Spike Timing Dependent Plasticity (STDP) is a temporally asymmetric form of Hebbian learning induced by tight temporal correlations between the spikes of pre- and postsynaptic neurons. As with other forms of synaptic plasticity, it is widely believed that it underlies learning and information storage in the brain, as well as the development and refinement of neuronal circuits during brain development (e.g. Bi and Poo, 2001; Sjöström et al., 2008). With STDP, repeated presynaptic spike arrival a few milliseconds before postsynaptic action potentials leads in many synapse types to long-term potentiation (LTP) of the synapses, whereas repeated spike arrival after postsynaptic spikes leads to long-term depression (LTD) of the same synapse. The change of the synapse plotted as a function of the relative timing of pre- and postsynaptic action potentials is called the STDP function or learning window and varies between synapse types. The rapid change of the STDP function with the relative timing of spikes suggests the possibility of temporal coding schemes on a millisecond time scale.