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Abstract

Experiments on grid turbulence are reported for pure water and dilute Polyox
WSR 301 solutions. A novel passive grid, which consists of a square mesh grid
with tethered spheres, has been developed to enhance the turbulence properties.
In pure water the new grid produces higher turbulence intensities per unit Cp

(pressure drop coefficient) than the classic plain grid, and the turbulence Reynolds
number Reλ is increased by a factor of roughly two.

In polymer solutions turbulence dissipation rates and energy spectra were mea-
sured using PIV with a high spatial resolution. The energy spectra reveal a char-
acteristic length scale at which the polymers begin to affect the energy cascade.
Above this scale the turbulence is essentially Newtonian, whereas below this scale
the energy flux from large to small scales is reduced proportional to the length
scale squared. Consequently, the energy in this new self-regulating spectral region
scales according to a power-law with an exponent of −3 instead of the −5/3 for
Newtonian turbulence, and the excess energy is dissipated by the polymers.

Keywords: turbulence; grid turbulence; non-Newtonian; improved passive
grid; particle image velocimetry; dissipation by polymers.
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Zusammenfassung

Es wurden Experimente zur Gitterturbulenz in reinem Wasser und verdünnten
Polyox WSR 301-Lösungen angestellt. Dazu wurde ein neuartiges passives Gitter
entworfen, das aus einem klassischen Gitter und festgebundenen Kugeln besteht.
In reinem Wasser produziert das neue Gitter höhere Turbulenzintensitäten pro Cp-
Einheit (Druckabfallkoeffizient) als das klassische einfache Gitter, und die Turbulenz-
Reynolds-Zahl Reλ ist rund um das zweifache erhöht.

In Polymerlösungen wurden Turbulenzdissipationsraten und Energiespektren
unter Einsatz von PIV mit einer hohen räumlichen Auflösung gemessen. Die En-
ergiespektren zeigen eine charakteristische Längenskala bei welcher die Polymere
anfangen die Energiekaskade zu beeinflussen. Oberhalb dieser Skala ist die Tur-
bulenz im Wesentlichen Newtonsch, wohingegen unterhalb der Energiefluss von
grossen zu kleinen Skalen proportional zum Quadrat der Längenskala reduziert
wird. Infolgedessen nimmt die Energie in diesem neuen, selbst-regulierenden Spek-
tralbereich gemäss eines Potenzgesetzes ab, mit einem Exponent von −3 anstatt−5/3 wie im Newtonschen Fall. Die überschüssige Energie wird durch die Polymere
in Wärme umgewandelt.

Stichwörter: Turbulenz; Gitterturbulenz; nicht-Newtonsch; verbessertes pas-
sives Gitter; Particle Image Velocimetry; Dissipation durch Polymere.

iii





Danksagung

Diese Arbeit entstand während meiner Anstellung im Laboratoire de Mécanique
des Fluides an der EPFL, mit der finanziellen Unterstüzung des Schweizer National
Fonds (SNF).

Mein ganz besonderer Dank gilt meinem Doktorvater Prof. Peter Monkewitz,
welcher mir nicht nur diese Arbeit ermöglicht hat, sondern mir auch stets mit Rat
und Tat zur Seite gestanden ist. Er hat mir ein grosses Vertrauen entgegengebracht
und viel Freiraum zur Gestaltung des Experiments gelassen. Die vielen interessan-
ten Diskussionen waren wohl der grösste Ansporn diese Arbeit fertigzukriegen.

I would also like to thank the members of the jury, Prof. Patrick Jenny, Prof.
Christophe Ancey, Dr. Christopher Pipe and of course Dr. Mohamed Farhat for
their constructive comments and critics.

Je tiens également à remercier le Dr. Trong Vien Truong pour son expertise
précieuse et indispensable pour l’aboutissement de ce travail expérimental. Je le
remercie particulièrement pour sa patience et sa confiance quand il m’a confié des
instruments de mesure.

La bonne réussite de l’experience est due au savoir-faire de l’équipe de l’atelier,
notamment de Bernard Savary et Marc Salle. Je les remercie surtout pour leur
flexibilité envers mes dessins souvent très minimalistes.

Je dois également remercier le Laboratoire de Thermique appliquée et de Tur-
bomachines, notamment à Virginie et Elia qui m’ont prété leur système LDA. Je
n’exagère pas quand je dis que sans leur générosité je n’aurais pas pu terminer ce
travail.

Speaking of borrowed equipment, I would like to thank Jeff of the Laboratory
of Heat and Mass Transfer, for helping me out with the high-speed camera.

Dans la liste des gens importants pour ces dernières années j’aimerais aussi
mentionner l’ancien labo: Emeric, Radboud, Etienne, Flavio, Chris et David. Sans
Emeric, certains outils de mesure ne fonctionneraient probablement toujours pas.
Mais je le remercie surtout de m’avoir remonté le moral lors des nombreuses bières
et burgers. J’aimerais aussi remercier à Chris, pour m’avoir transmis son savoir-
faire, pour m’avoir donné l’opportunité de le visiter au MIT, et en particulier pour
les sorties de grimpe. Je continue la liste avec Martin, Jonathan, Gaffu et Emanuele
pour toutes les fois où on est allé courir, ainsi que Roland, Orestis, Benoit, Marc-
Antoine, Prof. François Gallaire, Mathias, Edouard et Philippe pour les nombreuses
pauses café. C’est graçe à tout ces gens que je vais garder de bons souvenirs de

v



Danksagung

cette aventure.
I am also grateful to Eva Gasser who always found the right word to cheer me

up, and Dr. Navid Borhani for his interest in this study.
Many thanks to Dr. Sheldon Cooper and J.D. for distracting me whenever it

was necessary, as well as Jorge Cham for reassuring me that there are other grad
students with the same experiences.

Und zum Glück gibt es da noch ein paar Fribourgeois die es ab und zu doch
noch geschafft haben, dass ich wenigstens fürs Wochenende den Laser gegen ein
Snowboard tausche: Merci Alex, Lukas, Beat, Jonas, Thomas, Marc und Benja.

Nun möchte ich auch noch den wichtigsten Menschen danken, ohne deren Un-
terstützung, Motivation und Geduld die Arbeit nicht zustande gekommen wäre,
meinen Eltern, meiner Schwester, und ganz besonders Lucia.

Allen anderen die ich hier vergessen habe aufzuzählen: Merci.

vi



Contents

Chapter 1 Introduction

1.1 Turbulence in elastic fluids 1

1.2 Grid turbulence 2

1.3 Turbulence velocity spectra 3

1.4 Thesis layout and contributions 5

Chapter 2 Aqueous poly(ethylene oxide) solutions

2.1 Ideal elastic fluids and polymer solutions 7

2.2 Rheological description of dilute polymer solutions 8

2.2.1 Material functions and dimensionless groups, 10

2.2.2 Models for polymer solutions, 10

2.2.3 Data reduction, 12

2.3 Fluids and instrumentation 13

2.3.1 Preparation of sample solutions and tunnel fluids, 13

2.3.2 Rheological measuring systems, 14

2.4 Characteristics of the working fluids 15

2.4.1 Molecular weight and coil overlap concentration, 15

2.4.2 Concentration and temperature dependence of the viscosity, 16

2.4.3 Shear dependent viscosity, 17

2.4.4 Relaxation time, 20

2.4.5 Resistance to mechanical degradation, 23

2.5 Final remarks 24

Chapter 3 Experiment setup and data processing

3.1 Closed-loop flow facility 25

3.2 Turbulence grids 28

3.3 Differential static pressure measurement 30

3.4 Hot-film anemometry 31

3.4.1 HFA data acquisition, 31

3.4.2 Velocity spectra and rms, 32

vii



Contents

3.5 Particle image velocimetry 35

3.5.1 PIV setup and calibration, 35

3.5.2 PIV processing, 37

3.5.3 Velocity spectra and rms, 38

3.6 Laser Doppler anemometry 41

3.6.1 LDA setup and recording details, 41

3.6.2 Velocity spectra, 42

3.7 Monitoring of temperature and viscosity 43

3.8 Turbulence dissipation and length scales 44

3.8.1 Energy dissipation rate, 45

3.8.2 Turbulence length scales, 47

3.9 Summary of experimental runs 48

Chapter 4 Performance of the new grid in water

4.1 Brief overview 51

4.2 Grid pressure drop 51

4.3 Homogeneity and streamwise decay 52

4.3.1 Transverse homogeneity, 52

4.3.2 Streamwise energy decay, 55

4.4 Velocity spectra 61

4.4.1 Comparison of all tested grids, 61

4.4.2 Improved turbulence grid, 65

4.5 Correlation functions and length scales 66

4.6 Direct measurement of the dissipation rate 71

4.7 Concluding remarks 74

Chapter 5 Grid turbulence in polymer solutions

5.1 Brief overview 77

5.2 Experimental conditions 77

5.3 Degradation of the polymer solutions 79

5.3.1 Fluid viscosity, 79

5.3.2 Static pressure drop, 79

5.3.3 Fluid elasticity, 81

5.4 Turbulence spectra in polymer solutions 82

5.4.1 Kinetic energy and large-scale isotropy, 82

5.4.2 Effects of fluid elasticity on velocity spectra, 83

5.4.3 Viscous and polymer dissipation rate, 90

5.5 Summary and concluding remarks 92

5.5.1 The model spectrum, 92

5.5.2 General remarks, 95

viii



Contents

Chapter 6 Final remarks and outlook

6.1 Summary of the most important findings 97

6.2 Perspectives 98

References 99

List of Figures 107

List of Tables 109

Notation 111

ix





Chapter 1

Introduction

1.1 Turbulence in elastic fluids

The Toms effect137 describes a phenomenon in which a significant lowering of the
pressure drop necessary to maintain turbulent flow occurs when adding minute
amounts of a high molar mass polymer to the fluid. Besides their obvious indus-
trial relevance, these drag-reducing 25, 87, 118, 145 flows also present a fundamental
interest. Since their discovery, a vast number of experimental, numerical and an-
alytical efforts have been made, but the phenomenon—the interaction between
turbulence and polymers—is still not well understood.

It should be stressed that the turbulence in question is the inertial turbulence at
high Reynolds numbers, which differs in its nature from the structural turbulence 92,
also called elastic turbulence 59 . The latter occurs in viscoelastic fluids at low
Reynolds numbers and emerges from viscoelastic instabilities.60

Polymer solutions are the favored fluids to investigate viscoelasticity, because
they exhibit elastic effects already at concentrations as low as a few parts per
million10. Moreover, there exist many polymer grades that are soluble in water
and hence simplify the experimental setup. The nature of the polymer-solvent
system depends on the the solvent and the polymer concentration.47, 58 At high
concentrations the polymers tend to built networks, whereas in dilute solutions
they don’t interact. The complexity and the origin of the resulting elastic effects
change accordingly. It seems clear that for a fundamental approach, solutions with
individual polymer coils have to be considered first.

The majority of existing experimental studies on turbulence in polymer solu-
tions were realized in pipe flows (e.g., refs. 41, 46, 76, 102, 146), and only a few
investigations were carried out in grid-generated turbulence (viz., refs. 10, 51, 53,
93, 141) or other experimental configurations producing nearly homogeneous and
isotropic turbulence83, 84. Homogeneous and isotropic turbulence12 is essentially
decaying and polymer chains can only modify the energy fluxes from large to small
scales. This greatly reduces the complexity of the problem compared to situations
with mean shear, as in channel flows.

Among the numerical studies, the one by Berti et al. 17 was of particular in-
terest for the present experimental investigation. They investigated the effect of
polymers on the energy fluxes in homogeneous turbulence, and found that there
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Introduction

exists a characteristic turbulence length scale ℓp at which the polymers start to
affect the energy cascade. Below this scale, turbulence kinetic energy is dissipated
by the viscous drag of relaxing polymer coils101, and ℓp acts like a new dissipation
scale. Necessarily, the energy cascade deviates from the Newtonian case below
ℓp, whereas turbulence scales larger than ℓp remain essentially unaffected. This
describes closely the ideas about turbulence-polymer interaction put forward by
Balkovsky et al. 8 and Fouxon and Lebedev 49 .

Another, competing scenario exists15, 17: the dissipation through polymer re-
laxation is limited to a relatively narrow range of scales around ℓp, below which
the inertial turbulence cascade proceeds at a reduced energy flux. Thus, elastic
effects manifest at turbulence scales that are neither too large nor too small.

When testing these hypotheses experimentally, a major issue is the degradation
of polymer solutions in turbulent flows, which leads to lower molecular weights and
reduced elastic effects. Friehe and Schwarz 51 ran grid turbulence experiments
on polyacrylamide solutions in a closed-loop flow tunnel and reported that the
flow properties changed over long periods. In the present study, severe polymer
degradation was observed. As this phenomenon is practically unavoidable in grid
turbulence, it was seen as a chance to investigate elastic effects on turbulence in
fluids of the same mass concentration but varying elastic properties in a single
experimental run.

The most recent experimental investigation into elastic effects on grid turbu-
lence was carried out in 1999 by van Doorn et al. 141 , two years before the paper
by Balkovsky et al. 8 was published. Although their measured turbulence spec-
tra show some effect of the polymers, they do not correlate with any of the two
models mentioned above. Moreover, the spectra seem to be heavily corrupted
by experimental noise. Older turbulence spectra by McComb et al. 93 or Friehe
and Schwarz 51 lack accuracy and resolution. Therefore, it appeared necessary to
conduct new experiments with focus on turbulence spectra.

1.2 Grid turbulence

The classic setup to study homogeneous and isotropic turbulence is a grid placed
normal to a uniform mean flow. Far behind the grid, turbulence production is
essentially zero and one finds a simple decaying turbulence where the energy budget
reads

dk

dt
≡ 1

2

d

dt
⟨uiui⟩ = −2ν ⟨sijsij⟩ , (1.1)

in which k is the turbulence kinetic energy, ui (≡ Ui−⟨Ui⟩, where ⟨ ⟩ denotes the time
average) is the fluctuating velocity and sij (≡ Sij − ⟨Sij⟩) is the fluctuating strain
rate tensor defined in equation (1.10). (Notice the summation over dummy indices.)
Because of its simplicity, this arrangement is very popular (e.g., refs. 13, 33, 50, 77,
111, 128), though it has some flaws. For example, it has the drawback to be limited
in practice to small Reynolds number turbulence, where the turbulence spectrum
is poorly developed12. To this end, a variety of turbulence enhancing grids were
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1.3 Turbulence velocity spectra

introduced52, 66, 85. A particularly impressive effort was made by Makita 90 who
introduced a sophisticated active grid. The turbulence Reynolds number

Reλ ≡ λu′1
ν
, (1.2)

was greatly improved and the inertial subrange clearly visible in the energy spec-
trum72, 79, 98. In expression (1.2), ν is the kinematic viscosity, u′1 is the root mean

square (rms) velocity (i.e., u′i ≡ √⟨uiui⟩), and λ is the Taylor microscale given in
equation (1.13). But its mechanical complexity makes an application in smaller
facilities or in water tunnels difficult. Thus, we developed yet another passive grid,
intensifying turbulence by means of tethered spheres. This design concept is based
on the random motion of the spheres57, 151, and is simple to implement.

1.3 Turbulence velocity spectra

The following gives only a brief summary of a vast topic. For details, the reader may
consult Hinze 64 , McComb 92 , Pope 107 , Tennekes and Lumley 134 or Batchelor 12 .

The turbulence kinetic energy cascade of a given flow is best described by its
velocity spectrum. In particular, one can measure the one-dimensional spectral
energy density function

φij(κl) = 2∬ ∞

−∞
Φij(κ)dκm dκn, (1.3)

where Φij(κ) is the velocity spectrum tensor, and κ the wavenumber vector. Here,
the indices i, j, k and l, m, n can take the values 1, 2 and 3, referring to the
components of Cartesian coordinates. The factor 2 is required to satisfy

u′2i = ∫ ∞

0
φii(κl)dκl. (1.4)

(The summation over repeated indices does not apply here.) This is convenient for
working with measured one-dimensional spectra, as they are usually presented in
a one-sided fashion, that is, for 0 < κl < ∞.

For homogeneous and isotropic turbulence, Φij has the form12

Φij(κ) = E(κ)
4πκ4

(κ2δij − κiκj) . (1.5)

The three-dimensional spectral energy density function E(κ) depends only on the
magnitude of κ. Pope 107 summarizes the turbulence spectra of various researchers
with a model function for E(κ),

E(κ) = αǫ2/3κ−5/3F
Λ
(κΛ)Fη(κη), (1.6)

which describes the inertial range with Kolmogorov’s famous −5/3-law, as well as
the integral range,

F
Λ
(κΛ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
κΛ

[(κΛ)2 +C
Λ
]1/2
⎫⎪⎪⎪⎬⎪⎪⎪⎭

5/3+2

, (1.7)

3



Introduction

and the dissipation range,

Fη(κη) = exp(−5.2 [{(κη)4 +Cη
4}1/4 −Cη]) . (1.8)

Here, α is the Kolmogorov constant126 with a value of 1.5. The length scales Λ and
η are the integral and the Kolmogorov length scale, respectively. They represent the
characteristic scales for the energy containing and the energy dissipating structures
of a turbulent flow.

The parameter ǫ designates the rate at which turbulence kinetic energy is trans-
ferred from large to small scales, hence, the energy flux. This important quantity
is defined as64

ǫ ≡ 2ν ⟨sijsij⟩ = ν ⟨(∂ui

∂xj

+ ∂uj

∂xi

) ∂uj

∂xi

⟩ , (1.9)

where

sij ≡ 1

2
(∂ui

∂xj

+ ∂uj

∂xi

) (1.10)

is the rate-of-strain tensor. Together with the integral scale and the Kolmogorov
scale, this parameter defines the turbulence energy cascade.

The remaining constants C
Λ
= 6.78 and Cη = 0.4 were determined107 such that

the integrals

k = ∫ ∞

0
E(κ)dκ (1.11)

and
ǫ = 2ν ∫ ∞

0
κ2E(κ)dκ (1.12)

are satisfied.
The Taylor microscale used for the Reynolds number in equation (1.2) is also

a characteristic length scale for the fine structures of the turbulent motion, as it
designates the smallest turbulent eddies that are not affected by viscous dissipation.
For an isotropic flow it is given by64, 134

λ2 = u′21 /⟨(∂u1

∂x1

)2⟩ , (1.13)

or alternatively by means of the kinetic energy,

λ2 = 10ν
k

ǫ
. (1.14)

The direct measurement of spatial velocity derivatives in a turbulent flow, in
order to evaluate expression (1.9), is a very challenging task that demands a high
spatial resolution. In this context, particle image velocimetry (PIV) appears to
be the obvious choice. Ideally, the measurement technique should resolve the Kol-
mogorov scale, as well as the large scales. In typical grid-generated turbulence,
these two length scales are separated by more than three decades and hence, it is
not possible with PIV to capture all length scales. Consequently, a compromise is
found by measuring the intermediate wavenumber range, and applying corrections
for the filtered small scales.

4



1.4 Thesis layout and contributions

1.4 Thesis layout and contributions

There are two major contributions in this work. First, it introduces a novel passive
turbulence grid with turbulence enhancing capabilities, which has a simple geome-
try and is applicable in wind and water tunnels. Second, it presents measurements
of velocity spectra and energy dissipation rates in dilute polymer solutions with an
improved quality relative to existing results. These measurements allow to identify
important features of the turbulent motion in polymer solutions and adapt the
existing models.

The following chapters first treat the polymer solutions employed in the present
study, followed by the experimental setup with details on the data processing.
These include descriptions of the correction procedures for each measurement tech-
nique, and highlights their importance. The subsequent chapters four and five
summarize the findings on the new grid and the turbulence properties in polymer
solutions. Concluding remarks and a brief outlook on future work are given in the
last chapter.
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Chapter 2

Aqueous poly(ethylene oxide) solutions

2.1 Ideal elastic fluids and polymer solutions

Viscoelastic fluids are special because of their ability to ‘remember’ their defor-
mation history, and so their behavior for a given flow configuration, for example
a turbulent flow, differs from Newtonian fluids. Many types of viscoelastic fluids
exist, for example shower gel, bread dow or saliva, but only a few are suitable for
turbulence experiments. More specifically, an ideal viscoelastic fluid should have
the following properties: highly elastic, constant and low viscosity, transparent,
non-toxic and if possible, cheap. These requirements closely apply to polymer so-
lutions. Moreover, they are very effective: only a few parts per million of polymers
dissolved in a Newtonian solvent are necessary to exhibit viscoelastic behavior. Un-
fortunately, they also have drawbacks, such as a shear dependent viscosity44, 132,
or degradation due to chain breakup65, to mention the most important ones.

Nevertheless, due to the fact that many polymer grades are relatively inex-
pensive, non-toxic and easy to handle, polymer solutions seem to be a fair com-
promise and are very popular for investigations into various kinds of viscoelastic
effects, for example vortex shedding from a cylinder104, disintegration of liquid
drops34, 113, 114, or elastic turbulence30, 59, 60. The latter is a turbulent flow which
develops in elastic fluids at very low Reynolds numbers, unlike turbulence in New-
tonian fluids.

However, many of these materials exhibit shear-thinning, which is a reduction
of the apparent viscosity with increasing shear rates. This makes it difficult to
differentiate between shear-thinning, elastic and inertial effects. This becomes clear
by considering the material functions for a simple shear flow in the x1-x2-plane18:

D12 = 2µ(γ̇)S12, (2.1)

and the normal stress differences

N1 =D11 −D22 = 4S2
12Ψ1(γ̇), (2.2a)

N2 =D22 −D33 = 4S2
12Ψ2(γ̇), (2.2b)

where

Dij = 2µ(γ̇)Sij = µ(γ̇)(∂Ui

∂xj

+ ∂Uj

∂xi

) , (2.3)

7



Aqueous poly(ethylene oxide) solutions

is the deviatoric (or viscous) stress tensor. The viscosity µ is a scalar function and
depends only on the shear stress magnitude18 of Sij , that is,

γ̇ ≡ √2SijSji. (2.4)

Thus, for a simple shear flow, γ̇ = ∣S12∣. (Note that, to avoid confusion with the
Kolmogorov microscale, µ is used for the dynamic viscosity, non-Newtonian and
Newtonian, instead of the more common symbol η.) Equations (2.1) and (2.2)
illustrate that the viscosity is a first order function of the shear rate, and that the
normal stress differencesN1 and N2, deriving from the elastic properties, are of the
second order. The quantities Ψ1 and Ψ2are called the first and the second normal
stress coefficients, respectively. In consequence, elastic forces are small at low shear
rates, and experimentally speaking, sufficiently high shear rates are necessary to
generate elastic effects. But if shear-thinning is present, normal stresses can be
difficult to measure.

An ideal elastic fluid with a constant viscosity would allow to separate viscous
and elastic behavior. Such a fluid was suggested by Boger21, with the unique
feature of a large relaxation time. But because of its high viscosity, it is difficult
to handle and not suitable for flow configurations with large Reynolds numbers.
Tam and Tiu 131 presented highly elastic fluids with low viscosities, remaining
constant over a wide range of shear rates. They also emphasize that the relaxation
time—characterizing the elastic properties of a fluid—is dependent on the solvent
viscosity, the molecular weight, the solvent quality, and the temperature. Thus,
a low viscosity fluid with long relaxation times, which results in developed elastic
effects, can be obtained with a high molecular weight polymer and a good solvent.
An adequate choice is a water soluble polymer, with the additional feature of
being transparent, and hence, allowing the investigation with optical measuring
techniques.

The following sections will introduce the particular type of dilute polymer so-
lutions, and specify its most important characteristics, such as the shear viscosity,
the relaxation time, and the degradation in strong shear flows.

2.2 Rheological description of dilute polymer solutions

Depending on the molecular weight, polymer solutions can develop non-Newtonian
behavior at vanishingly low polymer concentrations, of the order O(10−5), and
these effects increase with increasing concentrations. One can easily imagine that
the structure changes with the amount of polymers, from isolated polymer chains
to large polymer networks. Graessley 58 introduced five distinguished regimes de-
pending on the concentration and the molecular weight: (i) dilute solution with
individual polymer coils; (ii) semi-dilute solution with individual chains; (iii) semi-
dilute solution with polymer networks; (iv) concentrated solution with individual
coils; and finally, (v) concentrated solution with networks. In regimes (ii) to (v), one
differentiates between simple coil overlap, characterized by weak polymer-polymer

8



2.2 Rheological description of dilute polymer solutions

interaction, and polymer chain entanglement where strong connections between
coils exist. Viscoelastic properties of dilute solutions, and presumably also of non-
entangled semi-dilute and concentrated solutions, are governed by isolated polymer
chain dynamics, whereas in solutions of polymer entanglements, the network struc-
ture is predominant.47, 58

The rather smooth transition from one regime to another is usually indicated
by critical concentrations (and molecular weights), which should not be regarded
as sharp separations but as rough indicators. The dilute regime (i), to which
the solutions of the present study belong, is distinguished from the semi-dilute
regime by the critical coil overlap concentration c∗. This value, is reached when
the polymer molecules, assuming a tangled-ball configuration, are in dense spherical
packing.87 The size of the individual coils, and therefore also c∗, depends on several
parameters, such as the molecular weight of the polymer and the solvent quality.
Good solvents are characterized by weak inter-polymer forces and strong polymer-
solvent interaction. The behavior is opposite for poor solvents. An idea of the
magnitude of these interactions is given by the intrinsic viscosity [µ] defined as the
contribution of the polymer to the solution viscosity as the polymer concentration
approaches zero. Or more precisely, it is the limiting value

[µ] = lim
c→0

µred or [µ] = lim
c→0

µinh (2.5)

of the reduced viscosity

µred = µ − µs

cµs

, (2.6)

or the inherent viscosity

µinh = ln (µ/µs)
c

, (2.7)

respectively, and where µs designates the solvent viscosity. Similarly to µ, [µ] is
dependent on the shear rate18, and we define here [µ] to be the intrinsic viscos-
ity measured at zero-shear.∗ In order to determine c∗, it is common to use the
expression

c∗ = 1

[µ] , (2.8)

leading to the coil overlap parameter c[µ]. An alternative definition of c∗ is58

c∗ = 0.77

[µ] , (2.9)

yielding a more restrictive critical concentration, but of the same order of magni-
tude. Both expressions figure in the literature105, 112, 136.

In the present study, only the dilute regime (i) will be considered, such that the
polymer concentration c < c∗. Therefore, viscoelastic effects are assumed to arise
from single polymer chain behavior. It should be mentioned that in practice such

∗In the literature, the zero-shear intrinsic viscosity is often denoted [µ]0.

9



Aqueous poly(ethylene oxide) solutions

idealized solutions may not exist, or only at very low polymer concentrations, such
that c[µ] ≪ 1.

It has been observed that ‘fresh’ dilute solutions yield higher viscosities than
aged solutions, and that the viscosity remains stable only after a few days of age-
ing.63, 70 Thus, one has to expect that even in aged solutions, small networks of
entangled polymer molecules persist69, 136, rather than dissolve to isolated polymer
chains. Hence, the results of the turbulence experiment will have to be interpreted
with this in mind.

2.2.1 Material functions and dimensionless groups

In the present study, the two important material functions characterizing the poly-
mer solution are the non-Newtonian viscosity µ(γ̇) and the polymer relaxation
time τ . (As λ is reserved for the Taylor microscale, τ represents the polymer re-
laxation time.) The relaxation time is the characteristic time scale describing the
viscoelastic properties. Large relaxation times indicate pronounced elastic effects,
while small relaxation times characterize weak elasticity. The relaxation time being
one important parameter, the development of viscoelastic effects also depends on
the local time scales of a given flow configuration. This leads to the Weissenberg
number which is equal to the product of the characteristic time scale of the fluid
and the shear rate magnitude,

Wi ≡ τ γ̇. (2.10)

It is a measure for the relation between the elastic forces of the polymers, and the
viscous forces of the flow acting on the polymer coils.

Alternatively, in turbulent flows the Weissenberg number is given by the ratio
between the polymer relaxation time and the characteristic time scale t

K
of the

smallest turbulence scales,

Wi ≡ τ

t
K

. (2.11)

Viscoelastic behavior becomes noticeable when Wi ≳ 1, that is, when the relaxation
time is comparable to the time scales of the turbulent flow.

2.2.2 Models for polymer solutions

In order to analyze and synthesize rheological data, one has to adopt a model
suitable for the problem at hand. A large variety of models are available, and two
simple ones are the multi-mode Maxwell and the Rouse-Zimm model, which belong
to the family of linear viscoelastic models. For the models employed here, only the
necessary information will be given. More details can be found in references 18
and 19.

In experimental rheology, it is also customary to use empirical relations, for
example the Carreau-Yasuda (CY) model (2.12), because of their ability to describe
the measured data more closely than mechanistic models. Practically speaking, the
Rouse-Zimm model predicts a constant solution viscosity, which is not the case for

10



2.2 Rheological description of dilute polymer solutions

many polymer solutions, and the generalized Maxwell model has also a very limited
capacity of describing shear dependent viscosities (illustrated in figure 2.7).

The shear-dependent viscosity can be very well fitted by18

µ − µ∞
µ0 − µ∞ = [1 + (τCY

γ̇)aCY ](nCY
−1)/a

CY , (2.12)

where µ0 and µ∞ are the zero-shear rate and the infinite-shear rate viscosities, re-
spectively. The quantity τ

CY
is a pseudo time constant, and its reciprocal indicates

the intersection of the zero-shear rate viscosity with the power-law region of slope
n

CY
− 1. The parameter a

CY
allows to smooth the transition between these two

regions.
Macroscopic linear viscoelastic behavior can be modeled by linear combina-

tions of dashpots and Hookean springs, characterized by viscosities and relaxation
times, respectively. A single Maxwell element consists of a dashpot connected in
parallel with a spring. The superposition of N such elements, each with a different
relaxation time τj and viscosity µj, allows to increase the complexity of the model

It is customary to investigate linear viscoelasticity with small amplitude oscil-
latory shears S12 at variable frequencies ω to determine the complex modulus

G∗(ω) = D12(t)
2S12(t) = G′(ω) + iG′′(ω). (2.13)

G′ and G′′ are referred to as the elastic (or storage) modulus and viscous (or loss)
modulus respectively. They are related to the discrete relaxation spectrum by

G′(ω) = N∑
j=1

µjτjω
2

1 + (τjω)2 , (2.14a)

G′′(ω) = N∑
j=1

µjω

1 + (τjω)2 . (2.14b)

The longest and most influential relaxation time is equal to the sum of all relaxation
times τj, idem for the corresponding viscosity, that is,

τ
M
= N∑

j=1
τj, (2.15a)

µM = N∑
j=1

µj. (2.15b)

In order to identify the N relaxation times and viscosities, one has to fit (2.14)
to the measured moduli. This harbours the difficulty of a non-linear minimiza-
tion problem. A procedure proposed by Jensen 67 involving a simulated annealing
algorithm35, 56 was adopted to determine the relaxation spectrum.

The Rouse model is based on a necklace of N beads, producing viscous drag on
the polymer, connected with N − 1 linear elastic and frictionless springs. Includ-
ing the hydrodynamic interactions between the beads leads to the Rouse-Zimm

11



Aqueous poly(ethylene oxide) solutions

description of a polymer chain dissolved in a Newtonian solvent. This microscale
model is very similar to the macroscale model of Maxwell. That is, it also consists
of a linear superposition of elastic, and viscous units and has a spectrum of N − 1

relaxation times. The dominant relaxation time is given by112

τ
Z
= 1

ζ(3β)
[µ]µsMv

RT
, (2.16)

where

ζ(3β) = ∞∑
i=1

1

i3β

is the Riemann zeta function. The expression Mv denotes the viscosity average
molecular weight (determined by means of the intrinsic viscosity and the Mark-
Houwink relationship18), R is the universal gas constant, and T is the temperature
in Kelvin. The parameter β denotes the solvent quality factor (which will be defined
below, along with Mv).

2.2.3 Data reduction

Due to limitations of rheological instruments, data can be acquired only for rela-
tively narrow ranges of shear rate and frequency. To overcome this handicap and
extend the measured domains, tests are run on polymer solutions of various con-
centrations and at different temperatures. This leads to a relatively large amount
of data spread over a wide parameter space. In order to correlate the data, vis-
cosities, as well as storage and loss moduli, are shifted horizontally and vertically
to overlap with one another.47, 132 Viscosity data are shifted according to

̂̇γ = γ̇ Tref

T

µ0 − µs

µ0(Tref) − µs(Tref) , (2.17a)

µ̂ = µ µ0(Tref) − µs(Tref)
µ0 − µs

, (2.17b)

where concentration differences are not compensated. Hence, only measurements
of the same solution, but realized at different temperatures, can be reduced to a
common curve. The shift factors for oscillatory shear data, on the other hand, do
include a normalization for concentration:

ω̂ = ω Mv

cRT
(µ0 − µs), (2.18a)

Ĝ′ = G′ Mv

cRT
, (2.18b)

Ĝ′′ = G′′ Mv

cRT
. (2.18c)
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2.3 Fluids and instrumentation

2.3 Fluids and instrumentation

Polymers exist in many types and molecular weights, and every grade has its own
viscoelastic behavior. For our study we chose poly(ethylene oxide) (PEO) because
of its low sensitivity to shear-thinning132, and its wide spread use for studies on
drag reduction16, 40, 53, 121 and homogeneous turbulence10, 82–84, 93. Polyox WSR
301, supplied by Dow, is a water soluble, flexible and polydisperse polymer with
a nominal average molecular weight of 4×106 g/mol, a repeat unit mass of 44 g/mol

and an average bond length of 0.147 nm. The polymer contour length is roughly
13.3µm, which is much larger than the rms end-to-end distance of the unperturbed
coil, namely 0.09µm.104

The Newtonian solvent for the turbulence experiment was filtered tap water,
and distilled water was used to prepare the sample solutions for the polymer char-
acterization. An average mass per unit volume of 998 kg/m3 was used for pure water,
as well as for the polymer solutions.

2.3.1 Preparation of sample solutions and tunnel fluids

Small sample solutions of 200 g each were made by adding distilled water to a
0.5wt% stock solution. The latter was prepared by sprinkling the dry polymer
powder on the free surface of the water in a container, and was then gently mixed
by means of a roller mixer for 24 hours. Subsequent storage for another week at
6 ○C was necessary to obtain an optically homogeneous solution, before the dilutions
were made. According to Kalashnikov 70 , high concentration solutions attain stable
fluid properties after approximately ten days. Hence, the residual stock solution,
as well as the dilutions were left to rest during three more days before starting the
rheological measurements. For storage they were kept in a refrigerator at 6 ○C.

PEO solutions for the turbulence experiment were prepared by means of a five
litre parent solution saturated with NaCl. The saturated NaCl solution is a non-
solvent† and prevents the PEO to soak up water and build up large polymer blocks.
This parent solution was poured, right after its preparation, into the flow facility
filled with water. To promote spatial homogenization and avoid large agglomera-
tions, the pump was running at full speed (≈ 40 litres/s) during this operation. The
polymer-NaCl solution formed small droplets, which were nicely dispersed over the
whole tunnel volume. The pump was then immediately slowed down to a few rev-
olutions per minute, corresponding to ≈ 1% of full speed, and was left running
for three days. The fluids prepared in this manner were optically homogeneous
after only one hour, and viscosity tests showed that they were stable four days
later. This is very fast compared to the three weeks of homogenization that were
necessary, when the dry polymer powder was sprinkled directly on the free water
surface in the tunnel. No biocide was necessary for the polymer solutions, but one
litre of bleach—which destroys any non-Newtonian effect within a few hours—was
added to plain water experiments.

†A list of other possible non-solvents of Polyox can be found online on the Dow webpage.
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Aqueous poly(ethylene oxide) solutions

The final salt concentration in the tunnel was less than 0.04% by weight. No no-
ticeable effect on the solution viscosity could be detected in test solutions with NaCl
concentrations below 0.1wt%. In fact, elastic and viscous moduli of a test solution
dropped by less than 5%, which is approximately equal to the error of the rheome-
ter, and hence negligible. These conclusions are consistent with findings of other
experimentalists86, 130, 133, 153. In contrast to PEO, minute amounts of salt almost
completely annihilate elastic effects in aqueous polyacrylamide solutions.55, 133 A
more rigorous investigation would be necessary for a better understanding of the
physico-chemical properties of PEO dissolved in weak NaCl solutions, which is
beyond the scope of this work.

2.3.2 Rheological measuring systems

In order to properly characterize the elastic fluids used for the turbulence exper-
iments, a series of tests was conducted on small sample solutions covering a wide
range of concentrations, 10 ⩽ c ⩽ 5000wppm‡, and temperatures, 5 ⩽ T ⩽ 30 ○C.
Steady shear and oscillatory shear measurements were realized on a Bohlin C-VOR
150 rheometer with a double-gap sample holder, or a cone-and-plate setup, respec-
tively. A water jacket allowed to regulate the sample temperature between 5±0.1 ○C
and 30 ± 0.1 ○C. Due to the very small forces involved at low shear rates and the
onset of the Taylor-Couette instability at high shear rates, the range of explorable
shear rates was relatively narrow, that is, from roughly 0.05 to 300 1/s. Minimal
scatter in the data was obtained when the rheometer was driven in the controlled
stress mode. All measurements were run with at least one ‘up-and-down’ cycle
(increasing shear stresses followed by a decrease) to verify that the properties of
the tested sample remained stable. For steady shear tests, the same sample was
tested at various temperatures, while for oscillatory shear tests, a fresh sample was
used for each temperature. In any case, for a given polymer concentration the first
measurement was repeated at the end. None of the tested samples did show any
kind of evolution, and all measurements were perfectly repeatable during the whole
measurement campaign carried out over the period of one month.

The kinematic viscosity was measured with an Ubbelohde capillary viscome-
ter for solutions of concentrations below 1000 wppm, where solutions with more
than 500wppm were strongly affected by shear-thinning. To maintain the solution
temperature at a constant value between 20 ± 0.1 ○C and 25 ± 0.1 ○C, the capillary
was placed in a controlled water bath. In order to minimize the measurement
uncertainty, an average was taken over nine runs with the same sample.

An accuracy of less than 5% is guaranteed for the rheometer by the manu-
facturer, and viscosity measurements of distilled water, and 87% glycerol gave an
error of less than 2% compared to literature values. Viscosities determined with
the capillary viscometer were within 0.5% of published values for distilled water.

‡Weight parts per million, denoted wppm, will be used as standard concentration unit through-
out the report. Exceptionally, the concentration may be given in g/ml (≈ 10

6 wppm) or wt%
(= 10

4 wppm).
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2.4 Characteristics of the working fluids

The characteristics of the selected polymers following in this section were deter-
mined with the sample solutions, and are assumed to be transferable to the solu-
tions prepared in the tunnel. One should keep in mind, that the solvent was of
different quality, the sample solutions were prepared with distilled water and the
tunnel fluids with tap water. It is further believed that the salt added to the tun-
nel solutions in combination with the stainless steel of the tunnel does not alter,
by significant amounts, the solution properties. As will be seen in chapter 5, the
salt probably caused a reduced polymer-solvent interaction, noticeable by a lower
solution viscosity.

2.4.1 Molecular weight and coil overlap concentration

The average molecular weight of Polyox WSR 301 was determined with the Mark-
Houwink relationship

[µ] =KM3β−1
v = 0.072M0.65

v , (2.19)

where Mv is the viscosity average molecular weight, β the solvent quality parameter
and K a constant. The indicated prefactor and exponent were found by Tirtaat-
madja et al. 136 to produce appropriate results for aqueous Polyox solutions with
8 × 103 ⩽ Mv ⩽ 5 × 106 g/mol. The exponent 3β − 1 = 0.65 yields a solvent quality
parameter of 0.55, indicating that water is a relatively good solvent of PEO. The
limiting values of β are 0.5, for a theta solvent, and 0.6 for a good solvent, denoting
weak and strong polymer-solvent interaction, respectively.

Extrapolating the reduced viscosity and the inherent viscosity to zero concen-
tration produces [µ] = 1625 ± 55ml/g. This value coincides well with literature
values for the same polymer grade (e.g., refs. 36, 71, 94, 100, 116, 132, 136), which
vary between 1420 and 1860 ml/g. A plot of the data measured at 24 ○C, including
the linear regressions used for the extrapolation, is shown in figure 2.1. In order
to verify the relation (2.5), the regressions were found simultaneously. The vis-
cosities µinh and µred drop at concentrations below 100 wppm, a similar behavior
was reported by Sylvester and Tyler 130 . They speculate that the sudden change
is possibly due to formation of polymer entanglements above this concentration.

Applying equation (2.19), we find an average molecular weight of 5.0×106 g/mol,
which is 25% higher than indicated by the supplier.

With the expression for the critical coil overlap concentration (2.8) one obtains

c∗ = 1

[µ] ≈ 615wppm, (2.20)

or alternatively with (2.9)

c∗ = 0.77

[µ] ≈ 475wppm, (2.21)
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Figure 2.1 Inherent (◻) and reduced (#) viscosity plotted versus solution concentration.
Linear fits (solid lines) were used to determine the intrinsic viscosity at c = 0.

for our PEO sample. The fluids for the turbulence experiment consisted of polymer
concentrations of less than or approximately equal to 100 wppm, and were therefore
considered to be dilute.

2.4.2 Concentration and temperature dependence of the viscosity

Zero-shear viscosities were measured for sample solutions with concentrations rang-
ing from 10 to 5000wppm at 24 ○C with the capillary viscometer or the rheometer.
The relative viscosity µ0/µs plotted against the polymer concentration, shown in
figure 2.2, is well described by the general relation for a homogeneous solution18, 63

µ

µs

= 1 + c[µ] + 0.5 (c[µ])2 , (2.22)

for concentrations below 1000 wppm (cf. broken line). An improved representation
is

µ

µs

= (1 + c[µ]
6.2
)6.2

, (2.23)

which was fitted in the least squares sense (cf. solid line). For sample solutions
with concentrations above 500 wppm, the capillary viscometer underestimates the
zero-shear viscosity due to shear-thinning effects. Assuming a Poiseuille flow in
the capillary tube, the maximum shear rate, occurring at the capillary wall, can
be approximated by104

γ̇max = dρgh
4µ

. (2.24)
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2.4 Characteristics of the working fluids

With a capillary diameter d = 0.53mm, a total driving head h = 16 cm, g = 9.81 m/s2,
and ρ = 998 kg/m3, (2.24) yields γ̇max ≈ 92 1/s for the 500wppm solution, which has a
zero-shear viscosity of 2.25mPa s. Although steady shear viscosity measurements
at such low concentrations were difficult, shear-thinning could be detected for shear
rates above 10 1/s.

In the dilute regime, far below 615 wppm, the discrepancy between the viscome-
ter and the rheometer data may be explained with the measurement uncertainty
of the rheometer at very low shear stresses. Another source of error is the fact that
zero-shear viscosities were determined manually using log-log plots.

log c, wppm

lo
g
(µ 0
/µ s
)

1 2 3 4
0

1

2

3

Figure 2.2 Zero-shear viscosity at 24 ○C measured with the capillary viscometer (#)
and the double-gap rheometer (◻). The solid and the dashed lines are defined by (2.23)
and (2.22) respectively.

In order to determine accurately the solution concentrations used for the tur-
bulence experiments, a simplified empirical relationship was derived from measure-
ments of solutions of c ⩽ 100wppm in the temperature range between 20 and 25 ○C.
Figures 2.3 (a) and 2.3 (b) are the required plots for the relations

µ(c,T ) = µs(T ) (1 + c[µ]) , (2.25a)

µ(c,T ) = µ(c,Tref) (1 − 0.023 [T − Tref]) , (2.25b)

which are drawn as solid lines. These two expressions provide a simple implement
to verify the concentration of the fluids used for the turbulence experiments.

2.4.3 Shear dependent viscosity

Shear-thinning is accurately describe by the model (2.12). Applying the shifting
technique mentioned earlier to the steady shear data, separated by concentration,
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Figure 2.3 Concentration and temperature dependence of the zero-shear viscosity. (a):
#, 20 ○C; ◻, 23 ○C; ◇, 24 ○C; and ✩, 25 ○C. (b): #, 10 wppm; ✩, 20 wppm; ◻, 50 wppm; △,
100 wppm; and ◇, 200 wppm. The linear regressions (2.25a) and (2.25b) are indicated by
solid lines. The dashed line shows the relative viscosity computed with (2.23).

reduced shear viscosity curves covering at least four decades of shear rates were
obtained. Individual Carreau-Yasuda models were fitted to each reduced curve,
where the zero-shear viscosities have been previously determined from the raw
data. The infinite-shear viscosity µ∞ was taken to be equal to the Newtonian
solvent viscosity µs, although µ∞ = 0 is more commonly used. This is justified
considering that the difference between µs and zero is negligible for high polymer
concentrations, but it is not for low concentrations. Furthermore, µ∞ is more likely
to approach a value ≳ µs than zero.

All the µ(γ̇) curves were reduced with respect to the 5000wppm data set, using
the reference values Tref = 293K, µs(Tref) = 1.002mPa s and µ0(Tref) = 202.0mPa s.
As an example, the reduced data for the 5000 wppm solution and the corresponding
model curve are plotted in figure 2.4.

The low shear data deviates from the zero-shear rate plateau due to the in-
capacity of the rheometer to measure the very small forces. Instrument tolerance
boundaries91 for the controlled-stress rheometer were calculated assuming that the
only corrupted quantity is the measured shear-rate, and the error boundaries in-
dicated in figure 2.4 correspond to an error of 3 1/s. Otherwise the data overlaps
very nicely, and the model curve is flexible enough to capture the transition.

The determined values for n
CY
− 1 and τ

CY
showed some dependence on the

solution concentration, whereas the transition parameter a
CY

was invariant. Ac-
cording to Pipe and Monkewitz 105 and Stadler et al. 127 a

CY
= a

CY
(Mv), and since

this is a property of the polymer itself and not the solution, it seemed appropriate
to force a

CY
= 1.2 for all fits.§ With the purpose of being able to extrapolate the

§Pipe and Monkewitz 105 stipulate that 0 < a
CY
⩽ 2 for polydisperse materials, whereas Stadler
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Figure 2.4 Shifted viscosity plotted against shifted shear rate for a PEO solution of
5000 wppm at various temperatures: #, 5 ○C; ◻, 10 ○C; ✩, 20 ○C; ◊, 24 ○C; and △, 30 ○C.
The solid line shows the fitted CY model (2.12), and the dashed lines mark the rheometer
error boundaries.

CY model to very low concentrations, n
CY
− 1 and τ

CY
have to be replaced by

functions of µ. The required plots are presented in figure 2.5 and the functions are

τ
CY
= 1.3 − 100µ, (2.26a)

n
CY
− 1 = −(0.1 + 12µ0.7) . (2.26b)

Equation (2.26b) takes into account the limiting value n
CY
− 1 = 0.1 for infinitely

dilute solutions18.

After injecting these expressions into (2.12), rescaling ̂̇γ and replacing µ0(Tref)−
µs(Tref) by its numerical value, namely 0.201Pa s, one finds the function for the
shear viscosity

µ(γ̇, c, T ) = µs + (µ0 − µs)[1 + {(1.3 − 100c) 293

T

µ0 − µs

0.201
γ̇}1.2](nCY

−1)/1.2

, (2.27)

where
n

CY
− 1

1.2
= −( 1

12
+ 10 c0.7) .

In figure 2.6, expression (2.27) is illustrated by the solid lines successfully mod-
elling the measured data. But this expression also allows to predict, or at least

et al. 127 show that, at least for polyethylene, a
CY

does not depend on the polydispersity.
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Figure 2.5 Fitted CY model parameters: (a) n
CY
−1; (b) τ

CY
. The solid lines correspond

to (2.26a) and (2.26b).

gives a rough picture of, the shear-thinning of the fluids used during the turbu-
lence experiments. An example is indicated by the curve ①, which corresponds to
a 100wppm solution.

With the Cox-Merz rule, oscillatory shear data can be directly compared to
steady shear measurements, that is, µ(γ̇) = ∣µ∗(ω)∣∣ω=γ̇ for small shear rates and
frequencies, respectively.11 In figure 2.7 such a superposition is made for the
4000wppm PEO solution measured at 20 ○C. At the low shear rate and frequency
end the data collapse quite well, while at the other end the dynamically measured
data drops faster, which was also found in reference 18.

In terms of the complex modulus, the complex viscosity is given by

∣µ∗∣ = ∣G∗∣
ω
, (2.28)

and in conjunction with equations (2.14) and (2.18), the shear viscosity can be
deduced from the generalized Maxwell model. It was done so for the data in
figure 2.7, where the solid line represents (2.28) computed for a two-mode Maxwell
model. Two modes are certainly not enough to fully capture the complex behavior
of the polymer solutions, but the number of modi is limited by the window of
measurable frequencies. (A thorougher description of the fitted Maxwell modes
will be given below.) Nevertheless, the figure 2.6 demonstrates that the CY model
is more effective to describe shear dependent viscosity.

2.4.4 Relaxation time

Two different approaches to determining the polymer relaxation time have been in-
troduced in a foregoing section. One involves the measurement of the bulk behavior
under small oscillatory displacements, whereas the other can be computed solely
from the intrinsic properties of the polymer-solvent system. The latter, called the
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Figure 2.6 Rescaled CY model (solid lines) for solutions at 24 ○C: △, 500 wppm; ◻,
3000 wppm; #, 5000 wppm. The curve ① indicates the predicted behavior for a 100 wppm
solution.

Zimm relaxation time, is defined by equation (2.16), and τ
Z
= 1.39ms, where the

previously obtained values [µ] = 1625 ml/g and Mv = 5×106 g/mol at 297K have been
injected. The appropriate solvent viscosity is 0.911mPa s and R = 8.314510 J/molK.

By fitting the N -mode Maxwell model (2.14) to the measured storage and loss
moduli, one can deduce τ

M
. Only the thickest solutions produced measurable forces,

and hence data was acquired for solutions with 3000 to 5000 wppm of PEO, in the
temperature range between 5 and 30 ○C. The number of possible modes essentially
depends on the span of measured frequencies, which reached from 2π × 10−2 to
4π rad/s. The j-th relaxation time, j = 1 . . . N , is limited by the inverse of the
maximum and the minimum frequencies. It was found that with three modes the
smallest relaxation times were bound by the limits, and in consequence the next
lower model was considered, that is, the two-mode model. Figure 2.8 shows the
model curves on top of the reduced moduli Ĝ′ and Ĝ′′.

Rescaling the relaxation times computed for the reduced moduli according to
relation (2.18), and making use of equation (2.23), yields

τ
M
= µs

⎡⎢⎢⎢⎢⎣(1 +
c[µ]
6.2
)6.2 − 1

⎤⎥⎥⎥⎥⎦
Mv

cRT

2∑
j=1

τ̂j, (2.29)

where
2∑

j=1
τ̂j = 1.227 × 10−5

is the total relaxation time of the fitted model. A plot of this function is given in
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Figure 2.7 Superposition of the steady shear viscosity µ (#) and the complex viscosity∣µ∗∣ (◻) of a 4000 wppm PEO solution at 20 ○C. Shear-thinning is coarsely described by a
two-mode Maxwell model (2.28) (solid line).

figure 2.9, emphasizing that the Maxwell relaxation time depends on the solution
concentration.

Comparing the Maxwell relaxation time to the Zimm relaxation time (cf. fig-
ure 2.9), one immediately sees that there is a difference of at least one order of
magnitude. One should note here, that τ

M
was extrapolated over two decades

towards the very low concentration region.
Rozhkov et al. 113 determined the empirical relationship

τ
R
= 3.68 × 10−4 c0.688, (2.30)

between the relaxation time and the polymer concentration in wppm, for a similar
PEO grade with a molecular weight of 4 × 106 g/mol. For a 100wppm solution this
yields a relaxation time of 8ms, which is larger but still comparable to the Zimm
relaxation time.

All three estimates of the polymer relaxation time τ (i.e., τ
Z
, τ

M
and τ

R
) are

given in figure 2.9, which emphasizes the dependence of τ on the selected model.
Intuitively, the molecular description of the polymer-solvent system by Zimm seems
to be the appropriate choice, although the directly measured relaxation time of
Rozhkov et al. 113 indicates a dependence on the polymer concentration.

In addition to these estimates, figure 2.9 also indicates the relaxation times

τp deduced from the Lumley scale ℓp (∼ √ǫτ3
p , where ǫ is the turbulence energy

dissipation rate) of the non-degraded polymer solutions. This scale roughly indi-
cates the turbulence scale at which the local (in terms of length scales) Wi is in
the vicinity of one. (The Lumley scale will be properly introduced in chapter 5.)
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Figure 2.8 Reduced elastic and viscous moduli Ĝ′, #, and Ĝ′′, ◻, with fitted tow-mode
Maxwell model (solid lines).

These values are even larger than the Maxwell relaxation times, and also grow with
increasing polymer concentration. The discrepancy between this estimate and the
preceding approximations may have different causes: instead of individual polymer
coils, polymer networks with larger relaxation times may have formed in the so-
lution; the salt added during the solution preparation altered the polymer-solvent
interaction; or the polymer relaxation is not linear, but depends on more than one
relaxation time. Another possible explanation will be put forward in section 5.4.

2.4.5 Resistance to mechanical degradation

Polyox WSR 301 can be qualified as one of the most effective drag reducers, but
also the most liable to mechanical degradation.140 An alternative choice to PEO
is polyacrylamide, which was reported to be more resistant to mechanical degra-
dation32, 40, 140, but suffers from shear-thinning132 .

That high molecular weight polymers are indeed very sensitive to strong shear
flows, was shown mainly in rotating disk rheometers32, 36, 74, 129, and a few other
geometries20, 22, 144. The only way to avoid mechanical degradation of the polymer
coils is to avoid flows with excessive shear rates. Unfortunately, in the flow facility
used for this study are many sources of high shear rates, other than the large
velocity gradients in the turbulent flow itself. The grid used for the turbulence
generation is probably the most important. In its boundary layers shear rates
are estimated to at least one order of magnitude larger than the shear rates in
the bulk far away from the grid, namely O(104) 1/s. Moreover, from turbulent
flows in various rheological devices, it was concluded that polymers are the most
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Figure 2.9 Estimates of the polymer relaxation time: ①, Zimm relaxation time (2.16);
②, empirical fit (2.30) by Rozhkov et al. 113 ; ③, total Maxwell relaxation time (2.29); #,
relaxation time derived from Lumley scale for polymer solutions used in the turbulence
experiments (cf. chapter 5).

vulnerable to scission when the ratio between the polymer contour length and the
Kolmogorov scale is close to three.144 This ratio was roughly 0.15 in the present
study, which suggests that the turbulent flow behind the grid contributed very little
to the polymer degradation.

However, heavy polymer degradation was observed during the turbulence ex-
periments in polymer solutions, which will be further discussed in chapter 5.

2.5 Final remarks

Shear-thinning appears to be negligible even at high shear rates for the solution
concentrations studied in the turbulence experiments, that is, 25, 50 and 100 wppm
(cf. figure 2.6). Consequently, observed non-Newtonian behavior of the investigated
turbulent flows can be attributed to elastic effects.

Regarding the fluid elasticity, relation (2.30) represents the result of directly
measured relaxation times, and is considered to be a more ‘realistic’ characteri-
zation than the Zimm or the Maxwell relaxation time. Moreover, this relaxation
time is representative only for the initial polymer solution, because during the tur-
bulence experiments the polymers were heavily degraded and the fluid elasticity
diminished. Due to the lack of a measurement technique allowing to measure the
relaxation time accurately, approximate elastic properties of the degraded solutions
were determined from the Lumley scale.
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Chapter 3

Experiment setup and data processing

3.1 Closed-loop flow facility

To study the influence of an elastic fluid on grid generated turbulence, we used
the flow facility at EPFL∗ originally built to investigate the cylinder wake in an
elastic fluid104, 105. A few modifications were necessary, in order to accommodate
turbulence grids of various geometries and to extend the streamwise distance from
the grid. The facility is depicted in figure 3.1. It consists of a horizontally aligned
recirculating tunnel made of stainless steel and with a capacity of roughly 3 600
liters. Its cross-section is mainly 600 by 600mm and the central line following the
flow direction has a length of 11.4m.

In order to reduce the mechanical destruction of the dissolved polymers, the
fluid is driven by a bladeless pump†, similar to the one described by Den Toonder
et al. 40 . The pump is situated close to the downstream end of the test section (TS).
It allows to vary the mean flow velocity U0 , in the TS from a few millimeters per
second to approximately 10 m/s.

There is a free surface downstream of the pump, roughly occupying a fourth of
the loop, which was particularly useful during the polymer solution preparation. A
settling chamber upstream of the 12:1 contraction is equipped with a honeycomb,
separated by one hydrodynamic diameter (i.e., 600mm) from the contraction, in
order to straighten the flow and suppress streamwise vorticity of the fluid. An-
other honeycomb is installed 600mm ahead of the TS exit in the diffuser. Both
honeycombs have a cell diameter to cell length ratio of 16. This is well above the
recommended95 7 to 10, but the flow straighteners performed satisfactorily.

The test volume, illustrated in figure 3.2, has a rectangular cross-section of
width W = 150mm and height H = 200mm and a length of one meter. It is
equipped with a chimney covering the whole top surface and allowing to access
the TS without emptying the flow tunnel. All four lateral walls, including top and
bottom, have 30mm strong plexiglas windows for good optical access on a length
of 920mm. The turbulence grids are mounted 60mm from the TS entry, leaving

∗Ecole Polytechnique Fédérale de Lausanne, Laboratoire de Mécanique des Fluides.
†Parallel discs are oriented normal to the rotation axis and entrain the fluid by friction. Also

called Tesla pump or disc pump.
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Figure 3.1 Overview of the closed-loop flow facility indicating its dimensions in mil-
limeters. The large arrows point in the flow direction.
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Figure 3.2 Schematic representation of the TS: ①, turbulence grid; ②, bottom window;
③, removable top window; ④, chimney; ⑤, sections with pressure taps; ⑥, free surface; ⑦,
PIV area; ⑧, 12:1 contraction. Dimensions in millimeters.

an explorable distance of 900mm behind the grid, which is equivalent to 56M (M
is the mesh width of the turbulence grid introduced in the next section).

All coordinates are given relative to a coordinate system centered on the grid
and with its x1-, x2- and x3-axis aligned with the flow direction, the vertical and
the horizontal grid rods, respectively (cf. figure 3.2).

An attempt was made to add a slight contraction downstream to reduce the in-
herent anisotropy of grid generated turbulence, as was suggested by Comte-Bellot
and Corrsin 33 and Uberoi and Wallis 138 , or more recently by Antonia et al. 5 .
Molded plexiglas windows formed a contraction with an area ratio of 1.38 to ‘cor-
rect’ an estimated anisotropy level of ≈ 25%. The contraction ratio was determined
with Batchelor’s12 relations for a rapid distortion of a turbulent field. Unfortu-
nately, the resulting turbulence isotropy gained shortly after this contraction, was
not preserved further than 25 grid meshes from the grid. Another consequence of
this contraction was the inferior PIV image quality due to the increased thickness
of about 30% of the plexiglas windows. Hence, flat windows were used for the
entirety of the experiments presented here.

The free-stream quality of the flow through the TS was measured with LDA
and for water only. As shown in figure 3.3 (a), the spanwise profiles of the average
velocity Ū1 (Ūi = ⟨Ui⟩) has a ‘top-hat’ shape, and neither the elbows, nor the pump
have an asymmetric effect. Idem for the longitudinal, u′1/U0, and lateral, u′2/U0,
turbulence levels. They are below 1% for a large portion across the TS before
they increase close to the walls (cf. figure 3.3 (b)). In the streamwise direction,
the mean free-stream velocity increased linearly by about 3 % between 5 and 42M
downstream of the grid, which corresponds to an increase of 5 % over the entire
length of the working section. During the turbulence experiments, the longitudinal
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Figure 3.3 Free-stream quality. Horizontal (diamonds and triangles) and vertical (circles
and squares) transverse profiles of (a) the mean velocity and (b) the rms velocity at two
different streamwise locations: circles and diamonds, x1 = 20M ; squares and triangles,
x1 = 43M ; solid symbols, x1-velocity component; open symbols, x2-velocity component.
Note the offset of Ū2/U0.

mean velocity grew with the square root of the distance to the grid by roughly
3.5% in the region 10 ⩽ x1/M ⩽ 56.

3.2 Turbulence grids

A classic plain grid, hereafter referred to as reference turbulence grid (RTG), was
used to measure the quality of our experimental setup with respect to similar ex-
periments realized by others, as well as reference for comparison with the improved
turbulence grid (ITG).

The RTG is composed of a biplane grid with square meshes and round rods.
Its mesh width M is of 16mm and the rod diameter d of 3mm, resulting in a
solidity of 34%. Occupying the entire cross section of the TS, the grid is made
of 8 by 11 whole meshes distributed symmetrically. In order to compare different
grid turbulence experiments, it is customary to work with the grid based Reynolds
number, defined as

Re
M
≡ MU0

ν
. (3.1)

The grid mesh is comparable to the turbulence injection scale, and hence, Re
M

is
generally two to three orders of magnitude larger than Reλ.

We designed a new turbulence grid which consists of a plain grid identical to
the RTG and tethered spheres attached to the grid nodes. Photographs of the ITG
are shown in figure 3.4.

Various spherical beads with diameter D∗ (= D/M), and relative density m∗

(= ρb/ρ), have been studied in order to find an effective combination. Table 3.1
summarizes all tested grids. Note that only the ITG is fully occupied, that is,
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Figure 3.4 (a) front and (b) side view of the new passive grid with tethered spheres
(ITG), indicating the main parameters.

Table 3.1 Test grids with tethered spheres. Diameters and lengths are normalized with
M = 16 mm and the densities are given relative to ρ = 998 kg/m3.

Bead Grid node
Grid material D∗ m∗ L∗1 L∗2 occupation, %
RTG — — — — — —
ITG wood 0.75 0.7 1.35 1.0 100
W12 wood 0.75 0.7 1.35 1.0 65
W8 wood 0.50 0.7 1.35 1.0 65
W6 wood 0.37 0.7 1.35 1.0 65
G6 glass 0.37 2.4 1.35 1.0 65

one tethered bead for each of the 9 by 12 nodes; whereas for the other test grids
the outermost rows and columns were vacant (i.e., 7 by 10 occupied nodes). This
was chosen to reduce manufacturing time, and the resulting flow properties were
satisfactory for the evaluation of the grid performance. The tethers are made of
flexible silicone tubes of lengths L∗1 (= L1/M) and L∗2 (= L2/M), which were the
same for all grids, and an outer diameter of 1mm. A staggered arrangement of
the beads (cf. figure 3.4 (b)) allows for larger oscillation amplitudes and a lower
blockage ratio.

To obtain a rough idea about the nature of the tethered bead motion, a small
test array of three by three W6 beads (D = 6mm) attached to a plain grid was
installed in a water flow with U0 = 1.0 m/s. The trajectory and the vertical power
spectral density function (psd) were obtained from a sequence of images taken with
a Photron high-speed camera at 500 frames per second. The recording time was two
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Figure 3.5 Bead motion in a steady flow with Re
M
= 1.6 × 104: (a) trajectory during a

period of 2 s and (b) power spectrum of the vertical velocity. Data for the central bead of
a 3 × 3 test array with D = 6 mm, L1 = L2 = 40 mm and M = 16 mm.

seconds. Figure 3.5 shows the trajectory and the spectrum of the central bead. The
maximum amplitude response is of about 0.9 bead diameters, which is in agreement
with Williamson and Govardhan 151 , and Govardhan and Williamson 57 . Despite
the chaotic trajectory, the spectrum emphasizes a single, relatively narrow peak,
located at roughly 15Hz, which is equivalent to a Strouhal number St (≡ fD/U0),
of 0.09. This is slightly less than half of the Strouhal number generally observed
for vortex shedding from a stationnary sphere.99, 151

3.3 Differential static pressure measurement

Three cross-sections of the facility are equipped with four symmetrically positioned
pressure taps each (cf. figure 3.2): the first is at the contraction inlet (not indicated
on the figure), the second is between the contraction and the test section, and the
third is at the TS outlet. Optionally, one could replace the low pressure intake
at the TS exit with a Pitot-static tube mounted on the centerline 11M ahead of
the grid. Two differential pressure transducers (Validyne DP15TL) measured the
pressure drop at the large contraction, which provides the mean bulk velocity U0,
and in the test volume, respectively.

Reordings for the pressure drop at the different grids were taken at a sampling
rate of 2 kHz and averaged over 50 seconds for each mean flow velocity U0 studied.
During the turbulence experiments in polymer solutions we also monitored the
evolution of the pressure drop across the test section. This data was sampled at a
rate of 1 kHz during one hour.

Pressure measurements with transducers that are not flush-mounted are some-
what problematic when the working fluid is viscoelastic.11 The pressure bias is
proportional to the first normal stress difference18, which was too weak to be mea-
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3.4 Hot-film anemometry

sured with the available rheometer. Without any further proof, it was assumed
that the error is negligible. However, the standard deviation of the pressure mea-
surement in water and polymer solutions could be as large as 9 % of the mean
pressure, which in all likelihood outweighs this effect.

3.4 Hot-film anemometry

Hot-film and hot-wire anemometry has been used extensively for the estimation of
turbulence statistics in air and water26, whereas in polymer solutions, anomalous
measurements have been reported in various papers, see for example Piau 103 , or
Smith et al. 123 . According to Friehe and Schwarz 51 , the main effect of polymers on
cylindrical hot-film anemometry (HFA) probes is a strongly modified heat trans-
fer; and Barenblatt et al. 9 actually used this abnormal behavior to investigate the
structure of aqueous polymer solutions. Nevertheless, Virk et al. 146 reported tur-
bulence energy spectra for dilute polymer solutions measured in a pipe flow, using
hot-film probes and an in situ calibration.

In order to avoid trouble due to possible misinterpretation of data, no measure-
ments were realized with the HFA in polymer solutions, and it was only used to
acquire reference data in water.

3.4.1 HFA data acquisition

Longitudinal one-dimensional turbulence spectra have been acquired with a hot-
film anemometer from TSI consisting of a single film probe (1210-20W) with a
sensitive length l = 1mm, and an analog analyzer (IFA 100). The film was oriented
normal to the flow, and the probe holder had an angle of 50○ to the flow direction.
All HFA spectra correspond to a location close to the center of the TS cross section,
30 mesh widths downstream of the grid.

The analog HFA signal was low-pass filtered with a cut-off frequency of 5 kHz
to avoid aliasing, well above the Kolmogorov frequency f

K
(≡ U0/2πη) which is of

the order of 2 kHz. A dedicated computer then digitized the filtered signal at a
sampling rate of 20 kHz during an interval of 400 s. This allowed to resolve both
ends of the turbulence spectrum. In order to increase the signal to noise ratio, the
signal was either high-pass filtered at 0.1Hz, or off-set by an appropriate voltage,
before amplified.

We used two different calibration procedures for the hot-film probe, both in situ:
for early experiments, we used a standard calibration method27 by fitting a function
of the form g2(Ū1) = a0+a1Ū

b
1 +a2Ū

2b
1 to measured voltages g(Ū1) for velocities Ū1

ranging from 0.05 to 2.0 m/s. The parameters a0 to a2 and b were found with a least-
squares method. Simultaneously to the voltage recording, we measured the mean
velocity close to the HFA probe with laser Doppler anemometry (LDA), which
is more accurate than using the mean velocity derived from the static pressure
difference at the contraction.
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Calibrating the probe in this manner was time consuming and had to be done for
at least every test series, due to probe contamination68 . Thus, for later test series,
we adopted a local calibration technique, where we applied a quadratic relation to
five calibration points taken in the vicinity of the actual measuring point. This
proved to be a valid approach, considering that the fluctuating velocities are very
small compared to the total velocity range necessary for a standard calibration.
Accordingly, no significant deviations from older data were observed. Moreover,
we repeated the five point calibration before and after each spectrum measurement,
in order to verify if the recording has suffered from an important calibration drift.
In such cases the measurement was repeated.

3.4.2 Velocity spectra and rms

A total of 8×106 samples in one large set was available for the turbulence spectrum
estimation. Spectra were calculated for data blocks of 2×105 samples, which yields
a frequency resolution of 0.1Hz. Block averaging and a 50% overlap of subsequent
blocks reduced the variance of the estimate. The 95% confidence intervals were
typically within 20% of the mean spectrum.

Despite the low-pass filtering during the recording, the resulting spectrum was
polluted by high frequency noise generated by the power supply of the pump,
as well as resonance peaks, supposedly emerging from a fluid-probe interaction.
Unfortunately, this was unavoidable. The affected frequency range lay in the far
dissipation region, above ≈ 2 kHz and was cut off by digital low-pass filtering the
recorded signal at 1.3 kHz. Hence, the spectrum does not completely resolve the
dissipation region.

By invoking Taylor’s hypothesis64 (i.e., κ1 = 2πf/Ū1), the obtained frequency
spectrum φ11(f) was then converted to the wavenumber spectrum φ11(κ1), from
which the two-point correlation function B11(r1) was derived.

Although hot-films and hot-wires are the preferred instruments for the estima-
tion of higher order statistics, they have a severe impact on the measured spec-
trum. In the present experiments, the sensitive length of the hot-film is several
times larger than the smallest scales of the flow, and consequently, these scales will
be significantly underestimated. One can consider the measured velocity field to be
the actual velocity field low-pass filtered by a rectangular window, whose spectral
counterpart is a cardinal sine function,

χ(κ2) = sin (κ2l/2)
κ2l/2 , (3.2)

where l is the length of the sensitive hot-film portion, and the wavenumber compo-
nent κ2 is aligned with the coordinate x2. Wyngaard 152 expressed the corrections
on the turbulence spectrum as the ratio between the original and the filtered model
spectrum, that is,

Q
φ
11(κ1) ≡ φm

11(κ1)
φ11(κ1) =

∬ ∞−∞Φ11(κ)χ2(κ2)dκ2 dκ3

∬ ∞−∞Φ11(κ)dκ2 dκ3

, (3.3)
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Figure 3.6 Eighth-order polynomial function (solid line) fitted to the spectrum estimate
from HFA measurements at x1/M = 30 behind the RTG (#). For clarity, only a reduced
number of spectral estimates are plotted. The broken line is the model spectrum (1.6)
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where the superscript ‘m’ denotes the measured quantity, and accordingly for the
squared rms

Q1 ≡ (u
′m
1

u′1
)2 = ∫ ∞0 φ11(κ1)Qφ

11(κ1)dκ1

∫ ∞0 φ11(κ1)dκ1

. (3.4)

To evaluate expressions (3.3) and (3.4) we used Pope’s model spectrum (1.6) to-
gether with the experimentally determined values for the turbulence parameters Λ,
η and ǫ. Such a model spectrum is shown for the RTG in figure 3.6 (dashed line),
together with the measured and already corrected turbulence spectrum (circles). It
should be stressed that this is not a fitted model, but rather a spectrum of a given
shape with the same length scales and energy content as the measured spectrum.
Numerical values for Λ, ǫ and η were generally derived from the streamwise energy
decay (cf. section 4.3). Example correction curves for the RTG and the ITG com-
puted via numerical integration are depicted in figure 3.7. They demonstrate that
the finite resolution of the hot-film also affects wavenumbers below κ1l = 1, because
for a given wavenumber κ∗1 , the spectrum depends on all wavenumbers κ1 ⩾ κ∗1 .134

The turbulence spectra of the tested grids turned out to be quite similar in
shape, or in other words, the quantities Λ, η and ǫ varied only weakly throughout
the tested grids. It was thus found appropriate to calculate spectrum corrections
only for the two major grids, the RTG and the ITG, which were sufficiently ‘dif-
ferent’ (cf. figure 4.10). These were then used as well for the others, selecting the
correction which seemed more convenient. Inasmuch as the model spectrum is at
best an approximation to the measured spectrum, this procedure seemed to be
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justified.
However, figure 3.7 also shows that the correction is more important for high

wavenumbers than for low. Therefore, the velocity rms is less affected than the
dissipation rate of energy, because of its dependence on the energy containing
turbulence scales. Practically speaking, the ratio between the uncorrected and the
corrected rms using the curves in figure 3.7 is 0.974 for the plain grid, and 0.978 for
the improved grid. These values are in contrast to the ratio between the measured
and the corrected turbulence energy dissipation rate, that is,

Qǫ
1 ≡ ǫm

ǫ
= 15ν ∫ ∞0 κ2

1φ11(κ1)Qφ
11(κ1)dκ1

15ν ∫ ∞0 κ2
1φ11(κ1)dκ1

, (3.5)

which yields an underestimation of ǫ as large as 25% in the case of the RTG, and
33% for the ITG.

Wyngaard’s method applies only to probes with a heat transfer uniform over
l, and might not be sufficient to correct the spectral attenuation for ‘real’ probes.
Accepting the premise that the small scales of turbulence are universal, and that
the model spectrum is a good approximation to this universality, it follows that
the measured spectrum in figure 3.6 is insufficiently corrected in the dissipation
region. To this end, Schedvin et al. 117 presented a different procedure, where
they rectified their measured spectra by iteratively adjusting its high wavenumber
end to a supposedly universal spectrum until its dissipation rate matched with
the dissipation rate of the streamwise decay. This routine has a slightly arbitrary
character, coming from the fact that in anisotropic turbulence the dissipation rate
calculated from the one-dimensional spectrum under isotropic assumptions is not

34



3.5 Particle image velocimetry

necessarily the same as the one derived from the streamwise decay.78, 96 Moreover,
George 54 stressed that every turbulence experiment has its own and, to some
extent, unique spectral shape. Based on these concerns and the lack of a known
ideal spectrum for the present setup, their correction method was not considered.
Neither was the correction for the sampling rate as suggested by Burattini et al. 29 ,
because the sampling rate in present experiments was an order of magnitude larger
than the Kolmogorov frequency.

Once the streamwise spectrum of each grid was corrected, it was used as a
benchmark for the estimates acquired with PIV and LDA. To reduce the number
of points in the HFA spectrum, an eighth-order polynomial function of the form

logφ11(z) = a0 + a1z + a2z
2 +⋯+ a8z

8, (3.6)

in which z = logκ1, was fitted to the spectrum.31, 75, 115, 117 The parameters a0 to
a8 were determined by means of a least squares regression. Figure 3.6 shows an
example spectrum with the corresponding polynomial fit. Furthermore, the fitted
function allows to calculate the derivatives, in order to obtain the lateral and the
three-dimensional spectrum via isotropy relations.

3.5 Particle image velocimetry

PIV is a widespread measurement technique used in many fluid flow configurations,
appreciated for its non-intrusive‡ character and its ability to capture whole velocity
fields. An excellent guidebook on theoretical and practical aspects of the method
was written by Raffel et al. 109 .

Applying PIV to turbulent flows is still a challenging endeavor, mainly be-
cause of its relatively coarse sampling in time and/or space and the low spatial
dynamic range, that is, the range between the largest and the smallest resolvable
structures. Various attempts have already been undertaken to measure turbu-
lence spectra62, 106 and structure functions38, 42. Some of them include large eddy
simulation (LES) models to resolve the small scale features73, 120, such as the tur-
bulence dissipation rate, others were able to measure it directly7.

3.5.1 PIV setup and calibration

In our experiments, we employed a PIV chain consisting of two 11Mpx (4008 by
2672 px) double-buffer cameras (TSI PowerView Plus) with 60mm f/2.8 Nikkor
lenses and a twin Nd:YAG laser (15mJ/pulse at 532 nm, Quantel Brilliant Twins
B) generating two distinct light pulses. The cameras were synchronized with the
laser using trigger signals from pulse generators (BNC 500A and 500B). The flow
was seeded with 9 g of polyamid tracer particles supplied by Dantec, with an average
diameter dt = 5µm and a density ρt = 1.03 g/cm3. To avoid clumping of the seeding

‡This holds for flow time scales much larger than the characteristic time scales of the seeding,
and depends on the seeding concentration.
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in the polymer solutions, it was added to the moderately agitated fluid shortly
before the measurements.

Their ability to follow the small scale structures of the flow is partly charac-
terized by the Stokes number Sk = ρtd

2
t /18ρη2 ≈ 10−4, and partly by the volume

fraction occupied by the particles, which was roughly mt/m = 2.5 × 10−6. Accord-
ing to Elghobashi 45 , the present configuration of seeding and turbulence is close
to the regime where the particles enhance the turbulence energy dissipation, but
it is assumed that this effect is still negligible.

Measurements were realized with either of two different setups: a stereoscopic
and a single camera arrangement. Both were observing the same vertical light
sheet produced with optics described in detail by Ursenbacher 139 . The single
camera was aligned normal to the light sheet and the TS window, resulting in
minimal aberrations. The latter were more important for the stereo PIV, where
the cameras had an angle of 30○ with the axis normal to the light sheet, despite the
Scheimpflug mounts108 and the water filled plexiglas prism matching the camera
axes.

A far more critical issue was the non-coincidence of the light sheets themselves:
differences in the Gaussian intensity profiles of the twin lasers, despite both beams
being colinear and traversing the same optics, produced 1mm thick sheets with
only a thin area of roughly 0.6mm common to both. This led to a significant loss
of particles on top of the particles disappearing because of out-of-plane motion
and sampling. After inspection of some PIV images taken in quiescent water, the
amount of particles present in the first image and replaced by new ones in the sec-
ond is estimated to 30 to 40%. As a consequence, the out-of-plane velocity could
not be measured accurately with the stereo setup and had to be discarded in the
present study. On the other hand, the uncertainties of the in-plane velocity compo-
nents were fairly low for both arrangements, typically ≈ 0.06px. Furthermore, the
time lapse between two subsequent pulses had to be short, which in turn limited
the dynamic range of the measured velocity. The mean flow produced a particle
displacement typically between 8 and 12 px during a time lapse of 200µs, whereas
the turbulence intensity is three percent of the mean flow, hence ≈ 0.3px. Neces-
sarily, the small scale motions of the flow were affected by measurement noise. The
section 3.5.3 will describe the method adopted to recover, at least partly, relevant
turbulence data.

The effective field of view varied between 6.3 by 4.2 cm and 10.1 by 6.7 cm,
depending on the alignment and the camera arrangement. Its size was mainly
restricted by the variation of the dissipation rate of turbulence energy across the
field of view, which was below 30%. The observed surface lay in the central x1-x2-
plane with its midpoint located 30 mesh widths away from the grid (cf. figure 3.2).
In water, a series of single camera measurements were acquired at five distinct
locations on the x1-axis, in order to verify the streamwise decay for the plain
(RTG) and the improved grid (ITG).

The calibration of the stereoscopic system was done by means of a 10 by 10 cm
black two-plane target with white dots on a Cartesian grid, placed into the test
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section filled with water, and aligned with the laser sheet. Each dot on a given
vertical or horizontal line is 8mm away from its neighbors on the same plane, and
4mm away from its neighbors on the second plane. The two levels are separated
by 1mm, which allows for a stereoscopic calibration with a linear relationship
between the world and the image x3-coordinate. Cubic relations were found to be
appropriate to describe the x1-x2-plane. A detailed description of the stereoscopic
reconstruction method available in the TSI commercial software package is given
in Soloff et al. 124 . Misalignments between the the laser sheet and the target were
eliminated with the self-calibration method suggested by Wieneke 150 .

To calibrate the single camera setup, the same target was used, and the physical
x1-x2-surface was related to the image plane with quadratic functions.

For each experiment, a total of 500 samples was acquired with an approximate
sampling rate of 0.25Hz, owing to the very large CCD arrays. Considering that the
integral time scale was of the order of 10ms, the recorded samples were statistically
independent.

3.5.2 PIV processing

Stereo PIV measurements were processed with a commercial software package (TSI
Insight 3G), and an in-house Fortran code was applied to single camera PIV im-
ages. The original code written by Ursenbacher 139 was updated with a multipass
algorithm, where a different interrogation window (IW) size can be specified for
each pass. Because of the large images, it was necessary to simplify the optimiza-
tion process for the deformation of the IW, which in turn reduced the accuracy.§

A main feature of Ursenbacher’s code is that it provides spatial derivatives directly
computed from the image data by means of IW deformation. This is a particularly
nice feature because it avoids additional errors due to a subsequent differentiation of
the velocity field. PIV software packages generally do not provide the velocity gra-
dients as a result, albeit they are computed during the deformation. Consequently,
for images processed with the commercial code the derivatives were computed from
the velocity field using the circulation method109.

All images were processed with a multipass algorithm starting with an IW size
of 128 by 128 px and finishing with either 32 by 32 px or 64 by 64 px. Large-scale
statistics and energy dissipation rates were obtained from the larger IWs because of
their larger signal-to-noise ratio, whereas spectra were computed for the small IWs.
A 50% IW overlap recovered otherwise lost image data, and increased the number
of vectors (but not the frequency response). IW deformation was available for both
programs, but the TSI algorithm is excessively time consuming, and was therefore
not used. After each pass, a validation procedure was applied to the vector field,
and spurious vectors were replaced via interpolation between valid neighbors. The
outlier detection was based on a global histogram filter, followed by a local median
filter. To the in-house code, we added a normalized version of the median filter,

§The original genetic algorithm was replaced by a less accurate, but much more efficient least
squares procedure.
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which is more adapted to velocity fields with strong gradients.149 The amount of
replaced vectors for either arrangements was generally less than one percent of the
total number of vectors.

In order to optimize the processing, the evolution of the mean and the rms error
on synthetic PIV images generated with a software developed by Ursenbacher 139

was assessed. These images had a size of 512 by 512 px with a background noise
matched to the real measurements. The particle density was matched to the real
PIV images, notably 10 per 32 by 32 px area, and their average diameter (defined
as the diameter where the intensity drops below 5% of its peak) was set to 4 px.
Figure 3.8 (a) shows an example of the imposed flow field, which consisted of Taylor
vortices defined by the stream function

ψ(y1, y2) = ψ0 sin
πy1

dT

sin
πy2

dT

, (3.7)

with a diameter dT of 64 px, overlaid with a uniform translation of 10.2 px/s. The
intensity ψ0 ranged from 1.6 to 48.0 px2/s, which is equivalent to maximum velocity
fluctuations between 0.07 and 2.26 px/s, or 0.7 and 22.2% of the mean velocity,
respectively. Both PIV codes processed all ten image pairs, with the processing
parameters chosen such that the amount of spurious vectors was minimal. In par-
ticular, these were a uniform window function and a Gaussian subpixel peak inter-
polation. The same settings were applied during the computation of the measured
turbulence fields.

A sample velocity field calculated with the in-house software is depicted in
figure 3.8 (b). All vortices are distinguishable in the vorticity field, but due to the
sampling filter of the PIV the calculated vorticity is biased towards zero.

Figure 3.9 shows the average bias and uncertainty on the horizontal displace-
ment and the vorticity as a function of increasing vorticity. As suspected, mean
and rms errors increase with increasing vorticity. The figure illustrates the supe-
rior performance of the in-house software, which includes IW deformation for large
velocity gradients.

To simulate the diverging light sheets, we created image pairs where a fraction
of the particles in the first image was replaced by roughly the same amount of new
particles randomly seeded in the second image. Fortunately, both PIV codes are
only weakly sensitive to extensive particle loss between subsequent images, as is
shown in figure 3.10. Of course, these results are for the in-plane velocity only.

3.5.3 Velocity spectra and rms

Longitudinal and lateral power spectra were computed along x1 by means of a
standard fast Fourier transform (FFT). According to the homogeneity hypothesis,
the spectra were averaged along x2. Each velocity map contained only two to three
statistically independent spectra, in other words, vector lines separated by more
than two integral length scales. In order to improve the convergence, the spectra
were further averaged over several velocity fields. In the case of water, the flow and

38



3.5 Particle image velocimetry
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Figure 3.8 Velocity and vorticity fields of (a) the imposed convected Taylor vortex
array with a diameter of 64 px and (b) the result of the in-house PIV processor. Only one
quarter, that is, 15 by 15 vectors of the actual field is shown.

fluid properties remained constant, and averages were calculated over all 500 sam-
ples, which is equivalent to a time interval of ≈ 34min. For polymer solutions, the
fluid properties changed during the experiment, due to destruction of the polymer
chains. Therefore, averages were taken over shorter periods of time. Practically
speaking, we assumed the fluid characteristics to be stable for two complete cycles
in the flow tunnel, that is ≈ 200 s, and hence averaged the turbulence statistics over
roughly 50 samples. Despite the low number of independent spectral estimates in
these smaller sets, the 95% confidence intervals still converged to within 20% of
the mean value. In general, the time averages were subtracted from the velocity
fields, prior to the calculation of rms and spectra.

Poelma et al. 106 recently investigated the influence of interpolated vectors on
the power spectrum calculated with FFT, and demonstrated that it is significantly
attenuated when the fraction of such vectors attains 20% or more. With generally
less than 1% spurious vectors for both IW sizes, this effect can be neglected in our
spectra.

Another, far more important, attenuation arises from the spatial and the tem-
poral sampling of the PIV technique, similar to the filtering effect of the HFA
described above. The filter function χ in (3.3) for an IW of width w1, height w2

and depth w3 can be expressed as81

χ(κ) = sin (κ1Ū1∆t/2)
κ1Ū1∆t/2

sin (κ1w1/2)
κ1w1/2

sin (κ2w2/2)
κ2w2/2

sin (κ3w3/2)
κ3w3/2 , (3.8)
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Figure 3.9 Mean (#,  ) and rms (△, ▲) error on (a) the horizontal displacement and (b)
the vorticity, for a Taylor vortex array with a diameter of 64 px and a uniform translation
of 10.2 px. Plotted against the maximum absolute vorticity: open symbols, in-house PIV
code; solid symbols, TSI software.
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Figure 3.10 Influence of lost particles on a convected vortex array: mean (#,  ) and rms
(△, ▲) error on (a) the horizontal displacement and (b) the vorticity: open symbols, in-
house PIV code; solid symbols, TSI software. Uniform translation = 10.2 px/s and maximum
absolute fluctuation = 0.47 px/s

where ∆t is the time lapse between two subsequent images. We also assume a
mean flow in x1-direction. Unlike HFA, PIV measurements contain a relatively
high noise level, often reaching into the interesting region of the spectrum, and
hence, cannot be neglected. It was shown48, that the PIV noise spectrum consists
of a white noise ξii modulated by the spectral function

χ∗(κ1) = sin (κ1w1/2)
κ1w1/2 . (3.9)
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The measured spectrum can, thus, be written as

φm
ii (κ1) = 2∬ ∞

−∞
Φii(κ)χ2(κ)dκ2 dκ3 + χ∗2(κ1) ξii. (3.10)

From this it follows that the true spectrum can be obtained from the measured
spectrum by

φii(κ1) = φm
ii (κ1) − χ∗2(κ1) ξii

Q
φ

ii(κ1) , (3.11)

where Q
φ

ii (κ1) is the one-dimensional spectrum correction (3.3).
The white noise level ξii was deduced directly from the measured spectra,

as proposed by Foucaut et al. 48 , provided that at the cut-off wavenumber κc

(≡ 2.8/w1) the noise is much larger than the filtered spectrum, that is, χ∗2(κc) ξii ≫
φii(κc)Qφ

ii(κc). At the wavenumber κc, the noise spectrum χ∗2(κc) ξii has de-
creased by one half, hence the actual level of ξii is twice the value φm

ii (κ1 = κc).
Integrating relation (3.10) over all κ1 from zero to infinity, one obtains the

squared rms velocity

(u′mi )2 = Qiu
′2
i + ∫ ∞

0
χ∗2(κ1) ξii dκ1, (3.12)

in which Qi was already defined by (3.4). The remaining integral represents the
contribution of the noise to the rms velocity. To obtain the true rms velocity,
equation (3.12) has to be solved for u′i.

In polymer solutions the shape of the spectrum changes, and ideally the model
function utilized for the correction should be adapted. Unfortunately, the wavenu-
mer range of the spectrum captured with piv was to narrow, to accurately estimate
the necessary length scales. As a consequence, all spectra measured in polymer so-
lutions were corrected with the same function as for water. By this, additional
uncertainties are avoided, although the correction is not optimal.

3.6 Laser Doppler anemometry

Velocity profiles, streamwise turbulence decay and turbulence spectra have been
realized by means of LDA. Like PIV, it is an non-intrusive technique, but with
the limitation of punctual measurements. In return, it has a much better tempo-
ral resolution, and modern systems usually do not require calibration. Detailed
insights into the principles and practical considerations can be found in Abbiss
et al. 1 , Durst et al. 43 and Albrecht et al. 3 , and more specifically on the usage in
turbulent flows, in Buchave et al. 28 .

3.6.1 LDA setup and recording details

The LDA employed in our experiment is a Dantec Fibre Flow system with two
velocity components aligned with x1 and x2. It was mounted on a traverse with
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three movable axes, which allowed to sweep through more than two thirds of the
test volume, and take measurements of the streamwise and the vertical transverse
velocity components. The probe had a fixed focal length of 400 mm and a beam
spacing of 38mm. In water, this resulted in a measuring volume with a diameter
and a length of roughly 118 µm and 3.3mm, respectively.¶ The particles were the
same as for PIV, and the seeding density was such that the average data rate ṅ at
U0 = 1.2 m/s reached a value between 600Hz for large scale statistics, and 2.5 kHz for
spectral measurements. Furthermore, the sampling was verified to follow a Poisson
distribution, which requires a homogeneous particle distribution.110, 125 In this
case, the measured particle rates correspond to an average particle spacing of 2.0
and 0.5mm, respectively. Because of the relatively low data rate, more statistically
independent samples were recorded and the large scale statistics converged with
less samples. Typically, 5×104 samples were acquired at each position to determine
the streamwise decay of the turbulence intensity, and 106 samples for the spectrum.

The data was acquired in burst-mode, which records a velocity signal when there
is only one particle at a time crossing the test volume. Hence, no volume averaging
of the velocity data occurs. Nonetheless, one can expect that for turbulence scales
with a size comparable to the measurement volume, or smaller, the statistics will be
overestimated, because at high data rates x3-gradients in the direction of the LDA
axis of larger structures are mistaken for smaller structures. Thus, the turbulence
spectrum at a given wavenumber is biased by the spectrum of all wavenumbers be-
low, or in other words, a fold forward occurs. As appropriate correction procedures
were not available, the spectrum was cut at the highest admissible wavenumber.
However, the estimator variance also increased at high wavenumbers, which makes
a full recovery very difficult.

Another, quite similar issue with LDA is the statistical bias towards higher
velocities.28 The usual correction implies a transit time weighting during the cal-
culation of the statistics. In our case, the differences between the corrected and
the biased mean and rms values were less than 3%, which was expected due to the
low turbulence levels. Therefore, it could safely be neglected.

Instead, we were concerned about the velocity bias that may occur when the
laser beams traverse media of different refractive indices.135 A discrepancy be-
tween the position of the beam waists and the location where the beams cross
creates gradients in the fringe pattern43, 61, and hence, produces a skewed velocity
distribution with the tail on the lower velocity side. However, no such systematic
skew has been detected.

3.6.2 Velocity spectra

Data gathered in burst-mode is irregularly sampled, and it is a challenging task
to determine the spectrum. A multitude of techniques has been proposed on this
very subject14, 23, 39, 142, 143. The one adopted here is based on the sample-and-

¶These values were estimated from the manufacturer specifications given for air
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hold reconstruction method proposed by Adrian and Yao 2 , and later improved by
Simon and Fitzpatrick 122 . The improvement consists of a proper deconvolution to
remove the step noise and the data rate filter effect, introduced by the equidistant
resampling.

Assuming a measured one-dimensional spectrum φm
ii (fj) with 1 ⩽ j ⩽ N discrete

frequency samples, computed from data resampled at a rate fs, one can express
the true spectrum as

φii(fj) = φm
ii (fj)
χ2(fj) − ξii, (3.13)

where

χ2(fj) = 1

2

ṅ

fs

1 − exp (−2ṅ/fs)
1 − 2cos (2πj/N) exp (−ṅ/fs) + exp (−2ṅ/fs) (3.14)

is the reconstruction low-pass filter, and

ξii =
1

N

⎧⎪⎪⎨⎪⎪⎩
N−1∑
j=0

φm
ii (fj)
χ2(fj) −

N−1∑
j=0

φm
ii (fj)

⎫⎪⎪⎬⎪⎪⎭ (3.15)

is the total white noise, including the measurement noise and the step noise of
the reconstruction. The noise level can, thus, be estimated from the measured
spectrum, and requires no a priori knowledge.

Synthetic LDA data, that were generated by resampling a measured HFA signal
according to a Poisson distribution with a mean data rate ṅ = 1 kHz, allowed to test
the above procedure. The true and the LDA spectra computed with the original
method and the corrected procedure are shown in figure 3.11. Up to ≈ 80Hz
both methods produce an adequate estimate. Above this frequency, the spectrum
found with the original method rolls off due to the data rate filter with the cut-off
frequency fc (≡ ṅ/2π), indicated by the arrow. Simon and Fitzpatrick’s122 method
yields a spectrum close to the true spectrum up to roughly 400 Hz, before the
variance becomes important.

In order to obtain adequate results with the above method, the resampling
frequency needs to be large. We found that ten times the average data rate was
sufficient. Spectra were then calculated for data blocks with a duration of 1.25
seconds, which is equivalent to roughly 100 integral time scales. Averaging over all
blocks allowed to reduce the variance. The same procedure was already described
for the HFA spectra. Once the estimate of the frequency spectrum φii(f) was
obtained, it was corrected using the relations (3.13) to (3.15), and finally converted
to a wavenumber spectrum φii(κ1).
3.7 Monitoring of temperature and viscosity

Assuming that the molecular weight of the polymers is the only quantity altering
during the experiments, its change will be reflected in the solution viscosity. The
breakdown of polymer chains leads to lower average molecular weights, and hence,
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Figure 3.11 LDA spectrum calculated with the improved sample-and-hold reconstruc-
tion method122 (△) compared to the uncorrected method2 (#) and the true spectrum
(solid line). The arrow indicates the cut-off frequency fc (≡ ṅ/2π) of the reconstruction
low-pass filter. For clarity, not all spectral samples are presented.

to a lower solution viscosity. In order to quantify this evolution during the experi-
ments, the following strategy was adopted: fluid samples were taken at 5, 10, 20,
40 and 60 minutes after the start of the experiment. These correspond to samples
having realized 3, 6, 12, 24 and 36 circuits in the tunnel, considering that one com-
plete cycle takes roughly 100 s at a mean velocity of 1.2 m/s in the working section.
An additional sample of non-degraded fluid taken shortly before the beginning of
the experiment served as reference.

The fluid temperature in the TS was monitored continuously by means of a
Dataforth K Thermocouple with its tip positioned in the boundary layer at the top
window. The rather large volume of the facility has (at least) the advantage, that
no temperature control was necessary. Experiments were run at room temperature,
that is, between 22 and 24 ○C, mainly depending on the operation time. During
a measurement run of one hour, the temperature typically changed by 0.2 ○C at
most, regardless of the working fluid.

3.8 Turbulence dissipation and length scales

The above mentioned measurement techniques provide different strategies to de-
termine turbulence properties, such as the dissipation rate or the turbulence length
and time scales. The single hot-film measurement allows to capture the whole tur-
bulence spectrum, but requires a correction for its finite resolution. So does the
PIV, but it enables the estimation of the longitudinal and the lateral spectrum
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without invoking the frozen turbulence hypothesis. The latter was again necessary
for spectra evaluations with LDA. Although it allowed to measure two veloc-
ity components, the low data rates limited the resolution of the velocity spectra.
Combining all together, one might be able to gain a relatively accurate picture of
the turbulence studied.

3.8.1 Energy dissipation rate

In grid turbulence experiments, there exist several approaches to measure the tur-
bulence energy dissipation rate ǫ defined in equation (1.9). For measurement tech-
niques where only one component is determined, such as the employed hot-film
probe, the terms in (1.9) including velocities and derivatives along the other axes
have to be replaced through isotropy relations12, 64, 134. Then the expression reads

ǫ = 15ν ⟨(∂u1

∂x1

)2⟩ ≈ 15ν
1

Ū2
1

⟨(du1

dt
)2⟩ . (3.16)

where the third term was found by virtue of the Taylor hypothesis.

Whole-field measurements with PIV, on the other hand, give access to spatial
derivatives of the velocity components. Consequently, more terms of the rate-
of-strain tensor are available to determine the dissipation rate. Terms that are
still missing are replaced according to assumptions about the studied turbulence,
which do not necessarily imply isotropy. This greatly improves the accuracy of
the estimate. The velocity derivatives were either computed from the velocity field
by means of finite differences in the case of the stereo setup, or emerged directly
from the IW deformation process when a single camera was employed. Figure 3.9
(b) gives an idea about the performance of both methods for flows with strong
vorticity.

Similar to the hot-film, the dissipation calculated from PIV maps is heavily
underestimated. In fact, for the present experiments the ratio between the filtered
and the ‘true’ dissipation rate was between 0.2 and 0.4, depending on the IW size.
Assuming isotropy, the true dissipation rate can be deduced from the spectrum
through97

ǫ = 15ν ∫ ∞

0
κ2

1φ11(κ1)dκ1 =
15

2
ν ∫ ∞

0
κ2

1φ22(κ1)dκ1. (3.17)

The measured dissipation rate is obtained from the measured longitudinal spectrum
(3.10)

ǫm = 15ν ∫ ∞

0
ζ2(κ1)φm

11(κ1)dκ1

= Qǫ
1ǫ + 15ν ∫ ∞

0
ζ2(κ1)χ∗2(κ1) ξ11 dκ1,

(3.18)

where

Qǫ
i =
∫ ∞0 ζ2(κ1)φii(κ1)Qφ

ii(κ1)dκ1

∫ ∞0 κ2
1φii(κ1)dκ1

, (3.19)
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is the ratio between the filtered and the true dissipation rate as proposed by Lavoie
et al. 81 . (Note that here is made a difference between the actually measured
quantity that includes noise, and the filtered quantity without noise. Considering
the HFA corrections (3.3) to (3.5) where no noise was taken into account, the
measured and the filtered quantities are identic.) Equation (3.18) can also be
redefined using the lateral spectrum according to (3.17). The function

ζ(κ1) = sin(κ1w1/2)
w1/2 (3.20)

represents a filter accounting for derivatives based on finite differences in the x1-
direction, and where w1 is the IW width.81 Equation (3.19) is equivalent to the
expression in (3.5) for very small w1. Analogously to the other corrections intro-
duced earlier for HFA and PIV, the correction factor Qǫ

i is determined by means
of the model spectrum. Finally, the true dissipation can be deduced from relation
(3.18).

Reaching this point, one should notice that this correction is valid only for
dissipation rates computed from derivatives in the x1-direction, that is, equation
(3.17). A more general form of the correction, for dissipation rates calculated from
mixed spatial derivatives, is based on the three-dimensional spectrum107

E(κ) = −κ d

dκ
[1
2
φ11(κ) + φ22(κ)] , (3.21)

where κ (≡
√
κiκi) is taken to be equal to κ1. The corresponding measured three-

dimensional spectrum reads

Em(κ) = −κ d

dκ
[1
2
φ11(κ)Qφ

11(κ) + φ22(κ)Qφ
22(κ)]
− κ d

dκ
χ∗2(κ) [1

2
ξ11 + ξ22] , (3.22)

which leads to the measured dissipation rate

ǫm = 2ν ∫ ∞

0
ζ2(κ)Em dκ. (3.23)

Substituting (3.22) into (3.23) one gets

ǫm = 2ν ∫ ∞

0
ζ2(κ)E(κ)QE(κ)dκ

+ 2ν ∫ ∞

0
ζ2(κ) {−κ d

dκ
χ∗2(κ) [1

2
ξ11 + ξ22]} dκ, (3.24)

where

QE(κ) = −κ
d
dκ
[1

2
φ11(κ)Qφ

11(κ) + φ22(κ)Qφ
22(κ)]

−κ d
dκ
[1
2
φ11(κ) + φ22(κ)] (3.25)
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is the three-dimensional spectrum correction. By rewriting the ratio between the
filtered and the true dissipation rate (3.5) as a function of the three-dimensional
spectrum,

Qǫ
E =
∫ ∞0 ζ2(κ)E(κ)QE(κ)dκ

∫ ∞0 κ2E(κ)dκ , (3.26)

one finally obtains the correction for the measured dissipation rate, that is,

ǫm = Qǫ
Eǫ + 2ν ∫ ∞

0
ζ2(κ) {−κ d

dκ
χ∗2(κ) [1

2
ξ11 + ξ22]} dκ, (3.27)

where the remaining integral is the noise contribution. With the last expression,
one can eventually correct the dissipation rate computed from PIV maps including
all available velocity derivatives, which was not possible with Lavoie et al.’s original
formulation, except for perfectly isotropic turbulence.

As has been mentioned above, corrections for polymer solutions were the same
as for water: once a correction was computed for a given grid, it was applied to
dissipation estimates in water and viscoelastic fluids.

The corrections for the dissipation rates derived from PIV measurements were
generally very large, typically 60% for IWs with a size of 32 by 32 px, and 80%
for 64 by 64 px. Values obtained from both IW sizes agreed generally to within
10%, which was considered good. Essential to this was the noise removal explained
above.

Alternatively, the dissipation rate in a grid turbulence experiment can also be
deduced from the macroscale energy decay along the streamwise direction. With
the assumption that no turbulence is produced beyond a certain distance from the
grid, the turbulence energy budget for this production-free region reads

dk

dt
= −ǫ ≈ Ū1

dk

dx1

, (3.28)

accepting the frozen turbulence hypothesis. A particular advantage of this ap-
proach is that it does not require a exceptionally high spatial or temporal resolu-
tion. It can, thus, be estimated from any of the presented measurement techniques,
provided that measurements at various streamwise locations are available.

An overview of other, more general methods to determine the dissipation rate,
such as large-eddy PIV or fitting structure functions, can be found in de Jong
et al. 38 .

3.8.2 Turbulence length scales

The smallest turbulence length scale in a Newtonian fluid is the Kolmogorov scale
(supposedly this holds as well for polymeric liquids of the type considered here17),
and is given by

η ≡ (ν3

ǫ
)1/4 . (3.29)
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It requires an accurate determination of the dissipation rate, and in particular of
the fluid viscosity.

The streamwise and the transverse integral length scales defined by

Λ1 ≡ ∫ ∞

0

B11(r1)
u′21

dr1 and Λ2 ≡ ∫ ∞

0

B22(r1)
u′22

dr1, (3.30)

were determined from the spatial correlation functions B11(r1) and B22(r1), cal-
culated from spectral estimates measured with LDA.

To obtain the Taylor microscale λ defined in (1.13), the generally adopted
procedure is to fit an osculating parabola to the correlation coefficient when r1
tends to zero. According to Batchelor 12 , the Taylor length scale can be acquired
from both correlation coefficients, B11 and B22, provided that the turbulence at
small r1 (large κ1) is isotropic:

B11(r1)
u′21

≈ 1 − r21
2λ2

and
B22(r1)
u′22

≈ 1 − r21
λ2
. (3.31)

Due to the finite resolution, the fitting quality depends on the number of correlation
estimates included in the least squares procedure. In order to overcome the lack of
robustness, the auxiliary functions

g(r1) = Bii(r1)
u′2i

= 1 + a0r
2
1 + a1r

3
1, (3.32a)

h(r1) = g(r1) − 1

r21
= a0 + a1r1 (3.32b)

were used, which adequately describe the correlation coefficient at small r1 (cf.
figure 3.12 (a)). Practically speaking, the parameters a0 and a1 were found by
fitting the straight line h(r1) with a least squares approach to the measured data
at small r1 (cf. figure 3.12 (b)). Thus, the Taylor microscale is given by

λ =
1√−2a0

or λ =
1√−a0

, (3.33)

depending on whether the longitudinal or the lateral correlation coefficient was
used, respectively. The maximum value of r1 was chosen such that (Bii/u′2i −
1)/r21 presented the longest straight line possible. As shwon in figure 3.12 (a),
g(r1) provides a reasonable approximation of the correlation coefficient, and the
corresponding parabola is indicated by the dashed line.

3.9 Summary of experimental runs

Table 3.2 summarizes the experiments that were run to gather the data presented
in the subsequent chapters. It specifies the x1/M -positions explored with each mea-
suring instrument, as well as the purpose of the measurement: either streamwise
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Figure 3.12 Taylor microscale parabola fit: (a) lateral correlation coefficient of the
measured data (#) with the fitted function g(r1) (solid line) and the resulting parabola
(broken line); (b) auxiliary function h(r1) (solid line) fitted to the measured values.

Table 3.2 Summary of experiments with investigated streamwise positions in units of
M . Pressure drop measured with a Pitot-static tube (P) or pressure taps (T). Number of
fluid samples taken to monitor the solution viscosity.

Decay³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ Spectra³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ Cp ν

Fluid Grid LDA PIV LDA PIV HFA method samp.
Water RTG 11–54 20–45 30 30 30 P&T —

ITG 11–54 20–45 30 30 30 P&T —
W12 11–42 — 30 — 30 P —
W8 11–42 — 30 — 30 P —
W6 11–42 — 30 — 30 P —
G6 11–42 — 30 — 30 P —

PEO 25 wppm ITG — — — 30 — T 6
PEO 50 wppm ITG — — — 30 — T 6
PEO 100 wppm ITG — — — 30 — T 6

energy decay, or velocity spectra and dissipation. Moreover, the table indicates
whether a Pitot-static tube or the pressure taps on the facility walls (cf. figure 3.2)
were used for the pressure recordings. Fluid samples were taken only during the
experiments in polymer solutions. Multiple experiments shown on a given row
have been run separately, and were repeated at least once, with the exception of
the 25wppm PEO solution.

In plain water, turbulence experiments were run at a pump rotation speed, such
that the mean flow velocity U0 was of 1.2 ± 0.03 m/s, whereas in polymer solutions,
the pump rotation was the same for all fluids. The corresponding grid mesh based
Reynolds number Re

M
was of roughly 2 × 104 for the experiments in water, and

1.9 × 104 in polymer solutions.
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Chapter 4

Performance of the new grid in water

4.1 Brief overview

In this chapter turbulence properties for the new grids are presented and discussed.
In particular, static pressure drop, spectrum and streamwise decay measurements
were realized in plain water for all tested grids, mainly using LDA and HFA. Ad-
ditionally, direct measurements of the energy dissipation rate were recorded with
PIV for the most promising grid, the ITG, and the reference grid (RTG). Fur-
thermore, dissipation rates and turbulence length scales obtained from the various
measurement techniques are compared.

4.2 Grid pressure drop

The static pressure drop, ∆p, at the different grids was measured between the TS
entry and the Pitot-static tube placed on the centerline 11 mesh widths ahead of
the grid. Additionally, the pressure difference over the entire TS with the RTG or
the ITG mounted was also recorded. A compilation of all readings is presented in
figure 4.1 by means of the pressure drop coefficient,

Cp ≡
2∆p

ρU2
0

, (4.1)

plotted against the grid Reynolds number Re
M

. The error bars indicate the stan-
dard deviation, whereas the ones for the recordings with the Pitot-static tube are
too small to be distinguished from the symbol.

The magnitudes of the pressure drops at the RTG lay between 0.45 and 0.55
for Reynolds numbers above 1.5 × 104, and are the same as the values reported by
Friehe and Schwarz 51 for a similar grid geometry. Analytical expressions for the
pressure drop coefficient of a plain grid as used by Batchelor and Townsend 13 ,

Cp =
d/M (2 − d/M)
(1 − d/M)4 ≈ 0.78, (4.2)

or Gad-el-Hak and Corrsin 52 ,

Cp =
2Md − d2

M2
≈ 0.34, (4.3)
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Figure 4.1 Static pressure drop coefficients of the turbulence grids measured with the
Pitot-static tube (open symbols) and the pressure taps (solid symbols): ◻, ∎, RTG; △,
G6 grid; ◊, W6 grid; ▽, W8 grid; ✩, W12 grid; #,  , ITG.

do either over- or underestimate the value determined for the present plain grid.

Since the low pressure intake of the pressure taps is located further downstream
than the Pitot tube, their pressure difference is larger; this is more distinct for the
RTG. With large bead diameters, the blockage ratio increases and, naturally, also
does the pressure drop. Williamson and Govardhan 151 conducted experiments on
a single tethered sphere in a uniform flow field, and reported that the drag of the
oscillating sphere could be as large as twice the value for a static sphere.

A marked increase is apparent between the W12 grid and the ITG, which differ
only by the number of grid nodes occupied with tethered beads. At a Reynolds
number of 2 × 104 the pressure drop for the ITG is about twice as large as the
corresponding value for the RTG.

4.3 Homogeneity and streamwise decay

The macroscale properties of the turbulence generated by the different grids were
characterized mainly with LDA. For comparison, PIV maps were acquired at five
different stations along the streamwise direction, once for the plain grid, and once
for the improved grid, ITG.

4.3.1 Transverse homogeneity

In the grid wake, turbulence production takes place and the flow is characterized by
strong mean shear. Further away from the grid, where the mean flow gradients van-
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Figure 4.2 Velocity profiles in the wakes of the RTG (a, b) and the W12 grid (c, d).
Horizontal (open symbols) and vertical (solid symbols) transverse profiles of (a, c) the
mean velocity and (b, d) the rms velocity at four different streamwise locations: #,  ,
x1/M = 6; ◻, ∎, x1/M = 10; ◊, ⧫, x1/M = 15; △, ▲, x1/M = 20.

ish, the turbulent motion becomes statistically homogeneous and is monotonically
decaying.

Figure 4.2 shows the streamwise velocity measured across two meshes, and
in planes parallel to the grid located at four different downstream positions. The
RTG, as well as the W12 grid, cease to have an influence on the mean flow statistics
at a distance greater than 15 mesh widths away from the grid. Closer to the
grid, one can identify the positions of the grid rods at x2/M = x3/M = −0.5 and
x2/M = x3/M = 0.5.

A larger view over the entire width and height of the TS reveals that compared
to the free-stream, the plain grid (cf. figure 4.3 (a) and 4.3 (b)) introduces a weak
but persistent mean shear into the flow. However, the corresponding turbulence
intensities are homogeneous to within 0.5%. A somewhat stronger mean shear is
generated by the W12 grid (cf. figure 4.3 (c)), in which the outermost rows and
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Figure 4.3 Turbulence homogeneity of the RTG (a, b) and the W12 grid (c, d). Hori-
zontal (◊, ⧫, △, ▲) and vertical (#,  , ◻, ∎) transverse profiles of (a, c) the mean velocity
and (b, d) the rms velocity at two different streamwise locations: #,  , ◊, ⧫, x1/M = 20;◻, ∎, △, ▲, x1/M = 43; solid symbols, x1-velocity component; open symbols, x2-velocity
component. Note the offset of Ū2/U0.

columns are not equipped with tethered beads. As a consequence, turbulence is
generated in these shear regions, which is reflected in higher turbulence intensities
(cf. figure 4.3 (d)). The mean and rms velocity profiles of the G6, W6 and W8
grids differ very little from the W12 grid, and are therefore not shown. Mainly,
they have a lower mean velocity gradient and a larger homogeneous region, yet,
not as large as the RTG.

Filling the vacant positions around the periphery of the W12 grid with teth-
ered beads increases the pressure drop (cf. circles and squares in figure 4.1) and
significantly reduces the mean shear as shown in figure 4.4. The regions where the
turbulence intensities vary by less than 0.5%, in a given cross-section, are consider-
ably extended. They notably grew from roughly one third to more than two thirds
in width and height; this is comparable to the plain grid.
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Figure 4.4 Turbulence homogeneity of the ITG. Horizontal (◊, ⧫, △, ▲) and vertical
(#,  , ◻, ∎) transverse profiles of (a) the mean velocity and (b) the rms velocity at two
different streamwise locations: #,  , ◊, ⧫, x1/M = 20; ◻, ∎, △, ▲, x1/M = 50; solid
symbols, x1-velocity component; open symbols, x2-velocity component. Note the offset of
Ū2/U0.

4.3.2 Streamwise energy decay

Based on the turbulence intensities presented above, a good approximation of ho-
mogeneity was found at 20 mesh widths from the grid, and beyond. In this region,
the turbulence kinetic energy, k = q2/2 = ⟨uiui⟩ /2, is generally presumed to decay
according to a power-law

q2

U2
0

= Adk (x1

M
)−ndk

, (4.4)

in which Adk and ndk are the decay coefficient and exponent, respectively. Here,
the virtual origin that was initially suggested by Comte-Bellot and Corrsin 33 was
omitted, because Mohamed and LaRue 96 pointed out that the fitting of the decay
exponent ndk is sensitive to its value. Recent measurements of decaying grid tur-
bulence by Antonia et al. 6 or Lavoie et al. 80 support the idea of the virtual origin
being located on the grid. Furthermore, fitting our data to a decay law including a
virtual origin did not produce an improvement. Worse, any value of the exponent
could be obtained with a suitable virtual origin, as was previously noted by Wang
and George 147 .

For each grid, the decay coefficient and exponent were determined by a least
squares regression to the data measured in the homogeneous region, that is, for
x1/M ⩾ 20. Because of the short distance available downstream of the grid, samples
had to be taken at small streamwise increments to obtain robust fits. To further
improve the fitting, we used multiple data sets for each grid, acquired in identical
flow conditions.

Figures 4.5 and 4.6 show the streamwise decays of the turbulence intensities u′21
and u′22 , as well as the decay of the total kinetic energy q2, behind the reference grid
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Figure 4.5 Streamwise turbulence decay of the RTG: ◻, ∎, q2; ◊, ⧫, u′21 ; #,  , u′22 ;
open symbols, LDA data; solid symbols, PIV data; solid line, fitted decay law (4.4) with
ndk = 1.25 and Adk = 140.0 × 10−3. The error bars indicate the standard deviation on
repeated LDA measurements. For clarity, only every fifth point is shown for the PIV.

and the improved grid, respectively. The horizontal transverse turbulence intensity
u′3 was not measured, and thus, the kinetic energy taken to be q2 = u′21 + 2u′22 . The
error bars correspond to the standard deviation calculated from measurements
along various lines parallel to the streamwise centerline. The overlapping data from
different measurement series also indicate a good repeatability of the experiments.
The fitted power-law is indicated by the solid line, and shows a good agreement
with the measured data for large distances from the grid. Closer to the grid, the
data points do not fall onto the line, which suggests that homogeneity has not been
reached.

The PIV data was corrected with the procedure described in in section 3.5. In
particular, five rms correction coefficients were calculated for the five streamwise
stages at which PIV fields were acquired, and the corrections for other streamwise
positions were obtained via a quadratic interpolation. The final data are depicted
in figure 4.5 and 4.6 together with the LDA measurements. Both agree very well.
The scatter of the PIV points, especially in the case of the improved grid, emerge
from the high noise level and the weak dynamic range.

Comparing the kinetic energy at a given streamwise position, one notices a fac-
tor of roughly 2.5 between the RTG and the ITG. But unfortunately, the difference
between the streamwise and the transverse turbulence intensities is also apparent
in the new grid type. Figure 4.7 summarizes the ratios between the longitudinal
and the lateral rms velocities for all tested grids. In all but two cases, namely the
W12 grid and the ITG, the anisotropy increases with the streamwise distance to
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Figure 4.6 Streamwise turbulence decay of the ITG: ◻, ∎, q2; ◊, ⧫, u′21 ; #,  , u′22 ;
open symbols, LDA data; solid symbols, PIV data; solid line, fitted decay law (4.4) with
n = 1.29 and A = 517.5× 10−3. The error bars indicate the standard deviation on repeated
LDA measurements. For clarity, only every fifth point is shown for the PIV.

the grid, but never exceeds a ratio of 1.2. The ITG keeps a constant level of ≈ 1.13,
suggesting that u′1 and u′2 decay at the same rate, whereas the W12 grid shows
an improvement of the isotropy. This could indicate a transfer of energy from the
longitudinal to the lateral components, or it might be due to the turbulence pro-
duction in the peripheral shear regions mentioned above, gaining influence on the
centerline turbulence further away from the grid. Overall, the measured differences
between u′1 and u′2 are comparable to existing grid turbulence experiments.

Batchelor and Townsend 13 suggested that the turbulence intensity is propor-
tional to the grid pressure drop, and hence, data that is rescaled with the pressure
coefficient Cp should collapse. In figure 4.8 the rescaled turbulence kinetic energies
of all tested grids are plotted. It appears that the scaling of the turbulence intensi-
ties with the inverse of Cp works reasonably well, although, the data have split into
two sets. The lower group of data corresponds to the plain grid and the grids with
small bead diameters, whereas the upper two curves belong to the grids with the
largest beads, the W12 grid and the ITG. Compared to the first group including
the RTG, these two grids produce turbulence with a larger energy content per unit
Cp. This in turn, suggests that the motion of the large beads, indeed, amplifies
the turbulence intensity compared to a standard plain grid with the same pressure
drop coefficient. Considering that the motion of the tethered beads is confined to
the transverse plane, one could expect that the lateral fluctuating velocities are en-
hanced to a greater extent than the longitudinal ones, resulting in an improvement
of the large scale isotropy. As figure 4.7 illustrates, this is not the case.
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Figure 4.7 Large scale isotropy levels: ◻, RTG; △, G6 grid; ◊, W6 grid; ▽, W8 grid;
✩, W12 grid; #, ITG.

Table 4.1 Streamwise turbulence energy decay and production parameters of (4.4) and
(4.6). The values for the decay law parameters Adk and ndk, as well as for the coefficients
of the mean flow gradient fitting function A′pd and A′′pd, are given with the 95 % confidence
intervals.

Re
M

Grid ×10−3 Cp Adk × 103 ndk A′pd A′′pd × 103

RTG 21.0 0.47 140.0±19.8 1.250±0.013 0.963±0.006 11.7±1.1
ITG 21.0 1.04 517.5±27.5 1.293±0.018 0.950±0.006 11.0±1.0
W12 20.5 0.72 511.0±29.5 1.360±0.020 0.876±0.005 10.6±0.9
W8 20.4 0.58 255.4±19.0 1.365±0.013 0.958±0.005 8.0±1.0
W6 20.5 0.52 219.9±38.7 1.350±0.026 0.927±0.005 12.8±0.9
G6 20.7 0.49 245.2±37.9 1.408±0.025 0.970±0.006 8.2±1.2

A summary of the decay parameters Adk and ndk found for the different grids
is provided in table 4.1, along with the grid Reynolds number and the correspond-
ing pressure drop coefficient. For Adk and ndk table 4.1 also specifies the 95%
confidence intervals. Literature values for ndk lie typically between 1.1 and 1.4
regardless of the grid geometry, whereas Adk depends on the experimental condi-
tions. Large compilations of power-laws fitted to the streamwise turbulence energy
decay can be found in Mohamed and LaRue 96 and Gad-el-Hak and Corrsin 52 .

In homogeneous turbulence the energy budget is written107

dk

dt
= P − ǫ, (4.5)

where P is the turbulence production term, which is zero in decaying turbulence.
Grid turbulence is at best an approximation to this, thus, production may still
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Figure 4.8 Streamwise decay of q2 rescaled with Cp values of table 4.1: ◻, RTG; △, G6
grid; ◊, W6 grid; ▽, W8 grid; ✩, W12 grid; #, ITG.

take place. Invoking symmetry about the x1-axis and satisfying continuity, the
turbulence energy production on the streamwise centerline is given by

P ≡ −⟨uiuj⟩ ∂ ⟨Uj⟩
∂xi

= (−u′21 + u′22 ) dŪ1

dx1

. (4.6)

The streamwise mean flow gradient was determined by differentiation of the func-
tion

Ū1 = A
′
pd +A′′pd (x1

M
)1/2 (4.7)

fitted to the measured mean velocities on the centerline. The latter increased with
the growth of the boundary layers on the walls, which was not accounted for in the
design of the TS. And with u′21 always being larger than u′22 , it is not surprising to
find negative values for the production (cf. figure 4.9). Consequently, turbulence
is not produced, but rather, damped by the acceleration of the flow. However,
this damping term is three orders of magnitude smaller than the viscous energy
dissipation rate estimated with the Taylor hypothesis

ǫ = P − U0

2

dq2

dx1

, (4.8)

and is therefore negligible.
Hence, the turbulence energy dissipation rate can be estimated from the stream-

wise decay by differentiating (4.4) to obtain

ǫdk =
AdkU

3
0ndk

2M
(x1

M
)−(ndk+1)

. (4.9)
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Figure 4.9 Streamwise turbulence energy production: ◻, RTG; △, G6 grid; ◊, W6 grid;
▽, W8 grid; ✩, W12 grid; #, ITG.

This, in turn, allows to calculate the Kolmogorov microscale

ηdk = ( ν3

ǫdk

)1/4 , (4.10)

and the Taylor microscale

λ2
dk = 5ν

q2

ǫdk

. (4.11)

Values for these length scales evaluated at x1/M = 30 are given in table 4.3. Al-
though ǫdk is quite sensitive to the decay parameters, one notices that ηdk varies
only moderately for the different grids, as it varies with ǫdk only to the power of
one fourth.

What is interesting to note in the data of table 4.1 is, that all grids with tethered
spheres significantly increase the decay coefficient, but at the same time rise the
decay rate. The largest decay coefficient was determined for the G6 grid, which
had small but heavy beads. The exception is the ITG, which injects more kinetic
energy to the turbulence, without a large increase of the exponent. Furthermore,
the turbulence decay rescaled with the pressure drop coefficient for the W12 grid,
which differs from the ITG only by the missing beads at the outermost rows and
columns, is almost identical to the values of the ITG. Hence, the missing beads do
not significantly affect the large scale statistics determined here.
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4.4 Velocity spectra

The turbulent velocity spectra have been measured close to the centerline and 30
mesh widths from the grid, in the homogeneous region. HFA and LDA measure-
ments were realized for all grids, and additionally, PIV velocity fields were recorded
for the RTG and the ITG.

4.4.1 Comparison of all tested grids

Figure 4.10 shows the u1- and u2-spectra in Kolmogorov variables acquired in
water for all tested grids. Note that the wavenumber at which energy is dissipated
into heat is defined64 as κ

K
≡ 1/η. The dissipation rate and the Kolmogorov

microscale were obtained from the streamwise decay, ǫ ≈ ǫdk and η ≈ ηdk. The data
collapses nicely at high wavenumbers, which suggests a universal behavior for all
grids. Further, the agreement is also very good between LDA and HFA spectra,
which were available for the streamwise velocity only. Due to a large variance
at high wavenumbers and a limited sample size, the LDA spectra cover only a
small portion of the entire turbulence spectrum. In particular, it was not possible
to resolve the viscous dissipation region, that is, the wavenumber range above
κ1η = 0.1. Nonetheless, the large scale features and the range that seems to have a
power-law scaling were captured. The upper two curves in both, the longitudinal
and the lateral spectra correspond to the two grids with the large tethered beads.
They reflect the increased kinetic energy compared to the reference grid. The other
grids, the G6, W6 and W8 grid, differ very little from the RTG.

To study the power-law scaling region in a turbulence spectrum it is custom-

ary98, 115 to work with compensated spectra of the form φiiǫ
−2/3κ

5/3
1 . Figure 4.11

shows these spectra for the tested grids. The data are presented together with
eighth-order log-log polynomial fits of φii(κ1). To appreciate the quality of the fit,
the measured data of the ITG is also plotted, although sparsely. If the spectra in-
deed present a Kolmogorov scaling region, this portion of the spectrum should fall
on the horizontal dashed lines, which mark the Kolmogorov constants α1 and α2.
None of the tested grids reaches the constant values, which means that none of these

spectra scale according to the Kolmogorov spectrum defined as φii = αiǫ
2/3κ

−5/3
1 .

There is little difference with the G6, W6 and the W8 grid with respect to
the RTG (they correspond to ③ in figure 4.11). Only the W12 grid (②) and the
ITG (①) possess a small portion that has a constant slope, extending over roughly
one decade (indicated by the arrows). This indicates a power-law region, but with
a slope different from −5/3. One notices also that these constant slopes are not
the same for the u1- and the u2-spectrum, and therefore, the energy transfer from
the large to the small scales is different. A possible reason for this anisotropy
could be an energy transfer from longitudinal to lateral scales caused by the initial
anisotropy of the turbulence.

Figure 4.12 shows the ratio between the u1- and u2-spectrum measured with
LDA. In turbulence with a sufficiently high Reλ to develop an inertial subrange,
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Figure 4.10 Longitudinal and lateral velocity spectra measured with LDA (open sym-
bols) and HFA (solid symbols) at x1/M = 30: ◻, ∎, RTG; △, ▲, G6 grid; ◊, ⧫, W6
grid; ▽, ▼, W8 grid; ✩, ★, W12 grid; #,  , ITG. For clarity, not all spectral samples
obtained with LDA are shown, and the HFA points were evaluated with an eighth-order
polynomial function. The solid lines give the Kolmogorov scaling: (a) α1(κ1η)−5/3 and (b)
α2(κ1η)−5/3.
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Figure 4.11 Spectra compensated for the scaling region: (a) longitudinal and (b) lateral
spectra measured with LDA at x1/M = 30. For clarity, eighth-order log-log polynomial fits
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Figure 4.12 Ratios of the transverse to longitudinal spectra measured with LDA at
x1/M = 30: ◻, ∎, RTG; △, ▲, G6 grid; ◊, ⧫, W6 grid; ▽, ▼, W8 grid; ✩, ★, W12
grid; #,  , ITG For clarity, not all spectral samples are shown. The dashed lines indicate
α2/α1 = 4/3.

the small scales are assumed to be isotropic (i.e., locally isotropic), and the ratio
φ22/φ11 becomes constant in this scaling region. Thus, φ22/φ11 allows to identify
the portion of the spectrum with locally isotropic turbulence. Moreover, at low
wavenumbers the ratio is 1/2 for turbulence satisfying large scale isotropy (cf.
(1.3)). Figure 4.12 demonstrates the problem with low Reynolds number grid
turbulence: the ratio at low wavenumbers is less than one half, and there exists no
horizontal plateau at intermediate wavenumbers. Furthermore, although there is
a scaling region identified for the ITG in figure 4.11, its unequal slopes imply no
constant ratio φ22/φ11. The broken lines in figure 4.12 indicate where the plateau
for a −5/3 power-law scaling would be. In the dissipation range, the ratio increases
caused by the exponential decay of the two spectra, and the estimator variance
becomes important.

Examining the effect of the bead weight, figures 4.10 and 4.12 reveal that the
G6 grid introduces no noticeable variation into the spectrum compared to the plain
grid.

Although none of the tested grids exactly satisfy local isotropy and the Kol-
mogorov scaling, the ITG is a better approximation to these conditions. It exhibits
a small, but yet noteworthy constant scaling region, and the figure 4.12 suggests
that the small scales are not far from an isotropic state.
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Figure 4.13 Velocity probability density functions of (a) the RTG and (b) the ITG: ①,
u1; ②, u2; #, HFA; ◻, LDA; solid lines, Gaussian distributions. The u2-pdf was shifted
upwards by 0.1 on the ordinate.

Table 4.2 Skewness, Sui
, and kurtosis, Kui

, of velocity distributions for the RTG and
the ITG.

Grid Su1
Su2

Ku1
Ku2

RTG 0.035 0.006 2.990 2.990
ITG 0.017 -0.038 2.910 3.002

4.4.2 Improved turbulence grid

Because only the ITG consists of a significant improvement over the reference
grid, it is the only one considered for a further characterization of its turbulence
properties.

Probability distributions of uncorrected velocity fluctuations are plotted in fig-
ure 4.13 for these two grids, together with the corresponding Gaussian curves. For
clarity, the u2-probability density function (pdf) was shifted by 0.1 on the ordinate.

The skewness Sui
(≡ ⟨u3

i ⟩ / ⟨u2
i ⟩3/2) and kurtosis Kui

(≡ ⟨u4
i ⟩ / ⟨u2

i ⟩2) of the u1- and
u2-pdfs for both grids are given in table 4.2. Generally, they are close to the values
for a Gaussian distribution, that is, zero skewness and a kurtosis of three. They are
also comparable to the values determined by Mohamed and LaRue 96 or Makita 90 .
Mohamed and LaRue 96 further highlights that the skewness Su1

deviates from zero
in non-isotropic turbulence. At a similar distance from the grid, they find u1-
skewness values between -0.01 and 0.04 for various grid Reynolds numbers. Based
on the values of the skewness Su1

, the turbulence generated by the improved grid
is closer to isotropy than the reference grid.

Figures 4.14 and 4.15 show the spectra of the RTG and the ITG, respectively,
as estimated from data acquired with all three measurement techniques. They re-
plot data from figure 4.10, but this time with an absolute scaling. The collapse of
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the data at high wavenumbers is reasonable, considering that the PIV and LDA
measurements contained high noise levels. Moreover, these measurements were re-
alized several months apart, and their agreement emphasizes the good repeatability
of the experiment.

Only the lateral PIV spectra showed a systematic underestimation of the large
scale energy content, compared to the LDA. This could come from the limited
field of view, which does not allow to capture the largest scales of the flow147.
Practically speaking, the smallest resolvable wavenumber with PIV is more than
an order of magnitude larger than that with LDA.

To determine the extent of local isotropy, the measured spectrum φ22 was com-
pared to the φ22 computed from the measured φ11, using the isotropic relation107

φ22(κ1) = 1

2
[φ11(κ1) − κ1

∂φ11(κ1)
∂κ1

] , (4.12)

where the differential was obtained from the polynomial fits to the HFA data. These
spectra are indicated by the solid lines in figures 4.14 and 4.15. In the former
figure, the turbulence was found to be closely locally isotropic for wavenumbers
larger than 200 1/m, and 500 1/m respectively for the latter. Taking into account
that the smallest length scales, η, of these two grids are very similar (cf. table 4.3),
the ITG marginally reduces the wavenumber range over which the small scales are
isotropic. On the other hand, the two figures show that the isotropy at large scales
is slightly improved, that is, the difference between the measured φ22 and the φ22

from equation (4.12) is diminished.
The insets in both figures show the κ1φii spectra, where the energy was nor-

malized with the squared rms velocity. One notices that the tethered beads shift
the energy peak towards lower wavenumbers, and also that they are narrower. The
relative energy contained in the lateral spectrum peak is about 25% for both grids,
whereas in the case of the streamwise spectrum the ITG shows a higher peak.
Based on the observation described in section 3.2 that the Strouhal number of the
tethered spheres is roughly 0.1, one can deduce a shedding frequency of 10Hz, or
equivalently, a shedding wavenumber of 52 1/m for the ITG. This coincides with the
wavenumber of the longitudinal energy peak, but does not reach into the scaling
region, which is indicated by the arrows in figure 4.15.

Accepting that the integral length scales coincide with the peaks of κ1φii, the
ITG generates turbulence with larger integral scales, which is indicated by the
peaks shifted towards lower wavenumbers. In fact, the contrary is found for the
streamwise integral scale when it is computed from the correlation function (cf.
table 4.3). Hence, the peak of κ1φ11 in figure 4.15 is the effect of the tethered
sphere, and affected the wavenumbers just below the streamwise integral scale.

4.5 Correlation functions and length scales

Figure 4.16 shows the streamwise and the transverse correlation functions, respec-
tively, computed from the corresponding LDA spectra of figure 4.10. Only a re-
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Figure 4.14 Longitudinal (open symbols) and lateral (solid symbols) velocity spectra
of the RTG, measured at x1/M = 30: ◻, HFA; △, ▲, LDA; #,  , PIV. The solid line
represents φ22 calculated from φ11 (◻) using isotropic relation. The inset shows κ1φ11/u2

1

and κ1φ22/u2
2 measured with LDA and PIV. For clarity, not all spectral samples obtained

with LDA are shown.
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Figure 4.15 Longitudinal (open symbols) and lateral (solid symbols) velocity spectra
of the ITG, measured at x1/M = 30: ◻, HFA; △, ▲, LDA; #,  , PIV. The solid line
represents φ22 calculated from φ11 (◻) using isotropic relation. The inset shows κ1φ11/u2
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2 measured with LDA and PIV. For clarity, not all spectral samples obtained

with LDA are shown. The arrows mark the start and the end of the scaling region.
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4.5 Correlation functions and length scales

Table 4.3 Summary of turbulence length scales and dissipation rates at x1/M = 30

obtained from streamwise decay (dk), correlation coefficients (B11 and B22), HFA spectra
(iso), and direct measurement with PIV under the assumption of axisymmetry (axi). The
turbulence Reynolds number Reλ was deduced from decay properties.

ǫdk ǫiso ǫaxi ηdk λdk λB
11

λB
22

Λ1 Λ2

Grid Reλ
cm2

/s3 cm2

/s3 cm2

/s3 mm mm mm mm mm mm
RTG 68 44.8 29.9 50.8 0.11 1.8 2.2 2.0 15.4 4.6
ITG 123 148.2 88.5 145.4 0.09 1.8 2.7 2.7 13.3 6.2
W12 148 122.5 57.7 — 0.09 1.6 2.5 2.3 12.8 5.6
W8 84 60.4 32.0 — 0.11 1.7 2.6 2.4 10.1 3.8
W6 77 55.5 34.2 — 0.11 1.7 2.5 2.4 9.6 4.2
G6 66 53.0 31.8 — 0.11 1.6 2.1 2.0 11.2 3.8

duced number of points are plotted to avoid cluttering the graph, and the r1-axis
is logarithmic. The LDA spectra showed a considerable level of noise in the last
decade. Therefore, this region was cut off before the spectra were converted, and
the obtained results agreed well with correlation functions computed from HFA
measurements. Of course, only the longitudinal components were compared. Pro-
cessing the lateral component in the exact same way, it was assumed that the
results are of equal quality. All correlation functions obtained with this procedure
were consistent. To avoid redundancy, the HFA data are not presented here. The
dynamic range of PIV measurements, on the other hand, was too poor to obtain
adequate correlation functions. In particular, the small scales were not resolved
sufficiently to detect the parabolic region, and for an estimation of the integral scale
the field of view was not large enough. Typically, the largest detectable structure
should be at least an order of magnitude greater than the integral scale147.

Little differences exist between the correlations of the various grids, and only
the W12 grid and the ITG are distinguishable from the rest. All grids exhibit a
small portion where the correlation of u2 is negative134, although the one of the
RTG is very small.

These correlation functions allowed to calculate the longitudinal and lateral in-
tegral scales, Λ1 and Λ2, as well as the Taylor microscale λ tabulated in table 4.3.
Practically speaking, the integral length scales defined in (3.30) were found by in-
tegration of the correlation coefficients up to the first zero-crossing point, with the
exception of the coefficients of the W8 grid. The latter presented two large oscilla-
tions that were also taken into account for the integral. The method described in
section 3.8 was applied to acquire estimates of the Taylor length scale from both
correlation functions, B11 and B22. In figure 4.16, the parabolae to the correlation
coefficients of the RTG (cf. solid lines) are shown as an example. The Taylor length
scale is then given by the intersection of the parabolae with the r1-axis.

A summary of all acquired values for Λ1, Λ2 and λ is given in table 4.3, together
with estimates for λ and ǫ from other measurements, such as the streamwise decay
and the direct measurement of the dissipation rate. Looking at the integral scales,
it appears that the plain grid has the largest Λ1, and also the smallest ratio between
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Figure 4.16 (a) longitudinal and (b) lateral correlation coefficient measured with LDA
at x1/M = 30: ◻, RTG; △, G6 grid; ◊, W6 grid; ▽, W8 grid; ✩, W12 grid; #, ITG. For
clarity, only a reduced number of points is shown. The solid lines are an example of the
fitted parabola, given for the RTG.
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4.6 Direct measurement of the dissipation rate

Λ2 and Λ1. The grids equipped with tethered spheres on the other hand, produce
smaller streamwise integral scales and their Λ2 to Λ1 ratio is closer to the isotropic
value of one half107. The grids producing turbulence closest to large-scale isotropy
are notably the W12 grid and the ITG.

The Taylor microscales estimated from the correlation functions are indicated
with the according subscript. They are, in contrast, all very close to 2.3 millimeters,
regardless of the grid and the correlation function used for the estimation. This
supports the earlier finding that the small scales of the turbulence are isotropic
and universal for all tested grids. However, the indirect approach gave somewhat
different results: the length scales λdk are consistently smaller than the ones found
with the correlation functions. This suggests that the dissipation rate of energy is
either underestimated in the spectrum measurements, or it is overestimated by the
streamwise decay. To this end, PIV measurements were realized on five different
streamwise locations, with the goal to measure the turbulence intensity and the
dissipation rate; the latter directly, without referring to equation (4.9) (cf. the
following section).

Table 4.3 also specifies the turbulence Reynolds numbers based on the Taylor
scale determined from the decay. The value of Reλ (≡ λu′1/ν ≈ λ√q2/3/ν) increases
with the diameter of the tethered spheres, and for the ITG it is almost twice as
large as for the plain grid.

4.6 Direct measurement of the dissipation rate

The dissipation rate of turbulence energy defined by equation (1.9) was directly de-
termined from the PIV velocity fields using the expression for a flow field symmetric
about the x1-axis,

ǫaxi = ν [2⟨(∂u1

∂x1

)2⟩ + 3⟨(∂u2

∂x2

)2⟩ + 3⟨(∂u1

∂x2

)2⟩ + 3⟨(∂u2

∂x1

)2⟩ + 4 ⟨∂u2

∂x1

∂u1

∂x2

⟩] ,
(4.13)

where the terms involving the velocity component or the derivative in the x3-
direction were substituted by equivalent terms in the x2-direction. Only the mixed
term involving the x2- and x3-direction had to be replaced with an isotropic ex-
pression107.

In case of truly isotropic turbulence, equation (1.9) can be reduced to134

ǫiso = 15ν ⟨(∂u1

∂x1

)2⟩ . (4.14)

This, in turn, is a rough approximation of the true dissipation rate, as the stream-
wise velocity fluctuations are more intense than the two lateral velocities.

Figure 4.17 shows the results for the RTG and the ITG, applying these equa-
tions to the same PIV maps as in figures 4.5 and 4.6. Again, the noise and filter-
ing corrections described in section 3.5 were calculated for the five measurement
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locations, and then interpolated with a quadratic least squares fit for positions
in-between.

Regarding the dissipation rate derived from the streamwise turbulence energy
decay (4.9), which are indicated by the solid lines, the equations (4.13) and (4.14)
produce reasonably good results. In particular, the results for the ITG agree well
with the decay data. The discrepancy between ǫaxi and ǫdk for the plain grid, could
result from the inferior signal to noise ratio. Nonetheless, the dissipation rate ǫaxi

is still within the 95% confidence intervals of ǫdk.
As expected, the isotropic approach overestimates the dissipation rate for both

grids, although, the difference between the results for equations (4.13) and (4.14)
is small for the ITG. Moreover, at locations close to the grid, the grid wake effects
are stronger and, hence, the inequality between the velocity component statistics
is larger. This is reflected by the increasing gap between ǫaxi and ǫiso for decreasing
x1/M .

The values of ǫaxi at x1/M = 30 for the two grids, the RTG and the ITG, are
given in table 4.3. No PIV measurements have been realized for the other grids.

As stated by Monin and Yaglom 97 , the expression (4.14) is equivalent to the
integral of the dissipation spectrum, that is,

ǫiso = 15ν ∫ ∞

0
κ2

1φ11(κ1)dκ1. (4.15)

This equation requires a good resolution of the small scales in order to capture
the entire dissipation range. Practically speaking, only the HFA has a sufficiently
high sampling frequency, and consequently, the spacial derivative of (4.14) is ap-
proximated by a temporal derivative using Taylor’s frozen turbulence hypothesis.
Equation (4.15) was evaluated for HFA spectra acquired for all tested grids, and
the obtained values of ǫiso are presented in table 4.3.

As mentioned earlier, the distance downstream of the turbulence grid available
to explore the streamwise decay was very limited. Generally in such experiments,
decay laws are fitted to turbulence intensities measured at distances much larger
than fifty meshes from the grid. Kurian and Fransson 78 even states that the power-
law region begins at x1/M > 60. Nevertheless, it was assumed in section 4.3 that
there exists a power-law decay for x1/M > 20. To verify this assumption in the
case of the two major grids, the ratio between the squared Taylor length scale,
λ2/M2, and the streamwise distance x1/M is plotted in figure 4.18. By means of
the relations (4.4) and (4.9), the Taylor microscale can be expressed as

λ2
= 5ν

q2

ǫ
=

10νx1

U0ndk

. (4.16)

It follows that the ratio
λ2M

M2x1

=
10ν

UnM
(4.17)

is constant for a power-law decay.6, 147 In the corresponding plot, figure 4.18, the
measured dissipation rates ǫaxi from figure 4.17 were used together with the an-
alytical expression (4.4) for q2. The scatter in the resulting plot comes from the
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Figure 4.17 Turbulence energy dissipation rate of (a) the RTG and (b) ITG, measured
directly with PIV: #, axisymmetric assumption (4.13); ◊, isotropic assumption (4.14).
The solid and broken lines represent the dissipation rate derived from the turbulence
energy decay (4.9) with its 95 % confidence intervals.
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Figure 4.18 Streamwise evolution of the ratio λ2/Mx1 for the RTG (◻) and the ITG
(#). Only a fraction of the available points are presented. The solid lines correspond to
the ratio in case of a power-law decay, that is, 10ν/UnM .

random PIV measurement error, but the data still support the power-law fitted
to the measured streamwise decay of energy, albeit both data sets drift away from
the constant value. The gap between the ideal and the measured ratio for the
RTG probably arises from an overestimation of the dissipation rate. However, An-
tonia et al. 6 illustrates that with an appropriate virtual origin in the power-law,
the present ratio can be altered. Thus, they use this particular plot to determine
a suitable value for the virtual origin. However, the virtual origin can also be
regarded as a trick to force a power-law.

4.7 Concluding remarks

The new passive grids equipped with tethered beads are capable of enhancing
the turbulence properties; notably the grid with the largest beads increased the
Reynolds number Reλ by a factor of roughly two, as indicated by table 4.3. This
is primarily due to the increase in turbulence intensity, as the Taylor length scales
remained virtually unchanged for all tested grids.

The most promising grid is the ITG, which generates turbulence homogeneous
over planes normal to the streamwise direction, and decays in the streamwise di-
rection according to a power-law. Furthermore, this grid improves the large-scale
isotropy, albeit a small difference between streamwise and transverse turbulence
intensities persists. It also verifies local isotropy, which was the case for all tested
grids.

There are at least two possible mechanisms involved in the turbulence produc-

74



4.7 Concluding remarks

tion behind the new grids: the increased pressure drop that could also be achieved
by increasing solidity of the a plain grid, and the vortex shedding from the spheres.
The results above suggest that the shedding from the beads appreciably contributes
to the turbulence production only in the case of the large beads. For all the other
grids with tethered spheres, this mechanism was overshadowed by the ‘conven-
tional’ turbulence generation.

Only two geometrical grid parameters have been explored, that is, the diameter
and the relative mass per unit volume of the tethered spheres. The results showed
that light and large beads are favorable for introducing large velocity fluctuations
into the flow. Grids with smaller spheres, heavy or light, had only moderate effects.
Other parameters, such as the tether length or the shape of the beads, have not
been studied. This leaves many open questions. For example, the tether length
was chosen for convenience, but it may have an effect on the oscillating motion. So
does the relative bead weight57, 151, which was not stressed enough in the present
study. For example, it was observed that the turbulence intensity was lower for the
heavier than for the lighter beads of the same size. This may result from dampened
oscillation amplitudes57, 151.

Finally, the ITG offers a simple solution for high Reynolds number turbulence,
but which is still one order of magnitude below the Reynolds numbers achieved with
other turbulence enhancing grids, such as active grids90, 98 or fractal grids66, 119.
Yet, there is still some room for improvement, possibly with even larger beads of
shapes other than spherical.
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Chapter 5

Grid turbulence in polymer solutions

5.1 Brief overview

This chapter covers the experiments on the effects of fluid elasticity on grid gener-
ated turbulence. In particular, it will treat the velocity spectra and the dissipation
rate of energy obtained from PIV measurements with respect to a recent theoret-
ical model49. Based on the latter and the present experimental results, a slightly
modified model spectrum is depicted in the final section of this chapter, including
a summary of the most important findings. Furthermore, a new simplistic cascade
model is introduced to describe the evolution in time of quantities influenced by
degrading polymers.

5.2 Experimental conditions

All experiments were realized using the ITG with the same boundary conditions
as in the experiments reported in the preceding chapter. Strictly speaking, these
were a constant pump rotation speed generating a mean flow velocity U0 of ap-
proximately 1.20 m/s, as well as nearly the same temperature for all fluids.

Three different polymer concentrations were investigated: 25, 50 and 100wppm,
which were determined from the respective weights of polymers added to the wa-
ter in the flow facility.∗ The uncertainty which arises from the error made on
the calculation of the tunnel volume is roughly 4% of the nominal concentration.
Another estimate of the concentration was obtained by means of equation (2.25a)
from a fluid sample taken shortly before the beginning of the experiment. These
values are twenty percent below the apparent concentrations (cf. table 5.1). This
is most probably due to the addition of 0.04wt% NaCl, which was added to the
parent solution to reduce the preparation time. Therefore, the salt had a much
larger effect on the polymer coils than initially expected (cf. section 2.4). In this
case, the low viscosity is consistent with the idea that salt reduces the polymer coil
diameter, resulting from a weaker polymer-solvent interaction.153 Consequently,
elastic effects might be affected as well and should be interpreted with care.

∗Although the used polymer concentrations seem relatively small, 100 wppm corresponds to
1.5 × 10

19 polymers per cubic meter. This yields roughly 10
6 polymers in a volume of the size of

a viscous eddy, that is, the Kolmogorov scale (≈ O(0.1)mm).
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Table 5.1 Experimental conditions including estimates of the concentration cv deduced
from the solution viscosity ν. The values of U0 and Re

M
were evaluated at the end of each

experiment.

c cv mpeo ν νs τ
R

T U0 Re
M

Symbol wppm wppm g mm2

/s mm2

/s ms ○C m/s ×10−3

◊ 25 24 180 0.99 0.95 3.4 22.2 1.18 19.1
# 50 42 360 1.04 0.98 5.4 21.1 1.21 18.6
◻ 100 82 720 1.07 0.95 8.8 22.2 1.21 18.1

Table 5.1 summarizes the experimental conditions, including the fluid viscos-
ity at the actual temperature of the solution during the experiment, the mass of
polymers mpeo added to the tunnel, and the two different estimates of the polymer
concentration c and cv. It also specifies the polymer relaxation time τ

R
computed

with the empirical relation (2.30). Based on the Kolmogorov time scale t
K

(≡
√
ν/ǫ)

which was of the order of 8ms in pure water, the Weissenberg numbers Wi (= τ
R
/t

K
)

were below one for all concentrations. In view of the viscoelastic effects reported
in the next sections, this seems odd. Berti et al. 17 , for example, found a critical
Weissenberg number larger than one which has to be exceeded in order to observe
viscoelastic effects. However, one should note that the polymer relaxation time
was not measured directly, and thus, could be much larger than expected because
of polymer networks present in the solution.

Another indicator if the elastic degrees of freedom will be excited or not in the
turbulent flow is the Reynolds number

Recs = (Λ2

ντ
)2/3 (5.1)

associated with the coil-stretch transition.8 The latter corresponds to the instant
when the turbulence-polymer configuration is such that the polymers start to affect
the smallest turbulence scales. For Re

M
below Recs the polymers are passive and

the flow properties are essentially Newtonian. Taking the integral scale Λ ∼ M
yields Recs ∼ O(2×103), hence all flow configurations should exhibit elastic effects.

All velocity measurements were carried out with the stereo PIV setup, with
the field of view located in the central x1-x2-plane 30 mesh widths downstream of
the grid. The Reynolds number was of roughly 1.9 × 104, based on the mean flow
velocity U0 given in table 5.1, which was determined at the end of each experiment.
From the results in the former chapter, one expects a turbulence intensity in pure
water of the order of 5% at this location.

Repetitions of the experiments with solutions of 50 and 100 wppm PEO pro-
duced virtually the same results and are not reported here.
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5.3 Degradation of the polymer solutions

Fluid and flow properties were monitored by means of viscosity measurements and
the continuous recording of the pressure drop. This was necessary because Polyox
WSR 301 is sensitive to mechanical breakdown.140 The degrading polymers allowed
to study their effects on turbulence under changing fluid elasticity, which diminishes
with decreasing molecular weight. Unfortunately, the exact elastic characteristics
of the evolving solutions could not be established, and rough estimates of the
Weissenberg number were calculated from turbulence properties instead. The latter
also appears to be an appropriate indicator for the polymer stability.

5.3.1 Fluid viscosity

The viscosities of the three experiments were determined with the capillary vis-
cometer and are shown in figure 5.1 (a) relative to the solvent viscosity. The
viscosity ratios were determined for the actual temperature during the experiment.
For all three fluids the viscosity underwent only moderate changes, typically of
less than one percent. Only the thickest solution shows a decreasing viscosity that
could result from polymer degradation. For the other two solutions, the increasing
viscosity suggests that the solution was still heterogeneous, and that the samples
taken contained a fraction of polymers below average.

Polymer chains of high molecular weights have been observed to break close to
the midpoint, when they were subject to a turbulent flow.65 Thus, the molecular
weight is reduced by one half, whereas the concentration stays the same. Con-
sidering the relationships (2.19) and (2.25a), the expected drop in viscosity when
the molecular weight is halved from 4 × 106 to 2 × 106 g/mol is 1.2, 2.5 and 5% for
the 25, 50 and 100wppm solutions, respectively. Comparing these differences with
the measured viscosities indicates that there was no such severe polymer chain
degradation.

5.3.2 Static pressure drop

Figure 5.1 (b) shows the pressure drop coefficient across the working section av-
eraged over time periods of 200 seconds, which corresponds to two circuits in the
tunnel. It was normalized with the Cp value determined for the ITG in water (cf.
previous chapter). To calculate the Cp, the change of the streamwise mean velocity
U0 ≈ Ū1 was extrapolated from exponential fits to the mean velocity Ū1 measured
with PIV. These fits are shown in figure 5.1 (c) together with the measured veloc-
ities averaged over the field-of-view. The number of PIV measurements per time
step was very low, generally a random number between 40 and 60, and explains
the random scatter.

The resulting pressure coefficients demonstrate drag-reducing88, 145 behavior
for the two lower concentrated solutions. The thickest solution, on the other hand,
produces a higher pressure drop coefficient. This could be explained by elastic
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Figure 5.1 Evolution of (a) the fluid viscosity, (b) the pressure drop coefficient during
the turbulence experiments and (c) the average streamwise velocity deduced from PIV.
See table 5.1 for the values of U0 and the symbols. Solid symbols mark the time span of
the PIV measurements. The pressure drop coefficient of the pure solvent Cp,s = 1.04, and
the solid lines in (c) are exponential extrapolations.

effects that are insufficient to compensate for the increase in viscosity. Friehe and
Schwarz 51 realized a similar experiment with another polymer type, and noted
pressure drop coefficients depending on the polymer concentration, in agreement
with the present measurements. Unlike the viscosity, the Cp shows a clear evo-
lution of the flow characteristics. With the pump rotation speed and the fluid
temperature kept constant, it follows that the change can be attributed to a trans-
formation of the fluid properties. The closest conclusion is polymer degradation.
Another possible cause is the breakup of polymer networks that have formed dur-
ing the preparation. Both explanations result in reduced elastic properties which
are directly dependent on the polymer length or network size.

However, the fluid properties changed quite rapidly, especially for the solution
with the lowest polymer concentration. Assuming that this change happens slow
enough to gather at least a small set of measurements with approximately con-
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stant conditions, a statistical approach is nonetheless possible. For the velocity
measurements, it was assumed that the fluid and the flow properties remained un-
changed over intervals of 200 seconds, allowing for averaged velocity spectra and
dissipation rates. Each period corresponds to two passes in the working section.
The solid symbols in figures 5.1 (a) and 5.1 (b) mark the span over which PIV
recordings were acquired, that is, approximately half an hour which is equivalent
to approximately 20 passes in the working section.

5.3.3 Fluid elasticity

The change in elasticity due to the polymer breakup manifests itself as the approach
of the polymer spectrum to the Newtonian spectrum, as can be seen in figures 5.3
to 5.5. The difference between the solvent and the polymer spectrum has almost
vanished for the most degraded solutions, except for the thickest polymer solution
where the energy flux at the small scales is still affected at the last time interval.
This suggests that in the 100 wppm case there was still a significant fraction of
intact polymer chains present in the fluid.

The curves in figures 5.6 (a) and 5.6 (b) show the Lumley scale, which will be
defined further below, and the Weissenberg number as a function of passes through
the test section. It reflects the integrity of the polymers and is therefore expected to
follow an exponential law32, assuming that polymer chains break up at a rate that
is constant over time. Polymer degradation experiments in a double-gap rheometer
cell20 have shown that a simple exponential function is only adequate for the early
decay region, as it is the case for the present data.

Stretched exponential functions are sometimes129 used to take into account
the changing decay rate, but like the polymer conformation model by Brostow 24 ,
it lacks the flexibility to adequately describe the present data. Therefore, a new
(over)simplified cascade model has been developed, based on the following hy-
potheses: (i) the initial molecular weight is monodisperse; (ii) the polymers break
at the midpoint; and (iii) the exponential decay rate depends only on the molecu-
lar weight. Furthermore, the model considers only two polymer lengths, the initial
length and half the initial length. More degrees of freedom can be added as one sees
fit. The temporal evolution of the weight concentrations c0 and c1 of the original
polymer and its first breakdown product can be expressed as

dc0

dθ
= −a0c0, (5.2a)

dc1

dθ
= a0c0 − a1c1. (5.2b)

With the initial conditions c0(0) = 1 and c1(0) = 0 one obtains the solutions

c0(θ) = exp(−a0θ), (5.3a)

c1(θ) = a0

a0 − a1

[exp(−a1θ) − exp(−a0θ)] , (5.3b)
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Table 5.2 Parameters of the cascade model (5.4) fitted to the data of figure 5.6.

c a0 a1 A0 A1

Symbol wppm 1/lap 1/lap 1/wppm 1/wppm

◊ 25 1/4 1/60 21.0 5.7
# 50 1/4 1/60 22.0 6.0
◻ 100 1/4 1/60 32.0 8.7

where a0 and a1 are decay rates. The Lumley scale, or the Weissenberg number,
of figure 5.6 can then be approximated by the function

g(θ) = A0c0(θ) +A1c1(θ), (5.4)

where A0 and A1 quantify the influence of the molecular weights on g(θ). Further-
more, considering the ideas that higher molecular weights contribute more to the
fluid elasticity and that shorter polymer molecules are less likely to break under
high shear, it seems reasonable to assume that A1 ⩽ A0, as well as a1 ⩽ a0. The
manually fitted curves are indicated by solid lines in figure 5.6 and the correspond-
ing values for the model parameters are given in table 5.2.

The cascade model describes the increase of the Lumley scale fairly well with
the same decay rates a0 and a1 for all three solutions. For the model fit of the

Weissenberg number the proportionality Wi ∝ ℓ
2/3
p from equations (5.7) and (5.8)

was used.

5.4 Turbulence spectra in polymer solutions

In order to focus on the small-scale properties of the turbulence, the field of view
was chosen relatively narrow which, in turn, limited the resolution of the large
scales. The integral scales, for example, were not captured and nor were the viscous
scales. The latter was due to the limited dynamic range of the PIV cameras.
Nevertheless, the spectra covered roughly two decades of an intermediate spectrum
range where the elastic effects could be observed.

5.4.1 Kinetic energy and large-scale isotropy

Turbulence intensities were calculated for each time step as averaged values over the
ensemble and the field of view, which was less than five grid meshes wide. Figure
5.2 (a) shows that the presence of polymers in the fluid considerably increased the
turbulence kinetic energy k (= [u′21 + 2u′22 ]/2) per unit Cp compared to the solvent.
(The figure shows the same quantity—up to a factor two, because k = q2/2—as in
figure 4.8.) This is in contrast to other turbulence studies4, 93, for which it was
observed that the polymers reduce the turbulence intensities. Although, Barenblatt
et al. 9 or Friehe and Schwarz 51 also reported increased intensity levels in polymer
solutions over those in the pure solvent. Furthermore, De Angelis et al. 37 ran
numerical experiments on homogeneous turbulence in dilute polymer solutions and
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Figure 5.2 Evolution of (a) the turbulence kinetic energy and (b) the ratio between
streamwise and transverse rms velocity. Solvent properties: U0 = 1.2 m/s, Cp = 1.04 and
k = 46 cm2

/s
2. See table 5.1 for symbols and U0.

found that, depending on the Weissenberg number, the flow may be purely damped
or may show a reduction of the small scales accompanied by increased large-scale
intensities. However, the increased kinetic energy could also be attributed to a
modified turbulence production at the grid, as will be shown further below.

The evolution in time of the kinetic energy for all three solutions, which is slowly
decreasing after reaching a maximum, is a somewhat peculiar behavior because it
does not correlate well with the integrity loss of the polymers. Moreover, it also
suggests that the turbulence production at the grid varies with the properties of
the solution. Shear rates in the boundary layers of the grid rods are of the order
O(104) 1/s, which is sufficiently large to stretch the polymer coils, as the inverse
of the relaxation time is of the order O(103) 1/s. Friehe and Schwarz 51 described
the same production phenomenon in their grid turbulence experiments in polymer
solutions.

In figure 5.2 (b) are shown the ratios between the streamwise and transverse rms
velocities. Besides the large scatter, the data display relatively large anisotropies
for undegraded solutions, as well as a tendency towards the same value as in pure
water, that is, 1.1. Increased large-scale anisotropy due to drag-reducing agents
was also reported elsewhere141.

5.4.2 Effects of fluid elasticity on velocity spectra

Velocity spectra for the streamwise and transverse components were also computed
from the same velocity fields, and are shown in figure 5.3 to 5.5. Each spectrum is
compared to the reference spectrum in water, and was rendered independent of the
dissipation rate by using Kolmogorov variables. Strictly speaking, the dissipation

rate ǫ0 of the inertial cascade was determined by fitting αiǫ
2/3
0 κ

−5/3
1 (indicated in
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all three figures) simultaneously to φ11 and φ22 for each time interval. With these
values and the solution viscosities from table 5.1, the Newtonian viscous scale η
was calculated for each solution and each time interval. Generally, it differed by
less than 10% from the Kolmogorov scale in the solvent.

The resulting collapse of the spectra at the low wavenumber end is fairly good,
though not perfect. Convergence of the spectra was limited since there were only
about ninety statistically independent spectra in a given set. To avoid cluttering
the figures, not all time steps are shown. Notably, the spectra for the strongly
degraded solution are omitted, except for the last.

Overall, in presence of polymers the spectra show significant effects in the
small-scale region, which diminish at each time interval. In particular, the modi-
fied spectra do not show the exponential behavior in the region where the solvent
spectrum has the exponential behavior associated with the dissipation range. In-
stead, the turbulence energy cascade appears to transition to a power-law. Solid
lines proportional to κ−31 in each graph indicate this new spectral region that will
be called the elastic subrange, which is a short form of the earlier49 introduced
name ‘elastic waves range’. Similar observations can be made in the spectra pub-
lished by McComb et al. 93 , Warholic et al. 148 or Berti et al. 17 , where the polymer
spectra decay as well with a slope close to −3, albeit the authors do not mention it
explicitly. As will become clear further below, the proportionality to κ−31 is not a
coincidence, and derives from the equilibrium between elastic and kinetic stresses.

However, by fitting this κ−31 curve to the longitudinal and the lateral spectrum
the characteristic length scale at which the spectrum rolls off is identified as the
crossover of the inertial and the elastic power-law slope (cf. dashed lines in fig-
ure 5.3 ff.). This scale is generally17, 37, 101 attributed the name Lumley scale,
after Lumley 87, 88 who first introduced the concept of a characteristic scale below
which the polymers affect the turbulence. For a three-dimensional spectrum it is
approximated by17

ℓp ∼ √ǫ0τ3
p . (5.5)

It is related to the streamwise and the transverse one-dimensional Lumley scale,
via

ℓp = (11
27
)3/4 ℓp,1 = (11

18
)3/4 ℓp,2. (5.6)

The prefactors account for the directional dependence of the one-dimensional spec-
tra (i.e., φ11(κ1) and φ22(κ1)), and were found with a reasoning similar to the
Kolmogorov coefficients α, α1 and α2. Equation (5.5) is simply a special case of
the general relation ℓ ∼ √ǫt3 for the length scale ℓ of an eddy with the time scale
t in a turbulent flow with an energy flux ǫ.

Estimates of ℓp were gathered for all time internals and are plotted against
the number of circuits in the tunnel in figure 5.6 (a). Ideally, open and close
symbols of the same shape should overlap in order to verify the relation (5.6), and
the (systematic) difference is probably an artifact from the rigid fitting process
of the two power-laws. Nonetheless, the data of all three tested solutions follow
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Figure 5.3 Rescaled (a) streamwise and (b) transverse velocity spectra in the 25 wppm
PEO solution after: #, 1; ◻, 3; ◊, 5; ▽, 7; △, 9; and ✩, 19 circuits in the tunnel. The
reference spectra ( ) correspond to the Newtonian solvent, and the solid lines indicates
the slopes of −3 and −5/3 fitted to the first data set. The one-dimensional Lumley scales
are given by the dashed lines.
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Figure 5.4 Rescaled (a) streamwise and (b) transverse velocity spectra in the 50 wppm
PEO solution after: #, 1; ◻, 3; ◊, 5; ▽, 7; △, 9; and ✩, 19 circuits in the tunnel. The
reference spectra ( ) correspond to the Newtonian solvent, and the solid lines indicates
the slopes of −3 and −5/3 fitted to the first data set. The one-dimensional Lumley scales
are given by the dashed lines.
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Figure 5.5 Rescaled (a) streamwise and (b) transverse velocity spectra in the 100 wppm
PEO solution after: #, 1; ◻, 3; ◊, 5; ▽, 7; △, 9; and ✩, 19 circuits in the tunnel. The
reference spectra ( ) correspond to the Newtonian solvent, and the solid lines indicates
the slopes of −3 and −5/3 fitted to the first data set. The one-dimensional Lumley scales
are given by the dashed lines.
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Figure 5.6 Evolution of (a) the Lumley scale and (b) the Weissenberg number: symbols
according to table 5.1; open symbols, streamwise data (i.e., ℓp = (11/27)3/4ℓp,1); solid
symbols, transverse data (i.e., ℓp = (11/18)3/4ℓp,2). The solid lines indicate the fitted
cascade model (5.4) with the parameters as specified in table 5.2.

a similar curve with a vertical offset that depends on the polymer concentration.
Hence, the magnitude of the elastic effect grows with the increasing concentration,
consistently with the polymer relaxation time predicted by the Maxwell model or
Rozhkov et al.’s relation (cf. section 2.4.4).

Concerning the value of τp obtained from these estimates, it is curious to note
that it is at least one order of magnitude larger than any of the estimates of the
polymer relaxation time τ as shown in figure 2.9. The reasons for this are not clear
but it is noted that the ratio between ℓp and the fully stretched polymer length
(≈ 13.3µm) is about two orders of magnitude, that is, comparable to the ratio τp/τ .

The evolution of the Lumley scale in figure 5.6 (a) is an indirect measure of
the evolution of the fluid elasticity. A more straightforward way to express the
importance of the elastic effects is to calculate the Weissenberg number from

Wi = (ηp

η
)2 , (5.7)

where

ηp = ⎛⎝
νℓ

2/3
p

ǫ
1/3
0

⎞
⎠

1/2

(5.8)

is the new viscous scale at the end of the elastic subrange when viscous stresses
become significant. The corresponding graph is given in figure 5.6 (b), where
the fitted decay model (5.4) is indicated by the solid lines (cf. table 5.2 for the
parameters). These values for the Weissenberg number seem plausible, and are in
contrast to the estimates based on the relaxation times reported in table 5.1 which
were much smaller (viz., Wi ≲ 1). This also means that the ‘effective’ relaxation
time is much larger than predicted, as has been discussed in section 2.4.4.
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Between the Lumley scale ℓp and the viscous dissipation scale ηp energy is al-
ready dissipated before reaching the viscous subregion. This is achieved through
internal friction, as well as through viscous drag, of the recoiling polymer molecules
stretched by the turbulent flow.37, 101 The described dissipation process is some-
times8, 17, 49 referred to as elastic dissipation, which is rather a confusing term,
and therefore will be called polymer dissipation instead. Because these dissipation
mechanisms are scale-independent, a power-like spectrum can be expected.8, 49

Furthermore, this subrange is self regulating, that is to say, a temporary increase
of the local shear rate entails a more vigorous polymer stretching which, in turn,
produces a stronger back reaction that reduces the shear rate. The same reasoning
holds vice versa. As a result, the local Weissenberg number is in the vicinity of one
over the entire elastic subrange. This involves a constant local shear rate

s(κ) ∼ ǫ1/3(κ)κ2/3 = 1

τ
, (5.9)

where

ǫ(κ) = ǫ0 (ℓpκ)−2 (5.10)

is the reduced energy flux at the wavenumbers 1/ℓp < κ < 1/ηp (cf. figure 5.9).
Therefore, the spectrum of the elastic subrange,

E(κ) = αǫ2/30 ℓ5/3p (ℓpκ)−3 , (5.11)

is governed by a −3-decay. In contrast, Fouxon and Lebedev 49 claim that in this
subrange the energy has to decrease faster than −3, in order to ensure a finite value
for the integral of the derivative spectrum, that is,

⟨( ∂ui

∂x1

)2⟩ = ∫ ∞

0
κ2

1φii(κ1)dκ1. (5.12)

For the −3-decay the convergence of the integral is assured by the exponential decay
in the viscous subregion, similar to a Newtonian spectrum.

The elastic cascade proceeds until the viscous stresses overcome inertial and
elastic stresses and reaches ηp (= √ντ), with a residual energy dissipation rate

ǫv = ν

τ2
(5.13)

which can be significantly smaller than the initial ǫ0. Early grid turbulence experi-
ments in polymer solutions by Friehe and Schwarz 51 exhibited reduced dissipation
rates in presence of polymers. van Doorn et al. 141 have shown with a towed grid
experiment that in dilute polymer solutions ǫv is indeed smaller than ǫ0, and Liber-
zon et al. 83 have found evidence of energy dissipation by polymers in a ‘washing
machine’-like facility†.

†Turbulence is generated by sets of rotating disks at two opposing walls of a small tank.
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However, considering the reduction of the energy flux specified by relation
(5.10), the viscous dissipation ǫv can become vanishingly small in favor of the
polymer dissipation, denoted ǫp. Hence, ℓp can be associated to a new dissipation
scale which replaces the Kolmogorov scale.49

A summary, as well as additional information about the employed model spec-
trum can be found in the last section of this chapter.

5.4.3 Viscous and polymer dissipation rate

Taking into account the polymer dissipation, the total energy budget for turbulence
without production in an elastic fluid reads89

d

dt
(k + ep) = −ǫ0 = −ǫv − ǫp, (5.14)

where k is the turbulence kinetic energy and ep is the potential elastic energy of
the polymers. The total energy is dissipated at rates of ǫv and ǫp.

Recall that ǫv ≡ 2ν ⟨sijsij⟩, which was measured with PIV. Estimates of the
turbulence dissipation rate ǫv were again obtained using equation (4.13), followed
by averaging over each time step and the field of view. Figure 5.7 (a) shows the
viscous dissipation rates relative to the total dissipation rates (determined from
the spectrum fits explained in the previous subsection) as a function of passes
through the test section. The presence of polymers lowered the viscous dissipation
rate by remarkable 40 to 70% in the three tested solutions. These values agree
well with the findings by Virk et al. 146 who measured a reduction of 40% in a
turbulent pipe flow. Due to polymer degradation, the fraction of energy dissipated
by viscosity gradually increases until the polymer coils are too small to contribute
to the dissipation, which is also reflected in the velocity spectra presented above.
Furthermore, the higher concentrated solution exhibit elastic effects during a longer
period, which seems reasonable as there are more polymer molecules.

Figure 5.7 (b) shows the same data as a function of the Weissenberg number
found via the Lumley scale. All three sets are consistent with the idea that a
stronger elasticity leads to larger dissipative effects.

Berti et al. 17 highlights two different scenarios of viscoelastic effects on the tur-
bulence spectrum: the first one is essentially the model already described, where
the viscous dissipation may be negligible and the scale ℓp becomes the new dissi-
pation scale.

The second scenario limits the energy dissipation by polymer relaxation to a
fixed fraction of the total dissipation, so that there is always viscous dissipation
present.15 In this alternative, the inertial cascade continues with a reduced energy
flux after a relatively brief intermediate elastic subrange. The maximum fraction of
energy dissipated in this subrange is supposedly limited and becomes independent
of the Weissenberg number.17 Although, the present data in figure 5.7 (b) is limited
to low Wi , it does not support the model initially suggested by Benzi et al. 15 .

The experimental conditions for all three solutions were comparable, but the
resulting turbulence, namely ǫ0 and k, varied with the solution concentration and
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Figure 5.7 Ratio between viscous and total dissipation rate: (a) evolution in time; (b)
dependence on Wi . The dissipation rate ǫ0 was estimated from the spectra. See table 5.1
for symbols.
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Figure 5.8 Evolution of the Taylor microscale with respect to λs = 1.7 mm: (a) evolution
in time; (b) dependence on Wi . See table 5.1 for symbols.

the degree of polymer degradation. A popular quantity to compare different tur-
bulent flows is the Taylor microscale λ (= √10νk/ǫ0) shown for all solutions in
figure 5.8.

Although fairly lower than the value for pure water, the Taylor scales are very
little affected by the changing fluid elasticity, which is in accord to other laboratory
findings82. This conclusion is also supported by plotting the data against the
Weissenberg number (cf. figure 5.8 (b)). The systematic offset suggests that the
turbulence generation was not identical in the polymer solutions and the pure
solvent after all, or it could be an artifact of the data processing. A 10 to 20%
error seems reasonable regarding the fitting procedures on data with a relatively

91



Grid turbulence in polymer solutions

narrow spectral band.

It has to be noted that the Taylor scale was calculated with the total dissipation
rate ǫ0, and that the use of the viscous dissipation rate ǫv instead would mainly
reflect the evolution of the latter.

5.5 Summary and concluding remarks

5.5.1 The model spectrum

The model spectrum established in the preceding sections was adapted from Fouxon
and Lebedev 49 . It consists of three major regions (cf. figure 5.9): (I) a Newtonian
inertial cascade at low wavenumbers; (V) a Newtonian viscous dissipation subrange
at the high wavenumber end; (E) an elastic subrange between the inertial and the
viscous region, that is governed by a strong back reaction of the polymers on the
flow. In the following the main properties of each subrange are summarized.

κ

E

5

3

3

1

1/ℓp 1/ηp 1/η

E(ηp)
E(η)

(I)
Inertial cascade

(E)
Elastic subrange

(V)
Viscous dissipation

Figure 5.9 Model spectrum for turbulence in polymer solutions indicating the three
regions: (I) κ < 1/ℓp, Kolmogorov’s inertial cascade; (E) 1/ℓp < κ < 1/ηp, fractions of
turbulence kinetic energy is transferred to elastic energy, which is then dissipated by
viscous drag of relaxing polymers and internal friction between the monomers of a single
polymer; (V) κ ≳ 1/ηp, turbulence kinetic energy is dissipated by viscous forces, identical
to the Newtonian spectrum (broken line).

Inertial subrange (I) It is determined by an energy cascade with a constant
energy flux ǫ0 and the constant scaling

E(κ) = αǫ2/30 κ−5/3, (5.15)
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also known as the Kolmogorov spectrum. Consequently, the local shear rate
s(κ), approximated by

s(κ) ∼ u(κ)
ℓ
∼ ǫ1/30 κ2/3, (5.16)

is growing for increasing wavenumbers, but is too weak to excite the elastic
degrees of freedom. The quantities u and ℓ are the characteristic velocity
fluctuation and length of a turbulence scale at a given wavenumber κ ∼ 1/ℓ,
respectively. Similarly, the local Reynolds and Weissenberg numbers can be
expressed as

Re(κ) = u(κ)ℓ
ν
∼ ǫ

1/3
0

νκ4/3
, (5.17)

Wi(κ) = s(κ)τ ∼ ǫ1/30 τκ2/3. (5.18)

Elastic subrange (E) This new spectral region is separated from the inertial

cascade by the Lumley scale ℓp (∼ √ǫ0τ3) determined by the elastic properties
of the fluid and the turbulence dissipation rate. In this subrange fractions of
the turbulence kinetic energy arriving from the inertial subrange is converted
into elastic energy by extending the polymer coils. Subsequent relaxation of
the stretched coils dissipates a part of this elastic energy due to the viscous
drag of the polymer molecules in the solvent, as well as interactions between
monomers of a single polymer.101 The residual part of the elastic energy is
transformed back to turbulence kinetic energy. This back reaction 8 is the
main feature of this subrange. As a result, the energy flux from higher to
lower wavenumbers is continuously reduced.

Furthermore, this region appears to follow a power-law (cf., e.g., refs. 49
and 148, as well as figures 5.3 to 5.5) with a slope of −3 (cf. present study),
which suggests that it is self regulating, in the sense that elastic and kinetic
forces are in equilibrium. This requires that the polymer stresses overcome
the viscous stresses, that is,

Wi(κ) = O(1) (5.19)

for 1/ℓp < κ < 1/ηp. This implicates that the shear rate s is constant and
comparable to 1/τp which, in turn, requires the verification of relation (5.10),
that is,

ǫ(κ) = ǫ0 (ℓpκ)−2 .
The local dissipation rate is bound by ǫv ⩽ ǫ(κ) ⩽ ǫ0. Hence, the energy
contained in a turbulent structure of wavenumber κ decreases according to
equation (5.11), namely

E(κ) = αǫ2/30 ℓ5/3p (ℓpκ)−3,
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and the local Reynolds number is, thus, given by

Re(κ) ∼ ǫ
1/3
0 ℓ

4/3
p

ν (ℓpκ)2 . (5.20)

Viscous subrange (V) This region is dominated by viscous stresses which trans-
form turbulence kinetic energy into heat, identical to the dissipation range
in the Newtonian spectrum. Therefore,

Re(κ) ≲ 1, (5.21)

Wi(κ) ≲ 1, (5.22)

and the new viscous dissipation scale is given by

ηp = (ν3

ǫv
)1/4 ∼ √ντ , (5.23)

where τ determines the characteristic time scale of the smallest turbulence
structures. The latter is a direct consequence of the self regulation which,
moreover, uniquely determines the reduced energy flux

ǫv ∼ ν

τ2
(5.24)

contributing to the viscous dissipation at the end of the elastic subrange.

The dissipation scales ηp and η and their respective energies are related by

ηp ∼ ηRe1/4
p , (5.25)

E(ηp) ∼ E(η)Re−1/4p , (5.26)

where

Rep = (ℓ
4
pǫ0)1/3
ν

= ǫ0
ǫv

(5.27)

is the local Reynolds number at the Lumley scale.

The Reynolds number Recs defined by (5.1) specifies the necessary flow con-
ditions such that the Lumley scale becomes comparable to the Newtonian Kol-
mogorov scale from below (ℓp grows with increasing Re), and hence, polymers are
no longer passive in the turbulence. Equation (5.27), on the other hand, defines a
local Reynolds number that is equal to one below the coil-stretch transition, that
is, when Re

M
≲ Recs.
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5.5.2 General remarks

In chapter 2 it was shown that shear-thinning for the investigated concentrations is
virtually absent, and thus, the encountered non-Newtonian effects can be attributed
to fluid elasticity.

Furthermore, the results obtained from high resolution PIV measurements are
of excellent quality, mainly because of the recently developed correction proce-
dures81 which have been adapted for the present measurement configuration.

The obtained results confirm the previously reported findings (cf. refs. 10, 53,
93, 141, 146, 148) that these effects are local, that is, they modify the small-scale
structure of the turbulence, whereas the large scales remain essentially unaffected.

Moreover, the turbulence kinetic energy and the large-scale anisotropy were
observed to increase in all polymer solutions, which is likely to be caused by a
modified turbulence production at the grid.

Since the degradation of the polymer solutions modified both turbulence de-
cay and turbulence production, the comparison of the total dissipation rates or
the Taylor microscales between polymer solutions and the pure solvent is diffi-
cult. Therefore, future experiments should include a fluid independent turbulence
production or a means to accurately determine the total dissipation rate.

However, the polymer degradation is not an inconvenience per se. The dif-
ficulties are in the determination of the important fluid properties, such as the
relaxation time, and the varying turbulence production. Apart from that, the de-
grading polymers actually allow to cover a wide range of Weissenberg numbers in
one experiment.

Finally, a new cascade model was successfully introduced to describe the evo-
lution of fluid or flow quantities under polymer degradation, which was necessary
as the existing attempts in the literature were unsatisfactory.
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Chapter 6

Final remarks and outlook

6.1 Summary of the most important findings

Grid turbulence was studied in water and in low concentration PEO solutions,
where turbulence was generated with a novel grid type which consists of a square
mesh grid with tethered spheres attached to each grid node. Three different teth-
ered bead diameters were tested in pure water and the largest diameter (D/M =
3/4) produced the most significant changes in turbulence properties over the plain
grid. The influence of the density ratio between the sphere and water was also
investigated for the smallest bead diameter, and was found to be negligible at the
flow rate studied.

This new grid allowed to increase the turbulence Reynolds number Reλ in wa-
ter by a factor of roughly two, resulting in a small but noticeable constant scaling
range in the velocity spectrum. This change can be attributed to the increase in
turbulence intensity, meanwhile the Taylor microscale remained unaffected com-
pared to the RTG. It was observed that the new grid produces higher turbulence
intensities per unit Cp than the classical plain grid. Hence, the new grid transforms
potential energy more effectively into turbulence energy. Moreover, the new grid
improves the large-scale isotropy by reducing the deficit between the streamwise
and the transverse intensities.

Velocity spectra and energy dissipation rates of energy have been measured with
PIV in dilute PEO solutions with concentrations below 100 wppm. Severe polymer
decay in the flow facility allowed for a study of these quantities under decreasing
elastic effects. The results show that dissipation rates and kinetic energies varied
considerably with the investigated concentration and the degree of degradation.
This is presumably due to a modified turbulence production at the grid. They
also indicate that the anisotropy between streamwise and transverse intensities is
stronger in polymer solutions than in the Newtonian solvent.

Furthermore, the measurements evidence the existence of a characteristic length
scale ℓp where the polymers start to affect the energy cascade. It was observed
that above this scale the velocity spectra are virtually unchanged relative to the
Newtonian case. Below ℓp, however, the energy transfer from large to small scales
is reduced porportional to κ−2, and consequently, the energy spectrum scales with
κ−3 instead of κ−5/3 and becomes self-regulating. The residual energy is most likely
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dissipated due to viscous drag of relaxing polymer chains and by internal friction
in the polymer coils. Hence, ℓp acts like a new dissipation scale. With deminishing
fluid elasticity, this scale is shifted towards higher wavenumbers, but the −3-power-
law is maintained. Therefore, the scale ℓp depends on the elastic properties of the
fluid.

6.2 Perspectives

Some theoretical and numerical predictions have been confirmed with the present
study but the results also raise new questions, such as the physical interpretation
of the time scale τp extracted from ℓp. This time scale was found to be much larger
than any relaxation time estimate, and is worthy of future detailed investigation.
Moreover, an accurate measure of the polymer relaxation time of dilute solutions
would allow to verify if indeed it coincides with the time scale τp of the observed
switchover from the −5/3- to the −3-scaling region.

A major flaw of the present experiment is the turbulence production that varies
with the working fluid, and affects kinetic energy and dissipation rate. To overcome
this difficulty, it would be necessary to bluild an experiment where the production
is indifferent to the studied fluid, or to develop a method to accurately determine
the total energy flux.
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