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Abstract—Robotic systems that can create and use visual
maps in realtime have obvious advantages in many applications,
from automatic driving to mobile manipulation in the home. In
this paper we describe a mapping system based on retaining
views of the environment that are collected as the robot moves.
Connections among the views are formed by consistent geometric
matching of their features. The key problem we solve is how

to efficiently find and match a new view to the set of views
already collected. Our approach uses a vocabulary tree to propose
candidate views, and a new compact feature descriptor that
makes view matching very fast – essentially, the robot continually
re-recognizes where it is. We present experiments showing the
utility of the approach on video data, including map building
in large environments, map building without localization, and
re-localization when lost.

I. INTRODUCTION

Fast, precise, robust visual mapping is a desirable goal

for many robotic systems, from transportation to in-home

navigation and manipulation. Vision systems, with their large

and detailed data streams, should be ideal for recovering 3D

structure and guiding tasks such as manipulation of everyday

objects, navigating in cluttered environments, and tracking

and reacting to people. But the large amount of data, and

its associated perspective geometry, also create challenging

problems in organizing the data in an efficient and useful

manner.

One useful idea for maintaining the spatial structure of

visual data is to organize it into a set of representative views,

along with spatial constraints among the views, which is called

a skeleton. Figure 1 gives an example of a skeleton constructed

in a small indoor environment. Relations between the views

are calculated by matching common features; the overall map

is generated by nonlinear optimization of the system [1, 17,

33]. For efficient operation, the critical question is how to

match a newly-acquired view to a large database of existing

views. The matching system should be robust to changes in

viewpoint, lighting, moving objects, and other distractors, and

it must be fast enough to run online during image acquisition.

In this paper we present a system that solves the view-

matching problem effectively, and can run in small, almost

constant time over large view databases. The matching system

is feature-based: hundreds of features from the current view

are matched against features in a candidate skeleton view. Two

views are considered to be matched when a sufficient number

of their matched features pass a strict geometric consistency

check used by structure-from-motion (SfM) analysis [14]. To
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Fig. 1: Map reconstructed from view matching in an indoor

environment, with no sequence information. On the left, the

graph of view links, where each link encodes the relative

position of its two views. On the right, the graph after

optimization. Our system is able to integrate a new image

against a large map database, with no a priori information

about its position, in under 100 ms.

limit the number of skeleton views that must be considered,

we employ a vocabulary tree [26] to suggest candidate views

for matching. The vocabulary tree response is not perfect,

and there will be many false positives in the candidate views,

which must all undergo feature matching to the current view;

this is the biggest computational bottleneck for online process-

ing. The main contributions of this paper are

• The development and deployment of a new feature de-

scriptor, based on random tree signatures [5], that is

robust to view variation, yet extremely fast to compute

and match. As an example, matching 512 features to

512 features takes about 6 ms, less than GPU-enhanced

algorithms for other robust descriptors such as SURF [2].

• The integration of a visual vocabulary tree into a complete

solution for online place recognition. We call this ability

re-recognition: the robot recognizes its position relative

to the stored view map on every cycle, without any

a priori knowledge of its position (unlike localization,

which requires a position hypothesis).

• A rigorous analysis of the false positive rejection ability

of two-view geometry.

• The construction of a realtime system for robust, accurate

visual map making over large and small spaces.

In the experiments section, we highlight some of the advan-

tages of a view-based system. The view matching technique,



because of geometric consistency, is robust to object motion,

nearly blank walls, and self-similar textures. View maps also

scale well: maps with hundreds of views can be constructed

and used in real time. Loop closure over large distances is pos-

sible; here we show a map with a 400 m trajectory. The same

view matching method automatically relocalizes the camera

within the existing view graph, recovering from occlusion,

motion blur, etc. Finally, view matching with large numbers of

points is inherently accurate, showing sub-centimeter precision

over a desktop workspace.

Our solution uses stereo cameras for input images. The

development of the feature descriptors and place recognition

is also valid for monocular cameras, with the exception that

the geometric check is slightly stronger for stereo. However,

the skeleton system so far has been developed just for the full

6DOF pose information generated by stereo matching, and

although it should be possible to weaken this assumption, we

have not yet done so.

II. RELATED WORK

Visual map-making, or VSLAM, has received a lot of recent

attention, starting with Davison’s online monoSLAM [9, 10],

and now including many variations [29, 32]. These systems

all consider sets of 3D points as landmarks, and attempt to

maintain a consistent EKF over them. The main limitation

here is the filter size, which is only tractable in small (room-

size) environments. An exception is [29], which uses a submap

technique, although realtime performance has not yet been

demonstrated.

In a similar vein, the recent Parallel Tracking and Mapping

(PTAM) system [18, 19] also uses 3D landmarks, but employs

standard SfM bundle adjustment to build a map from many

views. Many more points can be handled in the tracking

phase, leading to accurate and robust performance under many

conditions. Still, it is limited to small environments by the

number of points and by bundle adjustment. It is also subject to

tracking failures on self-similar textures (e.g., bushes), object

motion, and scene changes (e.g., removal of an object).

The skeleton system deployed here comes directly from the

work in [1, 21]. Other robotics work that employs similar

ideas about constructing view-based constraints is in [33, 34].

These systems also keep a constraint network of relative pose

information between frames, based on stereo visual odometry,

and solve it using nonlinear least square methods. To solve

the skeleton optimization problem, we use the technique of

Grisetti et al. [12], which is an efficient implementation of

stochastic gradient descent (SGD). Other relaxation methods

for nonlinear constraint systems include [11, 27].

For fast lookup of similar places, we rely on the hierarchical

vocabulary trees proposed by Nistér and Stewénius [26];

other methods include approximate nearest neighbor [30] and

various methods for improving the response or efficiency of

the tree [8, 15, 16]. In particular, Cummins and Newman

[8] show how to use visual features for navigation and loop

closure over very large trajectories. Our method differs from

theirs in using a strong geometric check to do recognition on

single views, rather than extended sequences. Callmer et al.

[4] propose a loop closure procedure that uses a vocabulary

tree in a manner similar to ours, along with a weak geometric

check to weed out some false positives.

There is an interesting convergence between our work and

recent photo stitching in the vision community [31]. They

employ a similar skeletonization technique to limit the extent

of bundle adjustment calculations, but run in batch mode, with

no attempt at realtime behavior. Klopschitz et al. [20] use a

vocabulary tree to identify possible matches in video stream,

and then followed by a dynamic programming technique to

verify a sequence of view matches. They are similar to our

work in emphasizing online operation.

The ability to match keypoints across frames seen from

potentially very different viewpoints is a key ingredient of

establishing relationships between these frames. This requires

keypoint descriptors that, such as SIFT [24] and GLOH [25],

are robust to viewpoint changes. Faster SIFT-like descriptors

such as SURF [2] achieve 3 to 7-fold speed-ups by exploiting

the properties of integral images. However, it has recently been

shown that even shorter run-times can be obtained without

loss in discriminative power by reformulating the matching

problem as a classification problem [23, 28]. This approach is

not suitable for real-time SLAM applications, since it requires

online training of new keypoints [35].

In recent work [5], we observed that if the classifier is

trained offline on a randomly-chosen set of keypoints, all other

keypoints can be characterized in terms of the response they

induce in the classifier, their signatures. In this paper, we build

on this technique by developing a more compact version of

signatures that is extremely efficient and hence suitable for

online view matching.

III. FRAMESLAM BACKGROUND

The view map system, which derives from FrameSLAM [1,

21], is most simply explained as a set of nonlinear constraints

among camera views, represented as nodes and edges (see

Figure 5 for a sample graph). Constraints are input to the

graph from two processes, visual odometry (VO) and place

recognition (PR). Both rely on geometric matching of views to

find relative pose relationships; they differ only in their search

method. VO continuously matches the current frame of the

video stream against the last keyframe, until a given distance

has transpired or the match becomes too weak. This produces

a stream of keyframes at a spaced distance, which become the

backbone of the constraint graph, or skeleton. PR functions

opportunistically, trying to find any other views that match

the current keyframe. This is much more difficult, especially

in systems with large loops. Finally, an optimization process

finds the best placement of the nodes in the skeleton.

For two views ci and cj with a known relative pose, the

constraint between them is

∆zij = ci ⊖ cj , with covariance Λ−1 (1)

where ⊖ is the inverse motion composition operator – in other

words, cj’s position in ci’s frame. The covariance expresses



the strength of the constraint, and arises from the geometric

matching step that generates the constraint, explained below.

Given a constraint graph, the optimal position of the

nodes is a nonlinear optimization problem of minimizing∑
ij ∆z⊤ijΛ∆zij ; a standard solution is to use preconditioned

conjugate gradient [1, 13]. For realtime operation, it is more

convenient to run an incremental relaxation step, and the recent

work of Grisetti et al. [12] on SGD provides an efficient

method of this kind, called Toro, which we use for the

experiments.

A. Geometric View Matching

Constraints arise from geometric matching between two

stereo camera views. The process can be summarized by the

following steps:

1) Match features in the left image of one view with

features in the left image of the other view.

2) (RANSAC steps) From the set of matches, pick three

candidates, and generate a relative motion hypothesis

between the views. Stereo information is essential here

for giving the 3D coordinates of the points.

3) Project the 3D points from one view onto the other

based on the motion hypothesis, and count the number

of inliers.

4) Repeat 2 and 3, keeping the hypothesis with the best

number of inliers.

5) Polish the result by doing nonlinear estimation of the

relative pose from all the inliers.

The last step iteratively solves a linear equation of the form

J⊤Jδx = −J⊤∆z, (2)

where ∆z is the error in the projected points, δx is a change

in the relative pose of the cameras, and J is the Jacobian of z
with respect to x. The inverse covariance derives from J⊤J ,
which approximates the curvature at the solution point. As a

practical matter, Toro accepts only diagonal covariances, so

instead of using J⊤J , we scale a simple diagonal covariance

based on the inlier response.

In cases where there are too few inliers, the match is

rejected; this issue is explored in detail in Section IV-C. The

important result is that geometric matching provides an almost

foolproof method for rejecting bad view matches.

B. Re-detection and Re-recognition

Our overriding concern is to make the whole system robust.

In outdoor rough terrain, geometric view matching for VO has

proven to be extremely stable even under very large image

motion [22], because points are re-detected and matched over

large areas of the image for each frame. Here we use the

FAST detector and SAD matching of small patches around

each keypoint as the matching step. In a 400 m circuit of

our labs, with almost blank walls, moving people, and blurred

images on fast turns, there was not a single VO frame match

failure (see Figure 5 for sample frames). The PTAM methods

of [18], which employ hundreds of points per frame, can also

have good performance, with pyramid techniques to determine

large motions. However, they are prone to fail when there is

significant object motion, since they do not explore the space

of geometrically consistent data associations

The focus of this paper is on fast, effective PR. The

next section discusses an effective candidate view proposal

method, and the geometric consistency check that eliminate

false positives. The end result is an extremely fast and reliable

PR method that takes on the order of 100 ms to find, match and

orient multiple corresponding views over large view datasets.

This method relies on no prior information about the current

camera view relative to other views, and it does not need

to maintain complicated covariance relations among views. It

greatly simplifies the task of constructing the skeleton system,

and allows it to operate over large spaces.

IV. MATCHING VIEWS

In this section we describe our approach to achieving

efficient view matching over thousands of frames. We start

with a new keypoint descriptor that is fast both to compute and

to match. Next we develop a filtering technique for matching

a new image against a dataset of reference images (1×N
matching), using a vocabulary tree to suggest candidate views

from large datasets. Finally, we develop statistics to verify the

rejection capability of the geometric consistency check. In all

cases, we use FAST keypoint detectors because they are, well,

fast.

A. Compact Randomized Tree Signatures

In Section II we introduced a keypoint descriptor that can

be computed fast enough to be useful to demanding real-

time problems such as SLAM [5]. The descriptor relies on

the fact that if we train a Randomized Tree (RT) classifier

to recognize a number of keypoints extracted from an image

database, all other keypoints can be characterized in terms of

their response to these classification trees. Remarkably, a fairly

limited number of base keypoints—500 in our experiments—is

sufficient. However, a limitation of this approach is that storing

a pre-trained Randomized Tree takes a considerable amount of

memory. Here we show that the signatures can be compacted

into much denser and smaller vectors, as depicted by Figure 2,

resulting in both a large decrease in storage requirement and

substantially faster matching.

In [5], signatures are computed as follows. A set of B base

keypoints are extracted from a representative image and the RT

classifier is trained to recognize them under changes in scale,

perspective, and lighting [23]. It consists of a set of N binary

RTs Ti, where the binary test at a node is a simple comparison

of two random points in a patch p around the keypoint. At

each leaf of a tree Ti, there is a vector of responses for all

base keypoints, computed from the training set. Let ti(p) be

the vector found by dropping the patch p through the tree Ti

to a leaf node. The total response vector of p is taken to be

r(p) =

N∑

i=1

ti(p) . (3)



The response can be normalized to generate a probability of

the patch p belonging to any member of the base set. Note

that for p belonging to some keypoint that is similar to a base

keypoint b, we expect r(p) to have high values at b’s position
in the vector.

For any new keypoint k not in the base set, the response

r(p) will have high values at locations corresponding to base

keypoints that are similar to k, and low values elsewhere.

Thresholding the components of r(p) therefore results in a

sparse vector that we take to be our signature. In practice, we

obtain good results using N = 50 binary randomized trees of

depth 10 and B = 500 base points. [5] compared the matching

performance of sparse RTs with that of SIFT and found these

comparable.

While sparse signatures are fairly efficient to generate and

match, it is possible to make them even more so. First, the

expensive operation in signature creation is the summation

of the ti, which requires 50 ∗ 500 = 25, 000 floating-point

operations per signature. Second, the matching of sparse

vectors is slower than desired, because it involves conditional

tests. To address these issues, we compress the ti responses

into smaller vectors, and produce a dense signature. There are

several ways to perform the compression, and the tradeoffs

involved will be reported in an upcoming paper [6]. Here,

we use a simple PCA scheme to extract a dense 176-element

vector t′i that replaces the 500-element ti on each leaf node.

As a further reduction, we found that each element of both

t′i and the corresponding signature r′(p) =
∑

t′i(p) could be

represented by a single byte, rather than a floating-point num-

ber, and that signatures could be compared more quickly using

sum of absolute differences. In tests on standard viewpoint

matching sets, performance of the dense signatures degrades

by about 10 percent relative to the original sparse ones.

As expected, compression to dense, small vectors greatly

improves the timing of both descriptor creation and matching.

In Table I, dense RTs are compared to the original sparse

RTs, and also to the most efficient robust descriptor, U-SURF

[2]. SURF matching is done on the smaller length 64 vectors;

match times are from [7], creation times are from [2], and do

not include keypoint detection. Overall, dense RTs are many

times faster, and for matching even beat GPU implementations

of U-SURF. Approximate Nearest Neighbor techniques [3]

can be used to speed up the process, at some decrease in

matching performance; but the overhead in applying them is

not worthwhile given the matching speed.

Descriptor Creation N×N Matching
(512 kpts) (512×512 kpts)

Sparse RTs (CPU) 31.3 ms 27.7 ms

Dense RTs (CPU) 7.9 ms 6.3 ms

U-SURF64 (CPU) 150 ms 120 ms
73 ms (ANN)

U-SURF64 (GPU) 6.8 ms

TABLE I: Timings for descriptor creation and matching.

Fig. 2: Illustration of the signature creation process for an

arbitrary, new keypoint k. For simplicity we show trees of

depth 3; the typical value our implementation uses is 10. (a)

The patch pi around k is dropped through all trees Ti, 1 ≤

i ≤ N , yielding the vectors ti. (b) All ti are summed up

yielding r(p), cf Equation 3. (c) In the upper row of vectors,

the r(p) are thresholded yielding a sparse signal. This step

does not occur in the lower row of vectors as they represent

some compressed representation t′i of the corresponding ti

that simply need to be summed.

B. Place Recognition

The 1×N image matching problem has received recent

attention in the vision community [16, 26, 30]. We have

implemented a place recognition scheme based on the vo-

cabulary trees of Nistér and Stewénius [26] which has good

performance for both inserting and retrieving images based on

the compact RT descriptors.

The vocabulary tree is a hierarchical structure that simulta-

neously defines both the visual words and a search procedure

for finding the closest word to any given keypoint. The

tree is constructed offline by hierarchical k-means clustering

on a large training set of keypoint descriptors. The set of

training descriptors is clustered into k centers. Each center then

becomes a new branch of the tree, and the subset of training

descriptors closest to it are clustered again. The process repeats

until the desired number of levels is reached. In our case,

we use about 1M training keypoints from 500 images, with

k = 10, and create a tree of depth 5, resulting in 100K visual

words. Nistér and Stewénius have shown that performance

improves with the number of words, up to very large (>1M)

vocabularies.

The vocabulary tree is populated with the reference images

by dropping each of their keypoint descriptors to a leaf and

recording the image in a list, or inverted file, at the leaf. To

query the tree, the keypoint descriptors of the query image

are similarly dropped to leaf nodes, and potentially similar

reference images retrieved from the union of the inverted files.

In either case, the vocabulary tree describes the image as a

vector of word frequencies determined by the paths taken

by the descriptors through the tree. Each reference image is

scored for relevance to the query image by computing the

distance between their frequency vectors. The score is entropy-



weighted to discount very common words using the Term

Frequency Inverse Document Frequency (TF-IDF) approach

described in [26, 30].

Various extensions to the bag-of-words approach exem-

plified by the vocabulary tree are possible. Cummins and

Newman [8] use pairwise feature statistics to address the

perceptual aliasing problem, especially notable in man-made

environments containing repeated structure. Jegou et al. [15]

incorporate Hamming embedding and weak geometric consis-

tency constraints into the inverted file to improve performance.

We do not use such techniques in this work, relying instead

on the strength of the geometric consistency check. Finally,

Jegou et al. [16] note that even using inverted files, query time

is linear in the number of reference images; they propose a

two-level inverted file scheme to improve the complexity. We

simply note that for our scale of application (in the thousands

of images), the number of reference images we must score is

effectively a small constant.

To test the effectiveness of the vocabulary tree as a prefilter,

we constructed a test set of some 180 keyframes over a 20m

trajectory, and determined ground truth matches by performing

geometric matching across all 180×180 possibilities. We in-

serted these keyframes, along with another 553 non-matching

distractor keyframes, into the vocabulary tree. Querying the

vocabulary tree with each of the 180 test keyframes in turn,

we obtained their similarity scores against all the reference

images. The sensitivity of the vocabulary tree matching is

shown by the ROC curve (Figure 3, top) obtained by varying

a threshold on the similarity score.

Since we can only afford to put a limited number of can-

didates through the geometric consistency check, the critical

performance criterion is whether the correct matches appear

among the most likely candidates. Varying N , we counted the

percentage of the ground truth matches appearing in the top-

N results from the vocabulary tree. For robustness, we want

to be very likely to successfully relocalize from the current

keyframe, so we also count the percentage of test keyframes

with at least one or at least two ground truth matches in the

top-N results (Figure 3, bottom).

In our experiments, we take as match candidates the top

N = 15 responses from place recognition. We expect to find at

least one good match for 97% of the keyframes and two good

matches for 90% of the keyframes. For any given keyframe,

we expect around 50% of the correct matches to appear in the

top 15 results.

C. Geometric Consistency Check

We can predict the ability of the geometric consistency

check (Section III-A) to reject false matches by making a

few assumptions about the statistics of matched points, and

estimating the probability that two unrelated views I0 and I1

will share at least M matches. Based on perspective geometry,

any point match will be an inlier if the projection in I1 lies on

the epipolar line of the point in I0. In our case, with 640×480

images, an inlier radius of 3 pixels, the probability of being
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Fig. 3: Top: ROC curve for the vocabulary tree prefilter on the

test dataset. Bottom: “Average” curve shows percentage of the

correct matches among the top N results from the vocabulary

tree (blue); other curves are the percentage of views with at

least 1 or 2 matches in the top N .

an inlier is:

Atrack/Aimage = (6 ∗ 640)/(640 ∗ 480) = .0125 (4)

This is for monocular images; for stereo images, the two

image disparity checks (assuming disparity search of 128

pixels) yield a further factor of (6/128)*(6/128). In the more

common case with dominant planes, one of the image disparity

checks can be ignored, and the factor is just (6/128). If the

matches are random and independent (i.e., no common objects

between images), then counting arguments can be applied.

The distribution of inliers over N trials with probability p of

being an inlier is Bp,N , the binomial distribution. We take the

maximum inliers over K RANSAC trials, so the probability of

having less than x inliers is (1−Bp,N (x))K . The probability

of exactly x inliers over all trials is

(1 − Bp,N (x))K
− (1 − Bp,N (x − 1))K (5)

Figure 4 shows the theoretic probabilities for the planar stereo

case, based on Equation 5. The graph peaks sharply at 2 inliers

(out of 250 matches), showing the rejection ability of the

geometric check. Actual values were computed for the indoor

dataset, using 200 images with Harris keypoints from each of

two disjoint sets. The actual values are less peaked and average

just under 3 inliers – the real world has structure that violates
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Fig. 4: The probability of getting x inliers from a random un-

related view match, based on 250 keypoint matches per image

and 100 RANSAC steps, with a keypoint match probability of

0.00059.

the random match assumption. The key part is the tail: there

are no actual matches with greater than 10 inliers.

V. EXPERIMENTS

As explained in Section III, the view-based system consists

of a robust VO detector that estimates incremental poses of a

stereo video stream, and a view integrator that finds and adds

non-sequential links to the skeleton graph, and optimizes the

graph. We carried out a series of tests on video data captured at

30 Hz from a stereo camera at 640x480, with a 9 cm baseline

and a 90 degree FOV. Rectification is done on the stereo head;

VO consumes 11/33 ms per video frame, leaving 22/33 ms for

view integration, 2/3 of the available time. As in PTAM [18],

view integration can be run in parallel with VO, so on a dual-

core machine view matching and optimization could consume

a whole processor. Given its efficiency, we publish results here

for a single processor only. In all experiments, we restrict the

number of features per image to ∼300, and use 100 RANSAC

iterations for geometric matching.

The goal of the system is to integrate as many views

as possible, while giving priority to VO in processing the

video stream. The view integration cycle takes the latest

keyframe produced by VO, runs the vocabulary tree prefilter

to determine likely match candidates, performs geometric

consistency checking against the candidates, and then runs

Toro to optimize the skeleton. With the exception of Toro, all

of these components take constant time (the vocabulary tree

prefilter is essentially constant up to very large numbers of

views). Since Toro can run incrementally, we limit the amount

of time it takes by stopping iterations when the error delta is

small, or the number of iterations exceeds a threshold. In cases

where the error is growing, we then limit the addition of new

keyframes to the skeleton graph, until the error comes down.

Skeleton graph density is controlled by view integration.

When it has finished matching and optimizing its current skele-

ton node, it checks if the most recent keyframe is far enough

in angle or distance (typically 10 degrees or 0.5 m) from the

previous keyframe. One can imagine many other schemes for

skeleton construction that try to balance the density of the

graph, but this simple one worked quite well. Typically the

graph contains about 1/2 of the keyframes produced by VO.

In the case of lingering in the same area for long periods of

time, it would be necessary to stop adding new views to the

graph, which otherwise would grow without limit. We have

not explored these strategies yet.

A. Large Office Loop

The first experiment is a large office loop of about 400m

in length. The trajectory was done by joysticking a robot

at around 1m/sec. Figure 5 shows some images: there is

substantial blurring during fast turns, sections with almost

blank walls, cluttered repetitive texture, and moving people.

There are a total of 12K images in the trajectory, with 1540

keyframes, 628 graph nodes, and 1275 edges. Most of the

edges are added from neighboring nodes along the same

temporal path, but a good portion come from loop closures

and parallel trajectories (Figure 5, bottom right).

View matching has clearly captured the major structural

aspects of the trajectory, relative to open-loop VO. It closed

the large loop from the beginning of the trajectory to the end,

as well as two smaller loops in between. We also measured

the planarity of the trajectory, which is a good measure of the

accuracy of the technique: for the view-based system, RMS

error was 22 cm; for open-loop VO, it was 50 cm.

Note that the vocabulary tree prefilter makes no distinction

between reference views that are temporally near or far from

the current view: all reference views are treated as places

to be recognized. By exploiting the power of geometric

consistency, there is no need to compute complex covariance

gating information for data association, as is typically done

for EKF-based systems [9, 10, 29, 32].

The time spent in view integration is broken down by

category in Figure 6. Averages for for adding to and searching

the vocabulary tree are 25 ms, and for the geometry check,

65 ms. Toro does almost no work at the beginning of the

trajectory, then grows to over 1000 ms by the end. The big

jump comes when the large loop is closed, which creates a

long optimization loop in Toro. At this point, optimization

starts to limit the number of new keyframes coming in to the

graph, and the distance between nodes stretches to about 1m.

On other parts of the trajectory, view integration can run at

full speed.

B. TrajectorySynth

To showcase the capability of view integration, we per-

formed a reconstruction experiment without any temporal

information provided by video sequencing or VO, relying just

on view integration. We take a small portion of the office loop,

extract 180 keyframes, and push them into the vocabulary

tree. We then choose one keyframe as the seed, and use view

integration to add all valid view matches to the view skeleton.
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Fig. 5: Top: representative scenes from the large office loop, showing matched features in green. Note blurring, people, cluttered

texture, nearly blank walls. Bottom: resultant skeleton graph (in blue) of 628 nodes and 1275 edges, overlaid on a laser map

of the building. For comparison the VO trajectory without view match correction is shown in red. On the right is a closeup

showing the matched views on a small loop. The optimizer has been turned off to show the links more clearly.
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Fig. 6: Timing for view integration per view during the office

loop trajectory. Toro dominates the latter part of the run.

The seed is marked as used, and one of the keyframes added

to the skeleton is chosen as the next seed. The process repeats

until all keyframes are marked as used.

The resultant graph is shown in Figure 1 (first page), left.

The nodes are placed according to the first constraint found;

some of these constraints are long-range and weak, and so

the graph is distorted. Optimizing using Toro produces the

consistent graph on the right. The time per keyframe is 150

ms, so that the whole trajectory is reconstructed in 37 seconds,

about 2 times faster than realtime. The connection to view

stitching [31] is obvious, to the point where we both use the

same term “skeleton” for a subset of the views. However, their

method is a batch process that uses full bundle adjustment

over a reduced set of views, whereas our approximate method

retains just pairwise constraints between views.

C. Relocalization

Under many conditions, VO can lose its connection to the

previous keyframe. If this condition persists (say the camera

is covered for a time), then it may move an arbitrary distance

before it resumes. The scenario is sometimes referred to as

the “kidnapped robot” problem. View-based maps solve this

problem with no additional machinery. To illustrate, we took

the small loop sequence from the TrajectorySynth experiment,

and cut out enough frames to give a 5m jump in the actual

position of the robot. Then we started the VO process again,

using a very weak link to the previous node so that we

could continue using the same skeleton graph. After a few

keyframes, the view integration process finds the correct

match, and the new trajectory is inserted in the correct place

in the growing map (Figure 7). This example clearly indicates

the power of constant re-recognition.

D. Accuracy of View-Based Maps

To verify the accuracy of the view-based map, we acquired

a sequence of video frames that are individually tagged
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by “ground truth” 3D locations recorded by the IMPULSE

Motion Capture System from PhaseSpace Inc. The trajectory

is about 23 m in total length, consisting of 4 horizontal loops

with diameters of roughly 1.5 m and elevations from 0 to 1m.

There are total of 6K stereo images in the trajectory, with 224

graph nodes, and 360 edges. The RMS error of the nodes was

3.2 cm for the view-based system, which is comparable to the

observed error for the mocap system. By contrast, open-loop

VO had an error of 14 cm.

VI. CONCLUSION

We have presented a complete system for online generation

of view-based maps. The use of re-recognition, where the

robot’s position is re-localized at each cycle with no prior

information, leads to robust performance, including automatic

relocalization and map stitching.

There are some issues that emerged in performing this

research that bear further scrutiny. First, the time taken by

SGD optimization will not be acceptable for graphs with

more than a few thousand edges, and better methods, perhaps

hierarchical, should be found. Second, we would like to

investigate the monocular case, where full 6DOF constraints

are not present in the skeleton graph.

REFERENCES

[1] M. Agrawal and K. Konolige. FrameSLAM: From bundle adjustment
to real-time visual mapping. IEEE Transactions on Robotics, 24(5),
October 2008.

[2] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust
features. CVIU, 110(3):346–359, 2008.

[3] J. S. Beis and D. G. Lowe. Shape indexing using approximate nearest-
neighbour search in high-dimensional spaces. Computer Vision and

Pattern Recognition, IEEE Computer Society Conference on, 0:1000,
1997.

[4] J. Callmer, K. Granström, J. Nieto, and F. Ramos. Tree of words for
visual loop closure detection in urban slam. In Proceedings of the 2008

Australasian Conference on Robotics and Automation, page 8, 2008.
[5] M. Calonder, V. Lepetit, and P. Fua. Keypoint signatures for fast learning

and recognition. In ECCV, 2008.
[6] M. Calonder, V. Lepetit, K. Konolige, P. Mihelich, and P. Fua. High-

speed keypoint description and matching using dense signatures. In To

be submitted, 2009.

[7] A. Chariot and R. Keriven. GPU-boosted online image matching. In
ICPR, 2008.

[8] M. Cummins and P. M. Newman. Probabilistic appearance based
navigation and loop closing. In ICRA, 2007.

[9] A. Davison. Real-time simultaneaous localisation and mapping with a
single camera. In ICCV, pages 1403–1410, 2003.

[10] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse. Monoslam:
Real-time single camera slam. IEEE PAMI, 29(6), 2007.

[11] U. Frese, P. Larsson, and T. Duckett. A multilevel relaxation algorithm
for simultaneous localisation and mapping. IEEE Transactions on

Robotics, 21(2):1–12, 2005.

[12] G. Grisetti, C. Stachniss, S. Grzonka, and W. Burgard. A tree param-
eterization for efficiently computing maximum likelihood maps using
gradient descent. In In Proc. of Robotics: Science and Systems (RSS,
2007.

[13] J. Gutmann and K. Konolige. Incremental mapping of large cyclic
environments. In Proc. IEEE International Symposium on Computa-

tional Intelligence in Robotics and Automation (CIRA), pages 318–325,
Monterey, California, November 1999.

[14] R. Hartley and A. Zisserman. Multiple View Geometry in Computer

Vision. Cambridge University Press, 2000.

[15] H. Jegou, M. Douze, and C. Schmid. Hamming embedding and weak
geometric consistency for large scale image search. In ECCV, 2008.

[16] H. Jegou, H. Harzallah, and C. Schmid. A contextual dissimilarity
measure for accurate and efficient image search. Computer Vision

and Pattern Recognition, IEEE Computer Society Conference on, 0:1–8,
2007.

[17] A. Kelly and R. Unnikrishnan. Efficient construction of globally
consistent ladar maps using pose network topology and nonlinear
programming. In Proceedings 11th International Symposium of Robotics

Research, 2003.

[18] G. Klein and D. Murray. Parallel tracking and mapping for small AR
workspaces. In Proc. Sixth IEEE and ACM International Symposium

on Mixed and Augmented Reality (ISMAR’07), Nara, Japan, November
2007.

[19] G. Klein and D. Murray. Improving the agility of keyframe-based slam.
In ECCV, 2008.

[20] M. Klopschitz, C. Zach, A. Irschara, and D. Schmalstieg. Generalized
detection and merging of loop closures for video sequences. In 3DPVT,
2008.

[21] K. Konolige and M. Agrawal. Frame-frame matching for realtime con-
sistent visual mapping. In Proc. International Conference on Robotics

and Automation (ICRA), 2007.

[22] K. Konolige, M. Agrawal, and J. Solà. Large scale visual odometry
for rough terrain. In Proc. International Symposium on Research in

Robotics (ISRR), November 2007.

[23] V. Lepetit and P. Fua. Keypoint recognition using randomized trees.
IEEE PAMI, 28(9):1465–1479, Sept. 2006.

[24] D. G. Lowe. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, 60(2):91–110, 2004.

[25] K. Mikolajczyk and C. Schmid. A Performance Evaluation of Local
Descriptors. PAMI, 27(10):1615–1630, 2004.

[26] D. Nistér and H. Stewénius. Scalable recognition with a vocabulary tree.
In CVPR, 2006.

[27] E. Olson, J. Leonard, and S. Teller. Fast iterative alignment of pose
graphs with poor estimates. In In ICRA, 2006.

[28] M. Ozuysal, P. Fua, and V. Lepetit. Fast keypoint recognition in ten
lines of code. In In Proc. IEEE Conference on Computing Vision and

Pattern Recognition, 2007.

[29] L. Paz, J. Tardós, and J. Neira. Divide and conquer: EKF SLAM in
O(n). IEEE Transactions on Robotics, 24(5), October 2008.

[30] J. Sivic and A. Zisserman. Video google: A text retrieval approach
to object matching in videos. Computer Vision, IEEE International

Conference on, 2:1470, 2003.

[31] N. Snavely, S. M. Seitz, and R. Szeliski. Skeletal sets for efficient struc-
ture from motion. In Proc. Computer Vision and Pattern Recognition,
2008.
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