 0.675

b 0.0791 ± 0.0149

c 11.7 ± 3.24

d −0.0685 ± 0.0398

The parameter of interest is d, for which the confidence interval is
entirely negative. There is thus congestion collapse.

0 20 40 60 80 100
0

2

4

6

8

10

Offered Loas (tps)

A
ch

ie
ve

d
T

hr
ou

gh
pu

t (
bp

s)

(a) Best fit

60 65 70 75 80
110

111

112

113

114

115

116

117

(b) Score versus ξ

0 20 40 60 80 100
−4

−3

−2

−1

0

1

2

3

tps

R
es

id
ua

ls

(c) Residuals

−4 −2 0 2 4
−5

−4

−3

−2

−1

0

1

2

3

4

X Quantiles

Y
 Q

ua
nt

ile
s

(d) Laplace qq-plot of Residuals

Figure 3.9 Modeling congestion collapse in Joe’s shop with a piecewise
linear function and �1 norm minimization of the errors.

3.4 Choosing a Distribution

Assume that we are given a data set in the form of a sequence of numbers and
would like to fit it to a distribution. Often, the data set is iid, but not always.

Choosing a Distribution 83

In this section and the next, we review a number of simple guidelines that are
useful for finding the right distribution. We illustrate in the following section
how this can be used to build a load generator (SURGE).

In this section and the next, a distribution signifies a probability distribu-
tion on the set of real numbers.

3.4.1 Shape

Perhaps the first attribute of interest is the shape of the distribution, or more
precisely, of its PDF. We say that two distributions on R, with CDFs F (·) and
G(·), have the same distribution shape if they differ by a change of scale and
location, i.e., there exist some m ∈ R and s > 0 such that G(sx +m) = F (x)
for all x ∈ R. This is equivalent to saying that there are some random variables
X,Y with distribution functions F (·), G(·) respectively, and with Y = sX+m.

For example, the normal distribution Nμ,σ2 and the standard normal dis-
tribution N0,1 have the same shape, in other words, all normal distributions
are essentially identical.

When looking for a distribution, one may get a first feeling by plotting
a histogram, which is a rough estimate of the PDF. Since most plotting tools
automatically adapt the scales and origins on both axes, what one really obtains
is a coarse estimate of the distribution shape.

A distribution is usually defined with a number of parameters. When
browsing a distribution catalog (e.g. on Wikipedia), it is important to dis-
tinguish among the parameters that influence the shape and those that are
simply location and scale parameters. For example, with the normal distribu-
tion Nμ,σ2 , μ is a location parameter and σ a scale parameter; if a random
variable X has distribution Nμ,σ2 , one can write X = σZ+μ, where Z ∼ N0,1.

In Tables 3.1 and 3.2, we give a small catalog of distributions that are often
used in the context of this book. For each distribution, we give only the set
of parameters that influences the shape. Other distributions can be derived
by a change of location and scale. The effect of this on various formulas is
straightforward. Nevertheless, it is indicated in the table, for completeness.

The log-normal distribution with parameters μ, σ > 0 is defined as the
distribution of X = eZ where Z is Gaussian with the mean μ and variance σ2.
It is often used as a result of rescaling in log scale, as was done in (3.2). Note
that

X = eσZ0+μ = eμ
(
eZ0
)σ with Z0 ∼ N0,1

Consequently μ corresponds to a scale parameter s = eμ. In contrast (unlike
for the normal distribution), σ is a shape parameter. Table 3.1 gives properties
of the standard log-normal distribution (i.e. for μ = 0; other values of μ can
be obtained by re-scaling). Figure 3.10 shows the shape of the log-normal
distribution for various values of σ, rescaled such that the mean is consistently
equal to 1.

84 Model Fitting

Table 3.1 The catalog of distributions used in this chapter (continued in Table 3.2).
The characteristic function is defined as E

`
ejωX

´
and is given only when tractable.

The notation a(x) ∼ b(x) means limx→∞
a(x)
b(x)

= 1. Only parameters that affect the
shape of the distribution are considered in the table. Other distributions in the same
families can be derived by a change of scale and location, using the formulas given at
the bottom of the table.

Distribution Standard Normal
N0,1

Standard Laplace Standard Log-normal

Parameters none none σ > 0

Comment Page 26 Page 72 Page 83

PDF
1√
2π

e−
x2
2

1

2
e−|x| 1√

2π σx
e
− (ln x)2

2σ2 1{x>0}

Support R R [0, +∞)

CDF 1 − Q(x)(by
definition
of Q(·))

0.5 e−|x| for x ≤ 0

1 − 0.5 e−|x| for x ≥ 0

„
1 − Q

„
lnx

σ

««
1{x>0}

Characteristic
function

e−
ω2
2

1

1 + ω2

Mean 0 0 e
σ2
2

Variance 1 2
`
eσ2 − 1

´
eσ2

Median 0 0 1

Skewness
index

0 0

q
eσ2 − 1

`
eσ2

+ 2
´

Kurtosis
index

0 3 e4σ2
+ 2e3σ2

+ 3e2σ2 − 6

Hazard rate ∼ x = 1 ∼ lnx

σ2x

Effect of change of scale and location

Original Distribution
Distribution of X

Shifted and Re-scaled
Distribution of Y = sX + m

Parameters same plus m ∈ R (location),
s > 0 (scale)

PDF fX(x)
1

s
fX

„
x − m

s

«

CDF FX(x) FX

„
x − m

s

«

Characteristic function ΦX(ω) ejωmΦX(sω)

Mean μ sμ + m

Variance σ2 s2σ2

Median ν sν + m

Sewness index same

Kurtosis index same

Hazard rate λX(x) 1
s

λX

`
x−m

s

´

Choosing a Distribution 85

Table 3.2 Continuation of Table 3.1. Γ() is the gamma function, defined as Γ(x) =R∞
0

tx−1 dt; if x ∈ N and x > 0, Γ(x) = (x − 1)!

Distribution Standard Weibull Standard Pareto Standard Stable with
index p < 2

Parameters c > 0 0 < p 0 < p < 2 ,

−1 ≤ β ≤ 1

Comment Page 91; called
exponential for c = 1

Page 87 The stable definition is
also defined for p = 2,
in which case it is equal
to the normal distribu-
tion N0,2. See Page 97

PDF cxc−1 e−(xc)1{x≥0}
p

xp+1
1{x≥1} well defined but usu-

ally not tractable
support [0, +∞) [1, +∞) R except when β = ±1

CDF
`
1 − e−(xc)

´
1{x≥0}

„
1 − 1

xp

«
1{x≥1} well defined but usu-

ally not tractable

Characteris-
tic function

1

1 − jω
for c = 1 exp

ˆ−|ω|p(1 + A)
˜

with
A = −jβsgn(ω) tan

pπ

2
for p 	= 1

2jβ

π
sgn(ω) ln |ω|

for p = 1

mean μ Γ

„
c + 1

c

«
p

p − 1
for p > 1 0 for p > 1 else unde-

fined
variance σ2 Γ

„
c + 2

c

«
− μ2 1

(p − 1)2(p − 2)

for p > 2

undefined

median
`
ln(2)

´ 1
c 21/p 0 when β = 0 else not

tractable

skewness
index γ1

Γ(c+3
c

) − 3μσ2 − μ3

σ3

2(1 + p)

p − 3

s
p − 2

p

for p > 3

undefined

Kurtosis
index

G − 4γ1μσ3 − 6μ2σ2 − μ4

σ4
− 3

with G = Γ(c+4
c

)

6(p3 + p2 − 6p − 2)

p(p − 3)(p − 4)

for p > 4

undefined

hazard rate = cxc−1 =
p

x
=

p

x

Question 3.3 What are the parameters μ, σ of the lognormal distributions
in Figure 3.10?(4)

(4)According to Table 3.1, the mean is eσ2/2 when μ = 0; other values of μ correspond to
re-scaling by eμ and therefore the mean is eσ2/2+μ. In the figure, we take the mean
as 1, and we thus have μ = −σ2

2
.

86 Model Fitting

0 5
0

1

2

σ =0.2 (γ
2
 =0.678)

x

P
D

F

0 5
0

1

2

σ =0.4 (γ
2
 =3.26)

x
P

D
F

0 5
0

1

2

σ =0.6 (γ
2
 =10.3)

x

P
D

F

0 5
0

1

2

σ =0.8 (γ
2
 =31.4)

x

P
D

F

0 5
0

1

2

σ =1 (γ
2
 =111)

x

P
D

F

0 5
0

1

2

σ =1.2 (γ
2
 =515)

x

P
D

F

Figure 3.10 The shapes of the log-normal distribution for various values of σ. The
shape is independent of μ, which is chosen such that the mean is 1 for all plots. γ2 is
the Kurtosis index.

3.4.2 Skewness and Kurtosis

These are indices that may be used to characterize a distribution shape. They
are defined for a distribution that has finite moments up to order 4. The defi-
nition employs the cumulant generating function (cgf) of the distribution
of a real random variable X : defined by

cgf(s) := ln E
(
esX

)
Assume that E(es0|X|) < ∞ for some s0 so that the above is well-defined for
real s around s = 0. This also implies that all moments are finite. Then, by a
Taylor expansion:

cgf(s) = κ1s+ κ2
s2

2
+ κ3

s3

3!
+ · · · + κk

sk

k!
+ · · ·

where κk = dk

dsk cgf(0) is called the cumulant of order k. The first four
cumulants are: ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

κ1 = E(X)

κ2 = E
(
X − E(X)

)2 = var(X)

κ3 = E
(
X − E(X)

)3
κ4 = E

(
X − E(X)

)4 − 3var(X)2

(3.13)

Choosing a Distribution 87

For the normal distribution Nμ,σ2 , cgf(s) = μs + σ2

2 s
2 thus all cumulants of

order k ≥ 3 are 0.

Question 3.4 Show that the kth cumulant of the convolution of n distribu-
tions is the sum of the kth cumulants.(5)

Skewness Index

κ3 is called skewness. The skewness index (sometimes also called skewness)
is

γ1 :=
κ3

κ
3/2
2

=
κ3

σ3

The skewness index is insensitive to changes in scale (by a positive factor) or
location. For a density that is symmetric around its mean, κ2k+1 = 0; γ1 can
be taken as a measure of asymmetry of the distribution. When γ1 > 0, the
distribution is right-skewed, and vice-versa. If φ is convex, then φ(X) has a
greater skewness index than X .

Kurtosis Index

κ4 is called Kurtosis. The Kurtosis index , also called excess Kurtosis, is

γ2 :=
κ4

κ2
2

=
κ4

σ4

The Kurtosis index is insensitive to changes in scale or location. It is used to
measure departure from the normal distribution. When γ2 > 0, the distribution
has a sharper peak around the mean and heavier tail; when γ2 < 0, it has a
flatter top and decays more abruptly. Note that γ2 ≥ −2, with equality only if
the distribution is degenerate, i.e. equal to a constant.

The Kurtosis index gives some information concerning the distribution tail.
When it is large and positive it indicates that the contribution of the tail is
large. We see for example in Figure 3.10 and in Table 3.1 that the log-normal
distribution has a larger tail for larger σ.

3.4.3 Power Laws, Pareto Distribution and Zipf ’s Law

Power laws are often invoked in the context of workload generation. Generally
speaking, a power law is any relation of the form y = axb between variables x
and y, where a and b are constants. In log scales, this gives a linear relation-
ship: ln y = b lnx + ln a. Power laws have often been found to hold, at least
approximately, for the complementary CDFs(6) of some variables such as
file sizes or popularity of objects. They are discovered by plotting the empirical
complementary CDF in log-log scales and verifying whether a linear relation-
ship exists. Depending on whether the distribution is continuous or discrete,
we obtain the Pareto and Zeta distributions.

(5)By independence: lnE
`
es(X1+···+Xn)

´
=

P
i lnE

`
esXi

´
.

(6)The complementary CDF is 1 − F (·) where F (·) is the CDF.

88 Model Fitting

The standard Pareto distribution with index p > 0 has CDF and PDF

F (x) =
(

1 − 1
xp

)
1{x≥1}

f(x) =
p

xp+1
1{x≥1}

i.e. the complementary CDF and the PDF follow a power law for x ≥ 1 (see
Table 3.2). The general Pareto distribution is derived by a change of scale and
has CDF

(
1 − sp

xp

)
1{x≥s} and PDF psp

xp+1 1{x≥s} for some s > 0.

For p ≤ 2, the Pareto distribution has infinite variance and for p ≤ 1 it
has an infinite mean. The Kurtosis index is not defined unless p > 4 and tends
towards ∞ when p→ 4: its tail is called “heavy”, (see Section 3.5). Figure 3.11
shows the CDF of a Pareto distribution together with normal and log-normal
distributions. The Zeta distribution is the integer analog of Pareto. It is
defined for n ∈ N by

P(X = n) =
1

np+1ζ(p+ 1)

where ζ(n+ 1) is a normalizing constant (Riemann’s zeta function).

1 5 10 50 100 500 1000

10
–1

2
10

–1
0

10
–8

10
–6

10
–4

10
–2

10
0

Figure 3.11 P (x > x) versus x on log-log scales, when X is normal (dots), log-
normal (solid) or Pareto (dashs). The three distributions have the same mean and
99%-quantile.

Zipf’s law is not a probability distribution, but is related to the Pareto
distribution. It states that the popularity of objects is inversely proportional to
rank, or more generally, to a power of rank. This can be interpreted as follows.

We have a collection of N objects. We choose an object from the collection
atrandom, according to a certain stationary process. We refer to θj as the
probability that object j is chosen; this is our interpretation of the popularity
of object j.

N , n≥1, by

Choosing a Distribution 89

Let θ(1) ≥ θ(2) ≥ . . . be the collection of θs in decreasing order. Zipf’s law
means

θ(j) ≈ C

jα

where C is some constant and α > 0. In Zipf’s original formulation, α = 1.
We now show the relation to a Pareto distribution. Assume that we draw

the θs at random (as we do in a load generator) by obtaining a certain random
value Xi for object i, and letting θi = XiPN

i=1 Xi
. Assume that the number of

objects is large and Xi’s marginal distribution is some fixed distribution on
R

+, with complementary distribution function G(x). Let X(n) be the reverse
order statistic, i.e. X(1) ≥ X(2) ≥ . . . We would like to follow Zip’s law, i.e. for
some constant C:

X(j) ≈
C

jα
(3.14)

Let us now consider the empirical complementary distribution Ĝ, which is
obtained by putting a point at each Xi, with probability 1

N , where N is the
number of objects. More precisely:

Ĝ(x) =
1
N

N∑
i=1

1{Xi≥x}

Thus, Ĝ(X(j)) = j
N . Combined with (3.14); we find that, whenever x = X(j),

we have Ĝ(x) ≈ K
xp , with p = 1

α and K = cp/N . If we take the empirical
complementaty CDF as an approximation of the true complementary CDF,
this means that the distribution of Xi is Pareto with index p = 1

α .
In other words, Zipf’s law can be interpreted as follows. The probability

of choosing object i is itself a random variable, obtained by drawing from a
Pareto distribution with tail index p = 1

α , then re-scaling to make the sum of
the probabilities 1.

3.4.4 Hazard Rate

The hazard rate provides another means of deciding whether a distribution is
well suited. Consider a distribution with support that includes [a,+∞) for
some a, with a PDF f(·) and with CDF F (·). The hazard rate is defined for
x > a by

λ(x) =
f(x)

1 − F (x)
It can be interpreted as follows. Let X be a random variable with distribution
F (·). Then, for x > a

λ(x) = lim
dx→0

1
dx

P
(
X ≤ x+ dx | X > x

)

If X is interpreted as a flow duration or a file size, λ(x) dx is the probability
that the flow ends in the next dx time units given that it survived until now.
See Tables 3.1 and 3.2 for the hazard rates of several distributions.

90 Model Fitting

The behavior of the hazard rate λ(x) when x is large can be used as a
characteristic of a distribution. Qualitatively, one may distinguish between the
following three types of behavior:

(1) (Aging Property) limx→∞ λ(x) = ∞: the hazard rate becomes large for
large x. This is very often expected, e.g. when one has reasons to believe
that a file or flow is unlikely to be arbitrarily large. If X is interpreted as
the system lifetime, this is the property of aging. The Gaussian distribution
resides in this case.

(2) (Memoriless Property) limx→∞ λ(x) = c > 0: the hazard rate tends to
become constant for large x. This is particularly true if the system is
memoriless, i.e. when λ(x) is a constant. The exponential distribution
resides here (as does the Laplace distribution).

(3) (Fat Tail) limx→∞ λ(x) = 0: the hazard rate vanishes for large x. This
may appear surprising: for a flow duration, it means that, given that we
waited a significant amount of time for completion of the flow, we are likely
to continue waiting for a very long time. The Pareto distribution with index
p resides in this case for all values of p, as do all log-normal distributions.
We may, informally, call this property a “fat tail”. Heavy tail distributions
(defined in Section 3.5) occur here, but there are also some non-heavy tail
distributions.

0 2 4
0

2

4

6

8
c =0.5 (γ

2
=84.7)

x

P
D

F

0 2 4
0

1

2

3
c =0.8 (γ

2
=12.7)

x

P
D

F

0 2 4
0

0.5

1

c =1 (γ
2
=6)

x

P
D

F

0 2 4
0

0.2

0.4

0.6

0.8

c =1.2 (γ
2
=3.24)

x

P
D

F

0 2 4
0

0.5

1

1.5

c =3.3601 (γ
2
=−0.289)

x

P
D

F

0 2 4
0

1

2

3

4

c =10 (γ
2
=0.57)

x

P
D

F

Figure 3.12 Shapes of the Weibull distribution for various values of the exponent
c. The distribution is re-scaled to have mean = 1. γ2 is the Kurtosis index.

Choosing a Distribution 91

The Weibull distribution is often used in this context, as it spans the
three cases, depending on its parameters. The standard Weibull distribution
with exponent c has support on [0,∞) and is defined by its CDF equal to
1 − e(x

c). The general Weibull distribution is derived by a change of scale and
location; see also Tables 3.1 and 3.2. For c = 1 it is the exponential distribution;
for c > 1 it has the aging property; and for c < 1 it is fat-tailed. Figure 3.12
shows the shape of the Weibull distributions. The Kurtosis is minimum at
c ≈ 3.360128 and approaches ∞ as c→ 0 [87].

3.4.5 Fitting a Distribution

Fitting a distribution to a dataset is often a two-step process. First, a qual-
itative analysis is performed, where one attempts to get a feeling for the dis-
tribution shape, using a histogram. Here, one tries to make statements about
the distribution shape, the hazard rate or the existence of power laws. These
are obtained by appropriate plots (histograms, qq-plots, empirical CDFs, etc).
One can also try to determine whether a heavy-tailed distribution is the right
model, using for example the aest tool described in Section 3.5. The goal is to
obtain a set of candidate families of distributions.

The second step is to fit the parameters of the distribution. If the data set
can be assumed to come from an iid sequence, the method of choice is the maxi-
mum likelihood estimation (MLE), as explained in Section B.1.2, and illustrated
in the next example. In particular, MLE is invariant by re-parametrization and
change of scale.

If, as is frequent in practice, the data set may not be assumed to come
from an iid sequence, then there is no simple method. The maximum likelihood
estimation is often used in practice, but no confidence interval for the estimated
parameters can be obtained.

3.4.6 Censored Data

When fitting the distribution parameters, it may be important to account for
the fact that some very large or very small data values are not present, due
to impossibilities of the measurement system (e.g. flow size durations may not
measure very long flows). In statistics, this is called censoring .

A technique for accounting for censoring is as follows. Assume that we
know that the data is truncated to a certain unknown maximum, called a. The
distribution for the data can be described by the PDF

fX(x) =
1

F0(a)
f0(x)1{x≤a} (3.15)

where f0 (resp. F0) is the PDF (resp. CDF) of the non-truncated distribu-
tion. The explaination behing (3.15) lies in the theory of rejection sampling
(Section 6.6.2) which states that when one rejects the data samples that do
not satisfy a condition (here X ≤ a), one obtains a random variable with PDF
proportional to the non censored PDF, restricted to the set of values given by
the condition. The term 1

F0(a) is the normalizing constant.

92 Model Fitting

Assume that the non-truncated distribution F0 depends on a certain pa-
rameter θ. The log likelihood of the data x1, . . . , xn is

�(θ, a) =
n∑

i=1

log f0
(
xi | θ

)− n logF0

(
a | θ) (3.16)

We obtain an estimate of θ and a by maximizing (3.16). Note that we must
have a ≥ maxi xi and for any θ, the likelihood does not increase with a. Thus
the optimum is obtained for â = maxi xi.

We still need to optimize �(θ, â) over θ. This can be done by brute force
when the dimensionality of the parameter θ is small, or by using other methods,
as illustrated in the next example.

Example 3.10 Censored Log-normal Distribution
Figure 3.13(a) shows an artificial data set, obtained by sampling a
log-normal distribution with parameters μ = 9.357 and σ = 1.318,

0 0.5 1 1.5 2

x 10
4

0

0.2

0.4

0.6

0.8

1

(a) CDF

10
1

10
2

10
3

10
4

10
5

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

(b) CCDF in log-log scales

−1 −0.5 0 0.5 1
−7.95

−7.9

−7.85

−7.8

−7.75

−7.7
x 10

4

(c) Profile log-likelihood of z

Figure 3.13 Fitting Censored Data in Example 3.10. The data set is an
iid sample of a truncated log-normal distribution. Thick lines: data set;
plain lines: fit obtained with a technique for censored data; dashed lines: fit
obtained when ignoring the censored data.

Choosing a Distribution 93

truncated to 20, 000 (i.e. all data points larger than this value are
removed from the data set).
Here, F0 is the log-normal distribution with parameters μ and σ. In-
stead of brute force optimization, we can gain more insight in the fol-
lowing manner. We have to maximize �(μ, σ) over μ ∈ R, σ > 0, with

�(μ, σ) = −n ln(σ) − 1
2σ2

n∑
i=1

(lnxi − μ)2 − n lnN0,1(μ+ σ ln a)

− n

2
ln(2π) −

n∑
i=1

lnxi

(3.17)
We can ignore the last two terms, which do not depend on (μ, σ). We
can also do a change of variables by taking σ, z as parameters instead
of σ, μ, with

z =
ln a− μ

σ
(3.18)

For a fixed z, the optimization problem has a closed form solution
(obtained by computing the derivative with respect to σ); the maximum
likelihood is obtained for σ = σ̂(z) with

σ̂(z) =
−βz +

√
4s2 + β2(4 + z2)

2
(3.19)

with

β = ln a− y1 y1 =
1
n

n∑
i=1

lnxi s2 =
1
n

n∑
i=1

(lnxi − y1)2

and the corresponding value of the likelihood (called “profile log-like-
lihood”) is (we omit the constant terms in (3.17)):

pl(z) = −n
[
ln
(
σ̂(z)

)− 1
2σ̂2(z)

((ˆσ(z)z − β
)2 + s2

)
− lnN0,1(z)

]

(3.20)
We now need to minimize the square bracket as a function of z ∈ R.
This cannot be done in closed form, but it is numerically simple as it
is a function of only one variable. Figure 3.13(c) shows pl(z). There is
a unique maximum at z = 0.4276, which, with (3.19) and (3.18), gives

μ̂ = 9.3428 σ̂ = 1.3114

Compare this to the method that would ignore the truncation. Since
MLE is invariant by change of scale, we can use the log of the data; we
would estimate μ by the sample mean of the log of the data, and σ by
the standard deviation, and would obtain

μ̂n = 8.6253 σ̂n = 0.8960

94 Model Fitting

3.4.7 Combinations of Distributions

It is often difficult to find a distribution that fits both the tail and the body
of the data. In such a case, one may use a combination of distributions, also
called compound distribution .

Given two distributions with CDFs F1 and F2 (resp. PDFs f1 and f2), a
mixture distribution of F1 and F2 is a distribution with PDF

f(x) = pf1(x) + (1 − p)f2(x)

with p ∈ [0, 1]. A mixture is interpreted by saying that a sample is drawn with
probability p from F1 and with probability 1 − p from F2.

We are more often interested in a combination of mixture and trun-
cation , i.e. in a combination for which the PDF has the form

f(x) = α11{x≤a}f1(x) + α21{x>a}f2(x) (3.21)

where α1, α2 ≥ 0 and a ∈ R. This is useful for fitting a distribution separately
to the tail and the body of the data set.

Note that we do not necessarily have α1 + α2 = 1 as in a pure mixture.
Instead, one must have the normalizing condition

α1F1(a) + α2

(
1 − F2(a)

)
= 1 (3.22)

thus (by letting p = α1F1(a)) we may rewrite (3.21) as

f(x) =
p

F1(a)
1{x≤a}f1(x) +

1 − p

1 − F2(a)
1{x>a}f2(x) (3.23)

with p ∈ [0, 1].
Assume that the distributions F1, F2 depend on various parameters, which

are independent of p, and which need to be fitted. Note that p and a need to
be fitted as well. When utilizing MLE, one can somewhat simplify the fitting
by observing that the maximum likelihood estimate must satisfy

p̂ =
n1(a)
n

(3.24)

where n1(a) is the number of data points ≤ a.
To see why, assume that we are given a data set xi of n data points, sorted

in increasing order, so that n1(a) =
∑n

i=1 1{xi≤a}. The log-likelihood of the
data is

� =
n1(a)∑
i=1

ln f1(xi) +
n∑

i=n1(a)+1

ln f2(xi) + n1(a)
(
ln p− lnF1(a)

)

+
(
n− n1(a)

) (
ln(1 − p) − ln

(
1 − F2(a)

))
and maximizing � with respect to p shows (3.24).

Choosing a Distribution 95

Example 3.11 Combination of Log-Normal and Pareto
Figure 3.14(a) shows an empirical complementary CDF in log-log scales
for a set of 105 data points representing file sizes. The plot shows an
asymptotic power law, but not over the entire body of the distribution.
We wish to fit a combination mixture of a truncated log-normal distri-
bution for the body of the distribution (left of dashed line) and of a
Pareto distribution for the tail, truncated on [0, a) and Pareto rescaled
to have support on [a,+∞). The model is thus

fX(x) = q
f1(x)
F1(a)

1{x≤a} + (1 − q)
f2(x)

1 − F2(a)
1{x>a}

where F1 is a log-normal distribution, F2 is Pareto with exponent p,
and breakpoint a. Note that F2(a) = 0, and PDF is thus

fX(x) =
q

N0,1(μ+ σ ln a)
1√

2πσx
e−

(ln x−μ)2

2σ2 1{0<x≤a}

+ (1 − q)p
ap

xp+1
1{x≥a}

(3.25)

10
0

10
2

10
4

10
6

10
8

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

(a) CCDFs

1.2 1.3 1.4 1.5 1.6
x 105

9.803

9.8031

9.8032

9.8033

9.8034

9.8035
x 105

(b) Profile log-likelihood of breakpoint a

Figure 3.14 Fitting a combination of log-normal for the body and Pareto
for the tail. Dashed vertical line: breakpoint.

The parameters to be fitted are q, μ, σ, p and the breakpoint a. We
first fix a to any arbitrary value and fit the other parameters. By
(3.24), q = n1(a)

n where n1(a) is the number of data points ≤ a. The
log-likelihood is thus

�(μ, σ, p, a) = n1(a) lnn1(a) + n2(a) lnn2(a) − n lnn
+ �1(μ, σ, a) + �2(p, a)

where n2(a) = n − n1(a), �1 is as in (3.17) (with n1(a) instead of n)
and

�2(a, p) = n2(a)(ln p+ p ln a) − (p+ 1)
n∑

i=n1(a)+1

lnxi

96 Model Fitting

where we assume that the data xi is sorted in increasing order. For a
fixed a, the optimization of μ, σ on the one hand, and p on the other,
are separated. The optimal μ̂(a), σ̂(a) are obtained as in Example 3.10
using techniques for censored data.
The optimal p̂ is obtained directly:

max
p

l2(a, p) = n2(a)
(
ln p̂) − 1

)−
n∑

i=n1(a)+1

lnxi (3.26)

with
p̂(a) =

1

− ln a+
1

n2(a)

n∑
i=n1(a)+1

lnxi

Putting things together, we obtain the profile log-likelihood of a

pl(a) = max
μ,σ>0,p>0

�(μ, σ, p, a)

= −n1(a)
[
ln(2π)

2
+ ln

(
σ̂(a)

)
+

1
2σ̂(a)2

((
σ̂(a)ẑ(a) − β(a)

)2

+ s2(a)
)

+ lnN0,1

(
ẑ(a)

)]
+ n2(a)

(
ln p̂(a) − 1

)−
n∑

i=1

lnxi

where β(a), σ̂(a), s2(a) and μ̂(a) are as in Example 3.10 and ẑ(a)
maximizes (3.20). We determine the maximum of pl(a) numerically
Figure 3.14(b) shows that there is a large uncertainty for the value
of a, which can be explained by the fact that, in this region, the log-
normal distribution locally follows a power law. We find â = 136300,
μ̂ = 9.3565, σ̂ = 1.3176 and p̂ = 1.1245.

3.5 Heavy Tail

3.5.1 Definition

In Section 3.4.4, we have seen the definition of a fat tail, i.e. a distribution
that has a vanishing hazard rate. In this section, we discuss an extreme case
of a fat tail, called “heavy tail”, which has unique, non intuitive features. It is
frequently found in models of file sizes and flow durations.

We use the following definition (which is the simplest). We say that the
distribution on [a,∞), with CDF F , is heavy-tailed with index 0 < p < 2 if
there is some constant k such that, for large x:

1 − F (x) ∼ k

xp
(3.27)

Here, f(x) ∼ g(x) means that f(x) = g(x)
(
1 + ε(x)

)
, with limx→∞ ε(x) = 0.

Heavy Tail 97

A heavy-tailed distribution has an infinite variance, and for p ≤ 1 an infinite
mean.

• The Pareto distribution with exponent p is heavy-tailed with index p if
0 < p < 2.

• The log-normal distribution is not heavy-tailed (its variance is always fi-
nite).

• The Cauchy distribution (density 1
π(1+x2)) is heavy-tailed with index 1.

3.5.2 Heavy Tail and Stable Distributions

Perhaps the most striking feature of heavy-tailed distributions is that the cen-
tral limit theorem does not hold, i.e. the aggregation of many heavy-tailed
quantities does not produce a Gaussian distribution.

Indeed, if Xi are idd with a finite variance σ2 and with a mean μ, then
1

n1/2

∑n
i=1(Xi − μ) tends in distribution to the normal distribution N0,σ2 . In

contrast, if Xi are iid, heavy-tailed with index p, then there exist constants dn

such that
1

n
1
p

n∑
i=1

Xi + dn
distrib−−−−→
n→∞ Sp

where Sp has a stable distribution with index p. Stable distributions are
defined for 0 < p ≤ 2, for p = 2 they are the normal distributions. For p < 2,
they are either constant or heavy-tailed with index p. Furthermore, they have
a property of closure under aggregation: if Xi are iid and stable with index p,
then 1

n1/p (X1 + · · ·+Xn) has the same distribution as the Xis, shifted by some
number dn.

The shape of a stable distribution with p < 2 is defined by one skewness
parameter β ∈ [−1, 1] (but the skewness index in the sense of Section 3.4.2
does not exist). The standard stable distribution is defined by its index p, and
by β when p < 2. The general stable distribution is derived by a change of
scale and location. When β = 0, the standard stable distribution is symmetric,
otherwise not. The standard stable distribution with skewness parameter −β
is the symmetric (by change of sign) of the standard stable distribution with
parameter β. When p < 2 and β = 1, the support of the stable distribution is
[0,+∞) (and thus when β = −1 the support is (−∞, 0]), otherwise the support
is R.

In general, stable distributions that are not constant have a continuous
density, which it is not explicitly known. In contrast, their characteristic func-
tions are explicitly known ([93], [73]), see Table 3.2. Note that the Pareto
distribution is not stable.

Figure 3.15 illustrates the convergence of a sum of iid Pareto random vari-
ables to a stable distribution. In practice, stable distributions may be difficult
to work with, and are sometimes replaced by heavy-tailed combinations, as in
Example 3.11.

98 Model Fitting

Quantiles of Standard Normal

xx

-2 0 2

0
50

0
10

00
20

00

0 500 1000 1500 2000

0
20

0
60

0
10

00

xx

p = 1

 - sort(- log(xx))

lo
g(

pp
oi

nt
s(

k))

0 2 4 6

-6
-4

-2
0

Quantiles of Standard Normal

xx

-2 0 2

0
20

40
60

80

0 20 40 60 80

0
20

0
40

0
60

0
80

0

xx

p = 1.5

 - sort(- log(xx))

lo
g(

pp
oi

nt
s(

k))

0 1 2 3 4

-6
-4

-2
0

Quantiles of Standard Normal

xx

-2 0 2

5
10

15
20

5 10 15 20

0
20

0
40

0
60

0

xx

p = 2

 - sort(- log(xx))

lo
g(

pp
oi

nt
s(

k))

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-6
-4

-2
0

Quantiles of Standard Normal

xx

-2 0 2

0
10

20
30

40

0 10 20 30 40

0
20

0
40

0
60

0
80

0

xx

p = 2.5

 - sort(- log(xx))

lo
g(

pp
oi

nt
s(

k))

0 1 2 3

-6
-4

-2
0

Quantiles of Standard Normal

xx

-2 0 2

5
10

15

5 10 15

0
20

0
40

0
60

0

xx

p = 3

 - sort(- log(xx))

lo
g(

pp
oi

nt
s(

k))

0.0 0.5 1.0 1.5 2.0 2.5

-6
-4

-2
0

Figure 3.15 Aggregation of a sum of iid Pareto random variables (a = 1, p ∈
{1, 1.5, 2, 2.5, 3}). On every row: The first three diagrams show the empirical dis-
tribution (normal qq-plot, histogram, complementary CDF in log-log scale) of one
sample of n1 = 104 iid Pareto random variables. The last three show similar diagrams
for a sample (Yj)1≤j≤n of n = 103 aggregated random variables: Yj = 1

n1

Pn1
i=1 Xi

j ,
where Xi

j ∼ iid Pareto. The figure illustrates that, for p < 2, there is no convergence
to a normal distribution, whereas for p ≥ 2 there is. It also shows that, for p ≥ 2, the
power law behavior disappears by aggregation, unlike for p < 2. Note that for p = 2,
Xi has infinite variance, though there is convergence to a normal distribution.

Heavy Tail 99

Quantiles of Standard Normal

yy

-2 0 2

0
10

-7
2*

10
-7

0 5*10-6 10-7 2*10-7

0
20

0
60

0
10

00

yy - sort(- log(yy))

lo
g(

pp
oi

nt
s(

k))

11 12 13 14 15 16 17

-6
-4

-2
0

Quantiles of Standard Normal

yy

-2 0 2

30
00

0
50

00
0

30000 40000 50000 60000

0
10

0
30

0
50

0

yy - sort(- log(yy))

lo
g(

pp
oi

nt
s(

k))

10.2 10.4 10.6 10.8 11.0

-6
-4

-2
0

Quantiles of Standard Normal

yy

-2 0 2

19
00

0
21

00
0

23
00

0

19000 20000 21000 22000 23000

0
50

10
0

20
0

yy - sort(- log(yy))

lo
g(

pp
oi

nt
s(

k))

9.85 9.90 9.95 10.00 10.05

-6
-4

-2
0

Quantiles of Standard Normal

yy

-2 0 2

16
50

0
17

50
0

18
50

0

16500 17500 18500

0
50

15
0

25
0

yy - sort(- log(yy))

lo
g(

pp
oi

nt
s(

k))

9.70 9.75 9.80

-6
-4

-2
0

Quantiles of Standard Normal

yy

-2 0 2

14
80

0
15

20
0

14800 15000 15200 15400

0
20

40
60

80

yy - sort(- log(yy))

lo
g(

pp
oi

nt
s(

k))

9.60 9.61 9.62 9.63 9.64

-6
-4

-2
0

Figure 3.15 (Continuation.)

3.5.3 Heavy Tail in Practice

Concretely, a heavy tail signifies that very large outliers are possible. We
illustrate this by two examples.

Example 3.12 Random Waypoint with Heavy-Tailed Trip Duration
Consider the following variant of the random waypoint mobility model
as in Figure 6.3. A mobile moves in a certain area from one point to

100 Model Fitting

0 0.5 1 1.5 2 2.5

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Speed averaged over time and users

time (sec)

sp
ee

d
(m

/s
)

(a) Non heavy-tailed, α = 1.5

0 0.5 1 1.5 2 2.5

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Speed averaged over time and users

time (sec)

sp
ee

d
(m

/s
)

(b) Heavy-tailed, α = 0.5

Figure 3.16 Simulation of random waypoint with speed density equal
to f0

V (v) = Kαvα1{0≤v≤vmax}, showing instant speed and average speed
(smoother line) for one user.

from one point to the next (we designate trip the movement from one
point to another). The velocity on one trip is sampled from the dis-
tribution with PDF f0

V (v) = Kαv
α1{0≤v≤vmax}, with α > 0 and where

Heavy Tail 101

Kα is a normalizing constant. It follows that the complementary CDF
of trip duration is equal to

1 − F 0
T (x) =

KαD̄

α+ 1
1

xα+1
(3.28)

where D̄ is the average length (in meters) of a trip.
For α = 0.5 the trip duration is heavy-tailed, whereas for α = 1.5, it
has a finite variance and is thus not heavy-tailed. Figure 3.16 shows
a sample simulation of both cases. In the heavy-tailed case, we see
that most trip durations are very short, but once in a while, the trip
duration is extraordinarily large.

Example 3.13 Queuing System
Consider a server that receives requests for downloading files. Assume
that the arrival times of the requests form a Poisson process, and the
requested file sizes are iid ∼ F , where F is some distribution. This is
a simplified model, but it is sufficient for making the point.
We assume that the server has a unit capacity, and that the time to
serve a request is equal to the requested file size. This again is a
simplifying assumption, which is valid if the bottleneck is a single,
FIFO I/O device. As demonstrated in Chapter 8, the mean response
time of a request is given by the Pollaczek-Khintchine formula

R = ρ+
ρ2

(
1 +

σ2

μ2

)

2(1 − ρ)

where μ is the mean and σ2 the variance, of F (assuming both are
finite), and ρ is the utilization factor (= request arrival rate ×μ). The
response time thus depends not only on the utilization and the mean
size of the requests, but also on the coefficient of variation C := σ

μ . As
C grows, the response times goes to infinity. If the real data supports
the hypothesis that F is heavy-tailed, the average response time is likely
to be high and the estimators of it are unstable.

3.5.4 Testing for a Heavy Tail

There are several methods for deciding whether a data set is heavy-tailed or
not. One of these consists in fitting a Pareto distribution to the tail, as in
Example 3.11.

A more general method is the tool by Crovella and Taqqu called aest [31]. It
uses the scaling properties and convergence to stable distributions. Consider Xi

that are iid and heavy-tailed, with index p. Call X(m)
i the aggregate sequence,

where observations are grouped in bulks of m:

X
(m)
i :=

im∑
j=(i−1)m+1

Xj

102 Model Fitting

For large m1,m2, by the convergence result mentioned earlier, we should have
approximately the distribution equalities according to

1

m
1/p
1

X
(m1)
i ∼ 1

m
1/p
2

X
(m2)
j (3.29)

The idea is now to plot the empirical complementary distributions of X(m)
i

for various values of m. Further, the deviation between two curves of the
plot is analyzed by means of horizontal and vertical deviations δ and τ as
shown in Figure 3.17. We have δ = log x2 − log x1. By using (3.29), we get
x2 = (m2

m1
)1/px1 and thus

δ =
1
p

log
m2

m1

Also, if Xi is heavy-tailed, and m is large, then X(m)
i is approximately stable.

Consequently, if m2
m1

is an integer, the distribution of X(m2)
j (which is a sum of

X
(m1)
i) is the same as that of (m2

m1
)1/pX

(m1)
i . We should thus have

τ = log P
(
X

(m2)
i > x1

)− log P
(
X

(m1)
i > x1

) ≈ log
m2

m1

The method in aest consists in using only the points x1 where the above holds,
and subsequently, at such points, estimating p by

p̂ =
1
δ

log
m2

m1

The average of these estimates is then used. See Figure 3.17 for an illustration.

X(m1)

X(m2)

log x

lo
g

P(
 X

 >
x)

log x1 log x2

δ

τ

(a)

0 2 4 6 8
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

Log10(size − 40824.387)

Lo
g1

0(
P

[X
 >

 x
])

No. points: 100000 Alpha Estimate: 1.120

(b)

Figure 3.17 (a) : Deviations used in the aest tool. (b) Application to the dataset
in Example 3.11. There is an heavy tail, with an estimated index p = 1.12 (the same
as that obtained by the direct method in Example 3.11).

Heavy Tail 103

3.5.5 Application Example: The Workload Generator SURGE

Many of the concepts illustrated in this chapter are used in the tool SURGE
[9], which is a load generator for web servers.

The load intensity is determined by the number of user equivalents
(UEs), each implemented as an independent thread of execution, on one or
several machines The nature of the load is defined by a set of constraints on
the arrival process, the distribution of request sizes and the correlation of suc-
cessive requests to the same object, as described below. The parameters of the
distributions were obtained by fitting measured values (Table 3.3).

Table 3.3 Distributions and parameters used in SURGE.

Model Density f(x) Value of Parameters

Inactive OFF time Pareto
psp

xp+1
1{x≥s} s = 1, p = 1.5

No of embedded
references

Pareto
psp

xp+1
1{x≥s} s = 1, p = 2.43

Active OFF time Weibull
c

s

“x

s

”c−1

e−(x/s)c

s = 1.46, c = 0.382

File Size Log-normal
comb. Pareto

Eq. (3.25) μ = 9.357, σ = 1.318

a = 133 K, p = 1.1

q = N0,1(μ + σ ln a)

File Request Size Pareto
psp

xp+1
1{x≥s} s = 1000, p = 1.0

(see footnote on
Page 104)

Temporal Locality Log-normal
e
− (ln x−μ)2

2σ2

√
2πσx

1{x>0} μ = 1.5, σ = 0.80

(1) One UE alternates between ON-object periods and “Inactive OFF periods”.
Inactive OFF periods are iid with a Pareto distribution .

(2) During an ON-object period, a UE sends a request with embedded refer-
ences. Once the first reference is received, there is an “Active OFF period”,
after which the request for the second reference is sent, and so on, until all
embedded references are received. There is only one TCP connection at a
time per UE, and one TCP connection for each reference (an assumption
that made sense with early versions of HTTP).

(3) The active OFF times are iid random variables with Weibull distributions.
(4) The number of embedded references is modeled as a set of iid random

variables, with a Pareto distribution.

The references are viewed as requests for downloading files. The model
assumes that there is a set of files labeled i = 1, . . . , I, stored on the server.
File i has two attributes: the size xi and the request probability θi. The
distribution of attributes needs to satisfy the following conditions.

104 Model Fitting

(5) The distributionH(x) of file sizes is a combination of truncated Log-normal
and Pareto.

(6) θi satisfy Zipf’s law with exponent α = 1
(7) The distribution F (x) of requested file sizes is Pareto.(7)

The distributions H and F are both file size distributions, sampled accord-
ing to varying viewpoints. Consequently (as we discuss in Chapter 7), there
must be a relation between these two distributions, which we now derive. Let
I(t) be the random variable that gives the index i of the tth file requested.
Thus F (x) = P(xI(t) = x). We can assume that the allocation of file sizes and
popularities is done in a preliminary phase, and that it is independent of I(t).
Thus

F (x) =
∑

j

P
(
I(t) = j

)
1{xj≤x} =

∑
j

θj1{xj≤x} (3.30)

Let x(1) = x(2) = · · · be the file sizes sorted in increasing order, and let z(n) be
the index of the nth file in that order. z is a permutation of the set of indices,
such that x(n) = xz(n). By specializing (3.30) to the actual values x(m), we
find, after a change of variable j = z(n)

F (x(m)) =
∑

j

θj1{xj≤x(m)} =
∑

n

θz(n)1{x(n)≤x(m)}

and thus

F (x(m)) =
m∑

n=1

θz(n) (3.31)

which gives a constraint between the θis and xis.
The file request references I(t), t = 1, 2, . . . are constrained by their marginal

distribution (defined by θi). The authors find that there is some correlation in
the series, and model the dependency as follows:

(8) For any file index i, define T1(i) < T2(i) < . . . the successive values of
t ∈ {1, 2, . . .} such that i = I(t). Assume that Tk+1(i) − Tk(i) come from
a common distribution, called “temporal locality”. The authors find it log-
normal (more precisely, it is a discretized log-normal distribution, since the
values are integers).

Building a Process that Satisfies all Constraints

We are left with building a generator that produces a random output confor-
mant to all constraints. Constraints (1) through (4) are straightforward to
implement, with a proper random number generator, and by using the tech-
niques described in Section 6.6. The inactive OFF periods, active OFF periods
and number of embedded references are implemented as mutually independent
iid sequences.

(7)The original paper [9] takes an index p = 1 for this Pareto distribution, which implies
that the mean request file size is infinite, and thus the process of file size requests is
not stationary (this is a freezing simulation problem as in Section 7.4). A value of p
larger than 1 would be preferable.

Proofs 105

Constraints (5) through (7) require more care. First, the xi are drawn from
H . Second, the θis are drawn (as explained in Section 3.4.3) but not yet bound
to the file indexes. Instead, the values are put in a set Θ. In view of (3.31),
define

θ̂z(m) = F (x(m)) −
m−1∑
n=1

θz(m)

so that we should have θ̂z(m) = θz(m) for all m. If this were true, it would
be easy to see that all constraints are satisfied. However, this can only be
done approximately in [9]. Here is one way of doing so. Assume that z(m) =,
i.e. that we have sorted the file indices according to an increasing file size. For
m = 1, we set θ1 to the value in Θ that is closest to θ̂1 = F (x1). This value is
then renoved from Θ, and θ2 is set to the value in Θ closest to θ̂2 = F (x2)−θ1,
etc.

Lastly, we need to generate a time series of file requests I(t) such that the
marginal distribution is given by the θis and the temporal locality in condition
(8) is satisfied. This can be formulated as a discrete optimization problem,
as follows. First, a trace size T is arbitrarily chosen; it reflects the length of
the load generation campaign. Then, for each file i, the number of references
Ni is drawn, so as to satisfy Zipf’s law (with E(Ni) = θi). Last, a sequence
S1, , S2, . . . is drawn from the distribution in in condition (8).

The problem is now to create a sequence of file indices
(
I(1), I(2), . . . I(T)

)
such that i appearsNi times and the distances between successive repetitions of
file references is as close as possible to the sequence S1, , S2, Any heuristic
for discrete optimization can be used (such as simulated annealing or tabu
search). By [9]. an ad-hoc heuristic is employed.

3.6 Proofs

Theorem 3.1

The log likelihood of the data is

l�y(�β, σ) = −I
2

ln(2π) − I ln(σ) − 1
2σ2

I∑
i=1

(
yi − fi(�β)

)2 (3.32)

For any fixed σ, it is at a maximum when
∑I

i=1

(
yi − fi(�β)

)2 is at a minimum,
which shows item 1(a). Take the derivative with respect to σ and find, that for
any fixed �β, it is as a maximum for σ = 1

I

∑
i

(
yi − fi(�β)

)2, which shows item
1(b). The rest follows from Theorem B.1 and Theorem B.2.

Theorem 3.2

The log likelihood of the data is

l�y = −I ln(2) + I ln(λ) − λ

I∑
i=1

∣∣yi − fi(�β)
∣∣ (3.33)

106 Model Fitting

For any fixed �β, it is at a maximum when 1
λ = 1

I

∑
i

∣∣yi − fi(�β
∣∣ and the corre-

sponding value is

−I ln

(
I∑

i=1

∣∣yi − fi(�β)
∣∣
)

+ I ln I − I − I ln 2

which is at a maximum when �β minimizes
∑I

i=1

∣∣yi − fi(�β)
∣∣.

Theorem 3.4

In view of Theorem 3.2, the MLE of �β is obtained by minimizing
∑I

i=1

∣∣yi −
(X�β)i

∣∣. This is equivalent to minimizing
∑I

i=1 ui over (�β, u) with the con-
straints ui ≥

∣∣yi−(X�β)i

∣∣, which is equivalent to the constraints in the theorem.

3.7 Review

3.7.1 Review Questions

3.1 How would you compute a and α in Example 3.1?(8)

3.2 How would you compute the residuals in Example 3.3?(9)

3.3 How would you compute confidence intervals for the component βj of �β in
Theorem 3.1 using the bootstrap method? In Theorem 3.2?(10)

3.4 Can you name distributions that are fat tailed but not heavy-tailed?(11)

3.5 If the tail of the distribution of X follows a power law, can you conclude
that X is heavy-tailed?(12)

3.6 Which of the distributions used in SURGE are heavy-tailed? Fat-tailed?(13)

3.7.2 Useful Matlab Commands
• regress solves the general linear regression model as in Theorem 3.3.
• linprog solves the linear program in Theorem 3.4.

(8)By minimizing
P

i

`
yi−aeαti

´2. This is an unconstrained optimization problem in two
variables; use for example a generic solver such as fminsearch in matlab.

(9)The residuals are estimates of the noise terms εi. Let â and α̂ be the values estimated
by maximum likelihood, for either model. The residuals are ri = yi − â eα̂ti for the
former model, and ri = ln yi − ln

`
â eα̂ti

´
for the latter.

(10)Draw R bootstrap replicates of Y and obtain R estimates β1, . . . , βR of β, using the
theorems. At level 95%, take R = 999 and use the order statistics of the jth com-
ponent of the bootstrap estimates: β

(1)
j ≤ . . . ≤ β

(R)
j ; obtain as confidence intervalˆ

β
(25)
j , β

(975)
j

˜
.

(11)The Pareto distributions with p > 2, the log-normal distributions, the Weibull distri-
butions with c < 1.

(12)No, only if the exponent of the tail is < 2.
(13)Inactive OFF time, File size, File request size. The number of embedded references is

Pareto with p > 2 it is thus fat-tailed but not heavy-tailed. The active OFF time and
temporal locality are fat-tailed but not heavy-tailed.

Chapter 4

Tests

We use tests to decide whether a certain assertion on a model is true or not,
for example whether the particular data set comes from a normal distribution.
We have seen in Chapter 2 that visual tests may be used for such a purpose.
Tests are meant to be a more objective way to reach the same goal.

Tests are often used in empirical sciences to draw conclusions from noisy
experiments. Though we use the same theories, our setting is somewhat dif-
ferent; we are concerned with the nested model setting, i.e. we want to decide
whether a simpler model is good enough, or whether we need a more sophisti-
cated one. Here, the question is asymmetric; if in doubt, we give preference to
the simpler model – this is the principle of parsimony. The Neyman Pearson
framework is well suited for such a setting, and we thus restrict ourselves to it.

There exists a large number of tests, and everyone can invent their own
(this is perhaps a symptom of the absence of a simple, nonequivocal optimality

108 Tests

criterion). In practice though, likelihood ratio tests are asymptotically optimal,
in some sense, under very large sets of assumptions. They are very general,
easy to use and even to develop; therefore, it is worth knowing them. We often
make use of Monte Carlo simulations to compute the p-value of a test. This
can sometimes be likened to brute force, but it avoids spending too much time
solving for analytical formulae. We discuss ANOVA, as it is very simple when
it applies. Finally, we also study robust tests, i.e. tests that make very few
assumptions about the distribution of the data.

4.1 The Neyman Pearson Framework

4.1.1 The Null Hypothesis and the Alternative

We are given a data sample xi, i = 1, . . . , n, and we assume that the sample
is the output generated by some unknown model. We consider two possible
hypotheses about the model, H0 and H1, and we would like to infer from the
data which of the two hypotheses is true. In the Neyman-Pearson framework,
the two hypotheses play different roles: H0, the null hypothesis, is the con-
servative one. We do not want to reject it unless we are fairly sure. H1 is the
alternative hypothesis.

We are most often interested in the nested model setting: the model is
parameterized by a certain θ in some space Θ, and H0

def= “θ ∈ Θ0” whereas
H1

def= “θ ∈ Θ \ Θ0”, where Θ0 is a subset of Θ.

In Example 4.1, the model could be: all data points for compiler option 0
(resp. 1) are generated as iid random variables with some distribution F0 (resp.
F1). Then, H0 is “F0 = F1” and H1 is “F0 and F1 differ by a shift in location”.
This is the model used by the Wilcoxon Rank Sum test (see Example 4.20 for
more details). Here Θ0 =

{
(F0, F0), F0 is a CDF

}
and Θ =

{
(F0, F1), F0 is a

CDF and F1(x) = F0(x−m), m ∈ R
}
.

Another, commonly used model, for the same example could be: all data
points for compiler option 0 (resp. 1) are generated as iid random variables
with some normal distribution Nμ0,σ2 (resp. Nμ1,σ2). Then, H0 is “μ0 = μ1”
and H1 is “μ0 �= μ1”. This is the model used by the so-called “Analysis of
variance” (see Example 4.10 for more details). Here, Θ0 = {(μ0, μ0, σ > 0)} and
Θ = {(μ0, μ1, σ > 0)}. Clearly, this second model makes more assumptions,
and is to be employed with more care.

Example 4.1 Nonpaired Data
A simulation study compares the execution time, on a log scale, with
two compiler options. See Figure 4.1 for some data. We would like to
test the hypothesis that compiler option 0 is better than 1. For one
parameter set, the two series of data come from different experiments.

The Neyman Pearson Framework 109

0 10 20 30 40 50 60 70 80 90 100
−3

−2

−1

0

1

2

3

4

(a) Parameter set 1

0 10 20 30 40 50 60 70 80 90 100
−3

−2

−1

0

1

2

3

(b) Parameter set 2

0 10 20 30 40 50 60 70 80 90 100
−4

−3

−2

−1

0

1

2

3

(c) Parameter set 3

Parameter Set Compiler Option 0 Compiler Option 1

1 [−0.1669; 0.2148] [0.3360; 0.7400]

2 [−0.0945; 0.3475] [0.2575; 0.6647]

3 [−0.1150; 0.2472] [−0.0925; 0.3477]

Figure 4.1 Data for Example 4.1. Top: The logarithm of the execution
time, with two compiler options (o=option 0, x=option 1) for three different
parameter sets. Bottom: 95% confidence intervals for the means.

We can compute a confidence interval for each of the compiler options.
The data looks normal, so we apply the student statistic and find the
confidence intervals shown in the figure.
For parameter set 1, the confidence intervals are disjoint, so it is clear
that option 0 performs better. For parameter sets 2 and 3, the intervals
are overlapping, and we thus cannot draw any conclusions at this point.
We see here that confidence intervals may be used for hypothesis testing
in some cases, but not always. The present chapter presents how tests
can be used to disambiguate such cases.

110 Tests

4.1.2 Critical Region, Size and Power

The critical region , also called the rejection region C, of a test is a set of
values of the tuple (x1, . . . , xn) such that if (x1, . . . , xn) ∈ C, we reject H0, and
otherwise we accept H0. The critical region entirely defines the test.(1)

The output of a test is thus a binary decision: “accept H0”, or “reject H0”.
The output depends on the data, which is random, and may be wrong with
some (hopefully small) probability. We distinguish between two types of errors.

• A type-1 error occurs if we reject H0 when H0 is true.

• Conversely, a type-2 error occurs if we accept H0 when H1 is true.

The art of test development consists in minimizing both error types. How-
ever, it is usually difficult to minimize two objectives at a time. The maximum
probability of a type-1 error, taken over all θ ∈ Θ0 is called the size of the
test. The power function of the test is the probability of rejection of H0 as
a function of θ ∈ Θ \ Θ0. Neyman-Pearson tests are designed such that the
size has a fixed, small value (typically 5%, or 1%). Good tests (i.e. those in
these lecture notes and those used in Matlab) are designed so as to maximize,
exactly or approximately, the power, subject to a fixed size. A test is said to be
uniformly more powerful (UMP) if, among all tests of equal size, it maximizes
the power for every value of θ ∈ Θ \ Θ0. UMP tests exist for few models, for
which reason less restrictive requirements have been developed (the reference
for these issues is [62]).

It is important to be aware of the two types of errors, and of the fact that
the size of a test is just one facet. Assume that we use a UMP test of size
0.05; this does not mean that the risk of error is indeed 0.05, or even that it
is small. This simply means that all other tests that have a risk of a type-1
error bounded by 0.05 must have a risk of a type-2 error which is the same or
larger. Thus, we may need to verify whether, for the data at hand, the power
is indeed large enough, though this is seldom done in practice.

Example 4.2 Comparison of two Options, Reduction in Run Time
The reduction in run time due to a new compiler option is given in

Figure 2.7. Assume that we know that the data comes from some iid
Xi∼ Nμ,σ2 . This may be argued and will be discussed again, but it is
convenient to simplify the discussion here. We do not know μ or σ.
We want to test H0: μ = 0 against H1: μ > 0. Here, θ = (μ, σ),
Θ = [0,∞) × (0,∞) and Θ0 = {0} × (0,∞). An intuitive definition of
a test is to reject H0 if the sample mean is large enough; if we rescale

(1)In all generality, one should also consider randomized tests, whose output may be a
random function of (x1, . . . , xn). See [81] for further details. We do not use such tests
in our setting

The Neyman Pearson Framework 111

the sample mean by its estimated standard deviation, this gives the
rejection region

C =

⎧⎪⎨
⎪⎩(x1, . . . , xn) such that

x̄
sn√
n

> c

⎫⎪⎬
⎪⎭ (4.1)

for some value of c to be defined later and with, as usual, x̄ = 1
n

∑n
i=1Xi

and s2n = 1
n

∑n
i=1

(
Xi − x̄

)2.
The size of the test is the maximum probability of C for θ ∈ Θ0. We
have

P

(√
n
x̄

sn
> c

∣∣∣ μ = 0 , σ
)

≈ 1 −N0,1(c)

where N0,1 is the CDF of the standard Gaussian distribution. Note
that this is independent of σ and therefore

α = sup
σ>0

(
1 −N0,1(c)

)
= 1 −N0,1(c)

If we want a test size equal to 0.05, we need to take c = 1.645. For the
data at hand the value of the test statistic is

√
n x̄

n
= 5.05 > c, and we

therefore reject H0 and decide that the mean is positive.
The power function is

β(μ, σ) def= P

(√
n
x̄

sn
> c

∣∣∣ μ , σ
)

= P

(√
n
x̄− μ

sn
> c−√

n
μ

sn

∣∣∣ μ , σ
)

≈ 1 −N0,1

(
c−√

n
μ

σ

)
(4.2)

Figure 4.2 plots the power as a function of μ when c = 1.645 and for σ
replaced by its estimator value sn . For μ close to 0, the power is poor
(i.e. the probability of deciding H1 is very small). This is unavoidable
as limμ→0 β(μ, σ) = α.

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.2 The power as a function of μ for Example 4.2.

112 Tests

For the present data, we estimate the power by setting μ = x̄ and
σ = sn in (4.2). For a test size equal to 0.05 (i.e. for c = 1.645), we
find 0.9997. The probability of a type-2 error (deciding for H0 when H1

is true) is thus approximately 0.0003, a very small value. If we select
α = 0.1% as test size, we find that the type-2 error probability is 2.5%.

The previous example shows that the test size does not say everything. In
Figure 4.2, we see that there is a “grey zone” (values of μ below, say, 15) where
the power of the test is not large. If the true parameter is in the grey zone, the
probability of a type-2 error may be large, i.e. it is not improbable that the
test will accept H0 even when H1 is true. It is important to keep the following
in mind: a test may accept H0 because it truly holds, but also because it is
unable to reject it. This is the fundamental asymmetry of the Neyman-Pearson
framework.

The power function can be used to decide on the size α of the test, at least
in theory, as illustrated below.

Example 4.3 Optimal Test Size
Continuation of Example 4.2. Assume that we consider a reduction in
run time to be negligible if it is below μ∗. We want the probability of
deciding H0 when the true value is equal to μ∗ or more to be similar to
the size α, i.e. we want to balance the two types of errors. This gives
the equations

1 −N0,1 (c∗) = α

1 −N0,1

(
c∗ −√

n
μ∗

sn

)
= 1 − α

and thus
N0,1 (c∗) +N0,1

(
c∗ −√

n
μ∗

sn

)
= 1

By symmetry of the Gaussian PDF around its mean, we have

if N0,1(x) +N0,1(y) = 1 then x+ y = 0

from where we derive
c∗ =

√
n
μ∗

2sn

The table below gives a few numerical examples, together with the
corresponding test size α∗ = 1 −N0,1 (c∗).

resolution μ∗ optimal threshold c∗ size α∗

10 0.97 0.17

20 1.93 0.02

40 3.87 5.38 e − 005

The Neyman Pearson Framework 113

We see that if we take care to validly detect reductions in run time
as small as μ∗ = 10 ms, we should have a test size of 17% or more.
In contrast, if the resolution μ∗ is 20 ms, then a test size of 2% is
appropriate.

4.1.3 p-value of a Test

For many tests, the rejection region has the form
{
T (�x) > m0

}
, where �x is the

observation, T (·) is a certain mapping, and m0 is a parameter that depends on
the size α of the test. In Example 4.2, we can take T (�x) =

√
n x̄

sn
.

Definition 4.1
The p-value of an observation �x is

p∗(�x) = sup
θ∈Θ0

P
(
T (�X) > T (�x) | θ)

In this formula, �X is a random vector that represents a hypothetical repli-
cation of the experiment, whereas �x is the data that we have observed.

The mapping m �→ supθ∈Θ0
P
(
T (�X) > m | θ) is monotonic nonincreasing,

and usually decreasing. Assuming the latter, we have the equivalence

p∗(�x) < α⇐⇒ T (�x) > m0

In other words, instead of comparing the test statistic T (�x) against the thresh-
old m0, we can compare the p-value to the test size α:

The test rejects H0 when the p-value is smaller than the test size α.

The interest of the p-value is that it gives more information than just a
binary answer. It is in fact the minimum test size required to reject H0. Very
often, software packages return p-values rather than hard decisions (H0 or H1).

Example 4.4 (Continuation of Example 4.2)

The p-value is p∗ = 1−N0,1

(√nx̄
sn

)
. We find p∗ = 2.2476 e− 007 which

is small, therefore we reject H0.

4.1.4 Tests are just Tests

When using a test, it is important to make the distinction between statistical
significance and practical relevance. Consider for example a situation, as in
Example 4.2, where we want to test whether a mean μ satisfies μ = μ0 = 0
or μ > μ0. We estimate the theoretical mean μ by the sample mean x̄. It
is never the case that μ = x̄ exactly. A test concerns deciding whether the
distance between μ0 and x̄ can be explained by the randomness of the data
alone (in which case we should decide that μ = μ0), or by the fact that we
truly have μ > μ0. Statistical significance means that, in a case where we find
x̄ > μ0, it is possible to conclude that there is a real difference, i.e. μ > μ0.

114 Tests

Practical relevance means that the difference μ−μ0 is important for the system
under consideration. It may well be the case that a difference is statistically
significant (e.g. with a very large data set) but practically irrelevant, and vice
versa (e.g. when the data set is small).

In some cases, tests can be avoided by employing confidence intervals. This
applies to matching pairs as in Example 4.2: a confidence interval for the mean
can be readily obtained by Theorem 2.2. At the level 0.05, the confidence
interval is [15.9, 36.2], and we can thus conclude that μ > 0 (and further that
we have a lower bound on μ).

More generally, consider a generic model parameterized with some θ ∈ Θ ⊂
R. For testing

θ = θ0 against H1: θ �= θ0

we can take as the rejection region
∣∣∣θ̂ − θ0

∣∣∣ > c

If θ̂ ± c is a confidence interval at level 1 − α, then the size of this test is
precisely α. For such cases, we do not need to use tests, since we can simply
use confidence intervals as discussed in Chapter 2. However, it is often dificult,
even impossible, to reduce a test to the computation of confidence intervals, as
for instance with unpaired data in Example 4.1 (though it is possible to use
confidence sets rather than confidence intervals).

4.2 Likelihood Ratio Tests

In this section we introduce a generic framework, very frequently used for con-
structing tests. It does not give UMP tests (as this is, in general, not possible),
but the tests are asymptotically UMP (under the conditions of Theorem 4.3).
We give the application to simple tests for paired data and for goodness of fit.
Note that deciding which test is best is sometimes controversial, and the best
tests, in the sense of UMP, are not always the likelihood ratio tests [61]. Note
also that the issue of which criterion to use in order to decide that a test is best
is disputed [79]. In our context, likelihood ratio tests are appealing as they are
simple and generic.

4.2.1 Definition of Likelihood Ratio Tests

Assumptions and Notations

We assume a nested model setting, with H0
def= “θ ∈ Θ0” whereas H1

def= “θ ∈
Θ\Θ0”. For a given statistic (random variable) �X and value �x of �X, we define:

• l�x(θ) def= f �X(�x | θ) where f �X(· | θ) is the probability density of the model,
when the parameter is θ.

Likelihood Ratio Tests 115

• l�x(H0) = supθ∈Θ0
l�x(θ).

• l�x(H1) = supθ∈Θ l�x(θ).

For example, we assume that some data comes from an iid sequence of
normal RVs ∼ N(μ, σ), and we want to test μ = 0 versus μ �= 0. Here Θ ={
(μ, σ > 0)

}
and Θ0 =

{
(0, σ > 0)

}
.

If H0 is true, then, the likelihood is approximately, at a maximum for
θ ∈ Θ0 and thus l�x(H0) = l�x(H1). In the opposite case, the maximum likelihood
is probably reached at some θ ∈/Θ0 and thus l�x(H1) > l�x(H0). This gives the
idea for a generic family of tests:

Definition 4.2
The likelihood ratio test is defined by the rejection region

C =
{
l�x(H1) − l�x(H0) > k

}
where k is chosen based on the required size of the test.

The test statistic l�x(H1) − l�x(H0) is called likelihood ratio for the two
hypotheses H0 and H1.

We thus reject θ ∈ Θ0 when the likelihood ratio statistic is large. The
Neyman-Pearson lemma [104, Section 6.3] tells us that, in the simple case where
Θ0 and Θ1 contain only one value each, the likelihood ratio test minimizes the
probability of a type-2 error. Many tests used in this lecture are actually
likelihood ratio tests. As we will see later, for a large sample size, there are
simple, generic results for such tests.

There exists a link to the theory of the maximum likelihood estimation.
Under the conditions in Definition B.1, we define

• θ̂0: the maximum likelihood estimator of θ when we restrict θ to be in Θ0

• θ̂: the unrestricted maximum likelihood estimator of θ

Consequently, l�x(H0) = l�x(θ̂0) and l�x(H1) = l�x(θ̂). In the rest of this section
and in the following two, we show applications to various settings.
Question 4.1 Why can we be sure that l�x(θ̂) − l�x(θ̂0) ≥ 0?(2)

Example 4.5 Continuation of Example 4.2, Compiler Options
We want to test H0: μ = 0 against H1: μ > 0. The log-likelihood of

an observation is

l�x(μ, σ) =
−n
2

ln(2πσ2) − 1
2σ2

∑
i

(
xi − μ

)2

and the likelihood ratio statistic is

l�x(H1) − l�x(H0) = sup
μ≥0,σ>0

l�x(μ, σ) − sup
σ>0

l�x(0, σ) = −n ln
σ̂1

σ̂0

(2)As long as the MLEs exist: by definition, l�x(θ̂) ≥ l�x(θ) for any θ.

116 Tests

with

σ̂2
0 =

1
n

∑
i

x2
i

σ̂2
1 =

1
n

∑
i

(
x2

i − μ̂+
n

)2

μ̂+
n = max(x̄, 0)

The likelihood ratio test has a rejection region of the form l�x(H1) −
l�x(H0) > k, which is equivalent to

σ̂1 < kσ̂0 (4.3)

In other words, we reject H0 if the estimated variance under H1 is
small. Such a test is called “Analysis of Variance”.
We can simplify the definition of the rejection region by first noting
that σ̂1 ≤ σ̂0, and that we consequently must have k ≤ 1. Second, if
x̄ ≥ 0, then (4.3) is equivalent to

√
n x̄

sn
> c for some c. Third, if x̄ ≤ 0,

then (4.3) is never true. In summary, we have shown that this test is
the same as the ad-hoc test developed in Example 4.2.

4.2.2 Student Test for Single Sample (or Paired Data)

This test applies to a single sample of data, assumed to be normal with an
unknown mean and variance. It can also be applied to two paired samples, after
computing the differences. It is thus the two-sided variant of Example 4.5. The
model is: X1, . . . , Xn ∼ iidNμ,σ2 where μ and σ are not known. The hypotheses
are

H0: μ = μ0 against H1: μ �= μ0

where μ0 is a fixed value. We compute the likelihood ratio statistic and find
after some algebra

l�x(H1) − l�x(H0) =
n

2
ln

⎛
⎜⎜⎝1 +

n(x̄− μ0)2∑
i

(xi − x̄)2

⎞
⎟⎟⎠

Let T (�x) =
√
n x̄−μ0

σ̂ be the student statistic (Theorem 2.3), with σ̂2 =
1

n−1

∑
i(xi − x̄)2. We can write the likelihood ratio statistic as

l�x(H1) − l�x(H0) =
n

2
ln
(

1 +
T (�x)2

n− 1

)
(4.4)

which is an increasing function of |T (�x)|. The rejection region thus has the
form

C =
{∣∣T (�x)

∣∣ > η
}

Likelihood Ratio Tests 117

We compute η from the condition that the size of the test is α. Under H0,
T (�X) has a student distribution tn−1 (Theorem 2.3). Thus

η = t−1
n−1

(
1 − α

2

)
(4.5)

For example, for α = 0.05 and n = 100, η = 1.98.
The p-value is

p∗ = 2
(
1 − tn−1

(
T (�x)

))
(4.6)

Example 4.6 Paired Data
This is a variant of Example 4.2. Consider again the reduction in run
time due to a new compiler option, as given in Figure 2.7 on Page 35.
We want to test whether the reduction is significant. We assume the
data to be iid normal and use the Student test:

H0: μ = 0 against H1:μ �= 0
The test statistic is T (�x) = 5.05, which is larger than 1.98, so we
reject H0. Alternatively, we can compute the p-value and obtain p∗ =
1.80 e− 006, which is small, leading use to reject H0.

As argued in Section 4.1.4, the Student test is equivalent to the confidence
interval, and there is thus no need to use it. However, it is very commonly used
by others, so it is important to understand what it does and when it is valid.

4.2.3 The Simple Goodness of Fit Test

Assume that we are given n data points x1, . . . , xn, considered to be generated
from an iid sequence, and we want to verify whether their common distribution
is a given distribution F (·). A traditional method is to compare the empiri-
cal histogram to the theoretical one. Applying this idea gives the following
likelihood ratio test, known as the simple goodness of fit test as the null
hypothesis applies for a given, fixed distribution F (·) (as opposed to a family
of distributions, which would give a composite goodness of fit test).

To compute the empirical histogram, we partition the set of values of �X
into bins Bi. Let Ni =

∑n
k=1 1{Bi}(Xk) (number of observations that falls in

bin Bi) and qi = P{X1 ∈ Bi}. If the data comes from the distribution F (·),
the distribution of N is multinomial Mn,�q , i.e.

P{N1 = n1, . . . , Nk = nk} =

⎛
⎝ n!

n1! · · ·nk!

⎞
⎠ qn1

1 · · · qnk

k (4.7)

The test is

H0: Ni comes from the multinomial distribution Mn,�q

against

H1: Ni comes from a multinomial distribution Mn,�p for some arbi-
trary �p

118 Tests

We now compute the likelihood ratio statistic. The parameter is θ = �p.
Under H0, there is only one possible value so θ̂0 = �q. From (4.7), the likelihood
is

l�x(�p) = C +
k∑

i=1

ni ln(pi) (4.8)

where ni =
∑n

k=1 1{Bi}(xk) and C = ln(n!) −∑k
i=1 ln(ni!). C is a constant

and can be ignored from here on. To find θ̂, we have to maximize (4.8), subject
to the constraint

∑k
i=1 pi = 1. The function to maximize is concave in pi, so

we can find the maximum by the Lagrangian technique. The Lagrangian is

L(�p, λ) =
k∑

i=1

ni ln(pi) + λ

(
1 −

k∑
i=1

pi

)
(4.9)

The equations ∂L
∂pi

= 0 give ni = λpi. Consider first the case ni �= 0 for all i.
We find λ by the constraint

∑k
i=1 pi = 1, which gives λ = n and thus p̂i = ni

n .
Finally, the likelihood ratio statistic is

l�x(H1) − l�x(H0) =
k∑

i=1

ni ln
ni

nqi
(4.10)

In the case where ni = 0 for some i, the formula is the same if we adopt the
convention that, in (4.10), the term ni ln ni

nqi
is replaced by 0 whenever ni = 0.

We now compute the p-value, which is equal to

P

(
k∑

i=1

Ni ln
Ni

nqi
>

k∑
i=1

ni ln
ni

nqi

)
(4.11)

where �N has the multinomial distribution Mn,�q.
For large n, Section 4.4 provides a simple approximation for the p-value. If

n is not large, there is no known closed form, but we can use the Monte Carlo
simulation as discussed in Section 6.4.

Example 4.7 Mendel [104]
Mendel crossed peas and classified the results into 4 classes i = 1, 2, 3, 4.
If his genetic theory is true, the probability that a pea belongs to class i
is q1 = 9

16 , q2 = q3 = 3
16 , q4 = 1

16 . In one experiment, Mendel obtained
n = 556 peas, with n1 = 315, n2 = 108, n3 = 102 and n4 = 31. The
test is

H0: “�q = �p ” against H1 : “�p is arbitrary”
The test statistic is

k∑
i=1

ni ln
ni

nqi
= 0.3092 (4.12)

We find the p-value by Monte Carlo simulation (Example 6.8) and find
p = 0.9191±0.0458. The p-value is (very) large, and we thus accept H0.

ANOVA 119

Question 4.2 Assume that we compute the p-value of a test by Monte Carlo
simulation with 100 replicates and find an estimated p equal to 0. Can we say
that the p-value is small enough to reject H0?(3)

4.3 ANOVA

In this section, we cover a family of exact tests for when we can assume that
the data is normal. The tests apply primarily to cases with multiple, unpaired
samples.

4.3.1 Analysis of Variance (ANOVA) and F -tests

Analysis of variance (ANOVA) is used when we can assume that the data
is a family of independent normal variables, with an arbitrary family of means,
but with a common variance. The goal is to test a certain property of the
mean. The name ANOVA is explained by Theorem 4.1.

ANOVA is found under many variants, and the basis is often obscured by
complex computations. All variants of ANOVA are based on a single result,
which we give next; they differ only in the details of the linear operators ΠM

and ΠM0 introduced below.

Assumptions and Notations for ANOVA

• The data is a collection of independent, normal random variablesXr, where
the index r is in some finite set R (with |R| = number of elements in R).

• Xr ∼ Nμr ,σ2 , i.e. all variables have the same variance (this is pompously
called “homoscedasticity”). The common variance is fixed but unknown.

• The means μr satisfy some linear constraints, i.e. we assume that �μ def=
(μr)r∈R ∈ M , where M is a linear subspace of R

R. Let k = dimM .
The parameter of the model is θ = (�μ, σ) and the parameter space is
Θ = M × (0,+∞)

• We want to test the nested model �μ ∈M0, where M0 is a linear sub-space
of M . Let k0 = dimM0. We have Θ0 = M0 × (0,+∞).

• ΠM (resp. ΠM0) is the orthogonal projector on M (resp. M0)

Example 4.8 Nonpaired Data
(Continuation of Example 4.1.) Consider the data for one parameter
set. The model is

Xi = μ1 + ε1,i Yj = μ2 + ε2,j (4.13)

with εi,j ∼ iid N0,σ2 . We can model the collection of variables as
X1, . . . , Xm, Y1, . . . , Yn thus R = {1, . . . ,m+ n}. We then have

(3)A confidence interval for the p-value at level γ is given by Theorem 2.4 and is equal
to [0, 3.689

R
] where R is the number of replicates. We obtain p ≤ 0.037 at confidence

γ = 0.95, and we thus reject H0.

120 Tests

• M =
{
(μ1, . . . μ1, μ2, . . . μ2), μ1 ∈ R, μ2 ∈ R

}
and k = 2;

• M0 =
{
(μ, . . . μ, μ, . . . μ), μ ∈ R

}
and k0 = 1;

• ΠM (x1, . . . , xm, y1, . . . , yn) = (x̄, . . . , x̄, ȳ, . . . , ȳ), where

x̄ =
∑m

i=1 xi

m
and ȳ =

∑n
j=1 yj)
n

• ΠM0(x1, . . . , xm, y1, . . . , yn) = (z̄, . . . , z̄, z̄, . . . , z̄), where

z̄ =

∑m
i=1 xi +

∑n
j=1 yj

m+ n

This model is an instance of what is called “one way ANOVA”.

Example 4.9 Network Monitoring
A network monitoring experiment tries to detect changes in user be-
havior by measuring the number of servers inside the intranet accessed
by users. Three groups were measured, with 16 measurements in each
group. Only the average and standard deviations of the numbers of
accessed servers are available:

Group Mean number of remote servers Standard deviation

1 15.0625 3.2346

2 14.9375 3.5491

3 17.3125 3.5349

(Here, the standard deviation is
√

1
n−1

∑n
i=1(xi − x̄)2). The model is

Xi,j = μi + εi,j 1 ≤ ni i = 1, . . . , k (4.14)

with εi,j ∼ iid N0,σ2 . It is also called the one-way ANOVA model (one
way because there is one “factor”, index i). Here i represents the group,
and j is one measurement for one member of the group. The collection
is Xr = Xi,j so R =

{
(i, j), i = 1, . . . , k = 3 and j = 1, . . . , ni

}
and

|R| =
∑

i ni. We have
• M =

{
(μi,j), such that μi,j = μi, ∀i, j}; the dimension of M is

k = 3.
• M0 =

{
(μi,j) such that μi,j = μ, ∀i, j} and k0 = 1.

• ΠM (�x) is the vector whose (i, j)th coordinate is independent of j

and is equal to x̄i·
def=

Pni
j=1 xi,j

ni
.

• ΠM0(�x) is the vector whose coordinates are all identical and equal
to the overall mean x̄··

def=
P

i,j xi,j

|R| .

ANOVA 121

Theorem 4.1 (ANOVA)
Consider an ANOVA model as defined above. The p-value of the likelihood
ratio test of H0: “�μ ∈ M0, σ > 0” against H1: “�μ ∈ M \ M0, σ > 0”
is p∗ = 1 − Fk−k0,|R|−k(f), where Fm,n(·) is the Fisher distribution with
degrees of freedom m,n, and �x is the dataset. Moreover,

f =
SS2/(k − k0)
SS1/(|R| − k)

(4.15)

SS2 =
∥∥μ̂− μ̂0

∥∥2 (4.16)

SS1 =
∥∥�x− μ̂

∥∥2 (4.17)
μ̂0 = ΠM0(�x) (4.18)
μ̂ = ΠM (�x) (4.19)

(The norm is euclidian, i.e.
∥∥�x∥∥2 =

∑
r x

2
r.)

x

SS1

M0

M

SS2

SS0

µ0

µ

Figure 4.3 Illustration of quantities in Theorem 4.1.

The theorem, the proof of which is a direct application of the general
ANOVA theorem C.7, can be understood as follows. The maximum likelihood
estimators under H0 and H1 are obtained by orthogonal projection:

μ̂0 = ΠM0(�x) σ̂2
0 =

1
|R|

∥∥�x− μ̂0

∥∥2

μ̂ = ΠM (�x) σ̂2 =
1
|R|

∥∥�x− μ̂
∥∥2

The likelihood ratio statistic can be computed explicitly and is equal to
− |R|

2 ln SS1
SS0 = |R|

2 ln(1 + SS2
SS1), where SS0 def= ‖�x− μ̂0‖2 = |R| σ̂2

0 = SS1+SS2.
Under H0, the distribution of f , given by (4.15), is Fisher Fk−k0,|R|−k. Conse-
quently we can compute the p-value exactly. The equality SS0 = SS1 + SS2
can be interpreted as a decomposition of a sum of squares, as follows. Con-
sider Θ0 as the base model, with k0 dimensions for the mean; we ask ourselves

122 Tests

whether it is worth considering the more complex model Θ, which has k > k0

dimensions for the mean. From its definition, we can interpret those sums of
squares according to the following.

• SS2 is the sum of squares explained by the model Θ, or explained variation.

• SS1 is the residual sum of squares.

• SS0 is the total sum of squares.

The likelihood ratio test accepts Θ when SS2/SS1 is large, i.e. when the
percentage of the sum of squares SS2/SS1 (also called percentage of variation),
explained by the model Θ, is high.

The dimensions are interpreted as degrees of freedom: SS2 (explained vari-
ation) is in the orthogonal of M0 in M , with dimension k− k0 and the number
of degrees of freedom for SS2 is k − k0; SS1 (residual variation) is the square
of the norm of a vector that is orthogonal to M and the number of degrees of
freedom for SS1 is |R| − k. This explains the name “ANOVA”: the likelihood
ratio statistic depends only on estimators of variance. Note that this is very
specific for homoscedasticity.

Table 4.1 ANOVA Tests for Example 4.1 (nonpaired data).

Parameter Set 1 SS df MS F Prob>F

Columns 13.2120 1 13.2120 13.4705 0.0003116

Errors 194.2003 198 0.9808

Total 207.4123 199

Parameter Set 2 SS df MS F Prob>F

Columns 5.5975 1 5.5975 4.8813 0.0283

Errors 227.0525 198 1.1467

Total 232.6500 199

Parameter Set 3 SS df MS F Prob>F

columns 0.1892 1 0.1892 0.1835 0.6689

Errors 204.2256 198 1.0314

Total 204.4148 199

Example 4.10 Application to Example 4.1, Compiler Options
We assume homoscedasticity. We verify this hypothesis later by apply-
ing the test in Section 4.3.2. The theorem gives the following compu-
tations:

ANOVA 123

• μ̂ =
(
X̄, . . . , X̄, Ȳ , . . . , Ȳ

)
and

σ̂ =
1

m+ n

⎛
⎝∑

i

(
Xi − X̄

)2 +
∑

j

(
Yj − Ȳ

)2
⎞
⎠

• μ̂0 =
(
Z̄, . . . , Z̄, Z̄, . . . , Z̄

)
with Z̄ = mX̄+nȲ

m+n and

σ̂0 =
1

m+ n

⎛
⎝∑

i

(
Xi − Z̄

)2 +
∑

j

(
Yj − Z̄

)2
⎞
⎠

• SS1 =
∑

i

(
Xi − X̄

)2 +
∑

j

(
Yj − Ȳ

)2 = SXX + SY Y ;

• SS2 = m
(
Z̄ − X̄

)2 + n
(
Z̄ − Ȳ

)2 =
(
X̄−Ȳ

)2
1/m+1/n ;

• the f value is SS2
SS1/(m+n−2) .

The ANOVA tables for parameter sets 1 to 3 are given in Table 4.1.
The F-test rejects the hypothesis of the same mean for parameter sets
1 and 2, and accepts it for parameter set 3. The software employed to
produce this example uses the following terminology:

• SS2: “Columns” (explained variation, variation between columns,
or between groups).

• SS1: “Error” (residual variation, unexplained variation).
• SS0: “Total” (total variation).

Question 4.3 Compare to the confidence intervals given in the introduc-
tion.(4)

Question 4.4 What are SS0, SS1 and SS2 for parameter set 1?(5)

Example 4.11 Network Monitoring
The numerical solution of Example 4.9 is shown in the table below. We
thus accept H0, i.e. the three measured groups are similar, though the
evidence is not strong.

Source SS df MS F Prob>F

Columns 57.1667 2 28.5833 2.4118 0.1012

Errors 533.3140 45 11.8514

Total 590.4807 47

(4)For parameter set 1, the conclusion is the same as with the confidence interval. For
parameter sets 2 and 3, confidence intervals did not render it possible to draw any
conclusions. ANOVA disambiguates these two cases.

(5)The column “SS” gives, from top to bottom: SS2, SS1 and SS0.

124 Tests

Question 4.5 Write down the expressions of MLEs, SS1, SS2 and the F -
value.(6)

The Student test as a special case of ANOVA

In the special case where k− k0 = 1 (as in Example 4.1), the F -statistic is the
square of a student statistic, and a student test could be used instead. This is
employed by certain statistics packages.

Testing for specific Values

By an additive change of variable, we can extend the ANOVA framework to the
case where M0 ⊂M are affine (instead of linear) varieties of R

R. This includes
testing for a specific value. For example, assume we that have the model

Xi,j = μi + εi,j (4.20)

with εi,j ∼ iid N0,σ2 . We want to test

H0: “μi = μ0 for all i” against H1: “μi unconstrained”

We change models by letting X ′
i,j = Xi,j − μ0 and we are back to the ANOVA

framework.

4.3.2 Testing for a Common Variance

We often need to verify that the common variance assumption holds. Here
too, a likelihood ratio test gives the answer. In the general case, the p-value
of the test cannot be computed in closed form, so we use either Monte Carlo
simulation or an asymptotic approximation. When the number of groups is 2,
there is a closed form using the Fisher distribution.

We are given a data set with I groups xi,j , i = 1, . . . , I, j = 1, . . . , ni; the
total number of samples is n =

∑I
j=1 nj . We assume that it is a realization

of the model Xi,j ∼ iid Nμi,σ2
i
. We assume that the normal assumption holds

and wish to test

H0: σi = σ > 0 for all i against H1: σi > 0

Theorem 4.2 (Testing for Common Variance)
The likelihood ratio statistic � of the test of common variance under the

(6)μ̂ is the vector whose (i, j)th coordinate is independent of j and is equal to X̄i·
def
=Pni

j=1
Xi,j

ni
.

SS1 =
P

i,j(Xi,j − X̄i·)2 ; σ̂2 = 1
|R|SS1.

μ̂0 is the vector whose coordinates are all identical and equal to the overall mean

X̄··
def
=

P
i,j Xi,j

|R|
SS2 =

P
i ni(X̄i· − X̄··)2; SS0 = SS1 + SS2; σ̂2

0 = 1
|R|SS0; F = SS2 |R|−k

[SS1(k−1)]
.

ANOVA 125

hypothesis above is given by

2� = n ln(s2) −
I∑

i=1

ni ln(s2i) (4.21)

with

μ̂i
def=

1
ni

I∑
j=1

xi,j s2i
def=

1
ni

I∑
j=1

(
xi,j − μ̂i

)2

s2
def=

1
n

I∑
i=1

ni∑
j=1

(
xi,j − μ̂i

)2 =
I∑

i=1

ni

n
s2i

The test rejects H0 when � is large. The p-value is

p = P

(
n log

I∑
i=1

Zi −
I∑

i=1

ni logZi > 2�+ n logn−
I∑

i=1

ni logni

)
(4.22)

where Zi are independent random variables, Zi ∼ χ2
ni−1 and Z =

∑I
i=1

ni

n Zi.
The p-value can be computed by Monte Carlo simulation. When n is large,
we have

p ≈ 1 − χ2
I−1(2�) (4.23)

In the special case I = 2, we can replace the statistic � by

f
def=

σ̂2
1

σ̂2
2

with σ̂2
i

def=
1

ni − 1

I∑
j=1

(
xi,j − μ̂i

)2

and the distribution of f under H0 is Fisher Fn1−1,n2−1. The test at size α
rejects H0 when f < η or f > ξ with Fn1−1,n2−1(η) = α

2 , Fn1−1,n2−1(ξ) =
1 − α

2 . The p-value is

p = Fn1−1,n2−1

(
min

(
f,

1
f

)
− Fn1−1,n2−1

(
max

(
f,

1
f

))
+ 1

)
(4.24)

Example 4.12 Network Monitoring again
We want to test whether the data in groups 1 and 2 in Example 4.9
have the same variance. We have η = 0.3494, ξ = 2.862; the F statistic
is 0.8306 so we accept H0, i.e. the fact that the variance is the same.
Alternatively, we can use (4.24) and find p = 0.7239, which is large
leading us to accept H0.
Of course, we are more interested in comparing the 3 groups together.
We apply (4.21) and find as the likelihood ratio statistic � = 0.0862.
The asymptotic approximation gives p ≈ 0.9174, but since the number
of samples n is not large we do not trust it. We evaluate (4.22) by

126 Tests

Monte Carlo simulation; with R = 104 replicates we find a confidence
interval for the estimated p-value of [0.9247; 0.9347]. We conclude that
the p-value is very large, and we thus accept that the variance is the
same.

4.4 Asymptotic Results

In many cases it is hard to find the exact distribution of a test statistic. An
interesting feature of likelihood ratio tests is that we have a simple asymptotic
result. We used this result already in the test for equal variance in Section 4.3.2.

4.4.1 Likelihood Ratio Statistic

The following theorem derives immediately from Theorem B.2.

Theorem 4.3 ([32])
Consider a likelihood ratio test (Section 4.2) with Θ = Θ1 × Θ2, where
Θ1,Θ2 are open subsets of R

q1 ,Rq2 and denote θ = (θ1, θ2). Consider the
likelihood ratio test of H0 : θ2 = 0 against H1 : θ2 �= 0. Assume that the
conditions in Definition B.1 hold. Then, approximately, for large sample
sizes, under H0, 2lrs ∼ χ2

q2
, where lrs is the likelihood ratio statistic.

It follows that the p-value of the likelihood ratio test can be approximated
for large sample sizes by

p∗ ≈ 1 − χ2
q2

(2lrs) (4.25)

where q2 is the number of degrees of freedom that H1 adds to H0.

Example 4.13 Application to Example 4.1 (Compiler Options)
Using Theorem 4.1 and Theorem 4.3, we find that

2lrs def= N ln
(

1 +
SS2
SS1

)
∼ χ2

1

The corresponding p-values are
Parameter Set 1 pchi2 = 0.0002854
Parameter Set 1 pchi2 = 0.02731
Parameter Set 1 pchi2 = 0.6669

They are all very close to the exact values (given by ANOVA in Ta-
ble 4.1).

4.4.2 Pearson Chi-squared Statistic and Goodness of Fit

We can apply the large sample asymptotic to goodness of fit tests as defined
in Section 4.2.3. This gives a simpler means of computing the p-value, and
renders it possible to extend the test to the composite goodness of fit test,
defined as follows.

Asymptotic Results 127

Composite Goodness of Fit

As in Section 4.2.3, assume that we are given n data points x1, . . . , xn, gener-
ated from an iid sequence, and that we want to verify whether their common
distribution comes from a given family of distributions F (· | θ), where the pa-
rameter θ is in some set Θ0. We say that the test is composite because the
null hypothesis has several possible values of θ. We compare the empirical
histograms: we partition the set of values of �X into bins Bi, i = 1, . . . , I.
Let Ni =

∑n
k=1 1{Bi}(Xk) (number of observation that fall in bin Bi) and

qi = Pθ{X1 ∈ Bi}. If the data comes from a distribution F (· | θ) the distribu-
tion of Ni is multinomial Mn,�q(θ). The likelihood ratio statistic test is

H0: Ni comes from a multinomial distribution Mn,�q(θ), with θ ∈ Θ0

against

H1: Ni comes from a multinomial distribution Mn,�p for some arbi-
trary �p

We now compute the likelihood ratio statistic. The maximum likelihood
estimator of the parameter under H1 is the same as in Section 4.2.3. Let θ̂ be
the maximum likelihood estimator of θ under H0. The likelihood ratio statistic
is thus

lrs =
k∑

i=1

ni ln
ni

nqi(θ̂)
(4.26)

The p-value is

sup
θ∈Θ0

P

(
k∑

i=1

Ni ln
Ni

nqi
>

k∑
i=1

ni ln
ni

nqi(θ̂)

)
(4.27)

where �N has the multinomial distribution Mn,�q(θ̂). It can be computed by
Monte Carlo simulation as in the case of a simple test, but this may be difficult
because of the supremum.

An alternative for large n is to use the asymptotic result in Theorem 4.3.
It says that, for large n, under H0, the distribution of 2lrs is approximately
χ2

q2
, with q2 = the number of degrees of freedom that H1 adds to H0. Here H0

has k0 degrees of freedom (where k0 is the dimension of Θ0) and H1 has I − 1
degrees of freedom (where I is the number of bins). Thus the p-value of the
test is approximately

1 − χ2
I−k0−1(2lrs) (4.28)

Example 4.14 Impact of Estimation of (μ, σ)
We want to test whether the data set to the right in Figure 4.4 has
a normal distribution. We use a histogram with 10 bins, but we first
need to estimate θ̂ = (μ̂, σ̂).
(1) Assume that we do this by fitting a line to the qq-plot. We obtain

μ̂ = −0.2652, σ̂ = 0.8709. The values of nqi(θ̂) and ni are

128 Tests

7.9297 7.0000
11.4034 9.0000
18.0564 17.0000
21.4172 21.0000
19.0305 14.0000
12.6672 17.0000
6.3156 6.0000
2.3583 4.0000
0.6594 3.0000
0.1624 2.0000

The likelihood ratio statistic as in (4.26) is lrs = 7.6352. The p-
value is obtained using a χ2

7 distribution (q2 = 10 − 2 − 1): p1 =
0.0327, and we would thus reject normality at size 0.05.

(2) It might not be a good idea to simply fit (μ, σ) on the qq-plot.
A better way would be to use estimation theory, which suggests
determining (μ, σ) in order to maximize the log likelihood of the
model. This is equivalent to minimizing the likelihood ratio statistic
lH1(�x)− lμ,σ(�x) (note that the value of lH1(�x) is easy to compute).
This is done with a numerical optimization procedure and we now
find μ̂ = −0.0725, σ̂ = 1.0269. The corresponding values of nqi(θ̂)
and ni are thus:

8.3309 7.0000
9.5028 9.0000
14.4317 17.0000
17.7801 21.0000
17.7709 14.0000
14.4093 17.0000
9.4783 6.0000
5.0577 4.0000
2.1892 3.0000
1.0491 2.0000

Note how the true value of μ̂, σ̂ provides a better fit to the tail of
the histogram. The likelihood ratio statistic is now lrs = 2.5973,
which also presents a much better fit. The p-value, obtained using
a χ2

7 distribution is now p1 = 0.6362, and we thus accept that the
data is normal.

(3) Assume that we were to ignore that (μ, σ) is estimated from the
data, but go ahead as if the test were a simple goodness of fit test,
with H0: “The distribution is N−0.0725,1.0269” instead of H0: “The
distribution is normal”. We would compute the p-value using a χ2

9

distribution (q2 = 10 − 1) and would obtain: p2 = 0.8170, a value
larger than the true p-value. This is quite general: if we estimate
some parameter and pretend it is known a priori, we consequently
overestimate the p-value.

Pearson Chi-Squared Statistic

In the case where n is large, 2× the likelihood ratio statistic can be replaced
by the Pearson chi-squared statistic, which has the same asymptotic dis-

Asymptotic Results 129

tribution. It is defined by

pcs =
I∑

i=1

(
ni − nqi(θ̂)

)2
nqi

(
θ̂
) (4.29)

Indeed, when n is large we expect, under H0 that ni − nqi(θ̂) is relatively
small, i.e. that εi = ni

nqi(θ̂)
−1 is small. An approximation of 2lrs is found from

the second order development around ε = 0: ln(1 + ε) = ε − 1
2ε

2 + o(ε2) and
thus

lrs =
∑

i

ni
ni

nqi(θ̂)
n
∑

i

(1 + εi)qi(θ̂) ln(1 + εi)

= n
∑

i

(
εi − 1

2
ε2i + o(ε2i)(1 + εi)qi(θ̂)

)

= n
∑

i

qi(θ̂)εi

(
1 − 1

2
εi + o(εi)(1 + εi)

)

= n
∑

i

qi(θ̂)εi

(
1 +

1
2
εi + o(εi)

)

= n
∑

i

qi(θ̂)εi + n
∑

i

qi(θ̂)
1
2
ε2i + n

∑
i

o(ε2i)

Note that
∑

i qi(θ̂)εi = 0, thus

lrs ≈ 1
2
pcs (4.30)

The Pearson Chi-squared statistic was historically developed before the
theory of likelihood ratio tests, which explains why it is commonly used.

In summary, for large n, the composite goodness of fit test is solved by com-
puting either 2lrs or pcs. The p-value is 1−χ2

n−k0−1(2lrs) or 1−χ2
I−k0−1(pcs).

If either is small, we reject H0, i.e. we reject that the distribution of Xi comes
from the family of distributions F (· | θ).

Simple Goodness of Fit Test

This is a special case of the composite test. In this case, q2 = I − 1 and thus
the p-value of the test (given in (4.11)) can be approximated for large n by
1−χ2

I−1(2lrs) or 1−χ2
I−1(pcs). Also, the likelihood ratio statistic

∑k
i=1 ni ln ni

nqi

can be replaced by the Pearson-Chi-Squared statistic, equal to

I∑
i=1

(ni − nqi)2

nqi
(4.31)

130 Tests

Example 4.15 Mendel’s peas, continuation of Example 4.7
The likelihood ratio statistic is lrs = 0.3092 and we found by Monte
Carlo simulation a p-value p∗ = 0.9191 ± 0.0458. By the asymptotic
result, we can approximate the p-value by 1 − χ2

3(2lrs) = 0.8922.
The Pearson Chi-squared statistic is pcs = 0.6043, very close to 2lrs =
0.618. The corresponding p-value is 0.8954.

4.4.3 Test of Independence

Ideas equivalent to those in Section 4.4.2 can be applied to a test of indepen-
dence. We are given a sequence (xk, yk), which we interpret as a sample of the
sequence (Xk, Yk), k = 1, . . . , n. The sequence is iid ((Xk, Yk) is independent
of (Xk, Yk′) and has the same distribution).

We are interested in knowing whether Xk is independent of Yk. To this
end, we compute an empirical histogram of (X,Y), as follows. We partition
the set of values of X (resp. Y) into I (resp. J) bins Bi (resp. Cj). Let Ni,j =∑n

k=1 1{Bi}(Xk)1{Cj}(Yk) (number of observation that fall into bin (Bi, Cj))
and pi,j = P{X1 ∈ Bi and Y1 ∈ Cj}. The distribution of N is multinomial.
The test of independence is

H0: “pi,j = qirj for some q and r such that
∑

i qi =
∑

j rj = 1”
against
H1: “pi,j is arbitrary”

The maximum likelihood estimator under H0 is p̂0
i,j = ni·

n
n·j
n , where ni,j =∑n

k=1 1{Bi}(xk)1{Cj}(yk) and
⎧⎨
⎩

ni· =
∑

j ni,j

n·j =
∑

i ni,j

(4.32)

The maximum likelihood estimator under H1 is p̂1
i,j = ni,j

n . The likelihood
ratio statistic is thus

lrs =
∑
i,j

ni,j ln
nni,j

ni·n·j
(4.33)

To compute the p-value, we use, for large n, a χ2
q2

distribution. The number
of degrees of freedom under H1 is IJ − 1, and under H0 it is (I − 1) + (J − 1).
As a result, q2 = (IJ − 1) − (I − 1) − (J − 1) = (I − 1)(J − 1). The p-value
beomes thus

p∗ =
(
1 − χ2

(I−1)(J−1)

)
(2lrs) (4.34)

As in Section 4.4.2, 2lrs can be replaced, for large n, by the Pearson Chi-
squared statistic:

pcs =
∑
i,j

(
ni,j − ni·n·j

n

)2

ni·n·j
n

(4.35)

Other Tests 131

Example 4.16 Brassica Oleracea Gemmifera
A survey was conducted at the campus cafeteria, where customers were
asked whether they like Brussels sprouts. The answers were

i\j Male Female Total

Like 454 44.69% 251 48.08% 705 45.84%

Dislike 295 29.04% 123 23.56% 418 27.18%

No Answer/Neutral 267 26.28% 148 28.35% 415 26.98%

Total 1016 100% 522 100% 1538 100%

We wish to test whether the affinity to Brussels sprouts is independent
of customer’s gender. Here we have I = 3 and J = 2, so we use a
χ2 distribution with q2 = 2 degrees of freedom. The likelihood ratio
statistic and the p-value are

lrs = 2.6489 p = 0.0707 (4.36)

We thus accept H0, i.e. the affinity to Brussels sprouts is independent
of gender. Note that the Pearson Chi-squared statistic is

pcs = 5.2178 (4.37)

which is very close to 2lrs.

4.5 Other Tests

4.5.1 Goodness of Fit Tests based on Ad-Hoc Pivots

In addition to the Pearson χ2 test, the following two tests are often used. They
apply to a continuous distribution, thus do not require the observations to be
quantized. Assume that Xi, i = 1, . . . , n, are iid samples. We want to test H0:
the distribution of Xi is F against non H0.

We define the empirical distribution F̂ by

F̂ (x) def=
1
n

n∑
i=1

1{Xi≤x} (4.38)

Kolmogorov-Smirnov

The pivot is
T = sup

x

∣∣F̂ (x) − F (x)
∣∣

It is not entirely obvious that the distribution of this random variable is inde-
pendent of F , but it can be easily derived in the case where F is continuous

132 Tests

and strictly increasing, as follows. The idea is to change the scale on the x-axis
by u = F (x). Formally, we define

Ui = F (Xi)

so that Ui ∼ U(0, 1). Also

F̂ (x) =
1
n

∑
i

1{Xi≤x} =
1
n

∑
i

1{Ui≤F (x)} = Ĝ
(
F (x)

)

where Ĝ is the empirical distribution of the sample Ui, i = 1, . . . , n. By a
change of variable u = F (x), we have

T = sup
u∈[0,1]

∣∣Ĝ(u) − u
∣∣

which shows that the distribution of T is independent of F . Its distribution
is tabulated in statistical software packages. For a large n, its tail can be

approximated by τ ≈
√

−(ln α)

2 where P(T > τ) = α.

Anderson-Darling

Here the pivot is

A = n

∫
R

(
F̂ (x) − F (x)

)2
F (x)

(
1 − F (x)

) dF (x)

The test is similar to that of K-S but is less sensitive to outliers.
Question 4.6 Demonstrate that A is indeed a pivot.(7)

Example 4.17 File Transfer Data
We would like to test whether the data in Figure 4.4 and its log are
normal. We cannot directly apply Kolmogorov Smirnov since we do
not know exactly in advance the parameters of the normal distribution
to be tested against. An approximate method is to estimate the slope
and intercept of the straight line in the qq-plot. We obtain

Original Data
slope = 0.8155
intercept = 1.0421

Transformed Data
slope = 0.8709
intercept = -0.2652

For example, this means that for the original data we take for H0: “the
distribution is N(μ = 1.0421, σ2 = 0.81552)”. We can now use the
Kolmogorov-Smirnov test and obtain

Original Data h = 1 p = 0.0493
Transformed Data h = 0 p = 0.2415

(7)Use the fact that F̂ (x) = Ĝ
`
F (x)

´
and perform the change of variable u = F (x) in the

integral.

Other Tests 133

The test thus rejects the normality assumption for the original data
and accepts it for the transformed data.
Such an approach is approximate in that we use estimated parameters
for H0. This introduces a certain bias, similar to when using the normal
statistic instead of Student when we have a normal sample. The bias
should be small when the data sample is large, which is the case here.
A fix to this problem is to perform a variant of KS, for example the
Lilliefors test, or to use different normality tests such as Jarque Bera
(see Example 4.18) or Shapiro-Wilk. The Lilliefors test is a heuristic
that corrects the p-value of the KS to account for the uncertainty due to
estimation. In this specific example, with the Lilliefors test, we obtain
the same results.

−4 −2 0 2 4
−2

0

2

4

6

8

10

12

14

16

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

File Transfer Times

−4 −2 0 2 4
−3

−2

−1

0

1

2

3

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

Log of File Transfer Times

Figure 4.4 Normal qq-plots of file transfer data and its logarithm.

Jarque-Bera

The Jarque-Bera statistic is used to test whether an iid sample comes from a
normal distribution. It uses the skewness and kurtosis indices γ1 and γ2 defined
in Section 3.4.2. The test statistic is equal to n

6 (γ̂2
1 + γ̂2

2
4), the distribution

of which is asymptotically χ2
2 for a large sample size n. In the formula, γ̂1

and γ̂2 are the sample indices of skewness and kurtosis, obtained by replacing
expectations by sample averages in (3.13).

134 Tests

Example 4.18 Application to Example 4.17
We would like to test whether the data in Example 4.17 and its trans-
form are normal.

Original Data h = 1 p = 0.0010
Transformed Data h = 0 p = 0.1913

The conclusions are the same as in Example 4.17. Nevertheless, for
the original data, the normality assumption could be clearly rejected,
whereas it was borderline in Example 4.17.

4.5.2 Robust Tests

We give two examples of tests that make no assumption regarding the dis-
tribution of the sample (but do nonetheless assume it to be iid). They are
non-parametric in the sense that they do not assume a parameterized family
of densities.

Median Test

The model is Xi ∼ iid with some distribution F () with a density. We want to
test

H0: “the median of F is 0” against H1: “unspecified”

A simple test is based on confidence interval, as mentioned in Section 4.1.4.
Let I(�x) be a confidence interval for the median (Theorem 2.1). We reject H0 if

0 /∈ I(�x) (4.39)

This test is robust in the sense that it makes no assumptions other than inde-
pendence.

Wilcoxon Signed Rank Test

It is used for testing equality of distribution in paired experiments. It tests

H0: X1, . . . , Xn is iid with a common symmetric, continuous distribu-
tion, the median of which is 0

against

H1: X1, . . . , Xn is iid with a common symmetric, continuous distribu-
tion

The Wilcoxon signed rank statistic is

W =
n∑

j=1

rank
(|Xj |

)
sign(Xj)

where rank
(|Xj |

)
is the rank in increasing order (the smallest value has rank 1)

and sign(Xj) is −1 for negative data, +1 for positive data, and 0 for null data.
If the median is positive, then many values with high rank will be positive and

Other Tests 135

W will tend to be positive and large. We reject the null hypothesis when |W |
is large.

It can be shown that the distribution of W under H0 is always the same. It
is tabulated and contained in software packages. For non-small data samples, it
can easily be approximated by a normal distribution. The mean and variance
under H0 can easily be computed:

EH0(W) =
n∑

j=1

EH0

(
rank

(|Xj |
)
EH0

(
sign(Xj)

))

since, under H0, rank
(|Xj |

)
is independent of sign(Xj). Thus, EH0(W) = 0.

The variance is

EH0 (W
2) =

n∑
j=1

EH0

(
rank

(|Xj|
)2sign(Xj)2

)
=

n∑
j=1

EH0

(
rank

(|Xj |
)2)

since sign(Xj)2 = 1. Now,
∑

j rank
(|Xj |

)2 =
∑

j j
2 is non-random and thus

varH0(W) =
n∑

j=1

EH0

(
rank

(|Xj |
)2)

= EH0

⎛
⎝∑

j

rank
(|Xj |

)2
⎞
⎠ =

n∑
j=1

j2 =
n(n+ 1)(2n+ 1)

6

For large n, the test at size α rejects H0 if |W | > η
√

n(n+1)(2n+1)
6 with

N0,1(η) = 1 − α
2 (e.g. η = 1.96 at size 0.05). The p-value is

p = 2

⎛
⎜⎜⎝1 −N0,1

⎛
⎜⎜⎝ |W |√

n(n+ 1)(2n+ 1)
6

⎞
⎟⎟⎠
⎞
⎟⎟⎠ (4.40)

Example 4.19 Paired Data
This is a variant of Example 4.2. Consider again the reduction in run
time due to a new compiler option, as given in Figure 2.7. We want
to test whether the reduction is significant. We assume that the data
is iid, but not necessarily normal. The median test gives a confidence
interval

I(�x) = [2.9127; 33.7597]

which does not contain 0. Consequently, we reject H0.
Alternatively, let us use the Wilcoxon signed rank test. We obtain the
p-value

p = 2.3103 e− 005

and thus also rejects H0 with this test.

136 Tests

Wilcoxon Rank Sum Test and Kruskal-Wallis

The Wilcoxon rank sum test is used for testing equality of distribution in
non-paired experiments. It tests

H0: the two samples come from the same continuous distribution

against

H1: the distributions of the two samples are continuous and differ by
a location shift

Let X1
i , i = 1 . . . , n1, and X2

i , i = 1 . . . , n2, be the two iid sequences that
the data is assumed to be a sample of. The Wilcoxon rank sum statistic
R is the sum of the ranks of the first sample in the concatenated sample.

As for the Wilcoxon signed rank test, its distribution under the null hy-
pothesis depends only on the sample sizes and can be tabulated or, for a large
sample size, approximated by a normal distribution. The mean and variance
under H0 are

mn1,n2 =
n1(n1 + n2 + 1)

2
(4.41)

vn1,n2 =
n1n2(n1 + n2 + 1)

12
(4.42)

We reject H0 when the rank sum statistic deviates largely from its expec-
tation under H0. For large n1 and n2, the p-value is

p = 2
(

1 −N0,1

(|R−mn1,n2 |√
vn1,n2

))
(4.43)

Example 4.20 Nonpaired Data
The Wilcoxon rank sum test applied to Example 4.1 gives the following
p-values:

Parameter Set 1 p = 0.0002854
Parameter Set 2 p = 0.02731
Parameter Set 3 p = 0.6669

The results are the same as with ANOVA. H0 (same distribution) is
accepted for the 3rd data set only, at size= 0.05.

The Kruskal-Wallis test is a generalization of Wilcoxon Rank Sum to
more than 2 nonpaired data series. It tests (H0): the samples come from the
same distribution against (H1): the distributions may differ by a location shift.

Turning Point Test

This is a test of iid-ness. It tests

H0: X1, . . . , Xn is iid against H1: X1, . . . , Xn is not iid

Proofs 137

We say that the vector X1, . . . , Xn is monotonic at index i (i ∈ {2, . . .,
n− 1}) if

Xi−1 ≤ Xi ≤ Xi+1 or Xi−1 ≥ Xi ≥ Xi+1

and we further say that there is a turning point at i if the vector X1, . . . , Xn

is not monotonic at i. Under H0, the probability of a turning point at i is 2
3 .

(To see why, list all possible cases for the relative orderings of Xi−1, Xi, Xi+1.)
More precisely, let T be the number of turning points in X1, . . . , Xn. It can

be shown [18, 105] that, for large n, T is approximately N 2n−4
3 , 16n−29

90
. Thus,

the p-value for large n is approximatively

p = 2

⎛
⎝1 −N0,1

⎛
⎝
∣∣T − 2n−4

3

∣∣√
16n−29

90

⎞
⎠
⎞
⎠ (4.44)

4.6 Proofs

Proof of Theorem 4.2

We make a likelihood ratio test and compute the likelihood ratio statistic. We
need to first compute the maximum likelihood under H1. The log-likelihood of
the model is

l�x(�μ, �σ) = −1
2

⎡
⎣ln(2π) +

I∑
i=1

⎛
⎝2ni ln(σi) +

ni∑
j=1

(
�xi,j − μi

)2
σ2

i

⎞
⎠
⎤
⎦ (4.45)

To find the maximum under H1, observe that the terms in the summation
do not have cross dependencies. We can thus maximize each of the I terms
separately. The maximum of the ith term is for μi = μ̂i and σ2

i = s2i , and thus

l�x(H1) = −1
2

[
ln(2π) +

I∑
i=1

ni (2 ln(si) + 1)

]
= −1

2

[
ln(2π) + n+ 2

I∑
i=1

ni ln(si)

]

(4.46)
Under H0, the likelihood is as in (4.45) but with σi replaced by the common
value σ. To find the maximum, we use the ANOVA Theorem C.7. The maxi-
mum is obtained for μi = μ̂i and σ2 = s2 and thus

l�x(H0) = −1
2

[
ln(2π) +

I∑
i=1

ni
s2i
s2

+ 2n ln(s)

]
= −1

2
[ln(2π) + n+ 2n ln(s)]

(4.47)
The test statistic is the likelihood ratio statistic � = l�x(H1)− l�x(H0): and thus

2� = n ln(s2) −
I∑

i=1

ni ln(s2i) (4.48)

138 Tests

The test has the following form: reject H0 when lrs > K for some constant K.
The p-value can be obtained using Monte Carlo simulation. The problem is now
to compute P(T > 2�) where T is a random variable distributed according to

n ln(s2) −
I∑

i=1

ni ln(s2i) (4.49)

and assuming that H0 holds. Observe that all we need is to generate the
random variables s2i . They are independent, and Zi = nisi is distributed as
σ2χ2

ni−1 (Corollary C.3). Note that T is independent of the specific value of the
unknown but fixed parameter σ, and we can thus let σ = 1 in the Monte Carlo
simulation, which proves (4.22). Alternatively, one can use the large sample
asymptotic in Theorem 4.3, which gives (4.23).

When I = 2, we can rewrite the likelihood ratio statistic as

� =
1
2
[
n ln(n1F + n2) − n1 ln(F)

]
+ C (4.50)

where C is a constant term (assuming n1 and n2 are fixed) and F = s2
1

s2
2
. The

derivative of � with respect to F is

∂�

∂F
=

n1n2(F − 1)
2F (n1F + n2)

(4.51)

thus � decreases with F for F < 1 and increases for F > 1. Consequently, the
rejection region, defined as {� > K}, is also of the form {F < K1 or F > K2}.
Now define

f =
σ̂2

1

σ̂2
2

(4.52)

Note that f = FC′, where C′ is a constant, so the set {F < K1 or F > K2}
is equal to the set {fη or f > ξ} with η = C′K1 and ξ = C′K2. Under H0,
the distribution of F is Fisher with parameters (n1 −1, n2−1) (Theorem C.7),
so we have a Fisher test. The bounds η and ξ are classically computed by the
conditions Fn1−1,n2−1(η) = α

2 , Fn1−1,n2−1(ξ) = 1 − α
2 .

Last, note that, by the properties of the Fisher distribution, the particular
choice of η and ξ above is such that ξ = 1

η , so the rejection region is also defined
by

{
f > ξ or f < 1

ξ

}
. This is the same as

{
max(f, 1

f) > ξ
}
, a form suitable to

define a p-value (Section 4.1.3). Let g = max(f, 1
f) and X ∼ Fm,n. We then

have

p
def= P

(
max

(
X,

1
X1

)
> g

)
= P

(
X <

1
g

)
+ P (X > g)

= Fn1−1,n2−1

(
1
g

)
+ 1 − Fn1−1,n2−1(g)

which, together with 1
g = min(f, 1

f), gives (4.24).

Review 139

4.7 Review

4.7.1 Tests are just Tests

(1) The first test to perform on any data is a visual exploration. In most cases,
this is sufficient.

(2) Testing for a 0 mean or 0 median is the same as computing a confidence
interval for the mean or the median.

(3) Tests work only if the underlying assumptions are verified (in particular,
practically all tests, even robust ones, assume that the data comes from an
iid sample).

(4) Some tests work under a larger spectrum of assumptions (e.g. even if the
data is not normal). These are called robust tests, and should be preferred
whenever possible.

(5) Test whether the same variance assumption holds, otherwise, use robust
tests or asymptotic results.

(6) If you perform a large number of different tests on the same data, the
probability of rejecting H0 is larger than for any single test. So, contrary
to non-statistical tests, increasing the number of tests does not always
improve the decision.

4.7.2 Review Questions

4.1 What is the critical region of a test?(8)

4.2 What is a type-1 error? A type-2 error? The size of a test?(9)

4.3 What is the p-value of a test?(10)

4.4 What are the hypotheses for ANOVA?(11)

4.5 How do you compute a p-value by Monte Carlo simulation?(12)

(8)Call �x the data used for the test. The critical region C is a set of possible values of �x
such that, when �x ∈ C, we reject H0.

(9)A type-1 error occurs when the test says “do not accept H0” whereas the truth is H0.
A type-2 error occurs when the test says “accept H0” whereas the truth is H1. The size
of a test is supθ such that H0 is true Pθ(C) (= the worst case probability of a type 1
error).

(10)It applies to tests where the critical region is of the form T (�x) > m where T (�x) is
the test statistic and �x is the data. The p-value is the probability that T (�X) > T (�x),
where �X is a hypothetical data set, generated under the hypothesis H0. We reject H0

at size α if p > α.
(11)The data is iid, Gaussian, perhaps with different means but with the same variance.
(12)Generate R iid samples T r from the distribution of T (�X) under H0 and compute p̂ as

the fraction of times that T r > T (�x). We need R large enough (typically on the order
of 10, 000) and compute a confidence interval for p̂ using Theorem 2.4.

140 Tests

4.6 A Monte Carlo simulation returns p̂ = 0 as an estimate of the p-value.
Can we reject H0?(13)

4.7 What is the likelihood ratio statistic test in a nested model? What can we
say in general about its p-value?(14)

(13)We need to know the number R of Monte Carlo replicates. A confidence interval for
p is [0; 3.869/R] at level 95%; if R is on the order of 100 or more, we can reject H0 at
size 0.05.

(14)The test statistic is lrs, the log of the likelihood ratios under H1 and H0, and the test
rejects H0 if lrs is large. The nested model means that the model is parametric, with
some sets Θ0 ⊂ Θ such that H0 means θ ∈ Θ0 and H1 means θ ∈ Θ \ Θ0. If the data
sample is large, the p-value is obtained by saying that, under H0, 2lrs ∼ χq2 , where
q2 is the number of degrees of freedom that H1 adds to H0.

Chapter 5

Forecasting

Forecasting is a risky exercise, and involves many aspects that are well beyond
the scope of this book. However, it is the engineer’s responsibility to forecast
what can be forecast . For example, if the demand on a communication line
is multiplied by 2 every 6 months, it is wise to provision a sufficient capacity
to accommodate this exponential growth. We present a simple framework
to understand what forecasting is. We emphasize the need to quantify the
accuracy of a forecast with a prediction interval. For the how , there are many
methods (perhaps because an exact forecast is essentially impossible). We focus
on simple, generic methods that have been found to work well in a large variety
of cases. A first method is linear regression; it is very simple to use (with a
computer) and of quite general application. It gives decent forecasts as long as
the data does not vary too widly.

Better predictions may be obtained by a combination of differencing, de-
seasonalizing filters and linear time series models (ARMA and ARIMA pro-
cesses - this is also called the Box-Jenkins method). We discuss how to avoid

142 Forecasting

model overfitting and present a set of simple models that have few parameters.
We show that accounting for growth and seasonal effects is very simple and may
be very effective. The necessary background on digital filters can be found in
Chapter D in the Appendix.

5.1 What is Forecasting?

A classical forecasting example is capacity planning, where a communication
or data center manager needs to decide when to buy additional capacity. Other
examples concern the optimal use of resources: if a data center is able to predict
that certain customers send less traffic at night, this may be used to save power
or to resell the capacity to customers in other time zones.

As in any performance related activity, it is important to follow a clean
methodology, in particular, define appropriate metrics relevant to the problem
area, define measurement methods, and gather time series of data. The tech-
niques seen in this chapter start at this point, i.e. we assume that we have
gathered some past measurement data, and would like to establish a forecast.

Informally, one can say that a forecast consists in extracting all information
about the future that is already present in the past. Mathematically, this can be
done as follows. To avoid complex mathematical constructions, we assume time
to be discrete. We are interested in a certain quantity Y (t), where t = 1, 2, . . .
We assume that there is some randomness in Y (t), and it is thus modeled as
a stochastic process. Assume that we have observed Y1, . . . , Yt and would like
to say something about Yt+� for a certain � > 0.

Forecasting can be viewed as computing the conditional distribution of
Yt+�, given Y1, . . . , Yt.

In particular, the point prediction or predicted value is

Ŷt(�) = E
(
Yt+� | Y1 = y1, . . . , Yt = yt

)
and a prediction interval at level 1 − α is an interval [A,B] such that

P
(
A ≤ Yt+� ≤ B | Y1 = y1, . . . , Yt = yt

)
= 1 − α

The forecasting problem thus becomes (1) to find and fit a good model, and
(2) to compute conditional distributions.

5.2 Linear Regression

A simple and frequently used method is linear regression. It gives simple fore-
casting formulas, which are often sufficient. Linear regression models are de-
fined in Chapter 3. In the context of forecasting, a linear regression model
takes the form

Yt =
p∑

j=1

βjfj(t) + εt (5.1)

Linear Regression 143

where fj(t) are known, non-random functions and εt is iid N0,σ2 . Recall that
the model is linear with respect to �β, whereas the functions fj need not be
linear with respect to t.

Example 5.1 Internet Traffic
Figure 5.1 shows a prediction of the total amount of traffic on a coast-
to-coast link of an American internet service provider. The traffic is
periodic with period 16 (one time unit is 90 mn), and we therefore
fit a simple sine function, i.e. we use a linear regression model with
p = 3, f0(t) = 1, f2(t) = cos(π

8 t) and f3(t) = sin(π
8 t). Using techniques

presented in Section 3.2, we fit the parameters to the past data and
obtain

Yt =
3∑

j=1

βjfj(t) + εt

= 238.2475− 87.1876 cos
(π

8
t
)
− 4.2961 sin

(π
8
t
)

+ εt

with εt iid N0,σ2 and σ = 38.2667.
A point prediction is

Ŷt(�) =
3∑

j=1

βjfj(t+ �) (5.2)

= 238.2475− 87.1876 cos
(π

8
(t+ �)

)
− 4.2961 sin

(π
8

(t+ �)
)

and a 95%-prediction interval can be approximated by Ŷt(�) ± 1.96 σ.

0 50 100 150 200 250
100

150

200

250

300

350

400

450
data
regression

(a)

205 210 215 220 225 230 235 240 245 250
50

100

150

200

250

300

350

400

450

(b)

Figure 5.1 Internet traffic on a coast-to-coast link of an American internet
service provider. One data point every 90 mn; the y-axis shows the amount
of traffic in Mb/s, averaged over 90 mn. (a) Data for t = 1 to 224 and a
sine function fitted to the data ; (b) zoom on the time interval from 205 to
250, showing the point prediction for the interval 225 to 250, the prediction
interval and the true value (circles), not known when the prediction was done.

144 Forecasting

The computations in Example 5.1 are based on the following theorem and
the formula after it; they result from the general theory of linear regression in
Chapter 3 [32, Section 8.3]:

Theorem 5.1
Consider a linear regression model as in (5.1) with p degrees of freedom for
�β. Assume that we have observed the data at n time points t1, . . . , tn, and
that we fit the model to these n observations using Theorem 3.3. Assume
that the model is regular, i.e. that the matrix X defined by Xi,j = fj(ti),
i = 1, . . . , n, j = 1, . . . , p, has full rank. Let β̂j be the estimator of βj and
s2 the estimator of the variance, as in Theorem 3.3.
(1) The point prediction at time tn + � is

Ŷtn(�) =
p∑

j=1

β̂jfj(tn + �)

(2) An exact prediction interval at level 1 − α is

Ŷtn(�) ± ξ
√

1 + g s (5.3)

with

g =
p∑

j=1

p∑
k=1

fj(tn + �)Gj,kfk(tn + �)

where G = (XTX)−1 and ξ is the (1 − α
2) quantile of the student dis-

tribution with n− p degrees of freedom, or, for large n, of the standard
normal distribution.

(3) An approximate prediction interval that ignores estimation uncertainty
is

Ŷtn(�) ± ηs (5.4)

where η is the 1 − α quantile of the standard normal distribution.

We now explain the difference between the last two items in the theorem.
Item 2 gives an exact result for a prediction interval. It captures two effects:

(1) the estimation error , i.e. the uncertainty with regard to the model param-
eters due to the estimation procedure (term g in

√
1 + g) ;

(2) the model forecast uncertainty, due to the model being a random process.

In practice, we often expect the estimation error to be much smaller than the
model forecast uncertainty, i.e. g is much smaller than 1. This occurs in the
rule when the number n of points used for the estimation is large, so we can
also replace student by standard normal. This explains (5.4).

Figure 5.2 shows the prediction intervals computed by Theorem 5.1 and
(5.4) (they are indistinguishable). With Theorem 3.3, one can also see that a

The Overfitting Problem 145

confidence interval for the point prediction is given by ±ξ√g s (versus
±ξ√1 + g s for the prediction interval). The figure shows that the confidence
interval for the point prediction is small but not negligible. However, its effect
on the prediction interval is negligible. Figure 5.4 displays what might happen
when the problem is ill posed.

In the simple case where the data is assumed to be iid, we can see from
Theorem 2.6 that g decreases like 1

n , so in this case the approximation in (5.4)
is always valid for large n.

205 210 215 220 225 230 235 240 245 250
50

100

150

200

250

300

350

400

450

(a)

5 10 15 20 25 30 35 40 45 50 55
50

100

150

200

250

300

350

400

450

(b)

Figure 5.2 (a) The same example as in Figure 5.1, showing the prediction interval
computed by Theorem 5.1 (dot-dashed lines) and the confidence interval for the point
prediction (plain lines around center values). The prediction intervals computed by
Theorem 5.1 and (5.4) are indistinguishable. (b) The same, but with only the last 24
points of the past data used to fit the model (instead of 224). The confidence interval
for the point prediction is slightly larger than in panel (a); the exact prediction
interval computed from Theorem 5.1 is only slightly larger than the approximate one
computed from (5.4).

Verification

We cannot verify a prediction until the future comes. However, one can verify
how well the model fits by screening the residuals, as explained in Theorem 3.3.
The standardized residuals should look grossly normal, and not show any large
trends or correlations. Figure 5.3 displays the standardized residuals for the
model in Example 5.1. Although the residuals fit the normal assumption well,
they do appear to have some correlation and some periodic behavior. Models
that are able to better capture these effects are discussed in Section 5.5.

5.3 The Overfitting Problem

Perhaps contrary to intuition, a parametric model should not have too many
parameters. To understand why, consider the model in Figure 5.1. Instead
of a simple sine function, we now fit a more general model, where we add a

146 Forecasting

0 50 100 150 200 250
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
Standardized Residuals

Figure 5.3 Residuals for the model fitted in Figure 5.1.

polynomial component and a more general periodic function (with harmonics),
with the hope of improving the fit, and thus the prediction. The new model
has the form

Yt =
d∑

i=0

ait
i +

h∑
j=1

(
bj cos

jπt

8
+ cj sin

jπt

8

)
(5.5)

Figure 5.4 shows the resulting fit for a polynomial of degree d = 10 and with
h−1 = 2 harmonics. The fit is better (σ = 25.4375 instead of 38.2667), however,

0 50 100 150 200 250
50

100

150

200

250

300

350

400

450

(a)

205 210 215 220 225 230 235 240 245 250
−9000

−8000

−7000

−6000

−5000

−4000

−3000

−2000

−1000

0

1000

(b)

Figure 5.4 More parameters is not always better. That same as Figure 5.1, but with
a more general model. (b) Prediction intervals computed with the simple formula 5.4
(dot-dashed lines) do not coincide with the exact prediction intervals (plain lines).
The line with small circles is the exact values.

The Overfitting Problem 147

the prediction power is ridiculous. This displays the overfitting problem . At
the extreme, a model with the absolute best fit has 0 residual error – but it is
no longer an explanatory model. There are two classical solutions for avoiding
overfitting: the use of test data or of information criteria.

5.3.1 Use of Test Data

The idea is to reserve a small fraction of the data set to test the model pre-
diction. Consider for example Figure 5.5. We fitted the model in (5.5) with
h − 1 = 2 harmonics and a polynomial of degree d = 0 to 10. The prediction
error is here defined as the mean square error between the true values of the
data at t = 225 to 250 and the point predictions given by Theorem 5.1. The
estimation error is the estimator s of σ. The smallest prediction error is for
d = 4. The fitting error decreases with d, whereas the prediction error is mini-
mal for d = 4. This method is quite general but has the drawback of “burning”
some of the data, as the test data cannot be used for fitting the model.

0 1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000
h = 3

d

Pred. Err
Est. Err

0 1 2 3 4 5 6 7 8 9 10
740

750

760

770

780

790

800

d

BIC
AIC

Figure 5.5 Model in (5.5) with h − 1 = 2 harmonics and a polynomial of degree
d = 0 to 10. Top Panel: Use of test data: estimation and prediction errors. Bottom
panel: Information criteria. The test data finds that the best model is for d = 4, but
the information criteria find that the best model is for d = 10, which is an aberrant
model. Information criteria should be used only for models that match the type of
data.

148 Forecasting

5.3.2 Information Criterion

An alternative is to use an information criterion , which strikes a balance
between model accuracy and the number of parameters.

Akaike’s information criterion (AIC) is defined for any parametric
model by

AIC = −2l(θ̂) + 2k (5.6)

where k is the dimension of the parameter θ and l(θ̂) is the estimated log-
likelihood. It can be interpreted in an information theoretic sense as follows
[105, Section 7.3]. Consider an independent replication Xt of the sequence Yt;
AIC is an estimate of the number of bits needed by an optimal code to describe
the sequence Xt, when the optimal code estimates the distribution of Xt from
the sample Yt. AIC thus measures the efficiency of our model to describe the
data. The preferred model is the one with the smallest information criterion.

For the linear regression model with n data points and p degrees of freedom
for �β, the parameter is θ = (�β, σ), thus k = p+ 1. AIC can easily be computed
and one obtains

AIC = 2 (p+ n ln σ̂) + C (5.7)

where C = 2 + n
(
1 + ln(2π)

)
and σ̂ is the MLE of σ, i.e.

σ̂2 =
(
1 − p

n

)
s2

In practice, the AIC had a tendancy to overestimate the model order k. An
alternative criterion is the Bayesian information criterion (BIC) [19, 97],
which is defined for a linear regression model by

BIC = −2l(θ̂) + k lnn

where n is the number of observations. One thus finds

BIC = p lnn+ 2n ln σ̂ + C′ (5.8)

with C′ = n(1 + ln(2π)) + lnn and p is the number of degrees of freedom for
the parameter of the linear regression model.

Example 5.2 Internet Traffic, continued
We want to determine the best fit for the model in (5.5). It seems
little appropriate to fit the growth in Figure 5.1 by a polynomial of
high degree, and we therefore limit d to either 0, 1 or 2. We utilise
three methods: test data, AIC and BIC, and search for all values of
d ∈ {0, 1, 2} and h ∈ {0, . . . , 10}. The results are
Test Data: d=2, h=2, prediction error = 44.6006
Best AIC : d=2, h=3, prediction error = 46.1003
Best BIC : d=0, h=2, prediction error = 48.7169

Differencing the Data 149

The test data method finds the smallest prediction error, by definition.
All methods find a small number of harmonics, but there are some
minor differences. Figure 5.6 shows the values for d = 1.

0 1 2 3 4 5 6 7
20

30

40

50

60

70

80

90
d = 1

h

Pred. Err
Est. Err

0 1 2 3 4 5 6 7
750

800

850

900

950

1000

h

BIC
AIC

Figure 5.6 Choice of best model for (5.5) with degree d = 1 and various
values of h. Top panel: The use of test data; estimation and prediction errors.
Bottom panel: Information criteria. The prediction error is approximately
the same for h ≥ 2, which implies that the most adequate model is obtained
for h = 2. The information criteria also find here that the best model is for
h = 2.

5.4 Differencing the Data

A slightly more sophisticated alternative to the regression method is to combine
two approaches: to first capture trends and periodic behavior by application
of differencing or de-seasonalizing filters, and then to fit the filtered data to a
time series stationary model that allows correlation, as we explain in this and
the next section.

5.4.1 Differencing and De-seasonalizing Filters

Consider a time series Y = (Y1, . . . , Yn). Contrary to linear regression model-
ing, we require here that the indices are contiguous integers, t = 1, . . . , n. The

150 Forecasting

differencing filter at lag 1 is the mapping, denoted with Δ1, which trans-
forms a times series Y of finite length into a time series X = Δ1Y of equal
length such that

Xt =
(
Δ1Y

)
t
= Yt − Yt−1 t = 1, . . . , n (5.9)

where by convention Yj = 0 for j ≤ 0. Note that this convention is not the
best possible, but it simplifies the theory to a large extent. In practice, the
implication is that the first term of the filtered series is not meaningful and
should not be used for fitting a model (these terms are removed from the plots
in Figure 5.7). Formally, we consider Δ1 to be a mapping from

⋃∞
n=1 R

n onto
itself, i.e. it acts on the time series of any finite length.

The differencing filter Δ1 is a discrete time equivalent of a derivative. If the
data has a polynomial trend of degree d ≥ 1, then Δ1Y has a trend of degree
d − 1. Thus, d iterated applications of Δ1 to the data remove any polynomial
trend of degree up to d.

0 50 100 150 200 250
−150

−100

−50

0

50

100

150

200

(a) Differencing at lag 1

0 50 100 150 200 250
−200

−150

−100

−50

0

50

100

150

(b) Differencing at lag 16

0 50 100 150 200 250
−150

−100

−50

0

50

100

150

(c) Differencing at lags 1 and 16

Figure 5.7 Differencing filters Δ1 and Δ16 applied to Example 5.1 (first terms
removed). The forecasts are made under the assumption that the differenced data
is iid Gaussian with 0 mean. ◦ =actual value of the future (not used for fitting the
model).

Differencing the Data 151

210 220 230 240 250
0

100

200

300

400

500

600

(d) Prediction at time 224

Figure 5.7 (Continuation.)

Similarly, if the data Y is periodic with period s, we can use the de-
seasonalizing filter Rs (proposed by S.A. Roberts in [89]). It maps a times
series Y of finite length into a time series X = RsY of equal length such that
we have

Xt =
s−1∑
j=0

Yt−j t = 1, . . . , n (5.10)

again with the convention that Yj = 0 if j ≤ 0. One application of Rs removes
a periodic component, in the sense that if Yt is periodic of period s, then RsY
is equal to a constant.

The differencing filter at lag s, Δs, is defined in a similar manner by
(
ΔsX

)
t
= Yt − Yt−s (5.11)

It can be easily seen that
Δs = Rs Δ1 (5.12)

i.e. combining de-seasonalizing and differencing at lag 1 is the same as differ-
encing at lag s.

Filters commute, e.g. Rs′RsY = RsRs′Y for all s, s′ and Y ∈ R
n (see

Section D). It follows that the differencing filter and de-seasonalizing filter
may be used to remove polynomial growth, non-zero mean and periodicities,
and that one can apply them in any order. In practice, one tries to apply Rs

once for any identified period d, and Δ1 as many times as required for the data
to appear stationary.

152 Forecasting

Example 5.3 Internet Traffic
In Figure 5.7, we apply the differencing filter Δ1 to the time series in
Example 5.1 and obtain a strong seasonal component with the period
s = 16. We then apply the de-seasonalizing filter R16; this is the
same as applying Δ16 to the original data. The result does not appear
to be stationary; for which reason an additional application of Δ1 is
performed.

Also note that if Yt = μ+ Zt, where Zt is stationary, then ΔsY has a zero
mean.(1) Thus, if after enough differencing we have obtained a stationary but
non-zero mean sequence, an additional differencing operation produces a zero
mean sequence.

5.4.2 Computing Point Prediction

With many time series, differencing and de-seasonalizing produces a data set
that has neither growth nor periodicity. It is thus a good candidate for being
fitted to a simple stochastic model. The present section illustrates a straightfor-
ward application of this idea. The method used here is also used in Section 5.5
with more elaborate models for the differenced data.

Assume that we have a model for the differenced data Xt that we can
employ to obtain predictions for Xt. How can this information be used to
derive a prediction for the original data Yt? There is a very simple solution,
based on the properties of filters given in the appendix.

We write compactly X = LY , i.e L is the combination of filters that are
used (possibly several times each) for differencing and de-seasonalizing. For
example, in Figure 5.7, L = Δ16Δ1. Δs is an invertible filter for all s ≥ 1,
and L is consequently also an invertible filter (see Section D for more details).
We can use the AR(∞) representation of L−1 and write, using (D.16) in the
appendix:

Yt = Xt − g1Yt−1 − · · · − gqYt−q (5.13)

where (g0 = 1, g1, . . . , gq) is the impulse response of the filter L. See the next
example and Section D for more details on how to obtain the impulse response
of L. The following result derives immediately from this and from Theorem D.2:

Proposition 5.2 Assume that X = LY , where L is a differencing or de-
seasonalizing filter with impulse response g0 = 1, g1, . . . , gq. Assume that we
are able to produce a point prediction X̂t(�) for Xt+� given that we have ob-
served X1 to Xt. For example, if the differenced data can be assumed to be iid
with a mean of μ, then X̂t(�) = μ.

(1)More precisely E(ΔsYt) = 0 for t ≥ s + 1. In other words the first s elements of the
differenced time series may not be 0 mean.

Differencing the Data 153

A point prediction for Yt+� can be obtained iteratively by:

Ŷt(�) = X̂t(�) − g1Ŷt(�− 1) − · · ·
− g�−1Ŷt(1) − g�yt − · · · − gqyt−q+� for 1 ≤ � ≤ q (5.14)

Ŷt(�) = X̂t(�) − g1Ŷt(�− 1) − · · · − gqŶt(�− q) for � > q (5.15)

Note that by differencing enough times we are able to remove any non-zero
means from the data. Consequently we often assume that μ = 0.

Example 5.4 Internet Traffic, continued
For Figure 5.7, we have

L = Δ2
1R16 = Δ1Δ16 = (1 −B)(1 −B16) = 1 −B −B16 +B17

thus the impulse response g of L is given by

g0 = g17 = 1 g1 = g16 = −1 gm = 0 otherwise

If we can assume that the differenced data is iid with 0 mean, the
prediction formulae for Y are

Ŷt(1) = Yt + Yt−15 − Yt−16

Ŷt(�) = Ŷt(�− 1) + Yt+�−16 − Yt+�−17 for 2 ≤ � ≤ 16

Ŷt(17) = Ŷt(16) + Ŷt(1) − Yt

Ŷt(�) = Ŷt(�− 1) + Ŷt(�− 16) − Ŷt(�− 17) for � ≥ 18

5.4.3 Computing Prediction Intervals

If we want not only to obtain point predictions but also to quantify the pre-
diction uncertainty, we need to compute prediction intervals. We consider a
special, but frequent case. More general cases can be handled by Monte Carlo
methods as explained in Section 5.5.4. The following result derives from The-
orem D.2.

Proposition 5.3 Assume that the differenced data is iid Gaussian, i.e. that
Xt = (LY)t ∼ iid N(μ, σ2).

The conditional distribution of Yt+� given that Y1 = y1, . . . , Yt = yt is
Gaussian with the mean Ŷt(�) obtained from (5.14) and the variance

MSE2
t (�) = σ2

(
h2

0 + · · · + h2
�−1

)
(5.16)

154 Forecasting

where h0, h1, h2, . . . is the impulse response of L−1. A prediction interval at
level 0.95 is thus

Ŷt(�) ± 1.96
√

MSE2
t (�) (5.17)

Alternatively, one can compute Ŷt(�) using

Ŷt(�) = μ
(
h0 + · · · + h�−1

)
+ h�xt + · · ·ht+�−1x1 (5.18)

The impulse response of L−1 can be obtained numerically (for example
using the filter command), as explained in Section D. If L is not too compli-
cated, it can be obtained in a simple closed form. For example, for s = 1, the
reverse filter Δ−1

1 is defined by
(
Δ−1

1 X
)
t
= X1 +X2 + . . .+Xt t = 1, . . . , n

i.e. its impulse response is hm = 1 for all m ≥ 0. It is a discrete time equivalent
of integration.

The impulse response of L =
(
Δ1Δs

)−1 used in Figure 5.7 is

hm = 1 +
⌊m
16

⌋
(5.19)

where the notation �x	 means the largest integer ≤ x.
Note that μ and σ need to be estimated from the differenced data.(2) In

many cases, differencing produces 0 mean data, so we often assume that μ = 0.

Example 5.5 Internet Traffic, continued
Figure 5.7 shows the prediction obtained assuming the differenced data
is iid Gaussian with 0 mean. It is obtained by applying (5.18) with
μ = 0, (5.17) and (5.19).
The point prediction is good, but the confidence interval appears to be
larger than necessary. Note that the model we use here is extremely
simple; we only need to fil one parameter (namely σ), which is estimated
as the sample standard deviation of the differenced data.
Compare to Figure 5.1: the point prediction seems to be more exact.
Also, it starts just from the previous value. The point prediction with
differencing filters is more adaptive than a regression model.
The prediction intervals are large and grow with the prediction hori-
zon. This is a symptom suggesting that the iid Gaussian model for
the differenced data may not be appropriate. In fact, there are two
deviations from this model: when the distribution does not appear to
be Gaussian, and when the differenced data appears to be correlated
(large values are not isolated). Addressing these issues requires the fit-
ting of a more complex model to the differenced time series: this is the
topic of Section 5.5

(2)Here too, the prediction interval does not account for the estimation uncertainty.

Fitting Differenced Data to an ARMA Model 155

5.5 Fitting Differenced Data to an ARMA Model

The method in this section is inspired by the original method of Box and
Jenkins in [15] and can be called the Box-Jenkins method, although some
of the details differ slightly. It applies to cases where the differenced data X
appears to be stationary but not iid. In essence, the method provides a method
to whiten the differenced data, i.e. it computes a filter F such that FX can
be assumed to be iid. We first discuss how to recognize whether data can be
assumed to be iid.

5.5.1 Stationary but non iid Differenced Data

After pre-processing with differencing and de-seasonalizing filters we have ob-
tained a data set appearing to be stationary. We see in Chapter 6 that a
stationary model is such that it is statistically impossible to recognize at which
time a particular sample was taken. The time series in panel (c) of Figure 5.7
appear to have this property, whereas the original data set in panel (a) does
not. In the context of time series, lack of stationarity is due to growth or pe-
riodicity: if a data set increases (or decreases), then by observing a sample we
can have an idea of whether it is old or young; if there is a daily pattern, we
can guess whether a sample is at night or at daytime.

Sample ACF

A means of testing whether a data series that appears to be stationary is iid
or not is the sample autocovariance function. In analogy with the autoco-
variance of a process, it is defined, for t ≥ 0 as

γ̂t =
1
n

n−t∑
s=1

(
Xn+t − X̄

)(
Xn − X̄

)
(5.20)

where X̄ is the sample mean. The sample ACF is defined as ρ̂t = γ̂t/γ̂0.
The sample PACF is also defined as an estimator of the true PACF (Sec-

tion C.6)
If X1, . . . , Xn are iid with finite variance, then the sample ACF and PACF

are asymptotically centered normal with variance 1/n. ACF and PACF plots
usually display the bounds ±1.96/

√
n. If the sequence is iid with finite variance,

then roughly 95% of the points should fall within the bounds. This provides a
method for assessing whether Xt is iid or not. If it is, then no further modeling
is required, and we are back to the case in Section 5.4.2. See Figure 5.10 for
an example.

The ACF can be tested formally by means of the Ljung-Box test. It tests
H0: “the data is iid” versus H1: “the data is stationary”. The test statistic
is L = n(n + 2)

∑t
s=1

ρ̂2
s

n−s , where t is a parameter of the test (number of
coefficients), typically

√
n. The distribution of L under H0 is χ2

t , which can be
used to compute the p-value.

156 Forecasting

5.5.2 ARMA and ARIMA Processes

Once a data set appears to be stationary, but not iid (as in panel (c) of
Figure 5.7), we can model it with an Auto-Regressive Moving Average
(ARMA) process.

Definition 5.1
A 0-mean ARMA(p, q) process Xt is a process that satisfies for t = 1, 2, · · ·
a difference equation such as:

Xt +A1Xt−1 + · · ·+ApXt−p = εt +C1εt−1 + · · ·+Cqεt−q εt iid ∼ N0,σ2

(5.21)
Unless otherwise specified, we assume that X−p+1 = . . . = X0 = 0.
An ARMA(p, q) process with mean the μ is a process Xt such that Xt − μ
is a 0-mean ARMA process and, unless otherwise specified, X−p+1 = . . . =
X0 = μ.

The parameters of the process are A1, . . . , Ap (auto-regressive coeffi-
cients), C1, . . . , Cq (moving average coefficients) and σ2 (white noise
variance). The iid sequence εt is called the noise sequence, or innovation .

An ARMA(p, 0) process is also called an auto-regressive process, AR(p);
and an ARMA(0, q) process is also referred to as a Moving Average process,
MA(q).

Since a difference equation, as the one in (5.21), defines a filter with rational
transfer function (Section D), one can also define an ARMA process by

X = μ+ Fε (5.22)

ε is an iid Gaussian sequence and

F =
1 + C1B + · · · + CqB

q

1 +A1B + · · · +ApBp
(5.23)

B is the backshift operator, see Section D.

In order for an ARMA process to be practically useful, we need the follow-
ing:

Hypothesis 5.1 The filter in (5.23) and its inverse are stable.

In practice, this means that the zeroes of 1 +A1z
−1 + · · · + Apz

−p and of
1 + C1z

−1 + · · · + Cqz
−q are within the unit disk.

Equation (5.22) can be used to simulate ARMA processes, as in Figure 5.8.

Fitting Differenced Data to an ARMA Model 157

0 20 40 60 80 100
−10

−5

0

5

10

(a) ARMA(2,2) Xt = −0.4Xt−1 +
0.45 Xt−2 + εt − 0.4εt−1 + 0.95εt−2

0 20 40 60 80 100
−3

−2

−1

0

1

2

3

4

(b) AR(2) Xt = −0.4 Xt−1 + 0.45 Xt−2 + εt

0 20 40 60 80 100
−4

−3

−2

−1

0

1

2

3

4

(c) MA(2) Xt = εt − 0.4εt−1 + 0.95 εt−2

Figure 5.8 Simulated ARMA processes with 0 mean and noise variance σ2 = 1.
The first one, for example, is obtained by the matlab commands Z=randn(1,n) and
X=filter([1 -0.4 +0.95],[1 0.4 -0.45],Z).

ARMA Process as a Gaussian Process

Since an ARMA process is defined by linear transformation of a Gaussian
process εt, it is itself a Gaussian process. Consequently it is entirely defined
by its mean E(Xt) = μ and its covariance. The latter can be computed in a
number of ways, of which the simplest is perhaps obtained by noticing that

Xt = μ+ h0εt + · · · + ht−1ε1 (5.24)

where h is the impulse response of the filter in (5.23). Note that, with our
convention, h0 = 1. It follows that, for t ≥ 1 and s ≥ 0, we have

cov(Xt, Xt+s) = σ2
t−1∑
j=0

hjhj+s (5.25)

For large t

cov(Xt, Xt+s) ≈ γs = σ2
∞∑

j=0

hjhj+s (5.26)

158 Forecasting

The convergence of the latter series follows from the assumption that the filter is
stable. Thus, for large t, the covariance does not depend on t. More formally,
one can show that an ARMA process with Hypothesis 5.1 is asymptotically
stationary ([19], [97]), as required since we want to model stationary data.(3)

Note in particular that

var(Xt) ≈ σ2
∞∑

j=0

h2
j = σ2

⎛
⎝1 +

∞∑
j=1

h2
j

⎞
⎠ ≥ σ2 (5.27)

thus the variance of the ARMA process is larger than that of the noise.(4)

For an MA(q) process, we have hj = Cj for j = 1, . . . , q, and hj = 0 for
j ≥ q, thus the ACF is 0 at lags ≥ q.

The Auto-Correlation Function (ACF) is defined by ρt = γt/γ0.(5)

The ACF quantifies departure from an iid model; indeed, for an iid sequence
(i.e. h1 = h2 = . . . = 0), ρt = 0 for t ≥ 1. The ACF can be computed
from (5.26) but in practice there are more efficient methods that exploit (5.23),
see [105], and which are implemented in standard packages. One also some-
times uses the Partial Auto-Correlation Function (PACF), which is de-
fined in Section C.6 as the residual correlation of Xt+s and Xt, provided that
Xt+1, . . . , Xt+s−1 are known.(6)

Figure 5.9 shows the ACF and PACF of a few ARMA processes. They
all decay exponentially. For an AR(p) process, the PACF is exactly 0 at lags
t > p.(7)

ARIMA Process

By definition, the random sequence Y = (Y1, Y2, . . .) is an ARIMA(p, d, q)
(Auto-Regressive Integrated Moving Average) process if differencing Y d times
gives an ARMA(p, q) process (i.e. X = Δd

1Y is an ARMA process, where Δ1 is
the differencing filter at lag 1). For d ≥ 1, an ARIMA process is not stationary.

(3)Furthermore, it can easily be shown that if the initial conditions X0, . . . , X−p are not
set to 0 as we do for the sake of simplicity, but are drawn from the Gaussian process
with mean μ and covariance γs, then Xt is (exactly) stationary. We ignore this subtlety
in this chapter and consider only asymptotically stationary processes.

(4)Equality occurs only when h1 = h2 = . . . = 0, i.e. for the trivial case where Xt = εt.
(5)Some authors call autocorrelation the quantity γt instead of ρt.
(6)The PACF is well defined if the covariance matrix of (Xt, . . . , Xt+s) is invertible. For

an ARMA process, this is always true, according to Corollary C.2.
(7)This follows from the definition of PACF and the fact that Xt+s is entirely determined

by Xt+s−p, . . . , Xt+s−1.

Fitting Differenced Data to an ARMA Model 159

(a) ARMA(2, 2) Xt = −0.4 Xt−1 + 0.45 Xt−2 + εt − 0.4 εt−1 + 0.95 εt−2

(b) AR(2) Xt = −0.4 Xt−1 + 0.45 Xt−2 + εt

(c) MA(2) Xt = εt − 0.4 εt−1 + 0.95 εt−2

Figure 5.9 ACF (left) and PACF (right) of some ARMA processes.

160 Forecasting

In the statistics literature, it is customary to describe an ARIMA(p, d, q)
process Yt by writing

(
1 −B

)d(1 +A1B + · · · +ApB
p)Y = (1 + C1B + · · · + CqB

q)ε (5.28)

which is the same as saying that ΔdY is a zero mean ARMA(p, q) process.

By extension, we also call an ARIMA process a process Yt such that LY is
an ARMA process where L is a combination of differencing and de-seasonalizing
filters.

5.5.3 Fitting an ARMA Model

Assume that we have a time series which, after differencing and de-seasonalizing
(and possible re-scaling), produces a time series Xt that appears to be station-
ary and close to Gaussian (i.e it does not have too wild dynamics), but is not
iid. We may now think of fitting an ARMA model to Xt.

The ACF and PACF plots can offer some bound of the orders p and q of the
model, as there tend to be exponential decay at lags larger than p and q. Note
that the samples ACF and PACF make sense only if the data appears to be
generated from a stationary process. If the data comes from a non-stationary
process, this may be grossly misleading (Figure 5.10).

(a) (b)

Figure 5.10 (a) Sample ACF of the internet traffic of Figure 5.1. The data does not
appear to come from a stationary process so the sample ACF cannot be interpreted
as an estimation of a true ACF (which does not exist). (b) Sample ACF of data
differenced at lags 1 and 16. The sampled data appears to be stationary and the
sample ACF decays rapidly. The differenced data appears to be suitable for modeling
by an ARMA process.

Maximum Likelihood Estimation of an ARMA or ARIMA Model

Once we have decided on orders p and q, we need to estimate the parameters
μ, σ, A1, . . . , Ap, C1, . . . , Cq. As usual, this is done by maximum likelihood,
which is simplified by the following result.

Fitting Differenced Data to an ARMA Model 161

Theorem 5.4
Consider an ARMA or ARIMA model with parameters as in Definition 5.1.
The parameters are constrained to be in a certain set S. Assume that we
are given some observed data x1, . . . , xN .
(1) The log likelihood of the data is −N

2 ln
(
2πσ̂2

)
where

σ̂2 =
1
N

N∑
t=2

(
xt − X̂t−1(1)

)2 (5.29)

and X̂t−1(1) is the one step ahead forecast at time t− 1.
(2) The maximum likelihood estimation is equivalent to minimizing the mean

square one step ahead forecast error σ̂, subject to the model parameters
being in S.

The one step forecasts X̂t−1(1) are computed using Proposition 5.6. Care
should be taken to remove the initial values if differencing is performed. Con-
trary to linear regression, the optimization involved here is non-linear, even if
the constraints on the parameter set is linear. The optimizer usually requires
some initial guess to run efficiently. For MA(q) or AR(p), there exist estimation
procedures (called moment heuristics) that do not involve maximum likeli-
hood but are numerically fast [105]. These are based on the observation that
for MA(q) or AR(p) processes, if we know the autocovariance function exactly,
then we can compute the coefficients numerically.(8) In such cases, we use the
sample autocovariance as an estimate of the autocovariance function, whence
we deduce an estimate of the parameters of the process. This is less accurate
than the maximum likelihood, but is typically used as an initial guess. For
example, if we want to compute the maximum likelihood estimate of a general
ARMA(p, q) model, we may estimate the parameters μ, σ, C1, . . . , Cq of an
MA(q) model, using a moment fitting heuristic. As an initial estimate, we then
give the same values plus A1 = . . . = Ap = 0.

It is necessary to verify that the obtained ARMA model corresponds to
a stable filter with stable inverse. Good software packages automatically do
so, but at times, it may be impossible to obtain both a stable filter and a
stable inverse. It is generally admitted that this may be fixed by changing the
differencing filter: too little differencing may make it impossible to obtain a
stable filter (as the differenced data is not stationary). Conversely, too much
differencing may render it impossible to obtain a stable inverse [19].

Determination of Best Model Order

Deciding on the correct order may be done with the help of an information
criterion (Section 5.3.2), such as the AIC. For example, assume that we would
like to fit the differenced data Xt to a general ARMA(p, q) model, without any

(8)For AR(p) processes, the AR coefficients are obtained by solving the “Yule-Walker”
equations, using the “Levinson-Durbin” algorithm [105].

162 Forecasting

constraint on the parameters. We then have p+ q coefficients, plus the mean μ
and the variance σ2. Consequently, up to the constant −N ln(2π), which can
be ignored, we have

AIC = −N ln σ̂2 + 2(p+ q + 2) (5.30)

Note that the AIC counts as degrees of freedom only for continuous parameters,
and does thus not count the number of times we applied differencing or de-
seasonalizing to the original data. Among all the possible values of p, q and
possibly among several applications of differencing or de-seasonalizing filters,
we choose the one than minimizes AIC.

Verification of Residuals

The sequence of residuals e = (e1, e2, . . .) is an estimation of the non-observed
innovation sequence ε. It is obtained by

(e1, e2, . . . , et) = F−1(x1 − μ, x2 − μ, . . . , xt − μ) (5.31)

where (x1, x2, . . .) is the differenced data and F is the ARMA filter in (5.23).
If the model fit is good, the residuals should be roughly independent, therefore
the ACF and PACF of the residuals should be close to 0 at all lags.

Note that the residuals can also be obtained from the following proposition
(the proof of which easily follows from Corollary D.2, applied to Xt and εt
instead of Yt and Xt)

Proposition 5.5 (Innovation Formula)

εt = Xt − X̂t−1(1) (5.32)

where X̂t−1(1) is the one step ahead prediction at time t− 1.

Thus, to estimate the residuals, one can compute the one step ahead pre-
dictions for the available data x̂t−1(1), using the forecasting formulae given
next. The residuals are then

et = xt − x̂t−1(1) (5.33)

5.5.4 Forecasting

Once a model is fitted to the differenced data, forecasting is easily derived from
Theorem D.2, given in appendix, and its corollaries. Essentially, Theorem D.2
stater that predictions for X and Y are obtained by mapping predictions for
ε by means of the reverse filters. Since ε is iid, predictions for ε are trivial:
e.g. the point prediction ε̂t(h) is equal to the mean. One needs to be careful,
though, since the first terms of the differenced time series Xt are not exactly
known, and one should use recursive formulas that avoid the propagation of
errors. This gives the following:

Fitting Differenced Data to an ARMA Model 163

Proposition 5.6 Assume that the differenced data X = LY is fitted to an
ARMA(p, q) model with the mean μ as in Definition 5.1.

(1) The �-step ahead predictions at time t, X̂t(�), of the differenced data can
be obtained for t ≥ 1 from the recursion

X̂t(�) − μ+A1

(
X̂t(�− 1) − μ

)
+ · · · +Ap

(
X̂t(�− p) − μ

)
= C1êt(�− 1) + · · · + Cq êt(�− q)

X̂t(�) =

⎧⎨
⎩
Xt+� if � ≤ 0 and 1 ≤ t+ �

μ if t+ � ≤ 0

êt(�) =

⎧⎪⎪⎨
⎪⎪⎩

0 if � ≥ 1 or t+ � ≤ 0

Xt+� − X̂t+�−1(1) if � ≤ 0 and t+ � ≥ 2

X1 − μ if t+ � = 1 and � ≤ 0

In the recursion, we allow � ≤ 0 even though we are eventually interested
only in � ≥ 1.

(2) Alternatively, X̂t(�) can be computed as follows. Let (c0 = 1, c1, c2, . . .) be
the impulse response of F−1. In such a case,

X̂t(�) − μ = −c1
(
X̂t(�− 1) − μ

)− · · · − c�−1

(
X̂t(1) − μ

)− c�(xt − μ) − · · ·
− ct+�−t0(xt0 − μ) � ≥ 1 (5.34)

where (xt0 , . . . , xt) is the differenced data observed up to time t, and where
t0 is the length of the impulse response of the differencing and de-seasonalizing
filter L.

(3) The �-step ahead predictions at time t, Ŷt(�), of the non-differenced data
follow, using Proposition 5.2.

(4) Let (d0, d1, d2, . . .) be the impulse response of the filter L−1F and

MSE2
t (�) = σ2

(
d2
0 + · · · + d2

�−1

)
(5.35)

A 95% prediction interval for Yt+� is

Ŷt(�) ± 1.96
√

MSE2
t (�) (5.36)

We now use two steps for computing the point predictions: first for Xt,
then for Yt. One can wonder why, since is possible to utilize a single step,
based on the fact that Y = L−1Fε. The reason is numerical stability: since
the initial values of Xt (or equivalently, the past values Ys for s ≤ 0) are not
known exactly, there is some numerical error in items 1 and 2. Since we assume
that F−1 is stable, cm → 0 for large m, and consequently the values of xt for
small t do not influence the final value of (5.34). Indeed, the non-differenced
data xt for small values of t is not exactly known, as we made the simplifying
assumption that ys = 0 for s ≤ 0. This is also why we remove the first t0 data
points of x in (5.34).

164 Forecasting

The problem does not exist for the computation of prediction intervals,
for which reason we can directly use a single step in item (4). This is due
to the variance of the forecast MSE2

t (�) being independent of the past data
(Theorem C.8).

If one insists on using a model such that F is, but not F−1, stable the the-
orem is still formally true, but may be numerically wrong. It is then preferable
to employ the formulae in of [19, Section 3.3] (however, in practice one should
avoid using such models).

Point Predictions for an AR(p) 0 Mean Process

The formulae have simple closed forms when there is no differencing or de-
seasonalizing and the ARMA process is AR(p) with 0 mean. In such a case,
Yt = Xt and (5.34) becomes (with the usual convention ys = 0 for s ≤ 0):

Ŷt(�) = −
�−1∑
j=1

Aj Ŷt(�− j) −
p∑

j=�

Ajyt−j+� for 1 ≤ � ≤ p

Ŷt(�) = −
p∑

j=1

Aj Ŷt(�− j) for � > p

where A1, A2, . . . , Ap are the auto-regressive coefficients as in (5.21). As a result
of this simplicity, AR processes are often used, e.g. when real time predictions
are required.

Example 5.6 Internet Traffic, continued
The differenced data in Figure 5.10 appears to be stationary and has

decaying ACF. We model it as a 0 mean ARMA(p, q) process with
p, q ≤ 20 and fit the models to the data. The resulting models have
very small coefficients Am and Cm except for m close to 0 or above 16.
Therefore we re-fit the model by forcing the parameters such that

A = (1, A1, . . . , Ap, 0, . . . , 0, A16, . . . , A16+p)
C = (1, C1, . . . , Cp, 0, . . . , 0, C16, . . . , C16+q)

for some p and q. The model with smallest AIC in this class is obtained
for p = 1 and q = 3.
Figure 5.11 shows the point predictions and the prediction intervals
for the original data. They were obtained by first computing point
predictions for the differenced data (using Matlab’s predict routine)
and applying Proposition 5.2. The prediction intervals are made using
Proposition 5.6. Compare to Figure 5.7: the point predictions are only
marginally different, but the confidence intervals are much better.
We also plot the residuals and see that they appear uncorrelated. Nev-
ertheless, there are some large values that do not appear to be compat-
ible with the Gaussian assumption. Therefore the prediction intervals
might be pessimistic. We compute point predictions and prediction
intervals by re-sampling from residuals. Figure 5.12 shows that the
confidence intervals are indeed smaller.

Fitting Differenced Data to an ARMA Model 165

210 215 220 225 230 235 240 245 250
0

100

200

300

400

500

600

(a) Prediction at time 224

0 50 100 150 200 250
−60

−40

−20

0

20

40

60

80

100

120

140

(b) Residuals

0 20 40 60 80 100 120
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(c) ACF of residuals

0 20 40 60 80 100 120
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(d) PACF of residuals

Figure 5.11 Prediction for internet traffic of Figure 5.1, using an ARMA
model for the differenced data (◦ = actual value of the future, not known
at the time of prediction). Compare to Figure 5.7: the point predictions are
almost identical, but the prediction intervals are more accurate (smaller).

166 Forecasting

Use of Bootstrap Replicates

When the residuals appear to be uncorrelated but non-Gaussian, the prediction
intervals may be either over- or under-estimated. It is possible to avoid the
problem by using a Monte Carlo method (Section 6.4), as explained in the
following.

The idea is to draw many independent predictions for the residuals, from
which we can derive predictions for the original data (by using reverse filters).
There are several possibilities for generating independent predictions for the
residuals: one can fit a distribution, or use Bootstrap replicates (i.e. re-sample
from the residuals with replacement). We give an algorithm using this latter
solution.

Algorithm 5.1 A Monte Carlo computation of prediction intervals at level
1 − α for time series Yt using re-samplig from residuals. We are given: a
data set Yt, a differencing and de-seasonalizing filter L, and an ARMA filter
F such that the residual ε = F−1LYt appears to be iid; the current time t,
the prediction lag � and the confidence level α. r0 is the algorithm’s accuracy
parameter.
1: R = �2 r0/α − 1 � For example r0 = 25, R = 999
2: compute the differenced data (x1, . . . , xt) = L(y1, . . . , yt)
3: compute the residuals (eq, . . . , et) = F−1(xq, . . . , xt) where q is an ini-

tial value chosen to remove initial inaccuracies due to differencing or de-
seasonalizing (e.g. q = length of impulse response of L)

4: for r = 1 : R do
5: draw � numbers with replacement from the sequence (eq, . . . , et) and

call them εrt+1, . . . , ε
r
t+�

6: let er = (eq, . . . , et, ε
r
t+1, . . . , ε

r
t+�)

7: compute Xr
t+1, . . . , X

r
t+� using (xq, . . . , xt, X

r
t+1, . . . , X

r
t+�) = F (er)

8: compute Y r
t+1, . . . , Y

r
t+� using Proposition 5.2 (with Xr

t+s and Y r
t+s in

lieu of X̂t(s) and Ŷt(s))
9: end for

10:
(
Y(1), . . . , Y(R)

)
= sort

(
Y 1

t+�, . . . , Y
R
t+�

)
11: Prediction interval is [Y(r0) ; Y(R+1−r0)]

The algorithm is basic in that in provides no information of its accuracy.
A larger r0 produces a better accuracy; a more sophisticated algorithm would
set r0 to give less accuracy is small. Also note that, as any bootstrap method,
it will likely fail if the distribution of the residuals is heavy-tailed.

An alternative to the bootstrap is to fit a parametric distribution to the
residuals; the algorithm is the same as Algorithm 5.1 except that line 5 is
changed by the generation of a sample residual from its distribution.

Sparse ARMA and ARIMA Models 167

210 215 220 225 230 235 240 245 250
0

100

200

300

400

500

600

Figure 5.12 Prediction at time 224, with the same model as in Figure 5.11, but
obtained with the bootstrap method (re-sampling from residuals).

5.6 Sparse ARMA and ARIMA Models

In order to avoid overfitting, it is desirable to use ARMA models that have
as few parameters as possible. Such models are called sparse. The use of an
information criterion is a means for obtaining sparse models, but it involves
a complex non-linear optimization problem. An alternative is to impose con-
straints on the model, based on various sensible heuristics.

5.6.1 Constrained ARMA Models

A simple method consists in forcing some of the auto-regressive and moving
average coefficients to 0, as in Example 5.6. Another approach, more adapted
to models with periodicity, is called seasonal ARIMA. It assumes that the
data has a period s; a seasonal ARMA model is thus an ARMA model where
we force the filter F defined in (5.23) to have the form

F =

(
1 +

q∑
i=1

ciB
i

)(
1 +

Q∑
i=1

CiB
si

)

(
1 +

p∑
i=1

aiB
i

)(
1 +

P∑
i=1

AiB
si

) (5.37)

Yt is a seasonal ARIMA model and Δd
1R

D
s Y is a seasonal ARMA model, for

various non-negative integers d,D. This model is also called multiplicative
ARIMA model, as the filter polynomials are products of polynomials.

168 Forecasting

The only difference with the rest of this section when using a seasonal
ARIMA model is the fitting procedure, which optimizes the model parameters
subject to the constraints (using Theorem 5.4). The forecasting formulae are
the same as for any ARIMA or ARMA model.

5.6.2 Holt-Winters Models

Holt-Winters models are very simple, with few parameters. They have emerged
empirically, but can be explained as ARIMA models with few parameters.
Their interest lies in the simplicity of both fitting and forecasting. Holt-Winters
models were originally introduced by Holt and Winters in [41] and [107], and
later refined by Roberts in [89]. The presentation below follows that of the
latter reference.

Exponentially Weighted Moving Average

This was originally defined as an ad-hoc forecasting formula. The idea is to keep
a running estimate estimate m̂t of the mean of the data, and to update it using
the exponentially weighted moving average mechanism with parameter a,
defined by

m̂t = (1 − a)m̂t−1 + aYt (5.38)

with initial condition m̂t = Y1. The point forecast is then simply

Ŷt(�) = m̂t (5.39)

Proposition 5.7 ([89]) EWMA with parameter a is equivalent to modeling of
the non-differenced time series with the ARIMA(0, 1, 1) model defined by

(1 −B)Y =
(
1 − (1 − a)B

)
ε (5.40)

with εt ∼ iid N0,σ2 .

The parameter a can be found by fitting the ARIMA model as usual, using
Theorem 5.4, i.e. by minimizing the one step ahead forecast error. There is no
constraint on a, though it is classically taken to be between 0 and 1.

The noise variance σ2 can be estimated using (5.29), which, together with
Proposition 5.6, can be used to find prediction intervals. EWMA works well
only when the data has no trend or periodicity, see Figure 5.13.
Question 5.1 What is EWMA for a = 0? a = 1?(9)

Double Exponential Smoothing with Regression

This is another simple model that can be used for data with trend but without
season. Just as the simple EWMA, it is based on ad-hoc forecasting formulae
that happen to correspond to ARIMA models. The idea is to keep a running
estimate of both the mean level m̂t and the trend r̂t. Further, a discounting

(9)a = 0: a constant, equal to the initial value; a = 1: no smoothing, m̂t = Yt.

Sparse ARMA and ARIMA Models 169

c(tt, seq(tt[1] + n, tt[1] + n + k - 1, 1))

yy

1980 1985 1990 1995 2000 2005

64
00

66
00

68
00

70
00

72
00

(a)

c(tt, seq(tt[1] + n, tt[1] + n + k - 1, 1))

yy

1980 1985 1990 1995 2000 2005

0
20

40
60

80

(b)

c(tt, seq(tt[1] + n, tt[1] + n + k - 1, 1))

yy

1980 1985 1990 1995 2000 2005

64
00

66
00

68
00

70
00

72
00

74
00

(b)

Figure 5.13 (a) A simple EWMA applied to the Swiss population data Yt with
a = 0.9. The EWMA is lagging behind the trend. (b) A simple EWMA applied to
the differenced series ΔYt. (c) A prediction reconstructed from the previous graph.

factor φ is applied in order to model practical cases where the growth is not
linear.

The forecasting equation is

Ŷt(�) = m̂t + r̂t

�∑
i=1

φi (5.41)

and the update equations are, for t ≥ 3:

m̂t = (1 − a)
(
m̂t−1 + φr̂t−1

)
+ aYt (5.42)

r̂t = (1 − b)φr̂t−1 + b
(
m̂t − m̂t−1

)
(5.43)

170 Forecasting

with the initial conditions m̂2 = Y2 and r̂2 = Y2−Y1. We assume that 0 < φ ≤
1; there is no constraint on a and b, although they are generally taken between
0 and 1.

For φ = 1 we have the classical Holt-Winters model, also called double
exponential weighted moving average ; for 0 < φ < 1 the model is said
“with regression”.

Proposition 5.8 ([89]) Double EWMA with regression is equivalent to model-
ing the non-differenced data as the zero mean ARIMA(1, 1, 2) process defined
by

(1 −B)(1 − φB)Y =
(
1 − θ1B − θ2B

2
)
ε (5.44)

with

θ1 = 1 + φ− a− φab (5.45)
θ2 = −φ(1 − a) (5.46)

where εt ∼ iid N0,σ2 .
Double EWMA is equivalent to the zero mean ARIMA(0, 2, 2) model

(1 −B)2Y =
(
1 − θ1B − θ2B

2
)
ε (5.47)

with

θ1 = 2 − a− ab (5.48)
θ2 = −(1 − a) (5.49)

The maximum likelihood estimate of a, b and φ is obtained as usual by
minimizing the one step ahead forecast error. Figure 5.14 shows an example of
double EWMA.

c(tt, tt[1] + seq(n, n + k - 1, 1))

yy

1980 1985 1990 1995 2000 2005

64
00

66
00

68
00

70
00

72
00

74
00

Figure 5.14 Double EWMA with a = 0.8, b = 0.8. It is a good predictor; it
underestimates the trend in convex parts, and overestimates it in concave parts.

Sparse ARMA and ARIMA Models 171

Seasonal Models

For time series with a periodic behavior, there exist extensions of the Holt-
Winters model, which maintain the same simplicity, and can be explained as
ARIMA models. There are several variants, which differ in the choice of certain
coefficients.

Assume that we know that the non-differenced data has a period s. The
idea is to keep the level and trend estimates m̂t and r̂t, and to introduce
corrections for seasonality ŝt(i), for i = 0, . . . , s− 1. The forecasting formula is
[89]:

Ŷt(�) = m̂t +
�∑

i=1

φir̂t + w�ŝt(� mod s) (5.50)

where φ and w are discounting factors. The estimates are updated according
to (for t ≥ s+ 2):

m̂t = a
(
Yt − wŝt−1(1)

)
+ (1 − a)

(
m̂t−1 + φr̂t−1

)
(5.51)

r̂t = b
(
m̂t − m̂t−1

)
+ (1 − b)φr̂t (5.52)

ŝt(i) = wŝt−1

(
(i+ 1) mod s

)
+Diet for i = 0, . . . , s− 1 (5.53)

where Di are coefficients to be specified next and et = Yt − Ŷt−1(1).
Initial values of m̂, r̂, ŝ are obtained by using the forecast equations from

1 to j. More precisely, we set m̂t = Yt for t = 1, . . . , s+ 1, r̂1 = r, ŝ1(j) = sj

for j = 0, . . . , s− 1 and solve for r, s0, . . . , ss−1 in

Yj+1 = Y1 + r

j∑
i=1

φi + wjsj mod s for j = 1 . . . s

0 =
s−1∑
j=0

sj

After some algebra, this gives the initial conditions

m̂s+1 = Ys+1 (5.54)

r̂s+1 =

s∑
j=1

(Yj+1 − Y1)ws−j

s∑
j=1

j∑
i=1

φi−sws−j

(5.55)

ŝs+1(0) = Ys+1 − Y1 − r̂s+1

s∑
i=1

φi−s (5.56)

ŝs+1(j) =

(
Yj+1 − Y1 − r̂s+1

j∑
i=1

φi−s

)
ws−j for j = 1, . . . , s− 1 (5.57)

172 Forecasting

Roberts argues that we should impose
∑s

i=0Di = 0. Roberts’ seasonal
model is obtained by using an exponential family, i.e.

D0 = 1 − cs−1 (5.58)

Di = −ci−1(1 − c) for i = 1, . . . , s (5.59)

for some parameter c.

Proposition 5.9 ([89]) The Roberts seasonal model with parameters a, b, c, φ, w
is equivalent to the zero mean ARIMA model

(1 − φB)(1 −B)

(
1 +

s−1∑
i=1

wiBi

)
Y =

(
1 −

s+1∑
i=1

θiB
i

)
ε (5.60)

with εt ∼ iid N0,σ2 and

θ1 = 1 + φ− wc− a(1 + φb)

θi = wi−2
{
ci−2

[
(1 + φ)wc − φ− w2c2

]− (w − φ)a − wφab
}

for i = 2, . . . , s− 1

θs = ws−2
{
cs−2

[
(1 + φ)wc − φ

]− (w − φ)a− wφab
}

θs+1 = −φws−1
(
cs−1 − a

)

The Holt-Winters additive seasonal model is also commonly used. It
corresponds to φ = 1, w = 1 (no discounting) and

D0 = c(1 − a) (5.61)
Di = 0 for i = 1, . . . , s− 1 (5.62)

It seems more reasonable to impose
∑s−1

i=0 Di = 0, and Roberts proposes a
variant, the Corrected Holt-Winters additive seasonal model , for which
φ = 1, w = 1 and

D0 = c(1 − a) (5.63)

Di = −c(1 − a)
s− 1

for i = 1, . . . , s (5.64)

Proposition 5.10 ([89]) The Holt-Winters additive seasonal models with pa-
rameters a, b, c are equivalent to the zero mean ARIMA models

(1 −B)(1 −Bs)Y =

(
1 −

s+1∑
i=1

θiB
i

)
ε (5.65)

with εt ∼ iid N0,σ2 and

θ1 = (1 − a)(1 + ch) − ab

θi = −ab for i = 2, . . . , s− 1
θs = 1 − ab− (1 − a)c(1 + h)

θs+1 = −(1 − a)(1 − c)

Proofs 173

with h = 1
s−1 (Corrected Holt-Winters additive seasonal model) and h = 0

(Holt-Winters additive seasonal model).

For all of these models, the parameters can be estimated by minimizing
the mean square one step ahead forecast error. Prediction intervals can be
obtained from the ARIMA model representations.

There exist many variants of the Holt-Winters seasonal model; see for ex-
ample [48] for the multiplicative model and other variants.

Example 5.7 Internet Traffic with Roberts Model
We applied the seasonal models in this section to the data set of Fig-
ure 5.1. We fitted the models by maximum likelihood, i.e. we minimized
the one step ahead forecast error. We obtained prediction intervals by
using the ARIMA representation and Proposition 5.6.
The best Roberts seasonal model was obtained for a = 1, b = 0.99, c =
0.90, φ = 0.050 and w = 1. The best Holt-Winters additive seasonal
model was for a = 0.090, b = 0.037 and c = 0.64. Both corrected and
non-corrected Holt-Winters additive seasonal models gave practically
the same results.

210 215 220 225 230 235 240 245 250
0

100

200

300

400

500

600

(a) Roberts Model

210 215 220 225 230 235 240 245 250
0

100

200

300

400

500

600

(b) Holt-Winters Additive Seasonal Model

Figure 5.15 Prediction of the internet traffic of Figure 5.1, using additive
seasonal models. (◦ = actual value of the future, not known at the time of
prediction). The predictions are less accurate than in Figure 5.11, but the
models are much simpler.

5.7 Proofs

Theorem 5.4

Let Xt − μ = Fεt where F is the ARMA filter and εt ∼ iid N0,σ2 . We identify
F with an N × N invertible matrix as in (D.6). Yt is a Gaussian vector with

174 Forecasting

the mean μ and the covariance matrix Ω = σ2FFT . Thus, the log-likelihood
of the data x1, . . . , xN is

−N
2

ln(2π) −N lnσ − 1
2σ2

((
xT − μ�1T

)
F−TF−1

(
x− μ�1

))

where x is the column vector of the data and �1 is the column vector with N
rows equal to 1. For a given x and F the log-likelihood is at a maximum for

σ̂2 =
1
N

((
xT − μ�1T

)
F−TF−1

(
x− μ�1

))2

and is equal to −N
2 ln

(
2πσ̂2

)
. Now

σ̂2 =
1
N

∥∥∥F−1
(
x− μ�1

)∥∥∥2

and, by definition of the model, F−1
(
x−μ�1

)
is the vector of residuals (i.e. the

value of εt that correspond to the observed data x1, . . . , xN). We now employ
the innovation formula, (5.32), to conclude the proof.

Proposition 5.7

Assume that EWMA corresponds to an ARIMA model. Let εt = Yt − Ŷt−1(1)
be the innovation sequence. Re-write (5.38) as

m̂t = m̂t−1 + aεt

Using filters, this can be written as m̂ = Bm̂+ aε. Combine with Y = Bm+ ε
and obtain (1 −B)Y =

(
1 − (1 − a)B

)
ε, which is the required ARIMA model.

Conversely, use the forecasting equations in Proposition 5.6) to show that we
obtain the desired forecasting equations.

The proofs of Propositions 5.8, 5.9 and 5.10 are similar.

Chapter 6

Discrete Event Simulation

Simulations are often regarded as the simplest, though the most time-consuming,
performance evaluation method. However, even a simple simulation program
may cause problems, for instance if one is not aware of what stationarity means,
or if one is unware of the potential problems that arise when a simulation does
not have a stationary regime. We start by discussing this simple but important
issue; the related topic of freezing simulations is presented in another chapter
(Section 7.4).

Subsequently, we describe two commonly used techniques for implementing
a simulation, namely, discrete events and stochastic recurrences, and discuss
how confidence intervals can be applied to such settings. Next, we bring up
Monte Carlo simulations, viewed here as a method for computing integrals
or probabilities, and potential pitfalls regarding random number generators.
Finally, we present practical techniques for sampling from a distribution (CDF
inversion, rejection sampling).

176 Discrete Event Simulation

Importance sampling is an efficient technique for computing estimates of
rare events, such as a failure rate or a bit error rate. The main difficulty lies
in the choice of an importance sampling distribution. Here too, we propose
a very general approach that is widely applicable and does not require heavy
developments.

6.1 What is a Simulation?

A simulation is an experiment in a computer (biologists say “in silico”) where
the real environment is replaced by the execution of a program.

Example 6.1 Mobile Sensors
You want to build an algorithm A for a system of n wireless sensors,
carried by mobile users, sending information to a central database.
A simulation of the algorithm consists in implementing the essential
features of the program in the computer, with one instance of A per
simulated sensor. The main difference between a simulation and a real
implementation is that the real, physical world (here, the radio channel,
with measurements performed by sensors) is replaced by events in the
execution of a program.

6.1.1 Simulated Time and Real Time

In a simulation, the flow of time is controlled by the computer. A first task of a
simulation program is to simulate parallelism: several parallel actions can take
place in the real system, and in the program, they are serialized. Serializing is
done by maintaining a simulated time, which is that at which an event in the
real system is supposed to take place. Every action is then decomposed into
instantaneous events (e.g. the beginning of a transmission), and we assume
that it is impossible for two instantaneous events to take place at exactly the
same time.

Assume for example that every sensor in Example 6.1 should send a message
whenever there is a sudden change in its reading, and at most every 10 minutes.
It may happen in a simulation program that two or more sensors decide to send
a message simultaneously, say within a window of 10 μs. The program may
take much more than 10 μs of real time to execute these events. In contrast, if
no event occurs in the system during 5 minutes, the simulation program may
jump to the next event and take just of few ms to execute 5 mn of simulated
time. The real time depends on the performance of the computer (processor
speed, amount of memory) and of the simulation program.

6.1.2 Simulation Types

There are many different types of simulations, and the following classification
can be used.

What is a Simulation? 177

Deterministic / Stochastic

A deterministic simulation has no random components. It is employed when
we want to verify a system where the environment is entirely known, maybe
to determine the feasibility of a schedule, or to test the feasibility of an imple-
mentation. In most cases however, this is not sufficient. The environment of
the system is better modeled with a random component, causing the output of
the simulation to also be random.

Terminating / Non-terminating

A terminating simulation ends when specific conditions occurs. For example, if
we wish to evaluate the execution time of one sequence of operations in a well
defined environment, we can run the sequence in the simulator and count the
simulated time. A terminating simulation is typically used when

• we are interested in the lifetime of a certain system
• or when the inputs are time-dependent

Example 6.2 Joe’s Computer Shop
We are interested in evaluating the time it takes to serve n customers
who request a file together at time 0. We run a simulation program that
terminates at time T1 when all users have had their request satisfied.
This is a terminating simulation; its output is the time T1.

Asymptotically Stationary / Non-stationary

This applies only to a non-terminating, stochastic simulation. Stationarity is a
property of the stochastic model being simulated. For an in-depth discussion
of stationarity, see Chapter 7.

Very often, the state of the simulation depends on the initial conditions
and it is difficult to find good initial conditions. For instance, if you simulate
an information server and start with empty buffers, you are probably too op-
timistic, since a real server system that has been running for some time has
many data structures that are not empty. Stationarity is a solution to this
problem: if the simulator has a unique stationary regime, its distribution of
state becomes independent of the initial condition.

A stationary simulation is such that you gain no information of its age
by analyzing it. For example, if you run a stationary simulation and take a
snapshot of the state of the system at times 10 and 10, 000 seconds, there is no
way to tell which of the two snapshots is at which time.

In practice, a non-terminating simulation is rarely exactly stationary, but
can be asymptotically stationary . This means that the simulation becomes
stationary after some simulated time.

More precisely, a simulation program with time independent inputs can
always be thought of as the simulation of a Markov chain. A Markov chain
is a generic stochastic process such that, in order to simulate the future after
time t, the only information required is the state of the system at time t.

178 Discrete Event Simulation

This is usually what happens in a simulation program. The theory of Markov
chains (see Chapter 7) states that the simulation will either converge to some
stationary behavior, or diverge. If we wish to measure the performance of the
system being studied, it is most likely that we are interested in its stationary
behavior.

Example 6.3 Information Server
An information server is modeled as a queue. The simulation program
starts with an empty queue. Assume that the arrival rate of requests
is smaller than the server can handle. Due to the fluctuations in the
arrival process, we expect some requests to be held in the queue, from
time to time. After some simulated time, the queue starts to oscillate
between busy and idle periods. At the beginning of the simulation, the
behavior is not typical of the stationary regime, but after a short time
it becomes so (Figure 6.1(a)).

1 2 3 4 5 6 7 8 9
x 10

4

8

10

12

14

16

18

20

22

24

26

28

M
ea

n
Q

ue
ue

 L
en

gt
h

Time

M/M/1 Queue, µ
F
 = 0.096, µ

G
 = 0.01

(a) Utilization= 0.96

1 2 3 4 5 6 7 8 9
x 10

4

20

40

60

80

100

120

140

160

Time

M
ea

n
Q

ue
ue

 L
en

gt
h

M/M/1 Queue, µ
F
 = 0.0101, µ

G
 = 0.01

(b) Utilization= 1.01

Figure 6.1 A simulation of the information server in Example 6.3, with
exponential service and interarrival times. The graphs show the number of
requests in the queue as a function of time, for two values of the utilization
factor.

If, in contrast, the model is unstable, the simulation output may show
a non-converging behavior (Figure 6.1(b)).

In practice, the main reasons for non asymptotic stationarity are the fol-
lowing.

(1) Unstable models: In a queuing system where the input rate is larger than
the service capacity, the buffer occupancy grows unbounded. The longer
the simulation is run, the larger is the mean queue length.

(2) Freezing simulation: this is a more subtle form of non-stationarity, where
the system does not converge to a steady state but, instead, freezes (be-
comes slower and slower). This is typically due to the occurrence of rare
events of large impact. The longer the simulation, the more likely it is that
a rare, but important, event occurs, and the larger the impact of this event

Simulation Techniques 179

may be. If the simulation has regeneration points (points at which a clean
state is reached, for example when the system becomes empty), then the
simulation freezes if the time interval between regeneration points has an
infinite mean. We study this topic in Section 7.4, where we see an example
with the random waypoint.

(3) Models with seasonal or growth components, or more generally, time-de-
pendent inputs; e.g. internet traffic grows month after month and is more
intense at some times of the day.

In most cases, when you perform a non-terminating simulation, you should
make sure that it is in the stationary regime. Otherwise, the output of the
simulation depends on the initial condition and the length of the simulation,
and it is often impossible to decide what are realistic initial conditions may be.
It is not always easy, though, to know in advance whether a given simulation
model is asymptotically stationary. Chapter 7 provides some examples.
Question 6.1 Among the following sequences Xn, determine which ones are
stationary:(1)

(1) Xn, n ≥ 1 is iid.
(2) Xn n ≥ 1 is drawn as follows. X1 is sampled from a given distribution F (·).

To obtain Xn, n ≥ 2 we first flip a coin (and obtain 0 with probability 1−p,
1 with probability p). If the coin returns 0, we let Xn = Xn−1; else, we let
Xn = a new sample from the distribution F (·).

(3) Xn =
∑n

i=1 Zi, n ≥ 1, where Zn, n ≥ 1 is an iid sequence.

6.2 Simulation Techniques

There are numerous ways to implement a simulation program. We here describe
two techniques that are commonly used in our context.

6.2.1 Discrete Event Simulation

A large number of computer and communication systems are simulated by
means of discrete event simulation , for instance with the ns2 or ns3 simu-
lator [1]. It works as follows. The core of the method is to use a global time
currentTime and an event scheduler . Events are objects that represent differ-
ent transitions; all events have an associated firing time. The event scheduler
is a list of events, sorted by increasing firing times. The simulation program

(1)(1) Yes.
(2) Yes: (X1, X2) has the same joint distribution as for example (X10, X11). In gen-
eral, (Xn, Xn+1, . . . , Xn+k) has the same distribution for all n. This is an example of
a non-iid, but stationary sequence.
(3) No, in general. For instance, if the common distribution F (·) has a finite vari-
ance σ2, the variance of Xn is nσ2, and grows with n, which is contradictory with
stationarity.

180 Discrete Event Simulation

picks the first event in the event scheduler, advances currentTime to the firing
time of this event, and executes the event. The execution of an event may
schedule new events with firing times ≥currentTime, and may change or delete
events that were previously listed in the event scheduler. The global simulation
time currentTime cannot be modified by an event. Thus, the simulation time
jumps from one event firing time to the next – hence the name discrete event
simulation. In addition to simulating the logic of the system being modeled,
events have to update the counters used for statistics.

Example 6.4 Discrete Event Simulation of a Simple Server
A server receives requests and serves them one by one in order of ar-
rival. The times between request arrivals and the service times are
independent of each other. The distribution of the time between ar-
rivals has CDF F (·) and the service time has CDF G(·). The model is
in fact a GI/GI/1 queue, which stands for general independent inter-
arrival and service times. An outline of the program is given below.
The program computes the mean response time and the mean queue
length.
Classes and Objects. We describe this example using an object-oriented
terminology, close to that of the Java programming language. All you
need to know about object-oriented programming in order to under-
stand this example is the following. An object is a variable and a class
is a type. For example, arrival23 is the name of the variable that
contains all of the information about the 23rd arrival; it is of the class
Arrival. Classes can be nested, e.g. the class Arrival is a sub-class
of Event. A method is a function for which the definition depends on
the class of the object. For instance, the method execute is defined
for all objects of the class Event, and is inherited by all subclasses
such as Arrival. When the method execute is applied to the object
arrival23, the actions that implement the simulation of an arrival are
executed (e.g. the counter of the number of requests in the system is
incremented).
Global Variables and Classes.

• currentTime is the global simulated time; it can be modified only
by the main program.

• eventScheduler is the list of events, in order of increasing time.
• An event is an object of the class Event. It has an attribute
firingTime which is the time at which it is to be executed. An
event can be executed (i.e. the Event class has a method called
execute), as described later.
There are three Event subclasses: an event of the class Arrival
represents the actions that occur when a request arrives; Service
is when a request enters service; Departure is when a request leaves
the system. The event classes are described in detail later.

• The object buffer is the FIFO queue of Requests. The queue length
(in number of requests) is buffer.length. The number of requests

Simulation Techniques 181

served so far is contained in the global variable nbRequests. The
class Request is used to describe the requests arriving at the server.
At a given point in time, there is one object of the class Request
for every request present in the system being modeled. An object
of the class Request has an arrival time attribute.

• Statistics Counters: queueLengthCtr is
∫ t

0 q(s)ds where q(s) is the
value of buffer.length at time s and t is the current time. At the
end of the simulation, the mean queue length is queueLengthCtr/T
where T is the simulation finish time.
The counter responseTimeCtr holds

∑n
m=1Rm, where Rm is the

response time for the mth request and n is the value of nbRequests
at the current time. At the end of the simulation, the mean response
time is responseTimeCtr/N where N is the value of nbRequests.

Event Classes. For each of the three event classes, we now describe the
actions taken when an event of this class is “executed”.

• Arrival: Execute Event’s Actions. Create a new object of class
Request, with an arrival time equal to currentTime. Queue it at the
tail of buffer.
Schedule Follow-Up Events. If buffer was empty before the inser-
tion, create a new event of class Service, with the same firingTime
as this event, and insert it into eventScheduler.
Draw a random number Δ from the distribution F (·). Create a
new event of class Arrival, with firingTime equal to this event
firingTime+Δ, and insert it into eventScheduler.

• Service: Schedule Follow-Up Events. Draw a random number Δ
from the distribution G(·). Create a new event of class Departure,
with firingTime equal to this event’s firingTime+Δ, and insert it
into eventScheduler.

• Departure: Update Event Based Counters. Let c be the request at
the head of buffer. Increment responseTimeCtr by d − a, where d
is this event’s firingTime and a is the arrival time of the request c.
Increment nbRequests by 1.
Execute Event’s Actions. Remove the request c from buffer and
delete it.
Schedule Follow-Up Events. If buffer is not empty after the re-
moval, create a new event of class Service, with firingTime equal
to this event’s firingTime, and insert it into eventScheduler.

Main Program
• Bootstrapping. Create a new event of class Arrival with
firingTime equal to 0 and insert it into eventScheduler.

• Execute Events. While the simulation stopping condition is not
fulfilled, do the following.

182 Discrete Event Simulation

– Increment Time Based Counters. Let e be the first event in
eventScheduler. Increment queueLengthCtr by q(tnew − told)
where q = buffer.length, tnew = e.firingTime and told =
currentTime

– Execute e
– Set currentTime to e.firingTime
– Delete e

• Termination. Compute the final statistics:
meanQueueLength=queueLengthCtr/currentTime
meanResponseTime=responseTimeCtr/nbRequests

Figure 6.2 illustrates the program.

arrival service departure

(a)

0 t1 t2 t3

queue
length

1

2

t4

(b)

arrival
t=0

arrival
t=0

service
t=0

service
t=0

arrival
t=t1

arrival
t=t4

arrival
t=t4

arrival
t=t4

arrival
t=t4

arrival
t=t1

arrival
t=t1

departure
t=t2

departure
t=t2

departure
t=t2

service
t=t2

service
t=t2

departure
t=t3

departure
t=t3

event being executed

event scheduler after execution of event

bootstrap

(c)

Figure 6.2 (a) Events and their dependencies for Example 6.4. An arrow
indicates that an event may schedule another one, (b) a possible realization
of the simulation and (c) the corresponding sequence of event execution. The
arrows indicate that the execution of the event resulted in one or several new
events being inserted into the scheduler.

Question 6.2 Can consecutive events have the same firing time?(2)

(2)Yes. In Example 6.4, a Departure event when the queue is not empty is followed by
a Service event with the same firing time.

Simulation Techniques 183

Question 6.3 What are the generic actions that are executed when an event
is executed?(3)

Question 6.4 Is the model in Example 6.4 stationary?(4)

Question 6.5 Is the mean queue length an event-based or a time-based statis-
tic? The mean response time?(5)

6.2.2 Stochastic Recurrence

This is another simulation method; it is usually a much more efficient than
discrete event simulation, but requires more work on the model. A stochastic
recurrence is a recurrence of the form⎧⎨

⎩
X0 = x0

Xn+1 = f(Xn, Zn)
(6.1)

where Xn is the state of the system at the nth transition (Xn is in some
arbitrary state space X), x0 is a fixed, given state in X , Zn is some stochastic
process that can be simulated (e.g. a sequence of iid random variables, or a
Markov chain), and f is a deterministic mapping. The simulated time Tn at
which the nth transition occurs is assumed to be included in the state variable
Xn.

Example 6.5 Random Waypoint
The random waypoint is a model for a mobile point, and can be
used to simulate the mobility pattern in Example 6.1. It is defined as
follows. The state variable is Xn = (Mn, Tn) where Mn is the position
of the mobile at the nth transition (the nth “waypoint”) and Tn is the
time at which this destination is reached. The point Mn is chosen at
random, uniformly in a given convex area A. The speed at which the
mobile travels to the next waypoint is also chosen at random uniformly
in [vmin, vmax].
The random waypoint model can be cast as a stochastic recurrence
by letting Zn = (Mn+1, Vn+1), where Mn+1, Vn+1 are independent iid
sequences, such that Mn+1 is uniformly distributed in A and Vn+1 in
[vmin, vmax]. We then have the stochastic recurrence

Xn+1 := (Mn+1, Tn+1) =
(
Mn+1, Tn +

‖Mn+1 −Mn‖
Vn

)

(3)(1) Update Event-Based Counters.
(2) Execute Event’s Actions.
(3) Schedule Follow-Up Events.

(4)It depends on the parameters. Let a (resp. b) be the mean of F (·) (resp. G(·)).
The utilization factor of the queue is ρ = b

a
. If ρ < 1 the system is stable and thus

asymptotically stationary, else not (see Chapter 8).
(5)Mean queue length: time-based. Mean response time: event-based.

184 Discrete Event Simulation

See Figure 6.3 for an illustration.

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000
Course of one user

x

y

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000
Waypoints of one user

x

y

(a) 1 mobile

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000
Course of all users

x

y

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000
Waypoints of all users

x

y

(b) 10 mobiles

Figure 6.3 Simulation of the random waypoint model.

Simulation Techniques 185

Once a system is cast as a stochastic recurrence, it can be simply simulated
as a direct implementation of (6.1), for example in Matlab.

Question 6.6 Is the random waypoint model asymptotically stationary?(6)

Stochastic Recurrence Versus Discrete Event Simulation

It is always possible to express a stochastic simulation as a stochastic recur-
rence, as illustrated by the next example. Both representations may have very
different memory and CPU requirements; which of the representations that is
best depends on the problem at hand.

Example 6.6 Simple Server as a Stochastic Recurrence
(Continuation of Example 6.4). Consider implementing the simple
server in Example 6.4 as a stochastic recurrence. To simplify, assume
that we are interested only in the mean queue length and not in the
mean response time. This can be implemented as a stochastic recur-
rence as follows. Let Xn = (tn, bn, qn, an, dn) represent the state of the
simulator just after an arrival or a departure, tn = the simulated time
at which this transition occurs, bn = buffer.length, qn = queueLengthCtr
(both just after the transition), an = the time interval from this transi-
tion to the next arrival and dn = the time interval from this transition
to the next departure.
Let Zn be a couple of random numbers, drawn independently of any-
thing else, with a distribution that is uniform in (0, 1).
The initial state is

t0 = 0, b0 = 0, q0 = 0, a0 = F−1(u), d0 = ∞

where u is a sample of the uniform distribution on (0, 1). The reason
for the formula a0 = F−1(u) is explained in Section 6.6: a0 is a sample
of the distribution with CDF F (·).
The recurrence is defined by f

(
(t, b, q, a, d), (z1, z2)

)
= (t′, b′, q′, a′, d′)

with,

if a < d // this transition is an arrival
Δ = a

t′ = t+ a

b′ = b+ 1
q′ = q + bΔ

a′ = F−1(z1)
if b == 0 then d′ = G−1(z2) else d′ = d− Δ

(6)For vmin > 0 it is asymptotically stationary. For vmin = 0 it is not: the model “freezes”
(the number of waypoints per time unit tends to 0). See Chapter 7 for a justification).

186 Discrete Event Simulation

else // this transition is a departure
Δ = d

t′ = t+ d

b′ = b− 1
q′ = q + bΔ
a′ = a− Δ
if b′ > 0 then d′ = G−1(z1) else d′ = ∞

6.3 Computing the Accuracy of Stochastic Simulations

A simulation program is expected to output certain quantities of interest. For
example, for a simulation of the algorithm A it may be the average number of
lost messages. The output of a stochastic simulation is random: two different
simulation runs produce different outputs. Therefore, it is not sufficient to give
a single simulation result; in addition, we need to provide the accuracy of our
results.

6.3.1 Independent Replications

A simple and very efficient method for obtaining confidence intervals is to
use replication . Perform n independent replications of the simulation, each
producing an output x1, . . . , xn. Be careful to have truly random seeds for
the random number generators, for example by accessing the computer time
(Section 6.5).

6.3.2 Computing Confidence Intervals

We have to choose whether we want a confidence interval for the median or
for the mean. The former is straightforward to compute, and should thus be
preferred in general.

Methods for computing confidence intervals for medians and means are
summarized in Section 2.2.

Example 6.7 Application to Example 6.2
Figure 6.4 shows the time it takes to transfer all files as a function of
the number of customers. The simulation outputs do not appear to be
normal, therefore we test whether n is large, by looking at the qq-plot
of the the bootstrap replicates. We find that it looks normal, and we
can therefore use the Student statistic. Out of curiosity, we also com-
pute the bootstrap percentile estimate and find that both confidence
intervals are very close, the bootstrap percentile estimate being slightly
smaller.

Computing the Accuracy of Stochastic Simulations 187

10 20 30 40
0

5

10

15

20

25

30

Number of customers

T
ot

al
 s

er
vi

ce
 ti

m
e

T
1

(a)

10 20 30 40
0

5

10

15

20

25

30

Number of customers

M
ea

n
se

rv
ic

e
tim

e
E

(T
1)

Confidence Intervals for Mean and Median

(b)

−4 −2 0 2 4
2

3

4

5

6

7

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

10 customers

−4 −2 0 2 4
6

8

10

12

14

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

20 customers

−4 −2 0 2 4
10

12

14

16

18

20

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

30 customers

−4 −2 0 2 4
16

18

20

22

24

26

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

40 customers

(c)

−4 −2 0 2 4

4.5

5

5.5

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

Bootstrap, 10 customers

−4 −2 0 2 4
9

9.5

10

10.5

11

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

Bootstrap, 20 customers

−4 −2 0 2 4
14.5

15

15.5

16

16.5

17

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

Bootstrap, 30 customers

−4 −2 0 2 4
19.5

20

20.5

21

21.5

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

Bootstrap, 40 customers

(d)

Figure 6.4 The time to serve n files in Joe’s computer shop (Example 6.2):
(a) results of 30 independent replications, versus the number of customers;
(b) 95%confidence intervals for the mean obtained with the normal approximation
(left), with the bootstrap percentile estimate (middle); 95% confidence interval for
the median (right); (c) qq-plot of simulation outputs, showing the deviation from
normality; (d) qq-plots of the bootstrap replicates, displaying normality.

188 Discrete Event Simulation

There are other methods for obtaining confidence intervals, but they involve
specific assumptions of the model and require some care; see for example [49].

6.3.3 Non-Terminating Simulations

Non-terminating simulations should be asymptotically stationary (Section 6.1.2).
When you simulate such a model, you should be careful to perform transient
removal . This involves determining:

• when to start measuring the output (i.e. the time at which we consider
that the simulation has converged to its stationary regime) and

• when to stop the simulation.

Unfortunately, there is no simple, bullet-proof method to determine these two
times. In theory, convergence to the stationary regime is governed by the value
of the second eigenvalue modulus of the transition matrix of the Markov chain
that represents your simulation. In all but very special cases, it is impossible
to estimate this value. A practical method for removing transients is to look
at the data produced by the simulation, and visually determine a time after
which the simulation output does not seem to exhibit a clear trend behavior.
For example, in Figure 6.1(a), the measurements could safely start at time
t = 1. This is the same stationarity test as with time series (Chapter 5).

Determining when to stop a simulation is more tricky. The simulation
should be large enough for transients to be removable. After that, you need to
estimate whether running the simulation for a long time reduces the variance
of the quantities that you are measuring. In practice, this is hard to predict a
priori. A rule of thumb is to run the simulation long enough so that the output
variable looks Gaussian across several replications, but not longer.

6.4 Monte Carlo Simulation

A Monte Carlo simulation is a method for computing probabilities, expec-
tations, or, in general, integrals when direct evaluations are impossible or too
complex. It simply consists in estimating the expectation as the mean of a
number of independent replications.

Formally, assume that we are given a model for generating a data sequence
�X . The sequence may be iid or not. Further assume that we want to compute
β = E

(
ϕ(�X)

)
. Note that this covers the case where we wish to compute a

probability: if ϕ(�x) = 1{�x∈A} for some set A, then β = P(�X ∈ A).

A Monte Carlo simulation consists in generating R iid replicates �Xr, r =
1, . . . , R. The Monte Carlo estimate of β is

β̂ =
1
R

R∑
r=1

ϕ
(
�Xr
)

(6.2)

Monte Carlo Simulation 189

A confidence interval for β can then be computed using the methods in
Chapter 2 (Theorems 2.2 and 2.4). By adjusting R, the number of replications,
we can control the accuracy of the method, i.e. the width of the confidence
interval.

In particular, the theorem for confidence intervals of success probabilities
(Theorem 2.4) should be used when the goal is to find an upper bound on a
rare probability and the Monte Carlo estimate returns 0, as illustrated in the
example below.

Example 6.8 p-value of a test
Let X1, . . . , Xn be a sequence of iid random variables that take on
values in the discrete set {1, 2, . . . , I}. Let qi = P(Xk = i), and Ni =∑n

k=1 1{Xk=i} (number of observations equal to i). Assume that we
want to compute

p = P

(
k∑

i=1

Ni ln
Ni

nqi
> a

)
(6.3)

where a > 0 is given. This computation arises in the theory of goodness
of fit tests, when we want to test whether Xi does indeed come from
the model defined above (a is then equal to

∑k
i=1 ni ln ni

nqi
where ni is

our data set). For large values of the sample size n we can approximate
β by a χ2 distribution (see Section 4.4). For small values on the other
hand, there is no analytic result.
We use a Monte Carlo simulation to compute p. We generate R iid
replicates Xr

1 , . . . , X
r
n of the sequence (r = 1, . . . , R). This can be done

by employing the inversion method described in the present chapter.
For each replicate r, let

N r
i =

n∑
k=1

1{Xr
k=i} (6.4)

The Monte Carlo estimate of p is

p̂ =
1
R

R∑
r=1

1{P
k
i=1 Ni ln

Ni
nqi

>a} (6.5)

Assuming that p̂R ≥ 6, we compute a confidence interval by using the
normal approximation in (2.29). The sample variance is estimated by

σ̂ =

√
p̂(1 − p̂)

R
(6.6)

and a confidence interval at level 0.95 is p̂ ± 1.96σ̂. Assume that we
want a relative accuracy at least equal to some fixed value ε (for example
ε = 0.05). This is achieved if

1.96 σ̂
p̂

≤ ε (6.7)

190 Discrete Event Simulation

which is equivalent to

R ≥ 3.92
ε2

(
1
p̂
− 1
)

(6.8)

For every value of R, we can test whether (6.8) is verified and stop the
simulation when this is the case. Table 6.1 shows some results with
n = 100 and a = 2.4; we see that p is equal to 0.19 with an accuracy
of 5%; the number of Monte Carlo replicates is proportional to the
relative accuracy to the power −2.

Table 6.1 Computation of p in Example 6.8 by Monte Carlo simulation.
The parameters of the model are I = 4, q1 = 9

16
, q2 = q3 = 3

16
, q4 = 1

16
,

n = 100 and a = 2.4. The table shows the estimate p̂ of p with its 95%
confidence margin versus the number of Monte Carlo replicates R. With
7680 replicates the relative accuracy (margin/p̂) is below 5%.

R p̂ margin

30 0.2667 0.1582

60 0.2500 0.1096

120 0.2333 0.0757

240 0.1917 0.0498

480 0.1979 0.0356

960 0.2010 0.0254

1920 0.1865 0.0174

3840 0.1893 0.0124

7680 0.1931 0.0088

If p̂R < 6, we cannot apply the normal approximation. This occurs
when the p-value to be estimated is very small. In such cases, typically,
we are not interested in an exact estimate of the p-value, but wish to
know whether it is smaller than a certain threshold α (for example
α = 0.05). (2.26) and (2.27) can be used in this case. For example,
assume the same data as in Table 6.1, except for a = 18.2. We do
R = 104 Monte Carlo replicates and find p̂R = 0. We can conclude,
with 95% confidence, that p ≤ 1−(0.025)1/R = 3.7E−4 (Theorem 2.4).

Question 6.7 In the first case of Example 6.8 (Table 6.1), what is the con-
clusion of the test? In the second case?(7)

(7)In the first case we accept the null hypothesis, i.e. we believe that the probability of
case i is qi. In the second case, the p-value is smaller than 0.95, and we thus reject the
null hypothesis.

Random Number Generators 191

6.5 Random Number Generators

The simulation of any random process uses a basic function (such as rand
in Matlab) that is assumed to return independent uniform random variables.
Arbitrary distributions can be derived from there, as explained in Section 6.6.

In fact, rand is a pseudo-random number generator . It produces a se-
quence of numbers that appearing to be random, but which is in fact perfectly
deterministic, depending only on one initialization value of its internal states,
called the seed . There are several methods to implement pseudo random num-
ber generators; all based on chaotic sequences, i.e. iterative processes where a
small difference in the seed produces very different outputs.

Simple random number generators are based on linear congruences of
the type xn = axn−1 mod m. Here, the internal state after n calls to rand is
the last output xn; the seed is x0. As for any iterative algorithm, the sequence
is periodic, but for appropriate choices of a and m, the period may be very
large.

Example 6.9 Linear Congruence
A widespread but obsolete generator (for example the default in ns2)
has a = 16, 807 and m = 231 − 1. The sequence is xn = san mod m

m
where s is the seed. m is a prime number, and the smallest exponent h
such that ah = 1 mod m is m − 1. It follows that for any value of the
seed s, the period of xn is exactly m − 1. Figure 6.5 shows that the
sequence xn indeed looks random.

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Uniform QQPlot

(a)

0 5 10 15 20 25 30
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(b)

Figure 6.5 1000 successive numbers for the generator in Example 6.9. (a) A
qq-plot against the uniform distribution in (0, 1), showing a perfect match,
(b) an autocorrelation function, displaying no significant correlation at any
lag, (c) lag plots at various lags, showing independence. Note that there is
hovewer correlation in dimensions higher than 2, see Example 6.10.

192 Discrete Event Simulation

0 0.5 1
0

0.5

1
h = 100

0 0.5 1
0

0.5

1
h = 200

0 0.5 1
0

0.5

1
h = 300

0 0.5 1
0

0.5

1
h = 400

0 0.5 1
0

0.5

1
h = 500

0 0.5 1
0

0.5

1
h = 600

0 0.5 1
0

0.5

1
h = 700

0 0.5 1
0

0.5

1
h = 800

0 0.5 1
0

0.5

1
h = 900

(c)

Figure 6.5 (Continuation.)

The period of a random number generator should be much smaller than the
number of times it is called in a simulation. The generator in Example 6.9 has
a period of ca. 2×109, which may be too small for very large simulations. There

0 20 40 60 80 100 120
0

50

100

150

200

250

300

350

400

450

Time (s)

T
h

ro
u

g
h

p
u

t
(K

b
p

s)

(a) Linear Congruence with a = 16, 807 and
m = 231 − 1

0 20 40 60 80 100 120
0

Time (s)

T
h

ro
u

g
h

p
u

t
(K

b
p

s)

50

100

150

200

250

300

350

(b) L’Ecuyer’s generator [60]

Figure 6.6 Simulation outputs for the throughput of TCP connections over a wire-
less ad-hoc network. The wireless LAN protocol uses random numbers for its opera-
tion. This simulation consumes a very large number of calls to rand. The simulation
results obtained with both generators are different: Lecuyer’s generator produces
consistently smaller confidence intervals.

Random Number Generators 193

are other generators with much longer periods, for example the “Mersenne
Twister” [67] with a period of 219,937 − 1. Such generators use other chaotic
sequences and combinations of them.

There is no such thing as a perfect pseudo-random number generator; only
truly random generators can be perfect. Such generators exist: for example, a
quantum mechanics generator is based on the fact that the state of a photon is
believed to be truly random. For a general text on random numbers, see [59];
for software implementing good generators, see [60] and L’Ecuyer’s home page.
For a general discussion of generators in the framework of simulation, see [40].
Figure 6.6 illustrates a potential problem where the random number generator
does not have a long enough period.

Using a Random Number Generator in Parallel Streams

For some (obsolete) generators, as in Example 6.9, the selection of small seed
values in parallel streams may introduce a strong correlation (when in fact we
would like the streams to be independent).

Example 6.10 Parallel Streams with Incorrect Seeds
Assume that we need to generate two parallel streams of random num-
bers. This is very frequent in discrete event simulations; we may want
to have one stream for the arrival process, and a second one for the
service process. Assume that we use the linear congruential generator
of Example 6.9, and generate two streams xn and x′n with seeds s = 1
and s′ = 2. Figure 6.7 shows the results: the two streams are strongly
correlated. In contrast, taking s′ = the last value xN of the first stream
does not give rise to this problem.
As mentioned above, more modern generators do not have this problem
either.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Two Streams, seeds = 1 and 2

(a)

Two Streams, seeds = 1 and 6.628930e−001

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Figure 6.7 xn versus x′
n for two streams generated with the linear congru-

ential in Example 6.9. (a) Seed values are 1 and 2, (b) seed values are (1,
last value of first stream).

194 Discrete Event Simulation

Seeding the Random Number Generator

A safe way to make sure that replications are reasonably independent is to use
the internal state of the generator at the end of the 1st replication as the seed
for the second replication and so one. This way, if the generator has a long
enough sequence, the different replications have non overlapping sequences.

In practice, though, we often want independent replications to be run in
parallel, so this mode of operation is not possible. A common practice is to take
a truly random number as the seed, for example derived from the computer
clock or user input with the mouse, see for example random.org.

6.6 How to Sample from a Distribution

In this section, we discuss methods for producing a sample X for a random
variable that has a known distribution. We assume that we have a random
number generator, providing us with independent samples of the uniform dis-
tribution on (0, 1). We focus on two methods of general applicability: CDF
inversion and rejection sampling.

6.6.1 CDF Inversion

The method of CDF inversion , also called the percentile inversion me-
thod , applies to real or integer valued random variables, when the CDF is easy
to invert.

Theorem 6.1
Let F be the CDF of a random variable X with values in R. Define the
pseudo-inverse, F−1 of F , by

F−1(p) = sup
{
x : F (x) ≤ p

}

Let U be a sample of a random variable with a uniform distribution on
(0, 1); F−1(U) is a sample of X.

Application to real random variables

In the case where X has a positive density over some interval I, F is continuous
and strictly increasing on I, and the pseudo-inverse is the inverse of F , as in
the next example. It is obtained by solving for x in the equation F (x) = p,
x ∈ Id.

Example 6.11 Exponential Random Variable
The CDF of the exponential distribution with parameter λ is F (x) =
1 − e−λx. The pseudo-inverse (which in this case is the plain inverse)
is obtained by solving the equation

1 − e−λx = p

How to Sample from a Distribution 195

where x is the unknown. The solution is x = − ln(1−p)
λ . Thus a sample

X of the exponential distribution is obtained by letting X = − ln(1−U)
λ ,

or, since U and 1 − U have the same distribution:

X = − ln(U)
λ

(6.9)

where U is the output of the random number generator.

Application to integer random variables

Assume that N is a random variable with values in N. Let pk = P(N = k),
then for n ∈ N

F (n) =
n∑

k=0

pk

and for x ∈ R

⎧⎨
⎩

if x < 0, then F (x) = 0

else F (x) = P(N ≤ x) = P
(
N ≤ �x�) = F

(�x�)

We now compute F−1(p), for 0 < p < 1. Let n be the smallest integer such
that p < F (n). The set

{
x : F (x) ≤ p

}
is equal to (−∞, n) (Figure 6.8); the

supremum of this set is n, thus F−1(p) = n. In other words, the pseudo inverse
is given by

F−1(p) = n⇐⇒ F (n− 1) ≤ p < F (n) (6.10)

n = F –1(p)n – 1

p

F(n – 1)

F(n)

x
F(x) ≤ p

Figure 6.8 Pseudo-Inverse of CDF F (·) of an integer-valued random variable.

196 Discrete Event Simulation

We have thus shown the following statement.

Corollary 6.1 Let N be a random variable with values in N and let pk =
P(N = k), for k ∈ N. A sample of N is obtained by setting N to the unique
index n such that

∑n−1
k=0 pk ≤ U <

∑n
k=0 pk, where U is the output of the

random number generator.

Example 6.12 Geometric Random Variable
Here, X takes on integer values 0, 1, 2, . . . The geometric distribu-
tion with parameter θ satisfies P(X = k) = θ(1 − θ)k. Consequently,
n ∈ N

F (n) =
n∑

k=0

θ(1 − θ)k = 1 − (1 − θ)n+1

By application of (6.10)

F−1(p) = n⇐⇒ n ≤ ln(1 − p)
ln(1 − θ)

< n+ 1

hence

F−1(p) =
⌊

ln(1 − p)
ln(1 − θ)

⌋

and, since U and 1 − U have the same distribution, a sample X of the
geometric distribution is

X =
⌊

ln(U)
ln(1 − θ)

⌋
(6.11)

Question 6.8 Consider the function defined by COIN(p)= if rand()<p 0 else 1.
What does it compute?(8)

Question 6.9 Compare (6.9) and (6.11).(9)

6.6.2 Rejection Sampling

The method of rejection sampling is widely applicable. It can be used to
generate samples of random variables when the inversion method does not work
easily. It applies to random vectors of any dimension.

The method is based on the following result, which is of independent in-
terest. It allows to sample from a distribution given in conditional form.

(8)It generates a sample of the Bernoulli random variable that takes on the value 0 with
p and the value 1 with probability 1 − p.

(9)They are similar, in fact we have N = �X� if we let λ = ln(1 − θ). This follows from
the fact that if X ∼ exp(λ), then �X� is geometric with parameter θ = 1 − e−λ.

How to Sample from a Distribution 197

Theorem 6.2 (Rejection Sampling for a Conditional Distribution)
Let X be a random variable in some space S such that the distribution of
X is the conditional distribution of X̃, given that Ỹ ∈ A. Here, (X̃, Ỹ) is
a random variable in S × S′ and A is a measurable subset of S.
A sample of X is obtained by the following algorithm:

do
draw a sample of (X̃, Ỹ)

until Ỹ ∈ A
return(X̃)

The expected number of iterations of the algorithm is 1
P(Ỹ ∈A)

.

Example 6.13 Density Restricted to Arbitrary Subset
Consider a random variable in some space (R,Rn,Z, . . .) that has a
density fY (y). Let A be a set such that P(Y ∈ A) > 0. We are
interested in the distribution of a random variable X for which the
density is that of Y , restricted to A:

fX(y) = KfY (y)1{y∈A} (6.12)

where K−1 = P(Y ∈ A) > 0 is a normalizing constant. This distribu-
tion is the conditional distribution of Y , given that Y ∈ A.

Question 6.10 Show this.(10)

−10 −5 0 5 10 15 20
−20

−10

0

10

20

30

40

Figure 6.9 1000 independent samples of the uniform distribution over A =
the interior of the cross. Samples are obtained by generating uniform samples
in the bounding rectangle and rejecting those samples that do not fall in A.

(10)For any (measurable) subset B of the space, P(X ∈ B) = K
R
B fY (y)1{y∈A} dy =

KP(Y ∈ A and Y ∈ B) = P(Y ∈ B | Y ∈ A).

198 Discrete Event Simulation

Thus, a sampling method for the distribution with density in (6.12) is
to draw samples of the distribution with density fY until a sample that
belongs to A is found. The expected number of iterations is 1

P(Y ∈A) .
For example, consider the sampling of a random point X , uniformly
distributed on some bounded area A ⊂ R

2. We can consider this
density as the restriction of the uniform density on some rectangle
R = [xmin, xmax] × [ymin, ymax] that contains the area A. Thus, a
sampling method is to draw points uniformly in R, until we find one
in A. The expected numbers of iterations is the ratio of the area of
R to that of A; one should thus be careful to pick a rectangle that is
close to A. Figure 6.9 shows a sample of the uniform distribution over
a non-convex area.
Question 6.11 How can one generate a sample of the uniform distri-
bution over R?(11)

Now we come to a very general result, for all distributions that have a
density.

Theorem 6.3 (Rejection Sampling for Distribution with Density)
Consider two random variables X,Y with values in the same space, that
both have densities. Assume that:

• we know a method for drawing a sample of X
• the density of Y is known up to a normalization constant K: fY (y) =
Kfn

Y (y), where fn
Y is a known function

• there exist some c > 0 such that

fn
Y (x)
fX(x)

≤ c

A sample of Y is obtained by the following algorithm:

do
draw independent samples of X and U , where U ∼ Unif(0, c)

until U ≤ fn
Y (X)

fX (X)

return(X)

The expected number of iterations of the algorithm is c
K .

A frequent application of Theorem 6.3 is the following.

Arbitrary Distribution with Density

Assume that we want a sample of Y , which takes on values in the bounded
interval [a, b] and has a density fY = Kfn

Y (y). Assume that fn
Y (y) (non-

normalized density) can be easily computed, but not the normalization constant
K, which is unknown. Also assume that we know an upper bound M on fn

Y .

(11)The coordinates are independent and uniform: generate two independent samples
U, V ∼ Unif(0, 1); the sample is

`
(1 − U)xmin + Uxmax, (1 − V)ymin + V ymax

´
.

How to Sample from a Distribution 199

We takeX uniformly distributed over [a, b] and obtain the sampling method

do
draw X ∼ Unif(a, b) and U ∼ Unif(0,M)

until U ≤ fn
Y (X)

return(X)

Note that we do not need to know the multiplicative constant K. For example,
consider the distribution with density

fY (y) = K
sin2(y)
y2

1{−a≤y≤a} (6.13)

K is hard to compute, but a bound M on fn
Y is easy to find (M = 1) (Fig-

ure 6.10).

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

90

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Figure 6.10 (a) An empirical histogram of 2000 samples of the distribution with
density fX(x) proportional to sin2(x)

x2 1{−a≤y≤a} with a = 10. (b) 2000 independent
samples of the distribution on the rectangle with density fX1,X2(x1, x2) proportional
to |x1 − x2|.

Example 6.14 A Stochastic Geometry Example
We want to sample the random vector (X1, X2) that takes on values in
the rectangle [0, 1]× [0, 1] and whose distribution has a density propor-
tional to |X1−X2|. We take fX = the uniform density over [0, 1]× [0, 1]
and fn

Y (x1, x2) = |x1−x2|. An upper bound on the ratio fn
Y (x1,x2)

fX (x1,x2)
is 1.

The sampling algorithm is thus
do

draw X1, X2 and U ∼ Unif(0, 1)
until U ≤ |X1 −X2|
return(X1, X2)

Figure 6.10(b) shows an example. Note that we do not need to know
the normalizing constant to apply the sampling algorithm.

200 Discrete Event Simulation

6.6.3 Ad-Hoc Methods

The methods of inversion and rejection sampling may be improved in some
special cases. We mention in detail the case of the normal distribution, which
is important to optimize because of its frequent use.

Sampling a Normal Random Variable

The method of inversion cannot be directly used, as the CDF is hard to com-
pute. An alternative is based on the method of change of variables , as given
in the next proposition, the proof of which is by direct calculus.

Proposition 6.4 Let (X,Y) be independent, standard normal random vari-
ables. Let ⎧⎨

⎩
R =

√
X2 + Y 2

Θ = arg(X + jY)

R and Θ are independent, R has a Rayleigh distribution (i.e it is positive with
the density r e−r2/2) and Θ is uniformly distributed on [0, 2π].

The CDF of the Rayleigh distribution can easily be inverted: F (r) = P(R ≤
r) = 1− e−r2/2 and F−1(p) =

√−2 ln(1 − p). A sampling method for a couple
of independent standard normal variables is thus (Box-Müller method)

draw U ∼ Unif(0, 1) and Θ ∼ Unif(0, 2π)
R =

√−2 ln(U)
X = R cos(Θ), Y = R sin(Θ)
return(X,Y)

Correlated Normal Random Vectors

We want to sample (X1, . . . , Xn) as a normal random vector with a zero mean
and a covariance matrix Ω (Section C.2). If the covariance matrix is diagonal
(i.e. Ωi,j = 0 for i �= j), then Xis are independent and we can sample them
one by one (or better, two by two). We are interested here in the case where
there is some correlation.

The method we show here is again based on a change of variable. There
always exists a change of basis in R

n such that, in the new basis, the random
vector has a diagonal covariance matrix. In fact, there are many such bases
(one of them is orthonormal and can be obtained by diagonalization of Ω, but
is much more expensive than the method we discuss next). An inexpensive
and stable algorithm to obtain one such basis is called Choleski’s factorization
method. It finds a triangular matrix L such that Ω = LLT . Let Y be a
standard normal vector (i.e. an iid sequence of n standard normal random
variables). Further, let X = LY . The covariance matrix of X is

E(XXT) = E
(
LY (LY)T

)
= E

(
L(Y Y T)LT

)
= LE(Y Y T)LT = LLT = Ω

Thus, a sample of X can be obtained by sampling Y first and computing LY .
Figure 6.11 shows an example.

Importance Sampling 201

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

(a) X1, X2 independent

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

(b) X1, X2 dependent

Figure 6.11 1000 independent samples of the normal vector X1, X2 with 0 mean
and covariance Ω1,1 = σ2

1 = 1, Ω2,2 = σ2
2 = 1 and Ω1,2 = Ω2,1 = 0 (left), Ω1,2 =

Ω2,1 = 1
2

(right). The right sample is obtained by the transformation X = LY with
Y iid ∼ N0,1 and L = (1, 0; 1

2
,

√
3

2
).

There are many ways to optimize the generation of samples. Good refer-
ences are [108] and [90]

6.7 Importance Sampling

6.7.1 Motivation

It is occassionaly desirable to estimate by simulation the probability of a rare
event , e.g. a failure probability or a bit error rate. In such cases, straight-
forward Monte Carlo simulation is not efficient, as it requires a large number
of runs to provide a reliable estimate. As an example, assume that the fail-
ure probability to be estimated is 10−5. With R independent replications of a
Monte Carlo simulation, the expected number or runs producing one failure is

N
10−5 , and we consequently need 107 runs to be able to observe 100 failures. In
fact, we require on the order of 4 · 107 runs to obtain a 95% confidence interval
with a margin on the failure probability around 10%, as we show next.

Assume that we want to estimate a failure probability p, by performing R
replications. A naive Monte Carlo estimate is p̂ = N

R where N is the number
of runs producing a failure. A 1 − α confidence interval for p has a length of
of η times the standard deviation of p̂, where N0,1(η) = 1 − α

2 . The relative
accuracy of the estimator is ηc, where c is the coefficient of variation of p̂. Now

c =

√
p(1 − p)

R
p

=
√

1 − p√
Rp

≈ 1√
Rp

202 Discrete Event Simulation

where the approximation is for very small p. Assume that we want a relative
accuracy on our estimation of p equal to β. We should take η√

Rp
= β, i.e.

R =
η2

β2p
(6.14)

For instance, for α = 0.05, we have η = 1.96 and thus for β = 0.10, we should
take R ≈ 400

p .

6.7.2 The Importance Sampling Framework

Importance sampling is a method that can be used to reduce the number of
required runs in a Monte Carlo simulation, when the events of interest (e.g. the
failures) are rare. The idea is to modify the distribution of the random variable
to be simulated, in a way such that the impact of the modification can be
exactly compensated, and such that, for the modified random variable, the
events of interest are not rare.

Formally, assume that we simulate a random variable X in R
d, with PDF

fX(·). Our goal is to estimate p = E
(
φ(X)

)
, where φ is the metric of interest.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
10

−3

10
−2

10
−1

10
0

(a)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

(b)

Figure 6.12 (a) Log of the PDF of X1 in Example 6.15. (b) log of the PDF of the
twisted distribution (i.e. the distribution of X̂1) when θ = 4.2.

Importance Sampling 203

Frequently, φ(x) is the indicator function, equal to 1 if the value x corresponds
to a failure of the system, and 0 otherwise. We replace the original PDF
fX(·) by another one, fX̂(·), called the PDF of the importance sampling
distribution , on the same space R

d. We assume that

if fX(x) > 0, then fX̂(x) > 0

i.e. the support of the importance sampling distribution contains that of the
original one. For x in the support of fX(·), define the weighting function

w(x) =
fX(x)
fX̂(x)

(6.15)

We assume that w(x) can be easily evaluated. Let X̂ be a random variable
for which the distribution is that of the importance sampling. We also assume
that it is easy to draw a sample of X̂.

It comes immediately that

E
(
φ(X̂)w(X̂)

)
= E

(
φ(X)

)
= p (6.16)

which is the fundamental equation of importance sampling. An estimate of p
is thus given by

pest =
1
R

R∑
r=1

φ(X̂r)w(X̂r) (6.17)

where X̂r are R independent replicates of X̂.
Why would this be easier than the original problem? Assume that we have

found a sampling distribution for which the events of interest are not rare. It
follows that w(x) is very small, but φ(X̂) is not. So the events φ(X̂) = 1 are
not rare, and can be reproduced many times in a short simulation. The final
result, p, is small because we weight the outputs φ(X̂) by small numbers.

Example 6.15 Bit Error Rate and Exponential Twisting
The Bit Error Rate on a communication channel with impulsive inter-
ferers can be expressed as [68]

p = P (X0 +X1 + · · · +Xd > a) (6.18)

where X0 ∼ N0,σ2 is the thermal noise and Xj , j = 1, . . . , d, represents
impulsive interferers. The distribution of Xj is discrete, with support
in {±xj,k, k = 1, . . . , n} ∪ {0} and

P(Xj = ±xj,k) = q

P(Xj = 0) = 1 − 2nq

where n = 40, q = 1
512 and the array {±xj,k, k = 1, . . . , n} are given

numerically by channel estimation (Table 6.2 shows a few examples,
for d = 9). The variables Xj, j = 0, . . . , d, are independent. For large

204 Discrete Event Simulation

values of d, we could approximate p by a Gaussian approximation, but
it can easily be verified that, for d on the order of 10 or less, this does
not hold [68].

Table 6.2 Sample numerical values of xj,k for Example 6.15; the complete
list of values is available at the book’s web site.

k j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9

1 0.4706 0.0547 0.0806 0.0944 0.4884 0.3324 0.4822 0.3794 0.2047

2 0.8429 0.0683 0.2684 0.2608 0.0630 0.1022 0.1224 0.0100 0.0282
...

...

A direct Monte Carlo estimation (without importance sampling) gives
the following results (R is the number of Monte Carlo runs required to
reach 10% accuracy with confidence 95%, as of (6.14)):

σ a BER estimate R

0.1 3 (6.45 ± 0.6) × 10−6 6.2 × 107

We now apply importance sampling in order to reduce the required
number of simulation runs R. We consider importance sampling distri-
butions derived by exponential twisting , i.e. we define the distribu-
tion of X̂j , j = 0, . . . , d by

⎧⎨
⎩
X̂j has the same support as Xj

P(X̂j = x) = ηj(θ)eθx
P(Xj = x)

where ηj(θ) is a normalizing constant. This gives

P(Xj = −xj,k) = ηj(θ)q e−θxj,k

P(Xj = xj,k) = ηj(θ)q eθxj,k

P(Xj = 0) = ηj(θ)(1 − 2nq)

ηj(θ)−1 = q

n∑
k=1

(
e−θxj,k + eθxj,k

)
+ 1 − 2nq

Similarly, the distribution of the Gaussian noise X̂0 is obtained by
multiplying the PDF of the standard normal distribution by eθx and
normalizing according to

fX̂0
(x) = η0

1√
2πσ

e−x2/2σ2
eθx

= η1 e
θ2σ2/2 1√

2πσ
e−(x−θσ2)2/2σ2

Importance Sampling 205

Thus, η0 = e−θ2σ2/2 and X̂0 is normally distributed with same variance
as X0 but with the mean σ2θ instead of 0. Note that for θ > 0, X̂j is
more likely to take on large values than Xj . The weighting function is

w(x0, . . . , xd) = e−θ
Pd

j=0 xj
1

d∏
j=0

ηj

(6.19)

We perform R Monte Carlo simulations with X̂j in lieu of Xj ; the
estimate of p is

pest =
1
R

R∑
r=1

w
(
X̂r

0 , . . . , X̂
r
d

)
1{X̂r

0+···+X̂r
d>a} (6.20)

Note that θ = 0 corresponds to a direct Monte Carlo simulation (with-
out importance sampling). All simulations give the same estimated
value p ≈ 0.645E − 05, but the required number of simulation runs
in order to reach the same accuracy varies by more than 3 orders of
magnitude (Figure 6.13(a)).

6.7.3 Selecting An Importance Sampling Distribution

The previous example shows that importance sampling can dramatically reduce
the number of Monte Carlo runs for estimating rare events, but also that it is
important to carefully choose the importance sampling distribution, as a wrong
choice might offer no improvement (or might even be worse).

A first observation can be derived from the analysis of Figure 6.13: the best
choice is when the probability of the event of interest, under the importance
sampling distribution, is close to 0.5 (i.e. E

(
φ(X̂)

) ≈ 0.5). Note that, perhaps
contrary to intuition, selecting E

(
φ(X̂)

) ≈ 1 is a very bad choice. In other
words, we need to make the events of interest less rare, but not too certain.
This can be explained as follows. If we take E

(
φ(X̂)

) ≈ 1, the simulator has a
hard time producing samples where the event of interest does not occur, which
is as bad as the initial problem.

A second observation is that we can evaluate the efficiency of an importance
sampling estimator of p by its variance

v̂ = var
(
φ(X̂)w(X̂)

)
= E

(
φ(X̂)2w(X̂)2

)− p2

Assume that we want a 1 − α confidence interval of relative accuracy β. With
a reasoning similar to that in (6.14), the required number of Monte Carlo
estimates is

R = v̂
η2

β2p2
(6.21)

Thus, it is proportional to v̂. In the formula, η is defined by N0,1(η) = 1 − α
2 ;

e.g. with α = 0.05, β = 0.1, we need R ≈ 400 v̂
p2 .

206 Discrete Event Simulation

The problem is consequently to find a sampling distribution that minimizes
v̂, or, equivalently, E

(
φ(X̂)2w(X̂)2

)
. The theoretical solution can be obtained

by calculus of variation; it can be shown that the optimal sampling distribution
fX̂(x) is proportional to

∣∣φ(x)
∣∣fX(x). In practice, however, it is impossible to

compute, since we assume in the first place that it is hard to compute φ(x).

0 1 2 3 4 5 6 7 8
10

3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

(a)

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Figure 6.13 (a) The required number of simulation runs to estimate the bit error
rate in Example 6.15 with 10% of relative accuracy, using an importance sampling
distribution with parameter θ (on x-axis). All simulation estimates give the same
estimated value of p = 0.645 E − 05, but the required number of simulation runs
R is proportional to the variance. (b) All simulations estimate p by the formula
p = E

`
φ(X̂)w(X̂)

´
; the panel shows E

`
φ(X̂)

´
, i.e. the probability that there is a bit

error when X̂ is drawn from the importance sampling distribution with parameter θ.
For θ = 0 we have the true value p = 0.645 E − 05. The smallest number of runs, i.e.
the smallest variance, is obtained when E

`
φ(X̂)

´ ≈ 0.5.

Importance Sampling 207

In Algorithm 6.1, we give a heuristic method, which combines these two
observations. Assume that we have at our disposal a family of candidate impor-
tance sampling distributions, indexed by a parameter(12) θ ∈ Θ. The function
varEst(·) estimates, by Monte Carlo, whether a given θ satisfies E

(
φ(X̂)

) ≈ 0.5.
If so, it returns an estimate of E

(
φ(X̂)2w(X̂)2

)
, otherwise it returns ∞. Note

that the number of Monte Carlo runs required by varEst(·) is small, since we

Algorithm 6.1 The determination of a good Importance Sampling distribu-
tion. We wish to estimate p = E

(
φ(X)

)
, where X is a random variable with

values in R
d and φ(x) ∈ [0; 1]; X̂ is drawn from the importance sampling

distribution with parameter θ; w(·) is the weighting function (6.15).
1: function main
2: η = 1.96; β = 0.1; pCountMin= 10; � β is the relative accuracy
3: � of the final result
4: GLOBAL R0 = 2 η2

β2 ; � Typical number of iterations

5: � R0 chosen by (6.14) with p = 0.5
6: Rmax = 1E + 9; � Maximum number of iterations

7: c = β2

η2 ;
8:

9: Find θ0 ∈ Θ which minimizes varest(θ);
10:

11: pCount0= 0; pCount= 0;m2 = 0;
12: for r = 1 : Rmax do
13: draw a sample x of X̂ using parameter θ0;
14: pCount0=pCount0+φ(x);
15: pCount=pCount+φ(x)w(x);
16: m2 = m2 + (φ(x)w(x))2;
17: if r ≥ R0 and pCountMin < pCount < r− pCountMin then

18: p = pCount
r ;

19: v = m2
r − p2;

20: if v ≤ cp2r then break
21: end if
22: end if
23: end for
24: return p, r
25: end function

(12)For simplicity, we do not show the dependency on θ in expressions such as E
`
φ(X̂)

´
,

which could be more accurately described as E
`
φ(X̂) | θ

´
.

208 Discrete Event Simulation

Algorithm 6.1 (Continued.)

26: function varest(θ) � Test if E
(
φ(X̂)

) ≈ 0.5

27: � and if so estimate E
(
φ(X̂)2w(X̂)2

)
28: CONST p̂min = 0.3, p̂max = 0.7;
29: GLOBAL R0;
30: p̂ = 0; m2 = 0;
31: for r = 1 : R0 do
32: draw a sample x of X̂ using parameter θ;
33: p̂ = p̂+ φ(x);
34: m2 = m2 + (φ(x)w(x))2;
35: end for
36: p̂ = p̂

R ;
37: m2 = m2

R ;
38: if p̂min ≤ p̂ ≤ p̂max then
39: return m2;
40: else
41: return ∞;
42: end if
43: end function

are interested only in returning results in the cases where E
(
φ(X̂)

) ≈ 0.5. In
other words, we are not in the case of rare events.

The first part of the algorithm (line 9) consists in selecting one value of θ
minimizing varEst(θ). This can be done by random exploration of the set Θ,
or by any heuristic optimization method (such as Matlab’s fminsearch).

The second part (lines 11 to 24) uses the best θ and importance sampling
as explained earlier. The algorithms perform as many Monte Carlo samples as
required to obtain a given accuracy level, using (6.21) (line 20).

Example 6.16 Bit Error Rate, re-visited
We can apply Algorithm 6.1 directly. With the same notation as in
Example 6.15, an estimate of v̂, the variance of the importance sampling
estimator, is

v̂est =
1
R

R∑
r=1

w
(
X̂r

0 , . . . , X̂
r
d

)21{X̂r
0+···+X̂r

d>a} − p2
est (6.22)

We computed v̂est for several values of θ; Figure 6.13 shows the corre-
sponding values of the required number of simulation runs R (to reach
10% accuracy with confidence 95%), as given by (6.21)).

Proofs 209

Alternatively, one could use the following optimization. We can avoid
the simulation of a normal random variable by noticing that (6.18) can
be replaced by

p := P
(
X0 +X1 + . . .+Xd > a

)
= P

(
X0 > a− (X1 + · · · +Xd)

)
= E

(
P
(
X0 > a− (X1 + · · · +Xd)

∣∣ X1, . . . , Xd

))

= E

(
1 −N0,1

(
a− (X1 + · · · +Xd)

σ

))
:= E

(
φ(X1 + · · · +Xd)

)

where, as usual, N0,1(·) is the cdf of the standard normal distribution
and φ(x) = 1 − N0,1(x). The problem is thus to compute E

(
φ(X1 +

· · · +Xd)
)
.

We applied Algorithm 6.1 with the same numerical values as in Ex-
ample 6.15 and with exponential twisting. Note the difference with
Example 6.15: we modified the distributions of X1, . . . , Xd but not of
the normal variableX0. The best θ is now obtained for E

(
φ(X̂)

) ≈ 0.55
(instead of 0.5) and the number of simulation runs required to achieve
the same level of accuracy is slightly reduced.

In the above example, we restricted the choice of the importance sampling
distribution to an exponential twist, with the same parameter θ for all random
variables X1, . . . , Xd. There are of course many possible variants; one might for
instance use a different θ for each Xj , or employ various methods of twisting
the distribution (for example re-scaling). Note however that the complexity of
the choice of an importance sampling distribution should not outweigh its final
benefits. So, in general, we should aim for simple solutions. The interested
reader will find a general discussion and overview of other methods in [98].

6.8 Proofs

Theorem 6.1

The pseudo-inverse has the property that [51, Thm 3.1.2]

F (x) ≥ p⇐⇒ F−1(p) ≤ x

Let Y = F−1(U). Consequently, P(Y ≤ y) = P
(
F (y) ≤ U

)
= F (y) and the

CDF of Y is F (·).

Theorem 6.2

Let N be the (random) number of iterations of the algorithm, and let (X̃k, Ỹk)
be the sample drawn at the kth iteration. (These samples are independent, but

210 Discrete Event Simulation

in general, X̃k and Ỹk are not independent.) Let θ = P(Ỹ ∈ A). We assume
θ > 0, otherwise the conditional distribution of X̃ is not defined. The output
of the algorithm is X = X̃N .

For some arbitrary measurable B in S, we compute P
(
X̃N ∈ B):

P
(
X̃N ∈ B) =

∑
k≥1

P
(
X̃k ∈ B and N = k

)

=
∑
k≥1

P
(
X̃k ∈ B and Ỹ1 ∈/A, . . . , Ỹk−1 ∈/A, Ỹk ∈ A)

=
∑
k≥1

P
(
X̃k ∈ B and Ỹk ∈ A)P(Ỹ1 ∈/A) · · ·P(Ỹk−1 ∈/A)

=
∑
k≥1

P
(
X̃k ∈ B | Ỹk ∈ A)θ(1 − θ)k−1

=
∑
k≥1

P
(
X̃1 ∈ B | Ỹ1 ∈ A)θ(1 − θ)k−1

= P
(
X̃1 ∈ B | Ỹ1 ∈ A)∑

k≥1

θ(1 − θ)k−1

= P
(
X̃1 ∈ B | Ỹ1 ∈ A)

The second equality is by definition of N . The third is by the independence of
(X̃k, Ỹk) and (X̃k′ , Ỹk′) for k �= k′. The last equality is because θ > 0. This
shows that the distribution of X is as required.

N − 1 is geometric with parameter θ, and thus the expectation of N is 1
θ .

Theorem 6.3

Apply Theorem 6.2 with X̃ = X and Ỹ = (X,U). All we need to show is that
the conditional density of X , given that U ≤ fn

Y (X)
fX (X) is fY .

To this end, pick some arbitrary function φ. We have

E

(
φ(X)

∣∣ U ≤ fn
Y (X)
fX(X)

)
= K1E

(
φ(X)1{U≤ fn

Y
(X)

fX (X) }

)

= K1

∫
E

(
φ(x)1{U≤ fn

Y
(x)

fX (x)}
∣∣ X = x

)
fX(x) dx

= K1

∫
φ(x)

fn
Y (x)
fX(x)

fX(x) dx

=
K1

K

∫
φ(x)fY (x) dx =

K1

K
E
(
φ(Y)

)

where K1 is some constant. This is true for all φ, and thus, necessarily, K1
K = 1

(take φ = 1).

Review 211

6.9 Review

6.1 How do you generate a sample of a real random variable with PDF f(·)
and CDF F (·)?(13)

6.2 Why do we care about stationarity?(14)

6.3 What is rejection sampling?(15)

6.4 How do you generate a sample of a discrete random variable?(16)

6.5 What is importance sampling?(17)

6.6 Why do we need to run independent replications of a simulation? How are
they obtained?(18)

6.7 Consider the sampling method: Draw COIN(p) until it returns 0. The
value of the sample N is the number of iterations. Which distribution is that
a sample from? Is this a good method?(19)

6.8 If we do a direct Monte Carlo simulation (i.e without importance sampling)
of a rare event, the theorem for confidence intervals of success probabilities
(Theorem 2.4) gives a confidence interval. So why do we need importance
sampling?(20)

(13)In many cases matlab does it. If not, and if F (·) is easily invertible, use CDF inversion.
Otherwise, if f(·) has a bounded support, use rejection sampling.

(14)Non-terminating simulations depend on the initial conditions, and on the length of the
simulation. If the simulator has a stationary regime, we can eliminate the impact of
the simulation length (in simulated time) and of the initial conditions.

(15)Drawing independent samples of an object with some probability distribution p(·),
leads to a certain condition C being met. The result is a sample of the conditional
probability p(· | C).

(16)With the method of CDF inversion. Let pk be the probability of outcome k, k =
1, . . . , n, and Fk = p1 + · · · + pk (with F0 = 0). Draw U ∼ Unif(0, 1); if Fk ≤ U < Fk,
then let N = k.

(17)A method for computing probabilities of rare events. It consists in changing the initial
probability distribution in order to make rare events less rare (but not certain).

(18)To obtain confidence intervals. By running multiple instances of the simulation pro-
gram; if done sequentially, the seed of the random generator can be carried over from
one run to the next. If replications are done in parallel on several machines, the seeds
should be chosen independently by truly random sources.

(19)The distribution of N is geometric with θ = 1 − p, so this method produces a sample
from a geometric distribution. However, it draws in average 1

θ
random numbers from

the generator, and the random number generator is usually considered an expensive
computation compared to a floating point operation. If θ is small, the procedure in
Example 6.12 (by CDF inversion) is much more efficient.

(20)Assume that we simulate a rare event, without importance sampling, and that we find
0 success out of R Monte Carlo replicates. Theorem 2.4 gives a confidence interval for
the probability of success equal to [0, 3.869

R
] at confidence level 0.95. For instance, if

R = 104, we can say that p < 4 · 10−4. Importance sampling will give more, it will
provide an estimate of, for example 5.33 · 10−5 ± 0.4 · 10−5. In many cases (such as
when computing p-values of tests), all we care about is whether p is smaller than some
threshold. We may then not need importance sampling. Importance sampling is useful
if we require the magnitude of the rare event.

Chapter 7

Palm Calculus, or the Importance
of the Viewpoint

When computing or measuring a performance metric (as defined in Chapter 1),
one should specify which observer’s viewpoint that is taken. For example, in a
simulation study of an information server, one may be interested in the metric
“worst case backlog”, defined as the 95-percentile of the number of pending
requests.

One way to obtain this is to measure the queue of pending requests at re-
quest arrival epochs over a large number of arriving requests, and compute the
95-percentile of the resulting empirical distribution. An alternative is to mea-
sure the queue of pending requests at periodic intervals (say every second) over
a long period of time and compute the 95-percentile of the resulting empirical
distribution. The former method reflects the viewpoint of an arriving request,
and the latter that of an observer at an arbitrary point in time. The former
method evaluates the metric using a clock that ticks at every request arrival,
whereas the latter uses a standard clock. Both methods will usually provide

214 Palm Calculus, or the Importance of the Viewpoint

different values of the metric. Therefore, a metric definition should specify
which clock, or viewpoint that is used, and the choice should be relevant for
the specific issues being addressed.

In Section 7.1, we give an intuitive definition of event clocks and of event
versus time averages; we show that subtle, but possibly large, sampling biases
are unavoidable. We also show how to use the large time heuristic to derive
Palm calculus formulas, i.e. formulas relating metrics obtained with various
clocks.

In the rest of the chapter, we formally present Palm calculus, i.e. we
give a formal treatment of these intuitive definitions and formulas. This is a
branch of probability that is not well known, though it is quite important for
any measurement or simulation study, and can be presented quite simply. In
essence, the Palm probability of an event is the conditional probability, given
that some specific point process has a point. Making sense of this is simple
in discrete time, but very complex in continuous time, as is often the case in
the theory of stochastic processes. We do not dwell on formal mathematical
constructions, but we do give formulas and exact conditions under which they
apply.

We introduce Feller’s paradox, an apparent contradiction in waiting times
that can be explained by a difference in viewpoints. We provide useful for-
mulas such as the Rate Conservation Law and some of its many consequences
such as Little’s, Campbell’s shot noise, Neveu’s exchange and Palm’s inversion
formulas. We discuss simulations defined as stochastic recurrences, show how
this can explain when simulations freeze and how to completely avoid transient
removals (perfect simulation). Finally, we give practical formulas for comput-
ing Palm probabilities with Markov models observed along a subchain, and use
these to derive the PASTA property.

7.1 An Informal Introduction

In this section, we present an intuitive treatment of event-versus-time averages
and explain the use of event clocks. A formal treatment involving Palm calculus
is given in Section 7.2.

7.1.1 Event-versus-Time Averages

Consider a discrete event simulation that runs for a long period of time, and
let T0, T1, . . . , TN be a sequence of selected events, for example, the request
arrival times at an information server. Assume that we associate to the stream
of selected events a clock that ticks at times T0, T1, . . . , TN (the event clock).
An event average statistic is any performance metric that his computed based
on sampling of the simulation state at times Tn, i.e. using the event clock. For

An Informal Introduction 215

instance, the average queue length at the information server upon a request
arrival can be defined as

Q̄0 :=
1

N + 1

N∑
n=0

Q(T−
n)

where Q(t−) – an event-average statistic – is the queue size just before time t.
In contrast, a time-average statistic is obtained using the standard clock,

assumed to have infinite accuracy (i.e. the standard clock ticks every δ time
units, where δ is “infinitely small”). For example, the average queue length,
defined by

Q̄ :=
1

TN − T0

∫ TN

T0

Q(s) ds

is a time-average statistic.
In signal processing parlance, event averages correspond to adaptive sam-

pling .

Example 7.1 Gatekeeper
A multitasking system receives jobs. Any arriving job is first processed
by a “gatekeeper task”, which allocates the job to an available “applica-
tion processor”. Due to power saving, the gatekeeper is available only
at times, 0, 90, 100, 190, 200, . . . (in milliseconds). For example, a job
that arrives at the time 20 ms is processed by the gatekeeper at the
time 90 ms.
A job that is processed by the gatekeeper at times 0, 100, 200 . . . is allo-
cated to an application processor with an execution time of 1000 ms. In
contrast, a job that is processed by the gatekeeper at times 90, 190, . . .
has an execution time of 5000 ms (Figure 7.1). We assume that there is
neither queuing nor any additional delay. We are interested in the av-
erage job execution time, excluding the time waiting for the gatekeeper
to wake up to process the job.

Figure 7.1 Gatekeeper: jobs are dispatched to a processor with processing
times equal to 5000 or 1000 ms.

The system designer thinks that the average job execution time is

Ws =
1000 + 5000

2
= 3000 ms

since there are two application processors and this is the average of
their execution times.

216 Palm Calculus, or the Importance of the Viewpoint

A customer may have a different viewpoint. If she sends a job to
the system at a random instant, she will be allocated to an application
processor depending on the time of arrival. The customer computes her
performance metric assuming that she picks a millisecond at random,
uniformly in an interval [0, T], where T is large, and obtains

Wc =
90
100

× 5000 +
10
100

× 1000 = 4600 ms

The metric Ws is an event average; it can be measured using the event
clock that ticks whenever the gatekeeper wakes up. The metric Wc

is a time-average; it can be measured using a clock that ticks every
millisecond.

This example shows that event averages may be very different from time
averages. In other words, sampling bias may be a real issue. It is therefore
necessary, when defining a metric, to specify the clock (i.e which viewpoint)
that is adopted. Further, one should discuss which viewpoint makes sense
for the performance of interest. In the previous example, the time-average
viewpoint is a better metric as it directly reflects customer experience.

7.1.2 The Large Time Heuristic

Palm calculus is a set of formulas for relating event and time averages. They
form the topic of the other sections in this chapter. However, it may be useful
to know that most of these formulas can be derived heuristically using the large
time heuristic, which can be described as follows.

(1) Formulate each performance metric as a long run ratio, as you would do in
order to evaluate the metric in a discrete event simulation;

(2) take the formula for the time-average viewpoint and break it down into
pieces, where each piece corresponds to a time interval between two selected
events;

(3) compare the two formulations.

We explain this in the following example.

Example 7.2 Gatekeeper, Continued
We can formalize Example 7.1 as follows. The two metrics are Ws

(event average, system designer’s viewpoint) and Wc (time-average,
customer’s viewpoint).

(1) In a simulation, we would estimate Ws and Wc according to the
following. Let T0, T1, . . . , TN be the selected event times (times
at which the gatekeeper wakes up) and let Sn = Tn − Tn−1 for
n = 1, . . . , N . Let Xn be the execution time for a job that is

An Informal Introduction 217

processed by the gatekeeper at time Tn

Ws :=
1
N

N∑
n=1

Xn (7.1)

Wc :=
1

TN − T0

∫ TN

T0

XN+(t) dt (7.2)

where N+(t) is the index of the next event clock tick after t, i.e.
a job arriving at time t is processed by the gatekeeper at time Tn

with n = N+(t).
(2) We break the integral in (7.2) into pieces corresponding to the in-

tervals [Tn, Tn+1):

Wc =
1

TN − T0

N∑
n=1

∫ Tn

Tn−1

XN+(t) dt =
1

TN − T0

N∑
n=1

∫ Tn

Tn−1

Xn dt

=
1

TN − T0

N∑
n=1

SnXn (7.3)

(3) We now compare (7.1) and (7.3). Define the sample average sleep
time S̄ := 1

N

∑N
n=1 Sn, the sample average execution time X̄ :=

1
N

∑N
n=1Xn, and the sample cross-covariance

Ĉ :=
1
N

N∑
n=1

(
Sn − S̄

)(
Xn − X̄

)
=

1
N

N∑
n=1

SnXn − S̄X̄

We can re-write (7.1) and (7.3) as

Ws = X̄

Wc =
1
NS̄

N∑
n=1

SnXn =
1
S̄

(
Ĉ + S̄X̄

)
= X̄ +

Ĉ

S̄

In other words, we have shown that

Wc = Ws +
Ĉ

S̄
(7.4)

Numerically, we find Ĉ
S̄

= 1600 and (7.4) is verified.

Equation (7.4) is our first example of a Palm calculus formula; it relates the
time-averageWc to the event averageWs. Note that it holds quite generally, not
only for the system in Example 7.1. We do not need any specific assumptions
on the distribution of sleep or execution times, nor do we assume any form of
independence. The only required assumption is that the metrics Ws and Wc

can be measured using (7.1) and (7.2). In the next section, we give a formal
framework where such assumptions hold.

218 Palm Calculus, or the Importance of the Viewpoint

Equation (7.4) shows that, for this example, the difference in viewpoints is
attributed to the cross-covariance between sleep time and execution time. A
positive (resp. negative) cross-covariance implies that the time-average is larger
(resp. smaller) than the event average. In Example 7.1, the cross-covariance is
positive and we find a larger time-average. If the sleep time and execution times
are non-correlated, the two viewpoints happen to produce the same metric.

7.1.3 Two Event Clocks

There exist formulas not only for relating time and event averages, but also
for relating various event averages (see Theorem 7.7). We show in this section
how such formulas can be derived, using the following variant of the large time
heuristic:
(1) formulate each performance metric as a long run ratio, as you would do if

you were evaluating the metric in a discrete event simulation;
(2) take the formula for one event average viewpoint and break it down into

pieces, where each piece corresponds to the time interval between two se-
lected events of the second viewpoint;

(3) compare the two formulations.

Example 7.3 Stop and Go Protocol
A source sends packets to a destination. Error recovery is done by the
stop and go protocol, as follows. When a packet is sent, a timer, with
a fixed value t1, is set. If the packet is acknowledged before t1, trans-
mission is successful. Otherwise, the packet is re-transmitted. The
packet plus acknowledgement transmission and processing have a con-
stant duration equal to t0 < t1. The proportion of successful transmis-
sions (fresh or not) is 1 − α. We assume that the source is greedy, i.e.
that it always has a packet ready for transmission. Can we compute the
throughput θ of this protocol without making any further assumptions?
The answer is yes, using the large time heuristic.
To this end, we compare the average transmission times sampled with
the two different event clocks. The former (clock “a”) ticks at every
transmission or re-transmission attempt; the latter (clock “0”) ticks at
fresh arrivals. Accordingly, let τa be the average time between trans-
mission or retransmission attempts, and let τ0 be the average time
between fresh arrivals (Figure 7.2).

Figure 7.2 The Stop and Go protocol.

An Informal Introduction 219

(1) Consider a simulation such that there are N + 1 fresh arrivals, at
times T0, T1, . . . , TN , where N is large. Tn are the ticks of clock 0.
The estimates of τa and τ0 are

τa =
TN − T0

Na

τ0 =
TN − T0

N
(7.5)

where Na is the number of transmission or retransmission attempts
generated by packets 1 through N . The estimate of the throughput
θ is

θ =
N

TN − T0
=

1
τ0

Also, by definition of the error ratio α: Na(1 − α) = N , thus

τa = (1 − α)τ0

(2) We focus on τa and break it down into pieces corresponding to the
ticks of clock 0:

τa =
TN − T0

Na
=

1
Na

N∑
n=1

Xn

Here, Xn is the total transmission and retransmission time for the
nth packet, i.e. the time interval between two ticks of clock 0. Let
An be the number of unsuccessful transmission attempts for the
nth packet (possibly 0). This gives us

Xn = Ant1 + t0

τa =
1
Na

(
t1

N∑
n=1

An + t0N

)
=

1
Na

(
t1(Na −N) + t0N

)

= αt1 + (1 − α)t0 (7.6)

(3) Compare (7.5) and (7.6) and obtain τ0 = α
1−α t1+t0; the throughput

is thus

θ =
1

α

1 − α
t1 + t0

(7.7)

In this example, as is generally the case with Palm calculus formulas, the
validity of a formula such as (7.7) does not depend on any distributional or
independence assumption. We did not make any particular assumption about
the arrival and failure processes; they may thus be correlated, non-Poisson, etc.

220 Palm Calculus, or the Importance of the Viewpoint

7.1.4 Arbitrary Sampling Methods

To conclude this section we describe how different viewpoints occur in various
situations, with clocks that may not be related to time. Here too, the large
“time” heuristic provides useful relationships.

Example 7.4 Flow versus Packet Clock
Packets arriving at a router are classified in “flows” [96]. We would like
to plot the empirical distribution of flow sizes, counted in packets. We
measure all traffic at the router for some extended period of time. Our
metric of interest is the probability distribution of flow sizes. We can
take a flow “clock”, or viewpoint, i.e. we ask: pick an arbitrary flow,
what is its size? Or we could take a packet viewpoint and ask: take an
arbitrary packet, what is the magnitude of its flow? We thus have two
possible metrics (Figure 7.3):

Per flow. fF (s) = 1
N × number of flows with length s, where N is the

number of flows in the dataset;
Per packet. fP (s) = 1

P × number of packets that belong to a flow of
length s, where P is the number of packets in the dataset.

100 101 102 1030

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Packet Viewpoint

Flow Viewpoint

(a) Empirical complementary CDFs

10
0

10
1

10
2

10
30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) Histogram, flow viewpoint

Figure 7.3 Distribution of flow sizes, viewed by an arbitrary flow and an
arbitrary packet, measured by an internet service provider.

An Informal Introduction 221

10
0

10
1

10
2

10
30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(c) Histogram, packet viewpoint

Figure 7.3 (Continuation.)

The large time heuristic helps us find a relation between the two met-
rics.
(1) For s spanning the set of observed flow sizes

fF (s) =
1
N

N∑
n=1

1{Sn=s} (7.8)

fP (s) =
1
P

P∑
p=1

1{SF (p)=s} (7.9)

where Sn is the size in bytes of flow n, for n = 1, . . . , N , and F (p)
is the index of the flow to which packet number p belongs.

(2) We can break the sum in (7.9) into pieces corresponding to ticks of
the flow clock:

fP (s) =
1
P

N∑
n=1

∑
p:F (p)=n

1{Sn=s} =
1
P

N∑
n=1

P∑
p=1

1{F (p)=n}1{Sn=s}

=
1
P

N∑
n=1

1{Sn=s}
P∑

p=1

1{F (p)=n} =
1
P

N∑
n=1

1{Sn=s}s

=
s

P

N∑
n=1

1{Sn=s} (7.10)

(3) Compare (7.8) and (7.10) and obtain the following expression for
all flow sizes s:

fP (s) = ηsfF (s) (7.11)
where η is a normalizing constant (η = N

P).

Equation (7.11) relates the two ways of computing the distribution of flow
sizes. Note that they differ by one exponent, so it is possible that the flow
size is heavy-tailed when sampled with a packet clock, but light-tailed when
sampled with a flow clock.

222 Palm Calculus, or the Importance of the Viewpoint

Example 7.5 Kilometer versus Time Clock: Cyclist’s Paradox
A cyclist rides Swiss mountains; his speed is 10 km/h uphill and 50 km/h
downhill. A journey is comprised of 50% uphill slopes and 50% down-
hill slopes. At the end of the journey, the cyclist is disappointed to
read on his speedometer an average speed of only 16.7 km/h, as he was
expecting an average of 10+50

2 = 30 km/h. Here, we have two ways of
measuring the average speed: with the standard clock (speedometer),
or with the kilometer clock (cyclist’s intuition). Let us apply the large
time heuristic.
(1) Pick a unit of length (perhaps smaller than the kilometer) such that

the cyclist’s speed is constant on a section of the trip of length 1,
and let vl be the speed at the lth section of the trip, l = 1, . . . , L,
where L is the trip length. The average speeds measured with the
standard clock, St and with the kilometer clock, Sk are

St =
L

T

Sk =
1
L

L∑
l=1

vl (7.12)

where T is the trip duration.
(2) Break T into pieces corresponding to the km clock:

T =
L∑

l=1

1
vl

St =
L

L∑
l=1

1
vl

(7.13)

(3) Thus, St (Eq. (7.13)) is the harmonic mean of vl whereas Sk

(Eq. (7.12)) is the arithmetic mean (Section 2.4.3). The harmonic
mean is the inverse of the mean of the inverses. If the speed is not
constant throughout the whole trip, the harmonic mean is smaller
than the arithmetic mean [106], thus the cyclist’s intuition will al-
ways have a positive bias (leading to frustration).

In this case, the large time heuristic does not give a closed-form rela-
tionship between the two averages; however, a closed- form relationship
can be obtained for the two distributions of speeds. Using the same
method as in Example 7.4, one obtains

ft(v) = η
1
v
fk(v) (7.14)

where ft(v) (resp. fk(v)) is the PDF of the speed, sampled with the
standard clock (resp. km clock) and η is a normalizing constant; ft

puts more mass on the small values of the speed v. This is another
explanation to the cyclist’s paradox.

Palm Calculus 223

7.2 Palm Calculus

Palm calculus is a branch of probability that applies to stationary point pro-
cesses. We give an intuitive, but rigorous, treatment. A complete mathematical
treatment can be found for example in [4] and [88] or in [95] in the context of
continuous time Markov chains.

7.2.1 Hypotheses

Stationarity

We assume that we are observing the output of a simulation, which we inter-
pret as a sample of a stochastic process S(t). The time t is either discrete
or continuous. This process is stationary if, for any any n, any sequence
of times t1 < t2 < . . . < tn and any time shift u, the joint distribution of(
S(t1 + u), S(t2 + u), . . . , S(tn + u)

)
is independent of u. In other words, the

process does not change statistically as it gets older. In practice, stationarity
occurs if the system has a stationary regime and we let the simulation run long
enough (Chapter 6).

We also assume that, at every time t, we are able to make an observation
X(t) from the simulation output. The value of X(t) may be in any space.
We assume that the process X(t) is jointly stationary with the simulation
state process S(t) (i.e.

(
X(t), S(t)

)
is a stationary process). Note that even

if the simulation is stationary, one might easily define outputs that are not
jointly stationary (such as: X(t) = the most recent request arrival time at an
information server). A sufficient condition for X(t) to be jointly stationary
with S(t) is that

(1) at every time t, X(t) can be computed from the present, the past and/or
the future of the simulation state S(t), and

(2) X(t) is invariant under a change of the origin of times.

For example, if an information server can be assumed to be stationary, then
X(t) = time elapsed since the last request arrival time and X(t) = the queue
size at time t satisfy the conditions.

7.2.2 Definitions

Point Process

We introduce now the definition of a stationary point process. Intuitively,
this is the sequence of times at which the simulation performs a transition in
some specified set.

Formally, a stationary point process in our setting is associated with a
subset F0 of the set of all possible state transitions of the simulation. It is
made of all time instants t at which the simulation carries out a transition in
F0, i.e. such that

(
S(t−), S(t+)

) ∈ F0.
In practice, we do not need to specify F0 explicitly. In contrast, we have

a simulation in steady state and we consider times at which something of a

224 Palm Calculus, or the Importance of the Viewpoint

certain kind happens; the only important criterion is to make sure that the
firing of a point can be entirely determined by observing only the simulation.
For example, we can consider as point process the request arrival times at an
information server.

Technically, we also need to assume that the simulation process is such
that the point process is simple, i.e. that, with probability 1, two instants of
the point process cannot be equal (this is true in practice if the simulation
cannot have several transitions at the same time), and non explosive, i.e. the
expected number of time instants over any finite interval is finite. The above
implies that the instants of the point process can be enumerated and described
as an increasing sequence of (random) times Tn, where n is an integer, and
Tn < Tn+1.

In continuous time, to avoid ambiguities, we assume that all processes are
right continuous, so that if there is a transition at time t, S(t) corresponds to
the state of the simulation just after the transition.

The sequence Tn is (as a thought experiment) assumed to be infinite both
in the present and the past, i.e. the index n spans Z. With the terminology of
Section 7.1,

(
Tn

)
n∈Z

is the sequence of ticks of the event clock.

The Arbitrary Point in Time

Since the simulation is in the stationary regime, we imagine that, at time 0,
it has been running for quite some time. Since the point process is defined
in terms of transitions of the simulation state S(t), it is also stationary. It is
convenient, and customary, to denote the time instants of the point process Tn

such that
. . . < T−2 < T−1 < T0 ≤ 0 < T1 < T2 < . . . (7.15)

In other words, T0 is the last instant of the point process before time 0, and
T1 the next instant starting from time 0. This convention is the one used by
mathematicians to give a meaning to “an arbitrary point in time”: we regard
t = 0 as our “random” time instant. Thus, in some sense, we fix the time origin
arbitrarily.

This differs from the convention used in many simulations, where t = 0 is
the beginning of the simulation. Our convention, in this chapter, is that t = 0
is the beginning of the observation period for a simulation that has a stationary
regime and has run long enough to be in steady state.

Intensity

The intensity λ of the point process is defined as the expected number of
points per time unit. We have assumed that there cannot be two points at the
same instant. In discrete or continuous time, the intensity λ is defined as the
unique number such that the number N(t, t+ τ) of points during any interval
[t, t+ τ] satisfies [4]

E
(
N(t, t+ τ)

)
= λτ (7.16)

Palm Calculus 225

In discrete time, λ is also simply equal to the probability that there is a point
at an arbitrary time

λ = P(T0 = 0) = P
(
N(0) = 1

)
= P

(
N(t) = 1

)
(7.17)

where the latter is valid for any t, by stationarity.

One can think of λ as the (average) rate of the event clock.

Palm Expectation and Palm Probability

Let Y be a one time output of the simulation, assumed to be integrable (for
example because it is bounded). We define the expectation E

t(Y) as the con-
ditional expectation of Y given that a point occurs at time t

E
t(Y) = E

(
Y | ∃n ∈ Z, Tn = t

)
(7.18)

If Y = X(t), where X(t) and the simulation are jointly stationary, E
t
(
X(t)

)
does not depend on t. For t = 0, it is called

Definition 7.1 (Palm expectation)

E
0
(
X(0)

)
= E

(
X(0) | a point of the process Tn occurs at time 0

)
(7.19)

According to the labeling convention in (7.15), if there is a point of the
process Tn at 0, it must be T0, i.e.

E
0
(
X(0)

)
= E

(
X(0) | T0 = 0

)

Note that there is some ambiguity in the notation, as the process Tn is not
explicitly mentioned (in Section 7.3.3 we will need to remove this ambiguity).

The Palm probability is defined similarly, namely as

P
0
(
X(0) ∈W

)
= P

(
X(0) ∈W | a point of the process Tn occurs at time 0

)

for any measurable subset W of the set of values of X(t). In particular, we can
write P

0(T0 = 0) = 1.

The interpretation of the definition is easy in discrete time, if, as is the case,
we assume that the point process is “simple”. In other words, there cannot be
more than one point at any instant t. In this case, (7.18) has to be taken in
the usual sense of conditional probabilities:

E
t(Y) = E

(
Y | N(t) = 1

)
=

E
(
Y N(t)

)
E
(
N(t)

) =
E
(
Y N(t)

)
P
(
N(t) = 1

) =
E
(
Y N(t)

)
λ

where N(t) = 1 if there is a point at time t, and 0 otherwise.

226 Palm Calculus, or the Importance of the Viewpoint

Comment: In continuous time, “there is a point at time t” has the probability 0 and
cannot be conditioned upon. However, it is possible to give a meaning to such a con-
ditional expectation, similarly to the way one can define the conditional probability
density function of a continuous random variable:

E
t(Y) = lim

τ→0

E
`
Y N(t, t + τ)

´

E
`
N(t, t + τ)

´ = lim
τ→0

E
`
Y N(t, t + τ)

´

λτ
(7.20)

Here, the limit is in the Radon-Nykodim sense, defined as follows. For a given random
variable Y , consider the measure μ defined for any measurable subset B of R by

μ(B) =
1

λ
E

Y
X

n∈Z

1{Tn∈B}

!
(7.21)

where λ is the intensity of the point process Tn. If B is negligible (i.e. its Lebesgue
measure, or length, is 0) then, with probability 1, there is no event in B and μ(B) = 0.
By the Radon-Nykodim theorem [91], there exists some function g defined on R such
that for any B: μ(B) =

R
B

g(t) dt. The Palm expectation E
t(Y) is defined as g(t).

In other words, for a given random variable Y , E
t(Y) is defined as the function of t

that, for any B, satisfies,

E

Y
X

n∈Z

1{Tn∈B}

!
= λ

Z

B

E
t(Y) dt (7.22)

�

7.2.3 Interpretation as Time and Event Averages

In this section, we make the link with the intuitive treatment in Section 7.1.

Time Averages

If X(t) is jointly stationary with the simulation, it follows that the distribution
of X(t) is independent of t; it is called the time stationary distribution of X .

Assume that, in addition, X(t) is ergodic, i.e. that time averages tend to
expectations (which, is true for example on a discrete state space if any state
can be reached from any other state), for any bounded function φ, we can
estimate E

(
φ
(
X(t)

))
by (in discrete time)

E
(
φ
(
X(t)

)) ≈ 1
T

T∑
t=1

φ
(
X(t)

)

when T is large. An equivalent statement is that for any (measurable) subset
W of the set of values of X(t)

P
(
X(t) ∈W

) ≈ fraction of time that X(t) is in the set W

In other words, the time stationary distribution of X(t) can be estimated
by a time-average.

Palm Calculus 227

Event Averages

We can interpret the Palm expectation and Palm probability as event averages
if the process X(t) is ergodic (note however that Palm calculus does not require
ergodicity). Indeed, it follows from the definition of the Palm expectation that

E
0
(
φ
(
X(0)

)) ≈ 1
N

N∑
n=1

φ
(
X(Tn)

)

for large N .

It can be shown [4] that if the process X(t) is ergodic and integrable, then

lim
N→∞

1
N

N∑
n=1

φ
(
X(Tn)

)
= E

0
(
φ(X0)

)

An equivalent statement is that, for any (measurable) subset W of the set
of values of X(t)

P
t
(
X(t) ∈ W

)
= P

0
(
X(0) ∈W

)
≈ fraction of points of the point process at which X(t) is in W

Thus the Palm expectation and the Palm probability can be interpreted as
event averages. In other words, they are ideal quantities, which can be esti-
mated by observing X(t) sampled with the event clock.

7.2.4 The Inversion and Intensity Formulas

These are formulas that relate time and event averages. Also known under the
name of Ryll-Nardzewski and Slivnyak’s formula, the inversion formula relates
the time stationary and Palm probabilities. The proof of discrete time, a direct
application of the definition of conditional probability, is given in Section 7.7.

Theorem 7.1 (Inversion Formula)
• In discrete time:

E
(
X(t)

)
= E

(
X(0)

)
= λE

0

(
T1∑

s=1

X(s)

)
= λE

0

(
T1−1∑
s=0

X(s)

)
(7.23)

• In continuous time

E
(
X(t)

)
= E

(
X(0)

)
= λE

0

(∫ T1

0

X(s) ds

)
(7.24)

By applying the inversion to X(t) = 1, we obtain the following formula,
which states that the intensity of a point process is the inverse of the average
time between points.

228 Palm Calculus, or the Importance of the Viewpoint

Theorem 7.2 (Intensity Formula)

1
λ

= E
0(T1 − T0) = E

0(T1) (7.25)

Recall that the only assumption required is stationarity. There is no need
for independence or Poisson assumptions.

Example 7.6 Gatekeeper, continued
Assume that we model the gatekeeper example as a discrete event sim-
ulation, and consider as point process the waking-up of the gatekeeper.
Let X(t) be the execution time of a hypothetical job that would arrive
at time t. The average job execution time, sampled with the standard
clock (customer viewpoint) is

Wc = E
(
X(t)

)
= E

(
X(0)

)
whereas the average execution time, sampled with the event clock (sys-
tem designer viewpoint), is

Ws = E
t
(
X(t)

)
= E

0
(
X(0)

)
The inversion formula gives

Wc = λE
0

(∫ T1

0

X(t) dt

)
= λE

0
(
X(0)T1

)

(recall that T0 = 0 under the Palm probability and X(0) is the ex-
ecution time for a job that arrives just after time 0). Let C be the
cross-covariance between sleep time and execution time:

C := E
0
(
T1X(0)

)− E
0(T1)E0

(
X(0)

)
This gives

Wc = λ
[
C + E

0
(
X(0)

)
E

0(T1)
]

By the inversion formula λ = 1
E0(T1) , we thus have

Wc = Ws + λC

which is the formula derived using the heuristic in Section 7.1.

To be rigorous, we need to make sure that the process being simulated is
stationary. With the data in Example 7.1, this appears to be false, as the wake-
up times are periodic, starting at time 0. This is not a problem for such cases:
when the simulation state is periodic, say with period θ, then it is customary
to consider the simulation as a realization of the stochastic process obtained
by uniformly drawing the origin of times in [0, θ]. This produces a stochastic
process that is formally stationary, and which in practical terms, amounts to
uniformly choosing the arbitrary point in time at random in [0, θ].

Palm Calculus 229

Example 7.7 Stationary Distribution of Random Waypoint
The random waypoint model is defined in Example 6.5, but we repeat
the definitions here [52]. A mobile moves from one waypoint to the
next in some bounded space S. After having arrived at a waypoint, say
Mn, it picks a new one, e.g. Mn+1, randomly and uniformly in S, picks
a speed Vn uniformly at random between vmin and vmax and proceeds
to the next waypoint Mn+1 at this constant speed.
Figure 7.4 shows that the distribution of speed , sampled at waypoints,
is uniform between vmin and vmax, as expected. In contrast, the dis-
tribution, sampled at an arbitrary point in time, is different. We can
explain this by Palm’s inversion formula.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

200

400

600

800

1000

1200

1400
Palm distribution of the speed for all users (histogram)

Speed

(a)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5
x 10

5 distribution of the speed for all users

Speed

(b)

Figure 7.4 Distribution of speed sampled at a waypoint (a) and at an
arbitrary time instant (b). vmin = 0.2, vmax = 2 m/s.

We assume that this model has a stationary regime, i.e. that vmin > 0
(see Section 7.4). The stationary distribution of V (t) is obtained if we
know E

(
φ
(
V (t)

))
for any bounded, test function φ of the speed. Let

f0
V (v) be the PDF of the speed chosen at a waypoint, i.e. f0

V (v) =
1

vmax−vmin
1{vmin≤v≤vmax}. We have

E
(
φ(V (t)

)
= λE

0

(∫ T1

0

φ
(
V (t)

)
dt

)

= λE
0
(
T1φ(V0)

)
= λE

0

(‖M1 −M0‖
V0

φ(V0)
)

= λE
0 (‖M1 −M0‖) E

0

(
1
V0

φ(V0)
)

= K1

∫
1
v
φ(v)f0

V (v) dv (7.26)

where Tn is the time at which the mobile arrives at the waypoint Mn

and K1 is a certain constant. This shows that the distribution of speed

230 Palm Calculus, or the Importance of the Viewpoint

sampled at an arbitrary point in time has PDF

f(v) = K1
1
v
f0

V (v) (7.27)

This explains the shape in 1
v of the second histogram in Figure 7.4.

A similar argument can be made for the distribution of location. At
a waypoint, it is uniformly distributed, by construction. Figure 7.5
shows that, at an arbitrary time instant, it is no longer so. Palm’s
inversion formula can also be used to derive the PDF of location, but it
is very complex [57]. It is simpler to use the perfect simulation formula
explained in Section 7.4.3.

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

1000
Current Position

Figure 7.5 A sample of 104 points drawn from the stationary distribution
of the random waypoint. The distribution is not uniform, even though way-
points are picked uniformly in the area.

7.3 Other Useful Palm Calculus Results

In this section, we consider a stationary simulation and a point process following
the assumptions in the previous section.

7.3.1 Residual Time and Feller’s Paradox

We are here interested in the residual time , i.e. the time from now to the
next point. More precisely, let T+(t) (resp. T−(t)) be the first point after

Other Useful Palm Calculus Results 231

(resp. before or at) t. Thus, for example, T+(0) = T1 and T−(0) = T0. The
following theorem is an immediate consequence of the inversion formula.

Theorem 7.3
Let X(t) = T+(t) − t (time until next point, also called residual time),
Y (t) = t−T−(t) (time since last point), Z(t) = T+(t)−T−(t) (duration of
current interval). For any t, the distributions of X(t) and Y (t) are equal,
with PDF:

fX(s) = fY (s) = λP
0(T1 > s) = λ

∫ +∞

s

f0
T (u) du (7.28)

where f0
T is the Palm PDF of T1 − T0 (PDF of inter-arrival times) and λ

is the intensity of the point process. The PDF of Z(t) is

fZ(s) = λsf0
T (s) (7.29)

In particular, it follows that

E
(
X(t)

)
= E

(
Y (t)

)
=
λ

2
E

0(T 2
1) in continuous time (7.30)

E
(
X(t)

)
= E

(
Y (t)

)
=
λ

2
E

0(T1

(
T1 + 1)

)
in discrete time (7.31)

E
(
Z(t)

)
= λE

0(T 2
1) (7.32)

Note that in discrete time, the theorem means that

P
(
X(t) = s

)
= P

(
Y (t) = s) = λP

0(T1 ≥ s) and P(Z(t) = s) = λsP0(T1 = s)

Example 7.8 Poisson Process
Assume that Tn is a Poisson process (see Section 7.6). We have f0

T (t) =
λ e−λs and P

0(T1 > s) = P
0(T1 ≥ s) = e−λs thus fX(s) = fY (s) =

f0
T (s).

This is expected, by the memoriless property of the Poisson process:
we imagine that at every time slot, of duration dt, the Poisson process
flips a coin and, with probability λdt, decides that there is an arrival,
independent of the past. Thus, the time X(t) until the next arrival is
independent of whether there is an arrival or not at time t, and the
Palm distribution of X(t) is the same as its time-average distribution.
Note that this is specific to the Poisson process; processes without the
memoriless property do not have this feature.
The distribution of Z(t) has the density

f0
T (s) = λ2s e−λs

232 Palm Calculus, or the Importance of the Viewpoint

i.e. it is an Erlang-2 distribution.(1) Note here that it differs from
the Palm distribution, which is exponential with rate λ. In particular,
the average duration of the current interval, sampled at an arbitrary
point in time, is 2

λ , i.e. twice the average inter-arrival time 1
λ (this

is an instance of Feller’s paradox, see later in this section). A simple
interpretation for this formula is as follows: Z(t) = X(t)+Y (t), where
both X(t) and Y (t) are exponentially distributed with the rate λ and
are independent.

Example 7.9 At the Bus Stop
Tn is the sequence of bus arrival instants at a bus stop. We do not
assume here that the bus interarrival times Tn−Tn−1 are iid. E

0(T1) =
1
λ is the average time between buses, seen by an inspector standing at
the bus stop, spending the hour counting intervals from bus to bus.
E(T1) = E(X(0)) is the average waiting time experienced by you and
me.

Based on (7.30),

E(X(t)) = E(X(0)) =
1
2

(
1
λ

+ λvar0(T1 − T0)
)

(7.33)

where var0(T1 − T0) is the variance, under Palm, of the time between
buses, i.e. the variance estimated by the inspector. The expectation
E(X(t)) is the minimum waiting time, equal to 1

2λ , when the buses are
absolutely regular (Tn−Tn−1 is constant). The larger the variance, the
larger is the waiting time perceived by you and me. In the limit, if the

(1)For k = 1, 2, 3, . . ., the Erlang-k distribution with parameter λ is the distribution of
the sum of k independent exponential distributions with rate λ.

Other Useful Palm Calculus Results 233

interval between buses seen by the inspector is heavy-tailed, E(X(t))
is infinite. Thus, the inspector should report not only the mean time
between buses, but also its variance.

Feller’s Paradox

We continue to consider Example 7.9 and assume that Joe would like to verify
the inspector’s reports by sampling one bus inter-arrival time. Joe arrives at
time t and measures Z(t) = (time until next bus − time since last bus). By
employing (7.32)

E
(
Z(t)

)
=

1
λ

+ λvar0(T1 − T0)

where var0(T1−T0) is the variance of the inter-arrival time (=
∫∞
0
s2f0

T (s) ds−
1

λ2). Thus, the average of Joe’s estimate is always larger than the inspector’s
(which is equal to 1

λ) by a term corresponding to λvar0(T1 − T0). This is
the case despite that both observers sample the same system (however with
differing viewpoints). This systematic bias is known as Feller’s paradox .
Intuitively, it occurs because a stationary observer (Joe) is more likely to fall
in a large time interval.

In this example, no other assumptions apart from stationarity were made
for the process of bus arrivals. Thus, Feller’s paradox is true for any stationary
point process.

7.3.2 The Rate Conservation Law and Little’s Formula

Miyazawa’s Rate Conservation Law

This is a fundamental result in queuing systems, but it applies to a large variety
of systems, well beyond queuing theory. It is best expressed in continuous time.

T1

ΔXT3

X(t)

T3 T4
t

Figure 7.6 Rate conservation law.

Consider a random, real valued stochastic process X(t) with the following
properties (Figure 7.6):

• X(t) is continuous everywhere except perhaps at instants of a stationary
point process Tn;

• X(t) is continuous to the right;
• X(t) has a right-handside derivative X ′(t) for all values of t.

234 Palm Calculus, or the Importance of the Viewpoint

Define ΔXt by ΔXt=0 if t is not a point of the point process Tn and
ΔXTn = X(Tn) − X(T−

n), i.e. ΔXt is the amplitude of the discontinuity at
time t. Note that it follows that

X(t) = X(0) +
∫ t

0

X ′(s) ds+
∑
n∈N

ΔTn1{t≤Tn} (7.34)

Theorem 7.4 (Rate Conservation Law [69])
Assume that the point process Tn and X(t) are jointly stationary. If
E

0 |Δ0| <∞ and E |X ′(0)| <∞ then

E
(
X ′(0)

)
+ λE

0(Δ0) = 0

where λ is the intensity of the point process Tn and E0 is the Palm expec-
tation.

The proof in continuous time can be found for example in [70]. We can
interpret the theorem as follows.

• E
(
X ′(0)

)
(also equal to E

(
X ′(t)

)
for all t) is the average rate of increase

of the process X(t), excluding jumps.
• E

0(Δ0) is the expected amplitude of one arbitrary jump. Thus, λE
0(Δ0)

is the expected rate of increase due to jumps.
• The theorem states that, if the system is stationary, the sum of all jumps

is canceled out, in average.

Remark. The theorem can be extended somewhat to the cases where certains
expectations are infinite, as follows [70]. Assume that the point process Tn

can be decomposed as the superposition of the stationary point processes T j
n,

j = 1, . . . , J , and that these point processes have no points in common. Let
Δj

t be the jump of X(t) when t is an instant of the point process T j
n, i.e.

X(t) = X(0) +
∫ t

0

X ′(s) ds+
J∑

j=1

∑
n∈N

Δj
Tn

1{t≤T j
n} (7.35)

and Δj
t = 0 whenever t is not an instant of the point process T j

n.
Assume that X ′(t) ≥ 0 and the jumps of a point process are all positive or

all negative. More precisely, assume that Δj
t ≥ 0 for j = 1, . . . , I and Δj

t ≤ 0
for j = I + 1, . . . , J . Finally, assume that X(t) and the point processes T j

n are
jointly stationary. Then

E
(
X ′(0)

)
+

I∑
j=1

λjE
0
j (Δ

j
0) = −

J∑
j=I+1

λjE
0
j (Δ

j
0) (7.36)

where E
0
j is the Palm expectation with respect to the point process T n

j and the
equality holds even if some of the expectations are infinite.

Other Useful Palm Calculus Results 235

Example 7.10 M/GI/1 Queue and Pollaczek-Khinchine Formula
Consider the M/GI/1 queue, i.e. the single server queue with Poisson
arrivals of rate λ and independent service times, with mean S̄ and
variance σ2

S . Assume ρ = λS̄ < 1 so that there is a stationary regime
(Theorem 8.6). Apply the rate conservation law to X(t) = W (t)2,
where W (t) is the amount of unfinished work at time t.
The jumps occur at arrival instants, and when there is an arrival at
time t, the jump is

ΔX =
(
W (t) + S

)2 −W (t)2 = 2SW (t) + S2

where S is the service time of the arriving customer. By hypothesis, S
is independent of W (t) thus the expectation of a jump is 2E

0
(
W (t)

)
S̄+

S̄2+σ2
S . By the PASTA property (Example 7.19), E

0
(
W (t)

)
= E

(
W (t)

)
.

Thus, the rate conservation law gives

E
(
X ′(t)

)
+ 2ρE

(
W (t)

)
+ λ
(
S̄2 + σ2

S

)
= 0

Between jumps, W (t) decreases at rate 1 if W (t) > 0, thus the deriva-
tive of X is X ′(t) = 2W (t)1{W (t)>0} and E

(
X ′(t)

)
= −2E

(
W (t)

)
.

Putting things together, we get

E
(
W (t)

)
=
λ
(
S̄2 + σ2

S

)
2(1 − ρ)

By the PASTA property again, E
(
W (t)

)
is the average workload seen

by an arriving customer, i.e. the average waiting time. Consequently,
the average response time (waiting time + service time) is (Pollaczek-
Khinchine formula for means)

R̄ =
S̄
(
1 − ρ(1 − κ)

)
1 − ρ

(7.37)

with κ = 1
2 (1 + σ2

S

S̄2).
Similarly, applying the rate conservation law to X(t) = e−sW (t) for
some arbitrary s ≥ 0 gives the Laplace Stieltjes transform of the dis-
tribution of W (t) (see (8.5)).

Campbell’s Shot Noise Formula

Consider the following system, assumed to be described by the state of a sta-
tionary simulation S(t). Assume that we can observe arrivals of jobs, also called
customers, or “shots”, and that the the arrival times Tn form a stationary point
process.

The nth customer also has an “attribute”, Zn, which may be drawn accord-
ing to the specific rules of the system. As usual in this chapter, we do not
assume any form of iid-ness, but we do assume stationarity; more precisely the
attribute Zn is obtained by sampling the simulation state at time Tn (this is
quite general as we do not specify what we put in the simulation state). If the
attributes have this property, we say that they are marks of the point process

236 Palm Calculus, or the Importance of the Viewpoint

Tn and that the process (Tn, Zn) is a stationary marked point process. We
do not specify the nature of the attribute, it can take values in any arbitrary
space.

When the nth customer arrives, he/she generates a load on the system,
in the form of work to be done. Formally, we assume that there is a function
h(s, z) ≥ 0 (the “shot”) such that h(s, z) is the load at time s, due to a hypo-
thetical customer having arrived at time 0, and would have mark z. The total
load in the system at time t, is

X ′(t) =
∑
n∈Z

1{Tn≤t}h(t− Tn, Zn)

and the total amount of work to be performed, as a result of customers already
being present in the system is

X(t) =
∑
n∈Z

1{Tn≤t}

∫ ∞

t

h(s− Tn, Zn) ds

For example, in [7], a customer is an internet flow, its mark is its size in
bytes, and the total system load is the aggregate bit rate (Example 7.7). The
average load L̄, at an arbitrary point in time, is

L̄ = E

(∑
n∈Z

1{Tn≤t}h(t− Tn, Zn)

)
= E

⎛
⎝∑

n≤0

h(−Tn, Zn)

⎞
⎠

h(t – T1, Z1) + h(t – T2, Z2)

T1 T2 T3

Total load

(a)

Total load

R2

T1 T2 T3

(b)

Figure 7.7 Shot Noise (a) and Little’s formula (b).

Other Useful Palm Calculus Results 237

where the latter is obtained by taking t = 0. The work generated during its
lifetime by one customer, given that his/her mark is z, is

∫∞
0 h(t, z) dt. The

average load generated by one arbitrary customer can be expressed as a Palm
expectation, relative to the point process of customer arrivals, namely as

work per customer = E
0

(∫ ∞

0

h(t, Z0) dt
)

(7.38)

(Z0 in the formula stands for the attribute of an arbitrary customer). Let λ be
the intensity of the point process Tn, i.e. the customer arrival rate.

The total work decreases at the rate X ′(t) and when a customer arrives at
time Tn, it jumps by Δt =

∫∞
0 h(t, Z0) dt. The jumps are nonnegative and the

derivative is nonpositive; we can thus apply Theorem 7.4, or more precisely,
the remark after it to −X(t), with J = 1 and I = 0. We have thus shown the
following theorem.

Theorem 7.5 (Shot Noise)
The average load at an arbitrary point in time is

L̄ = λ× work per customer (7.39)

where equality also holds if either L̄ or the work per customer is infinite.

Equation (7.39) is also known as Campbell’s formula .

Example 7.11 TCP Flows
In [7], a customer is a TCP flow, h(t, z) is the bit rate generated at time
t by a TCP flow that starts at time 0 and has a size parameter z ∈ R

+.
Thus V̄ = E

0
(∫∞

0 h(t, Z0) dt
)

is the average volume of data, counted in
bits, generated by a flow during its entire lifetime. Campbell’s formula
says that the average bit rate on the system L̄, measured in b/s, is
equal to λV̄ , where λ is the flow arrival rate.

The H = λG Formula

This is an interpretation of the rate conservation law that is quite useful in
applications. Consider some arbitrary system where we can observe the arrival
and departure of jobs (also called customers). Let Tn be the point process
of arrivals times, with intensity λ (not necessarily Poisson, as usual in this
chapter). Also assume that when a job is present in the system, it employs
some amount of resource, per time unit (for example, electrical power or CPU
cycles). Assume the system to be stationary.

Let Gn be the total amount of system resource consumed by job n during
its presence in the system; and let Ḡ be the average resource consumption per
job, i.e. the expectation of Gn when n is an arbitrary customer. Furthermore,
let H̄ be the average rate at which the resource is allocated to jobs, i.e. the
expectation of H(t) at any time t. (7.39) can be re-formulated as follows.

238 Palm Calculus, or the Importance of the Viewpoint

Shot Noise (Variant formulation)
The H = λG Formula , or extended little formula is equivalent
to

H̄ = λḠ (7.40)

Example 7.12 Power Consumption per Job
A system serves jobs and consumes in average P̄ watts. Assume that
we allocate the energy consumption to jobs, for example by measuring
the current when a job is active. Let Ē be the total energy consumed
by a job, during its lifetime, in average per job, measured in Joules.
According to (7.40) we get

P̄ = λĒ

where λ is the number of jobs per second, served by the system.

Little’ s Formula

Consider again some arbitrary system where we can observe the arrival and
departure of jobs (also called customers), where Tn is the point process of
arrivals times, with intensity λ. Let Rn be the residence time of the nth
customer, n ∈ Z (thus the departure time is Tn +Rn). Let N(t) be the number
of customers present in the system at time t. Assume that the mean residence
time R̄ (i.e. the expectation of Rn) is finite (according to the stationarity
assumption, it is independent of n).

Comment: We have not exactly defined what a customer and the system are, and
we therefore need, formally, to be more precise. This can be done as follows. We are
given a sequence

`
Tn ∈ R, Rn ∈ R

+
´

n∈Z
that is stationary with respect to index n.

Assume that Tn can be viewed as a stationary point process, with intensity λ (i.e.
the expectation of Tn −Tn−1 is finite, Theorem 7.9). The number of customers in the
system at time t is then defined by

N(t) =
X

n∈Z

1{Tn≤t<Rn+Tn} �

Note that, by stationarity, λ is also equal to the departure rate. Define
R(t) by R(t) = Rn if and only if Tn ≤ t < Tn+1, i.e. R(t) is the residence time
of the most recently arrived customer at time t. Also let

E
t
(
R(t)

)
= E

0
(
R(0)

)
= R̄

E
(
N(t)

)
= E

(
N(0)

)
= N̄

We can apply Campbell’s formula by letting Zn = Rn and h(t, z) = 1{0≤t<z},
i.e. the load generated by one customer is 1 as long as this customer is present in
the system. Equivalently, we can apply the rate conservation law with X(t) =

Other Useful Palm Calculus Results 239

residual time to be spent by customers present in the system. This gives the
celebrated theorem.

Theorem 7.6 (Little’s Formula)
The mean number of customers in the system at time t, N̄ := E

(
N(t)

)
, is

independent of t and satisfies

N̄ = λR̄

where λ is the arrival rate and R̄ is the average response time, experienced
by an arbitrary customer.

Little’s formula makes no assumption other than stationarity. In particular,
we do not assume that the residence times are independent of the state of the
system, and neighter do we assume that the arrival process is Poisson. We
should also note that the formula holds even if neither N̄ or R̄ is infinite.

Little’s formula is very versatile, since it does not define what can be we
called a system and a customer. The next section is an example of this versa-
tility.

Distributional Little Formula

Assume that we are interested not only in the average number of customers in a
system, but also in the distribution of ages within it. More precisely, fix r0 > 0;
we would like to know N̄(r0), defined as the average number of customers in
the system with an age ≥ r. Call fR(·) the PDF of customer residence time.
Consider the virtual system, defined such that we count only customers that
have been present in the system for at least r0 time units:

Original System. The nth customer arrives at time Tn and stays for a dura-
tion Rn.

Virtual System. The nth customer arrives at time Tn + r0. If Tn < r0, this
customer leaves immediately. Otherwise, the customer stays for a duration
Rn − r0.

Apply Little’s formula to the virtual system. The average customer resi-
dence time in the virtual system is

∫ ∞

r0

(r − r0)fR(r) dr =
∫ ∞

r0

[∫ r

r0

ds

]
fR(r) dr =

∫ ∞

r0

∫ r

r0

fR(r) ds dr

=
∫ ∞

r0

[∫ ∞

s

fR(r) dr
]
ds =

∫ ∞

r0

F c
R(s) ds

where F c
R(·) is the complementary CDF of the residence time, i.e. F c

R(r) =∫∞
r fR(r) dr. Thus,

N̄(r0) = λ

∫ ∞

r0

F c
R(r) dr

240 Palm Calculus, or the Importance of the Viewpoint

Let fN (·) represent the PDF of the distribution of ages at an arbitrary
point in time, i.e. such that N̄(r0) = N̄

∫∞
r0
fN (r) dr. It follows that fN (r) =

λ
N̄
F c

R(r) = 1
R̄
F c

R(r), i.e.

fN (r) =
1
R̄

∫ ∞

r

fR(r) dr (7.41)

Equation (7.41) is called a Distributional little formula . It relates the PDF
fN of the age of a customer sampled at an arbitrary point in time to the PDF
of residence times fR. Note that there is an analogy with (7.28) (but that the
hypotheses are different).

7.3.3 Two Event Clocks

Assume in this section that we observe two point processes from the same
stationary simulation, say An, Bn, n ∈ Z. Let λ(A) (resp. λ(B)) be the
intensity of the A (resp. B) point process. Whenever X(t) is some observable
output, jointly stationary with the simulation, we can sample X(t) with the
two event clocks A, or B, i.e. we can define two Palm probabilities, denoted
with E0

A

(
X(0)

)
and E0

B

(
X(0)

)
.

We can also measure the intensity of one point process using the other
process’s clock. For instance, let λA(B) be the intensity of the B point process
measured with the event clock A. Let NB[t1, t2) be the number of points of
process B in the time interval [t1, t2). We have

λA(B) = E
0
A

(
NB[A0, A1)

)
(7.42)

i.e. it is the average number of B points seen between two A points.

Theorem 7.7 (Neveu’s Exchange Formula)

λA(B) =
λ(B)
λ(A)

(7.43)

E
0
A(X(0)) = λA(B)E0

B

(∑
n∈Z

X(An)1{B0≤An<B1}

)
(7.44)

Equation (7.44) is the equivalent of the inversion formula (7.23), if we
replace the standard clock by clock A and the point process Tn by Bn. Indeed,
the last term in (7.44) is the sum of the X(t) values observed at all A points
that fall between B0 and B1.

It follows from this theorem that

1
λA(B)

= E
0
B

(
NA[0, B1)

)
= E

0
B

(
NA[B0, B1)

)
(7.45)

which is the equivalent of (7.25), namely, the intensity of the point process B,
measured with A’s clock, is the inverse time between two arbitrary B points,

Other Useful Palm Calculus Results 241

again measured with A’s clock (the last term, NA[B0, B1), is the number of
ticks of the A clock between two B points).

The following theorem follows immediately from Theorem 7.7 and (7.45).

Theorem 7.8 (Wald’s Identity)

E
0
A

(
X(0)

)
=

E
0
B

(∑
n∈Z

X(An)1{B0≤An<B1}

)

E0
B

(
NA[B0, B1)

) (7.46)

Equation (7.46) is called Wald’s identity . It is often presented in the con-
text of renewal processes, but this need not be the case: like all Palm calculus
formulas, it requires only stationarity, and no independence assumption.

Example 7.13 The Stop-and-Go protocol
We re-visit the computation of the stop and go protocol given in Exam-
ple 7.3. The A point process consists of the emission times of successful
transmissions, and the B point process consists of all transmission and
retransmission attempts. Apply (7.45):

1
λA(B)

= E
0
B

(
NA[B0, B1)

)

Note that NA[B0, B1) is 1 if the attempt at B0 is successful and 0
otherwise. Consequently, the right-handside of the equation is the
probability that an arbitrary transmission or retransmission attempt
is successful. By definition of α, this is 1 − α. Thus, λ(A)

λ(B) = 1 − α.
Compute λ(B) from (7.25): 1

λ(B) = (1 − α)t0 + αt1. Combining the
two gives

λ(A) =
1

α

1 − α
t1 + t0

as already found.

Comment: All formulas in this section continue to hold if we replace the semi-closed
intervals that span one tick of an event clock to the next, such as [A0, A1) (resp.
[B0, B1)), by the semi-closed intervals (A0, A1] (resp. (B0, B1]). However, they do
not hold if we replace them by closed or open intervals (such as [A0, A1] or (A0, A1)).

One can even replace them by the so-called Voronoi cells, which are the intervals
that are bounded by the middle of two successive points; one can for instance replace
[A0, A1) by [

A−1+A0
2

, A0+A1
2

) or (
A−1+A0

2
, A0+A1

2
]. Thus,

λA(B) = E
0
A

`
NB [A0, A1)

´
= E

0
A

`
NB(A0, A1]

´

= E
0
A

„
NB

»
A−1 + A0

2
,
A0 + A1

2

««
= E

0
A

„
NB

„
A−1 + A0

2
,
A0 + A1

2

–«

242 Palm Calculus, or the Importance of the Viewpoint

and (7.44) can be generalized to

E
0
A

`
X(0)

´
= λA(B)E0

B

X

n∈Z

X(An)1{B0≤An<B1}

!

= λA(B)E0
B

X

n∈Z

X(An)1{B0<An≤B1}

!

= λA(B)E0
B

X

n∈Z

X(An)1{ B−1+B0
2 ≤An<

B1+B2
2 }

!

= λA(B)E0
B

X

n∈Z

X(An)1{ B−1+B0
2 <An≤ B1+B2

2 }

!
�

7.4 Simulation Defined as Stochastic Recurrence

7.4.1 Stochastic Recurrence, Modulated Process

Recall (Chapter 6) that a stochastic recurrence is defined by a sequence Zn,
n ∈ Z, (also called the modulator state at the nth epoch) and a sequence
Sn > 0, interpreted as the duration of the nth epoch. The state space for Zn

is arbitrary, and not necessarily finite or even enumerable. We assume that
(Zn, Sn) is random, but stationary(2) with respect to the index n. As usual,
we do not assume any form of independence.

We are interested in the modulated process
(
Z(t), S(t)

)
defined by Z(t) =

Zn, S(t) = Sn whenever t belongs to the nth epoch (i.e. when Tn ≤ t < Tn+1).
We would like to apply Palm calculus to

(
Z(t), S(t)

)
.

Example 7.14 Loss Channel Model
A path on the internet is modeled as a loss system, where the packet
loss ratio at time t, p(t) depends on a hidden state Z(t) ∈ {1, . . . , I}
(called the modulator state). During one epoch, the modulator remains
in some fixed state, say i, and the packet loss ratio is constant, say pi.
At the end of an epoch, the modulator changes state and a new epoch
starts.
Once in a while, we send a probe packet on this path, and we thus
measure the time average loss ratio p̄. How does it relate to pi? Apply
the inversion formula

p̄ =

∑
i

π0
i piS̄i

∑
i

π0
i S̄i

(2)This means that the joint distribution of (Zn, Sn . . . , Zn+m, Sn+m) is independent of
m.

Simulation Defined as Stochastic Recurrence 243

where π0
i is the probability that the modulator is in state i at an arbi-

trary epoch (proportion of i epochs) and S̄i is the average duration of
an i-epoch.
For example, assume that Zn is the Gilbert loss model shown in
Figure 7.8, i.e. a discrete time two state Markov chain, and Sn is equal
to one round trip time. We have π0

i = q1−i

q0+q1
, for i = 0, 1. It follows

that
p̄ =

q0p1

q0 + q1

q0

q1

0 1

1 – q1

1 – q0

Figure 7.8 The Gilbert Loss Model. When the channel is in state 0 the
packet loss ratio is 0, whereas in state 1 it is p1. The average number of
consecutive periods in state i is 1

qi
(i = 0, 2).

7.4.2 Freezing Simulations

In the previous example, we implicitly assumed that we can apply Palm calcu-
lus, i.e. that the process Z(t) is stationary. In the rest of this section we give
conditions for this assumption to be valid.

We first make a technical assumption, i.e. that the number of epochs per
time unit does not explode. More precisely, for any fixed t0 > 0, define:

D(t0) =
∞∑

n=1

1{S0+···+Sn−1≤t0}

We interpret D(t0) as the number of epochs that are entirely included in the
interval (0, t0], given that we start the first epoch at time 0. The technical
assumption is

For every t0, the expectation of D(t0) is finite (H1)

Surprisingly, though (Zn, Sn) is stationary with respect to n, this is not enough
to guarantee the stationarity of Z(t). To see why, assume that Z(t) is stationary
and that there exists a stationary point process Tn such that Tn+1 − Tn = Sn.

244 Palm Calculus, or the Importance of the Viewpoint

Apply the inversion formula

λ =
1∫ ∞

0

tf0
S(t) dt

(7.47)

where f0
S(t) is the probability density function of Sn (it does not depend on n

by hypothesis). Thus, we need to assume that the expectation of Sn is finite.
The next theorem states that, essentially, this is also sufficient.

Theorem 7.9
Assume that the sequence Sn satisfies (H1) and has a finite expectation.
There exists a stationary process Z(t) and a stationary point process Tn

such that
(1) Tn+1 − Tn = Sn;
(2) Zn = Z(Tn).

The theorem says that we can apply Palm calculus, and in particular treat
Zn as the state of a stationary simulation sampled with the event clock derived
from Sn. The proof can be found in [4], where it is called “inverse construction”.

Condition (H1) is often intuitively obvious, but may be hard to verify in
some cases. In the simple case where Sn are independent (thus iid since we
assume stationarity with respect to n), the condition always holds:

Theorem 7.10 (Renewal Case)
If the Sn are iid and Sn > 0, then condition (H1) holds

The next example shows a non iid case.

Example 7.15 Random Waypoint, Continuation of Example 7.7
For the random waypoint model, the sequence of modulator states is

Zn = (Mn,Mn+1, Vn)

and the duration of the nth epoch is

Sn =
d(Mn,Mn+1)

Vn
(7.48)

where d(Mn,Mn+1) is the distance from Mn to Mn+1.
Can this be assumed to come from a stationary process? We apply
Theorem 7.9. The average epoch time is

E(S0) = E

(
d(Mn,Mn+1)

Vn

)
= E

(
d(Mn,Mn+1)

)
E

(
1
Vn

)

since the waypoints and the speed are chosen independently. Thus, it
is essential that E(1

Vn
) <∞, or in other words that vmin > 0.

Simulation Defined as Stochastic Recurrence 245

We also need to verify (H1). We cannot apply Theorem 7.10 since the
epoch times are not independent (two consecutive epoch times depend
on one common waypoint). However, Sm and Sn are independent if
n − m ≥ 2, and one can show that (H1) holds by using arguments
similar to the proof of Theorem 7.10 [52].

What happens if the expectation of Sn is infinite? It can be shown (and
verified by simulation) that the model freezes : as you run the simulation longer
and longer, it becomes more likely to draw a very long interval Sn, and the
simulation state stays there for long. This is an interesting case where non-
stationarity is not due to explosion, but to aging (Figure 7.9). In the random
waypoint example above, this happens if we choose vmin = 0.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Instant Speed, One User

time (sec)

sp
ee

d
(m

/s
)

(a)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Speed averaged over time and users

time (sec)

sp
ee

d
(m

/s
)

(b)

Figure 7.9 Freezing simulation: random waypoint with vmin = 0. The model does
not have a stationary regime and the simulation becomes slower and slower. (a)
sample of instant speed versus time for one mobile. (b) speed averaged over [0; t] for
one mobile (zig zag curve) or for 30 mobiles (smoother curve). The average speed
slowly tends to 0.

7.4.3 Perfect Simulation of Stochastic Recurrence

Assume that we are interested in simulating the modulator process
(
Z(t), S(t)

)
.

A simple method consists in drawing a sample of (Z0, S0) from the joint dis-
tribution with PDF f0

Z,S(z, s), then deciding that the simulation remains in
this state for a duration S0, followed by drawing Z1, S1 from its conditional
distribution given (Z0, S0) and so on. For a stochastic recurrence satisfying the
hypotheses of Theorem 7.9, as the simulation will time increases, the simula-
tion enter its stationary regime and its state will be distributed according to
the stationary distribution of

(
Z(t), S(t)

)
.

It is possible to do better, and start the simulation directly in the stationary
regime, i.e. avoid transients entirely. This is called perfect simulation . It is
based on Palm’s inversion formula, which provides a means of sampling from
the stationary distribution, as we explain now.

246 Palm Calculus, or the Importance of the Viewpoint

We want to start a simulation of the modulator process
(
Z(t), S(t)

)
, in the

stationary regime. We need to draw a sample from the stationary distribution
of
(
Z(t), S(t)

)
, but this is not sufficient. We also need to sample the time

until the next change of modulator state. It is thus useful to consider the
joint process

(
Z(t), S(t), T+(t)

)
, where T+(t) is the residual time, defined in

Section 7.3.1 as the time to run until the next change in modulator state, i.e.

if Tn ≤ t < Tn+1 then T+(t) = Tn+1 − t

Theorem 7.11 (Stationary Distribution of Modulated Process)
Let (Zn, Sn)n∈Z satisfy the hypotheses of Theorem 7.9 and let f0

Z,S(z, s) be
the joint PDF of (Zn, Sn), independent of n by hypothesis. The stationary
distribution of

(
Z(t), S(t), T+(t)

)
(defined above) is entirely characterized

by the following properties:
(1) The joint PDF of

(
Z(t), S(t)

)
is

fZ,S(z, s) = ηsf0
Z,S(z, s) (7.49)

where η is a normalizing constant, equal to the inverse of the expectation
of Sn;

(2) The conditional distribution of T+(t), given that Z(t) = z and S(t) = s,
is uniform on [0, s].

Recall that Zn takes values in any arbitrary space, but you may think of it
as an element of R

k for some integer k.(3)

Note that the theorem does not directly give a formula for the joint PDF
of
(
Z(t), S(t), T+(t)

)
, though this can be derived, at least in theory, from the

combination of items (1) and (2) (see [57] for an example).

Also, do not confuse item (2) with the unconditional distribution of the
residual time T+(t). From Theorem 7.3, we know that the distribution of
T+(t) has PDF proportional to 1 − F 0

S(t), where F 0
S(·) is the CDF of Sn. In

other words, it is not uniform.

Comment: We can recover this result from the above theorem, as follows. Consider
a test function φ(·) of the residual time T+(t). The theorem states that

E
`
φ
`
T+(t)

´ ˛̨
Z(t) = s, S(t) = s

´
=

1

s

Z s

0

φ(t) dt

(3)Formally, Zn may take on values in some arbitrary space Z, and Sn is a positive
number. We assume that there is a measure μ on Z and the PDF f0

Z,S(z, s) is defined
with respect to the measure product of μ and of the Lebesgue measure on (0,∞).

Simulation Defined as Stochastic Recurrence 247

thus

E
`
φ
`
T+(t)

´´
= η

Z

z∈Z

Z ∞

0

„
1

s

Z s

0

φ(t) dt

«
sf0

Z,S(z, s) dz ds

= η

Z

z∈Z

Z ∞

0

„Z s

0

φ(t) dt

«
f0

Z,S(z, s) dz ds

= η

Z ∞

0

„Z s

0

φ(t) dt

«
f0

S(s) ds = η

Z ∞

0

„Z ∞

t

f0
S(s) ds

«
φ(t) dt

= η

Z ∞

0

`
1 − F 0

S(t)
´
φ(t) dt

which shows that the PDF of T+(t) is η
`
1 − F 0

S(t)
´
, as given in Theorem 7.3. �

We obtain a perfect simulation algorithm by immediate application of the
above theorem, see Algorithm 7.1. Note the use of the factor s during sampling
of the initial time interval: we can interpret this by stating that the probability,
for an observer who sees the system in its stationary regime, of falling in an
interval of duration s is proportional to s. This is the same argument as in
Feller’s paradox (Section 7.3.1).

Algorithm 7.1 Perfect simulation of a modulated process
1: Sample (z, s) from the joint distribution with PDF ηsf0

Z,S(z, s) (Eq. (7.49))
2: Sample t uniformly in [0, s]
3: Start the simulation with Z(0) = z, S(0) = s, T+(0) = T

Example 7.16 Perfect Simulation of Random Waypoint
We assume that the model in Example 7.15 has a stationary regime,
i.e. that vmin > 0. The modulator process is here

Z(t) =
(
P (t), N(t), V (t), S(t)

)

where P (t) (N(t)) is the previous (next) waypoint, V (t) is the instant
speed and S(t) is the duration of the current trip. Note that S(t) is
determined by (7.48), i.e.

S(t) =
d
(
P (t), N(t)

)
V (t)

It is thus a deterministic function of
(
P (t), N(t), V (t)

)
and can be omit-

ted from the description of the modulator process.
Note that by a standard change of variable arguments,

fP,N,V (p, n, v) =
d(p, n)
v2

fP,N,S(p, n, s)

f0
P,N,V (p, n, v) =

d(p, n)
v2

f0
P,N,S(p, n, s)

248 Palm Calculus, or the Importance of the Viewpoint

A direct application of Theorem 7.11(1), gives the joint PDF of
(
P (t), N(t),

V (t)
)
:

fP,N,V (p, n, v) =
d(p, n)
v2

ηsf0
P,N,S(p, n, s) = ηsf0

P,N,V (p, n, v)

= ηf0
P,N,V (p, n, v)

d(p, n)
v

Now, by definition of the random waypoint model, speed and waypoints
are chosen independently at a waypoint, i.e.

f0
P,N,V (p, n, v) = f0

P,N(p, n)f0
V (v)

Thus
fP,N,V (p, n, v) = η d(p, n)f0

P,N (p, n)
1
v
f0

V (v) (7.50)

Since the joint PDF is the product of the PDFs of (P,N) on the one
hand, and V on the other hand, it follows that these two are indepen-
dentIn the other words, when sampled at an arbitrary point in time, the
trip endpoints on the one hand, and the chosen speed on the other hand,
are independent. Furthermore, by marginalization, the joint PDF of(
P (t), N(t)

)
is

fP,N(p, n) = η1 d(p, n) (7.51)

0 100 200 300 400 500 600 700 800 900
0

100

200

300

400

500

600

700

800

900

1000
Previous WP, Current Position, Next WP

(a)

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
Next Waypoint

(b)

Figure 7.10 Perfect Simulation of Random Waypoint. (a) 7 samples of
previous waypoint (P), current mobile location (M), and next waypoint (N)
sampled at an arbitrary point in time. P and N are not independent; their
joint PDF is proportional to their distance. (Compare to the distribution
obtained when sampling an arbitrary waypoint: there, by construction, P and
N are independent and uniformly distributed. They are thus independent,
by definition of the model.) Given P and N , M is uniformly distributed on
[P, N]. (b) 10, 000 samples of the next waypoint, sampled at an arbitrary
point in time. The distribution is not uniform, with a larger density towards
the edges.

Simulation Defined as Stochastic Recurrence 249

for p, n in the area of interest, and 0 otherwise, and where η is a normal-
izing constant. Thus, the joint PDF of trip endpoints is proportional to
their distance, i.e. we are more likely to see long trips in average (this is
reminiscent of Feller’s paradox in Section 7.3.1; though in space, not in
time). It also follows that the distribution of a trip endpoint is not uni-
form, and that the two endpoints are not independent (though they are
so when sampled at waypoints). Figure 7.10 shows samples from the
marginal distribution of P (t) (which is the same as that of N(t)). We
used rejection sampling (Theorem 6.3), which does not require knowing
the normalizing constant η1.
We also obtain that the distribution of speed at an arbitrary point in
time is proportional to 1

vf
0
V (v), which we had already found in Exam-

ple 7.7. After some algebra, one finds that the CDF of V (t) is

FV (v) =
ln v − ln vmin

ln vmax − ln vmin
(7.52)

for vmin ≤ v ≤ vmax, 0 if v ≤ vmin and 1 if v ≥ vmax.
Let M(t) be the mobile location at time t. The residual time is related
to M(t) by

N(t) −M(t) =
T+(t)V (t)

d
(
P (t), N(t)

) (N(t) − P (t)
)

so that adding either T+(t) or M(t) to the modulator process is equiv-
alent. We can thus take as process state

(
P (t), N(t), V (t),M(t)

)
. A

direct application of Theorem 7.11(2), together with the change of vari-
able arguments as above, lead to the conditional distribution of M(t),
given that P (t) = p, N(t) = n, V (t) = v, being uniform on the segment
[p, n]. In particular, it is independent of the speed V (t).
We summarize these findings in Algorithm 7.2.

Algorithm 7.2 Perfect simulation of random waypoint.
1: Sample the speed v from the distribution with CDF FV in (7.52) (e.g. using

CDF inversion, Theorem 6.1).
2: Sample the previous waypoint p and next waypoint n from the distribution

with PDF proportional to the distance from p to n (e.g. using rejection
sampling Theorem 6.3).

3: Sample m uniformly on the segment that joins p and n, e.g. by sampling
u uniformly in [0, 1] and letting m = (1 − u)p+ un.

4: Start the simulation with P (0) = p,N(0) = n, V (0) = v,M(0) = m.

250 Palm Calculus, or the Importance of the Viewpoint

7.5 Application to Markov Chain Models
and the PASTA Property

In this section, we consider a stochastic process S(t) (the state of the sim-
ulation) that can be expressed as a Markov chain, in discrete or continuous
time. Formally, this means that the state at time t contains all information
for advancing the simulation. Most simulations that we perform in a computer
fall within this framework, since the simulation program uses only information
available in memory. This does not mean that Markov models are always the
best models for analyzing a problem, as the state space may be prohibitively
large. But it does provide a convenient framework for reasoning about what we
are doing, e.g. to understand what the PASTA property means (Section 7.5.2).
In this section, we limit ourselves to Markov chains over a finite state space, as
this provides considerable simplifications.

In an appendix of this chapter (Section 7.6), we give a quick review of
Markov chains. There are also many very good books on the topic; see for
example [21], [108] and [17].

7.5.1 Embedded Sub-Chain

If we observe a Markov chain just after some selected transitions, we obtain an
embedded sub-chain , which is itself a discrete time Markov chain, clocked
by the selected transitions. We explain in this section how to compute all
elements of the embedded subchain, in particular the Palm probabilities for
events observed with the clock of the embedded subchain.

Consider first discrete time. S(t) is a stationary Markov chain with enu-
merable state space S. We are interested in observing the transitions of S(t),
which is equivalent to observing the process

(
S(t− 1), S(t)

)
. Note that this is

also a Markov chain. Let F0 ⊂ S2 be a subset of the set of possible transi-
tions, and call Tn, n = 1, 2, . . ., the time instants at which the chain makes a
transition in F0, i.e.

T1
def= inf

{
t ≥ 1 :

(
S(t− 1), S(t)

) ∈ F0

}
Tn

def= inf
{
t > Tn−1 :

(
S(t− 1), S(t)

) ∈ F0

}

We assume that there is an infinity of such times, i.e. Tn <∞ with probability
1, and further, that the expected time between visits is also finite.(4) Then, by
Theorem 7.9, we can treat Tn as a stationary point process associated with the
stationary process S(t).

The sequence of states observed just after a transition, S(Tn), is itself a dis-
crete time Markov chain, since the knowledge of the state at the nth transition
is sufficient to compute the probabilities of future events (this is the strong

(4)This is true in cases where F0 consists of only recurrent non-null states of the chain`
S(t − 1), S(t)

´
.

Application to Markov Chain Models and the PASTA Property 251

Markov property). The sequence Yn = S(Tn) is called the embedded sub-
chain . We call matrix of selected transitions the matrix of probabilities
C defined by

Ci,j = Qi,j1{(i,j)∈F0}

for all (i, j) and where Q is the transition matrix of S (see (7.57)). The matrix
C is simply derived by inspection. We also define the matrix Ji,j by

Ji,j
def= P

(
S(T1) = j | S(0) = i

)

so that Ji,j is the transition probability of the chain Yn if i is a reachable state
of Yn. Note that J is not equal to C, as the next theorem shows.

In continuous time, the definitions are similar. (Recall that we assume
right-continuous sample paths, so a selected transition occurs at time t if(
S(t−), S(t)

) ∈ F0.) The matrix of selected transitions is now a rate matrix,
given by

Ci,j = Ai,j1{(i,j)∈F0}

for all (i, j), and where A is the transition rate matrix of S (with Ai,i =
−∑j �=i Ai,j). Here, we assume that looping transitions are not possible, i.e.
(i, i) /∈ F0 for all i. Note that Yn is a discrete time Markov chain even if S(t)
is in continuous time.

Theorem 7.12
Consider a stationary Markov chain in discrete or continuous time S(t)
with t ∈ Z or t ∈ R, with stationary probability π, defined over some enu-
merable state space. Consider an embedded sub-chain Yn, n ∈ N, with the
assumptions above, and with a matrix of selected transitions C.
(1) The transition matrix J of the embedded sub-chain Yn satisfies (Id −

Q+ C)J = C (discrete time) or (C −A)J = C (continuous time).
(2) The intensity of the point process of selected transitions is λ =

∑
i,j πiCi,j.

(3) The probability that an arbitrary selected transition is (i, j) is 1
λπiCi,j

(in discrete time this is defined as P
0(S−1 = i, S0 = j); in continuous

time as P
0(S0− = i, S0 = j)).

(4) The probability of being in state j just after an arbitrary selected tran-
sition is 1

λ

∑
i πiCi,j . The probability of being in state i just before an

arbitrary selected transition is 1
λπi

∑
j Ci,j.

Example 7.17 Queuing Network in Figure 8.24
There are two stations, called “Gate” and “Think Time”, and one class of
customers. In order to simplify we assume that the service times in both
stations are exponentially distributed with parameters μ (at “Gate”)
and ν (at “Think Time”). The system can be described as a continuous-
time Markov chain where the state is the number of customers at station
“Gate”, so that n ∈ {0, . . . ,K}, where K is the total population size.

252 Palm Calculus, or the Importance of the Viewpoint

This is a single-class productform network, and from Theorem 8.7, the
stationary probability is

p(n | K) =
1

η(K)
1
μn

1
(K − n)! νK−n

where we explicitly write the dependency on the total population size
and η(K) is a normalizing constant.
Consider the arrivals at station “Gate” to be selected transitions. The
matrix of selected transitions is given by

Cn,n+1 = (K − n)ν and Cn,n′ = 0 if n′
= n+ 1

The probability that the number of customers is n just after an arrival
is, by item (4) of Theorem 7.12,

p0(n) =
1
λ
p(n− 1)C(n− 1, n) =

1
λη(K)

1
μn−1

1
(K − n)! νK−n

This is the same as p(n − 1 | K − 1), if we ignore the normalizing
constants. More precisely,

p0(n) =
η(K − 1)
λη(K)

p(n− 1 | K − 1) (7.53)

Since
∑K

n=1 p
0(n) =

∑K
n=1 p(n − 1 | K − 1) = 1, the constant η(K−1)

λη(K)

is 1. In other words,

p0(n) = p(n− 1 | K − 1) (7.54)

An arriving customer thus samples the network in the same way as
if this customer would be removed (this is an instance of the Arrival
Theorem 8.16). It also follows that

λ =
η(K − 1)
η(K)

(7.55)

which is an instance of the Throughput Theorem 8.12.

7.5.2 PASTA

Consider a system that can be modeled by a stationary Markov chain S(t) in
discrete or continuous time (in practice any simulation that has a stationary
regime and is run long enough). We are interested in a matrix of C ≥ 0 of
selected transitions such that

Independence. For any state i of S(t),
∑

j Ci,j
def= λ is independent of i.

In other words, the rate of occurrence of a selected transition is independent
of the global simulation state. Further, this assumption implies that the point

Application to Markov Chain Models and the PASTA Property 253

process of selected transitions is a Bernoulli process (discrete time) or a Poisson
process (continuous time) with intensity λ (see Section 7.6 for the definition of
Poisson and Bernoulli processes).

Theorem 7.13 (PASTA)
Consider a point process of selected transitions as defined above. The Palm
probability just before a transition is the stationary probability.

The theorem says that, in the stationary regime, the Bernoulli or Poisson
clock of selected transitions sees the system in the same way as the standard
clock.

Interpret C as external arrivals into a queuing system. The theorem is
known as “Poisson Arrivals See Time Averages”, hence the acronym. Note
however that this denomination is misleading: Poisson alone is not sufficient.
It is essential for the point process of the selected transition to have a rate that
is independent of the state (see Example 7.20).

Example 7.18 ARP Requests without Refreshes
IP packets delivered by a host are produced according to a Poisson

process with λ packets per second in average. When a packet is deliv-
ered, if an ARP request was emitted no more than ta seconds ago, no
ARP request is generated. Otherwise, an ARP request is generated.
What is the rate of generation of ARP requests?
Call Tn the point process of ARP request generations, μ its intensity
and p the probability that an arriving packet causes the sending of an
ARP request. First, we have μ = pλ (to see why, assume that time is
discrete and apply the definition of intensity).
Second, let Z(t) = 1 if the ARP timer is running, and 0 if it has
expired. Thus, p is the probability that an arriving packet sees Z(t) =
0. The PASTA property applies, as the IP packet generation process is
independent of the state of the ARP timer. (You may establish a formal
link with Theorem 7.13 as follows. Think in discrete time. The system
can be modeled by a Markov chain with X(t) = i = the residual value
of the timer. We have Qi,i−1 = 1 for i > 0, Q0,ta = λ, Q0,0 = 1 − λ.
The selected transitions are IP packet deliveries, and the probability
that one IP packet is delivered in one slot is λ, and does not depend
on the state i.)
By the inversion formula

p = P
(
Z(t) = 0

)
= μE

0(T1 − ta) = μ

(
1
μ
− ta

)
= 1 − μta (7.56)

Combining with μ = pλ gives p = 1
λta+1 , and the rate of generation of

ARP requests is μ = λ
1+λta

.

254 Palm Calculus, or the Importance of the Viewpoint

Example 7.19 M/GI/1 Queue
A similar reasoning shows that for a queuing system with Poisson ar-
rivals and independent service times, an arriving customer sees the
system (just before his/her own arrival) in the same way as an external
observer arriving at an arbitrary instant.

Example 7.20 A Poisson Process that does not satisfy PASTA
The PASTA theorem requires the event process to be Poisson or Bernoulli
and independence on the current state. Here is an example of a Poisson
process that does not satisfy this assumption, and thus does not enjoy
the PASTA property.
Construct a simulation as follows. Requests arrive as a Poisson process
of rate λ, into a single server queue. Let Tn be the arrival time of
the nth request. The service time of the nth request is assumed to be
1
2 (Tn+1 − Tn). The service times are thus exponential with the mean
1
2λ , but not independent of the arrival process. Assuming that the
system is initially empty, there is exactly 1 customer during half of the
time, and 0 customers otherwise. Thus, the time-average distribution
of the queue length X(t) is given by P

(
X(t) = 0

)
= P

(
X(t) = 1

)
= 0.5

and P
(
X(t) = k

)
= 0 for k ≥ 2. In contrast, the queue is always

empty when a customer arrives. Thus the Palm distribution of the
queue length just before an arrival is different from the time average
distribution of the queue length.
The arrival process does not satisfy the independence assumption: at
a time t when the queue is not empty, we know that there cannot be
an arrival. The probability that an arrival occurs during a short time
slot thus depends on the global state of the system.

Application to measurements

The PASTA property shows that sampling a system at random observation
instants, distributed like a Poisson or Bernoulli process, independent of the
system state, provides an unbiased estimator of the time average distribution.

7.6 Appendix: Quick Review of Markov Chains

7.6.1 Markov Chain in Discrete Time

Let S be a finite set. A discrete time stochastic process S(t) is a Markov chain
on S if the future evolution of S given the entire past up to time t is entirely
determined by S(t). The transition matrix is the matrix of probabilities Qi,j

defined by
Qi,j = P

(
S(t+ 1) = j | S(t) = i

)
(7.57)

for all i and j in S.

Appendix: Quick Review of Markov Chains 255

The state space can be partitioned in communication classes as follows:
two states i and j are in the same communication class if i = j or if the chain
S(t) can go from i to j in a finite number of transitions (each transition must
have a positive probability), and vice-versa, from j to i. A communication class
is either recurrent (once the chain S(t) has entered the class, it will remain
in the class forever) or not, also called transient . If a class is transient, with
probability 1, the chain will leave it and never return. States that belong to a
transient class are also called transient.

Let π(t) be the row vector of probabilities at time t, i.e πi(t) = P
(
S(t) = i

)
.

Then, for all t ∈ N

π(t) = π(0)Qt (7.58)

For the chain S(t) to be stationary, we need π(t) to be independent of t,
which implies that π satisfies the linear system

⎧⎪⎨
⎪⎩
π = πQ∑
i∈S

πi = 1 (7.59)

It turns out that this is also sufficient, i.e if π(0) is a solution to (7.59), then
S(t) is stationary. A solution to (7.59) is called a stationary probability of
the Markov chain.

Note that, since Q is a stochastic matrix, any solution π ∈ R
S of (7.59) is

necessarily non-negative. Since S is finite, the situation is simple: stationary
probabilities correspond to recurrent classes. More precisely,

• There is at least one recurrent class.
• For every recurrent class c there is one stationary probability vector πc,

such that πc
i > 0 if i ∈ c, and πc

i = 0 otherwise; any stationary probability
is a weighted average of the πc’s.

• If there is only one recurrent class, the chain is called irreducible. If
the chain is irreducible, there is exactly one stationary probability, and
vice-versa, i.e. if (7.59) has only one solution, the chain is irreducible.

• The chain is ergodic in the wide sense(5) if it is irreducible, and vice-versa.
• If there is more than one recurrent class, the chain will eventually enter one

recurrent class and remain there forever. The probability that the chain
enters recurrent class c depends on the initial condition.

• If π is a stationary probability vector and i is a transient state, πi = 0.

Thus, when S is finite, there is always at least one stationary regime. If the
chain S(t) is not irreducible (i.e. not ergodic) there may be several stationary
regimes, and the stationary regime that the chain eventually enters may be

(5)Some authors use a more restrictive definition and say that a finite-space Markov chain
is “ergodic” if it is irreducible and aperiodic, see later. We prefer to use the general
definition, which is that time averages tend to expectations.

256 Palm Calculus, or the Importance of the Viewpoint

random. This happens for example for systems that may have several failure
modes.

Consider an ergodic chain (with finite state space). It is stationary if the
initial distribution of state is the stationary probability. Otherwise, it becomes
stationary as t→ ∞, but there is a technicality due to periodicity. A recurrent
class c is called periodic with period d if all cycles in the class have a length
multiple of some d ≥ 2 (i.e. whenever X(t) = i,X(t + s) = i for i ∈ c and
s > 0, s must be a multiple of d); otherwise, the class is aperiodic. A chain
with a single recurrent class is said to be periodic (resp. aperiodic) if its unique
recurrent class is periodic (resp. aperiodic).

If the chain is ergodic and aperiodic then

lim
t→∞π(t) = π

where π is the unique stationary probability and thus the chain becomes sta-
tionary for large t. Otherwise, if the chain is periodic with period d

lim
t→∞

1
d

(
π(t) + π(t+ 1) + · · · + π(t+ d− 1)

)
= π

which can be interpreted as follows. Change the time origin randomly uniformly
in {0, 1, . . . , d− 1}. Then as t → ∞, the chain becomes stationary.

If the state space is enumerable but infinite, the situation is more complex;
there may not exist a recurrent class, and even if there does, there may not
exist a stationary probability (the chain “escapes to infinity”). However, there
is a simple result. If the chain is irreducible, then (7.59) has a 0 or 1 solution. If
it has the 1 solution, then it is ergodic and all statements above for an ergodic
chain over a finite space continue to hold.

7.6.2 Markov Chain in Continuous Time

In continuous-time, the definition of the Markov Chain is similar, i.e. S is
an enumerable set and the continuous time stochastic process S(t) is a Markov
chain on S if the future evolution of S, given that the entire past up to time t is
entirely determined by S(t). We assume as usual that S(t) is right-continuous,
i.e. that S(t+) = S(t), so that if there is a transition at time t, S(t) is the state
just after the transition.(6) Note that some authors reserve the term Markov
chain to discrete time, whereas others reserve it to discrete or continuous time
processes over a discrete state space (as we do).

The transition matrix is replaced by a matrix of rates, called the rate
transition matrix , or generator matrix , A. It has the property that

P
(
S(t+ dt) = j | S(t) = i

)
= Ai,j dt+ o(dt) (7.60)

for i
= j. Thus Ai,j is interpreted as the rate of transition from state i to j
and is necessarily nonnegative. If the state space is infinite, we need to assume

(6)Transitions in continuous time are often called “jumps”.

Appendix: Quick Review of Markov Chains 257

that the process is not explosive, which means here that, for all i ∈ S,
∑
j �=i

Ai,j <∞ (7.61)

It is customary to pose
Ai,i = −

∑
j �=i

Ai,j (7.62)

so that A has non-negative entries everywhere except on the diagonal and∑
j Ai,j = 0. It can be shown that the time until the next jump, given that

S(t) = i, is an exponential random variable with parameter −Ai,i.
Let π(t) be the row vector of probabilities at time t, i.e. πi(t) = P

(
S(t) = i

)
.

Then for all t ≥ 0,
π(t) = π(0) etA (7.63)

(the exponential of a matrix is, as for complex numbers, defined by eA =∑∞
n=0

An

n!).
A stationary probability is a row vector π that satisfies

⎧⎪⎨
⎪⎩
πA = 0∑
i∈S

πi = 1 (7.64)

which is the replacement for (7.59). Otherwise, the rest of Section 7.6.1 applies,
mutatis mutandi, with one simplification: there is no issue of periodicity. Thus,
in particular, a continuous time Markov chain over a finite state space becomes
stationary as t→ ∞.

For more details about Markov chains in continuous time, see [94].

7.6.3 Poisson and Bernoulli

These are the two memoriless stationary point processes.
A Bernoulli process with intensity q ∈ [0, 1] is a point process Tn ∈ Z in

discrete time, such that the points are independently drawn. In other words, at
every time t, toss a coin and decide with the probability q that there is a point;
and that otherwise, there is not. With the terminology of Section 7.2, the
sequence N(t) is iid. The time intervals between points, Sn = Tn+1 − Tn, are
independent and such that Sn − 1 has a geometric distribution with parameter
q. The same holds for the time from now to the next point.

A Poisson process Tn ∈ R with intensity λ > 0 is the continuous time
equivalent of a Bernoulli process. We do not define it formally here; rather, we
give its main properties:

• The probability that there is a point in [t, t+ dt] is λdt+ o(dt)
• The number of points in disjoint time intervals are independent random

variables.

258 Palm Calculus, or the Importance of the Viewpoint

• The number of points in an interval of duration t is a random variable with
a Poisson(λt) distribution.

• The time intervals between points, Sn = Tn+1 − Tn, are independent and
have an exponential distribution with parameter λ. The time from now to
the next point has the same distribution (but see also Example 7.8).

It can be shown that the Poisson process with intensity λ is the limit, in
various senses, when dt → 0, of the Bernoulli process with intensity q = λdt.
This is the case when we map the time slot of the Bernoulli process to a
continuous time interval of duration dt.

7.7 Proofs

Except for Theorem 7.10 and Theorem 7.12, we give the proofs in discrete time,
as they are simple and require only a first course on probability. The proofs in
continuous time that are not given can be found in [4], [88] or [70].

Theorem 7.1

Let N(t) = 1 if the point process has a point at time t, and 0 otherwise. We
show only that E

(
X(0)

)
= λE

0
(∑T1

s=1X(s)
)
, as the second equality is similar.

By definition of a conditional probability and of λ:

λE
0

(
T1∑

s=1

X(s)

)
= E

(
T1∑

s=1

X(s)N(0)

)

Now for s > 0, the event “s ≤ T1” is equivalent to “N(1, s− 1) = 0” thus

λE
0

(
T1∑

s=1

X(s)

)
= E

(∞∑
s=1

X(s)N(0)1{N(1,s−1)=0}

)

= E

(∞∑
s=1

X(0)N(−s)1{N(1−s,1)=0}

)

= E

(
X(0)

∞∑
s=1

N(−s)1{N(1−s,1)=0}

)

where the last line is by stationarity. Let T−(−1) be the most recent time
at which a selected event occured before or at time −1. This time is finite with
probability 1, by stationarity. We have N(−s)1{N(1−s,1)=0} = 1 if and only if
T−(−1) = −s, thus, with probability 1:

1 =
∞∑

s=1

N(−s)1{N(1−s,1)=0}

which demonstrates the formula.

Proofs 259

Theorem 7.3

X(t) is jointly stationary with Tn, thus its distribution is independent of t, and
we can apply the inversion formula. For any s ≥ 0, we have

P
(
X(0) = s

)
= E

(
1{X(0)=s}

)
= λE

0

(
T1−1∑
u=0

1{X(u)=s}

)

Given that there is a point at 0 and 0 ≤ u ≤ T1 − 1, we have X(u) = T1 − u,
thus

P
(
X(0) = s

)
= λE

0

(
T1−1∑
u=0

1{T1=u+s}

)

Now the sum in the formula is 1 if T1 > s and 0 otherwise. Thus

P
(
X(0) = τ

)
= λE

0
(
1{T1>s}

)
= λP

0(T1 > s)

which demonstrates the formula for X(t). The formula for Y (t) is similar, using
Yu = u for 0 ≤ u ≤ T1 − 1.

For Z(t), we apply the inversion formula and obtain

P(Z0 = s) = λE
0

(
T1−1∑
u=0

1{Zu=s}

)

Now under P 0, Zu = T1 does not depend on u for 0 ≤ u ≤ T1 − 1 thus

P(Z0 = s) = λE
0

(
1{T1=s}

T1−1∑
u=0

1

)
= λE

0
(
T11{T1=s}

)
= λsP0(T1 = s)

Theorem 7.7

Apply the inversion formula to the B point process and to X(t)NA(t), where
NA(t) is 1 if there is an A point at t, and 0 otherwise. Note that

∑
n∈Z

X(An)1{B0≤An<B1} =
B1−1∑
s=B0

XsN
A(s)

thus

λ(B)E
(
X(0)NA(0)

)
= E

0
B

(∑
n∈Z

X
(
An

(
1{B0≤An<B1}

)))

λ(B)
E

0
A

(
X(0)

)
λ(A)

= E
0
B

(∑
n∈Z

X(An)1{B0≤An<B1}

)

λ(B)E0
A

(
X(0)

)
= λ(A)E0

B

(∑
n∈Z

X(An)1{B0≤An<B1}

)
(7.65)

Apply the last equation to X(t) = 1 and obtain (7.43). Combine (7.65) with
(7.43) and obtain (7.44).

260 Palm Calculus, or the Importance of the Viewpoint

Theorem 7.10

First note that the expectation of N(t0) is∑
n≥1

P(S0 + · · · + Sn−1 ≤ t) (7.66)

Pick some arbitrary, fixed s > 0. By Markov’s inequality,

P(S0 + · · · + Sn−1 ≤ t0) ≤ est0 E

(
e−s(S0+···+Sn−1)

)

= est0G(s)n

where G(s) := E
(
e−sS0

)
is the Laplace-Transform of S0. We have G(s) = 1 if

and only if sS0 = 0 with probability 1. Thus, by hypothesis, G(s) < 1 since
s > 0. By (7.66),

E
(
N(t0)

) ≤ est
∑
n≥1

(
G(s)

)n
<∞

Theorem 7.11

Let φ be an arbitrary bounded test function of Z(t), S(t). Apply Palm’s inver-
sion formula:

E (φ(Z(t), S(t)) = λE
0

(∫ T1

0

φ(Z0, T1) dt

)

= λE
0
(
T1φ(Z0, T1)

)
= λE

0
(
S0φ(Z0, S0)

)
= λ

∫
Z×(0,∞)

φ(z, s)sf0
Z,S(z, s) dμ(z) ds

from where item (1) follows, with η = λ.
Since the knowledge of E (φ(Z(t), S(t))ψ(T+(t))) for any φ, ψ determines

the joint distribution of (Z(t), S(t), T+(t)), to show item (2), it is sufficient to
demonstrate that for any bounded, test function ψ of T+(t) and any bounded
test function of Z(t), S(t), we have

E
(
φ
(
Z(t), S(t)

)
ψ
(
T+(t)

))
=
∫

z∈Z,s>0

φ(z, s)sf0
Z,S(z, s)

(∫ s

0

1
s
ψ(t) dt

)
dμ(z) ds

which is equivalent to

E
(
φ
(
Z(t), S(t)

)
ψ
(
T+(t)

))
=
∫

z∈Z,s>0

φ(z, s)f0
Z,S(z, s)

(∫ s

0

ψ(t) dt
)
dμ(z) ds

(7.67)
Apply Palm’s inversion formula again:

E
(
φ
(
Z(t), S(t)

)
ψ
(
T+(t)

))
= λE

0

(∫ S0

0

φ(Z0, S0)ψ(S0 − u) du

)

= λE
0

(
sφ(Z0, S0)

1
s

∫ S0

0

ψ(S0 − u) du

)

= λ

∫
z∈Z,s>0

φ(z, s)f0
Z,S(z, s)

(∫ s

0

ψ(s− u) du
)
dμ(z) ds

Proofs 261

which, after the change of variable t = s− u in the inner integral, is the same
as (7.67).

Theorem 7.12

Based on the strong Markov property,

Ji,j = P
0
(
XT1 = j | XT0 = i

)
= P

(
XT+(0) = j | X0 = i

)

Condition with respect to the next transition, selected or not,

Ji,j =
∑

k:(i,k)∈F

Qi,k +
∑

k:(i,k) �∈F

Qi,kP
(
XT+(0) = j | X1 = k and X0 = i

)

Now, for (i, k)
∈ F , given that X0 = i,X1 = k, we have T+(0) = T+(1). Thus,
the last term in the previous equation is

∑
k:(i,k) �∈F

Qi,kP
(
XT+(1) = j | X1 = k and X0 = i

)
=

∑
k:(i,k) �∈F

Qi,kJk,i

Combining the two gives J = C + (Q− C)J which demonstrates item (1).

Now, by definition of an intensity, λ =
∑

(i,j)∈F P(X0 = j,X−1 = i) and
P(X0 = j,X−1 = i) = πiQi,j, which shows item (2).

By definition of the Palm probability,

P
0(X−1 = i,X0 = j) =

1
λ

E
(
1{X−1=j}1{X0=i}1{(i,j)∈F}

)

=
1
λ

P(X−1 = j,X0 = i)1{(i,j)∈F}

which shows item (3). Item (4) follows immediately.

Theorem 7.13

The probability that there is a transition at time 1, given that X0 = i, is λ,
independent of i. Thus N(1) is independent of the state at time 0. Since we
have a Markov chain, the state at time 1 depends on the past only through
the state at time 0. Thus, N(1) is independent of N(t0) for all t ≥ 0. By
stationarity, it follows that N(t) is iid, i.e. it is a Bernoulli process.

The relation between Palm and stationary probabilities follows from The-
orem 7.12(4) The Palm probability to be in state i just before a transition
is

1
λ0

πi

∑
i

C(i, j) =
λ

λ0
πi

where λ0 is the λ of Theorem 7.12. The sum of probabilities is 1, thus neces-
sarily λ

λ0
= 1.

262 Palm Calculus, or the Importance of the Viewpoint

7.8 Review Questions

7.1 Consider the SURGE model with one user equivalent in Section 3.5.5.
Assume that the average inactive off period is Z, that the average active off
period is Z ′, that the average number of URLs requested per active period is
V , and that the average response time for a URL request is R. What is the
throughput of requests λ?(7)

7.2 A distributed protocol establishes consensus by periodically having one
host send a message to n other hosts and waiting for an acknowledgement [5].
Assume that the times to send and receive an acknowledgement are iid, with
the distribution F (t). What is the number of consensus per time unit achieved
by the protocol? Give an approximation using the fact that the mean of the
kth order statistic in a sample of n is approximated by F−1(k

n+1).(8)

7.3 (ARP protocol with refreshes) IP packets delivered by a host are produced
according to a stationary point process with λ packets per second in average.
Every packet causes the emission of an ARP if the previous packet arrived
more than ta seconds ago (ta is the ARP timer). What is the average number
of ARP requests generated per second?(9)

7.4 Consider the notation of Theorem 7.3. Is the distribution of Z(t) equal to
the convolution of those of X(t) and Y (t)?(10)

(7)Using the large time heuristic, one finds λ = 1
V (R+Z′)+Z

.
(8)Call Tn the point process of the starting points for consensus rounds. The required

answer is the intensity λ of Tn. We have λ = E
0(T1). Assuming now that a round

starts at time 0, we have T1 = maxi=1,...,n Si where Si ∼ iid with distribution F (·).
Thus

P
0(T1 < t) = P

0(S1 < t and . . . and Sn < t) = F (t)n

and

E
0(T1) =

Z +∞

0

`
1 − F (t)n

´
dt

λ =
1Z +∞

0

`
1 − F (t)n

´
dt

The Palm distribution of T1 is that of the maximum of n iid random variables,
thus E

0(T1) ≈ F−1(n
n+1

).
(9)Apply Neveu’s exchange formula to: first process = ARP request emissions (intensity

λ1); second process = all packet arrivals (intensity λ) and Xs = 1. This gives λ1 =
λE

0
`
N1(0,T1]

´
, where E

0 is the Palm probability for the second point process and
N1 is the number of ARP requests. Given that there is a packet arrival at time 0,
N1(0,T1] = 1{T1−T0>ta}. Thus, the required throughput is λ1 = λP

0(T1 > ta). It
depends only on the tail of the packet inter-arrival time.

(10)On the one hand, Z(t) = X(t) + Y (t), so it seems tempting to say yes. It is true for
a Poisson process. However, consider the case where Tn+1 − Tn is constant equal to
some T under Palm. Then, X(t) and Y (t) are uniform on [0, T], the convolution has
a positive density on (0, 2T), whereas Z(t) is constant equal to T . The answer is no;
X(t) and Y (t) are not independent, in general.

Chapter 8

Queuing Theory for
Those who cannot Wait

Queuing phenomena are very frequent in computer and communication sys-
tems, and explain a vast number of performance patterns. There exists a large
body of available results in queuing theory; in this chapter, we focus on re-
sults and concepts that are very broadly applicable, some of which are not very
known. We present four topics, which constitute a good coverage of all the
techniques required in practice.

First, we start with simple, deterministic results; they provide results on
transient phenomenona, and also some worst-case bounds. These are often
overlooked, but give a first, sometimes sufficient, insight. Second, we present
operational laws for queuing systems; in some sense they are the “physical laws”
of queuing: Little’s formula, the DASSA property, network and forced flows
law. Here, we make frequent use of Palm calculus (Chapter 7). These results
also provide tools and bounds for fast analysis. Third, we give a series of simple,
albeit important, results for single queues with one or several servers and for
the processor sharing queue; these can be taken as models for systems without
feedback. Fourth, we discuss a network of queues, which can be used to model

264 Queuing Theory for Those who cannot Wait

systems with feedback, and also complex interactions. Here, we render the
topic as simple as possible, but the result is rather complex, as there exists
some description complexity.

We give a unified treatment of queuing networks; we discuss items such as
the MSCCC station, a powerful model for concurrency in hardware or software,
or Whittle networks, which are used to model bandwidth sharing in the Inter-
net. This latter type of network is traditionally presented as a type of its own,
a non product form queuing network. We demonstrate that it must not be
so: all of these are instances of the general theory of multi-class product form
queuing networks. Presenting the results in this way simplifies the student’s
job, as there is only a single framework to learn, instead of several disparate
results. It is also more powerful as it provides new ways of combining existing
building blocks.

Finally, we illustrate in an example how the four separate topics can be
articulated and provide different insights in the same performance question.

8.1 Deterministic Analysis

8.1.1 Description of a Queuing System with Cumulative Functions

A deterministic analysis is often very simple, and provides first insights in a
queuing system. Perhaps the simplest, and most efficient tool in this toolbox
is the use of cumulative functions for arrival and departure counts, which we
explain now. For a deeper treatment, see [51] and [23].

Consider a system that is viewed as a black box. We make no specific
assumptions about its operation; it may be a network node, an information
system, etc. The cumulative functions are

• A(t) (input function): amount of work that arrives into the system in
the time interval [0, t],

• D(t) (output function): amount of work done in the time interval [0, t].

Assume that there is some time t0 ≤ 0 at which A(t0) = D(t0) = 0. We
interpret t0 as an instant at which the system is empty. The main observations
are the following:

• Q(t) := A(t) −D(t) is the backlog (unfinished work) at time t.

• Define d(t) = min
{
u ≥ 0 : A(t) ≤ D(t + u)

}
(horizontal deviation on

Figure 8.1). If there is no loss of work (no incoming item is rejected) and if
the system is first in, first out (FIFO), then d(t) is the response time for
a hypothetical atom of work that would arrive at time t.

Deterministic Analysis 265

bits

time

t

D(t)A(t)

Q(t)

d(t)

Figure 8.1 The use of cumulative functions to describe a queuing system.

The next example shows how this can be used for worst-case analysis.

Example 8.1 Playout Buffer
Consider a packet switched network that carries bits of information
from a source with a constant bit rate r (Figure 8.2), as is the case,
for example, with circuit emulation. We have a first system S, the
network, with input function A(t) = rt. The network imposes some
variable delay, because of queuing points, for which reason the output
A′(·) does not have a constant rate r. What can be done to re-create
a constant bit stream? A standard mechanism is to smooth the delay
variation in a playout buffer. It operates as follows. When the first
bit of data arrives, at time d(0), it is stored in the buffer until some
initial delay has elapsed. Then, the buffer is served at a constant rate
r whenever it is not empty. This gives us a second system S′, with
input A′(·) and output D(·). What initial delay should we take? We
give an intuitive, graphical solution. For a formal development, see [51,
Section 1.1.1].
The second part of Figure 8.2 shows that if the variable part of the
network delay (called delay jitter) is bounded by some number Δ,
then the output A′(t) is bounded by the two lines (D1) and (D2). Let
the output D(t) of the playout buffer be the function represented by
(D2), namely D(t) = rt−d(0)−Δ. This means that we read data from
the playout buffer at a constant rate r, starting at time d(0) + Δ. The

bits

time

D(t)

D(t)

A′(t)

A′(t)

A(t)

S S ′
A(t)

d(0) – Δ d(0)

(D
1)
: r

(t
– d

(0
) +

 Δ
)

(D
2)
: r

(t
– d

(0
) –

 Δ
)

d(t)

d(0) + Δ

Figure 8.2 A Simple Playout Buffer Example.

266 Queuing Theory for Those who cannot Wait

fact that A′(t) lies above (D2) signifies that there is never underflow.
Thus, the playout buffer should delay the first bit of data by an amount
equal to Δ, a bound on delay jitter.

Question 8.1 What is the required playout buffer size?(1)

8.1.2 Reich’s Formula

This is a formula for describing the backlog in a single server queue. Consider
a lossless, FIFO, system, with a constant service rate c, and with an unlimited
buffer size.

Theorem 8.1 (Reich)
The backlog at time t in the system defined above is

Q(t) = max
s≤t

(
A(t) −A(s) − c(t− s)

)

Example 8.2 Scaling of Internet Delay
We are interested in knowing whether queuing delays are going to dis-
appear when the Internet grows to broadband. The following analysis
is due to Norros [74] and Kelly [45].
Assume that traffic on an internet link grows according to three scale
parameters: the volume (v), speedup (s) and number of users (u). This
is captured by the relation

A(t) = v
u∑

i=1

Ai(st) (8.1)

We are interested in the delay. Assuming that the link is a constant rate
server with rate c, this is the backlog divided by c. We also assume that
the capacity of the link is scaled with the increase in volume: c = c0vsu.
The question is now: how does the delay depend on v, s, u?
The maximum delay, D(v, s, u) is derived from Reich’s formula:

D(v, s, u) = max
t≥0

(
A(t)
c

− t

)

The dependence on v and s is simple to analyze. We obtain

D(v, s, 1) = max
t≥0

(
vA1(st)

c
− t

)
= max

t≥0

(
A1(t)
c0s

− t

s

)
=

1
s
D(1, 1, 1)

and similarly, for u �= 1, we have D(v, s, u) = 1
sD(1, 1, u). The delay is

thus independent of the volume scaling, and inversely proportional to

(1)A bound on buffer size is the vertical distance between A(t) and A′(t); from Figure 8.2,
we see that it is equal to 2r Δ.

Deterministic Analysis 267

the speedup factor s. The dependence on u requires more assumptions.
To go further, we assume a stochastic model, such that the queue length
process Q(t) is stationary ergodic. We can use Reich’s formula

Q(0) = max
t≥0

(
A(−t) − ct

)

where A(−t) is now the amount of work that has arrived in the interval
[−t, 0]. We assume that (8.1) continues to hold. Further, we model
Ai(−t) by a fractional Brownian traffic [74]. This is a simplified
model that captures long range dependence, i.e. the often observed
property of an auto-correlation function not decaying exponentially.
This means that

Ai(−t) = λt+
√
λaBi

H(t)

where Bi
H is fractional Brownian motion, λ the traffic intensity, and

a a variance parameter. Fractional Brownian motion is a Gaussian
process, with mean λt and variance λat2H . BH(t) is self-similar in the
sense that the process BH(kt) has the same distribution as kHBH(t).
Assume that the Ais are independent. It follows from the properties
of fractional Brownian motion that A(−t) is also fractional Brownian
traffic. Its mean is uλ and its variance is uλat2H , thus it has the
intensity uλ and the same variance parameter a.
According to Reich’s formula, we have

D(1, 1, u) = max
t≥0

(
A(t)
cou

− t

)
= max

t≥0

((
λ

c0
− 1
)
t+

√
λaBH(t)

1
c0
√
u

)

Changing of the variable t = kτ , gives us

D(1, 1, u) ∼ max
τ≥0

((
λ

c0
− 1
)
kτ +

√
λa kHBH(τ)

1
c0
√
u

)

where ∼ means same distribution. Take k such that k = kH√
u
, i.e.

k = u−1/2(1−H). We then have

D(1, 1, u) ∼ u−
1

2(1−H) D(1, 1, 1)

In summary, the delay scales according to

D(v, s, u) =
1
sub

D(1, 1, 1)

with b = 1
2−2H . In practice, we expect H , the Hurst parameter, to

lie in the range [0.67, 0.83], thus 1.5 ≤ b ≤ 3. In summary, the delay
decreases with speedup, and more rapidly with the number of users.

268 Queuing Theory for Those who cannot Wait

8.2 Operational Laws for Queuing Systems

These are robust results, i.e. they are true with very few assumptions on the
queuing system other than stability. Many of them directly derive from Chap-
ter 7, such as the celebrated Little’s law. The laws apply to a stationary system;
for a single queue, they are true if the utilization is less than 1. This type of
analysis was pioneered in [34]; an original, stand-alone treatment can be found
in [35].

8.2.1 Departures and Arrivals See Same Averages (DASSA)

Theorem 8.2 (DASSA)
Consider a system where individual customers come in and out. Assume
that the arrival process An and the departure process Dn are stationary
point processes, and that they have no point in common (there are thus no
simultaneous arrivals or departures).
Let N(t) ∈ N be the number of customers present in the system at time t.
Assume that N(t), An and Dn are jointly stationary (see Section 7.2).
The probability distribution of N(t) sampled just before an arrival is then
equal to the probability distribution of N(t) sampled just after a departure.

The proof is given in Section 8.10; it is a direct application of the Rate
Conservation law in Theorem 7.4.

Example 8.3 Inter-Departure Time in M/GI/1 Queue
We want to compute the distribution of the inter-departure time in
the stable M/GI/1 queue defined in Section 8.3 (i.e. the single server
queue, with Poisson arrival and general service time distribution), and
we would like to know in which case it is the same as the inter-arrival
distribution.
First note that the time between two departures is equal to one service
time if the first departing customer leaves the system non-empty, and,
that otherwise, it is the same plus the time until the next arrival. The
time until the next arrival is independent of the state of the system
and is exponentially distributed, with the parameter of the arrival rate
λ. Thus, the Laplace-Stieltjes transform(2) of the inter-departure
time is

LD(s) = (1 − p)LS(s) + pLS(s)
λ

λ+ s

where LS is the Laplace-Stieltjes transform of the service time and p is
the probability that a departing customer leaves the system empty.

(2)The Laplace-Stieltjes transform of a non-negative random variable X is defined by
LX(s) = E(e−sX). If X and Y are independent, LX+Y (s) = LX(s)LY (s); X is
exponentially distributed with parameter λ if and only if LX(s) = λ

λ+s
.

Operational Laws for Queuing Systems 269

By DASSA, p is also the probability that an arriving customer sees an
empty system. By PASTA (Example 7.19), it is equal to the probability
that the queue is empty at an arbitrary point in time, which is also equal
to 1 − ρ, with ρ = λS̄ and S̄ = mean service time. Thus

LD(s) = LS(s)
(
ρ+

(1 − ρ)λ
λ+ s

)

which entirely defines the probability distribution of inter-departure
times.
The inter-departure times have the same distribution as the inter-
arrival times if and only if LD(s) = λ

λ+s . Solving for LS gives LS(s) =
λ/ρ

λ/ρ+s , i.e. the service time must be exponentially distributed and the
M/GI/1 queue must be an M/M/1 queue.

8.2.2 Little’s Law and Applications

Theorem 8.3 (Operational Law)
Consider a stationary system that is visited by a flow of customers (for a
formal definition, see Theorem 7.6).

• Throughput. The throughput, defined as the expected number of ar-
rivals per second, is also equal to the inverse of the expected time be-
tween arrivals.

• Little. λR̄ = N̄ , where λ is the expected number of customers arriv-
ing per second, R̄ is the expected response time seen by an arbitrary
customer and N̄ is the expected number of customers observed in the
system at an arbitrary time.

• Utilization Law. If the system is a single server queue with the
arrival rate λ and the expected service time S̄,

P(server busy) = ρ := λS̄

If it is a B-server queue,

E(number of busy servers) = sρ

with ρ := λS̄
s .

Question 8.2 Consider a single server queue that serves only one customer
at a time. What is the average number of customers not in service (i.e. in the
waiting room)?(3)

(3)N̄w = N̄ − ρ, which follows from items (2) and (3) in Theorem 8.3.

270 Queuing Theory for Those who cannot Wait

The Interactive User Model

The interactive user model is illustrated in Figure 8.3. n users send jobs to a
service center. The think time is defined as the time between jobs sent by
one user. Call R̄ the expected response time for an arbitrary job at the service
center, Z̄ the expected think time and λ the throughput of the system. A direct
application of little’s law to the entire system gives

λ

Z R

Service
Center

n users

Figure 8.3 The interactive user model.

Theorem 8.4 (Interactive User)

λ(Z̄ + R̄) = n

Example 8.4 Service Desk
A car rental company in a large airport has 10 service attendants. Each
attendant prepares transactions on its PC and, once completed, sends
them to the database server. The software monitor finds the following
averages: one transaction every 5 seconds, response time = 2 s. Thus
the average think time is 48 s.

8.2.3 Networks and Forced Flows

We often find systems that can be modeled as a directed graph, called a net-
work. We consider models of the form illustrated in Figure 8.4. If the total
number of customers is constant, the network is called “closed”, and otherwise
“open”. In Section 8.4, we study such networks in more detail.

node k
λ λ

λk

Figure 8.4 Network model.

Operational Laws for Queuing Systems 271

Theorem 8.5 (Network Laws)
Consider a stationary network model where λ is the total arrival rate.

• Forced Flows. λk = λVk, where λk is the expected number of cus-
tomers arriving per second at node k and Vk is the expected number of
visits to node k by an arbitrary customer during its stay in the network.

• Total Response Time. Let R̄ (resp. R̄k) be the expected total re-
sponse time R̄ seen by an arbitrary customer (resp. by an arbitrary
visit to node k)

R̄ =
∑

k

R̄kVk

Example 8.5
Transactions on a database server access the CPU, disk A and disk B
(Figure 8.5). The statistics are: VCPU = 102, VA = 30, VB = 68 and
R̄CPU = 0.192 s, R̄A = 0.101 s, R̄B = 0.016 s.
The average response time for a transaction is 23.7 s.

8.2.4 Bottleneck Analysis

Common sense and the guidelines in Chapter 1 tell us to analyze bottlenecks
first. Beyond this, simple performance bounds in the stationary regime can be
found by using the so-called bottleneck analysis. It is based on the following
two observations:

(1) the waiting time is ≥ 0,
(2) a server utilization is bounded by 1.

We illustrate the method in Figure 8.5. The network is a combination of
Figure 8.3 and Figure 8.4. Transactions are issued by a pool of n customers

CPU

A

B

n users
in think time

Figure 8.5 A network example used to illustrate bottleneck analysis. n attendants
serve customers. Each transaction uses CPU, disk A or disk B. Av. numbers of visits
per transaction: VCPU = 102, VA = 30, VB = 17; av. service time per transaction:
S̄CPU = 0.004 s, S̄A = 0.011 s, S̄B = 0.013 s; think time Z = 1 s.

272 Queuing Theory for Those who cannot Wait

which are either idle (in think time) or using the network. In addition, assume
that every network node is a single server queue, and let S̄k be the average
service time per visit at node k. Thus, R̄k − S̄k is the average waiting time per
visit at node k. The throughput λ is given by the interactive user model:

λ =
n

Z +
∑

k VkR̄k
(8.2)

Furthermore, by forced flows, the utilization of the server at node k is ρk =
λVkS̄k. Applying the two principles above gives the constraints on λ:

⎧⎪⎪⎨
⎪⎪⎩
λ ≤ n

Z̄ +
∑

k VkS̄k

λ ≤ 1
maxk VkS̄k

(8.3)

Similarly, using (8.2) and (8.3), we find the following constraints on the response
time R̄ =

∑
k VkR̄k: ⎧⎪⎪⎨

⎪⎪⎩
R̄ ≥

∑
k

VkS̄k

R̄ ≥ n

(
max

k
VkS̄k

)
− Z̄

(8.4)

Figure 8.6 illustrates the bounds. See also Figure 8.15.

throughput

n

n/(Z + ΣVkSk)

1/(VASA)

1/(VCPUSCPU)
B0

B1

B2

Figure 8.6 Throughput bound (B0) obtained by bottleneck analysis for the system
in Figure 8.5, as a function of the number of users n. B1, B2: typical throughput
values for a system without (resp. with) congestion collapse.

A node k that maximizes VkS̄k is, in this model, called a bottleneck . To see
why a bottleneck determines the performance, consider improving the system
by decreasing the value of VkS̄k (by reducing the number of times the resource
is used, or by replacing the resource by a faster one). If k is not a bottleneck,
this does not affect the asymptote in Figure 8.6, and only marginally increases
the slope of the bound at the origin, unlike if k is a bottleneck. In Figure 8.6,
we see that the bottleneck is the CPU.

Classical Results for a Single Queue 273

Among the two bounds in (8.3), the former is accurate at low load (when
there is no queuing), and the latter is expected to be true at high load (when
the bottleneck is saturated). This is what makes bottleneck analysis appealing,
as the two bounds cover both ends of the spectrum. Note however that, at high
loads, congestion collapse might occur, after which the performance would be
worse than predicted by the bound.

Question 8.3 What happens to the example of Figure 8.5 if the CPU pro-
cessing time is reduced from 0.004 to 0.003? to 0.002?(4)

8.3 Classical Results for a Single Queue

The single queue has received much attention, and there are analytical results
available for a large class of systems with random arrivals and service. We give
here a minimal, but useful set of results. For more details on certain topics, the
classical reference is [46] and [47]; a more compact and up-to-date textbook is
[71]. We start with some notation and a generic result.

8.3.1 Kendall’s Notation

The classical notation for a queue, in its simplest form, is of the type A/S/B/K
where:

• A (character string) describes the type of arrival process: G stands for the
most general arrival process, A =GI signifies that the arrival process is a
point process with iid interarrival times, and M represents a Poisson arrival
process.

• S (character string) describes the type of service process: G for the most
general service process, S = GI means that the service times are iid and
independent of the arrival process, S = M is the special case of GI with
exponential service times, and S = D correspond to constant service times.

• B and K are integers representing the number of servers and the capac-
ity (maximum number of customers allowed in the system, queued + in
service). When K = ∞, it may be omitted.

• Let An be the arrival time and Sn the service time of the nth customer,
labeled in order of arrival. We assume that the sequence (An, Sn) is sta-
tionary with respect to the index n and that it can be interpreted as a
stationary marked point process (i.e. the expectation of An+1 − An is
finite, see Theorem 7.9).

• The service discipline is by default FIFO, otherwise it is mentioned explic-
itly.

(4)The disk A becomes the bottleneck. Decreasing the CPU processing time to 0.002 does
not improve the bound significantly.

274 Queuing Theory for Those who cannot Wait

8.3.2 The Single Server Queue

Stability

We consider the most general queue with one single server and with infinite
capacity. Note that we do not assume Poisson arrivals, and we allow service
times to depend on the state of the system. We assume that the system is work
conserving. More precisely, let W (t) be the backlog process, i.e. the sum of the
service times of all customers that are present in the system at time t. When a
customer arrives, W (t) increases by the (future) service time of this customer.
The work conserving assumption means that W (t) decreases at rate 1 over any
time interval such that W (t) > 0.

An important issue in the analysis of the single server queue is stability. In
mathematical terms, it is a measure of whether the backlog W (t) is stationary.
When the system is unstable, a typical behavior is that the backlog grows to
infinity.

The following is the general stability condition for the single server queue.
Let S̄ be the expectation of the service time, λ the intensity of the arrival
process (expected number of arrivals per second) and ρ = λS̄ is the utilization
factor.

Theorem 8.6 (Loynes [3, Thm 2.1.1])
If ρ < 1, the backlog process has a unique stationary regime. In the station-
ary regime, the queue empties infinitely often.
Furthermore, for any initial condition, the waiting time of the nth customer
converges in distribution as n → ∞ to the waiting time for an arbitrary
customer computed in the stationary regime.
If ρ > 1, the backlog process has no stationary regime.

A heuristic explanation for the necessary condition is that, if the system is
stable, all customers eventually enter the service, and thus the mean number
of beginnings of service per second is λ. From Little’s law applied to the server
(see Section 8.2), we have ρ = the probability of the server being busy, which
is ≤ 1. For ρ = 1, there may or may not be stability, depending on the
specific queue. Be careful that this intuitive stability result holds only for a
single queue. For networks of interconnected queues, there is no such general
result, as discussed in Section 8.4. The theorem holds for a queue with infinite
capacity. For a finite capacity queue, there is, in general, stability for any value
of ρ (but for ρ > 1, there must be losses).

Question 8.4 Consider a queuing system of the form G/G/1 where the service
time Sn of customer n is equal to the inter-arrival time An+1 −An. What are
the values of ρ and of the expected number of customers N̄?(5)

(5)λ = 1
S̄

thus ρ = 1. There is always exactly one customer in the queue. Thus N̄ = 1.

Classical Results for a Single Queue 275

Question 8.5 Give an example of a stable and an unstable single server queue
with ρ = 1.(6)

M/GI/1 Queue

The arrival process is Poisson with parameter λ. Moreover, the service times are
independent of each other and of the arrival process, with a general distribution.
For ρ < 1 the queue is stable and for ρ ≥ 1 it is unstable. Using the rate
conservation law as in Example 7.10, we obtain the Laplace-Stieltjes transform
of the waiting time (Pollaczek-Khinchine formula for transforms):

LW (s) =
s(1 − ρ)

s− λ+ LS(s)
(8.5)

where LS is the Laplace-Stieltjes transform of the service time. Note that, by
PASTA, the waiting time has the same distribution as the workload sampled
at an arbitrary point in time.

Question 8.6 Give the Laplace-Stieltjes transform LR of the response time.(7)

The distribution of the number of customers N(t), at an arbitrary point
in time, is obtained by first computing the distribution of the number of cus-
tomers seen at a departure time, and then using DASSA [46, Section 5.6]. The
distribution is known via its z-transform(8)

GN(t)(z) = (1 − ρ)(1 − z)
LS(λ − λz)

LS(λ− λz) − z
(8.6)

(This formula is also called a Pollaczek-Khinchine formula for transforms).
The mean values of number of customers in the system or in the waiting room
as well as the mean response times and waiting times are easily derived and
are given below.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N̄ =
ρ2κ

1 − ρ
+ ρ with κ =

1
2

(
1 +

σ2
S

S̄2

)
=

1
2

(1 + CoVS)

N̄w =
ρ2κ

1 − ρ

R̄ =
S̄
(
1 − ρ(1 − κ)

)
1 − ρ

W̄ =
ρS̄κ

1 − ρ

(8.7)

Note the importance of the coefficient of variation (CoV) of the service time.

Question 8.7 Which of the quantities N̄ , N̄w, R̄, W̄ are Palm expecta-
tions?(9)

(6)The example in Question 8.4 is stable with ρ = 1. The M/M/1 queue with ρ = 1 is
unstable.

(7)The response time is the sum of the service time and the waiting time, and they are
independent. Thus, LR(s) = LS(s)LW (s).

(8)The z-transform, GN (z) of an integer random variable N , is defined by GN (z) =
E(zN).

(9)R̄, W̄ .

276 Queuing Theory for Those who cannot Wait

M/M/1 Queue

This is a special case of the M/GI/1 queue where, the service times are expo-
nentially distributed. Here it is possible to obtain all stationary probabilities in
explicit (and simple) form, by directly solving the equilibrium equations of the
Markov process. One finds that the distribution of the number of customers at
an arbitrary point in time, when ρ < 1, is

P
(
N(t) = k

)
= (1 − ρ)ρk (8.8)

and the distribution of the service time of an arbitrary customer is given by

P
0(R0 ≤ x) = 1 − e−(1−ρ)x/S̄ (8.9)

Furthermore, (8.7) applies with κ = 1.

M/M/1/K Queue

This is a modification of the M/M/1 queue where the total number of customers
is limited to K. If a customer arrives when the queue is full, this customer
is dropped. The M/GI/1 formulas cannot be applied, but, instead, one can
directly solve the equilibrium equations of the Markov process.

The system has a stationary regime for any value of ρ. The distribution of
the number of customers at an arbitrary point in time is

P(N = k) = ηρk1{0≤k≤K} with η =

⎧⎪⎨
⎪⎩

1 − ρ

1 − ρK+1
if ρ �= 1

1
K + 1

if ρ = 1

By PASTA, the probability that the system is full is equal to the loss proba-
bility, i.e.

P
0(arriving customer is discarded) = P

(
N(t) = K

)
=

(1 − ρ)ρK

1 − ρK+1

GI/GI/1 Queue

This is the general single server queue where inter-arrival and service times are
independent of each other as well as iid. In general, no closed form solution
exists, but numerical procedures are available.

One approach is based on a the following equation, which is a stochastic
recurrence:

Wn =
(
Wn−1 + Sn−1 −An +An−1

)+
where the notation (x)+ means max(x, 0) and Wn = W (A−

n) is the workload
in the system just before the nth arrival, i.e. the waiting time for the nth
customer. (Here, An is the arrival time and Sn the service time of the nth
customer.) Let Cn = An −An−1 + Sn. Note that Cn is iid and independent of
Wn−1, thus

Wn
distrib=

(
Wn−1 − Cn

)+ (8.10)

Classical Results for a Single Queue 277

If ρ < 1, the system has a stationary regime, and the stationary distribution of
the waiting time W must satisfy

W
distrib= (W − C)+ (8.11)

where C is a random variable with the same distribution as An −An−1 + Sn.
This expression is called Lindley’s equation . It is classical to use CDFs,
which gives the following equivalent form of (8.11):

FW (x) =

⎧⎪⎨
⎪⎩

0 if x < 0∫ x

−∞
FW (x− y)fC(y) dy

(8.12)

where FW is the CDF of waiting times and fC is the PDF of An −An−1 + Sn.
Equation (8.11) is an equation of the Wiener-Hopf type and can be solved, at
least in many cases, using the theory of analytical functions; see [46, Section
8.2].

A second approach consists in solving (8.10) directly by discretization. Pick
a time step δ and let, for n ∈ N and k ∈ Z,

wn
k = P

(
Wn ∈ (kδ, (k + 1)

)
δ
)

(8.13)

sk = P
(
Sn ∈ (kδ, (k + 1)δ

))
(8.14)

ak = P
(−An +An−1 ∈ (kδ, (k + 1)δ

))
(8.15)

Note that wk = sk = 0 for k < 0 and ak = 0 for k > 0. Moreover, the arrays s
and a are independent of n. Equation (8.10) can be approximated by⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

wn
k =

(
wn−1 ∗ s ∗ a)

k
if k > 0

wn
0 =

∑
i≤0

(
wn−1 ∗ s ∗ a)

i

wn
k = 0 if k < 0

(8.16)

where ∗ is the discrete convolution. The error we are making is due to dis-
cretization and should decrease with δ. In fact, (8.16) is exact for the modified
system where we replaced the service times and inter-arrival times by approx-
imations that are multiples of δ; such an approximation is used by default for
the service time (Eq.(8.14)) and by excess for the inter-arrival time (Eq. (8.15));
thus the approximating system has a smaller ρ value than the original system.
If the original system is stable, so is the approximating one, and by Loynes’
theorem, the iteration converges to the stationary distribution of the waiting
time. The method thus consists in numerically evaluating (8.16) until the norm
of the difference wn − wn−1 becomes small; the convolution can be computed
using the fast Fourier transform. See [39] for an example where this method is
used.

A third type of method uses mixtures of exponentials to approximate the
distributions of inter-arrival and service times as in Section 8.8.1. The station-
ary distributions can then be computed explicitly; see [55] and [72].

278 Queuing Theory for Those who cannot Wait

What this tells us

Though most practical systems are unlikely to exactly fit the assumptions of
any of the models in this section, the analytical formulas do explain patterns
that are observed in practice. The models here are valid for systems without
feedback, since the arrival process is not influenced by the state of the queuing
system. Important features of such systems include:

• Non Linearity of Response Time. At low values of the utilization factor ρ,
the response time tends to increase slowly, and linearly with ρ. In contrast,
as ρ approaches 1, the response time grows to ∞ (Figure 8.7). Conse-
quently, the impact of a small traffic increase is dramatically different,
depending on the initial value of the utilization factor.

Question 8.8 What happens to the system in Figure 8.7 if the traffic
volume increases by 20%?(10)

• Variability Considered Harmful. The Pollacezk-Khinchine formula for the
mean in (8.7) shows that the response time and queue sizes increase with
the variability of the service time. See also Figure 8.8.

2 4 6 8 10

0.5

1

1.5

2

2.5

Mean Response
Time in seconds

Requests per Second

Figure 8.7 The average response time versus requests per second for a database
server modeled as an M/GI/1 queue. The time needed to process a request is 0.1
s and its standard deviation is estimated to 0.03. The maximum load that can be
served if an average response time of 0.5 s is considered acceptable is 8.8 requests per
second. If the traffic volume increases by 10%, the response time becomes 1.75; i.e.
it is multiplied by a factor of 3.5.

(10)The system becomes unstable ρ > 1; in practice, it will lose requests, or enter congestion
collapse.

Classical Results for a Single Queue 279

0.2 0.4 0.6 0.8

Utilization

2

4

6

8

10

12

14

Mean Response Time

Figure 8.8 The mean response time for an M/GI/1 queue, relative to the service
time, for different values of the coefficient of variation CoVS = σS

S̄
: from top to

bottom: CoVS = 1.4, CoVS = 1 (M/M/1 queue) and CoVS = 0 (M/D/1 queue).

8.3.3 The Processor Sharing Queue, M/GI/1/PS

This is a special case of the single server queue, with the Processor Shar-
ing (PS) service discipline instead of FIFO. We assume there that the server
divides itself equally into all present customers; this is an idealization when
δ → 0 of the round robin service discipline, where the server allocates times
slices of duration δ in turn to each present customer. If there are N customers
in the queue, the residual service time for each of them decreases at a rate 1

N .
This is also called egalitarian processor sharing . Loynes’s theorem applies
and the system is stable when ρ < 1.

The workload process W (t) is the same as for FIFO queues, but the dis-
tribution of waiting times and of customers is not equivalent. We give results
for the simple case where the arrivals are Poisson and service times are iid and
independent of the arrival process. They are both simple and striking. We
assume ρ < 1. First, the stationary probability is [92]

P
(
N(t) = k

)
= (1 − ρ)ρk (8.17)

which shows in particular that it depends on the service time distribution only
through its mean (this insensitivity property is common to many queues in the
theory of networks presented in Section 8.4). It follows that

⎧⎪⎨
⎪⎩
N̄ =

ρ

1 − ρ

R̄ =
S̄

1 − ρ

(8.18)

Second, the average response time R0 of an arbitrary customer, conditional
to its service time S0 satisfies [47]

E
0
(
R0 | S0 = x

)
=

x

1 − ρ
(8.19)

280 Queuing Theory for Those who cannot Wait

i.e. it is as if an arbitrary customers sees a server for him/herself alone, but
with a rate reduced a the factor 1

1−ρ . Equations (8.18) and (8.19) can be simply
deduced by from results in Section 8.4 if the distribution of service times can
be decomposed as a mixture of exponentials; see [100]. Equation (8.17) is a
special case of results for product form queuing networks, see Section 8.4.

What this tells us

Compare the M/M/1 and M/M/1/PS queues, where it is implicit that the
M/M/1 queue is FIFO. The stationary distribution of numbers of customers
are identical, therefore (by Little’s law) the mean response times are identical,
too. However, the conditional mean response time, given the service time, is
very different. For M/M/1/PS, it is given by (8.19). For the M/M/1 queue,
the response time is the sum of the waiting time plus the service time, and the
former is independent of the latter. The mean waiting time is given in (8.7)
with κ = 1. Therefore, for the FIFO queue,

E
0
(
R0 | S0 = x

)
= x+

ρS̄

1 − ρ
(8.20)

Figure 8.9 plots the conditional response time for both FIFO and PS queues,
and several values of x.

PS and FIFO have the same capacity and the same mean response time.
However, the PS queue penalizes customers with a large service time, and the

0 0.5 1
0

20

40

60

80

100

120

ρ

x = 0.1

0 0.5 1
0

20

40

60

80

100

120

ρ

x = 1

0 0.5 1
0

20

40

60

80

100

120

ρ

x = 10

PS
FIFO

Figure 8.9 The expected response time given that the service time of this customer
is x versus the utilization ρ, for M/M/1 queues with FIFO (dashed) and PS (plain)
service disciplines, for various values of x. The mean service time S̄ is 1 time unit.

Classical Results for a Single Queue 281

penalty is proportional to the service time. This is often considered as a fairness
property of the PS service discipline.
Question 8.9 For which value of the service time x are the expected response
times for M/M/1 and M/M/1/PS equal?(11)

8.3.4 Single Queue with B Servers

The multiple server queue is defined by the fact that a maximum of B customers
can be served in parallel. Thus, the workload process decreases at a rate equal
to min

(
N(t), B

)
where N(t) is the number of customers present in the queue.

The utilization ρ is now defined by ρ = λS̄
B . The stability condition is less

simple than for single server queues. When ρ < 1, there is a stationary regime
but it many not be unique [3, 2.3]. When ρ > 1 there is no stationary regime.

M/M/B Queue

For a more specific system, there is more to be said. A frequently used system is
the M/M/B queue, i.e. the system with Poisson arrivals, B servers, exponential
service times and FIFO discipline. The system can be studied directly by
solving for the stationary probability. Here, when ρ < 1 there is a unique
stationary regime, which is also reached asymptotically when we start from
arbitrary initial conditions; for ρ ≥ 1, there is no stationary regime.

When ρ < 1, the stationary probability is given by

P
(
N(t) = k

)
=

⎧⎪⎪⎨
⎪⎪⎩
η
(Bρ)k

k!
if 0 ≤ k ≤ B

η
BBρk

B!
if k > B

(8.21)

with

η−1 =
B−1∑
i=0

(Bρ)i

i!
+

(Bρ)B

B! (1 − ρ)

and the stationary CDF of the waiting time for an arbitrary customer is

P
0(W0 ≤ x) = 1 − p e−B(1−ρ)x/S̄

with

p =
1 − u

1 − ρu
and u =

B−1∑
i=0

(Bρ)i

i!
B∑

i=0

(Bρ)i

i!

The probability of finding all servers busy at an arbitrary point in time or at a
customer is arrival is (Erlang-C formula):

P(all servers busy) = P
(
N(t) ≥ B

)
= p (8.22)

(11)When the service time x is equal to the mean service time S̄.

282 Queuing Theory for Those who cannot Wait

Average quantities can easily be derived:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N̄ =
pρ

1 − ρ
+Bρ

N̄w =
pρ

1 − ρ

R̄ =
pS̄

B(1 − ρ)
+ S̄

W̄ =
pS̄

B(1 − ρ)

M/GI/B/B Queue

This is the system with Poisson arrivals, B servers, arbitrary (but independent)
service times and no waiting room. An arriving customer that finds all B servers
busy is dropped.

The system is stable for any value of ρ and the stationary probability of
the number of customers is given by

P
(
N(t) = k

)
= η1{0≤k≤B}

(Bρ)k

k!
with η−1 =

B∑
k=0

(Bρ)k

k!

The probability that an arriving customer is dropped is (Erlang-Loss for-
mula , or Erlang-B formula)

P
0(arriving customer is dropped) = P

(
N(t) = B

)
= η

(Bρ)B

B!
(8.23)

What this tells us

The simple M/M/B model can be used to understand the benefit of load shar-
ing. Consider the systems illustrated in Figure 8.10.

S

S

2λ 2λ λ

λ

S

S

System 1 System 2

(a)

0.2 0.4 0.6 0.8

Utilization

1

2

3

4

5

6

Mean Response
Time

(b)

Figure 8.10 The mean response time over service time for systems 1 (bottom) and
2 (top), versus the utilization factor ρ.

Definitions for Queuing Networks 283

Assume that processing times and job inter-arrival times can be modeled
as independent iid exponential sequences. Thus, the first (resp. second) case
is modeled as one M/M/2 queue (resp. a collection of two parallel M/M/1
queues). Assume the load to be balanced evenly between the two processors.
Both systems have the same utilization ρ. The mean response for the first
system is obtained from Section 8.3.4; we find S̄

1−ρ2 . For the second system, it
is simply S̄

1−ρ (Figure 8.10).
We see that for very small loads, the systems are similar, as expected. In

contrast, for large loads, the response time for the first system is much better,
with a ratio equal to 1 + ρ. For example, for ρ = 0.5, the second system has
a response time that is 1.5 times larger. However, the capacity is the same
for both systems: the benefit of load sharing may be important in terms of
response time, but does not change the system’s capacity.

8.4 Definitions for Queuing Networks

Realistic models of information and communications systems involve intercon-
nected systems, which can be captured by queuing networks. In general, not
much can be said about a queuing network. Even the stability conditions are
generally unknow, and there is no equivalent of Loynes’s theorem for networks.
Indeed, the natural condition that the utilization factor is less than 1 is nec-
essary for stability but may not be sufficient – see [16] for an example of a
multi-class queuing network, with FIFO queues, Poisson arrivals and exponen-
tial service times, which is unstable with an arbitrarily small utilization factor.

Fortunately, there is a broad class of queuing networks, the so called multi-
class product form queuing networks for which there are simple and ex-
haustive results, given in this and the following sections. These networks have
the property that their stationary probability has product form. They were
developed as BCMP networks in reference to the authors of [10] or Kelly
networks in reference to [44]. When there is only one class of customers,
they are also called Jackson networks in the open case [42], and Gordon and
Newell networks in the closed case [37]. For a broader perspective on this topic,
see the recent books [94] and [24]. The latter reference presents, in particular,
extensions to other concepts, including the “negative customers” introduced in
[36]. A broad treatment, including approximate analysis for non-product form
queuing networks can also be found in [101].

We now give the common assumptions required by multi-class product
form queuing networks (we defer a formal definition of the complete process
describing the network to Section 8.8).

8.4.1 Classes, Chains and Markov Routing

We consider a network of queues, labeled s = 1, . . . , S, also called stations.
Customers visit stations and queue or receive service according to the particular

284 Queuing Theory for Those who cannot Wait

station service discipline. Once served, they move to another station or leave
the network. Transfers are instantaneous (delays must be modeled explicitly
by means of delay stations, as shown below).

Each customer has an attribute called class, in a finite set {1, . . . , C}.
A customer may change classes in transit between stations, according to the
following procedure (called Markov routing in [103]). There is a fixed non-
negative routing matrix

Q =
(
qs,s′
c,c′
)
s,s′,c,c′ such that for all s, c

∑
s′,c′

qs,s′
c,c′ ≤ 1

When a class-c customer leaves station s (due to a completed service time),
the customer performs a random experiment such that: with probability qs,s′

c,c′

he/she joins station s′ with class c′; with probability 1 −∑s′,c′ q
s,s′
c,c′ he/she

leaves the network. This random experiment is performed independently of
all the past and present states of the network. In addition, there are fresh
independent Poisson arrivals, also independent of the past and present states
of the network; νs

c is the intensity of the Poisson process of arrivals of class-c
customers at station s. We allow νs

c = 0 for some or all s and c.
We say that two classes c, c′ are chain equivalent if c = c′ or if it is

possible for a class-c customer to eventually become a class-c′ customer, or vice-
versa. This defines an equivalence relation between classes, and the equivalence
classes are called chains. It follows that a customer may change classes but
will always remain in the same chain.

A chain C is called closed if the total arrival rate of customers
∑

c∈C,s λ
s
c

is 0. In such a case we require the probability for a customer of this chain to
leave the network to also be 0, i.e.

∑
c′,s′ q

s,s′
c,c′ = 1 for all c ∈ C and all s. The

number of customers in a closed chain is constant.
A chain that is not closed is called open . We assume that customers of

an open chain cannot cycle forever in the network, i.e. every customer of this
chain eventually leaves the network.

A network where all chains are closed is called a closed network , one
where all chains are open is called an open network and all others are denoted
mixed networks.

We define the numbers θs
c (visit rates) as one solution to

θs
c =

∑
s′,c′

θs′
c′ q

s′,s
c′,c + νs

c (8.24)

If the network is open, this solution is unique and θs
c can be interpreted(12)

as the number of arrivals per time unit of class-c customers at station s. If
c belongs to a closed chain, θs

c is determined only up to one multiplicative

(12)This interpretation is valid when the network satisfies the stability condition in Theo-
rem 8.7

Definitions for Queuing Networks 285

constant per chain. We assume that the array
(
θs

c

)
s,c

is one non-identically
zero, non-negative solution of (8.24).

Chains can be used to model different customer populations while a class
attribute may be used to model some state information, as illustrated in Fig-
ure 8.11.

ISPS

Station s=2Station s=3

ν β1
α1

α1 + β1α3 α2

Station s=1
MSCCC

p2,class 2

p3,class 3

p1,class 1

class 4

Figure 8.11 A simple product form queuing network with 2 chains of customers,
representing a machine with a dual-core processor. Chain 1 consists of classes 1, 2
and 3. Chain 2 consists of class 4 (see Example 8.6).

It is possible to extend Markov routing to state-dependent routing, e.g. to
allow for some forms of capacity limitations; see Section 8.8.6.

8.4.2 Catalog of Service Stations

There are certain constraints on the type of service stations allowed in multi-
class product form queuing networks. Formally, the service stations must sat-
isfy the property called “local balance in isolation” defined in Section 8.8, i.e. the
stationary probability of the station in the configuration of Section 8.4.3 must
satisfy (8.96) and (8.97).

In this section, we give a catalog of station types that are known to satisfy
this property. There are only two categories of stations in our list (“insensitive”,
and “MSCCC”), but these are fairly general categories, which contain many
examples such as Processor Sharing, Delay, FIFO, Last Come First Serve etc.
Thus, in practice, if you have to determine whether a given station type is
allowed in multi-class product form queuing networks, a simple solution is to
look up the following catalog.

We use the definitions below. Every station type is defined by:

• A discipline: this specifies how arriving customers are queued, and which
customers receive service at any time. We also assume that there is a sta-
tion buffer : this is where customers are placed while waiting or receiving
service, represented by some form of data structure such that every posi-
tion in the station buffer can be addressed by an index i ∈ I where I is

286 Queuing Theory for Those who cannot Wait

some enumerable set. If B is the state of the station buffer at a given time,
Bi is the class of the customer present at position i (equal to −1 if there is
no customer present). Further, we will make use of two operations.
B′ = add(B, i, c) describes the effect of adding a customer of class c at a
position indexed by i into the station buffer described by B.
B′ = remove(B, i) describes the effect of removing the customer present at
a position i, if any (if there is no customer at position i, remove(B, i) = B).
For example, if the service discipline is FIFO: the data structure is a lin-
ear list such as B = (c1, c2, . . . , cn) where ci is the class of the ith cus-
tomer (labeled in arrival order); the index set is I = N; add(B, i, c) =
(c1, . . . , ci−1, c, ci, . . . , cn) and remove(B, i) = (c1, . . . , ci−1, ci+1, . . . , cn).
We call |B| the number of customers present in the buffer, and assume that
it is always finite (but unbounded).

• A service requirement , also called service time . For example, if a
customer is a job, the service requirement may be the number of CPU
cycles required; if it is a packet or a block of data, it may be the time to
transmit it on a link. We assume that service requirements are random and
drawn independently from anything else when a customer joins the service
station. Unless otherwise specified, the distribution of service requirements
may depend on the station and the class. Allowing service requirements to
depend on the class is very powerful: it renders it possible to for example
model service times that are correlated from one visit to the next.

• A service rate: this is the speed at which the server operates, which may
depend on the customer class. If the service rate is 1, the service duration
is equal to the service requirement (but the response time may be larger,
as it includes waiting time). The service rate may be used to model how
resources are shared between classes at a station.

Category 1: Insensitive Station or Kelly-Whittle Stations

This category of stations is called “insensitive” or “Kelly-Whittle”, for reasons
that become clear below. We first give a formal, theoretical definition, then list
the most frequent instances.

Formal Definition

(1) The service requirement may be any phase-type distribution; in practice,
this may approximate any distribution, see Section 8.8.1. The service dis-
tribution may be dependent on the class.

(2) Insertion Probability There is an array of numbers γ(i,B) ≥ 0 defined
for any index i ∈ I and any station buffer state B, such that: when a class-
c customer arrives and finds the station buffer in state B just before the
arrival, the position at which this customer is added is drawn at random,
and the probability that he/she is added at a position indexed by i is

γ
(
i, add(B, i, c)) (8.25)

The same happens whenever a customer finishes a service phase (from the
phase-type service distribution), at which time he/she is treated as a new
arrival.

Definitions for Queuing Networks 287

We assume to avoid inconsistencies that
∑

i∈I γ
(
i, add(B, i, c)) = 1 and

γ(i,B) = 0 if there is no customer at position i in B.
(3) Whittle Function . There is a function Ψ(·), called the Whittle Function,

defined over the set of feasible station buffer states, such that Ψ(B) > 0
and the service rate allocated to a user in position i of the station buffer is

γ(i,B)
Ψ
(
remove(B, i))

Ψ(B)
(8.26)

if there is a customer present at position i, and 0 otherwise. Note that any
positive function may be taken as a Whittle function; the converse is not
true, i.e. any rate allocation algorithm does not necessarily derive from a
Whittle function.
One frequently considers the case of

Ψ(B) = Φ(�n) (8.27)

where �n = (n1, . . . , nC) with nc the number of class-c customers in B, and
Φ(·) is an arbitrary positive function defined on N

C . In other words, the
Whittle function in such cases depends on the state of the station only
through the numbers of customers (not their position in the buffer). The
function Φ is called the balance function ; the quantity Φ(�n−�1c)

Φ(�n) is the rate
allocated to class c. As with the Whittle function, any positive Φ may be
taken as a balance function, but the converse is not true. In other words,
any rate allocation does not necessarily derive from a balance function.

(4) We assume that for any index i, class c and station buffer state B
⎧⎨
⎩

remove
(
add(B, i, c), i) = B

if Bi is not empty: add
(
remove(B, i), i,Bi

)
= B

(8.28)

i.e. a state remains unchanged if one adds a customer and immediately
removes him/her, or vice-versa.

This formal definition may seem fairly appalling, but, as we demonstrate
next, it is rarely necessary to make use of the formal definition. Instead, it may
be easier to look up the next list of examples.

Examples of Insensitive Stations

For each of these examples, the service requirement distribution may be any
phase-type distribution, and may be class dependent.

Global PS (Processor Sharing). The station is as in the Processor Sharing
queue of Section 8.3.3. All customers present in the station receive service, at a
rate equal to 1

n when there are n customers of any class present at the station.
This is a Kelly-Whittle station, by taking the ordered list of customer

classes B = (c1, . . . , cn) as station buffer. Adding a customer at position i has
the effect that existing customers at positions ≥ i are shifted by one position,

288 Queuing Theory for Those who cannot Wait

thus (8.28) holds. When a customer arrives, he/she is added at any position 1
to n + 1 with equal probability 1

n+1 , i.e. γ(i,B) = 1
|B| (recall that |B| is the

total number of customers when the buffer state is B). The Whittle function
is simply Ψ(B) = 1 for every B. Thus, the service rate allocated to a customer
is 1

n , as required.

Global LCFSPR. This service station is Last Come First Serve, Preemp-
tive Resume (LCFSPR). There is one global queue; an arriving customer
is inserted at the head of the queue, and only this customer receives service.
When an arrival occurs, the customer in service is preempted (service is sus-
pended); preempted customers resume service where they left it, when they
eventually return to service.

This is a Kelly-Whittle station by taking as station buffer the ordered list of
customer classes B = (c1, . . . , cn) as in the previous example. When a customer
arrives, it is added at position 1, i.e. γ(i,B) = 1{i=1}. The Whittle function is
also Ψ(B) = 1 for every B. Thus the service rate allocated to a customer is 1
to the customer at the head of the queue, and 0 to all others, as required.

Per-Class Processor Sharing. This is a variant of the Processor Sharing sta-
tion, where the service rate is divided between customers of the same class,
i.e. a customer receives service at rate 1

nc
, where nc is the number of class-c

customers present in the system.
This is a Kelly-Whittle station by taking a collection of C lists as station

buffer; one per class. Only customers of class c may be present in the cth list.
An index is a couple i = (c, j), where c is a class index and j is an integer.
Adding a customer at position i = (c, j) has the effect that existing customers
in the cth list at positions ≥ j are shifted by one position, and others do not
move. Thus, (8.28) holds.

When a class-c customer arrives, he/she is inserted into the cth list, at
any position 1 to nc + 1, with equal probability. Thus, γ

(
(c, j),B) = 0 if

the customer at position (c, j) is not of class c, and 1
nc

otherwise. We take as
Whittle function Ψ(B) = 1 for every B. It follows that the service rate allocated
to a customer of class c is 1

nc
as claimed above.

Per-Class LCFSPR. This is a variant of the LCFSPR station, where one
customer per class may be served, and this customer is the last arrived in this
class.

This is a Kelly-Whittle station by taking a collection of C lists as station
buffer; one per class as for per-class PS. When a class-c customer arrives, he/she
is added at the head of the cth queue, thus γ(i,B) = 1 if i = (c, 1) and the class
at the head of the cth queue in B is c, otherwise 0. It follows that the service
rate allocated to a customer is 0 unless he/she is at the head of a queue, i.e.
this customer is the last arrived in his/her class. We take Ψ(B) = 1 for every
B as Whittle function. It follows that this station is equivalent to a collection
of C independent LCFSPR service stations, one per class, with a unit service
rate in each.

Infinite Server (IS) or Delay station. There is no queuing, customers start
service immediately. This is a Kelly-Whittle station by taking the same station

Definitions for Queuing Networks 289

buffer and insertion probability as for Global PS, but with the Whittle function
Ψ(B) = 1

n! where n = |B| is the total number of customers present in the
station. It follows that the service rate allocated to any customer present in
the station is 1, as required.

PS, LCFSPR and IS with class dependent service rate. Consider any of the
previous examples, but assume that the service rate is class-dependent, and
depends on the number of customers of this class present in the station (call
rc(nc) the service rate for class c).

Thus, for Global PS, the service rate allocated to a class-c customer is
rc(nc)

n ; for Per-Class PS, it is rc(nc)
nc

. For Global LCFSPR, the service rate
allocated to the unique customer in service is rc(nc); for Per Class LCFSPR,
the service rate allocated to the class-c customer in service is rc(nc). For IS,
the rate allocated to every class-c customer is rc(nc).

This fits in the framework of Kelly-Whittle stations as follows. For PS and
LCFSPR (per-class or global) replace the Whittle function by

Ψ(B) =
C∏

c=1

1
rc(1)rc(2) · · · rc(nc)

so that
Ψ
(
remove(B, i))

Ψ(B)
= rc(nc)

as required. For IS, replace Ψ by

Ψ(B) =
1
n!

C∏
c=1

1
rc(1)rc(2) · · · rc(nc)

in order to obtain the required service rate.

PS, LCFSPR and IS with queue-size-dependent service rate. Consider any
of the first five previous examples, but assume that the service rate is class-
independent, and depends on the total number of customers n present in the
station (call r(n) the service rate). Thus for Global PS, the service rate allo-
cated to one customer is r(n)

n if this customer is of class c; for Per-Class PS, it
is r(n)

nc
. For Global LCFSPR, the service rate allocated to the unique customer

in service is r(n); for Per Class LCFSPR, the service rate allocated to every
customer ahead of its queue is r(n). For IS, the service rate for every customer
is r(n).

This fits in the framework of Kelly-Whittle stations as follows. For PS and
LCFSPR (per-class or global), replace the Whittle function by

Ψ(B) =
1

r(1)r(2) · · · r(n)

so that
Ψ
(
remove(B, i))

Ψ(B)
= r(n)

290 Queuing Theory for Those who cannot Wait

as required. For IS, replace Ψ by

Ψ(B) =
1
n!

1
r(1)r(2) · · · r(n)

in order to obtain the required service rate.

Symmetric Station, also called Kelly station. This is a generic type introduced
by Kelly in [44] under the name of “symmetric” service discipline. The station
buffer is an ordered list as in the first example above. For an arriving customer
who finds n customers present in the station, the probability to join position
i is p(n + 1, i), where

∑n+1
i=1 p(n + 1, i) = 1 (thus γ(B, i) = p

(|B|, i)). The
rate allocated to a customer in position i is p(n, i) when there are n customers
present. The name “symmetric” comes from the fact that the same function is
used to define the insertion probability and the rate.

This fits in the framework of Kelly-Whittle stations, with a Whittle function
equal to 1. The global PS and global LCFSPR stations are special cases of Kelly
stations.

Whittle Network. This is a Per-Class Processor Sharing station where the
Whittle function is a balance function, i.e. Ψ(B) = Φ(�n). It follows that the
service rate for a class-c customer is

1
nc

Φ(�n−�1c)
Φ(�n)

(8.29)

where �1c = (0, . . . , 1, . . . , 0) with a 1 in position c. This type of station is used
in [13] to model resource sharing among several classes.

A network consisting of a single chain of classes and one single Whittle
Station is called a Whittle Network. In such a network, customers of class c
that have finished service may return to the station, perhaps under a different
class.

A Whittle network can also be interpreted as a single class, multi-station
network, as follows. There is one station per class, and customers may join only
the station of their class. However, class switching is possible. Since knowledge
of the station in which a customer resides entirely defines its class, there is
no need for a customer to carry a class attribute, and we have a single class
network.

In other words, a Whittle Network is a single class network with PS service
stations, where the rate allocated to station c is Φ(�n−�1c)

Φ(�n) . The product form
network in Theorem 8.7 implies that the stationary probability of there being
nc customers in station c for all c is

P (�n) =
1
η

Φ(�n)
C∏

c=1

S̄nc
c θnc

c (8.30)

where S̄c is the expected service requirement at station c, θc is the visit rate
and η is a normalizing constant.

Definitions for Queuing Networks 291

Note that the stationary probability in (8.30) depends only on the traffic
intensity ρc = S̄cθc, and not on the distribution of service times. This is the
insensitivity property; it applies not only to Whittle networks, but more
generally to all service stations of category 1, hence the name.

Category 2: MSCCC Station

This second category of stations contains, as a special case, the FIFO stations
with one or any fixed number of servers. It is called Multiple Server with
Concurrent Classes of Customers in reference to [26], [53] and [11]. A
slightly more general form than that presented here can be found in [2].

The service requirement must be exponentially distributed with the same
parameter for all classes at this station (but the parameter may be different at
different stations). If we relax this assumption, this station is no longer admis-
sible for multi-class product form queuing networks. Thus, unlike for category
1, this station type is sensitive to the distribution of service requirements.

The service discipline is as follows. There are B servers and G token pools.
Every class is associated with exactly one token pool, but there can be several
classes associated with the same token pool. The size of token pool g is an
integer Tg ≥ 1.

A customer is “eligible for service” when one of the B servers becomes
available and there is a free token in the pool g to which this customer’s class
is associated. There is a single queue in which customers are queued in order
of arrival; when a server becomes idle, the first eligible customer in the queue,
or to arrive, starts service, and busies both one server and one token of the
corresponding pool. The parameters such as G, B and the mapping G of
classes to token pools may be different at every station.

The FIFO queue with B servers is a special case with G = 1 token pool,
and T1 = B.

In addition, this station may have a variable service rate that depends on
the total number of customers in the station. The rate must be the same for
all classes (rates that depend on the population vector are not allowed, unlike
for category 1 stations).

Example 8.6 A Dual-Core Machine
Figure 8.11 illustrates a simple model of a dual-core processor. Classes
1, 2 or 3 represent internal jobs and class 4 internal jobs. All jobs use
the dual-core processor, represented by station 1. External jobs can
cycle through the system more than once. Internal jobs undergo a
random delay and a variable delay due to communication.
The processor can serve up to 2 jobs in parallel, but some jobs require
exclusive access to a critical section and cannot be served together.
This is represented by an MSCCC station with 2 servers and 2 token
pools, of sizes 1 and 2. Jobs requiring access to the critical section
use a token of the first pool; other jobs use tokens of the second pool
(the second pool has no effect since its size is as large as the number of
servers, but it is required to fit in the general framework of multi-class
product form queuing networks).

292 Queuing Theory for Those who cannot Wait

The delay of internal jobs is represented by station 2 (an “infinite server”
station) and the communication delay is represented by station 3 (a
“processor sharing” station, with a constant rate server).
Internal jobs always use the critical section, whereas external jobs may
employ the critical section at most once. This is modeled by means of
the following routing rules.

• Jobs of classes 1, 2 or 3 are internal jobs. Jobs of class 1 have never
used the critical section in the past and do not use it; jobs of class
2 use the critical section; jobs of class 3 have utilized the critical
section in the past but do not use it any more.
After service, a job of class 1 may either leave or return immedi-
ately as class 1 or 2. A job of class 2 may either leave or return
immediately as class 3. A job of class 3 may either leave or return
immediately as class 3.

• Jobs of class 4 represent internal jobs. They go in cycles through
stations 1, 2, 3 forever.

• At station 1, classes 2 and 4 are associated with token pool 1,
whereas classes 1 and 3 are associated with token pool 2, i.e. G(1) =
2, G(2) = 1, G(3) = 2 and G(4) = 1. The constraints at station 1
are thus the following: there can be up to 2 jobs in service, with at
most one job of classes 2 or 4.

The routing matrix is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

q1,1
1,1 = α1 q1,1

1,2 = β1

q1,1
2,3 = α2

q1,1
3,3 = α3

q1,2
4,4 = 1 q2,3

4,4 = 1 q3,1
4,4 = 1

qs,s′
c,c′ = 0 otherwise

where all numbers are positive, αi ≤ 1 and α1 + β1 ≤ 1.
There are two chains: {1, 2, 3} and {4}. The first chain is open, the
second is closed, so we have a mixed network.
Let ν be the arrival rate of external jobs and pi the probability that an
arriving job is of class i. The visit rates are

Class 1: θ11 = ν
p1

1 − α1
; θ21 = 0; θ31 = 0;

Class 2: θ12 = ν

(
p2 + β1

p1

1 − α1

)
; θ22 = 0; θ32 = 0;

Class 3: θ13 = ν
1

1 − α3

(
p3 + α2p2 + α2β1

p1

1 − α1

)
; θ23 = 0; θ33 = 0;

Class 4: θ14 = 1; θ24 = 1; θ34 = 1.

Note that the visit rates are uniquely defined for the classes in the open
chain (1, 2 and 3). In contrast, for class 4, any constant can be used
(instead of the constant 1).

Definitions for Queuing Networks 293

8.4.3 The Station Function
Station in Isolation

The expression of the product form theorem uses the station function , which
depends on the parameter of the station as indicated below, and takes, as an
argument, the vector �n = (n1, . . . , nC), where nc is the number of class-c
customers at this station. It can be interpreted as the stationary distribution
of numbers of customers in the station in isolation, up to a multiplicative
constant.

Auxiliary Station

Station
S

Class 1

PS

PS

PS

Class 2

...

Class 3

Figure 8.12 Station s in isolation.

More precisely, imagine a (virtual) closed network, made of this station
and one external, auxiliary Per Class PS station with mean service time 1 and
service rate 1 for all classes, as in Figure 8.12. In this virtual network, there
is one chain per class and every class c has a constant number of customers
Kc. The product form theorem implies that, for any values of the vector
�K = (K1, . . . ,KC), this network has a stationary regime, and the stationary
probability that there are n1 customers of class 1, . . . , nC customers of class C
is

P isol(�n) =

⎧⎪⎨
⎪⎩

0 if nc > Kc for some c

f(�n)
1

η(�K)
otherwise

(8.31)

where η(�K) is a normalizing constant (independent of �n).
It is often useful to consider the generating function G(·) of the station

function, defined as the Z-transform of the station function. In other words,
for �Z = (Z1, . . . , ZC),

G(�Z) =
∑
�n≥0

f(�n)
C∏

c=1

Znc
c (8.32)

294 Queuing Theory for Those who cannot Wait

(Note that, in signal processing, one often uses Z−1 instead of Z; we utilize
the direct convention, called the “mathematician’s z-transform”.) The following
interpretation of the generating function is quite useful. According to Theo-
rem 8.8, G(�Z) is the normalizing constant for the open network made of this
station alone, fed by independent external Poisson processes of rates Zc, one
for each class c. Upon finishing the service at this station, customers leave the
network and disappear.

In the rest of this section, we give the station functions for the different
stations introduced earlier.

Station Function for Category 1

Let pop(B) def= (n1, . . . , nC), where nc is the number of class-c customers at
this station when the station buffer is in state B (i.e. nc =

∑
i∈I 1{Bi=c}). The

station function is

f(�n) =
∑

pop(B)=�n

Ψ(B)
C∏

c=1

S̄nc
c (8.33)

where the summation runs B over all station buffer states B for which the vector
of populations is �n. S̄c is the mean service time for class c at this station, and
Ψ is the Whittle function of this station.

Note that the station function is independent of the insertion probabilities
γ. For example, the stationary probability is the same whether the station is
PS or LCFSPR, since they differ only by the insertion probabilities.

In the case where the Whittle function is a balance function, i.e. Ψ(B) =
Φ(�n), the summation may sometimes be computed.

(1) If the station uses global queuing as in the Global PS and Global LCFSPR
examples, there are n!

n1!···nC ! station buffer states for a given population
vector, with n = |�n| =

∑C
c=1 nc. The station function is

f(�n) =
n!∏C

c=1 nc!
Φ(�n)

C∏
c=1

S̄nc
c (8.34)

(2) If the station uses per class queuing as in the Per Class PS and Per Class
LCFSPR examples, there is one station buffer state for one population
vector and the station function is

f(�n) = Φ(�n)
C∏

c=1

S̄nc
c (8.35)

Global PS/Global LCFSPR/Kelly Station with constant rate. In these cases
we can assume that the service rate is 1; for all of these disciplines the station
function is given by (8.34) with Φ(�n) = 1. The generating function is

G(�Z) =
1

1 −
C∑

c=1

S̄cZc

(8.36)

Definitions for Queuing Networks 295

Per Class PS/Per Class LCFSPR with constant rate. Here too, we can assume
that the service rate is 1; the station function is given by (8.35) with Φ(�n) = 1.
The generating function is

G(�Z) =
C∏

c=1

1
1 − S̄cZc

(8.37)

IS with constant rate. Also in this case we can assume that the service rate
is 1; the station function is given by (8.34) with Φ(�n) = 1

n! . The generating
function is

G(�Z) = exp

(
C∑

c=1

S̄cZc

)
(8.38)

Station Function for Category 2

For the general station in this category, the station function is somewhat com-
plex. However, for the special case of FIFO stations with one or more servers,
it has a simple closed form, given at the end of this section.

General MSCCC Station. Recall that the station parameters are:

• r(i): the service rate when the total number of customers is i,
• S̄: the mean service time (independent of the class),
• B: the number of servers,
• G: the number of token pools; Tg: the size of token pool g; G: the mapping

of the class to the token pool, i.e. G(c) = g when class c is associated with
token pool g.

The station function is

f(�n) = d(�x)
S̄|�n|

|�n|∏
i=1

r(i)

G∏
g=1

xg!

C∏
c=1

nc!

(8.39)

with |�n| =
∑C

c=1 nc, �x = (x1, . . . , xG) and xg =
∑

c:G(c)=g nc (the number of
customers associated with token pool g). The function d is a combinatorial
function of �x ∈ Z

G, recursively defined by d(�x) = 0 if xg ≤ 0 for some g,
d(0, . . . , 0) = 1 and

d(�x) × bs(�x) =
G∑

g=1

d(�x −�1g) (8.40)

where bs(�x) def= min
(
B,
∑G

g=1 min(xg , Tg)
)

is the number of busy servers and
�1g = (0, . . . 1 . . . 0) with a 1 in position g. Note that

if
∑

g

min(xg, Tg) ≤ B then d(�x) =
G∏

g=1

1
xg∏
i=1

min(i, Tg)

296 Queuing Theory for Those who cannot Wait

In general, though, there does not appear to be a closed form for d, except
when the station is a FIFO station (see below).

For the MSCCC station, the generating function can generally not be ex-
plicitly computed. However, when the service rate is constant, i.e. r(i) = 1 for
all i, one may use the following algorithm. Let D be the generating function
of d, i.e.

D(�X) =
∑

�x∈NG

d(�x)
G∏

g=1

Xxg
g (8.41)

with �X = (X1, . . . , XG). For �τ ∈ {0 . . . T1} × · · · × {0 . . . TG}, let

D�τ (�X) def=
∑

�x≥0, min(xg,Tg)=τg,∀g

d(�x)
G∏

g=1

Xxg
g

so that D(�X) =
∑

�τ∈{0...T1}×···×{0...TG}D�τ (�X). One can compute D�τ (·) iter-
atively, using D�0(�X) = 1, D�τ (�X) = 0 if τg < 0 for some g and the following,
which follows from (8.40),

D�τ (�X) =
1

bs (�τ) −
∑

g:τg=Tg

Xg

∑
g:τg>0

XgD�τ−�1g
(�X) (8.42)

It is sometimes useful to note that

D�τ (�X) =
G∏

g=1

X
τg
g

τg!
(

1 − Xg

Tg
1{τg=Tg}

) if �τ ≥ 0 and bs(�τ) < B (8.43)

The generating function of the MSCCC station with a constant service rate is
then given by

G(�Z) = D(X1, . . . , XG) (8.44)

with Xg = S̄
(∑

c such that G(c)=g Zc

)
for all token pool g.

FIFO with B servers. This is a special case of MSCCC, with much simpler
formulas than in the general case. Here, the parameters are

• r(i): the service rate when the total number of customers is i,
• S̄: the mean service time (independent of the class),
• B: the number of servers

The station function is derived from (8.39) with G = 1. One finds �x =
(|�n|)

and d(j) = 1
Qj

i=1 min(B,i)
for j ≥ 1. Thus,

f(�n) =
S̄|�n|

|�n|∏
i=1

[
r(i)min(B, i)

]
|�n|!

C∏
c=1

nc!

(8.45)

Definitions for Queuing Networks 297

In the constant rate case, the generating function follows from (8.43):

G(�Z) = 1 +X +
X2

2!
+ · · · + XB−1

(B − 1)!
+

XB

B!
(

1 − X

B

) (8.46)

with X = S̄
∑C

c=1Zc.

In particular, for the FIFO station with one server and constant rate, the
station function is

f(�n) =
S̄|�n||�n|!

C∏
c=1

nc!

(8.47)

and the generating function is

G(�Z) =
1

1 − S̄
C∑

c=1

Zc

(8.48)

Example 8.7 Dual-Core Processor in Figure 8.11
The station functions are (we use the notation ni instead of n1

i)

f1(n1, n2, n3, n4) = d(n2 + n4, n1 + n3)

× (n1 + n3)! (n2 + n4)!
n1!n2!n3!n4!

(
S̄1
)n1+n2+n3+n4

f2(n2
4) =

(
S̄2
)n2

4 1
n2

4!

f3(n3
4) =

(
S̄3
)n3

4

In the equation, d corresponds to the MSCCC station and is defined by
(8.40). The generating functions for stations 2 and 3 follow immediately
from (8.38) and (8.37):

G2(Z1, Z2, Z3, Z4) = eS̄2Z4

G3(Z1, Z2, Z3, Z4) =
1

1 − S̄3Z4

For station 1, more work is required.
First, we compute the generating function

D(X,Y) def=
∑

m≥0,n≥0

d(m,n)XmY n

298 Queuing Theory for Those who cannot Wait

Using (8.40), one finds

D0,0(X,Y) = 1

D1,0(X,Y) =
X

1 −X

D0,1(X,Y) = Y

D1,1(X,Y) =
1

2 − Y

(
XD0,1 + Y D1,0

)
=

XY

1 −X

D0,2(X,Y) =
1

2 −X
YD0,1 =

Y 2

2 − Y

D1,2(X,Y) =
1

2 −X − Y

(
XD0,2 + Y D1,1

)

=
XY 2(3 −X − Y)

(2 −X − Y)(2 − Y)(1 −X)

and D is the sum of these 6 functions. After some algebra, we get

D(X,Y) =
1

1 −X

(
1 + Y +

Y 2

2 −X − Y

)
(8.49)

Using (8.44), it follows that the generating functions of station 1 is

G1(Z1, Z2, Z3, Z4) = D
(
S̄1(Z2 + Z4), S̄1(Z1 + Z3)

)
(8.50)

Question 8.10 Compare the station function for an IS station with a constant
service rate and equal mean service time for all classes with a FIFO station
with a constant rate and B → ∞.(13)

Question 8.11 What is the station function faux(·) for the auxiliary station
used in the definition of the station in isolation?(14)

Question 8.12 Verify that D(X, 0) (resp. D(0, Y)) is the generating function
of a FIFO station with one server (resp. 2 servers) (where D(·) is given by
(8.49)); explain why.(15)

(13)Both are the same: (8.45) and (8.34) with Φ(�n) = 1
n!

give the same result: f(�n) =

S̄|�n|
QC

c=1 nc!
.

(14)It is a Per Class PS station with S̄c = 1 for all c thus faux(�n) = 1. The product form
theorem implies that the stationary probability of seeing nc customers in the station
of interest is ηf(�n).

(15)We find 1
1−X

and 1 + Y + Y 2

2−Y
as given by (8.46).

The generating function D(X, Y) is the z-transform of the station function with one
class per token group, and is also equal to the normalizing constant for the station fed
by a Poisson process with rate X for group 1 and Y for group 2. If Y = 0, we have
only group 1 customers, and therefore the station is the same as a single server FIFO
station with arrival rate X. If X = 0, the station is equivalent to a FIFO station with
2 servers and the arrival rate Y .

The Product-Form Theorem 299

8.5 The Product-Form Theorem

8.5.1 Product Form

The following theorem gives the stationary probability of the number of cus-
tomers in explicit form; it is the main available result for queuing networks.
The original proof is in [10], and extension to any service stations that satis-
fies the local balance property can be found in [78] and [44]. The proof that
MSCCC stations satisfy the local balance property is given in [53] and [11].
The proof that all Kelly-Whittle stations satisfy the local balance property is
novel and is provided in Section 8.10 (see Section 8.8 for more details).

Theorem 8.7
Consider a multi-class network as defined above. In particular, it uses
Markov routing and all stations are Kelly-Whittle or MSCCC. Assume that
the aggregation condition in Section 8.8.3 holds.
Let ns

c be the number of class-c customers present in station s and �ns =
(ns

1, . . . , n
s
C). The stationary probability distribution of the number of cus-

tomers, if it exists, is given by

P (�n1, . . . , �nS) =
1
η

S∏
s=1

(
fs(�ns)

C∏
c=1

(
θs

c

)ns
c

)
(8.51)

where θs
c is the visit rate in (8.24), fs(·) is the station function and η is a

positive normalizing constant.
Conversely, let E be the set of all feasible population vectors �n = (�n1, . . . , �nS).
If ∑

�n∈E

S∏
s=1

(
fs(�ns)

C∏
c=1

(
θs

c

)ns
c

)
<∞ (8.52)

there exists a stationary probability.

In the open network case, any vector (�n1, . . . , �nS) is feasible, whereas in
the closed or mixed case, the set of feasible population vectors E is defined by
the constraints on populations of closed chains, i.e.

∑
c∈C

S∑
s=1

ns
c = KC

for any closed chain C, where KC is the (constant) number of customers in this
chain.

Note that the station function depends only on the traffic intensities. In
particular, the stationary distribution is not affected by the variance of the
service requirement, for stations of Category 1 (recall that stations of Category
2 must have exponential service requirement distributions).

300 Queuing Theory for Those who cannot Wait

Question 8.13 What is the relationship between the sum in (8.52) and η?(16)

8.5.2 Stability Conditions

In the open case, stability is not guaranteed and may depend on conditions on
arrival rates. However, the next theorem states that the stability can be verified
at every station in isolation, and correspond to the natural conditions. In par-
ticular, pathological instabilities as discussed in the introduction of Section 8.4,
cannot occur for multi-class product form queuing networks.

Theorem 8.8 (Open Case)
Consider a multi-class product form queuing network as defined above. As-
sume that it is open. For every station s, �θs = (θs

1, . . . , θ
s
C) is the vector of

visit rates, fs is the station function and Gs(·) is its generating function,
given in (8.36), (8.38), (8.44), and (8.46).
The network has a stationary distribution if and only if for every station s

Gs(�θs) <∞ (8.53)

If this condition holds, the normalizing constant of Theorem 8.7 is η =∏S
s=1G

s(�θs). Further, let P s(�ns) be the stationary probability of the number
of customers in station s. Then

P (�n1, . . . , �nS) =
S∏

s=1

P s(�ns) (8.54)

i.e. the numbers of customers in different stations are independent. The
marginal stationary probability for station s is

P s(�ns) =
1

Gs(�θs)
fs(�ns) (8.55)

The proof follows from the fact that the existence of an invariant probability
is sufficient for stability (as we assume that the state space is fully connected, by
the aggregation condition). If the network is closed or mixed, the corollary does
not hold, i.e. the states in different stations are not independent , though there
is product-form. Closed networks are always stable, but it may not be simple
to compute the normalizing constant; efficient algorithms exist, as discussed in
Section 8.6.

For mixed networks, containing both closed and open chains, stability con-
ditions depend on the rate functions, and since they can be arbitrary, not much
can be said in general. In practice, though, the following sufficient conditions
are quite useful. The proof is similar to that of the previous theorem.

(16)They are equal.

The Product-Form Theorem 301

Theorem 8.9 (Sufficient Stability Condition for Mixed Networks)
Consider a multi-class product form queuing network as defined above. As-
sume that the network is mixed, with Cc classes in closed chains and Co

classes in open chains. Let �m = (m1, . . . ,mCc) be the population vector
of classes in closed chains, and �n = (n1, . . . , nCo) the population vector of
classes in open chains. For every station s and �m, define

Ls(θ | �m) =
∑

�n∈NCo

fs(�m,�n)
Co∏
c=1

(
θs

c

)ns
c (8.56)

where fs(�m,�n) is the station function.
If

Ls(θ | �m) <∞ ∀�m, ∀s
the network has a stationary distribution.

In simple cases, a direct examination of (8.52) leads to simple, natural
conditions, as in the next theorem. Essentially, it states that for the networks
considered there, stability is obtained when server utilizations are less than 1.

Theorem 8.10 (Stability of a Simple Mixed Network)
Consider a mixed multi-class product form queuing network and assume that
all stations are either Kelly stations (such as Global PS or Global LCFS),
IS or MSCCC with constant rates.
Let C be the set of classes belonging to open chains. Define the utilization
factor ρs at station s by

ρs =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

S̄s

Bs

∑
c∈C

θs
c if station s is MSCCC with Bs servers,

and a mean service time S̄s

∑
c∈C

θs
cS̄

s
c if station s is a Kelly station

with a mean service time S̄s
c for class c.

The network has a stationary distribution if and only if ρs < 1 for every
Kelly station or MSCCC station s. There is no condition on IS stations.

Example 8.8 Dual-Core Processor in Figure 8.11
Let q ∈ (0, 1] be the probability that an external job uses the critical
section and let r > 0 be the average number of uses of the processor
outside the critical section by an external job. Thus, θ11 + θ13 = νr and
θ12 = νq. Based on Theorem 8.10, the stability conditions are

ν(r + q)S̄1 ≤ 2

νqS̄1 ≤ 1

302 Queuing Theory for Those who cannot Wait

where S̄1 is the average job processing time at the dual-core processor.
Note that we need to assume that the processing time is independent
of whether it uses the critical section, and of whether it corresponds to
an internal or external job. The system is thus stable (has a stationary
regime) for ν < 2

S̄1(q+max(r,q))
. Note that the condition for stability

bears only on external jobs.
Let K be the total number of class 4 jobs; it is constant since class 4
constitutes a closed chain. A state of the network is entirely defined by
the population vector (n1, n2, n3, n4, n

2
4); the number of jobs of class 4

instation 3 is K − n4 − n2
4, and ns

c = 0 for other classes. The set of
feasible states is

E =
{
(n1, n2, n3, n4, n

2
4) ∈ N

5 such that n4 + n2
4 ≤ K

}

The joint stationary probability is

P (n1, n2, n3, n4, n
2
4)

=
1

η(K)
d(n2 + n4, n1 + n3)

(n1 + n3)! (n2 + n4)!
n1!n2!n3!n4!

×
((
θ11
)n1(

θ12
)n2(

θ13
)n3(

S̄1
)n1+n2+n3+n4(

S̄2
)n2

4 1
n2

4!
(
S̄3
)K−n4−n2

4

)

where we made explicit the dependency on K in the normalizing con-
stant. This expression, while explicit, is too complicated to be of prac-
tical use. In Example 8.9, we continue with this example and compute
the throughput, using the methods in the next section.

8.6 Computational Aspects

As illustrated in Example 8.8, the product form theorem, although it provides
an explicit form, may require much work since enumerating all states is sub-
ject to combinatorial explosion, and the normalizing constant has no explicit
form when there are closed chains. A large amount of research has been per-
formed on providing efficient algorithms for computing metrics of interest for
multi-class product form queuing networks. They are based on a number of
interesting properties, which we now derive. In the rest of this section, we give
the fundamental ideas used in practical algorithms; these ideas are not just
algorithmic, they are also based on special properties of the networks which
are of independent interest.

In the remainder of this section, we assume that the multi-class product
form queuing network satisfies the hypotheses of the product form Theorem 8.7
as described in Section 8.4, and has a stationary distribution (i.e. if there are
open chains, the stability condition must hold – if the network is closed there
is no condition).

Computational Aspects 303

8.6.1 Convolution

Theorem 8.11 (Convolution Theorem)
Consider a multi-class product form queuing network with closed and per-
haps some open chains, and let �K be the chain population vector of the
closed chains (i.e. �KC is the number of customers of chain C; it is constant
for a given network).

Let η(�K) be the normalizing constant given in the product form theorem
8.7. Further, let �Y be a formal variable with one component per chain, and
define

Fη(�Y) def=
∑
�K≥�0

η(�K)
∏
C
Y KC
C

Then

Fη(�Y) =
S∏

s=1

Gs(�Zs) (8.57)

where Gs is the generating function of the station function for station s,
and �Zs is a vector with one component per class, such that

Zs
c =

⎧⎨
⎩
YCθs

c whenever c ∈ C and C is closed

θs
c whenever c is in an open chain

The proof is a direct application of the product form theorem, using gen-
erating functions. (8.57) is in fact a convolution equation , since convolution
translates into a product of generating functions. It is the basis for the con-
volution algorithm , which consists in adding stations one by one, see for
example [6] for a general discussion and [56] for networks with MSCCC sta-
tions other than FIFO. We illustrate the method in Example 8.9 below.

8.6.2 Throughput

Once the normalizing constants are computed, one may derive throughputs
for class c at station s, defined as the mean number of class c arrivals at (or
departures from) station s:

Theorem 8.12 (Throughput Theorem)
(See [20]) The throughput for class-c of the closed chain C at station s is

λs
c(�K) = θs

c

η
(
�K −�1C

)
η(�K)

(8.58)

It follows in particular that, for closed chains, the throughputs at some
station depend only on the throughput per class and the visit rates . Formally,
for every closed chain C, choose a station s0(C) effectively visited by this chain

304 Queuing Theory for Those who cannot Wait

(i.e.
∑

c∈C θ
s0
c > 0); define the per chain throughput C as the throughput at

this station λC(�K) def=
∑

c∈C λ
s0(C)
c (�K). Since for closed chains the visit rates

θs
c are determined up to a constant, we may decide to let

∑
c∈C θ

s0(C)
c = 1, and

then for all class c ∈ C and station s,

λs
c(�K) = λC(�K)θs

c (8.59)

Also, the equivalent of (8.58) for the per chain throughput is

λC(�K) =
η
(
�K −�1C

)
η(�K)

(8.60)

(which follows immediately by summation on c ∈ C).
Note that the throughput for a class c of an open chain is simply the visit

rate θs
c .

Last but not least, the throughput depends only on the normalizing con-
stants and not on other details of the stations. In particular, stations that are
different but have the same station function (such as FIFO with one server
and constant-rate Kelly function with class-independent service time), give the
same throughputs.

The next example illustrates the use of the above theorems in the study
of a general case (a mixed network with an MSCCC station). There are many
optimizations of this method, see [22] and references therein.

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(a) x = 0.7, y = 0.8

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(b) x = 0.7, y = 1

Figure 8.13 The throughput λ of internal jobs for the dual-core processor in Fig-
ure 8.11, in jobs per millisecond, as a function of the number of internal jobs. Dotted
curve: the throughput that would be achieved if the internal jobs would not use the
critical section, i.e. any job could use a processor when one is idle. x is the intensity
of external traffic employing the critical section and y of other external traffic. There
are two constraints : x + λ ≤ 1 (critical section) and x + y + λ ≤ 2 (total processor
utilization). For the dotted line only the second constraint applies. In the first panel,
the first constraint is limiting and the difference in performance is noticeable. In the
last panel, the second constraint is limiting and there is little difference. In the middle
panel, both constraints are equally limiting. S̄1 = 1, S̄2 = 5, S̄3 = 1 ms.

Computational Aspects 305

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(c) x = 0.5, y = 1.2

Figure 8.13 (Continuation.)

Example 8.9 Dual-Core Processor in Figure 8.11 Algorithmic Aspect
We continue Example 8.8. Assume now that we let all parameters be
fixed except the arrival rate ν of external jobs and the number K of
internal jobs; we would like to evaluate the throughput λ of internal
jobs as a function of ν and K as well as the distribution of state of
internal jobs.
We can use the throughput theorem and we obtain that the throughput
λ(K) for class 4 is (we drop the dependency on λ from the notation)

λ(K) =
η(K − 1)
η(K)

(8.61)

We now have to compute the normalizing constant η(K) as a function
of K. To this end, we use the convolution equation (8.57) to obtain

Fη(Y) = G1(�Z1)G2(�Z2)G3(�Z3) (8.62)

with

�Z1 = (θ11, θ
1
2, θ

1
3, Y)

�Z2 = (0, 0, 0, Y)
�Z3 = (0, 0, 0, Y)

The generating functions G1, G2, G3 are given in Example 8.7. We get

Fη(Y) = D(Y S̄1 + x, y) eS̄2Y 1
1 − S̄3Y

(8.63)

with x = νqS̄1, y = νrS̄1 and D(·) defined in (8.49).
We can compute η(K) by performing a power series expansion (recall
that Fη(Y) =

∑
K∈N

η(K)Y K) and find η(K) numerically. Alterna-
tively, one can interpret (8.63) as a convolution equation η = η1 �η2�η3

306 Queuing Theory for Those who cannot Wait

with Fη1(Y) =
∑

k∈N
η1(k)Y k def= D(Y S̄1 + x, y), Fη2(Y) = eS̄2Y ,

Fη3(Y) = 1
1−S̄3Y

and use fast convolution algorithms or the filter
function as in Example 8.11. The throughput for internal jobs follows
from (8.61) and is plotted in Figure 8.13.

8.6.3 Equivalent Service Rate

This is a useful concept, which hides away the details of a station and, as we
show in the next section, can be used to aggregate network portions. Consider
some arbitrary station s, of any category, with station function fs(·). We call
equivalent service rate for class c at station s the quantity

μ∗s
c (�ns) def=

fs(�ns −�1c)
fs(�ns)

(8.64)

It can be shown that μ∗s
c (�ns) is indeed the average rate at which customers

of class c depart from station s when the latter is imbedded in a multi-class
queuing network and given that the number of customers at station s is �ns, i.e.

μ∗s
c (�ns) =

∑
�e∈E(s,�ns)

∑
�f∈E′(s,�e)

P (�e)μ(�e, �f)

Here, �e is a global micro-state of the network (see Section 8.8.2 for a definition),
E(s, �ns) is the set of global micro-states for which the population vector at
station s is �ns, E ′(s, �e) is the set of global micro-states such that the transition
�e → �f is a departure from station s, P (·) is the stationary probability of
the network and μ(�e, �f) is the transition rate. This is true as long as the
network satisfies the hypotheses of the product form theorem, and is a direct
consequence of the local balance property.

To s we associate a per class PS station with a unit service requirement
for all classes and with the balance function f s(�ns). This virtual station is
called the equivalent station of station s. By construction, it is a category-1
station and, according to (8.35), the station functions of this virtual station
and of s are identical. Further, the rate of service allocated to customers of
class c is also μ∗s

c (�ns). Thus, as far as the stationary probability of customers
is concerned, it makes no difference whether we use the original station or the
equivalent station inside a network. We obtain an even stronger result.

Theorem 8.13 (Equivalent Station Theorem)
(See [78]) In a multi-class product form queuing network, any station can
be replaced by its equivalent station, with an equivalent service rate as in
(8.64), so that the stationary probability and the throughput for any class
at any station are unchanged.

Note that the equivalent station and the equivalent service rate depend
only on the station, not on the network in which the station is imbedded. It is
remarkable that it thus becomes possible to replace any station by a per class

Computational Aspects 307

PS station. Note however that the equivalence is only valid for distributions of
numbers of customers and for throughputs, not for delay distributions; indeed,
delays depend on the details of the station, and stations with the same station
function may have differing delay distributions.

The equivalent service rates for a few frequently used stations are given in
Table 8.1. For some stations such as the general MSCCC station, there does
not appear to be a closed form for the equivalent service rate.

Table 8.1 Equivalent service rates for frequently used stations. Notation: �ns =
(ns

1, . . . , n
s
C) with ns = number of class c customers at station s; S̄s

c is the mean service
requirement; rs

c(n
s
c) is the rate allocated to a class-c customer when the service rate is

class-dependent; rs
`|�ns|´ is the rate allocated to any customer when the service rate

depends on the queue size; |�ns| is the total number of customers in station s. For a
constant rate station, take rs

c(·) = 1 or rs(·) = 1.

Station s Equivalent Service Rate μ∗s
c (�ns)

Kelly Stations with a Class-Dependent
Service Rate. Recall that this contains, as
special cases, Global PS and Global LCF-
SPR stations with a constant rate.

rs
c(n

s
c)

rs
c

|�ns|
1

S̄s
c

Kelly Stations with a Queue-Size-De-
pendent Service Rate.

rs
`|�ns|´ ns

c

|�ns|
1

S̄s
c

IS station with a Class-Dependent Service
Rate.

rs
c(n

s
c)n

s
c

1

S̄s
c

IS station with a Queue-Size-Dependent
Service Rate.

rs`|�ns|´ns
c

1

S̄s
c

FIFO station with B servers and a Queue-
Size-Dependent Service Rate. Recall that
this is a station of Category 2, hence the
service requirement is exponentially dis-
tributed and has the same mean S̄s for all
classes.

1

S̄s
min

`
B, |�ns|´r`|�ns|´

The equivalent service rate is used in the following theorem.

Theorem 8.14
(See [85]) Consider a multi-class product form queuing network with closed
and perhaps some open chains, and let �K be the chain population vector
of the closed chains. For any class c of the closed chain C and any station
s, if ns

c ≥ 1,

P s
(
�ns | �K) = P s

(
�ns −�1c | �K −�1C

) 1
μ∗s

c (�ns)
λs

c(�K) (8.65)

where P s
(· | �K) is the marginal probability at station s and λs

c(�K) is the
throughput for class c at station s.

308 Queuing Theory for Those who cannot Wait

This theorem is useful if the equivalent service rate is tractable or numer-
ically known. It can be used if one is interested in the marginal distribution
of one station; it requires computing the throughputs λ(�K), for example by
means of convolution or MVA. Equation (8.65) can be employed to compute
P s
(
�ns | �K) iteratively by increasing the populations of closed chains [84]. Note

that it does not give the probability of an empty station; the latter can be com-
puted based on the fact that the sum of probabilities is 1.

Example 8.10 Dual-Core Processor in Figure 8.11, continued
We now compute the stationary probability that there are n jobs in
station 2, given that there are K internal jobs in total. According to
(8.65),

P 2(n | K) = P 2(n− 1 | K − 1)λ(K)
S̄2

n
(8.66)

since the equivalent service rate for station 2 (which is an IS station)
is n

S̄2 when there are n customers in the station. This gives P 2(n | K)
for 1 ≤ 1 ≤ K if we know P 2(· | K − 1); P (0 | K) is obtained by the
normalizing condition

K∑
n=0

P 2(n | K) = 1

We compute P 2(· | K) by iteration on K, starting from P 2(0 | 0) = 1
and using the previous two equations. The mean number of jobs in
station 2 follows as

N̄2(K) =
K∑

n=0

nP (n | K) (8.67)

Similarly, for station 3, we have

P 3(n | K) = P 3(n− 1 | K − 1)λ(K)S̄3 (8.68)

since the equivalent service rate for station 3 (which is a PS station) is
1

S̄3 . The mean number of internal jobs in station 1 is thus N̄1
4 (K) =

K − N̄2(K) − N̄3(K).
We derive the mean response times for internal jobs in stations 1 to 3
by using Little’s law: R̄s

4(K) = N̄s(K)
λ(K) for s = 1, 2, 3.

From Little’s law, (R1
4 + R2

4 + R3
4)λ = K; for large K, λ ≈ θmax =

min(1− x, 2− x− y) and R2
4 ≈ S̄2, R3

4 ≈ S̄3 (most of the queuing is at
station 1), thus R̄1

4(K) ≈ K
θmax

− S̄2 − S̄3 for large K. The results are
shown in Figure 8.14.

Computational Aspects 309

1 2 3 4 5 6 7 8 9 10
−5

0

5

10

15

20

25

30

(a)

0 1 2 3 4 5 6 7 8 910
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Station 1

0 1 2 3 4 5 6 7 8 910
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Station 2

0 1 2 3 4 5 6 7 8 910
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Station 3

(b)

Figure 8.14 (a) Mean response time for internal jobs at the dual-core pro-
cessor, in millisecond, as a function of the number K of internal jobs. (b) Sta-
tionary probability distribution of the number of internal jobs at stations 1
to 3, for K = 10. (Details of the computations are given in Examples 8.10
and 8.11; S̄1 = 1, S̄2 = 5, S̄3 = 1 ms, x = 0.7, y = 0.8.)

8.6.4 Suppression of Open Chains

In an open network, the product form theorem implies that all stations are
independent in the stationary regime, and the network is thus equivalent to a
collection of stations in isolation. In the mixed or closed case, this does not
hold anymore, and station states are mutually dependent.

310 Queuing Theory for Those who cannot Wait

It is possible to simplify mixed networks by removing open chains. In the
modified network, there are only closed chain customers, with the same routing
matrix qs,s′

c,c′ for all c, c′ in closed-chains; the stations are the same, but with a
modified station function. Let Gs(�Z) be the z transform of the station function
and θs

c the visit rates in the original network with open chains. In the modified
network, the z transform of the station function is

G′s(�Z) = Gs(�Z ′) with

⎧⎨
⎩
Z ′

c = Zc if c is in a closed chain

Z ′
c = θs

c if c is in an open chain
(8.69)

In the above, �Z is a vector with one component per class in a closed chain,
whereas �Z ′ has one component per class, in any open or closed chain.

Theorem 8.15 (Suppression of Open Chains)
Consider a mixed multi-class network that satisfies the hypotheses of the
product form Theorem 8.7. Consider the network obtained by removing the
open chains as described above. In the modified network, the stationary
probability and the throughputs for classes of closed chains are the same as
in the original network.

The proof is obtained by inspection of the generating functions. Note that
the modified stations may not be of the same type as the original ones; they
are fictitious stations as in the equivalent station theorem. Also, the equivalent
service rates of the modified stations depend on the visit rates of the open
chains that were removed, as illustrated in the next example.

Example 8.11 Dual-Core Processor in Figure 8.11, continued
We now compute the stationary probability at station 1. We suppress
the open chains and compute the equivalent service rate at station 1.
We have here a single-chain, single-class network, with only customers
of class 4. Stations 2 and 3 are unchanged; station 1 is replaced by the
station with generating function:

G′1(Z) = G1(θ11, θ
1
2, θ

1
3, Z)

where G1 is given in (8.50). With the same notation as in Example 8.9,
G′1(z) = D(ZS̄1 + x, y) with D given by (8.49), and thus

G′1(Z) =
1

1 − x− ZS̄1

(
1 + y +

y2

2 − x− y − ZS̄1

)
(8.70)

The station function f ′1(n) of the modified station 1 is obtained by
power series expansion G′1(Z) =

∑
n≥0 f

′1(n)Zn. modified as follows.
Since G′1 is a rational function (quotient of two polynomials), its power

Computational Aspects 311

series expansion can be obtained as the impulse response of a filter with
rational z transform (Section D.1.8). Consider the filter

1
1 − x−BS̄1

(
1 + y +

y2

2 − x− y −BS̄1

)
(8.71)

where B is the backshift operator. The sequence
(
f ′1(0), f ′1(1),

f ′1(2), . . .
)

is the impulse response of this filter, and can be obtained
easily with the filter function of Matlab. The equivalent service rate
of station 1 for internal jobs is

μ′1(n) =
f ′1(n− 1)
f ′1(n)

(8.72)

Since we know the equivalent service rate, we can determine the prob-
ability distribution P ′1(n) of internal jobs at station 1 using Theo-
rem 8.14 as in Example 8.10. The results are shown in Figure 8.14.

8.6.5 Arrival Theorem and MVA Version 1

Mean Value Analysis (MVA) is a method, developed in [86], that does not
compute the normalizing constant and thus avoids potential overflow problems.
There are many variants of it, see the discussion in [6].

In this chapter, we give two versions. The first, described in this section,
is very simple, but applies only to some station types, as it requires the abil-
ity to derive the response time from the Palm distribution of the queue size
upon customer arrival. The second, described in Section 8.6.7, is more general
and applies to all stations for which the equivalent service rate can be easily
computed.

MVA version 1 is based on the following theorem, which is a consequence
of the product form theorem and the embedded subchain theorem of Palm
calculus (Theorem 7.12).

Theorem 8.16 (Arrival Theorem)
Consider a multi-class product form queuing network. The probability dis-
tribution of the number of customers seen by a customer just before arriving
at station s is the stationary distribution of

• the same network if the customer belongs to an open chain;
• the network, with one customer less in its chain, if the customer belongs

to a closed chain.

Consider now a closed network where all stations are FIFO or IS with a
constant rate, or are equivalent in the sense that they have the same station
function as one of these (thus have the same equivalent service rate). Indeed,
recall that stationary probabilities and throughput depend only on the station

312 Queuing Theory for Those who cannot Wait

function. For example, a station may also be a global PS station with class-
independent service requirements of any phase type distribution, with the same
station function as a FIFO station with one server and exponential service
time. In the rest of this section, we call “FIFO” (resp. IS) station one that
has the same station function as a single server, constant rate FIFO (resp.
IS) station. Recall that at a FIFO station, we need to assume that the mean
service requirements are equivalent for all classes at the same station, whereas
for the IS station, it may be class-dependent.

We first assume that the FIFO (resp. IS) stations are truly FIFO (resp.
IS), and not merely equivalent stations as defined above. We will remove this
restriction later. Let N̄s

c (�K) be the mean number of class-c customers at station
s when the chain population vector is �K. The mean response time for a class-c
customer at a FIFO station s when the population vector is �K is

R̄s
c(�K) =

[
1 +

∑
c

N̄s
c (�K −�1C)

]
S̄s

where C is the chain of class c. This is due to the exponential service require-
ment assumption: an arriving customer has to wait for S̄s multiplied by the
number of customers present upon arrival; in average, this latter number is∑

c N̄
s
c (�K −�1C) according to the arrival theorem. Based on Little’s formula,

R̄s
c(�K)λs

c(�K) = N̄s
c (�K)

Combining the two gives

N̄s
c (�K) = λs

c(�K)

(
1 +

∑
c

N̄s
c (�K −�1C)

)
S̄s (8.73)

which is valid for FIFO stations. For a delay station, one finds

N̄s
c (�K) = λs

c(�K)S̄s
c (8.74)

This gives a recursion for N̄s
c (�K) if one can determine λs

c(�K). The next ob-
servation is (8.59), which states that if we know the throughput at one station
visited by a chain, then we know the throughputs for all stations and all classes
of the same chain. The last observation involves the sum of the numbers of
customers across all stations and all classes of chain C being equal to KC .
Combining all this gives, for every chain C, if KC > 0,

KC
λC(�K)

=
∑
c∈C

[∑
s:FIFO

θs
c

(
1 +

∑
c′
N̄s

c′(�K −�1C)
)
S̄s +

∑
s:IS

θs
cS̄

s
c

]
(8.75)

and
λC(�K) = 0 if KC = 0 (8.76)

Computational Aspects 313

For every FIFO station s and class c,

N̄s
c (�K) = θs

cλC(c)(�K)

(
1 +

∑
c′
N̄s

c′
(
�K −�1C(c)

))
S̄s if KC(c) > 0 (8.77)

= 0 if KC(c) = 0 (8.78)

Second, we observe that the resulting equations depend only on the station
function, for which reason they also apply to equivalent stations.

The MVA algorithm version 1 iterates on the total population, adding
customers one by one. At every step, the throughput is computed using (8.75).
Then, the mean queue sizes at FIFO queues are computed using (8.77), which
closes the loop. We give the algorithm in the case of a single chain. For the
multi-chain case, the algorithm is similar, but there are many optimizations to
reduce the storage requirement, see [6].

Algorithm 8.1 MVA Version 1: Mean Value Analysis for a single-chain closed
multi-class product form queuing network containing only constant-rate FIFO
and IS stations, or stations with equal station functions.
1: K = population size
2: λ = 0 � throughput
3: Qs = 0 for all station s ∈ FIFO � total number of customers at station s,
4: � Qs =

∑
c N̄

s
c

5: Compute the visit rates θs
c using (8.24) and

∑C
c=1 θ

1
c = 1

6: θs =
∑

c θ
s
c for every s ∈ FIFO

7: h =
∑

s∈IS

∑
c θ

s
cS̄

s
c +

∑
s∈FIFO θ

sS̄s � constant term in (8.75)
8: for k = 1 : K do
9: λ = k

h+
P

s∈FIFO θsQsS̄s � Eq. (8.75)

10: Qs = λθsS̄s(1 +Qs) for all s ∈ FIFO
11: end for
12: The throughput at station 1 is λ
13: The throughput of class c at station s is λθs

c

14: The mean number of customers of class c at FIFO station s is Qsθs
c/θ

s

15: The mean number of customers of class c at IS station s is λθs
c S̄

s
c

Example 8.12 Mean Value Analysis of Figure 8.5
We model the system as a single-class, closed network. The CPU is
modeled as a PS station, disks A and B as FIFO single servers, and
think time as an IS station. We fix the visit rate θthink time to 1 so
that θCPU = VCPU, θA = VA and θB = VB. Note that the routing
probabilities need not be specified in detail; only the visit rates are
required.

314 Queuing Theory for Those who cannot Wait

The CPU station is not a FIFO station, but it has the same station
function. Consequently, we may apply MVA and treat it as if it were
FIFO.
Figure 8.15 shows the results, which are essentially as predicted by the
bottleneck analysis in Figure 8.6.

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

Figure 8.15 The throughput in transactions per second versus the number
of users, computed with MVA for the network in Figure 8.5. The dotted lines
represent the bounds of the bottleneck analysis in Figure 8.6.

8.6.6 Network Decomposition

A key consequence of the product form theorem is the possibility of replacing an
entire subnetwork by an equivalent single station. This can be done recursively
and is the basis for numerous algorithms, such as MVA version 2.

Consider a multi-class product form network N and a subnetwork S. The
stations in S need not be directly connected and the network can be closed,
mixed or open. If the network is mixed or open, we consider that outside
arrivals occur from some fictitious station 0, and 0 /∈ S. We create two virtual
networks: Ñ and ÑS and a virtual station S̃ as follows (Figure 8.16).

The virtual station S̃, called the equivalent station of S, is obtained by
isolating the set of stations S from the network N and collapsing classes to
chains. Inside S̃, there is only one class per chain, i.e. a customer’s attribute is
its chain C. Furthermore, the station is a “per class PS” station, with a service
rate to be defined later.(17)

Ñ , called the simplified network , is obtained by replacing all stations in
S by the equivalent station S̃. In Ñ , routing is defined by the corresponding

(17)Observe that within one service station, customers cannot change class. Therefore, if
we aggregate a subnetwork into a single station, we also need to aggregate classes of
the same chain.

Computational Aspects 315

N

S

S0

S1Sj

Si

N

S

~

~

S0

S1

S
~

Sj

Si

S
Sj

Si

NS
~

Figure 8.16 Decomposition procedure: original network N , with subnetwork S ;
simplified network Ñ ; equivalent station S̃; subnetwork in short-circuit ÑS .

natural aggregation, i.e. it is the same as if the stations in S were still present
but not individually observable. Thus, the routing matrix q̃ is

q̃s,s′
c,c′ = qs,s′

c,c′ if s /∈ S and s′ /∈ S

q̃S,s′
C,c′ =

⎧⎪⎨
⎪⎩

0 if c′ /∈ C
1
θ̃C

∑
s∈S,c∈C

θs
cq

s,s′
c,c′ if c ∈ C

q̃s,S
c,C =

⎧⎪⎨
⎪⎩

0 if c /∈ C∑
s′∈S, c′∈C

qs,s′
c,c′ if c ∈ C

q̃S,S
C,C′ =

⎧⎪⎨
⎪⎩

0 if C �= C′
1
θ̃C

∑
s,s′∈S, c,c′∈C

θs
cq

s,s′
c,c′ if C = C′

θ̃C =
∑

s∈S, c∈C
θs

c

where, for example, q̃S,s′
C,c′ is the probability that a chain-C customer leaving

station S̃ joins station s′ with class c′. If there are some open chains, recall

316 Queuing Theory for Those who cannot Wait

that s = 0 represents arrivals and departures and that we assumed that 0 /∈ S;
in such cases, the external arrival rate of chain-C customers to the virtual
station S̃ is

λSC =
∑

s∈S, c∈C
λs

c

and the probability that a chain-C customer leaves the network after visiting
S̃ is

1
θ̃C

∑
s∈S, c∈C

θs
cq

s,0
c

where qs,0
c

def= 1 −∑s′,c′ q
s,s′
c,c′ is the probability that a class-c customer leaves

the network after visiting station s.
The visit rates in Ñ are the same as in N for stations not in S; for the

equivalent station S̃, the visit rate for chain C is θ̃C given above. The station
function of the equivalent station S̃ is computed in such a way that replacing
all stations in S by S̃ makes no difference to the stationary probability of the
network. It follows, after some algebra, from the product form theorem (the
precise formulation is somewhat heavy), that

fS(�k) =
∑

(�ns)s∈S such thatP
s∈S, c∈C ns

c=kC

∏
s∈S

[
fs(�ns)

∏
c

(
θs

c

θSc

)ns
c

]
(8.79)

where �k is a population vector of closed or open chains. Note that some chain
C0 may be “trapped” in S, i.e. customers of this chain never leave S. The
generating function of the virtual station S has a simple expression

GS(�Z) =
∏
s∈S

Gs(�Xs) with Xs
c = ZC(c)

θs
c

θ̃C
(8.80)

where C(c) is the chain of class c. Here, C spans the set of all chains, closed
or open. Thus, the equivalent station S̃ is a per-class PS station, with one
class per chain, and with the balance function fS(�k). In the next theorem, we
provide an equivalent statement that is easier to use in practice.

The second virtual network ÑS is called the subnetwork in short-circuit .
It consists in replacing anything that is not in S by a short-circuit. In ÑS , the
service times at stations not in S are 0 and customers instantly traverse the
complement of S. This includes the virtual station 0 which represents the out-
side, and ÑS is thus a closed network.(18) The population vector �k remains
constant in ÑS ; the visit rates at stations in S are the same as in the original
network for closed chains. For classes that belong to a chain that is open in
the original network, we obtain the visit rates by setting the arrival rates to 1.

(18)Make sure that this is different from the procedure used when defining the station
in isolation. In ÑS , S is connected to a short-circuit, i.e. a station where the service
requirement is 0. In contrast, in the configuration called “S in isolation”, S is connected
to a station with unit rate and unit service requirement.

Computational Aspects 317

Theorem 8.17 (Decomposition Theorem)
(See [78]) Consider a multi-class network satisfying the hypotheses of the
product form theorem 8.7. Any subnetwork S can be replaced by its equiv-
alent station S̃, with one class per chain and station function defined by
(8.80). In the resulting equivalent network Ñ , the stationary probability
and the throughputs that are observable are the same as in the original
network.
Furthermore, if C effectively visits S, the equivalent service rate to chain C
(closed or open) at the equivalent station S̃ is

μ∗S
C (�k) = λ∗SC (�k) (8.81)

where λ∗SC (�k) is the throughput of chain C for the subnetwork in short-circuit
ÑS when the population vector for all chains (closed or open) is �k.

The phrase “that are observable” means: the number of customers of any
class at any station not in S; the total number of customers of chain C that are
present in any station of S; the throughputs of all classes at all stations not in
S; the throughputs of all chains. Recall that the per chain throughput λC(�K)
(defined in (8.59)) is the throughput measured at some station sC effectively
visited by chain C. The station sC is assumed to be the same in the original
and the virtual networks, which is possible since the visit rates are equivalent.

If C does not effectively visit S (i.e. if θ̃C
def=
∑

s∈S,c∈C θ
s
c = 0), then the

equivalent service rate μ∗S
C is undefined. This is not a problem since we do not

need it.

By the throughput theorem, (8.81) can also be written μ∗S
C (�k) = η∗(�k−�1C)

η∗(�k)
,

where η∗(�k) is the normalizing constant for the subnetwork in short-circuit ÑS .

If S consists of a single station with one class per chain at this station, then
the equivalent station is, as expected, the same as the original station. Also,
the theorem implies, as a byproduct, that the equivalent service rate for class
c at a station s, as defined in (8.64), is equal to the throughput for class c at
the network made of this station and a short circuit for every class (i.e. every
class-c customer immediately returns to the station upon service completion,
with the same class).

Example 8.13 Dual-Core Processor in Figure 8.11, continued

We replace stations 2 and 3 by one aggregated station S̃ as in Fig-
ure 8.17. This station receives only customers of class 4 (internal jobs).
Its equivalent service rate is

μ∗(n4) =
η∗(n4 − 1)
η∗(n4)

(8.82)

318 Queuing Theory for Those who cannot Wait

~

ν

μ∗ (n4)

β1
α1

α1 + β1α3 α2

Station s=1
MSCCC

p2,class 2

p3,class 3

p1,class 1

class 4

Aggregate Station S

(a)

ISPS

Station s=2Station s=3

class 4

NS
~

(b)

Figure 8.17 Aggregation of stations applied to the dual-core processor ex-
ample of Figure 8.11. (a) Stations 2 and 3 are replaced by S̃. (b) The network
in short-circuit ÑS used to compute the equivalent service rate μ∗(n4) of S̃.

where η∗(n4) is the normalizing constant for the network ÑS , obtained
when replacing station 1 by a short-circuit as in Figure 8.17. The z
transform of η∗ is given by the convolution theorem 8.11:

Fη∗(Y) = eS̄2Y 1
1 − S̄3Y

(8.83)

One can compute a Taylor expansion and deduce η∗(n) or use filter
as in the other examples, but here one can also find a closed form

η∗(n) =
(
S̄3
)n n∑

k=0

(
S̄2

S̄3

)k 1
k!

(8.84)

Note that for large n, η∗(n) ≈ (
S̄3
)n exp

(
S̄2

S̄3

)
and thus μ∗(n) ≈ 1

S̄3 ,
i.e. it is equivalent to station 3 (but this is true only for large n). We
can deduce the equivalent service rate μ∗(n) and obtain the probability
distribution P ∗(n) of internal jobs at stations 2 or 3 using Theorem 8.14
as in Example 8.10.
Note that internal jobs are either at station 1, or at stations 2 or 3. We
should thus have

P ∗(n | K) = P ′1(K − n | K) (8.85)

Computational Aspects 319

where P ′1(· | K) is the probability distribution for internal jobs at
station 1, already obtained in Example 8.11. This can be verified nu-
merically.

8.6.7 MVA Version 2

This is an algorithm which, like MVA version 1, avoids computing the normal-
izing constant, but which applies to fairly general station types [84]. We give a
version for single chain (but multi-class) networks. For networks with several
chains, the complexity of this method is exponential in the number of chains,
and more elaborate optimizations have been proposed; see [27] and [28] as well
as [6] and the discussion therein.

The starting point is the decomposition theorem, which states that one
can replace a subnetwork by a single station if one manages to compute its
throughputs in short circuit. For example, using MVA version 1, one can
compute the throughputs of a subnetwork made of single-server FIFO or IS
stations (or equivalent). Therefore, one can replace the set of all such stations
in a network by a single station.

MVA version 2 does the same thing for general stations in closed networks.
This can be reduced to the simpler problem of how to compute the throughput
of a network of 2 stations, with numerically known service rates. If we can
solve this problem, we can replace the 2 stations by a new one. The service
rate is then equal to the throughput (according to Theorem 8.17), and we can
iterate. This problem is solved by the next theorem. It uses the concept of
networks in short-circuit.

Theorem 8.18 (Complement Network Theorem)
Consider a closed multi-class product form queuing network N . Let S1,S2

be partitions of N in two subnetworks and let NS1 ,NS2 be the corresponding
subnetworks in short circuit (in NS1 , all stations in S2 are short-circuited).
Define

• P 1(�k | �K) as the stationary probability that the number of customers of
chain C present in S1 is kC for all C when the total network population
vector is �K; �k is the vector with generic component k ;

• η1(�K) (resp. η2(�K), η(�K)) as the normalizing constant of NS1 (resp.
NS2 , N) when the total network population vector is �K;

• λ∗1C (�K) (resp. λ∗2C (�K), λC(�K)) as the per-chain throughput of chain C
in NS1 (resp. NS2 , N) when the total network population vector is �K.

Then, for �0 ≤ �k ≤ �K,

P 1(�k | �K) =
η1(�k)η2(�K − �k)

η(�K)
(8.86)

320 Queuing Theory for Those who cannot Wait

and for any chain C such that kC > 0,

P 1(�k | �K) = P 1
(
�k −�1C | (�K −�1C)

)λC(�K)

λ∗1C (�k)
(8.87)

P 1(�k | �K) = P 1
(
�k | (�K −�1C)

) λC(�K)

λ∗2C (�K − �k)
(8.88)

The inequalities �0 ≤ �k ≤ �K are componentwise. The proof is by direct
inspection: recognize in (8.86) the convolution theorem; (8.87) and (8.88) follow
from (8.86) and the throughput theorem.

Note that (8.87) is an instance of the equivalent service rate formula (8.65),
since λ∗1C (�k) = μ∗1

C (�k) is also equal to the equivalent service rate of S1. Equation
(8.88) is the symmetric of (8.87) when we exchange the roles of S1 and S2 since
P 1(�k | �K) = P 2(�K − �k | �K).

S2 is called the complement network of S1 in the original work [84], hence
the name.

The MVA Composition Step

In the rest of this section, we consider there to be only one chain, and we
drop the index C. Assume that we know the throughputs of the two subnet-
works λ∗1(K), λ∗2(K); the goal of the composition step is to compute λ(K).
We compute the distribution P 1(· | K) by iteration on K, starting with
P 1(0 | 0) = 1, P 1(n | 0) = 0, n ≥ 1. Equations (8.87) and (8.88) become

for k = 1, . . . ,K : P 1(k | K) = P 1
(
k − 1 | (K − 1)

) λ(K)
λ∗1(k)

(8.89)

for k = 0, . . . ,K − 1 : P 1(k | K) = P 1
(
k | (K − 1)

) λ(K)
λ∗2(K − k)

(8.90)

Neither of the two equations alone is sufficient to advance one iteration step,
but the combination of the two is. For example, use the former for k =
1, . . . ,K and the latter for k = 0. λ(K) is then obtained by the condition∑K

n=0 P
1(k | K) = 1.

MVA Version 2

The algorithm works in two phases. In phase 1, the throughput is computed.
The starting point is a network N0; first, we compute the throughput of the
subnetwork S0 made of all stations to which MVA version 1 applies, as this is
faster than MVA version 1. We replace S0 by its equivalent station; let N1 be
the resulting network.

In one step, we match stations 2 by 2, possibly leaving one station alone.
For every pair of matched stations, we apply the MVA Composition Step to the
network made of both stations in short circuit (all stations except the two of
the pair are short-circuited); we thus obtain the throughput of the pair in short-
circuit. We then replace the pair by a single station, whose service rate is the

2

What This Tells Us 321

throughput just computed. This is repeated until there is only one aggregate
station left, at which time the phase 1 terminates and we have computed the
throughput λ(K) of the original network.

In phase 2, the distributions of states at all stations of interest can be
determined using the equivalent service rate theorem ((8.65)) and normalization
to obtain the probability of an empty station; there is no need to use the
complement network in this phase.

The number of steps in Phase 1 is on the order of log2(N), where N is
the number of stations; the MVA Composition Step is applied, in total, on the
order of N times (and not 2N as wrongly assumed in [6]). The complexity of
one MVA Composition Step is linear in K, the population size.

In Algorithm 8.2 in Section 8.9.4, we give a concrete implementation.

8.7 What This Tells Us

8.7.1 Insensitivity

Multi-class product form queuing networks are insensitive to a number of prop-
erties:

• The distribution of service times is irrelevant for all insensitive stations;
the stationary distributions of numbers of customers and the throughput
depend only on traffic intensities (by means of the visit rates θs

c) and on
the station functions, which express how rates are shared between classes.
The service distribution depends on the class, and classes may be used to
introduce correlations in service times. The details of such correlations
need not be explicitly modeled, since only traffic intensities matter.
According to Little’s law, the mean response times are also insensitive (but
not the distribution of the response time, see Section 8.3.3).

• The nature of the service station plays a role only through its station func-
tion. Very different queuing disciplines such as FIFO or global PS, or global
LCFSPR with class-independent service times have the same station func-
tion. Hence, the same stationary distributions of the number of customers,
throughputs and mean response times are also irrelevant.

• The details of routings are also irrelevant, only the visit rates matter. For
example, in Figure 8.11, it makes no difference if we assume that external
jobs visit station 1 only once, without feedback.

Example 8.14 Internet Model
(See [13]) Internet users, as seen by an internet provider, are modeled
by Bonald and Proutière in [13] as follows (they use a slightly different
terminology since they do not interpret a Whittle network as a product
form station as we do).
User sessions arrive as Poisson processes. A session alternates between
active and think time. When active, a session becomes a flow and

322 Queuing Theory for Those who cannot Wait

acquires a class, which corresponds to the network path followed by
the session (there is one class per possible path). A flow of class c has
a service requirement drawn from any distribution with finite mean
S̄c. The network shares its resources between paths according to some
“bandwidth” allocation strategy. Let μc(�n) be the rate allocated to
class-c flows, where �n = (n1, . . . , nC) and nc is the number of class
c flows present in the network. We assume that it is derived from a
balance function Φ, i.e.

μc(�n) =
Φ(�n−�1c)

Φ(�n)
(8.91)

All flows in the same class share the bandwidth allocated to this class
fairly, i.e. according to processor sharing.
When a flow completes, it either leaves the network, or mutates and
becomes a session in think time. The think time duration has any
distribution with a finite mean S0. At the end of its think time, a
session becomes a flow.
This can be modeled as a single chain open network with two stations:
a Per-Class PS station for flow transfers and an IS station for think
time, as in Figure 8.18.

Internet
(Per Class PS station)

Think time
(IS station)

Session
arrival

Path c = 1

Path c = C

Session
ends

Flow
starts

Flow
ends

Session
goes into
think time

Figure 8.18 The product form queuing network used to model the Internet
in [13].

A session in think time may keep the class it inherited from the flow.
This means that we allow the classes taken by successive flows to be
non-iid, as is probably the case in reality (for example, the next flow
of this session might be more likely to take the same path). In fact, we
may imagine any dependence, it does not matter as long as the above
assumptions hold. This is due to us having a product form queuing
network; only the traffic intensities on each flow path matter, as we see
next.
With the assumption in (8.91), flow transfers are represented by means
of a per-class processor sharing station with Whittle function Φ(�n)
(this is also called a Whittle network); think times are represented by a

What This Tells Us 323

constant rate infinite server station; both are category 1 stations, thus
the network has product form.
More precisely, let θc be the visit rate at the Per-Class PS station,
class c; it is equal to the number of class-c flow arrivals per time unit.
Similarly, θ0 is the number of arrivals of sessions in think time per
time unit. Let n0 be the number of flows in think time; the stationary
probability distribution of (n0, �n) is, according to the product form
theorem,

P (n0, �n) = ηΦ(�n)
C∏

c=1

(
S̄cθc

)nc
(
θ0S̄0

)n0

= ηΦ(�n)
C∏

c=1

ρnc
c ρn0

0 (8.92)

where η is a normalizing constant and ρc = θcS̄c, ρ0 = θ0S̄0 are the
traffic intensities.
Equation (8.92) is a remarkably simple formula. It depends only on the
traffic intensities, and not on any other property of the session think
times or flow transfer times. It holds as long as bandwidth sharing
(i.e. the rates μc(�n)) derives from a balance function. In [13], it is
shown that this is also a necessary condition.
The above is used by the authors in [13] to advocate that bandwidth
sharing be performed using a balance function. Bandwidth sharing
is the function, implemented by a network, which decides the val-
ues of μc(�n) for every c and �n. The set R of feasible rate vectors(
μc(�n)

)
c=1,...,C

is defined by the network constraints. For instance, in
a wired network with fixed capacities, R is defined by the constraints∑

c∈� μc < Rl where � is a network link, Rl its rate, and “c ∈ �” means
that a class-c flow uses link �. The authors define balanced fairness
as the unique allocation of rates to classes which (1) derives from a
balance function and (2) is optimal in the sense that for any �n, the
rate vector

(
μc(�n)

)
c=1,...,C

is at the boundary of the set of feasible rate
vectors R. They show that such an allocation is unique; algorithms to
compute the balance function are given in [14].

8.7.2 The Importance of Modeling Closed Populations

Closed chains give a means of accounting for feedback in the system, which
may provide a different insight as opposed to that of the single-queue models in
Section 8.3. This is illustrated in Section 8.9, where we see that the conclusion
(regarding the impact of capacity doubling) is radically different depending on
if we assume an infinite or a finite population.

Another useful example is the Engset formula, which we now describe.
The Erlang loss formula gives the blocking probability for a system with B
servers, a general service time and Poisson external arrivals. If the population

324 Queuing Theory for Those who cannot Wait

of tasks using the system is small, there is a feedback loop between the system
and the arrival process, since a job that is accepted cannot create an arrival.
An alternative to the Erlang loss formula is the model in Figure 8.19, with a
finite population of K jobs, a single class of customers, and two stations. Both
stations are IS; station 1 represents the service center with B resources, and
station 2 represents the user think time. If station 1 has B customers present,
arriving customers are rejected and instantly return to station 2 where they
resume service. Service requirements are exponentially distributed. This is
equivalent to the form of blocking called partial blocking in Section 8.8.6; a
form that requires that routing be reversible. Since there are only two stations,
the topology is a bus and the routing is reversible, thus the network has product
form.

Station 1
With Capacity B

Station 2
(IS station)

Station 1 full
K>B customers

in total

Figure 8.19 The model used to derive the Engset formula.

It follows that the probability P (n | K) of there being n customers in
service, given that the total population is K ≥ B, is obtained by the product
form theorem and the station functions for IS:

P (n | K) =
1
η

(
S̄1
)n

n!

(
S̄2
)K−n

(K − n)!
(8.93)

Here, η is a normalizing constant, S̄1 is the average processing time and S̄2 the
average think time. Let ρ = S̄1

S̄2 ; we then have:

η =
B∑

n=0

ρn

n! (K − n)!

The blocking probability P 0(B | K) is equal to the Palm probability for an
arriving customer to find B customers in station 1. By the arrival theorem, it
is equal to P (B | K − 1). Thus, for K > B,

P 0(B | K) =

ρB

B! (K −B − 1)!
B∑

n=0

ρn

n! (K − n− 1)!

(8.94)

Mathematical Details about Product-Form Queuing Networks 325

and P 0(B | K) = 0 for K ≤ B. Equation (8.94) is called the Engset formula
and gives the blocking probability for a system with B resources and a pop-
ulation of K. Just as the Erlang-loss formula, the expression is valid for any
distribution of the service time (and of the think time). When K → ∞, the
Engset formula is equivalent to the Erlang-loss formula.

8.8 Mathematical Details about
Product-Form Queuing Networks

8.8.1 Phase-Type Distributions

For insensitive stations, the service time distribution is assumed to be a phase-
type distribution; also called a mixture of exponentials or a mixture of
gamma distribution. It is defined next. Note that the product form theorem
implies that the stationary distribution of the network is insensitive to any
property of the distribution of service requirement other than its mean. Thus,
it seems plausible to conjecture that the product form network continues to
apply if we relax the phase type assumption. This is indeed shown for networks
made of Kelly stations and of “Whittle network” stations in [8].

A non-negative random variable X is said to have a phase-type distri-
bution if there exists a continuous time Markov chain with finite state space
{0, 1, . . . , I} such that X is the time until arrival into state 0, given some initial
probability distribution.

Formally, a phase type distribution with n stages is defined by the non-
negative sequence (αj)j=1...,n with

∑
j αj = 1 and the non-negative matrix

(μj,j′)j=1,...,n, j′=0,...,n. αj is the probability that, initially, the chain is in state
j and μj,j′ ≥ 0 is the transition rate from state j to j′, for j �= j′. Let
Fj(s) be the Laplace-Stieltjes transform of the time from now to the next
visit to state 0, given that the chain is in state j now. Based on the Markov
property, the Laplace-Stieltjes transform of the distribution we are interested
in is E

(
e−sX

)
=
∑

j
=0 αjFj(s) for all s > 0. To compute Fj(s), we use the
following equations, which also follow from the Markov property:

∀j ∈ {0, 1, . . . , J} :⎛
⎝s+

∑
j′
=j

μj,j′

⎞
⎠Fj(s) = μj,0 +

∑
j′
=j, j′
=0

μj,j′Fj′ (s) (8.95)

Consider for example the Erlang-n and hyper-exponential distributions,
which correspond to the Markov chains illustrated in Figure 8.20. The

326 Queuing Theory for Those who cannot Wait

αi

α1
λ1

λ2

λn

α2

αn

μi,j μi,j

μj,0

μi,0

λ λ λ

i

j

αj

X ∼ PH

X ∼ Erlang

X ∼ Hyper-Exponential

1

1

2

2

...

n

n

Figure 8.20 Mixtures of exponential: a phase-type distribution is the distribution
of the time until absorption into state 0 (state 0 represents the exit and is not shown).
The Erlang and Hyperexponential distributions are special cases.

Laplace-Stieltjes transform of the Erlang-n distribution is F1(s), which is de-
rived from (8.95):

(λ+ s)F1(s) = λF2(s)
...

(λ+ s)Fn−1(s) = λFn(s)
(λ+ s)Fn(s) = λ

and is thus
(

λ
λ+s

)n. This could also be obtained by noting that it is the
convolution of n exponentials. (Note that this represents a special case of
Gamma distribution). The PDF is f(x) = λn xn−1

(n−1)! e
−λx. The mean is S̄ = n

λ ;
if we set the mean to a constant and let n→ ∞, the Laplace-Stieltjes transform
converges, for every s > 0, to e−sS̄ , which is the Laplace-Stieltjes transform of
the constant concentrated at S̄. In other words, the Erlang-n distribution can
be used to approximate a constant service time.

Similarly, the Laplace-Stieltjes transform of the Hyper-Exponential distri-
bution follows immediately from (8.95) and is

∑
j=1n

αjλj

λj+s . Moreover, the PDF
is f(x) =

∑
j=1n αj e

−λj′x. This can be used to fit any arbitrary PDF.

8.8.2 Micro and Macro States

The state of every station is defined by a micro-state , as follows.

Insensitive Station. The micro-state is (B,J), where B is the state of the
station buffer introduced in Section 8.4.2 and J is a data structure with the
same indexing mechanism, which holds the service phase for the customer at

Mathematical Details about Product-Form Queuing Networks 327

this position. In other words, for every index i in the index set of the buffer, Bi

is the class of the customer present at this position, and Ji is the service phase
of the same customer (if there is no customer present at this position, both are
0). A customer at position i receives a service rate ρi(B) given by (8.26). This
means that the probability that this customer moves from the service phase
j = Ji to a next phase j′ in a time interval of duration dt is ρi(B)μc

j,j′dt+o(dt)
where c = Bi is this customer’s class and μc

j,j′ is the matrix of transition rates
at this station for class-c customers, in the phase type representation of service
requirement. If the next service phase is j′ = 0, this customer will leave the
station. When a class-c customer arrives at this station, he/she is inserted at
position i in the buffer with the probability given in (8.25); the initial stage is
set to j with the probability αc

j , the initial stage distribution probability for
customers of this class at this station, and Ji is set to j.

MSCCC Station. The micro-state is an ordered sequence of classes (c1, c2, . . .,
cM), where M is the number of customers present in the station. When a
customer arrives, he/she is added at the end of the sequence. The customers
in service are the first B eligible customers; a customer in position m is eligible
if and only if there is a token available (i.e.

∑m−1
m′=0 1{G(cm′)=g} < Tg with g =

G(cm)) and there is a server available (i.e.
∑

g min
(
Tg,
∑m−1

m′=0 1{G(cm′)=g}
)
<

B). There is no state information about the service stage, since this category
of station requires that the service times be exponentially distributed, hence
memoryless. The probability that an eligible customer leaves the station in a
time interval of duration dt is 1

S̄
r(M) dt+ o(dt), where r(M) is the rate of this

station when M customers are present and S̄ is the mean service time (both
independent of the class). Non-eligible customers may not leave the station.

The global micro-state of the network is the sequence (e1, e2, . . . , eS), where
es is the micro-state of station s. With the assumptions above, this defines a
continuous-time Markov chain. A network is defined by the population in closed
chains, KC . The global micro-state space, M, is the set of all (e1, e2, . . . , eS)
that are possible, given the rules of each station and provided that

(1) the total number of customers in chain C present anywhere in the network
is KC, if C is a closed chain, and any non-negative integer otherwise;

(2) if the visit rate θs
c is 0 for some station s and class c, then there may not

be any customer of class c at station s.

The macro-state of station s is the vector �ns = (ns
1, . . . , n

s
C), where ns

c is
the number of class-c customers present at this station. The global macro-state
is the collection (�ns)s=1,...,S ; the global macro state does not define a Markov
chain due to too much information being lost (for MSCCC stations, we lost
the order of customers; for insensitive stations, we lost the service phase).
The micro-state description is required to prove theorems, but most formulas
of interest are expressed in terms of macro-states. The global macro-state
space, L, is the set of all (�ns)s=1,...,S ≥ �0 such that

(1)
∑

c∈C,s n
s
c = KC for every closed chain C;

(2) if the visit rate θs
c is 0 for some station s and class c, then ns

c = 0.

328 Queuing Theory for Those who cannot Wait

8.8.3 Micro to Macro: Aggregation Condition

All results in the previous sections apply to the macro-state description of the
network. In the given form, they require that the aggregation condition holds,
which states that

aggregation of state from micro to macro
does not introduce non-feasible micro-states

This is equivalent to saying that the set M is fully connected, i.e. that any
global micro-state can be reached from any initial condition in a finite number
of transitions of the underlying Markov chain. This is generally true except
in pathological cases where the order of customers is preserved throughout
the network lifetime. Consider for example a cyclic network with only FIFO
stations and one customer per class. The initial order of customers cannot be
changed and only states in M that preserve the initial ordering are feasible.
In such a network, the product form does hold, but formulas for macro states
are different than those given in this chapter as the number of micro-states
providing one specific macro-state is smaller.

8.8.4 Local Balance in Isolation

The station function can be defined both at the micro and macro levels. For-
mally, the station function at the micro level is a function F (e), if it exists,
of the micro state e of the function in isolation, such that F (∅) = 1, where ∅ is
the empty state. Moreover, the stationary probability of state e in the station
in isolation is η(�K)F (e), where η(�K) is a normalizing constant that depends
on the total populations of customers Kc for every class c, in the station in
isolation.

We say that a station satisfies the property of local balance in isolation
if the following holds. For every micro-state e and class c,

the departure rate out of state e due to a class-c arrival
= the arrival rate into state e due to a class-c departure

(8.96)

In this formula, the rates are given with respect to the stationary probability
of the station in isolation, as defined earlier. It follows that one must also have

the departure rate out of state e
due to a departure or an internal transfer, of any class

= the arrival rate into state e
due to an arrival or an internal transfer, of any class

(8.97)

where an internal transfer is a change of state without arrival nor departure
(this is valid for insensitive stations, and is a change of phase for one customer
in service). The collection of all these equations is the local balance in isolation.
If one finds a station function such that local balance in isolation holds, then
this must be the stationary probability of the station in isolation, up to a
multiplicative constant.

Mathematical Details about Product-Form Queuing Networks 329

For example, consider a FIFO station with 1 server and assume that there
is one class per chain in the network (i.e. customers do not change class). Let
F (c1, . . . , cM) be the stationary probability for the station in isolation. Local
balance here writes

F (c1, . . . , cM)1{PM
m=1 1{cm=c}<Kc} = F (c, c1, . . . , cM)μ for all class c

F (c1, . . . , cM)μ = F (c1, . . . , cM−1)1{PM−1
m=1 1{cm=cM }<KcM

}

where Kc is the number of class-c customers in the system and μ = 1
S̄
. The

function F (c1, . . . , cM) = S̄M satisfies both of these types of equations, for
which reason it is equal to the stationary probability of the station in isolation,
up to a multiplicative constant. F (c1, . . . , cM) = S̄M is the microscopic sta-
tion function. The station function f(�n) given earlier follows by aggregation;
indeed, let E(n1, . . . , nC) be the set of micro-states of the FIFO station with
nc customers of class c, for every c.

f(n1, . . . , nC) =
∑

e∈E(n1,...,nC)

S̄(n1+···+nC) =
(n1 + · · · + nC)!

n1! · · ·nC !
S̄(n1+···+nC)

since (n1+···+nC)!
n1!···nC ! is the number of elements of E(n1, . . . , nC). This is exactly

the station function for the FIFO station described in (8.47).

8.8.5 The Product Form Theorem

The product form theorem in 8.7 is a direct consequence of the following main
result.

Theorem 8.19
Consider a multi-class network with Markov routing and S stations. As-
sume that all S stations satisfy local balance in isolation, and let F s(es) be
the station function at the micro level for station s, where es is the micro
state of station s. Then

p(e1, e2, . . . , eS) def=
S∏

s=1

F s(es) (8.98)

is an invariant measure for the network.

The theorem implies that, if appropriate stability conditions hold, the prod-
uct p(e1, e2, . . . , eS) must be equal to a stationary probability, up to a normal-
izing constant. The proof can be found in [78]; see also [44] and [10]. It consists
in a direct verification of the balance equation. More precisely, one shows that,
in the network,

the departure rate out of state e due to a departure of any class
= the arrival rate into state e due to an arrival of any class

(8.99)

330 Queuing Theory for Those who cannot Wait

In this formula, the rates are given with respect to the joint network probability
of all stations at the micro level, obtained by re-normalizing p(·). Note that
the local balance property, as defined in (8.96), generally does not hold inside
the network at the micro level.

If the aggregation condition holds, then one can sum up (8.98) over all
micro-states for which the network population vector is �n and obtain (8.51),
which is the macro-level product form result. Note that, at the macro-level,
one has, in the network, and for any class c,

the departure rate out of state e due to a class-c departure
= the arrival rate into state e due to a class-c arrival

(8.100)

In this formula, the rates are given with respect to the joint network probability
of all stations at the macro-level. Note the inversion with respect to local
balance.

The resulting independence for the open case in Theorem 8.8 therefore
also holds for micro-states: in an open network, the micro-states at different
stations are independent.

The proof of the product form Theorem 8.7 follows immediately from The-
orem 8.19 and the fact that all stations in our catalog satisfy the property of
local balance in isolation. The proof that MSCCC stations satisfy the local
balance property is presented in [53], [11]. For Kelly-Whittle stations, the re-
sult was priorly known for some specific cases. For the general case, however
it is new.

Theorem 8.20
Kelly-Whittle stations satisfy local balance in isolation.

The proof is given in Section 8.10.

8.8.6 Networks with Blocking

It is possible to extend Markov routing to state-dependent routing, In partic-
ular, one can allow for some (limited) forms of blocking, as follows. Assume
that there are some constraints on the network state. There may for instance
be an upper limit to the number of customers in one station. A customer fin-
ishing a service, or, for an open chain, a customer arriving from the outside, is
denied access to a station if accepting this customer would violate any of the
constraints. Consider the following two cases:

Transparent Stations with Capacity Limitations. The constraints on the net-
work state are expressed by L capacity limitations of the form

∑
(s,c)∈H�

ns
c ≤ Γ� � = 1, . . . , L (8.101)

where ns
c is the number of class c customers present at station c, H� is a subset

of {1, . . . , S}×{1, . . . , C} and Γ� ∈ N. In other words, some stations or groups

Case Study 331

of stations may put limits on the number of customers of some classes or groups
of classes.

If a customer is denied access to station s, she continues her journey through
the network, using Markov routing with the fixed matrix Q, until she finds a
station that accepts her or until she leaves the network.

Partial Blocking with Arbitrary Constraints. The constraints can be of any
type. Further, if a customer finishes the service and is denied access to station
s, he/she stays blocked in service. More precisely, we assume that service
distributions are of phase-type, and the customer resumes the last completed
service stage. If the customer arrived from the outside, he/she is dropped.

Further, we need to assume that Markov routing is reversible, which
means that

θs
cq

s,s′
c,c′ = θs′

c′ q
s′,s
c′,c (8.102)

for all s, s′, c, c′. Reversibility is a constraint on the topology; bus and star
networks give reversible routing, but ring networks do not.

Assume, in addition, that the service requirements are exponentially dis-
tributed (but may be class-dependent at insensitive stations). The product
form theorem then continues to apply for these two forms of blocking ([80], [58]
and [44]). There are other cases, too, see [6] and references therein.

There is a more general result: if the service distributions are exponential
and the Markov routing is reversible, then the Markov process of global micro-
states is also reversible [54]. Let Xt be a continuous time Markov chain with
stationary probability p(·) and state space E . The process is called reversible
if p(e)μ(e, e′) = p(e′)μ(e′, e) for any two states e, e′ ∈ E , where μ(e, e′) is the
rate of transition from e to e′. Reversible Markov chains enjoy the following
truncation property [44]. Let E ′ ⊂ E and define the process X ′

t by forcing
the process to stay within E ′; this is done by taking some initial state space
e ∈ E ′ and setting to 0 the rate of any transition from e ∈ E to e′ ∈ E ′. Then
the restriction of p to E ′ is an invariant probability; in particular, if E ′ is finite
and fully connected, the stationary probability of the truncated process is the
restriction of p to E ′, up to a normalizing constant.

Note that setting to 0 the rates of transitions from e ∈ E to e′ ∈ E ′ is
equivalent to stating that we allow the transition from e to e′ but then force
an immediate, instantaneous return to e. This explains why we have product
form for networks with partial blocking with arbitrary constraints.

8.9 Case Study

In this section, we show how the four topics in the previous section can be
combined to address a queuing issue. Recently, one could read on the walls
of the city where I live the following advertisement for a ski resort: “capacity
doubled, waiting time halved”. Does this statement hold? I was intrigued by

332 Queuing Theory for Those who cannot Wait

this sweeping statement, and realized that it can be found repeatedly in many
different situations: doubling the processor speed or doubling the number of
cores in a computer, doubling the web front end in a server farm, etc. In the
rest of this section we focus on the ski resort example.

First, we apply the principles in Chapter 1 and define the goals and factors.

• Goal: evaluate the impact of doubling the capacity of a skilift on the re-
sponse time.

• Factors: c = capacity of skilift in people per second.
• Metrics: response time. A more detailed reflection leads to considering the

waiting time, as this is the parameter that affects a customer’s perception.
• Load: we consider two load models,

(1) a heavy burst of arrival (after a train or a bus arrives at the skilift),
(2) peak hour stationary regime.

8.9.1 Deterministic Analysis

We can model the skilift as the queuing system illustrated in Figure 8.21. The
first queue models the gate; it is a single server queue. Its service time is the
time between two passages through the gate when there is no idle period. It
is equal to 1

c . The second queue represents the transportation time. It is an
infinite server queue, with no waiting time. Since our performance metric is
the waiting time, we may ignore the second queue in the rest of the analysis.

Figure 8.21 Queuing model of a skilift.

Case Study 333

Assume that the arrival of skiers is one single burst (they all arrive at the
same time). Also assume that all skiers spend the same time going through the
gate, which is roughly true in this scenario. The model in Section 8.1.1 applies,
with A(t) = the number of skiers arriving in [0, t] and D(t) = the number of
skiers entering the skilift in [0, t]. Thus, the delay d(t) is the waiting time,
excluding the time spent on the skilift. We also have β(t) = ct, where c =
the capacity of the skilift, in skiers per second. We have A(t) = B for t ≥ 0.
Figure 8.22 shows that doubling the capacity does indeed divide the worst-case
waiting time by two.

B

time

bit

A(t)

B(t)=2ct

dmax/2

dmax

B0(t)=ct

Figure 8.22 Transient Analysis: A burst of skiers arrives at time 0. The impact of
doubling the capacity of the skilift.

However, is the average waiting time also divided by 2? To answer this
question, we take the viewpoint of an arbitrary customer. We see that the
waiting time seen by a customer arriving as number y (0 ≤ y ≤ B) is linear
in y, thus the average waiting time is equal to the worst-case response time
divided by 2. Here too, a doubling of the capacity divides the average waiting
time by 2.
Question 8.14 In reality, even if the arrival of skiers is bursty, it may not
be as simultaneous as we just described. We can account for this by taking
A(t) = kct for 0 ≤ t ≤ t0 and A(t) = A(t0) for t ≥ t0, with k ≥ 1. What is the
conclusion now?(19)

8.9.2 Single Queue Analysis

Assume now that we observe the system in the middle of the peak hour. We
can model the gate as a single queue, with one or perhaps several servers. It
is difficult to give a more accurate statement of the arrival process without
performing actual measurements. Whatever the details, doubling the capacity

(19)The response time is reduced by a factor higher than 2.

334 Queuing Theory for Those who cannot Wait

halves the utilization factor ρ. A major pattern of single queue systems is the
non-linearity of the response time, as in Figure 8.7.

In fact, the effect on the response time depends on where we are positioned
on the curve. If the system is close to saturation, as is probably the case, the
effect is a large reduction of the average waiting time, probably much larger
than 2. Thus with this model, doubling the capacity decreases the waiting time
by more than two.

8.9.3 Operational Analysis

It is probably unrealistic to assume that a reduction in waiting time has no
effect on the arrival rate. A better, though simplified, model is illustrated in
Figure 8.23. It is a variant of the interactive user model in Figure 8.3. Here,
we assume that the mean number N̄ of skiers in the system is independent of c.

(a)

0 0.02 0.04 0.06 0.08 0.1
0

10

20

30

40

50

60

70

80

(b)

Figure 8.23 (a) A model that accounts for the dependency of the arrival rate and
waiting time. (b) The waiting time in minutes for this model versus 1

c
, where c is

the skilift capacity (in people per minute). The solid line is the approximation by
bottleneck analysis. The crosses are obtained by analytical solution of the queuing
network model in Figure 8.24, with the following parameters: population size K =
800 skiers; number of servers at gate B ∈ {1, 2, . . . , 7, 8}; service time at gate S̄ ∈
{2.5, 5, 10, 20} s; time between visits to the gate Z̄ = 10 min.

Case Study 335

We apply bottleneck analysis. Let λ be the throughput of the skilift, S̄ the
time spent serving one customer at the lift, Z̄ the time spent going up on the
lift or down on the slope and W̄ the average waiting time at the lift. We have

⎧⎨
⎩
λ(W̄ + S̄ + Z̄) = N̄

λ ≤ c

and S̄ is assumed to be negligible as compared to Z̄. Consequently,

W̄
≈≥ max

(
N̄

c
− Z̄, 0

)

Figure 8.23 shows the approximate bound as a function of 1
c for the sake of

comparison with Figure 8.7. Points obtained by mean value analysis are also
plotted and we see that the bound is in fact a very good approximation.

This strongly suggests that the function f that maps 1
c to the average

response time is convex; the graph of a convex function is below its chords,
thus

f

(
1
2c

)
<

1
2
f

(
1
c

)

and doubling the capacity reduces the waiting time by more than 2.

We also see that a key value is c∗ = N̄
Z̄

. Note that 1
Z is the rate at which

one customer would arrive at the gate if there was no queue, thus c∗ is the rate
of customers under the condition that the gate would not delay them. If c is
much larger than c∗, the waiting time is small, and doubling of the capacity
would have little effect. For c much smaller than c∗, the waiting time increases
at an almost constant rate. Thus we should target c on the order of c∗. In
other words, we should match the capacity of the gate to the “natural” rate c∗.

Question 8.15 Assume that the system is highly congested before doubling
the capacity. What is the reduction in waiting time after doubling the capac-
ity?(20)

8.9.4 Queuing Network Analysis

We can model the network in Figure 8.23 as a single class, closed product form
queuing network as in Figure 8.24. There is no specific assumption on the
time spent on the slopes (“think time”); in contrast we need to assume that the
service time at the gate is exponentially distributed. Let S̄ be the mean service
time at the gate and B the number of servers, so that c = B

S̄
. The mean service

time at the IS station is Z̄.

(20)For a highly congested system (2c much smaller than c∗) the offset at 0 becomes
negligible and the response time is almost linear in 1

c
. Thus, doubling the capacity

reduces the waiting time by 2, roughly speaking – but the system remains congested
after doubling the capacity.

336 Queuing Theory for Those who cannot Wait

Gate
(FIFO, B servers)

Slope = Think time
(IS station)

Figure 8.24 A Queuing Network model of Figure 8.23.

The total number of customers is fixed and equal to K. Let λ(K) and
W̄ (K) be the throughput and the average waiting time at the gate. According
to Little’s law

λ(K)
(
W̄ (K) + S̄ + Z̄

)
= K

thus
W̄ (K) =

K

λ(K)
− S̄ − Z̄ (8.103)

We compute λ(K) by mean value analysis, which avoids computing the nor-
malizing constants and the resulting overflow problems. Let P (n | K) be the
stationary probability that there are n customers present (in service or wait-
ing) at the FIFO station, when the total number of customers is K. The mean
value analysis equations are (Section 8.6.5)

P (n | K) = P (n− 1 | K − 1)
λ(K)
μ∗(n)

if n ≥ 1 (8.104)

P (0 | K) = P (0 | K − 1)
λ(K)
λ[1](K)

(8.105)

K∑
n=0

P (n | K) = 1 (8.106)

where μ∗(n) is the equivalent service rate of the FIFO station and λ[1](K) is
the throughput of the complement of this station. Based on Table 8.1,

μ∗(n) =
min(n,B)

S̄

The complement network is obtained by short circuiting the FIFO station; it
consists of the IS station alone. Thus

λ[1](K) =
K

Z̄

Case Study 337

The mean value algorithm is given in Algorithm 8.2. Figure 8.23 and
Figure 8.25 show a few numerical results. The capacity c = B

S̄
depends on

both the number of FIFO servers B and the service time at the gate S̄. The
points in Figure 8.23 are obtained by varying both B and S̄. The figure shows
that the bottleneck analysis provides an excellent approximation. Thus this
section confirms the conclusions obtained by operational analysis.

Algorithm 8.2 Implementation of MVA Version 2 to the network in Fig-
ure 8.24.
1: K =: population size
2: p(n), n = 0...K: probability that there are n customers at the FIFO station
3: λ: throughput
4: p(0) = 1, p(n) = 0, n = 1...K
5: for k = 1 : K do
6: p∗(n) = p(n− 1)Z̄/min(pn,B), n = 1 . . . k � Unnormalized p(n | k),
7: � (8.104)
8: p∗(0) = p(0)Z̄/k � Unnormalized p(0 | k), (8.105)

9: λ = 1/
∑k

n=0 p
∗(n)

10: p(n) = p∗(n)/λ, n = 0 . . . k
11: end for

0 100 200 300 400 500 600 700 800
0

5

10

15

20

25

(a) Throughput, B = 4

0 100 200 300 400 500 600 700 800
−5

0

5

10

15

20

25

(b) Waiting time, B = 4

Figure 8.25 Throughput λ(K) in customers per minute and waiting times W (K)
in minutes for the skilift example in Figure 8.24 with B servers at the gate, versus
the number of customers K. The results are obtained by analytical solution of the
queuing network model (using the MVA algorithm). The dotted lines correspond to
the maximum throughput B

S̄
and the waiting times predicted by bottleneck analysis.

S̄ = 10 s and Z̄ = 10 min.

338 Queuing Theory for Those who cannot Wait

0 100 200 300 400 500 600 700 800
0

5

10

15

20

25

30

35

40

45

50

(c) Throughput, B = 8

0 100 200 300 400 500 600 700 800
−1

0

1

2

3

4

5

6

7

(d) Waiting time, B = 8

Figure 8.25 (Continuation.)

8.9.5 Conclusions

Doubling the capacity does indeed reduce the waiting time by a factor of 2
during bursts of arrivals, and by a factor of 2 or more during the stationary
regime. This is independent of whether the increase in capacity is obtained by
increasing the number of servers or by reducing the service time at the gate.

These findings assume that the arrival rate is not impacted by the capacity
increase and does not account for long-term effects. In the long run, a reduction
in waiting time might attract more customers and this will in turn increase the
waiting time.

There is an optimal capacity c∗, for any target customer population size
K∗ (maximum number of customers that the ski resort can accommodate on
the slopes), given by c∗ ≈ K∗

Z̄
where Z̄ is the mean time between visits to the

gate. If the capacity is below c∗, the waiting time is large; increasing c beyond
c∗ brings little benefit to waiting time.

8.10 Proofs

Theorem 8.2

Apply Theorem 7.4 to X(t) = N(t) and Tn = the superposition of arrivals
and departures. The derivative of N(t) is 0, and the jumps are +1 at in-
stants of arrival, and −1 at instants of departures. Thus, E

0(ΔN0) = 0. Now
E

0(ΔN0) = +1p0
a − 1p0

d , where p0
a is the probability that an arbitrary point is

an arrival (resp. departure). It follows that p0
a = p0

d and since p0
a + p0

d = 1, it
follows that p0

a = p0
d = 0.5, which is not so surprising since there should be, in

average, as many departures as arrivals.

Apply again the theorem to X(t) = 1−zN(t)

1−z where z is some arbitrary
number in (0, 1). X(t) is constant except at arrival or departure times, thus

Proofs 339

X ′(t) = 0. Further, ΔXt = zN(t)−1 if t is an arrival instant and ΔXt = −zN(t)

if t is a departure instant. Thus

0 = E
(
zN(t)−1 | t is an arrival instant

)
p0

a

− E
(
zN(t) | t is a departure instant

)
p0

d

Now N(t) is right-handside continuous, so N(t)−1 is the number of customers
just before t when t is an arrival epoch. Since p0

a = p0
d, the distributions of

the number of customers just before an arrival and just after a departure are
equal.

Theorem 8.5

Forced Flows . We apply Campbell’s formula. Let F (s, t) be the random func-
tion which returns 1 if t ≥ s and the last customer who arrived before or at −t
is in node k at time s, else returns 0. By definition of intensity,

λk = E

(∑
n∈Z

F (−An, 0)

)

where An is the point process of customer arrivals. Campbell’s formula applied
to F (−t, 0) gives

E

(∑
n∈Z

F (−An, 0)

)
= λ

∑
t∈N

E
−t
(
F (t, 0)

)
= λ

∑
t∈N

E
0
(
F (0, t)

)

where the last part is based on stationarity. Thus

λk = λE
0

(∑
t∈N

F (0, t)

)
= λVk

Total Response Time. Let N̄ (resp. N̄k) be the expected number of customers
in the service system (resp. in node k). We have N̄ =

∑
k N̄k. Apply Little’s

and the Forced Flows laws.

Theorem 8.20

We consider a Kelly-Whittle station in isolation, i.e. connected to a unit rate
per class station, with Kc customers of class c in total. We want to show
that local balance holds at the micro-level ((8.96), (8.97)). The micro-state of
the station is (B,J), where Bi is the class of the customer in position i ∈ I
of the station buffer and Ji is the phase for this customer, in the phase-type
representation of service times. If there is no customer in position i, we let
Bi = Ji = −1. We assume that the index set I is enumerable, and that the
initial number of occupied positions is finite, so that it remains finite for ever.

340 Queuing Theory for Those who cannot Wait

Let αc
j and μc

j,j′ be the matrices of initial probabilities and transition rates
in the phase type representation of service rates for class c, with j = 1, . . . , Jc

and j′ = 0, . . . , Jc. Without loss of generality, we assume JC = J . Recall
that j′ = 0 corresponds to an end of service. For every c, let the array θc

j ,
j = 1, . . . , J , be a solution of

1 =
J∑

j=1

θc
j

μc
j,0

μ̄c
j

θc
j = αc

j +
J∑

j′=1

θc
j′
μc

j′,j

μ̄c
j′

with

μ̄c
j =

J∑
j′=0

μj,j′

so that θc
j is the mean number of visits to stage j during one class c customer’s

service time. Note that the mean service requirement for class c is

S̄c =
J∑

j=1

θc
j

μ̄c
j

(8.107)

We will show that the stationary probability of the station in isolation is pro-
portional to

F (B,J) def= Ψ(B)
∏
i∈I

Bi
=−1

θBi

Ji

μ̄Bi

Ji

(8.108)

where Ψ is the Whittle function. Clearly, this will imply that F is the sta-
tion function. Note that the product is always finite. We now show that the
equations of local balance, (8.96) and (8.97), hold. Consider first (8.96). The
departure rate due to a class-c arrival is simply F (B,J)1{nc(B)<Kc}, by defini-

tion of the station in isolation, where nc(B) def=
∑

i∈I 1{Bi=c} is the number of
class-c customers. The arrival rate due to a class-c departure is 0 if nc(B) < Kc

(one cannot reach a state where all class-c customers are in the station by a
departure) and otherwise, by definition of the service rate,

∑
i∈I,j=1,...,J

F
(
add(B, i, c), add(J , j, c))γ(i, add(B, i, c))

× Ψ
(
remove(add(B, i, c), i))

Ψ
(
add(B, i, c)) μc

j,0

= F (B,J)
∑

i∈I,j=1,...,J

θc
j

μ̄c
j

γ
(
i, add(B, i, c))μc

j,0

= F (B,J)

(∑
i∈I

γ
(
i, add(B, i, c))

)⎛
⎝ ∑

i∈I,j=1,...,J

θc
j

μ̄c
j

μc
j,0

⎞
⎠ = F (B,J)

Proofs 341

Consequently, (8.96) holds. We now show (8.97). The left-hand side is

F (B,J)
∑
i∈B

C∑
c=1

J∑
j=1

γ(i,B)
Ψ
(
remove(B, i))

Ψ(B)
μ̄c

j1{Bi=c}1{Ji=j}

and the right-hand side is RHSa + RHSt, where the former term corresponds
to an arrival, and the latter to an internal transfer:

RHSa =
∑
i∈I

C∑
c=1

J∑
j=1

F
(
remove(B, i), remove(J , i)

)
γ(i,B)αc

j1{Bi=c}1{Ji=j}

= F (B,J)
∑
i∈I

C∑
c=1

J∑
j=1

Ψ
(
remove(B, i))

Ψ(B)
μ̄c

j

θc
j

γ(i,B)αc
j1{Bi=c}1{Ji=j}

We use the notation Bi′,i def= add
(
remove(B, i), i′,Bi

)
. By hypothesis, Bi,i = B

and Bi′,i is the only buffer state B′ such that remove(B′, i′) = remove(B, i) and
B′

i′ = c. Also note that add
(
remove(B, i), i,Bi

)
= B. Thus,

RHSt =
∑

i,i′∈I

C∑
c=1

J∑
j,j′=1

F
(
Bi′,i, add

(
remove(J , i), i′, j′))

× γ(i′,Bi′,i)
Ψ
(
remove(Bi′,i, i′)

)
Ψ(Bi′,i)

μc
j′,j

× γ
(
i, add

(
remove(Bi′,i, i′), i, c

))
1{Bi=c}1{Ji=j}

=
∑

i,i′∈I

C∑
c=1

J∑
j,j′=1

F
(
Bi′,i, add

(
remove(J , i), i′, j′))

× γ(i′,Bi′,i)
Ψ
(
remove(B, i))
Ψ(Bi′,i)

μc
j′,j

× γ
(
i, add

(
remove(B, i), i, c)) 1{Bi=c}1{Ji=j}

= F (B,J)
∑

i,i′∈I

C∑
c=1

J∑
j,j′=1

θc
j′ μ̄j

θc
j μ̄j′

× γ
(
i′, add

(
remove(B, i), i′,Bi

)) Ψ
(
remove(B, i))

Ψ(B)
μc

j′,j

× γ(i,B)1{Bi=c}1{Ji=j}

= F (B,J)
∑
i∈I

C∑
c=1

J∑
j,j′=1

θc
j′ μ̄j

θc
j μ̄j′

Ψ
(
remove(B, i))

Ψ(B)
μc

j′,j1{Bi=c}1{Ji=j}γ(i,B)

×
∑
i′∈I

γ
(
i′, add

(
remove(B, i), i′, c))

342 Queuing Theory for Those who cannot Wait

RHSt = F (B,J)
∑
i∈I

C∑
c=1

J∑
j,j′=1

θc
j′ μ̄j

θc
j μ̄j′

Ψ
(
remove(B, i))

Ψ(B)
μc

j′,j1{Bi=c}1{Ji=j}γ(i,B)

= F (B,J)
∑
i∈I

C∑
c=1

J∑
j=1

μ̄j

θc
j

Ψ
(
remove(B, i))

Ψ(B)
1{Bi=c}1{Ji=j}

× γ(i,B)
J∑

j′=1

θc
j′

μ̄j′
μc

j′,j

= F (B,J)
∑
i∈I

C∑
c=1

J∑
j=1

μ̄j

θc
j

Ψ
(
remove(B, i))

Ψ(B)
1{Bi=c}1{Ji=j}γ(i,B)

(
θc

j − αc
j

)

Thus, combining the two gives us

RHSa + RHSt = F (B,J)
∑
i∈I

C∑
c=1

J∑
j=1

μ̄j

Ψ
(
remove(B, i))

Ψ(B)
1{Bi=c}1{Ji=j}γ(i,B)

which is equal to the right-hand side as required.

8.11 Review

8.11.1 Review Questions

8.1 Why are stations of category 1 called “insensitive”?(21)

8.2 Consider a multi-class queuing network, with FIFO queues, Poisson ar-
rivals and exponential service times; under which condition does it satisfy the
hypotheses of the product form theorem?(22)

8.3 Explain (8.17) and (8.21) by the product form theorem.(23)

8.4 Consider the network in Figure 8.24 and assume that there is only one class
of customers. Assume that the service requirement at the bottom station is
exponential (ν). State which category each station is from. Write the station
functions for both functions and verify the product-form theorem when the

(21)Their station function depends on the distribution of service time only through the
mean.

(22)The service time distributions must be independent of the class.
(23)The M/GI/1/PS queue is an open queuing network with one class of customers and

one station, with a visit rate equal to λ. The station function for a constant rate PS
station is f(n) = S̄n, thus the stationary probability of the M/GI/1/PS queue is ηρn.
By normalization, η = 1

1−ρ
, which is (8.17). Similarly for (8.21), using the station

function of the FIFO station with B servers.

Review 343

number of servers is B = 1. Compute the throughput and verify the throughput
theorem.(24)

8.5 In Section 8.4, we mention the existence of a network in [16] which is
unstable with an utilization factor of less than 1. Can it be a product-form
multi-class queuing network? Why or why not?(25)

8.11.2 Summary of Notation

Single Server Queue

Notation Definition

A/S/B/K Kendall notation: arrival process/service process/
number of servers/ capacity of queue including customers in service

λ arrival rate

B number of servers

S̄, σS ,LS mean, standard deviation and Laplace Stieltjes transform
of service time

ρ = λS̄
B

server utilization

N, N̄ , σN number of customers in system, its mean and standard deviation

Nw, N̄w , σNw number of customers waiting, its mean and standard deviation

R, R̄, σR time spent in system (residence time),
its mean and standard deviation

Vk mean number of visits per customer to node k

W, W̄ , σW waiting time, its mean and standard deviation

Z̄ av. think time in interactive user model

Queuing Networks

Notation Definition

B State of buffer in insensitive station, containing the list of
customer classes

c customer class

(24)The ‘Gate” station is a FIFO station, and thus a station of Category 2. Its station
function is f1(n) = 1

μn where 1
μ

is its mean service time. The second station is a station
of category 1 and its station function is f2(n) = 1

n! νn . The stationary probability is

p(n) =
f1(n)f2(K−n)

η(K)
when there are K customers. The balance equations are

p(n)
`
μ + (K − n)ν

´
= (K − n + 1)νp(n − 1)1{n≥1} + μp(n + 1)1{n≤K−1}

The verification is by direct computation (the terms match by pair). For the through-
put, see Example 7.17.

(25)It cannot be a product-form multi-class queuing network because these are stable when
the utilization is less than 1. It violates the assumptions because of FIFO stations with
class-dependent service rates.

344 Queuing Theory for Those who cannot Wait

Notation Definition

C customer chain; does not change for a given customer

d(�n) combinatorial function used by MSCCC station, (8.40)

D(�Z) Z-transform of δ, computed by (8.42)

fs(�ns) station function, (8.31)

Gs(�z) generating function of station function, (8.32)

G(c) token group of class c at an MSCCC station

λs
c(�K) throughput of class c observed at station s

λC(�K) throughput of chain C, Section 8.6.2
�K network population vector;

KC: number of chain C customers in network

νs
c external arrival rate of class c at station s

Φ(�n) balance function at some Kelly-Whittle stations

Ψ(B) Whittle function at Kelly-Whittle station

qs,s′
c,c′ routing probability, Section 8.4.1

S̄s
c mean service requirement at station s for class-c customers

Tg size of token pool g at MSCCC station

θs
c visit rate to station s, class c ((8.24))

Annex A

Tables

The following tables can be used to determine confidence intervals for quantiles
(including the median), according to Theorem 2.1. For a sample of n iid data
points x1, . . . , xn, the tables give a confidence interval at the confidence level
γ = 0.95 or 0.99 for the q-quantile with q = 0.5 (median), q = 0.75 (quartile)
and q = 0.95. The confidence interval is [x(j), x(k)], where x(j) is the jth data
point sorted in increasing order.

The confidence intervals for q = 0.05 and q = 0.25 are not given in the
tables. They can be deduced by the following rule. Let [x(j), x(k)] be the
confidence interval for the q-quantile given by the table. A confidence interval
for the 1 − q-quantile is [x(j′), x(k′)] with

j′ = n+ 1 − k

k′ = n+ 1 − j

For example, with n = 50, a confidence interval for the third quartile (q = 0.75)
at confidence level 0.99 is [x(29), x(45)], thus a confidence interval for the first
quartile (q = 0.25) at confidence level 0.99 is [x(6), x(22)].

For small values of n no confidence interval is possible. For large n, an
approximate value is given, based on a normal approximation of the binomial
distribution.

Note

The tables give p, the actual confidence level obtained, as it is not possible
to obtain a confidence interval at exactly the required confidence levels. For
example, for n = 10 and γ = 0.95, the confidence interval given by the table
is
[
X(2), X(9)

]
; the table states that it is in fact a confidence interval at level

0.979.

The values of j and k are chosen such that j and k are as symmetric as
possible around n+1

2 . For example, for n = 31 the table gives the interval[
X(10), X(22)

]
. Note that this is not the only interval that can be obtained

from the theorem. Indeed, we have

346 Tables

j k P
(
X(j) < m0.5 < X(k)

)
9 21 0.959

10 22 0.971

10 23 0.959

Thus we have several possible confidence intervals. The table simply picked
one for which the indices were the closest to being symmetrical around the
estimated median, i.e. the indices j and k are equally spaced around n+1

2 ,
which is used for estimating the median. In some cases, e.g. n = 32, we do not
find such an interval exactly; we have for instance:

j k P
(
X(j) < m0.5 < X(k)

)
10 22 0.965

11 23 0.965

Here, the table arbitrarily picked the former.

Tables 347

Table A.1 Quantile q = 50%, Confidence Levels γ = 95% (left) and 0.99% (right).

n j k p

n ≤ 5: no confidence interval possible
6 1 6 0.969
7 1 7 0.984
8 1 7 0.961
9 2 8 0.961
10 2 9 0.979
11 2 10 0.988
12 3 10 0.961
13 3 11 0.978
14 3 11 0.965
15 4 12 0.965
16 4 12 0.951
17 5 13 0.951
18 5 14 0.969
19 5 15 0.981
20 6 15 0.959
21 6 16 0.973
22 6 16 0.965
23 7 17 0.965
24 7 17 0.957
25 8 18 0.957
26 8 19 0.971
27 8 20 0.981
28 9 20 0.964
29 9 21 0.976
30 10 21 0.957
31 10 22 0.971
32 10 22 0.965
33 11 23 0.965
34 11 23 0.959
35 12 24 0.959
36 12 24 0.953
37 13 25 0.953
38 13 26 0.966
39 13 27 0.976
40 14 27 0.962
41 14 28 0.972
42 15 28 0.956
43 15 29 0.968
44 16 29 0.951
45 16 30 0.964
46 16 30 0.960
47 17 31 0.960
48 17 31 0.956
49 18 32 0.956
50 18 32 0.951
51 19 33 0.951
52 19 34 0.964
53 19 35 0.973
54 20 35 0.960
55 20 36 0.970
56 21 36 0.956
57 21 37 0.967
58 22 37 0.952
59 22 38 0.964
60 23 39 0.960
61 23 39 0.960
62 24 40 0.957
63 24 40 0.957
64 24 40 0.954
65 25 41 0.954
66 25 41 0.950
67 26 42 0.950
68 26 43 0.962
69 26 44 0.971
70 27 44 0.959

n ≥ 71 ≈ �0.50n −
0.980

√
n�

≈ 	0.50n+1
+ 0.980

√
n

0.950

n j k p

n ≤ 7: no confidence interval possible
8 1 8 0.992
9 1 9 0.996
10 1 10 0.998
11 1 11 0.999
12 2 11 0.994
13 2 12 0.997
14 2 12 0.993
15 3 13 0.993
16 3 14 0.996
17 3 15 0.998
18 4 15 0.992
19 4 16 0.996
20 4 16 0.993
21 5 17 0.993
22 5 18 0.996
23 5 19 0.997
24 6 19 0.993
25 6 20 0.996
26 7 20 0.991
27 7 21 0.994
28 7 21 0.992
29 8 22 0.992
30 8 23 0.995
31 8 24 0.997
32 9 24 0.993
33 9 25 0.995
34 10 25 0.991
35 10 26 0.994
36 10 26 0.992
37 11 27 0.992
38 11 27 0.991
39 12 28 0.991
40 12 29 0.994
41 12 30 0.996
42 13 30 0.992
43 13 31 0.995
44 14 31 0.990
45 14 32 0.993
46 15 33 0.992
47 15 33 0.992
48 15 33 0.991
49 16 34 0.991
50 16 35 0.993
51 16 36 0.995
52 17 36 0.992
53 17 37 0.995
54 18 37 0.991
55 18 38 0.994
56 18 38 0.992
57 19 39 0.992
58 20 40 0.991
59 20 40 0.991
60 20 40 0.990
61 21 41 0.990
62 21 42 0.993
63 21 43 0.995
64 22 43 0.992
65 22 44 0.994
66 23 44 0.991
67 23 45 0.993
68 23 45 0.992
69 24 46 0.992
70 24 46 0.991
71 25 47 0.991
72 25 47 0.990

n ≥ 73 ≈ �0.50n −
1.288

√
n�

≈ 	0.50n+1
+ 1.288

√
n

0.990

348 Tables

Table A.2 Quantile q = 75%, Confidence Levels γ = 95% (left) and 0.99% (right).

n j k p

n ≤ 10: no confidence interval possible.
11 5 11 0.950
12 6 12 0.954
13 7 13 0.952
14 7 14 0.972
15 8 15 0.969
16 9 16 0.963
17 9 17 0.980
18 9 17 0.955
19 10 18 0.960
20 12 20 0.956
21 12 20 0.960
22 13 21 0.956
23 13 22 0.974
24 14 23 0.970
25 14 24 0.982
26 15 24 0.959
27 16 25 0.958
28 17 26 0.954
29 17 27 0.971
30 17 27 0.954
31 18 28 0.958
32 20 30 0.956
33 20 30 0.958
34 21 31 0.955
35 22 32 0.950
36 22 33 0.968
37 22 34 0.979
38 23 34 0.961
39 24 35 0.960
40 25 36 0.958
41 25 37 0.972
42 25 37 0.961
43 26 38 0.963
44 28 40 0.961
45 28 40 0.963
46 28 40 0.951
47 29 41 0.953
48 31 43 0.952
49 31 43 0.954
50 32 44 0.952
51 32 45 0.966
52 33 46 0.964
53 33 47 0.975
54 34 47 0.959
55 35 48 0.959
56 36 49 0.957
57 36 50 0.969
58 37 50 0.951
59 38 51 0.951
60 39 53 0.961
61 39 53 0.963
62 39 53 0.954
63 40 54 0.956
64 42 56 0.955
65 42 56 0.956
66 43 57 0.955
67 44 58 0.952
68 44 59 0.966
69 44 60 0.975
70 45 60 0.962
71 46 61 0.961
72 47 62 0.960
73 47 63 0.971
74 48 63 0.956
75 49 64 0.956

n ≥ 76 ≈ �0.75n −
0.849

√
n�

≈ 	0.75n+1
+ 0.849

√
n

0.950

n j k p

n ≤ 16: no confidence interval possible.
17 7 17 0.992
18 8 18 0.993
19 9 19 0.993
20 10 20 0.993
21 11 21 0.991
22 11 22 0.995
23 12 23 0.994
24 13 24 0.992
25 13 25 0.996
26 13 25 0.993
27 15 27 0.992
28 15 27 0.993
29 16 28 0.992
30 16 29 0.995
31 17 30 0.994
32 18 31 0.993
33 18 32 0.996
34 19 32 0.991
35 20 33 0.990
36 21 35 0.991
37 21 35 0.993
38 21 35 0.990
39 23 37 0.990
40 23 37 0.991
41 23 39 0.997
42 24 39 0.994
43 25 40 0.993
44 26 41 0.992
45 26 42 0.995
46 27 42 0.990
47 28 44 0.993
48 29 45 0.991
49 29 45 0.993
50 29 45 0.990
51 31 47 0.990
52 31 47 0.991
53 31 49 0.996
54 32 49 0.993
55 33 50 0.993
56 34 51 0.992
57 34 52 0.995
58 35 52 0.991
59 36 53 0.990
60 37 55 0.992
61 37 55 0.993
62 37 55 0.991
63 39 57 0.991
64 39 57 0.991
65 40 58 0.991
66 41 59 0.990
67 41 60 0.993
68 42 61 0.993
69 42 62 0.995
70 43 62 0.992
71 44 63 0.991
72 45 64 0.991
73 45 65 0.994
74 45 65 0.992
75 47 67 0.992
76 48 68 0.991
77 48 68 0.992
78 48 68 0.991
79 50 70 0.991
80 50 70 0.991
81 51 71 0.990

n ≥ 82 ≈ �0.75n −
1.115

√
n�

≈ 	0.75n+1
+ 1.115

√
n

0.990

Tables 349

Table A.3 Quantile q = 95%, confidence levels γ = 95% (left) and 0.99% (right).

n j k p

n ≤ 58: no confidence interval possible
59 50 59 0.951
60 52 60 0.951
61 53 61 0.953
62 54 62 0.955
63 55 63 0.957
64 56 64 0.958
65 57 65 0.959
66 58 66 0.961
67 59 67 0.962
68 60 68 0.963
69 61 69 0.964
70 62 70 0.964
71 63 71 0.965
72 64 72 0.965
73 65 73 0.966
74 66 74 0.966
75 67 75 0.966
76 68 76 0.966
77 69 77 0.966
78 70 78 0.966
79 71 79 0.966
80 72 80 0.965
81 73 81 0.964
82 74 82 0.964
83 75 83 0.963
84 76 84 0.962
85 77 85 0.961
86 78 86 0.960
87 79 87 0.959
88 80 88 0.957
89 81 89 0.956
90 82 90 0.954
91 83 91 0.952
92 84 92 0.950
93 84 93 0.974
94 85 94 0.973
95 86 95 0.972
96 87 96 0.971
97 88 97 0.970
98 89 98 0.969
99 90 99 0.967
100 91 100 0.966
101 91 100 0.952
102 92 101 0.953
103 93 102 0.953
104 94 103 0.954
105 95 104 0.954
106 96 105 0.954
107 97 106 0.954
108 98 107 0.954
109 99 108 0.954
110 100 109 0.954
111 101 110 0.954
112 102 111 0.953
113 103 112 0.953
114 104 113 0.952
115 105 114 0.951
116 106 115 0.950
117 107 117 0.965
118 108 118 0.963
119 109 119 0.961
120 110 120 0.959
121 110 120 0.967
122 111 121 0.966
123 112 122 0.966

n ≥ 124 ≈ �0.95n −
0.427

√
n�

≈ 	0.95n+1
+ 0.427

√
n

0.950

n j k p

n ≤ 89: no confidence interval possible
90 76 90 0.990
91 79 91 0.990
92 80 92 0.990
93 81 93 0.991
94 82 94 0.991
95 83 95 0.991
96 84 96 0.992
97 85 97 0.992
98 86 98 0.992
99 87 99 0.992
100 88 100 0.993
101 89 101 0.993
102 90 102 0.993
103 91 103 0.993
104 92 104 0.993
105 93 105 0.993
106 94 106 0.993
107 95 107 0.993
108 96 108 0.993
109 97 109 0.993
110 98 110 0.993
111 99 111 0.993
112 100 112 0.993
113 101 113 0.993
114 102 114 0.992
115 103 115 0.992
116 104 116 0.992
117 105 117 0.992
118 106 118 0.991
119 107 119 0.991
120 108 120 0.991
121 109 121 0.990
122 109 122 0.995
123 110 123 0.995
124 111 124 0.995
125 112 125 0.994
126 113 126 0.994
127 114 127 0.994
128 115 128 0.994
129 116 129 0.993
130 117 130 0.993
131 118 131 0.993
132 119 132 0.992
133 120 133 0.992
134 121 134 0.992
135 122 135 0.991
136 123 136 0.991
137 124 137 0.990
138 124 138 0.995
139 125 139 0.995
140 126 140 0.995
141 127 141 0.994
142 127 141 0.992
143 128 142 0.992
144 129 143 0.992
145 130 144 0.992
146 131 145 0.992
147 133 147 0.992
148 134 148 0.992
149 135 149 0.992
150 136 150 0.991
151 137 151 0.991
152 138 152 0.990
153 138 152 0.992
154 139 153 0.992

n ≥ 155 ≈ �0.95n −
0.561

√
n�

≈ 	0.95n+1
+ 0.561

√
n

0.990

Annex B

Parametric Estimation,
Large Sample Theory

B.1 Parametric Estimation Theory

In this appendix, we give a large sample theory that is used for some asymptotic
confidence interval computations in Chapter 2 and for the general framework
of likelihood ratio tests in Chapter 4.

B.1.1 The Parametric Estimation Framework

Consider a data set xi, i = 1, . . . , n, which we view as the realization of a
stochastic system (in other words, the output of a simulator). The framework
of parametric estimation theory consists in assuming that the parameters of
the stochastic system are well-defined, but unknown to the observer, who tries
to estimate the system as well as possible, using the data set.

We assume here that the model has a density of probability, denoted
f(x1, . . . , xn | θ), where θ is the parameter. It is also called the likelihood
of the observed data. An estimator of θ is any function T (·) of the observed
data. A good estimator is one such that, in average, T (x1, . . . , xn) is “close” to
the true value θ.

Example B.1 iid Normal Data
Assume that we can believe that our data is iid and normal with the
mean μ and variance σ2. The likelihood is

1(√
2πσ

)n exp

(
−1

2

n∑
i=1

(xi − μ)2

σ2

)
(B.1)

and θ = (μ, σ). An estimator of θ is θ̂ = (μ̂n, σ̂n) given by Theo-
rem 2.3. Another, slightly different estimator is θ̂1 = (μ̂n, sn) given by
Theorem 2.2.

352 Parametric Estimation, Large Sample Theory

An estimator provides a random result: for every realization of the data set,
a different estimation is produced. The “goodness” of an estimator is captured
by the following definitions. Here, �X is the random data set, T (�X) is the
estimator and Eθ corresponds to the expectation when the unknown but fixed
parameter value is θ.

• Unbiased estimator : Eθ

(
T (�X)

)
= θ. For example, the estimator σ̂2

n of
variance of a normal iid sample given by Theorem 2.3 is unbiased.

• Consistent family of estimators: Pθ

(∣∣T (�X)
∣∣ − θ

)
> ε → 0 when the

sample size n goes to ∞. For example, the estimator (μ̂n, σ̂n) of Theo-
rem 2.3 is consistent. This follows from the weak law of large numbers.

B.1.2 Maximum Likelihood Estimator (MLE)

A commonly used method for deriving estimators is that of maximum like-
lihood . The maximum likelihood estimator is the value of θ that maximizes
the likelihood f(x1, . . . , xn | θ). This definition makes sense if the maximum
exists and is unique, which is often true in practice. A formal set of conditions
is the regularity condition in Definition B.1.

In Section B.2, we give a result that shows that the MLE for an iid sample
with finite variance is asymptotically unbiased, i.e. the bias tends to 0 as the
sample size increases. It is also consistent.

Example B.2 MLE for iid normal data
Consider a sample (x1, . . . , xn) obtained from a normal iid random
vector (X1, . . . , Xn). The likelihood is given by (B.1). We want to
maximize it, where x1, . . . , xn are given and μ, v = σ2 are the variables.
For a given v, the maximum is reached when μ = μ̂n = 1

n

∑n
i=1 xi. Let

μ have this value and find the value of v that maximizes the resulting
expression, or to simplify, the log of it. We thus have to maximize

−n
2

ln v − 1
2v
Sx,x + C (B.2)

where Sx,x
def=

∑n
i=1(x − μ̂n)2 and C is a constant with respect to

v. This is a simple maximization problem in one variable v, which
can be solved by computing the derivative. We find that there is a
maximum for v = Sx,x

n . The maximum likelihood estimator of (μ, v) is
thus precisely the estimator in Theorem 2.2.

We say that an estimation method is invariant by re-parametrization if
a different parametrization gives essentially the same estimator. More precisely,
assume that we have a method that produces some estimator T (�X) for θ.
Assume that we re-parametrize the problem by considering that the parameter
is φ(θ), where φ is some invertible mapping. For example, a normal iid sample
can be parametrized by θ = (μ, v) or by φ(θ) = (μ, σ), with v = σ2. The
method is called invariant by re-parametrization if the estimator of φ(θ) is
precisely φ

(
T (�X)

)
.

Parametric Estimation Theory 353

The maximum likelihood method is invariant by re-parametrization. This
is because the property of being a maximum is invariant by re-parametrization.
It is an important property in our context, since the model is usually not given
a priori, but has to be invented by the performance analyst.

A method that provides an unbiased estimator can generally not be in-
variant by re-parametrization. For example,

(
μ̂n, σ̂

2
n

)
of Theorem 2.3 is an

unbiased estimator of (μ, σ2), but
(
μ̂n, σ̂n

)
is a biased estimator of (μ, σ) (be-

cause usually E(S)2 �= E(S2), except if S is non-random). Thus, the property
of being unbiased is incompatible with invariance by re-parametrization, and
may thus be seen as an inadequate requirement for an estimator.

Furthermore, the maximum likelihood is also invariant by reversible
data transformation , i.e. the MLE of θ is the same, whether we look at the
data or at a one-to-one transform, independent of θ. More precisely, assume
that �X =

(
Xi

)
i=1,...,n

has a joint PDF f �X(�x | θ), and let �Y = ϕ(�X), where ϕ
is a one-to-one, differentiable mapping independent of θ.

Take �X as data and estimate θ; we have to maximize f �X(�x | θ) with
respect to θ, where �x =

(
xi

)
i=1...,n

is the available data. If, instead, we observe
yi = ϕ(xi) for all i, we have to maximize

f�Y (�y | θ) =
1∣∣ϕ′(�x)

∣∣ f �X(�x | θ)

where
∣∣ϕ′(�x)

∣∣ is the absolute value of the determinant of the differential of ϕ
(i.e. the Jacobian matrix).

In particular, the MLE is invariant by re-scaling of the data. For example,
if Yi is a log-normal sample (i.e. if Yi = eXi and Xi ∼ iid Nμ,σ2), then the MLE
of the parameters μ, θ can be obtained by estimating the mean and standard
deviation of ln(Yi).

B.1.3 Efficiency and Fisher Information

The efficiency of an estimator T (�X) of the parameter θ is defined as the
expected square error Eθ

(∥∥T (�X)−θ∥∥2) (here, we assume that θ takes values in
some space Θ where the norm is defined). The efficiency that can be reached
by an estimator is captured by the concept of Fisher information, which we
now define. For the sake of simplifying, assume first that θ ∈ R. The observed
information is defined by

J(θ) = −∂
2l(θ)
∂θ2

where l(θ) is the log-likelihood , defined by

l(θ) = ln lik(θ) = ln f(x1, . . . , xn | θ)
The Fisher information , or expected information is defined by

I(θ) = Eθ

(
J(θ)

)
= Eθ

(
−∂

2l(θ)
∂θ2

)

354 Parametric Estimation, Large Sample Theory

For an iid model, X1, . . . , Xn, l(θ) =
∑

i ln f1(xi | θ) and thus I(θ) = nI1(θ),
where I1(θ) is the Fisher information for a one-point sample X1. The Cramer-
Rao Theorem states that the efficiency of any unbiased estimator is lower
bounded by 1

I(θ) . Further, under the conditions in Definition B.1, the MLE for

an iid sample is asymptotically maximally efficient, i.e. E

(∥∥T (�X) − θ
∥∥2
)
I(θ)

tends to 1 as the sample size goes to infinity.

In general, the parameter θ is multi-dimensional, i.e. it varies in an open
subset Θ of R

k. Consequently, J and I are symmetric matrices defined by

[
J(θ)

]
i,j

= − ∂2l(θ)
∂θi∂θj

and [
I(θ)

]
i,j

= −Eθ

(
∂2l(θ)
∂θi∂θj

)

The Cramer-Rao lower bound justifies the name of “information”. The
variance of the MLE is of the order of the Fisher information: the higher the
information, the more the sample tells us about the unknown parameter θ.
The Fisher information is not the same as entropy, used in information theory.
There are some (complicated) relations – see [30, Chapter 16].

In the next section, we give a more accurate result, which can be used to
provide approximate confidence intervals for large sample sizes.

B.2 Asymptotic Confidence Intervals

Here, we need to assume some regularity conditions. Assume that the sample
comes from an iid sequence of length n and further, that the following regularity
conditions are met.

Definition B.1
The regularity conditions for maximum likelihood asymptotics are [32]:
(1) The set Θ of values of θ is compact (closed and bounded) and the true

value θ0 is not on the boundary.
(2) (identifiability) For varying values of θ, the densities f(�x | θ) differ.
(3) (regularity of derivatives) There exist a neighborhood B of θ0 and a

constant K such that for θ ∈ B and for all i, j, k, n:

1
n

Eθ

(∣∣∣∣ ∂3l �X(θ)
∂θi∂θj∂θk

∣∣∣∣
)

≤ K

(4) For θ ∈ B, the Fisher information has full rank.

Asymptotic Confidence Intervals 355

(5) For θ ∈ B, the interchanges of integration and derivation in
∫
∂f(�x | θ)
∂θi

dx =
∂

∂θi

∫
f(�x | θ) dx

∫
∂2f(x | θ)
∂θi∂θj

dx =
∂

∂θi

∫
∂f(�x | θ)
∂θj

dx

are valid.

The following theorem is proven in [32].

Theorem B.1
Under the conditions in Definition B.1, the MLE exists, converges almost
surely to the true value. Further I(θ)1/2(θ̂ − θ) converges in distribution
towards a standard normal distribution, as n goes to infinity. It follows
that, asymptotically:
(1) the distribution of θ̂ − θ can be approximated by

N
(
0, I

(
θ̂
)−1

)
or N

(
0, J

(
θ̂
)−1

)

(2) the distribution of 2
(
l(θ̂)− l(θ)

)
can be approximated by χ2

k (where k is
the dimension of Θ).

The quantity 2
(
l(θ̂) − l(θ)

)
is called the likelihood ratio statistic.

In the examples seen in this book, the regularity conditions are always
satisfied, as long as: the true value θ lies within the interior of its domain,
the derivatives of l(θ) are smooth (e.g. if the density f(�x | θ) has derivatives
at all orders) and the matrices J(θ) and I(θ) have full rank. If the regularity
conditions hold, we have an equivalent definition of Fisher information:

[
I(θ)

]
i,j

def= −Eθ

(
∂2l(θ)
∂θi∂θj

)
= Eθ

(
∂l(θ)
∂θi

∂l(θ)
∂θj

)

This follows from differentiating, with respect to θ, the identity
∫
f(xθ) dx = 1.

Item (2) is more approximate than item (1), but does not require the second
derivative of the likelihood to be computed.

Theorem B.1 also holds for non-iid cases, as long as the Fisher information
goes to infinity with the sample size.

Example B.3 Fisher Information of Normal iid Model
Assume that (Xi)i=1...n is iid normal with the mean μ and the variance
σ2. The observed information matrix is computed from the likelihood
function; we obtain

J =

⎛
⎜⎝

n

σ2

2n
σ3

(μ̂n − μ)

2n
σ3

(μ̂n − μ)
−n
σ2

+
3
σ4

(
Sxx + n(μ̂n − μ)2

)
⎞
⎟⎠

356 Parametric Estimation, Large Sample Theory

and the expected information matrix (Fisher’s information) is

I =

⎛
⎜⎝

n

σ2
0

0
2n
σ2

⎞
⎟⎠

The following corollary is used in practice. It follows immediately from the
theorem.

Corollary B.1 (Asymptotic Confidence Intervals) When n is large, ap-
proximate confidence intervals can be obtained as follows:

(1) For the ith coordinate of θ, the interval is

θ̂i ± η
√[

I(θ̂)−1
]
i,i

or θ̂ ± η
√[

J(θ̂)−1
]
i,i

where N0,1(η) = 1+γ
2 (e.g. with γ = 0.95, η = 1.96).

(2) If θ is in R, the interval can be defined implicitly as
{
θ : l(θ̂) − ξ

2 ≤ l(θ) ≤
l(θ̂)

}
, where χ2

1(ξ) = γ. For example, with γ = 0.95, ξ = 3.84.

Example B.4 Lazy Normal iid
Assume that our data comes from an iid normal model Xi, i = 1, . . . , n.
We compare the exact confidence interval for the mean (from Theo-
rem 2.3) to the approximate ones given by the corollary.
The MLE of (μ, σ) is (μ̂n, sn). The exact confidence interval is

μ̂n ± η′
σ̂n√
n

with σ̂2
n = Sx,x

n−1 and tn−1(η′) = 1+γ
2 .

We now compute the approximate confidence interval obtained from
the Fisher information. We have

I(μ, σ)−1 =

⎛
⎜⎜⎝

σ2

n
0

0
σ2

2n

⎞
⎟⎟⎠

thus the distribution of (μ− μ̂n, σ − sn) is approximately normal with
a 0 mean and covariance matrix

(
σ2/n

0
0

σ2/2n

)
. It follows that μ− μ̂n is

approximately N
(
0, s2

n

n

)
, and an approximate confidence interval is

μ̂n ± η
sn√
n

with sn = sx,x

n and N0,1(η) = 1+γ
2 .

Asymptotic Confidence Intervals 357

Table B.1 Confidence Interval for σ for an iid, normal sample of n data
points by an exact method and an asymptotic result with Fisher information
(Corollary B.1). The values represent the confidence bounds for the ratio
σ

σ̂n
, where σ is the true value and σ̂n is the estimated standard deviation as

in Theorem 2.3.

n 30 60 120

Exact 0.7964 − 1.3443 0.8476 − 1.2197 0.8875 − 1.1454

Fisher 0.7847 − 1.3162 0.8411 − 1.2077 0.8840 − 1.1401

Thus the use of Fisher information gives the same asymptotic inter-
val for the mean as Theorem 2.2. This is quite general: the use of
Fisher information is the generalization of the large sample asymptotic
of Theorem 2.2.
We can also compare the approximate confidence interval for σ. The
exact interval is given by Theorem 2.3: with probability γ, we have

ξ2
n− 1

≤ σ̂n
2

σ2
≤ ξ1
n− 1

with χ2
n−1(ξ2) = 1−γ

2 and χ2
n−1(ξ1) = 1+γ

2 . Thus, an exact confidence
interval for σ is

σ̂n

[√
n− 1
ξ1

,

√
n− 1
ξ2

]
(B.3)

With Fisher information, we obtain that σ−sn is approximatelyN0, σ2/2n.
Consequently, with probability γ,

|σ − sn| ≤ η
σ√
2n

with N0,1(η) = 1+γ
2 .

Divide by σ and obtain, after some algebra, that with probability γ

1

1 +
η√
2n

≤ σ

sn
≤ 1

1 − η√
2n

Taking into account that sn =
√

n−1
n σ̂n, we obtain the approximate

confidence interval for σ

σ̂n

⎡
⎢⎣
√
n− 1
n

1

1 +
η√
2n

,

√
n− 1
n

1

1 − η√
2n

⎤
⎥⎦ (B.4)

For n = 30, 60, 120 and γ = 0.95, the confidence intervals are as shown
in Table B.1, where we compare to exact values; the difference is neg-
ligible already for n = 30.

358 Parametric Estimation, Large Sample Theory

Question 2.1 Which of the following are random variables: θ̂, θ, l(θ), l(θ̂),
J(θ), I(θ), J(θ̂), I(θ̂)?(1)

B.3 Confidence Interval in Presence of Nuisance Parameters

In many cases, the parameter has the form θ = (μ, ν), and we are interested
only in μ (e.g. for a normal model: the mean) while the remaining element ν,
which still needs to be estimated, is considered a nuisance (e.g. the variance).
In such cases, we can use the following theorem to find confidence intervals.

Theorem B.2 ([32])
Under the conditions in Definition B.1, assume that Θ = M × N , where
M,N are open subsets of R

p,Rq. Thus the parameter is θ = (μ, ν) with
μ ∈ M and ν ∈ N (p is the “dimension”, or number of degrees of freedom,
of μ).
For any μ, let ν̂μ be the solution to

l(μ, ν̂μ) = max
ν

l(μ, ν)

and define the profile log likelihood pl by

pl(μ) def= max
ν

l(μ, ν) = l(μ, ν̂μ)

Let (μ̂, ν̂) be the MLE If (μ, ν) is the true value of the parameter, the dis-
tribution of 2

(
pl(μ̂) − pl(μ)

)
tends to χ2

p.
An approximate confidence region for μ at level γ is

{
μ ∈M : pl(μ) ≥ pl(μ̂) − 1

2
ξ

}

where χ2
p(ξ) = γ.

The theorem essentially states that we can find an approximate confidence
interval for the parameter of interest μ by computing the profile log-likelihood
for all values of μ around the estimated value. The estimated value is the one
that maximizes the profile log-likelihood. The profile log likelihood is obtained
by fixing the parameter of interest μ to some arbitrary value and computing
the MLE for the other parameters. A confidence interval is obtained implicitly
as the set of values of μ for which the profile log likelihood is close to the
maximum. In practice, all of this is done numerically.

(1)In the classical, non-Bayesian framework: θ̂, l(θ), l(θ̂), J(θ), J(θ̂), I(θ̂) are random
variables; θ and I(θ) are non-random but unknown.

Confidence Interval in Presence of Nuisance Parameters 359

Example B.5 Lazy Normal iid Revisited
Consider the log of the data in Figure 2.12, which appears to be normal.
The model is Yi ∼ iid Nμ,σ2 , where Yi is the log of the data. Assume
that we would like to compute a confidence interval for μ but that we
are too lazy to apply the exact Student statistic in Theorem 2.3.
For any μ, we estimate the nuisance parameter σ, by maximizing the
log-likelihood:

l(μ, σ) = −1
2

(
n lnσ2 +

1
σ2

∑
i

(Yi − μ)2
)

We obtain

σ̂2
μ =

1
n

∑
i

(Yi − μ)2 =
1
n
SY Y +

(
Ȳ − μ

)2

and thus
pl(μ) def= l(μ, σ̂μ) = −n

2
(
ln σ̂2

μ + 1
)

In Figure B.1, we plot pl(μ). We find μ̂ = 1.510 as the point that
maximizes pl(μ). A 95%-confidence interval is obtained as the set{
pl(μ) ≥ pl(μ̂) − 1

2 3.84
}
. We obtain the interval [1.106, 1.915]. Com-

pare to the exact confidence interval obtained with Theorem 2.3, which
is equal to [1.103, 1.918]: the difference is negligible.

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
−128

−127

−126

−125

−124

−123

−122

−121

µ

pr
of

ile
 lo

g
lik

el
ih

oo
d

Figure B.1 The profile log-likelihood for parameter μ of the log of the data
in Figure 2.12. The confidence interval for μ is obtained by application of
Theorem B.2.

360 Parametric Estimation, Large Sample Theory

Question 2.2 Find an analytical expression of the confidence interval ob-
tained with the profile log likelihood for this example and compare to the exact
interval.(2)

Example B.6 Re-Scaling
Consider the data in Figure 2.12, which does not appear to be normal
in natural scale, and for which we would like to perform a Box-Cox
transformation. We would like a confidence interval for the exponent
of the transformation.
The transformed data is Yi = bs(Xi), and the model now assumes that
Yi is iid ∼ Nμ,σ2 . We take the unknown parameter to be θ = (μ, σ, s).
The distribution of Xi, under θ, is

fXi(x | θ) = b′s(x)fYi

(
bs(x) | μ, σ

)
= xs−1h

(
bs(x) | μ, σ2

)
where h(x | μ, σ2) is the density of the normal distribution with mean
μ and variance σ2.
The log-likelihood is

l(μ, σ, s) = C − n lnσ +
∑

i

(
(s− 1) lnxi −

(
bs(xi) − μ

)2
2σ2

)

where C is some constant (independent of the parameter). For a fixed
s, it is maximized by the MLE for a Gaussian sample

μ̂s =
1
n

∑
i

bs(xi)

σ̂2
s =

1
n

∑
i

(
bs(xi) − μ̂

)2

We can use a numerical estimation to find the value of s that maximizes
l(μ̂s, σ̂s, s); see Figure B.2 for a plot. The estimated value is ŝ = 0.0041,
which gives μ̂ = 1.5236 and σ̂ = 2.0563.
We now give a confidence interval for s, using the asymptotic result
in Theorem B.2. A 95% confidence interval is readily obtained from
Figure B.2, which gives the interval [−0.0782, 0.0841].

(2)The profile log likelihood method gives a confidence interval defined by

(μ̂ − μ)2

SY Y /n
≤ eη/n − 1 ≈ η

n

Let t
def
= μ̂−μ√

SY Y /n(n−1)
be the Student statistic. The asymptotic confidence interval

can be rewritten as

t2 ≤ (n − 1)(eη/n − 1) ≈ η(n − 1)

n

An exact confidence interval is t2 ≤ ξ2, where ξ = tn−1
1−α

2
. For large n, ξ2 ≈ η and

n−1
n

≈ 1 so the two intervals are equivalent.

Confidence Interval in Presence of Nuisance Parameters 361

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
−384

−382

−380

−378

−376

−374

−372

−370

−368

−366

−364

s

pr
of

ile
 lo

g
lik

el
ih

oo
d

Figure B.2 Profile log-likelihood for Example B.6, as a function of the Box-
Cox exponent s. The maximum likelihood estimator of s is the value that
maximizes the profile log likelihood: a confidence interval for s is the set of
s for which the profile log-likelihood is below the horizontal dashed line.

Question 2.3 Does the confidence interval justify the log transforma-
tion?(3)

Alternatively, by Theorem B.1, we can approximate the distribution of
θ̂− θ by a centered normal distribution with covariance matrix J(θ̂)−1.
After some algebra, we compute the Fisher information matrix. We
compute the second derivative of the log-likelihood, and estimate the
Fisher information by the observed information (i.e. the value of the
second derivative at θ = θ̂). We find

J =

⎛
⎜⎜⎜⎝

23.7 0 −77.1

0 47.3 −146.9

77.1 −146.9 1291.1

⎞
⎟⎟⎟⎠

and

J−1 =

⎛
⎜⎜⎜⎝

0.0605 0.0173 0.0056

0.0173 0.0377 0.0053

0.0056 0.0053 0.0017

⎞
⎟⎟⎟⎠

(3)Yes, since 0 lies within the interval.

362 Parametric Estimation, Large Sample Theory

The last term of the matrix is an estimate of the variance of ŝ − s.
The 0.95 confidence interval obtained from a normal approximation is
ŝ± 1.96

√
0.0017 = [−0.0770, 0.0852].

Annex C

Gaussian Random Vectors in R
n

C.1 Notation and a Few Results of Linear Algebra

C.1.1 Notation

Unless otherwise specified, we view a vector in R
n as a column vector, and

denote identifiers of vectors with an arrow, as in

�X =

⎛
⎜⎜⎝
X1

...

Xn

⎞
⎟⎟⎠

The identity matrix is denoted with Id.
Matrix transposition is denoted with T , giving, for example, �XT = (X1, . . .,

Xn) and �X =
(
X1, . . . , Xn

)T .
The inner product of �u,�v ∈ R

n is

�uT�v = �vT �u =
n∑

i=1

uivi

The norm of �u is, otherwise specified, the Euclidian norm, i.e.

‖�u‖ =
√
�uT�u

An orthogonal matrix U is one that satisfies any one of the following
equivalent properties:

(1) its columns have unit norm and are orthogonal;
(2) its rows have unit norm and are orthogonal;
(3) UUT = Id;
(4) UTU = Id;
(5) U has an inverse and U−1 = UT .

364 Gaussian Random Vectors in R
n

C.1.2 Linear Algebra

If M is a linear subspace of R
n, the orthogonal projection on M is the

linear mapping, ΠM , from R
n to itself such that ΠM (�x) is the element of M

that minimizes the distance to �x:

ΠM (�x) = arg min
�y∈M

‖�y − �x‖ (C.1)

ΠM (�x) is also the unique element �y ∈ M such that �y − �x is orthogonal to M .
ΠM is symmetric (ΠM = ΠT

M) and idempotent (Π2
M = ΠM).

ΠM can always be put in diagonal form as follows:

ΠM = UTDU

with

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . .

0 1 . . .
...

...
. . .

1 0 . . .

0 . . . 0
...

. . .

0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(C.2)

where the number of 1s on the diagonal is the dimension of M , and U is an
orthogonal matrix.

Let H be an n× p matrix, with p ≤ n, and M the linear space spanned by
the columns of the matrix H , i.e.

M =
{
�y ∈ R

n : �y = H�z for some �z ∈ R
p
}

If H has full rank (i.e. rank p), then HTH has an inverse and

ΠM = H
(
HTH

)−1
HT (C.3)

C.2 Covariance Matrix of a Random Vector in R
n

C.2.1 Definitions

Let �X be a random vector with values in R
n. If each of the components

X1, . . . , Xn has a well-defined expectation, then E(�X) is defined as

E(�X) =

⎛
⎜⎜⎝

E(X1)
...

E(Xn)

⎞
⎟⎟⎠

Covariance Matrix of a Random Vector in R
n 365

For any non-random matrices H and K (with appropriate dimensions such
that the matrix products are valid)

E(H �XK) = HE(�X)K (C.4)

Further, if E(X2
i) < ∞ for each i = 1, . . . , n, the covariance matrix of

�X is defined by
Ω = E

(
(�X − �μ)(�X − �μ)T

)
(C.5)

with �μ = E(�X). This is equivalent to

Ωi,j = cov(Xi, Xj)
def= E

((
Xi − E(Xi)

)(
Xj − E(Xj)

))
(C.6)

for all i, j ∈ {1, . . . , n}.
Further, for any �u,�v ∈ R

n

E

((
�uT (�X − �μ)

)(
�vT (�X − �μ)

))
= �uT Ω�v (C.7)

Also
Ωi,i = var(Xi) (C.8)

If �X and �Y are random vectors in R
n and R

p with well defined covariance
matrices, the cross covariance matrix ofX and Y is the n×pmatrix defined
by

Γ = E
(
(�X − �μ)

(
�Y − �ν

)T
)

(C.9)

with �μ = E(�X) and �ν = E(�Y).

C.2.2 Properties of Covariance Matrix

The covariance matrix is symmetric (Ω = ΩT) and positive semi-definite .
The latter means that uT Ωu ≥ 0 for all u ∈ R

n, which follows immediately
from (C.7).

If �X ′ = �X + ν, where ν ∈ R
n is a non-random vector, then the covariance

matrices of �X ′ and �X are identical.
If �X ′ = AX , where �X ′ is a random vector in R

n′
and A is a non-random

n′ × n matrix, the covariance matrix Ω′ of �X ′ is

Ω′ = AΩAT (C.10)

Any covariance matrix can be put in standard diagonal form as follows:

Ω = UT

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1 0 . . .

0 λ2 . . .
...

...
. . .

λr 0 . . .

0 . . . 0
...

. . .

0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

U (C.11)

366 Gaussian Random Vectors in R
n

where U is an orthogonal matrix (UT = U−1), r is the rank of Ω and λ1 ≥
. . . ≥ λr > 0.

It follows from this representation that the equation �xT Ω�x = 0 has a non-
zero solution (�x �= �0) if, and only if, Ω has full rank.

C.2.3 Choleski’s Factorization

Equation (C.11) can be replaced by a computationally much less expensive
reduction, called Choleski’s factorization . This is a polynomial time algo-
rithm for finding a lower triangular matrix L such that Ω = LLT . Choleski’s
factorization applies to positive semi-definite matrices and is readily available
in many software packages.

C.2.4 Degrees of Freedom

Let V = span(Ω) be the linear sub-space of R
n spanned by the columns (or

rows, since Ω is symmetric) of Ω. Recall that �X is not necessarily Gaussian.

Proposition C.1 �X is constrained to the affine sub-space parallel to V that
contains �μ = E(�X), i.e. �X − �μ ∈ V with probability 1.

It follows that the number of degrees of freedom of �X (defined in this
case as the smallest dimension of an affine space that �X can be imbedded in) is
equal to the dimension of V , namely, the rank of Ω. In particular, if Ω does not
have full rank, V has zero mass (its Lebesgue measure is 0) and the integral of
any function on V is 0. Thus, it is impossible that �X has a probability density
function. Conversely,

Corollary C.1 If �X has a probability density function (PDF) then its covari-
ance matrix Ω is invertible.

Example C.1

In R
3, let the covariance matrix of �X to be

Ω =

⎛
⎜⎜⎝
a 0 a

0 b b

a b a+ b

⎞
⎟⎟⎠ (C.12)

where a, b are positive constants. The rank is r = 2. The linear space
generated by the columns of Ω is the plane defined by x1 +x2−x3 = 0.
Thus the random vector �X = (X1, X2, X3)T is in the plane defined by
X1 +X2 −X3 = μ1 + μ2 − μ3, where �μ = (μ1, μ2, μ3)T .

Gaussian Random Vector 367

C.3 Gaussian Random Vector

C.3.1 Definition and Main Properties

Definition C.1
A random vector �X with values in R

n is a Gaussian vector if any of the
following is true:
(1) For any non-random u ∈ R

n, uT �X is a normal random variable.

(2) �X is a non-random linear combination of p iid normal random variables,
for some p ∈ N

(3) The expectation �μ and covariance matrix Ω of �X are well-defined and
its characteristic function is

φ �X(�ω) def= E
(
ej�ωT �X

)
= ej�ωT �μ− 1

2 �ωT Ω�ω (C.13)

for all �ω ∈ R
n

Example C.2
The vector (ε1, . . . , εn)T with εi ∼ N0,σ2 , and σ �= 0 is a Gaussian
cvector, called white Gaussian noise . It has �μ = 0 and Ω = σ2Id.
The vector

�X =

⎛
⎜⎜⎝

√
a ε1√
b ε2√

a ε1 +
√
b ε2

⎞
⎟⎟⎠

is Gaussian with �μ = 0 and Ω as in (C.12).
The constant (non-random) vector �X = �μ is Gaussian with covariance
matrix Ω = 0.

It follows immediately that any (non-random) linear combination of Gaus-
sian vectors is Gaussian. In particular, if �X is Gaussian and A is a non-random
matrix, then A �X is Gaussian.

Gaussian vectors are entirely defined by their first and second order prop-
erties. In particular,

Theorem C.2 (Independence Equals Non-Correlation)
Let �X (resp. �Y) be a Gaussian random vector in R

n (resp. R
p). �X and �Y

are independent if and only if their cross-covariance matrix is 0, i.e.

cov(Xi, Yj) = 0 for all i = 1, . . . , n, j = 1, . . . , p

Note that this is specific to Gaussian vectors. For non-Gaussian random
vectors, independence implies non-correlation, but the converse may not be
true.

368 Gaussian Random Vectors in R
n

Theorem C.3 (Density)
If Ω is invertible, �X has a density, given by

f �X(�x) =
1√

(2π)n detΩ
e−

1
2 (�x−�μ)T Ω−1(�x−�μ)

Conversely, we know from Corollary C.1 that if Ω is not invertible (as in
the previous example), �X cannot have a density. A frequent situation where Ω
is invertible is the following.

Proposition C.4 Let �X = L�ε where �X = (X1, . . . , Xp)T , ε = (ε1, . . . , εn)T is
white Gaussian noise and L is a non-random p × n matrix. The vector �X is
Gaussian with covariance matrix Ω = LLT . The rank of Ω is equal to the rank
of L.

We use these properties in the following case, which arises in the analysis
of ARMA and ARIMA processes.

Corollary C.2 Let εi, i = 1, . . . , n be white Gaussian noise. Let m ≤ n and
Xn−m+1, . . . , Xn be defined by

Xi =
i∑

j=1

ci,jεj for i = m+ 1, . . . , n (C.14)

with ci,i �= 0. The covariance matrix of �X = (Xn−m+1, . . . , Xn) is invertible.

C.3.2 Diagonal Form

Let U be the orthogonal transformation in (C.11) and define �X ′ = U �X. The
covariance matrix of �X ′ is

Ω′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1 0 . . .

0 λ2 . . .
...

...
. . .

λr 0 . . .

0 . . . 0
...

. . .

0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(C.15)

Consequently, X ′
r+1, . . . , X

′
n have 0 variance and are thus non-random, and X ′

i,
X ′

j are independent (as cov(X ′
i, X

′
j) = 0 for i �= j).

Foundations of ANOVA 369

Since �X = UTX ′, it follows that any Gaussian random vector is a linear
combination of exactly r independent normal random variables, where r is the
rank of its covariance matrix. In practice, one obtains such a representation
by means of Choleski’s factorization. Let �ε be a Gaussian white noise sequence
with unit variance and let �Y = L�ε. Then �Y is a Gaussian vector with covariance
matrix Ω and 0 expectation (and �Y + �μ is a Gaussian vector with expectation
�μ, for any non-random vector �μ). This is used to simulate a random vector
with any desired covariance matrix.

Example C.3
One Choleski fatorization of Ω in (C.12) is Ω = LLT with

L =

⎛
⎜⎜⎝
√
a 0 0

0
√
b 0

√
a

√
b 0

⎞
⎟⎟⎠

Let ε = (ε1, ε2, ε3) be Gaussian white noise with unit variance, i.e. such
that the covariance matrix of ε is equal to Id. Let �Y = L�ε+ �μ, i.e.

Y1 = μ1 +
√
a ε1

Y2 = μ2 +
√
b ε2

Y3 = μ3 +
√
a ε1 +

√
b ε2

In this case, �Y has a covariance matrix Ω and an expectation �μ. This
gives a means to simulate a Gaussian vector with expectation �μ and
covariance matrix Ω.
Note that we find, as seen in Example C.12, that Y1 + Y2 − Y3 is a
(non-random) constant.

C.4 Foundations of ANOVA

C.4.1 Homoscedastic Gaussian Vector

Definition C.2
A Gaussian vector is called homoscedastic with variance σ2 if its covari-
ance matrix is σ2Id for some σ > 0. The expectation �μ is not necessarily 0.

Let �X = (X1, X2, . . . , Xn)T . This definition is equivalent to claiming that
Xi = μi + εi, with μi non-random and εi ∼ iid N0,σ2 .

370 Gaussian Random Vectors in R
n

A homoscedastic Gaussian vector always has a density (since its covariance
matrix is invertible) given by

f �X(�x) =
1(

2π
)n/2

σn
e−

1
2σ2 ‖�x−�μ‖2

(C.16)

Homoscedasticity is preserved by orthogonal transformations.

Theorem C.5
Let U be an orthogonal matrix (i.e. U−1 = UT). If �X is homoscedastic
Gaussian and �Y = U �X, then �Y is also homoscedastic Gaussian with the
same variance.

The following theorem underlies the ANOVA theory.

Theorem C.6
Let �X be homoscedastic Gaussian in R

n, �μ = E(�X) and M some linear sub-
space of R

n, of dimension k. Let ΠM be the orthogonal projection on M .
(1) ΠM

�X and �Y = �X − ΠM
�X are independent,

(2)
∥∥ΠM

�X − ΠM�μ
∥∥2 ∼ χ2

k,

(3)
∥∥�Y − �μ+ ΠM�μ

∥∥2 ∼ χ2
n−k,

where χ2
n is the χ-square distribution with n degrees of freeedom.

C.4.2 Maximum Likelihood Estimation for Homoscedastic Gaussian Vectors

Theorem C.7 (ANOVA)
Let �X be homoscedastic Gaussian in R

n with variance σ2 and expectation
�μ. Assume that �μ is restricted to a linear subspace M of R

n; let k = dimM .
We are interested in estimating the true values of �μ and σ2.

(1) The MLE of (�μ, σ2) is μ̂ = ΠM
�X, σ̂2 = 1

n

∥∥ �X − μ̂
∥∥2.

(2) E(μ̂) = �μ = E(�X).

(3) �X− μ̂ and μ̂ are independent Gaussian random vectors and
∥∥ �X−�μ∥∥2 =∥∥ �X − μ̂

∥∥2 +
∥∥�μ− μ̂

∥∥2.

(4)
∥∥ �X − μ̂

∥∥2 ∼ χ2
n−kσ

2 and
∥∥μ̂− �μ

∥∥2 ∼ χ2
kσ

2.
(5) (Fisher distribution)

∥∥μ̂− �μ
∥∥2

k∥∥ �X − μ̂
∥∥2

n− k

∼ Fk,n−k

Conditional Gaussian Distribution 371

A special case is the well-known estimation for iid normal random variables,
used in Theorem 2.3

Corollary C.3 Let
(
Xi

)
i=1...n

∼ N(μ, σ2).

(1) The MLE of (μ, σ) is

μ̂ = X̄
def=

1
n

n∑
i=1

Xi σ̂2 =
1
n
SXX

with SXX
def=

∑n
i=1

(
Xi − X̄

)2.
(2) SXX and X̄ are independent and

∑
i

(
Xi − μ

)2 = SXX + n(X̄ − μ)2

(3) SXX ∼ χ2
n−1σ

2 and X̄ ∼ N(μ, σ2

n).
(4) (Student distribution): √

n (X̄ − μ)√
SXX

n− 1

∼ tn−1

C.5 Conditional Gaussian Distribution

C.5.1 Schur Complement

Let M be a square matrix, decomposed in blocks as M =
(

A
C

B
D

)
, where A and

D are square matrices (but B and C need not be square) and A is invertible.
The Schur complement of A in M is defined as

S = D − CA−1B

It has the following properties.

(1) det(M) = det(A) det(S);
(2) If either M or S is invertible then so is the other and M−1 has the form(

	
	

	
S−1

)
, where � stands for unspecified blocks of appropriate dimensions;

(3) If M is symmetrical (resp. positive definite, positive semi-definite), then
so is S.

C.5.2 Distribution of �X1 given �X2

Let �X be a random vector in R
n1+n2 and let �X =

(�X1
�X2

)
, with �Xi in R

ni , i = 1, 2.
We are interested in the conditional distribution of �X2 given that �X1 = �x1

(this is typically for prediction purposes). By general results of the probability

372 Gaussian Random Vectors in R
n

theory, this conditional distribution is well defined; if �X is Gaussian, it turns
out that this conditional distribution is also Gaussian, as explained next.

Let �μ2 = E(�X2), �μ1 = E(�X1) and decompose the covariance matrix of �X
into blocks as follows.

Ω =

⎛
⎝Ω1,1 Ω1,2

Ω2,1 Ω2,2

⎞
⎠

with Ωi,j (cross-covariance matrix) defined by

Ωi,j = E
(
(�Xi − �μi)(�Xj − �μj)T

)
i, j = 1, 2

Note that Ω2,1 = ΩT
1,2 and �X2 and �X1 are independent if and only if

Ω2,1 = 0.

Theorem C.8 ([32])
Let �X be a Gaussian random vector in R

n1+n2 . The conditional distribution
of �X2, given that �X1 = �x1, is Gaussian. If Ω1,1 is invertible, its expectation
is �μ2+Ω2,1Ω−1

1,1(�x1−�μ1) and its covariance matrix is the Schur complement
of the covariance matrix Ω1,1 of �X1 in the covariance matrix Ω of (�X1, �X2).
In particular, the conditional covariance of �X2, given that �X1 = �x1, does
not depend on �x1.

The property that the conditional covariance matrix is independent of �x1

generally holds true only for Gaussian vectors. By the properties of covariance
matrices, if Ω is invertible, then this is also the case for Ω1,1 also (this follows
from the last sentence in Section C.2.2). In this case, by the properties of the
Schur complement, the conditional covariance matrix also has full rank.

C.5.3 Partial Correlation

Theorem C.8 provides a formula for the conditional covariance. Though it is
valid only for Gaussian vectors, it is used as the basis for the definition of partial
covariance and partial correlation, employed in time series analysis. Informally,
these parameters quantify the residual correlation between X1 and Xn when
we know the values of X2, . . . , Xn−1.

Definition C.3 (Partial Covariance and Correlation, Gaussian case)
Let �X = (X1, X2, . . . , Xn−1, Xn)T be a Gaussian vector such that its co-
variance matrix is invertible. Let

Γ =

⎛
⎝γ1,1 γ1,n

γ1,n γn,n

⎞
⎠

Proofs 373

be the covariance matrix of the conditional distribution of (X1, Xn) given
(X2 = x2, . . . , Xn−1 = xn−1). By Theorem C.8, Γ is independent of
x2, . . . , xn−1. The partial covariance of X1 and Xn is γ1,n and the par-
tial correlation of X1 and Xn is

r1,n =
γ1,n√
γ1,1γn,n

If X1, . . . , Xn is a Markov chain, and n > 1, then Xn is independent of X1,
given X2, . . . , Xn−1. In such a case, the partial correlation of X1 and Xn is 0
(but the covariance of X1 and Xn is not 0). Partial correlation can be used to
test if a Markov chain model is adequate. The following theorem gives a simple
way to compute partial correlation.

Theorem C.9 ([32])

Let �X =
(
X1, X2, . . . , Xn−1, Xn

)T be a Gaussian vector such that its co-
variance matrix Ω is invertible. The partial correlation of X1 and Xn is
given by

r1,n =
−τ1,n√
τ1,1τn,n

where τi,j is the (i, j)th term of Ω−1.

The classical definition of partial correlation consists in extending Theo-
rem C.9:

Definition C.4 (Partial Correlation)

Let �X =
(
X1, X2, . . . , Xn−1, Xn

)T be a random vector such that its covari-
ance matrix Ω is well-defined and invertible. The partial correlation of
X1 and Xn is defined as

r1,n =
−τ1,n√
τ1,1τn,n

where τi,j is the (i, j)th term of Ω−1.

C.6 Proofs

Proposition C.1

Let v ∈ R
n be in the kernel of Ω, i.e. Ωv = 0 and let Z = vT (X −μ). We have

E(Z2) = E
(
vT (X − μ)(X − μ)T v

)
= vT Ωv = 0

thus Z = 0 w.p. 1, i.e. X − μ is orthogonal to the kernel of Ω.
Since Ω is symmetric, the set of vectors that are orthogonal to its kernel is

V , thus X − μ ∈ V .

374 Gaussian Random Vectors in R
n

Proposition C.4

X is Gaussian with covariance matrix LLT by (C.10). We now show that the
rank of LLT is equal to the rank of LT , by demonstrating that LLT and LT

have the same null space. Indeed, if LTx = 0, then LLTx = 0. Conversely, if
LLTx = 0 then xTLLTx =

∥∥LTx
∥∥2 = 0 and thus LTx = 0. Finally, the rank

of a matrix is equal to that of its transpose.

Theorem C.5

The covariance matrix of U �X is U(σ2Id)UT = σ2Id.

Theorem C.6

Let �X ′ = �x − μ and �Y ′ = �X ′ − ΠM
�X ′. By linearity of ΠM , ΠM

�X ′ and
ΠM

�X (resp. �Y ′ and �Y) differ by a constant (non-random) vector, thus the
cross-covariance Γ of �X and �Y is that of �X ′ and �Y ′. Consequently,

Γ = E
(
ΠM

�X ′�Y ′T) = E
(
ΠM

�X ′(�X ′ − ΠM
�X ′)T

)
= E

(
ΠM

�X ′ �X ′T − ΠM
�X ′ �X ′T ΠT

M

)
= ΠME

(
�X ′ �X ′T)− ΠM E

(
�X ′ �X ′T)ΠT

M

Now, E
(
�X ′ �X ′T) = σ2Id and thus

Γ = σ2ΠM − σ2ΠMΠT
M = 0

since ΠM = ΠT
M and Π2

M = ΠM . By Theorem C.2, ΠM
�X and �Y are indepen-

dent. This proves item (1).

Let Z = ΠMX − ΠMμ. Put ΠM in diagonal form as in (C.2) and let
X̃ = UT (�x − μ) and Z̃ = UTZ, so that

Z̃ = DX̃

thus

Z̃i =

⎧⎨
⎩
X̃i for i = 1, . . . ,m

0 for i = m+ 1, . . . , n

Note that ∥∥Z̃∥∥= ∥∥ΠM
�X − ΠM�μ

∥∥ (C.17)

since U is orthogonal. Now X̃ is homoscedastic Gaussian with 0 expectation
and variance σ2 (Theorem C.5), thus X̃i ∼ iidN0,σ2 , and finally

∥∥ΠM
�X − ΠM�μ

∥∥2 =
m∑

i=1

X̃2
i

This proves item (2), and similarly, item (3).

Proofs 375

Theorem C.7

The log likelihood of an observation �x = (x1, . . . , xn)T is

l�x(�μ, σ) = −N
2

ln(2π) −N ln(σ) − 1
2σ2

n∑
i=1

(xr − μr)2

= −N
2

ln(2π) −N ln(σ) − 1
2σ2

∥∥�x− �μ
∥∥2 (C.18)

For a given σ, by (C.1), the log-likelihood is maximized for �μ = μ̂ = ΠM (�x),
which is independent of σ. Let �μ = μ̂ in (C.18) and maximize with respect to
σ, this gives the first item in the theorem. The rest follows from Theorem C.6.

Annex D

Digital Filters

Here, we review all we need to know for Chapter 5 regarding causal digital
filters. It is a very small subset of signal processing, without any Fourier
transform. See for example [83] or [75] for a complete and traditional course.

D.1 Calculus of Digital Filters

D.1.1 Backshift Operator

We consider data sequences of finite, but arbitrary length and call S the set of
all such sequences (i.e. S =

⋃∞
n=1 R

n). We denote with length(X) the number
of elements in the sequence X .

The backshift operator is the mapping B from S to itself defined by

length(BX) = length(X)
(BX)1 = 0
(BX)t = Xt−1 t = 2, . . . , length(X)

We usually view a sequence X ∈ S as a column vector, so that we can write

B

⎛
⎜⎜⎜⎜⎜⎝

X1

X2

...

Xn

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

0

X1

...

Xn−1

⎞
⎟⎟⎟⎟⎟⎠

(D.1)

when length(X) = n.
If we know that length(X) ≤ n, we can express the backshift operator as a

matrix multiplication:
BX = BnX (D.2)

378 Digital Filters

Here, Bn is the n× n matrix

Bn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 . . .

1 0 0 . . .

0 1 0 . . .
...

...
...

. . .

0 0

1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Obviously, if n = length(X), then applying B n times to X gives a sequence
of 0s; in matrix form:

(Bn)n = 0 (D.3)

D.1.2 Filters

Definition D.1
A filter (also called “causal filter”, or “realizable filter”) is any mapping, say
F , from S to itself that has the following properties.
(1) A sequence of length n is mapped to a sequence of the same length.
(2) There exists an infinite sequence of numbers hm, m = 0, 1, 2, . . . (called

the filter’s impulse response) such that, for any X ∈ S,
(
FX

)
t
= h0Xt + h1Xt−1 + · · · + ht−1X1 t = 1, . . . , length(X) (D.4)

Example D.1
The backshift operator B is the filter with h0 = 0, h1 = 1, h2 = h3 =
· · · = 0.
The identical mapping, Id, is the filter with h0 = 1, h1 = h2 = · · · = 0.
The de-seasonalizing filter of order s, Rs, is the filter with h0 = · · · =
hs−1 = 1, hm = 0 for m ≥ s.
The differencing filter at lag s, Δs, is the filter with h0 = 1, hs = −1
and hm = 0 for m �= 0 and m �= s.

Equation (D.4) can also be expressed as

F =
∞∑

m=0

hmB
m (D.5)

where B0 = Id. Note that the summation is only apparently infinite, since for
a sequence X in S of length n, we have FX =

∑n−1
m=0 hmB

mX .

Calculus of Digital Filters 379

In matrix form, if we know that length(X) ≤ n we can write (D.4) as

FX =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h0 0 0 . . .

h1 h0 0 . . .

h2 h1 h0 . . .
...

...
...

. . .

h0 0

hn−1 hn−2 h1 h0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

X (D.6)

A filter is called Finite Impulse Response (FIR) if hn = 0 for n large
enough. Otherwise, it is called Infinite Impulse Response.

D.1.3 Impulse response and Dirac Sequence

Define the Dirac sequence of length n

δn =

⎛
⎜⎜⎜⎜⎜⎝

1

0
...

0

⎞
⎟⎟⎟⎟⎟⎠

(D.7)

The impulse response of a filter satisfies
⎛
⎜⎜⎜⎜⎜⎝

h0

h1

...

hn−1

⎞
⎟⎟⎟⎟⎟⎠

= Fδn (D.8)

This is used to compute the impulse response if we know some algorithm to
compute FX for any X .

D.1.4 Composition of Filters, Commutativity

Let F and F ′ be filters. The composition of F and F ′, denoted with FF ′, is
defined as the mapping from S to S obtained by applying F ′ first, then F , i.e.
such that for any sequence X

(
FF ′)(X) = F

(
F ′(X)

)
(D.9)

It can easily be seen that FF ′ is a filter. Furthermore, the composition of
filters commute, i.e.

FF ′ = F ′F (D.10)

380 Digital Filters

The first n terms of the impulse response of FF ′ can be obtained by

⎛
⎜⎜⎜⎜⎜⎝

g0

g1
...

gn−1

⎞
⎟⎟⎟⎟⎟⎠

=
(
FF ′) δn = F (F ′δn) =

(
F ′F

)
δn = F ′(Fδn) (D.11)

Example D.2
Let us compute the impulse response of FF ′ when F = Id − B (dif-
ferencing at lag 1) and F ′ = Id − B5 (differencing at lag 5). Let n be
large:

F ′δn =
(
1, 0, 0, 0, 0,−1, 0, 0, 0, 0, 0, . . .

)T
F (F ′δn) =

(
1,−1, 0, 0, 0,−1, 1, 0, 0, 0, 0, . . .

)T
thus the impulse response g of FF ′ is given by

⎧⎪⎪⎨
⎪⎪⎩
g0 = g6 = 1

g1 = g5 = −1

else gm = 0

(D.12)

Alternatively, we can carry out the computations in reverse order and
obtain the same result:

Fδn =
(
1,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, . . .

)T
F ′(Fδn) =

(
1,−1, 0, 0, 0,−1, 1, 0, 0, 0, 0, . . .

)T

D.1.5 Inverse of Filter

Since the matrix in (D.6) is triangular, it is invertible if and only if its diagonal
terms are non-zero, i.e. if h0 �= 0, where h0 is the first term of the impulse
response. If this holds, it can also be seen that the reverse mapping F−1 is
a filter, i.e it satisfies the conditions in Definition D.1. Thus, a filter F is
invertible if and only if h0 �= 0.

For example, the inverse filter of the filter with impulse response hm = 1 for
m ≥ 0 (integration filter) is that with the impulse response h0 = 1, h1 = −1,
hm = 0 for m ≥ 2 (differencing filter). This can also be written as

(∞∑
n=0

Bn

)−1

= Id −B (D.13)

Calculus of Digital Filters 381

D.1.6 AR(∞) Representation of Invertible Filter

Let F be an invertible filter and Y = FX . Let g0, g1, . . . be the impulse
response of F−1. We have X = F−1Y thus for t ≥ 1

Xt = g0Yt + g1Yt−1 + · · · + gt−1Y1 (D.14)

Note that g0 = 1
h0

, thus

Yt = c0Xt + c1Yt−1 + · · · + ct−1Y1 (D.15)

with ⎧⎪⎪⎨
⎪⎪⎩
c0 =

1
g0

= h0

cm = −gm

g0
= −gmh0 for m = 1, 2, . . .

(D.16)

The sequence c0, c1, c2, . . . used in (D.15) is called the AR(∞)(1) representation
of F . It can be used to compute the output Yt as a function of the past output
and the current input Xt. This applies to any invertible filter.

If F−1 is FIR, then there exists a certain q such that cm = 0 for m ≥ q.
The filter F is called auto-regressive of order q: (AR(q)).

D.1.7 Calculus of Filters

When the filter F ′ is invertible, the composition F (F ′−1) is also denoted F
F ′ .

There is no ambiguity since composition is commutative, namely

F

F ′ = F (F ′−1) =
(
F ′−1

)
F (D.17)

We have thus defined the product and division of filters. It is straightfor-
ward to see that the addition and subtraction of filters are also filters. For
example, the filter F +F ′ has the impulse response hm +h′m and the filter −F
has the impulse response −hm.

It is customary to denote the identity filter with 1. With this convention,
we can write the differencing filters as

Δs = 1 −Bs (D.18)

and the de-seasonalizing filter as

Rs = 1 +B + · · · +Bs−1 (D.19)

We can also rewrite (D.13) as

1∑∞
n=0 B

n
= 1 −B

(1)AR stands for “Auto-Regressive”.

382 Digital Filters

or
1

1 −B
=

∞∑
n=0

Bn (D.20)

The usual manipulations of fractions work as expected, and can be combined
with the usual rules for addition, subtraction, multiplication and division (as
long as the division is valid, i.e. the filter at the denominator is invertible).
Thus, if F and F ′ are invertible, the inverse of F

F ′ is F ′
F :

1
F

F ′

=
F ′

F

Example D.3
We can recover (D.12) as follows:

FF ′ = (1 −B)(1 −B5) = 1 −B −B5 +B6

Example D.4

Δ5

Δ1
=

1 −B5

1 −B
=

(1 −B)(1 +B +B2 +B3 +B4)
1 −B

= 1 +B +B2 +B3 +B4 = R5

(D.21)

If F and G are FIR, then FG, F + G and F − G are also FIR, but F
G is

(generally) not.

D.1.8 z Transform

It is customary in signal processing to manipulate transforms rather than the
filters themselves. By definition, the transfer function of the filter with
impulse response h is the power series

H(z) = h0z + h1z
−1 + h1z

−2 + · · · (D.22)

i.e. it is the z transform of the impulse response. This is considered as a formal
series, i.e. there is no worry about its convergence for any value of z. Note
the use of z−1 (customary in signal processing) rather than z (customary in
maths).

It follows from the rules on the calculus of filters that using transfer func-
tions is the same as replacing B by z−1 everywhere.

Example D.5
The transfer function of the filter

F =
Q0 +Q1B + · · · +QqB

q

P0 + P1B + · · · + PpBp
(D.23)

Stability 383

with P0 �= 0 is precisely

H(z) =
Q0 +Q1z

−1 + · · · +Qqz
−q

P0 + P1z−1 + · · · + Ppz−p
(D.24)

You may find it more convenient to use z-transforms and thus transfer
functions if you do not feel comfortable manipulating the backshift operator B
(and vice-versa: if you do not like transfer functions, use the backshift operator
instead).

D.2 Stability

A filter F with impulse response hn is called stable(2) if and only if
∞∑

n=0

|hn| < +∞ (D.25)

For a sequence X ∈ S, let
∥∥X∥∥∞ = maxt=1,...,length(X) |Xt|. If F is stable and

Y = FX then ∥∥Y ∥∥∞ ≤M
∥∥X∥∥∞ (D.26)

where M =
∑∞

n=0 |hn|. In other words, if the input to the filter has a bounded
magnitude, so does the output. In contrast, if F is not stable, the output of
the filter may become infinitely large as the length of the input increases. A
stable filter has an impulse response hn that decays quickly as n→ ∞.

For example, the filter in (D.21) is stable (as is any FIR filter) and the filter
in (D.20) is not stable.

In practice, if a filter is not stable, we may experience numerical problems
when computing its output (Figure D.1).

D.3 Filters with Rational Transfer Function

D.3.1 Definition

Filters with Rational Transfer Function are filters of the form in (D.23), or,
equivalently, whose transfer function has the form in (D.24), with P0 �= 0.
Many filters used in practice are of this type. Note that

Q0 +Q1B + · · · +QqB
q

P0 + P1B + · · · + PpBp
=
Q′

0 +Q′
1B + · · · +Q′

qB
q

1 + P ′
1B + · · · + P ′

pB
p

with Q′
m = Qm

P0
and P ′

m = Pm

P0
, so we can always assume that P0 = 1.

(2)or Bounded Input, Bounded Output (BIBO)-stable.

384 Digital Filters

0 20 40 60 80 100
−3

−2

−1

0

1

2

3
P=[0.1 0.2 0.3] Q=[1 −0.2]

(a)

−1 0 1
−3

−2

−1

0

1

2

3

Real Part

Im
ag

in
ar

y
P

ar
t

0 10 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 10 20
−2

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

5

(b)

Figure D.1 A numerical illustration of the filter F = 0.1+0.2 B+0.3 B2

1−0.2 B
. (a) A ran-

dom input sequence X (thin line), the corresponding output Y = FX (thick line),
obtained by the Matlab command Y=filter([0.1 0.2 0.3],[1 -0.2],X) and the
reconstructed input F−1Y obtained by filter([1 -0.2],[0.1 0.2 0.3],Y) (small
disks). (b) left: Poles (x) and zeroes (o) of F , obtained by zplane([0.1 0.2
0.3],[1 -0.2]). The filter F is stable (poles within unit disk) but F−1 is not
(at least one zero outside the unit disk). (b) middle and right: impulse response of
F (h=filter([0.1 0.2 0.3],[1 -0.2],D), where D is a dirac sequence) and F−1

(h=filter([1 -0.2],[0.1 0.2 0.3],D)). Reconstruction of X as F−1Y fails for
t ≥ 60; this is a symptom of F−1 being unstable.

A filter with a rational transfer function can always be expressed as a linear
constant-coefficient difference equation. Indeed, consider F as in (D.23)
with P0 �= 0 and let Y = FX . Recall that this is equivalent to

Y =
(
P0 + P1B + · · · + PpB

p
)−1(

Q0 +Q1B + · · · +QqB
q
)
X

i.e. (
P0 + P1B + · · · + PpB

p
)
Y =

(
Q0 +Q1B + · · · +QqB

q
)
X

Filters with Rational Transfer Function 385

Thus for t = 1, . . . , length(X):

P0Yt + P1Yt−1 + · · · + PpYt−p = Q0Xt +Q1Xt−1 + · · · +QqXt−q (D.27)

with the usual convention Yt = Xt = 0 for t ≤ 0. Since P0 �= 0, this equation
can be used to iteratively compute Y1 = Q0X1

P0
, Y2 = Q0X2+Q1X1

P0
, etc.

The impulse response of F is usually computed by applying filter to a
Dirac sequence. It may also be computed by Taylor series expansion, using
classical rules for Taylor series of functions of one real variable.

Example D.6

The impulse response of the filter G = 1−2B
1−B2 is obtained as follows. We

use the rule 1
1−x = 1 + x+ x2 + · · · and obtain

1 − 2B
1 −B2

= (1 − 2B)
(
1 +B2 +B4 + · · ·)

= 1 +B2 +B4 +B6 + · · · − 2B − 2B3 − 2B5 − · · ·
= 1 − 2B +B2 − 2B3 +B4 − 2B5 . . .

Thus, the impulse response of G is (1,−2, 1,−2, 1,−2, . . .).

Note that, in general, a filter with a rational transfer function has an infinite
impulse response.

The inverse of the filter F exists if Q0 �= 0 and is

F−1 =
P0 + P1B + · · · + PpB

p

Q0 +Q1B + · · · +QqBq
(D.28)

i.e. it is obtained by exchanging numerator and denominator.

D.3.2 Poles and Zeroes

By definition, the Poles of a filter with rational transfer functions are the
values of z, other than 0, for which the transfer function is not defined. If the
transfer function is in a form that cannot be simplified,(3) the poles are the
zeroes of the denominator. Similarly, the Zeroes of the filter are the values of
z �= 0 such that H(z) = 0.

A filter with a rational transfer function is stable if it has no pole or its
poles are all inside the unit disk , i.e. they have a modulus of less than 1. This
follows from the definition of stability and standard results on the theory of
Taylor series of rational fractions in one variable.

The location of zeroes is useful to assess the stability of the reverse filter.
Indeed, if the filter is invertible (i.e. Q0 �= 0), then the inverse filter is stable if
all zeroes of the original filter are within the unit disk.

(3)i.e. of the form p(z−1)

q(z−1)
, where p, q are polynomials with no common root

386 Digital Filters

Example D.7 Numerical Stability of Inverse Filter
Consider the filter

F =
0.1 + 0.2B + 0.3B2

1 − 0.2B
(D.29)

We apply the filter to an input sequence X (thin line in Figure D.1)
and obtain the output sequence Y (thick line). F is a filter with a

0 20 40 60 80 100
−3

−2

−1

0

1

2

3
P=[0.5 0.3 0.2] Q=[1]

(a)

−1 0 1
−3

−2

−1

0

1

2

3

2

Real Part

Im
ag

in
ar

y
P

ar
t

0 10 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 10 20
−1.5

−1

−0.5

0

0.5

1

1.5

2

(b)

Figure D.2 A numerical illustration of the filter G = G = 0.5 + 0.3 B +
0.2 B2. (a) A random input sequence X (thin line), the corresponding out-
put Z = GX (thick line) and the reconstructed input G−1Z (small disks).
(b) left: Poles (×) and zeroes (◦) of G. Depending on the conventions, the
origin may or may not be considered as a pole. With our conversion, there
is no pole but the employed software shows a pole of multiplicity 2 at 0. The
filter G and its inverse are stable (poles and zeroes are within the unit disk).
(b) middle and right: Impulse response of G and G−1. Reconstruction works
perfectly.

Predictions 387

rational transfer function, equivalent to the linear constant-coefficient
difference equation

Yt = 0.1Xt + 0.2Xt−1 + 0.3Xt−2 + 0.2Yt−1

The poles are the zeroes of 1−0.2 z−1, which are the same as the zeroes
of z − 0.2 (i.e z = 0.2).
The poles lie inside the unit disk, and the filter is thus stable. Its
impulse response quickly decays to 0. The filter is invertible but the
inverse is not stable as the zeroes are not all inside the unit disk. The
impulse response of the inverse filter does not decay. We also compute
F−1(Y) which, in theory, should be equal to X (small disks). However,
the inverse filter in not stable and can be difficult to apply in practice;
we see indeed that rounding errors become significant for t ≥ 60.
If we consider instead G = 0.5 + 0.3B + 0.2B2, then both the filter
and its inverse are stable, and there are no numerical errors in the
reconstruction (Figure D.2).

D.4 Predictions

We use the filter to model time series and perform predictions. Many formulas
in Chapter 5 are based on the following result.

D.4.1 Conditional Distribution Lemma

Lemme D.1 Let (X1, X2), (Y1, Y2) be two random vectors, both with values in
the space R

n1 × R
n2 , and such that

Y1 = F1X1

Y2 = F21X1 + F22X2

where F1, F21, F22 are non-random linear operators and F1 is invertible.
Let X ′

2 be a random sample drawn from the conditional distribution of X2,
given that X1 = x1 and

y1 = F1x1

Y ′
2 = F21x1 + F22X

′
2

The law of Y ′
2 is the conditional distribution of Y2 given that Y1 = y1.

D.4.2 Predictions

Let Xt, Yt be two real-valued random sequences (not necessarily iid), defined
for t ≥ 1. Assume that Y = FX , where F is an invertible filter with impulse
response h0, h1, h2, . . . and AR(∞) representation c0, c1, c2, The following

388 Digital Filters

theorem claims that making a prediction for X is equivalent to making a pre-
diction for Y . It is a direct consequence of Lemma D.1.

Theorem D.2 (Conditional Distribution of Futures)

Assume that
(
y1, . . . , yt

)T = F
(
x1, . . . , xt

)T and let � ≥ 1.

Assume that
(
X ′

t+1, . . . , X
′
t+

)
is a random sample drawn from the condi-

tional distribution of
(
Xt+1, . . . , Xt+

)
given that X1 = x1, . . . , Xt = xt.

Let
(
y1, . . . , yt, Y

′
t+1, . . . , Y

′
t+

)T = F
(
x1, . . . , xt, X

′
t+1, . . . , X

′
t+

)T

Then
(
Y ′

t+1, . . . , Y
′
t+

)
is distributed according to the conditional distribution

of
(
Yt+1, . . . , Yt+

)
given that Y1 = y1, . . . , Yt = yt.

We can derive explicit formulas for point predictions.

Corollary D.1 (Point Prediction) Define the �-point-ahead predictions by

X̂t(�) = E
(
Xt+
 | X1 = x1, . . . , Xt = xt

)
Ŷt(�) = E

(
Yt+
 | Y1 = y1, . . . , Yt = yt

)
then

(
y1, . . . , yt, Ŷt(1), . . . , Ŷt(�)

)T = F
(
x1, . . . , xt, X̂t(1), . . . , X̂t(�)

)T (D.30)

In particular,

Ŷt(�) = h0X̂t(�)+h1X̂t(�−1)+ · · ·+h
−1X̂t(1)+h
−1xt + · · ·+ht−1x1 (D.31)

and

Ŷt(�) = c0X̂t(�) + c1Ŷt(�− 1) + · · · + c
−1Ŷt(1) + c
yt + · · · + ct−1y1 (D.32)

In the frequent case where Xt is assumed to be iid, we can deduce more
explicit results for the point prediction and mean square prediction errors:

Corollary D.2 Also assume that Xt is iid with mean μ = E(Xt) and variance
σ2 = varXt. Then

(1) (Point predictions)
(
y1, . . . , yt, Ŷt(1), . . . , Ŷt(�)

)T = F
(
x1, . . . , xt, μ, . . . , μ

)T (D.33)

In particular

Ŷt(�) = (h0 + h1 + · · · + h
−1)μ+ h
−1xt + · · · + ht−1x1 (D.34)

and

Ŷt(�) = c0μ+ c1Ŷt(�− 1) + · · · + c
−1Ŷt(1) + c
yt + · · · + ct−1y1 (D.35)

Log Likelihood of Innovation 389

(2) (Mean square prediction error) Define

MSE2
t (�)

def= var
(
Yt+
 | Y1 = y1, . . . , Yt = yt

)
= E

((
Yt+
 − Ŷt(�)

)2 ∣∣∣ Y1 = y1, . . . , Yt = yt

)

then
MSE2

t (�) = σ2
(
h2

0 + · · · + h2

−1

)
(D.36)

Corollary D.3 (Innovation Formula) For t ≥ 2:

Yt − Ŷt−1(1) = h0(Xt − μ) (D.37)

This is called an innovation formula as it can be used to relate Xt (the
“innovation”) to the prediction error.

D.5 Log Likelihood of Innovation

Let Xt, Yt be two real-valued random sequences (not necessarily iid), defined
for t ≥ 1. Assume that Y = FX where F is an invertible filter with im-
pulse response h0, h1, h2, Also assume that for any n, the random vector
(X1, . . . , Xn) has a PDF f �Xn

(x1, . . . , xn).

Theorem D.3
Assume that the impulse response of F is such that h0 = 1. Then for all n
the random vector (Y1, . . . , Yn) has a PDF equal to

f�Yn
(y1, . . . , yn) = f �Xn

(x1, . . . , xn)

with (y1, . . . , yn)T = F (x1, . . . , xn)T .

Theorem D.3 can be used for estimations in the context of ARMA models,
where Xt is the non observed innovation, assumed to be iid. The theorem
states that the log-likelihood of the model is the same as if we had observed
the innovation; estimation methods for iid sequences can then be applied, as
in Example 2.5.

D.6 Matlab Commands

filter. Y = filter
(
[Q0 Q1 . . . Qq], [P0 P1 . . . Pp], X) with P0 �= 0 applies

the filter
Q0 +Q1B + · · · +QqB

q

P0 + P1B + · · · + PpBp
(D.38)

390 Digital Filters

to the input sequence X and produces an output sequence Y of the same length
as X .

poles and zeroes can be obtained with zplane

de-seasonalizing. The de-seasonalizing filter with period s is Rs =
∑s−1

i=1 B
i;

X = RsY can be obtained using

R = ones(1,s)

X = filter(R,1,Y)

differencing filter. X = ΔsY can be obtained by

X = filter([1,0,...,0,-1],[1],Y)

where -1 is at position s+ 1. The inverse filter is obtained by exchanging the
first two arguments:

Y = filter([1],[1,0,...,0,-1],X)

and the terms h0, h1, . . . , h
 of the impulse response of Δ−1
s are obtained by

the command:

h = filter([1],[1,0,...,0,-1],[1,0,...,0])

where the last vector has � zeroes.
The command Y=diff(X,s) also applies the differencing filter Δs to X but

it removes the first s entries instead of setting them to 0 as filter does

impulse response. impz([P0 P1 . . . Pp], [Q0 Q1 . . . Qq], n) gives the first
n terms of the impulse response of the filter in (D.38). It is equivalent to
using filter([P0 P1 . . . Pp], [Q0 Q1 . . . Qq], deltan) with deltan equal to
the sequence [1 0 ... 0] (with n− 1 zeroes).

parameter estimation of an ARMA model can be done by direct application
of Theorem 5.4 and lsqnonlin for the solution of the non-linear optimization
problem. For simple ARMA models, it can be done in one step with armax.

convolution. c=conv(a,b) computes the sequence of length length(a)
+length(b) − 1 such that ck =

∑
i aibk−i, where the sum is for i such that

ai and bk−i are defined. The command Y=filter(P1,Q1,filter(P2,Q2,X)) is
equivalent to

P = conv(P1,P2)

Q = conv(Q1,Q2)

X = filter(P,Q,X)

simulation of an ARMA process as defined in Definition 5.1 can be done with

e = sigma * randn(n,1)

x = mu + filter(A,C,e)

Proofs 391

D.7 Proofs

Lemma D.1

The characteristic function of Y ′
2 is

φY ′
2
(ω2) = E

(
e−j(〈ω2,F21x1〉+〈ω2,F22X′

2〉)) = e−j〈ω2,F21x1〉E
(
e−j〈ω2,F22X′

2〉)
= e−j〈ω2,F21x1〉E

(
e−j〈ω2,F22X2〉 | X1 = x1

)
:= e−j〈ω2,F21x1〉h(x1) := f(x1) (D.39)

where 〈·, ·〉 is the inner product. Now let g(y1) := f(F−1
1 y1). We want to show

that
g(y1) = E

(
e−j〈ω2,Y2〉 | Y1 = y1

)
(D.40)

By definition of a conditional probability, this is equivalent to showing that for
any ω1 ∈ R

n1

E
(
e−j〈ω1,Y1〉g(Y1)

)
= E

(
e−j〈ω1,Y1〉 e−j〈ω2,Y2〉) (D.41)

Now, by the definition of g(·)

E
(
e−j〈ω1,Y1〉g(Y1)

)
= E

(
e−j〈ω1,Y1〉 e−j〈ω2,F21F−1

1 Y1〉h(F−1
1 Y1)

)
= E

(
e−j〈ω1,F1X1〉 e−j〈ω2,F21X1〉h(X1)

)
= E

(
e−j〈ω1,F1X1〉 e−j〈ω2,F21X1〉 e−j〈ω2,F22X2〉)

where the last equality is, by definition of h(·), a conditional expectation in
(D.39). This shows (D.41) as desired.

Note that the proof is simpler if X1, X2 have a density, but this may not
always hold, even for Gaussian processes.

Theorem D.3

The random vector �Yn = (Y1, . . . , Yn)T is derived from the random vector
�Xn =

(
X1, . . . , Xn

)T by �Yn = Hn
�Xn where Hn is the matrix in (D.6), with

h0 = 1. Based on the formula of change of variable, we have

f �Xn
(x1, . . . , xn) =

∣∣det(Hn)
∣∣f�Yn

(y)

and det(Hn) = 1.

Bibliography

[1] The ns-3 Network Simulator. http://www.nsnam.org/.
[2] I. Adan, J. Visschers and J. Wessels. Sum of Product Forms Solutions to

MSCCC Queues with Job Type Dependent Processing Times. Memoran-
dum COSOR 98-19, 1998.

[3] F. Baccelli and P. Bremaud. Elements of Queueing Theory: Palm Mar-
tingale Calculus and Stochastic Recurrences. Springer Verlag, 2003.

[4] François Baccelli and Pierre Brémaud. Palm Probabilities and Stationary
Queues. Springer LNS, 1987.

[5] O. Bakr and I. Keidar. Evaluating the Running Time of a Communica-
tion Round over the Internet. In Proceedings of the twenty-first annual
symposium on Principles of Distributed Computing, pages 243–252. ACM
New York, NY, USA, 2002.

[6] S. Balsamo. Product Form Queueing Networks. Lecture Notes in Com-
puter Science, pages 377–402, 2000.

[7] C. Barakat, P. Thiran, G. Iannaccone, C. Diot and P. Owezarski. Model-
ing Internet Backbone Traffic at the Flow Level. IEEE Transactions on
Signal Processing, 51(8):2111–2124, 2003.

[8] A. D. Barbour. Networks of Queues and the Method of Stages. Advances
in Applied Probability, 8(3):584–591, 1976.

[9] P. Barford and M. Crovella. Generating Representative Web Workloads
for Network and Server Performance Evaluation. SIGMETRICS Perform.
Eval. Rev., 26(1):151–160, 1998.

[10] F. Baskett, K. M. Chandy, R. R. Muntz, and F. G. Palacios. Open,
Closed, and Mixed Networks of Queues with Different Classes of Cus-
tomers. Journal of the ACM (JACM), 22(2):260, 1975.

[11] S. A. Berezner, C. F. Kriel and A. E. Krzesinski. Quasi-Reversible Mul-
ticlass Queues with Order Independent Departure Rates. Queueing Sys-
tems, 19(4):345–359, 1995.

[12] C. R. Blyth and H. A. Still. Binomial Confidence Intervals. Journal of
the American Statistical Association, pages 108–116, 1983.

[13] T. Bonald and A. Proutiere. Insensitive Bandwidth Sharing in Data Net-
works. Queueing Systems, 44(1):69–100, 2003.

[14] T. Bonald and J. Virtamo. Calculating the Flow Level Performance of
Balanced Fairness in Tree Networks. Performance Evaluation, 58(1):1–14,
2004.

394 Bibliography

[15] G. E. P. Box and G. M. Jenkins. Time Series Analysis, Forecasting and
Control. Holden-Day, San Francisco, 1970.

[16] M. Bramson. Instability of FIFO Queueing Networks with Quick Service
Times. The Annals of Applied Probability, 4(3):693–718, 1994.

[17] P. Brémaud. Markov Chains: Gibbs Fields, Monte Carlo Simulation and
Queues. Springer, 1999.

[18] P. J. Brockwell and R. A. Davis. Introduction to Time Series and Fore-
casting. Springer Verlag, 2002.

[19] P. J. Brockwell and R.A. Davis. Introduction to Time Series and Fore-
casting, second edition. Springer-Verlag, New York, 2002.

[20] J. P. Buzen. Computational Algorithms for Closed Queueing Networks
with Exponential Servers. Commun. ACM, 16(9):527, 1973.

[21] E. Çinlar. Introduction to Stochastic Processes. Prentice Hall, 1975.
[22] K. Mani Chandy and Charles H. Sauer. Computational Algorithms for

Product Form Queueing Networks. Commun. ACM, 23(10):573–583,
1980.

[23] C. S. Chang. Performance Guarantees in Communication Networks.
Springer-Verlag, New York, 2000.

[24] X. Chao, M. Miyazawa and M. Pinedo. Queueing Networks: Customers,
Signals and Product Form Solutions. Wiley, 1999.

[25] J. B. Chen, E. Yasuhiro and C. Kee. The Measured Performance of Per-
sonal Computer Operating Systems, 15 thACM SOSP. Colorado, United
States: Copper Mountain, pages 169–173, 1995.

[26] G. Chiola, M. A. Marsan and G. Balbo. Product-Form Solution Tech-
niques for the Performance Analysis of Multiple-Bus Multiprocessor Sys-
tems with Nonuniform Memory References. IEEE Transactions on Com-
puters, 37(5):532–540, 1988.

[27] A. E. Conway and N. D. Georganas. RECAL New Efficient Algorithm for
the Exact Analysis of Multiple-Chain Closed Queuing Networks. Journal
of the ACM (JACM), 33(4):768–791, 1986.

[28] A. E. Conway, E. S. Silva and S. S. Lavenberg. Mean Value Analysis
by Chain of Product Form Queueing Networks. IEEE Transactions on
Computers, 38(3):432–442, 1989.

[29] Verizon Corporation. Verizon NEBS(TM) Compliance: Energy Effi-
ciency Requirements for Telecommunications Equipment. Technical Re-
port VZ.TPR.9205, September 2008.

[30] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley,
1991.

[31] M. E. Crovella and M. S. Taqqu. Estimating the Heavy Tail Index from
Scaling Properties. Methodology and computing in applied probability,
1(1):55–79, 1999.

[32] A. C. Davison. Statistical Models. Cambridge University Press, 2003.
[33] A. C. Davison and D. V. Hinkley. Bootstrap Methods and their Applica-

tion. Cambridge Univ Pr, 1997.

Bibliography 395

[34] P. J. Denning and J. P. Buzen. The Operational Analysis of Queueing
Network Models. ACM Computing Surveys (CSUR), 10(3):225–261, 1978.

[35] M. El-Taha and Shaler Jr. Stidham. Sample-Path Analysis of Queueing
Systems. Kluwer Academic, 1998.

[36] E. Gelenbe. Product-Form Queueing Networks with Negative and Positive
customers. Journal of Applied Probability, pages 656–663, 1991.

[37] W. J. Gordon and G. F. Newell. Closed Queuing Systems with Exponen-
tial Servers. Operations Research, 15(2):254–265, 1967.

[38] G. Grimmett and D. Stirzaker. Probability and Random Processes. Oxford
University Press, USA, 2001.

[39] M. Grossglauser and J. C. Bolot. On the Relevance of Long-Range De-
pendence in Network Traffic. IEEE/ACM Transactions on Networking
(TON), 7(5):629–640, 1999.

[40] B. Hechenleitner and K. Entacher. On Shortcomings of the ns-2 Ran-
dom Number Generator. Proceedings of Communication Networks and
Distributed Systems Modeling and Simulation (CNDS 2002), 2002.

[41] C. C. Holt. Forecasting Seasonal and Trends by Exponentially Weighted
Moving Averages. Carnegie Institute of Technology, Pittsburgh, Pennsyl-
vania, 1957.

[42] J. R. Jackson. Jobshop-like Queueing Systems. Management Science,
50(12):1796–1802, 1963.

[43] N. L. Johnson, S. Kotz and A. W. Kemp. Univariate Discrete Distribu-
tions. Wiley-Interscience, 2005.

[44] F. P. Kelly. Reversibility and Stochastic Networks. Wiley, 1979.
[45] F. P. Kelly. Models for a self-managed Internet. Philosophical Trans-

actions: Mathematical, Physical and Engineering Sciences, pages 2335–
2348, 2000.

[46] L. Kleinrock. Queueing Systems Volume I: Theory, volume 1. John-Wiley
& Sons, 1975.

[47] L. Kleinrock. Queueing Systems Volume II: Computer Applications, vol-
ume 2. John-Wiley & Sons, 1976.

[48] A. B. Koehler, R. D. Snyder and O. J. Keith. Forecasting Models and
Prediction Intervals for the Multiplicative Holt-Winters Method. Inter-
national Journal of Forecasting, 17:269–286, April-June 2001.

[49] M. A. Law and W. D. Kelton. Simulation Modeling and Analysis.
McGraw-Hill, 2000.

[50] J.-Y. Le Boudec. Rate Adaptation, Congestion Control and Fairness: a
Tutorial. http://ica1www.epfl.ch/PS_files/LEB3132.pdf.

[51] J.-Y. Le Boudec and P. Thiran. Network Calculus. Springer Verlag
Lecture Notes in Computer Science volume 2050 (available online at
http://lcawww.epfl.ch), July 2001.

[52] J.-Y. Le Boudec and M. Vojnovic. The Random Trip Model: Stability,
Stationary Regime, and Perfect Simulation. IEEE/ACM Transactions on
Networking, 14(6):1153–1166, 2006.

396 Bibliography

[53] J.-Y. Le Boudec. A BCMP Extension to Multiserver Stations with Con-
current Classes of Customers. ACM SIGMETRICS Perform. Eval. Rev.,
14(1):78–91, 1986.

[54] J.-Y. Le Boudec. Interinput and Interoutput Time Distribution in Classi-
cal Product-Form Networks. IEEE Transactions on Software Engineering,
pages 756–759, 1987.

[55] J.-Y. Le Boudec. Steady-State Probabilities of the PH/PH/1 Queue.
Queueing Systems, 3(1):73–87, 1988.

[56] J.-Y. Le Boudec. The MULTIBUS Algorithm. Performance Evaluation,
8(1):1–18, 1988.

[57] J.-Y. Le Boudec. Understanding the Simulation of Mobility Models with
Palm Calculus. Performance Evaluation, 64(2):126–147, 2007.

[58] L. M. Le Ny. Étude analytique de reseaux de files d’attende multiclasses
à routage variable. RAIRO Recherche Operationnelle/Oper. Res, 14:331–
347, 1980.

[59] P. L’Ecuyer. Random number generation. Handbook of Simulation: Prin-
ciples, Methodology, Advances, Applications, and Practice, 1998.

[60] P. L’Ecuyer. Software for Uniform Random Number Generation: Distin-
guishing the Good and the Bad. In Proceedings of the 33nd Conference on
Winter Simulation, pages 95–105. IEEE Computer Society Washington,
DC, USA, 2001.

[61] E. L. Lehmann. On Likelihood Ratio Tests. In IMS Lecture Notes- 2nd
Lehmann Symposium, volume 49, pages 1–8, 2006.

[62] E. L. Lehmann and J. P. Romano. Testing Statistical Hypotheses.
Springer, 2005.

[63] T. Leighton. Improving Performance on the Internet. Commun. ACM,
52(2):44–51, 2009.

[64] W. E. Leland, M. S. Taqqu, W. Willinger, D. V. Wilson, and M. Bell-
core. On the Self-Similar Nature of Ethernet Traffic (extended version).
IEEE/ACM Transactions on networking, 2(1):1–15, 1994.

[65] G. Malinas and J. Bigelow. Simpson’s Paradox. Stanford Encyclopedia of
Philosophy, online.

[66] S. Manthorpe and J.-Y. Le Boudec. A Comparison of ABR and UBR
to Support TCP Traffic. Networking and Information Systems Journal,
2(5-6):764–793, 1999.

[67] M. Matsumoto and T. Nishimura. Mersenne Twister: a 623-Dimensionally
Equidistributed Uniform Pseudo-Random Number Generator. ACM
Transactions on Modeling and Computer Simulation (TOMACS), 8(1):3–
30, 1998.

[68] R. Merz and J.-Y. Le Boudec. Conditional Bit Error Rate for an Impulse
Radio UWB Channel with Interfering Users. In 2005 IEEE International
Conference on Ultra-Wideband, 2005. ICU 2005, pages 130–135, 2005.

[69] M. Miyazawa. The Derivation of Invariance Relations in Complex Queue-
ing Systems with Stationary Inputs. Advances in Applied Probability,
15(4):874–885, 1983.

Bibliography 397

[70] M. Miyazawa. Rate Conservation Laws: A Survey. Queueing Systems,
15(1-4):1–58, 1994.

[71] P. Nain. Basic Elements of Queueing Theory: Application to the Mod-
elling of Computer Systems. Course notes.

[72] M. F. Neuts. Stationary Waiting-Time Distributions in the GI/PH/1
Queue. Journal of Applied Probability, 18(4):901–912, 1981.

[73] J. P. Nolan. Stable Distributions. Math/Stat Department, American
University, 2009.

[74] I. Norros. A Storage Model with Self-Similar Input. Queueing systems,
16(3):387–396, 1994.

[75] A. V. Oppenheim, R. W. Schafer and J. R. Buck. Discrete-Time Signal
Processing (2nd ed.). Prentice-Hall, Inc., 1999.

[76] A. Papoulis and S. U. Pillai. Probability, Random Variables, and Stochas-
tic Processes. McGraw-Hill New York, 1965.

[77] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plau-
sible Inference. Morgan Kaufmann Publishers, 1988.

[78] J. Pellaumail. Formule du produit et décomposition de réseaux de files
d’attente. Ann. Inst. H. Poincaré Sect. B (N.S.), 15(3):261–286, 1979.

[79] M. D. Perlman and L. Wu. The Emperor’s New Tests. Statistical Science,
pages 355–369, 1999.

[80] B. Pittel. Closed Exponential Networks of Queues with Saturation:
The Jackson-Type Stationary Distribution and its Asymptotic Analysis.
Mathematics of Operations Research, 4(4):357–378, 1979.

[81] H. V. Poor. An Introduction to Signal Detection and Estimation. Springer,
1994.

[82] K. R. Popper. Logik der Forschung: Zur Erkenntnistheorie der modernen
Naturwissenschaft. J. Springer, 1935.

[83] P. Prandoni and M Vetterli. Signal Processing for Communications.
EPFL Press, Communication and Information Sciences, 2008.

[84] M. Reiser. Mean-Value Analysis and Convolution Method for Queue-
Dependent Servers in Closed Queueing Networks. Performance Evalua-
tion, 1(1):7–18, 1981.

[85] M. Reiser and H. Kobayashi. Queuing Networks with Multiple Closed
Chains: Theory and Computational Algorithms. IBM Journal of Research
and Development, 19(3):283–294, 1975.

[86] M. Reiser and S. S. Lavenberg. Mean-Value Analysis of Closed Multichain
Queuing Networks. Journal of the ACM (JACM), 27(2):313–322, 1980.

[87] H. Rinne. The Weibull Distribution: A Handbook. Chapman & Hall/CRC,
2008.

[88] Ph. Robert. Stochastic Networks and Queues. Stochastic Modelling and
Applied Probability Series. Springer-Verlag, 2003.

[89] S. A. Roberts. A General Class of Holt-Winters Type Forecasting Models.
Management Science, 28(7):808–820, July 1982.

398 Bibliography

[90] S. M. Ross. Simulation. Academic Press, 2006.
[91] W. Rudin. Real and Complex Analysis. McGraw-Hill Series in Mathe-

matics, 1987.
[92] M. Sakata, S. Noguchi and J. Oizumi. Analysis of a Processor Shared

Queueing Model for Time Sharing Systems. In Proc. 2nd Hawaii Inter-
national Conference on System Sciences, volume 625628, 1969.

[93] G. Samorodnitsky and M. S. Taqqu. Stable Non-Gaussian Random Pro-
cesses: Stochastic Models with Infinite Variance. Chapman & Hall/CRC,
1994.

[94] R. Serfozo. Introduction to Stochastic Networks. Springer Verlag, 1999.
[95] R. Serfozo. Basics of Applied Stochastic Processes. Springer Verlag, 2009.
[96] A. Shaikh, J. Rexford and K. G. Shin. Load-Sensitive Routing of Long-

Lived IP Flows. In Proceedings of the Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communication,
pages 215–226. ACM New York, NY, USA, 1999.

[97] R. H. Shumway and D. S. Stoffer. Time Series Analysis and its Applica-
tions with R Examples. Springer-Verlag, New York, 2006.

[98] P. J. Smith, M. Shafi and H. Gao. Quick Simulation: a Review of Impor-
tance Sampling Techniques incommunications systems. IEEE Journal on
Selected Areas in Communications, 15(4):597–613, 1997.

[99] S. Souders. High-Performance Web Sites. Commun. ACM, 51(12):36–41,
2008.

[100] J. L. Van den Berg and O. J. Boxma. The M/G/1 Queue with Proces-
sor Sharing and its Relation to a Feedback Queue. Queueing Systems,
9(4):365–401, 1991.

[101] N. M. Van Dijk. Queueing Networks and Product Forms: a Systems
Approach. John Wiley & Sons, 1993.

[102] S. Verrill. Confidence Bounds for Normal and Lognormal Distribution
Coefficients of Variation. Technical Report Research Paper 609, USDA
Forest Products Laboratory, Madison, Wisconsin, 2003.

[103] J. Walrand. An Introduction to Queueing Networks. Prentice Hall, 1988.
[104] R. Weber. C11: Statisics, online lecture notes,

http://www.statslab.cam.ac.uk.
[105] R. Weber. Time Series, online lecture notes,

http://www.statslab.cam.ac.uk.
[106] Wikipedia. Harmonic Mean. http://en.wikipedia.org.
[107] P. R. Winters. Forecasting Sales by Exponentially Weighted Moving Av-

erages. Management Science, 6(60):324–342, 1960.
[108] B. Ycart. Modèles et algorithmes markoviens, volume 39. Springer Verlag,

2002.

Index

Symbols
H = λG formula, 238
Mn,�q , 117
Sx,x, 352
T−(t), 230
T+(t), 230
Z-transform, 293
�1 norm minimization, 72
mp : p-quantile, 36
z-transform, 275

– (signal processing), 382
γ1, 87
γ2, 87
μ̂n, 38
σ̂n, 38
χ2

n, 39
�1c = (0, . . . 1 . . . 0), 290

Numbers
�x�, 26
�x�, 26
Bn,p, 37

A
ACF, 158
adaptive sampling, 215
admission control, 15
aging, 245
AIC, Akaike’s Information

Criterion, 148
alternative, 108
analysis of variance, 119
Anderson-Darling, 132
ANOVA, 119
AR(∞), 381
ARMA, Auto-Regressive Moving

Average, 156
arrival theorem, 311
asymptotically stationary, 177
auto-correlation function, 158

auto-regressive, 156, 381
– coefficients, 156
– moving average, 156

B
backshift, 377
balance function, 287
balanced fairness, 323
Bayesian Information Criterion, 148
BCMP networks, 283
benchmark, 2
Bernoulli, 37

– process, 257
BIC, Bayesian Information

Criterion, 148
binomial distribution, 37
bins, 117, 127
bootstrap method, 40

– replicates, 41
bottleneck, 12, 272
box plot, 25
Box-Cox transformation, 55
Box-Jenkins, 155
Box-Müller method, 200

C
Campbell’s

– formula, 237
– Shot Noise Formula, 235

CDF, 25
CDF inversion, 194
censoring, 91
chain, 284

– equivalent, 284
– population vector, 303, 307

characteristic function, 367
Chi-square, 39
Choleski’s factorization, 366
class, 284

– dependent service rate, 289
closed, 284

– network, 284

400 Index

coefficient of variation, 27
combination of mixture

and truncation, 94
communication classes, 255
comparison, 4
competition side effect, 15
complement network theorem, 319
complementary CDFs, 87
complete order, 3
composite goodness of fit, 126
compound distribution, 94
confidence intervals, 34

– level, 36
congestion, 13

– collapse, 13
consistent family of estimators, 352
convolution algorithm, 303

– equation, 303
corrected Holt-Winters additive

seasonal model, 172
CoV, 27
covariance matrix, 365
critical region, 110
cross covariance matrix, 365
cumulant generating function, 86

– of order k, 86

D
DASSA, 268
de-seasonalizing, 151
degrees of freedom, 366
delay, 288
delay jitter, 265
designed experiment, 45
differencing filter, 150
Dirac sequence, 379
discipline, 285
discrete event simulation, 179
distribution shape, 83
distributional little formula, 240
double exponential

– smoothing with regression, 168
– weighted moving average, 170

doubling time, 68

E
efficiency, 353
egalitarian processor sharing, 279
embedded sub-chain, 250, 251
empirical cumulative

distribution function, 24

engineering rules, 5
Engset formula, 325
equivalent

– service rate, 306
– station, 306, 314

ergodic, 255
Erlang-k , 232
Erlang-n, 325
Erlang-B formula, 282
Erlang-C, 281
Erlang-Loss formula, 282
estimator, 351
event

– average, 214
– clock, 214
– scheduler, 179

EWMA, Exponentially Weighted
Moving Average, 168

excess Kurtosis, 87
expected information, 353
explanatory

– model, 68
– variables, 75

exponential
– distribution, 194
– twisting, 204

exponentially weighted
moving average, 168

extended little formula, 238

F
factors, 5
Fat Tail, 90
Feller’s paradox, 233
FIFO, 264
filter, 378
Finite Impulse Response (FIR), 379
Fisher information, 353
forecasting, 142
fractional Brownian traffic, 267

G
gap, 28
Gaussian

– distribution, 26
– vector, 367

generating function, 293
generator matrix, 256
geometric, 56

– distribution, 196
GI/GI/1, 180

Index 401

Gilbert loss model, 243
Gini coefficient, 32
global LCFSPR, 288

– macro-state space, 327
– micro-state space, 327
– PS (processor sharing), 287

H
harmonic, 56
hazard rate, 89
heavy-tailed, 96
Hidden Factor Paradox, 6
histogram, 24
Holt-Winters additive seasonal

model, 172
homoscedastic, 369
homoscedasticity, 71, 119
hyper-exponential, 325

I
iid, 28
impatience, 15
importance sampling, 202

– sampling distribution, 203
impulse response, 378
infinite impulse response, 379
Infinite Server (IS), 288
information criterion, 148
inner product, 363
innovation, 156

– formula, 162
input function, 264
insensitive station, 286
insensitivity, 291
insertion probability, 286
intensity, 224

– formula, 227
– of the workload, 2

intervention analysis, 76
invariant

– by re-parametrization, 352
– by reversible data

transformation, 353
inversion formula, 227
irreducible, 255

J
Jackson, 283
Jain’s Fairness Index, 29
Jarque-Bera, 133

JFI, 29
jointly stationary, 223

K
Kelly station, 290

– networks, 283
Kelly-Whittle, 286
Kendall’s notation, 273
Kiviat Diagram, 4
Kolmogorov-Smirnov, 131
Kruskal-Wallis, 136
Kurtosis index, 87

L
Lag-Plot, 46
Laplace distribution, 72

– qq-plot, 81
Laplace-Stieltjes transform, 268
large time heuristic, 216
Last Come First Serve,

Preemptive Resume, 288
latent congestion collapse, 17
LCFSPR, 288
likelihood, 351

– ratio, 115
– ratio statistic, 355

Lindley’s equation, 277
linear

– congruences, 191
– constant-coefficient

difference, 384
– regression, 75

Little’s Formula, 238, 239
Ljung-Box, 155
load, 2
local balance in isolation, 328
log-likelihood, 353
log-normal distribution, 83
Lorenz curve, 29

– gap, 28

M
macro-state, 327
MAD, 27
Markov routing, 284
marks, 235
matrix of selected transitions, 251
maximum likelihood, 352
mean, 26
Mean Absolute Deviation, 27
Mean Difference, 32

402 Index

Mean Value Analysis, 311
mean-variance, 26
metric, 2
micro-state, 326
mixed networks, 284
mixture

– of exponentials, 325
– of gamma, 325

MLE, 352
model fitting, 68
modulated process, 242
moment heuristics, 161
Monte Carlo simulation, 188
moving average, 156

– coefficients, 156
MSCCC Station, 291
multi-class product form queuing

networks, 283
multinomial, 117
Multiple Server with Concurrent

Classes of Customers, 291
multiplicative ARIMA, 167
MVA, 311

– algorithm version 1, 313

N
nested model, 108
non-dominated, 3
non-parametric, 134
norm, 363
normal distribution, 26

– qq-plot, 54
nuisance factors, 7
null hypothesis, 108

O
observed information, 353
open, 284

– network, 284
order statistic, 36, 54
orthogonal

– matrix, 363
– projection, 364

outlier, 59
output function, 264
overfitting problem, 147

P
p-value, 113
PACF, 158
paired experiment, 34

Pareto, 88
partial

– auto-correlation function, 158
– correlation, 373
– covariance, 373
– order, 3

PASTA, 252
PDF, 37
Pearson chi-squared statistic, 128
per chain throughput, 304
per-Class LCFSPR, 288
per-class processor sharing, 288
percentile

– bootstrap estimate, 41
– inversion method, 194

perfect simulation, 245
performance pattern, 2
periodic, 256
personal equation, 66
phase-type, 325
pivots, 51
point prediction, 142
Poisson process, 257
poles, 385
Pollaczek-Khinchine formula

– for means, 235
– for transforms, 275

positive semi-definite, 365
power, 110
predicted

– response, 72
– value, 142

prediction interval, 27, 51, 142
probability plot, 54
processor Sharing, 279
profile log likelihood, 358
proportional fairness, 16
PS, 279
pseudo-inverse, 194
pseudo-random number generator, 191

Q
qq-plot, 54
quadratic, 56
queue-size-dependent service rate, 289

R
random waypoint, 183
rare event, 201

Index 403

rate
– conservation law, 233
– transition matrix, 256

recurrent, 255
Reich, 266
rejection

– region, 110
– sampling, 196

replication, 186
residual time, 230
response variables, 75
reversible, 331
Roberts’ seasonal model, 172
round robin, 279
routing matrix, 284

S
sample

– q-quantile, 26
– ACF, 155
– autocovariance, 155
– median, 26
– standard deviation, 39

Schur complement, 371
seasonal ARIMA, 167
seed, 191
selected events, 214
service

– rate, 286
– requirement, 286
– time, 286

short circuit, 316
Shot noise, 235
signal to noise ratio, 27
simple goodness of fit test, 117
simplified network, 314
Simpson’s

– paradox, 7
– reversal, 7

size, 110
skewness, 87

– index, 87
Spider Plot, 4
stable, 383

– distribution, 97
standard deviation, 120

– s of a data set, 26
station buffer, 285
station function, 293

– at the micro level, 328

stationary, 223
– marked point process, 236
– point process, 223
– probability, 255

stations, 283
statistic, 40
statistical model, 70
stochastic majorization, 25
stochastic recurrence, 183
Student, 39

– tn, 39
subnetwork in short-circuit, 316
SURGE, 103
symmetric station, 290
system dimensioning, 4

T
test of independence, 130
think time, 270
throughput theorem, 303
time-average, 215
token pools, 291
transfer function, 382
transformed

– distribution mean, 56
– sample mean, 56

transient, 255
– removal, 188

transition matrix, 254
truncation property, 331
turning point, 137
type-1, 110
type-2, 110

U
UE, 103
UMP, Uniformly More Powerful, 110
unbiased estimator, 352
user equivalents, 103
utilization, 3, 19

V
variance bias, 77
visit rates, 284
Voronoi, 241

W
Wald’s identity, 241
Weibull distribution, 91
weighting function, 203

404 Index

white
– Gaussian noise, 367
– noise variance, 156

Whittle
– function, 287
– network, 290

Wilcoxon
– rank sum, 136

– rank sum statistic, 136
– signed rank, 134

workload, 2

Z
Zeroes, 385
Zeta, 88
Zipf’s law, 88

	Preface
	Contents
	Chapter 1 Methodology
	1.1 What is Performance Evaluation?
	1.2 Factors
	1.3 Evaluation Methods
	1.4 The Scientific Method
	1.5 Performance Patterns
	1.6 Review

	Chapter 2 Summarizing Performance Data and Confidence Intervals
	2.1 Summarized Performance Data
	2.2 Confidence Intervals
	2.3 The Independence Assumption
	2.4 Prediction Interval
	2.5 Which Summarization to use?
	2.6 Other Aspects of Confidence Prediction Intervals
	2.7 Proofs
	2.8 Review

	Chapter 3 Model Fitting
	3.1 Model Fitting Criteria
	3.2 Linear Regression
	3.3 Linear Regression with �l1 Norm Minimization
	3.4 Choosing a Distribution
	3.5 Heavy Tail
	3.6 Proofs
	3.7 Review

	Chapter 4 Tests
	4.1 The Neyman Pearson Framework
	4.2 Likelihood Ratio Tests
	4.3 ANOVA
	4.4 Asymptotic Results
	4.5 Other Tests
	4.6 Proofs
	4.7 Review

	Chapter 5 Forecasting
	5.1 What is Forecasting?
	5.2 Linear Regression
	5.3 The Overfitting Problem
	5.4 Differencing the Data
	5.5 Fitting Differenced Data to an ARMA Model
	5.6 Sparse ARMA and ARIMA Models
	5.7 Proofs

	Chapter 6 Discrete Event Simulation
	6.1 What is a Simulation?
	6.2 Simulation Techniques
	6.3 Computing the Accuracy of Stochastic Simulations
	6.4 Monte Carlo Simulation
	6.5 Random Number Generators
	6.6 How to Sample from a Distribution
	6.7 Importance Sampling
	6.8 Proofs
	6.9 Review

	Chapter 7 Palm Calculus, or the Importanceof the Viewpoint
	7.1 An Informal Introduction
	7.2 Palm Calculus
	7.3 Other Useful Palm Calculus Results
	7.4 Simulation Defined as Stochastic Recurrence
	7.5 Application to Markov Chain Models and the PASTA Property
	7.6 Appendix: Quick Review of Markov Chains
	7.7 Proofs
	7.8 Review Questions

	Chapter 8 Queuing Theory for Those who cannot Wait
	8.1 Deterministic Analysis
	8.2 Operational Laws for Queuing Systems
	8.3 Classical Results for a Single Queue
	8.4 Definitions for Queuing Networks
	8.5 The Product-Form Theorem
	8.6 Computational Aspects
	8.7 What This Tells Us
	8.8 Mathematical Details about Product-Form Queuing Networks
	8.9 Case Study
	8.10 Proofs
	8.11 Review

	Annex A Tables
	Annex B Parametric Estimation, Large Sample Theory
	B.1 Parametric Estimation Theory
	B.2 Asymptotic Confidence Intervals
	B.3 Confidence Interval in Presence of Nuisance Parameters

	Annex C Gaussian Random Vectors in Rn
	C.1 Notation and a Few Results of Linear Algebra
	C.2 Covariance Matrix of a Random Vector in Rn
	C.3 Gaussian Random Vector
	C.4 Foundations of ANOVA
	C.5 Conditional Gaussian Distribution
	C.6 Proofs

	Annex D Digital Filters
	D.1 Calculus of Digital Filters
	D.2 Stability
	D.3 Filters with Rational Transfer Function
	D.4 Predictions
	D.5 Log Likelihood of Innovation
	D.7 Proofs

	Bibliography
	Index

