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ABSTRACT

This paper addresses the reconstruction of high resolution omnidi-
rectional images from a low resolution video acquired by an omni-
directional camera moving in a static scene. In order to exploit the
additional information provided by the side images in the video se-
quence, the ego-motion of the camera must be accurately estimated
in a first step. The reconstruction can then be modeled as a plenop-
tic sampling problem that has to encompass the change of viewpoint
between each position of the omnidirectional sensor and the specific
discretization of the real scene observed from each position. We for-
mulate this problem as an ill-posed inverse problem that incorporates
a regularization term based on a Total Variation (TV) prior. A graph
variational formulation is used in order to ease the representation
of omnidirectional data and to adapt the discretization of differen-
tial operators to the omnidirectional geometry. Experimental results
on synthetic images demonstrate the relevance of this approach and
its superiority compared to standard super-resolution using a single
image.

Index Terms— Omnidirectional, Graph, Total Variation, Super-
Resolution, Plenoptic

1. INTRODUCTION

Super-resolution usually describes the problem of reconstructing
high quality images from multiple images of lower resolutions, that
are typically taken at different instants in time or from slightly dif-
ferent viewpoints. Several efficient solutions of the super-resolution
problem have been proposed for images from perspective cameras
[1, 2, 3]. In these cases, the related ill-posed inverse problem is
formulated as a minimization regularized problem in which the
regularization term is based on a Total Variation (TV) prior or a
Tikhonov prior (using a classical `2 norm). This a priori informa-
tion significantly improves the performance of reconstruction and
increases the numerical stability of the solutions.

With the advent of new imaging systems, it becomes crucial
to deal with the super-resolution issue for these specific images.
Among them, omnidirectional cameras have the advantage to present
a wider field of view than perspective cameras, but this often comes
at a price of a lower resolution, and especially a lower angular res-
olution, with most of the common sensors. Super-resolution tech-
niques can improve the quality of the image sequences, by exploiting
the correlation between successive images. However, the problem
of super-resolution for omnidirectional sensors has not been widely
studied.

Algorithms used in super-resolution of perspective images have
been applied to omnidirectional images [4], but without exploiting
their true omnidirectional geometry. More recently, the specific
characteristics of omnidirectional images have been considered in

[5], where improved quality is obtained by an iterative projection
solution with multiple images captured by pre-defined rotation of the
camera around its main axis. The problem of joint registration and
super-resolution for omnidirectional images captured with arbitrary
rotation is addressed in a spherical framework in [6].

We address here the problem of super-resolution from a se-
quence of spherical low-resolution images acquired by a single
omnidirectional camera moving in a static scene. Since the camera
motion and the structure of the scene are unknown, we estimate
them as described in [7]. We then use the plenoptic geometry of the
scene to perform a registration step between successive frames of
the video sequence, and we exploit all the visual information for the
generation of a high resolution spherical image. One of the main
advantages of the proposed framework is the flexibility, since the
reconstruction of a high resolution image is not constrained to a spe-
cific position in space. We use a graph-based representation to cope
with the irregular sampling of the 2-Sphere, naturally induced by
the geometry of the omnidirectional sensors, and we formulate the
high resolution image reconstruction as an inverse problem based
on total variation regularization. Experimental results show that the
proposed algorithm is able to increase the quality of omnidirectional
images, both in terms of PSNR and visual quality.

2. SUPER-RESOLUTION FRAMEWORK

In the following we will work with a sequence of low resolution
omnidirectional images li, i ∈ {1, 2, · · · , N}, acquired at differ-
ent spatial positions xi in a static scene. Since we assume that the
scene does not change over time, we interpret the low resolution im-
age sequence as a spatial sampling of the 5-D plenoptic function [8]
L(x, ω) describing the light ray intensity at the 3D position x when
looking in direction ω.We choose the 2-sphere S2 as spatial domain
to process the omnidirectional images, for at least two good reasons:

1. It comes natural if we use the plenoptic function: if we fix
the spatial position x = xi , then the function L(xi, ω) is
defined on the 2-Sphere.

2. For a single effective viewpoint camera there is a one-to-one
mapping of the image plane onto a sphere (see [9]).

For a catadioptric camera, one of the most common omnidirectional
vision systems, the projection of the catadrioptric plane onto a sphere
is given via inverse stereographic projection [10]:

θ = 2 tan−1(2r), φ = φ

where θ ∈ [0, π] and φ ∈ [0, 2π[ are respectively the zenith angle
and the azimuthal angle in a spherical coordinate system, and r is
the distance in the image plane from the principal point (we assume
for simplicity the focal to be one). For each pixel in the image plane



we can then associate the direction ω = (θ, φ) ∈ S2 of the corre-
sponding light ray leaving the camera center.

To simplify the notation, but without loss of generality, we will
assume in the following that all images li have the same angular sam-
pling of the plenoptic function, such that to all of them correspond
the same set of directions Ωo = {ωk : k = 1, 2, · · · , Mo}.We can
write then: li = L(xi, Ωo) for i ∈ {1, 2, · · · , N}.

2.1. Light Rays Registration

We want to relate now, by simple geometrical considerations, a di-
rections ωk at the viewpoint xj with the corresponding direction ω̃k

at a generic point in space x, as depicted in Figure 1. We fix a
common system of coordinates. Let us assume now that from xj ,
looking in direction ωk, we observe a point p = Djωk in the scene,
where Dj is the distance of the point p from xj . Please note that,
with an abuse of notation, we use ωk to represent both the 3D unit
vector and the direction on S2. If p is visible from position x, since
the translation vector between the two viewpoints is simply given by
tj = xj − x, the following relationship holds:

ω̃k =
p− tj

‖p− tj‖
. (1)

If the light conditions change slowly over time we can use the bright-
ness consistency equation to relate different samples of the plenoptic
function:

L(x, ω̃k) = L(xj , ωk). (2)

It should be clear from Eq. (2) that, if we know p and tj , we can
obtain a new plenoptic sample L(x, Ωl) on the set of directions

Ωl =
[
j

{ω̃k}j ,

where we use {ω̃k}j to represent all the new directions ω̃k at posi-
tion x obtained from position xj and the set of directions Ωo using
Eq. (1).
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Fig. 1. Light ray geometry between position x and xj

2.2. Discrete Embedding of the Sphere in a Graph

Before we further proceed to the formulation of a variational inverse
problem, we briefly discuss how we embed the spherical discrete set
of data into a graph structure. The main advantage of the graph-
based representation is that we can directly define stable differential
operators on a discrete domain. Although the 2-sphere is a simple
manifold with constant curvature and a simple topology, a naive dis-
cretization can cause severe numerical instabilities (see for example
[11]). On top of that we have extreme flexibility on the choice of
the discrete grid points, so we are not limited to regular grids. A

weighted undirected graph Γ = (V, E, w) consists of a set of ver-
tices V , a set of vertices pairs E ⊆ V × V , and a weight func-
tion w : E 7→ R satisfying w(u, v) > 0 and w(u, v) = w(v, u),
∀(u, v) ∈ E. Each direction ω can be interpreted as a point on a
spherical imaging surface, so we use vertices to represent directions
ω in space (i.e. points on the unitary sphere), while edges define
connections between directions. The topology of the spherical sur-
face is finally obtained through the definition of weights w(u, v) as
a decreasing function of the geodesic distance g(u, v) between the
vertices u and v: w(u, v) = e−g2/σ . Following Zhou et al [12], we
define the gradient and divergence over Γ as :

(∇wf)(u, v) =

s
w(u, v)

d(u)
f(u)−

s
w(u, v)

d(v)
f(v) (3)

and

(divwF )(u) =
X
u∼v

s
w(u, v)

d(v)
(F (v, u)− F (u, v)) , (4)

where u ∼ v stands for all vertices v connected to u and d : V 7→ R
is the degree function defined as d(v) =

P
u∼v w(u, v). We also

define the local isotropic variation of F at vertex (pixel) v by:

‖∇w
v F‖ =

sX
u∼v

h“
∇wF

”
(u, v)

i2

. (5)

2.3. Variational Problem Formulation and Solution

We assume from now on that we know the camera motion parame-
ters, i.e., translation and rotation for each pair of images li and lj , as
well as a dense depth map estimate Di(ωk) for each spatial position
xi. We obtain such estimates in a pre-processing step using the same
structure from motion algorithm described in [7]. For each couple
of successive frames li and lj the camera ego-motion and the depth
map Di(ωk) are jointly estimated in variational framework. Using
the ego-motion parameters and the depth information, we perform
an image registration step where we obtain, for a generic position
x in space, the full set of directions Ωl as described in Section 2.1.
We want to stress that, thanks to the framework flexibility, x does
not have necessarily to coincide with one of the camera positions.
We set b = L(x, Ωl) ∈ Rm where m is the cardinality of Ωl. The
super-resolution problem then consists in estimating from b a sam-
ple of the plenoptic function at a given position x and for a given
set of directions Ωh = {ωh : h = 1, 2, ...Mh}, where typically
Mh � Mo. Let us call f the full set of plenoptic function values on
the set of direction Ω = Ωl ∪ Ωh, i.e. f = L(x, Ω) ∈ Rn when n
is the cardinality of Ω. We formulate then the following variational
inverse problem where we look for a regularized solution f∗ s.t.

f∗ = argmin
f

‖b− Φf‖2 + λ
X

v

‖∇w
v f‖, (6)

where Φ is a matrix defined as:

Φ = IΩl ∈ Rm×n (7)

i.e., it is obtained from the identity matrix I ∈ Rn×n by keeping
only the rows corresponding to directions in Ωl. In other words Φ
restricts f to the available data. Since the second energy term in
Eq. (6) defines the total variation norm of f on the graph, the mini-
mization problem defined in Eq. (6) can be seen as a TV inpainting
scheme on graphs. It is out of the scope of this paper to tackle con-
vex optimization algorithm on graphs, so we refer to the solution
proposed in [13, 11].
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(a) Using 256x256
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(b) Using 128x128
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Fig. 2. PSNR plots for 3 video sequences as function of the number of images used in the reconstruction. The black curve is obtained using
ground truth registration. In red we show the curve obtained from estimated registration. On the bottom there are the corresponding HR
image reconstructions.

3. EXPERIMENTAL RESULTS

We test our algorithm with synthetic photorealistic images. The
video sequence is obtained from spherical renderings of a 3D model
of a living room. Each frame is generated from a different posi-
tion in space and the spatial distance between successive frames is
fixed. We reconstruct a high-resolution (HR) image on an equiangu-
lar grid of 512x512 pixels, using three different low-resolution (LR)
spherical video sequences each composed of 17 frames. Each video
sequence has a different resolution: 64x64, 128x128 and 256x256.
We compare the results with respect to a HR ground truth image,
and we have also access to the registration ground truth. We use the
same set of parameters for all simulations. In particular we fix the
regularization parameter in Eq.(6) to λ = 0.05. This is not an op-
timal choice in terms of absolute results (i.e. PSNR values), since
λ should vary as function of the resolution. However, the scope of
the simulations is to test the efficacy of the super-resolution scheme
and not the sensitivity to the regularization parameters. In Figure 2
we show the PSNR curve as function of the number of images used
in the reconstruction. The black curve is obtained using registration
ground truth and represents the ideal system behavior. When we use
the estimated registration, the PSNR curve (in red) tends to saturate
earlier, but still shows a significant improvement of up to 2dB. The
difference with the ideal curve is more evident when we reconstruct
the HR image from very low resolution video (e.g., 64x64): this ef-
fect is easily explained if we consider that the estimation of the depth

map using only two consecutive frames is an error prone operation,
and the quality of the estimate degrades at low resolutions. It is in-
teresting to note, however, that the PSNR gap does not correspond
to a degradation of the visual image quality as we can clearly ob-
serve in Figure 4. Finally a visual inspection of Figure 3 confirms
that using an increasing number of frames leads to more pleasant
reconstructions.

4. CONCLUSIONS

In this paper we propose a novel approach to super-resolution from
omnidirectional image sequences with unknown registration. Om-
nidirectional camera images are naturally defined on the 2-sphere.
Since classical approaches fail to apply to the spherical domain
we propose a flexible embedding of the spatial domain on a graph,
which handles naturally irregular sampling of the sphere. We first
perform a registration step between the spherical low resolution
images and a new position in space, based on a dense depth map
estimate. Then we use this information to formulate a variational
inverse problem based on TV regularization. Tests on synthetic
images support the validity of the proposed approach that leads to
consistent improvements in the reconstructed high resolution images
both in terms of PSNR and visual quality.
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Fig. 3. Visual results using increasing number of frames (1,5,9,13)
from the 64x64 video sequence. Top left: the LR image. Bottom
right: the HR ground truth image.
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